xref: /dragonfly/sys/vm/vm_kern.c (revision 9c600e7d)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
65  * $DragonFly: src/sys/vm/vm_kern.c,v 1.4 2003/07/19 21:14:53 dillon Exp $
66  */
67 
68 /*
69  *	Kernel memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t clean_map=0;
91 vm_map_t buffer_map=0;
92 vm_map_t mb_map=0;
93 int mb_map_full=0;
94 
95 /*
96  *	kmem_alloc_pageable:
97  *
98  *	Allocate pageable memory to the kernel's address map.
99  *	"map" must be kernel_map or a submap of kernel_map.
100  */
101 
102 vm_offset_t
103 kmem_alloc_pageable(map, size)
104 	vm_map_t map;
105 	register vm_size_t size;
106 {
107 	vm_offset_t addr;
108 	register int result;
109 
110 	size = round_page(size);
111 	addr = vm_map_min(map);
112 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	kmem_alloc_nofault:
122  *
123  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124  */
125 
126 vm_offset_t
127 kmem_alloc_nofault(map, size)
128 	vm_map_t map;
129 	register vm_size_t size;
130 {
131 	vm_offset_t addr;
132 	register int result;
133 
134 	size = round_page(size);
135 	addr = vm_map_min(map);
136 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
137 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
138 	if (result != KERN_SUCCESS) {
139 		return (0);
140 	}
141 	return (addr);
142 }
143 
144 /*
145  *	Allocate wired-down memory in the kernel's address map
146  *	or a submap.
147  */
148 vm_offset_t
149 kmem_alloc(map, size)
150 	register vm_map_t map;
151 	register vm_size_t size;
152 {
153 	vm_offset_t addr;
154 	register vm_offset_t offset;
155 	vm_offset_t i;
156 
157 	size = round_page(size);
158 
159 	/*
160 	 * Use the kernel object for wired-down kernel pages. Assume that no
161 	 * region of the kernel object is referenced more than once.
162 	 */
163 
164 	/*
165 	 * Locate sufficient space in the map.  This will give us the final
166 	 * virtual address for the new memory, and thus will tell us the
167 	 * offset within the kernel map.
168 	 */
169 	vm_map_lock(map);
170 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
171 		vm_map_unlock(map);
172 		return (0);
173 	}
174 	offset = addr - VM_MIN_KERNEL_ADDRESS;
175 	vm_object_reference(kernel_object);
176 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
177 		VM_PROT_ALL, VM_PROT_ALL, 0);
178 	vm_map_unlock(map);
179 
180 	/*
181 	 * Guarantee that there are pages already in this object before
182 	 * calling vm_map_pageable.  This is to prevent the following
183 	 * scenario:
184 	 *
185 	 * 1) Threads have swapped out, so that there is a pager for the
186 	 * kernel_object. 2) The kmsg zone is empty, and so we are
187 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
188 	 * there is no page, but there is a pager, so we call
189 	 * pager_data_request.  But the kmsg zone is empty, so we must
190 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
191 	 * we get the data back from the pager, it will be (very stale)
192 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
193 	 *
194 	 * We're intentionally not activating the pages we allocate to prevent a
195 	 * race with page-out.  vm_map_pageable will wire the pages.
196 	 */
197 
198 	for (i = 0; i < size; i += PAGE_SIZE) {
199 		vm_page_t mem;
200 
201 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
202 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
203 		if ((mem->flags & PG_ZERO) == 0)
204 			vm_page_zero_fill(mem);
205 		mem->valid = VM_PAGE_BITS_ALL;
206 		vm_page_flag_clear(mem, PG_ZERO);
207 		vm_page_wakeup(mem);
208 	}
209 
210 	/*
211 	 * And finally, mark the data as non-pageable.
212 	 */
213 
214 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
215 
216 	return (addr);
217 }
218 
219 /*
220  *	kmem_free:
221  *
222  *	Release a region of kernel virtual memory allocated
223  *	with kmem_alloc, and return the physical pages
224  *	associated with that region.
225  *
226  *	This routine may not block on kernel maps.
