xref: /dragonfly/sys/vm/vm_kern.c (revision c89a6c1b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
65  * $DragonFly: src/sys/vm/vm_kern.c,v 1.29 2007/06/07 23:14:29 dillon Exp $
66  */
67 
68 /*
69  *	Kernel memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 
90 struct vm_map kernel_map;
91 struct vm_map clean_map;
92 struct vm_map buffer_map;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 vm_offset_t
101 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
102 {
103 	vm_offset_t addr;
104 	int result;
105 
106 	size = round_page(size);
107 	addr = vm_map_min(map);
108 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
109 			     &addr, size, PAGE_SIZE,
110 			     TRUE, VM_MAPTYPE_NORMAL,
111 			     VM_PROT_ALL, VM_PROT_ALL,
112 			     0);
113 	if (result != KERN_SUCCESS) {
114 		return (0);
115 	}
116 	return (addr);
117 }
118 
119 /*
120  *	kmem_alloc_nofault:
121  *
122  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
123  */
124 vm_offset_t
125 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_size_t align)
126 {
127 	vm_offset_t addr;
128 	int result;
129 
130 	size = round_page(size);
131 	addr = vm_map_min(map);
132 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
133 			     &addr, size, align,
134 			     TRUE, VM_MAPTYPE_NORMAL,
135 			     VM_PROT_ALL, VM_PROT_ALL,
136 			     MAP_NOFAULT);
137 	if (result != KERN_SUCCESS) {
138 		return (0);
139 	}
140 	return (addr);
141 }
142 
143 /*
144  *	Allocate wired-down memory in the kernel's address map
145  *	or a submap.
146  */
147 vm_offset_t
148 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
149 {
150 	vm_offset_t addr;
151 	vm_offset_t i;
152 	int count;
153 
154 	size = round_page(size);
155 
156 	if (kmflags & KM_KRESERVE)
157 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
158 	else
159 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
160 
161 	/*
162 	 * Use the kernel object for wired-down kernel pages. Assume that no
163 	 * region of the kernel object is referenced more than once.
164 	 *
165 	 * Locate sufficient space in the map.  This will give us the final
166 	 * virtual address for the new memory, and thus will tell us the
167 	 * offset within the kernel map.
168 	 */
169 	vm_map_lock(map);
170 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
171 		vm_map_unlock(map);
172 		if (kmflags & KM_KRESERVE)
173 			vm_map_entry_krelease(count);
174 		else
175 			vm_map_entry_release(count);
176 		return (0);
177 	}
178 	vm_object_reference(&kernel_object);
179 	vm_map_insert(map, &count,
180 		      &kernel_object, addr, addr, addr + size,
181 		      VM_MAPTYPE_NORMAL,
182 		      VM_PROT_ALL, VM_PROT_ALL,
183 		      0);
184 	vm_map_unlock(map);
185 	if (kmflags & KM_KRESERVE)
186 		vm_map_entry_krelease(count);
187 	else
188 		vm_map_entry_release(count);
189 
190 	/*
191 	 * Guarantee that there are pages already in this object before
192 	 * calling vm_map_wire.  This is to prevent the following
193 	 * scenario:
194 	 *
195 	 * 1) Threads have swapped out, so that there is a pager for the
196 	 * kernel_object. 2) The kmsg zone is empty, and so we are
197 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
198 	 * there is no page, but there is a pager, so we call
199 	 * pager_data_request.  But the kmsg zone is empty, so we must
200 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
201 	 * we get the data back from the pager, it will be (very stale)
202 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
203 	 *
204 	 * We're intentionally not activating the pages we allocate to prevent a
205 	 * race with page-out.  vm_map_wire will wire the pages.
206 	 */
207 
208 	for (i = 0; i < size; i += PAGE_SIZE) {
209 		vm_page_t mem;
210 
211 		mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
212 			    VM_ALLOC_ZERO | VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
213 		if ((mem->flags & PG_ZERO) == 0)
214 			vm_page_zero_fill(mem);
215 		mem->valid = VM_PAGE_BITS_ALL;
216 		vm_page_flag_clear(mem, PG_ZERO);
217 		vm_page_wakeup(mem);
218 	}
219 
220 	/*
221 	 * And finally, mark the data as non-pageable.
222 	 */
223 
224 	vm_map_wire(map, (vm_offset_t) addr, addr + size, kmflags);
225 
226 	return (addr);
227 }
228 
229 /*
230  *	kmem_free:
231  *
232  *	Release a region of kernel virtual memory allocated
233  *	with kmem_alloc, and return the physical pages
234  *	associated with that region.
235  *
236  *	WARNING!  If the caller entered pages into the region using
237  *	pmap_kenter() it must remove the pages using pmap_kremove[_quick]()
238  *	before freeing the underlying kmem, otherwise resident_count will
239  *	be mistabulated.
240  *
241  *	This routine may not block on kernel maps.
242  */
243 void
244 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
245 {
246 	vm_map_remove(map, trunc_page(addr), round_page(addr + size));
247 }
248 
249 /*
250  *	kmem_suballoc:
251  *
252  *	Used to break a system map into smaller maps, usually to reduce
253  *	contention and to provide large KVA spaces for subsystems like the
254  *	buffer cache.
