xref: /dragonfly/sys/vm/vm_kern.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
65  * $DragonFly: src/sys/vm/vm_kern.c,v 1.29 2007/06/07 23:14:29 dillon Exp $
66  */
67 
68 /*
69  *	Kernel memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 
90 struct vm_map kernel_map;
91 struct vm_map clean_map;
92 struct vm_map buffer_map;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 vm_offset_t
101 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
102 {
103 	vm_offset_t addr;
104 	int result;
105 
106 	size = round_page(size);
107 	addr = vm_map_min(map);
108 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
109 			     &addr, size,
110 			     TRUE,
111 			     VM_MAPTYPE_NORMAL,
112 			     VM_PROT_ALL, VM_PROT_ALL,
113 			     0);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	kmem_alloc_nofault:
122  *
123  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124  */
125 vm_offset_t
126 kmem_alloc_nofault(vm_map_t map, vm_size_t size)
127 {
128 	vm_offset_t addr;
129 	int result;
130 
131 	size = round_page(size);
132 	addr = vm_map_min(map);
133 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
134 			     &addr, size,
135 			     TRUE,
136 			     VM_MAPTYPE_NORMAL,
137 			     VM_PROT_ALL, VM_PROT_ALL,
138 			     MAP_NOFAULT);
139 	if (result != KERN_SUCCESS) {
140 		return (0);
141 	}
142 	return (addr);
143 }
144 
145 /*
146  *	Allocate wired-down memory in the kernel's address map
147  *	or a submap.
148  */
149 vm_offset_t
150 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
151 {
152 	vm_offset_t addr;
153 	vm_offset_t i;
154 	int count;
155 
156 	size = round_page(size);
157 
158 	if (kmflags & KM_KRESERVE)
159 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
160 	else
161 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
162 
163 	/*
164 	 * Use the kernel object for wired-down kernel pages. Assume that no
165 	 * region of the kernel object is referenced more than once.
166 	 *
167 	 * Locate sufficient space in the map.  This will give us the final
168 	 * virtual address for the new memory, and thus will tell us the
169 	 * offset within the kernel map.
170 	 */
171 	vm_map_lock(map);
172 	if (vm_map_findspace(map, vm_map_min(map), size, 1, 0, &addr)) {
173 		vm_map_unlock(map);
174 		if (kmflags & KM_KRESERVE)
175 			vm_map_entry_krelease(count);
176 		else
177 			vm_map_entry_release(count);
178 		return (0);
179 	}
180 	vm_object_reference(&kernel_object);
181 	vm_map_insert(map, &count,
182 		      &kernel_object, addr, addr, addr + size,
183 		      VM_MAPTYPE_NORMAL,
184 		      VM_PROT_ALL, VM_PROT_ALL,
185 		      0);
186 	vm_map_unlock(map);
187 	if (kmflags & KM_KRESERVE)
188 		vm_map_entry_krelease(count);
189 	else
190 		vm_map_entry_release(count);
191 
192 	/*
193 	 * Guarantee that there are pages already in this object before
194 	 * calling vm_map_wire.  This is to prevent the following
195 	 * scenario:
196 	 *
197 	 * 1) Threads have swapped out, so that there is a pager for the
198 	 * kernel_object. 2) The kmsg zone is empty, and so we are
199 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
200 	 * there is no page, but there is a pager, so we call
201 	 * pager_data_request.  But the kmsg zone is empty, so we must
202 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
203 	 * we get the data back from the pager, it will be (very stale)
204 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
205 	 *
206 	 * We're intentionally not activating the pages we allocate to prevent a
207 	 * race with page-out.  vm_map_wire will wire the pages.
208 	 */
209 
210 	for (i = 0; i < size; i += PAGE_SIZE) {
211 		vm_page_t mem;
212 
213 		mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
214 			    VM_ALLOC_ZERO | VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
215 		if ((mem->flags & PG_ZERO) == 0)
216 			vm_page_zero_fill(mem);
217 		mem->valid = VM_PAGE_BITS_ALL;
218 		vm_page_flag_clear(mem, PG_ZERO);
219 		vm_page_wakeup(mem);
220 	}
221 
222 	/*
223 	 * And finally, mark the data as non-pageable.
224 	 */
225 
226 	vm_map_wire(map, (vm_offset_t) addr, addr + size, kmflags);
227 
228 	return (addr);
229 }
230 
231 /*
232  *	kmem_free:
233  *
234  *	Release a region of kernel virtual memory allocated
235  *	with kmem_alloc, and return the physical pages
236  *	associated with that region.
237  *
238  *	This routine may not block on kernel maps.
239  */
240 void
241 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
242 {
243 	vm_map_remove(map, trunc_page(addr), round_page(addr + size));
244 }
245 
246 /*
247  *	kmem_suballoc:
248  *
249  *	Used to break a system map into smaller maps, usually to reduce
250  *	contention and to provide large KVA spaces for subsystems like the
251  *	buffer cache.
