xref: /dragonfly/sys/vm/vm_kern.c (revision cfd1aba3)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
63  */
64 
65 /*
66  *	Kernel memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_extern.h>
86 
87 struct vm_map kernel_map;
88 struct vm_map clean_map;
89 struct vm_map buffer_map;
90 
91 /*
92  * Allocate pageable memory to the kernel's address map.  "map" must
93  * be kernel_map or a submap of kernel_map.
94  *
95  * No requirements.
96  */
97 vm_offset_t
98 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
99 {
100 	vm_offset_t addr;
101 	int result;
102 
103 	size = round_page(size);
104 	addr = vm_map_min(map);
105 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
106 			     &addr, size, PAGE_SIZE,
107 			     TRUE, VM_MAPTYPE_NORMAL,
108 			     VM_PROT_ALL, VM_PROT_ALL,
109 			     0);
110 	if (result != KERN_SUCCESS)
111 		return (0);
112 	return (addr);
113 }
114 
115 /*
116  * Same as kmem_alloc_pageable, except that it create a nofault entry.
117  *
118  * No requirements.
119  */
120 vm_offset_t
121 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_size_t align)
122 {
123 	vm_offset_t addr;
124 	int result;
125 
126 	size = round_page(size);
127 	addr = vm_map_min(map);
128 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
129 			     &addr, size, align,
130 			     TRUE, VM_MAPTYPE_NORMAL,
131 			     VM_PROT_ALL, VM_PROT_ALL,
132 			     MAP_NOFAULT);
133 	if (result != KERN_SUCCESS)
134 		return (0);
135 	return (addr);
136 }
137 
138 /*
139  * Allocate wired-down memory in the kernel's address map or a submap.
140  *
141  * No requirements.
142  */
143 vm_offset_t
144 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
145 {
146 	vm_offset_t addr;
147 	vm_offset_t gstart;
148 	vm_offset_t i;
149 	int count;
150 	int cow;
151 
152 	size = round_page(size);
153 
154 	if (kmflags & KM_KRESERVE)
155 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
156 	else
157 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
158 
159 	if (kmflags & KM_STACK) {
160 		cow = MAP_IS_KSTACK;
161 		gstart = PAGE_SIZE;
162 	} else {
163 		cow = 0;
164 		gstart = 0;
165 	}
166 
167 	/*
168 	 * Use the kernel object for wired-down kernel pages. Assume that no
169 	 * region of the kernel object is referenced more than once.
170 	 *
171 	 * Locate sufficient space in the map.  This will give us the final
172 	 * virtual address for the new memory, and thus will tell us the
173 	 * offset within the kernel map.
174 	 */
175 	vm_map_lock(map);
176 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
177 		vm_map_unlock(map);
178 		if (kmflags & KM_KRESERVE)
179 			vm_map_entry_krelease(count);
180 		else
181 			vm_map_entry_release(count);
182 		return (0);
183 	}
184 	vm_object_hold(&kernel_object);
185 	vm_object_reference_locked(&kernel_object);
186 	vm_map_insert(map, &count,
187 		      &kernel_object, addr, addr, addr + size,
188 		      VM_MAPTYPE_NORMAL,
189 		      VM_PROT_ALL, VM_PROT_ALL,
190 		      cow);
191 	vm_object_drop(&kernel_object);
192 
193 	vm_map_unlock(map);
194 	if (kmflags & KM_KRESERVE)
195 		vm_map_entry_krelease(count);
196 	else
197 		vm_map_entry_release(count);
198 
199 	/*
200 	 * Guarantee that there are pages already in this object before
201 	 * calling vm_map_wire.  This is to prevent the following
202 	 * scenario:
203 	 *
204 	 * 1) Threads have swapped out, so that there is a pager for the
205 	 * kernel_object. 2) The kmsg zone is empty, and so we are
206 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
207 	 * there is no page, but there is a pager, so we call
208 	 * pager_data_request.  But the kmsg zone is empty, so we must
209 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
210 	 * we get the data back from the pager, it will be (very stale)
211 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
212 	 *
213 	 * We're intentionally not activating the pages we allocate to prevent a
214 	 * race with page-out.  vm_map_wire will wire the pages.
215 	 */
216 	vm_object_hold(&kernel_object);
217 	for (i = gstart; i < size; i += PAGE_SIZE) {
218 		vm_page_t mem;
219 
220 		mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
221 				   VM_ALLOC_FORCE_ZERO | VM_ALLOC_NORMAL |
222 				   VM_ALLOC_RETRY);
223 		vm_page_unqueue_nowakeup(mem);
224 		vm_page_wakeup(mem);
225 	}
226 	vm_object_drop(&kernel_object);
227 
228 	/*
229 	 * And finally, mark the data as non-pageable.
230 	 *
231 	 * NOTE: vm_map_wire() handles any kstack guard.