255  *
256  *	parent		Map to take range from
257  *	result
258  *	size		Size of range to find
259  *	min, max	Returned endpoints of map
260  *	pageable	Can the region be paged
261  */
262 void
263 kmem_suballoc(vm_map_t parent, vm_map_t result,
264 	      vm_offset_t *min, vm_offset_t *max, vm_size_t size)
265 {
266 	int ret;
267 
268 	size = round_page(size);
269 
270 	*min = (vm_offset_t) vm_map_min(parent);
271 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
272 			  min, size, PAGE_SIZE,
273 			  TRUE, VM_MAPTYPE_UNSPECIFIED,
274 			  VM_PROT_ALL, VM_PROT_ALL,
275 			  0);
276 	if (ret != KERN_SUCCESS) {
277 		kprintf("kmem_suballoc: bad status return of %d.\n", ret);
278 		panic("kmem_suballoc");
279 	}
280 	*max = *min + size;
281 	pmap_reference(vm_map_pmap(parent));
282 	vm_map_init(result, *min, *max, vm_map_pmap(parent));
283 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
284 		panic("kmem_suballoc: unable to change range to submap");
285 }
286 
287 /*
288  *	kmem_alloc_wait:
289  *
290  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
291  *	has no room, the caller sleeps waiting for more memory in the submap.
292  *
293  *	This routine may block.
294  */
295 
296 vm_offset_t
297 kmem_alloc_wait(vm_map_t map, vm_size_t size)
298 {
299 	vm_offset_t addr;
300 	int count;
301 
302 	size = round_page(size);
303 
304 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
305 
306 	for (;;) {
307 		/*
308 		 * To make this work for more than one map, use the map's lock
309 		 * to lock out sleepers/wakers.
310 		 */
311 		vm_map_lock(map);
312 		if (vm_map_findspace(map, vm_map_min(map),
313 				     size, PAGE_SIZE, 0, &addr) == 0) {
314 			break;
315 		}
316 		/* no space now; see if we can ever get space */
317 		if (vm_map_max(map) - vm_map_min(map) < size) {
318 			vm_map_entry_release(count);
319 			vm_map_unlock(map);
320 			return (0);
321 		}
322 		vm_map_unlock(map);
323 		tsleep(map, 0, "kmaw", 0);
324 	}
325 	vm_map_insert(map, &count,
326 		      NULL, (vm_offset_t) 0,
327 		      addr, addr + size,
328 		      VM_MAPTYPE_NORMAL,
329 		      VM_PROT_ALL, VM_PROT_ALL,
330 		      0);
331 	vm_map_unlock(map);
332 	vm_map_entry_release(count);
333 	return (addr);
334 }
335 
336 /*
337  *	kmem_free_wakeup:
338  *
339  *	Returns memory to a submap of the kernel, and wakes up any processes
340  *	waiting for memory in that map.
341  */
342 void
343 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
344 {
345 	int count;
346 
347 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
348 	vm_map_lock(map);
349 	vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
350 	wakeup(map);
351 	vm_map_unlock(map);
352 	vm_map_entry_release(count);
353 }
354 
355 /*
356  * 	kmem_init:
357  *
358  *	Create the kernel_map and insert mappings to cover areas already
359  *	allocated or reserved thus far.  That is, the area (KvaStart,start)
360  *	and (end,KvaEnd) must be marked as allocated.
361  *
362  *	virtual2_start/end is a cutout Between KvaStart and start,
363  *	for x86_64 due to the location of KERNBASE (at -2G).
364  *
365  *	We could use a min_offset of 0 instead of KvaStart, but since the
366  *	min_offset is not used for any calculations other then a bounds check
367  *	it does not effect readability.  KvaStart is more appropriate.
368  *
369  *	Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
370  */
371 void
372 kmem_init(vm_offset_t start, vm_offset_t end)
373 {
374 	vm_offset_t addr;
375 	vm_map_t m;
376 	int count;
377 
378 	m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
379 	vm_map_lock(m);
380 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
381 	m->system_map = 1;
382 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
383 	addr = KvaStart;
384 	if (virtual2_start) {
385 		if (addr < virtual2_start) {
386 			vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
387 				      addr, virtual2_start,
388 				      VM_MAPTYPE_NORMAL,
389 				      VM_PROT_ALL, VM_PROT_ALL,
390 				      0);
391 		}
392 		addr = virtual2_end;
393 	}
394 	if (addr < start) {
395 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
396 			      addr, start,
397 			      VM_MAPTYPE_NORMAL,
398 			      VM_PROT_ALL, VM_PROT_ALL,
399 			      0);
400 	}
401 	addr = end;
402 	if (addr < KvaEnd) {
403 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
404 			      addr, KvaEnd,
405 			      VM_MAPTYPE_NORMAL,
406 			      VM_PROT_ALL, VM_PROT_ALL,
407 			      0);
408 	}
409 	/* ... and ending with the completion of the above `insert' */
410 	vm_map_unlock(m);
411 	vm_map_entry_release(count);
412 }
413 
414 static int
415 kvm_size(SYSCTL_HANDLER_ARGS)
416 {
417 	unsigned long ksize = KvaSize;
418 
419 	return sysctl_handle_long(oidp, &ksize, 0, req);
420 }
421 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
422     0, 0, kvm_size, "IU", "Size of KVM");
423 
424 static int
425 kvm_free(SYSCTL_HANDLER_ARGS)
426 {
427 	unsigned long kfree = virtual_end - kernel_vm_end;
428 
429 	return sysctl_handle_long(oidp, &kfree, 0, req);
430 }
431 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
432     0, 0, kvm_free, "IU", "Amount of KVM free");
433 
434