227  */
228 void
229 kmem_free(map, addr, size)
230 	vm_map_t map;
231 	register vm_offset_t addr;
232 	vm_size_t size;
233 {
234 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235 }
236 
237 /*
238  *	kmem_suballoc:
239  *
240  *	Allocates a map to manage a subrange
241  *	of the kernel virtual address space.
242  *
243  *	Arguments are as follows:
244  *
245  *	parent		Map to take range from
246  *	size		Size of range to find
247  *	min, max	Returned endpoints of map
248  *	pageable	Can the region be paged
249  */
250 vm_map_t
251 kmem_suballoc(parent, min, max, size)
252 	register vm_map_t parent;
253 	vm_offset_t *min, *max;
254 	register vm_size_t size;
255 {
256 	register int ret;
257 	vm_map_t result;
258 
259 	size = round_page(size);
260 
261 	*min = (vm_offset_t) vm_map_min(parent);
262 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
263 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
264 	if (ret != KERN_SUCCESS) {
265 		printf("kmem_suballoc: bad status return of %d.\n", ret);
266 		panic("kmem_suballoc");
267 	}
268 	*max = *min + size;
269 	pmap_reference(vm_map_pmap(parent));
270 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
271 	if (result == NULL)
272 		panic("kmem_suballoc: cannot create submap");
273 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
274 		panic("kmem_suballoc: unable to change range to submap");
275 	return (result);
276 }
277 
278 /*
279  *	kmem_malloc:
280  *
281  * 	Allocate wired-down memory in the kernel's address map for the higher
282  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
283  * 	kmem_alloc() because we may need to allocate memory at interrupt
284  * 	level where we cannot block (canwait == FALSE).
285  *
286  * 	This routine has its own private kernel submap (kmem_map) and object
287  * 	(kmem_object).  This, combined with the fact that only malloc uses
288  * 	this routine, ensures that we will never block in map or object waits.
289  *
290  * 	Note that this still only works in a uni-processor environment and
291  * 	when called at splhigh().
292  *
293  * 	We don't worry about expanding the map (adding entries) since entries
294  * 	for wired maps are statically allocated.
295  *
296  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
297  *	I have not verified that it actually does not block.
298  */
299 vm_offset_t
300 kmem_malloc(map, size, flags)
301 	register vm_map_t map;
302 	register vm_size_t size;
303 	int flags;
304 {
305 	register vm_offset_t offset, i;
306 	vm_map_entry_t entry;
307 	vm_offset_t addr;
308 	vm_page_t m;
309 
310 	if (map != kmem_map && map != mb_map)
311 		panic("kmem_malloc: map != {kmem,mb}_map");
312 
313 	size = round_page(size);
314 	addr = vm_map_min(map);
315 
316 	/*
317 	 * Locate sufficient space in the map.  This will give us the final
318 	 * virtual address for the new memory, and thus will tell us the
319 	 * offset within the kernel map.
320 	 */
321 	vm_map_lock(map);
322 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
323 		vm_map_unlock(map);
324 		if (map == mb_map) {
325 			mb_map_full = TRUE;
326 			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
327 			return (0);
328 		}
329 		if ((flags & M_NOWAIT) == 0)
330 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
331 				(long)size, (long)map->size);
332 		return (0);
333 	}
334 	offset = addr - VM_MIN_KERNEL_ADDRESS;
335 	vm_object_reference(kmem_object);
336 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
337 		VM_PROT_ALL, VM_PROT_ALL, 0);
338 
339 	for (i = 0; i < size; i += PAGE_SIZE) {
340 		/*
341 		 * Note: if M_NOWAIT specified alone, allocate from
342 		 * interrupt-safe queues only (just the free list).  If
343 		 * M_USE_RESERVE is also specified, we can also
344 		 * allocate from the cache.  Neither of the latter two
345 		 * flags may be specified from an interrupt since interrupts
346 		 * are not allowed to mess with the cache queue.
347 		 */
348 retry:
349 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
350 		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
351 			VM_ALLOC_INTERRUPT :
352 			VM_ALLOC_SYSTEM);
353 
354 		/*
355 		 * Ran out of space, free everything up and return. Don't need
356 		 * to lock page queues here as we know that the pages we got
357 		 * aren't on any queues.