252  *
253  *	parent		Map to take range from
254  *	result
255  *	size		Size of range to find
256  *	min, max	Returned endpoints of map
257  *	pageable	Can the region be paged
258  */
259 void
260 kmem_suballoc(vm_map_t parent, vm_map_t result,
261 	      vm_offset_t *min, vm_offset_t *max, vm_size_t size)
262 {
263 	int ret;
264 
265 	size = round_page(size);
266 
267 	*min = (vm_offset_t) vm_map_min(parent);
268 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
269 			  min, size,
270 			  TRUE,
271 			  VM_MAPTYPE_UNSPECIFIED,
272 			  VM_PROT_ALL, VM_PROT_ALL,
273 			  0);
274 	if (ret != KERN_SUCCESS) {
275 		kprintf("kmem_suballoc: bad status return of %d.\n", ret);
276 		panic("kmem_suballoc");
277 	}
278 	*max = *min + size;
279 	pmap_reference(vm_map_pmap(parent));
280 	vm_map_init(result, *min, *max, vm_map_pmap(parent));
281 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
282 		panic("kmem_suballoc: unable to change range to submap");
283 }
284 
285 /*
286  *	kmem_alloc_wait:
287  *
288  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
289  *	has no room, the caller sleeps waiting for more memory in the submap.
290  *
291  *	This routine may block.
292  */
293 
294 vm_offset_t
295 kmem_alloc_wait(vm_map_t map, vm_size_t size)
296 {
297 	vm_offset_t addr;
298 	int count;
299 
300 	size = round_page(size);
301 
302 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
303 
304 	for (;;) {
305 		/*
306 		 * To make this work for more than one map, use the map's lock
307 		 * to lock out sleepers/wakers.
308 		 */
309 		vm_map_lock(map);
310 		if (vm_map_findspace(map, vm_map_min(map), size,
311 				     1, 0, &addr) == 0) {
312 			break;
313 		}
314 		/* no space now; see if we can ever get space */
315 		if (vm_map_max(map) - vm_map_min(map) < size) {
316 			vm_map_entry_release(count);
317 			vm_map_unlock(map);
318 			return (0);
319 		}
320 		vm_map_unlock(map);
321 		tsleep(map, 0, "kmaw", 0);
322 	}
323 	vm_map_insert(map, &count,
324 		      NULL, (vm_offset_t) 0,
325 		      addr, addr + size,
326 		      VM_MAPTYPE_NORMAL,
327 		      VM_PROT_ALL, VM_PROT_ALL,
328 		      0);
329 	vm_map_unlock(map);
330 	vm_map_entry_release(count);
331 	return (addr);
332 }
333 
334 /*
335  *	kmem_free_wakeup:
336  *
337  *	Returns memory to a submap of the kernel, and wakes up any processes
338  *	waiting for memory in that map.
339  */
340 void
341 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
342 {
343 	int count;
344 
345 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
346 	vm_map_lock(map);
347 	vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
348 	wakeup(map);
349 	vm_map_unlock(map);
350 	vm_map_entry_release(count);
351 }
352 
353 /*
354  * 	kmem_init:
355  *
356  *	Create the kernel_map and insert mappings to cover areas already
357  *	allocated or reserved thus far.  That is, the area (KvaStart,start)
358  *	and (end,KvaEnd) must be marked as allocated.
359  *
360  *	We could use a min_offset of 0 instead of KvaStart, but since the
361  *	min_offset is not used for any calculations other then a bounds check
362  *	it does not effect readability.  KvaStart is more appropriate.
363  *
364  *	Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
365  */
366 void
367 kmem_init(vm_offset_t start, vm_offset_t end)
368 {
369 	vm_map_t m;
370 	int count;
371 
372 	m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
373 	vm_map_lock(m);
374 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
375 	m->system_map = 1;
376 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
377 	if (KvaStart != start) {
378 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
379 			      KvaStart, start,
380 			      VM_MAPTYPE_NORMAL,
381 			      VM_PROT_ALL, VM_PROT_ALL,
382 			      0);
383 	}
384 	if (KvaEnd != end) {
385 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
386 			      end, KvaEnd,
387 			      VM_MAPTYPE_NORMAL,
388 			      VM_PROT_ALL, VM_PROT_ALL,
389 			      0);
390 	}
391 	/* ... and ending with the completion of the above `insert' */
392 	vm_map_unlock(m);
393 	vm_map_entry_release(count);
394 }
395 
396 static int
397 kvm_size(SYSCTL_HANDLER_ARGS)
398 {
399 	unsigned long ksize = KvaSize;
400 
401 	return sysctl_handle_long(oidp, &ksize, 0, req);
402 }
403 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
404     0, 0, kvm_size, "IU", "Size of KVM");
405 
406 static int
407 kvm_free(SYSCTL_HANDLER_ARGS)
408 {
409 	unsigned long kfree = virtual_end - kernel_vm_end;
410 
411 	return sysctl_handle_long(oidp, &kfree, 0, req);
412 }
413 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
414     0, 0, kvm_free, "IU", "Amount of KVM free");
415 
416