358 		 */
359 		if (m == NULL) {
360 			if ((flags & M_NOWAIT) == 0) {
361 				vm_map_unlock(map);
362 				VM_WAIT;
363 				vm_map_lock(map);
364 				goto retry;
365 			}
366 			/*
367 			 * Free the pages before removing the map entry.
368 			 * They are already marked busy.  Calling
369 			 * vm_map_delete before the pages has been freed or
370 			 * unbusied will cause a deadlock.
371 			 */
372 			while (i != 0) {
373 				i -= PAGE_SIZE;
374 				m = vm_page_lookup(kmem_object,
375 						   OFF_TO_IDX(offset + i));
376 				vm_page_free(m);
377 			}
378 			vm_map_delete(map, addr, addr + size);
379 			vm_map_unlock(map);
380 			return (0);
381 		}
382 		vm_page_flag_clear(m, PG_ZERO);
383 		m->valid = VM_PAGE_BITS_ALL;
384 	}
385 
386 	/*
387 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
388 	 * be able to extend the previous entry so there will be a new entry
389 	 * exactly corresponding to this address range and it will have
390 	 * wired_count == 0.
391 	 */
392 	if (!vm_map_lookup_entry(map, addr, &entry) ||
393 	    entry->start != addr || entry->end != addr + size ||
394 	    entry->wired_count != 0)
395 		panic("kmem_malloc: entry not found or misaligned");
396 	entry->wired_count = 1;
397 
398 	vm_map_simplify_entry(map, entry);
399 
400 	/*
401 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
402 	 * the wired count without wrapping the vm_page_queue_lock in
403 	 * splimp...)
404 	 */
405 	for (i = 0; i < size; i += PAGE_SIZE) {
406 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
407 		vm_page_wire(m);
408 		vm_page_wakeup(m);
409 		/*
410 		 * Because this is kernel_pmap, this call will not block.
411 		 */
412 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
413 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
414 	}
415 	vm_map_unlock(map);
416 
417 	return (addr);
418 }
419 
420 /*
421  *	kmem_alloc_wait:
422  *
423  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
424  *	has no room, the caller sleeps waiting for more memory in the submap.
425  *
426  *	This routine may block.
427  */
428 
429 vm_offset_t
430 kmem_alloc_wait(map, size)
431 	vm_map_t map;
432 	vm_size_t size;
433 {
434 	vm_offset_t addr;
435 
436 	size = round_page(size);
437 
438 	for (;;) {
439 		/*
440 		 * To make this work for more than one map, use the map's lock
441 		 * to lock out sleepers/wakers.
442 		 */
443 		vm_map_lock(map);
444 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
445 			break;
446 		/* no space now; see if we can ever get space */
447 		if (vm_map_max(map) - vm_map_min(map) < size) {
448 			vm_map_unlock(map);
449 			return (0);
450 		}
451 		vm_map_unlock(map);
452 		tsleep(map, 0, "kmaw", 0);
453 	}
454 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
455 	vm_map_unlock(map);
456 	return (addr);
457 }
458 
459 /*
460  *	kmem_free_wakeup:
461  *
462  *	Returns memory to a submap of the kernel, and wakes up any processes
463  *	waiting for memory in that map.
464  */
465 void
466 kmem_free_wakeup(map, addr, size)
467 	vm_map_t map;
468 	vm_offset_t addr;
469 	vm_size_t size;
470 {
471 	vm_map_lock(map);
472 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
473 	wakeup(map);
474 	vm_map_unlock(map);
475 }
476 
477 /*
478  * 	kmem_init:
479  *
480  *	Create the kernel map; insert a mapping covering kernel text,
481  *	data, bss, and all space allocated thus far (`boostrap' data).  The
482  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
483  *	`start' as allocated, and the range between `start' and `end' as free.
484  */
485 
486 void
487 kmem_init(start, end)
488 	vm_offset_t start, end;
489 {
490 	register vm_map_t m;
491 
492 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
493 	vm_map_lock(m);
494 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
495 	kernel_map = m;
496 	kernel_map->system_map = 1;
497 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
498 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
499 	/* ... and ending with the completion of the above `insert' */
500 	vm_map_unlock(m);
501 }
502 
503