232 	 */
233 	vm_map_wire(map, addr, addr + size, kmflags);
234 
235 	return (addr);
236 }
237 
238 /*
239  * Release a region of kernel virtual memory allocated with kmem_alloc,
240  * and return the physical pages associated with that region.
241  *
242  * WARNING!  If the caller entered pages into the region using pmap_kenter()
243  * it must remove the pages using pmap_kremove[_quick]() before freeing the
244  * underlying kmem, otherwise resident_count will be mistabulated.
245  *
246  * No requirements.
247  */
248 void
249 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
250 {
251 	vm_map_remove(map, trunc_page(addr), round_page(addr + size));
252 }
253 
254 /*
255  * Used to break a system map into smaller maps, usually to reduce
256  * contention and to provide large KVA spaces for subsystems like the
257  * buffer cache.
258  *
259  *	parent		Map to take range from
260  *	result
261  *	size		Size of range to find
262  *	min, max	Returned endpoints of map
263  *	pageable	Can the region be paged
264  *
265  * No requirements.
266  */
267 void
268 kmem_suballoc(vm_map_t parent, vm_map_t result,
269 	      vm_offset_t *min, vm_offset_t *max, vm_size_t size)
270 {
271 	int ret;
272 
273 	size = round_page(size);
274 
275 	*min = (vm_offset_t) vm_map_min(parent);
276 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
277 			  min, size, PAGE_SIZE,
278 			  TRUE, VM_MAPTYPE_UNSPECIFIED,
279 			  VM_PROT_ALL, VM_PROT_ALL,
280 			  0);
281 	if (ret != KERN_SUCCESS) {
282 		kprintf("kmem_suballoc: bad status return of %d.\n", ret);
283 		panic("kmem_suballoc");
284 	}
285 	*max = *min + size;
286 	pmap_reference(vm_map_pmap(parent));
287 	vm_map_init(result, *min, *max, vm_map_pmap(parent));
288 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
289 		panic("kmem_suballoc: unable to change range to submap");
290 }
291 
292 /*
293  * Allocates pageable memory from a sub-map of the kernel.  If the submap
294  * has no room, the caller sleeps waiting for more memory in the submap.
295  *
296  * No requirements.
297  */
298 vm_offset_t
299 kmem_alloc_wait(vm_map_t map, vm_size_t size)
300 {
301 	vm_offset_t addr;
302 	int count;
303 
304 	size = round_page(size);
305 
306 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 
308 	for (;;) {
309 		/*
310 		 * To make this work for more than one map, use the map's lock
311 		 * to lock out sleepers/wakers.
312 		 */
313 		vm_map_lock(map);
314 		if (vm_map_findspace(map, vm_map_min(map),
315 				     size, PAGE_SIZE, 0, &addr) == 0) {
316 			break;
317 		}
318 		/* no space now; see if we can ever get space */
319 		if (vm_map_max(map) - vm_map_min(map) < size) {
320 			vm_map_entry_release(count);
321 			vm_map_unlock(map);
322 			return (0);
323 		}
324 		vm_map_unlock(map);
325 		tsleep(map, 0, "kmaw", 0);
326 	}
327 	vm_map_insert(map, &count,
328 		      NULL, (vm_offset_t) 0,
329 		      addr, addr + size,
330 		      VM_MAPTYPE_NORMAL,
331 		      VM_PROT_ALL, VM_PROT_ALL,
332 		      0);
333 	vm_map_unlock(map);
334 	vm_map_entry_release(count);
335 
336 	return (addr);
337 }
338 
339 /*
340  *  Allocates a region from the kernel address map and physical pages
341  *  within the specified address range to the kernel object.  Creates a
342  *  wired mapping from this region to these pages, and returns the
343  *  region's starting virtual address.  The allocated pages are not
344  *  necessarily physically contiguous.  If M_ZERO is specified through the
345  *  given flags, then the pages are zeroed before they are mapped.
346  */
347 vm_offset_t
348 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
349     vm_paddr_t high, vm_memattr_t memattr)
350 {
351 	vm_offset_t addr, i, offset;
352 	vm_page_t m;
353 	int count;
354 
355 	size = round_page(size);
356 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
357 	vm_map_lock(map);
358 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE,
359 				flags, &addr)) {
360 		vm_map_unlock(map);
361 		vm_map_entry_release(count);
362 		return (0);
363 	}
364 	offset = addr - vm_map_min(&kernel_map);
365 	vm_object_hold(&kernel_object);
366 	vm_object_reference_locked(&kernel_object);
367 	vm_map_insert(map, &count, &kernel_object, offset, addr, addr + size,
368 		VM_MAPTYPE_NORMAL, VM_PROT_ALL, VM_PROT_ALL, 0);
369 	vm_map_unlock(map);
370 	vm_map_entry_release(count);
371 	vm_object_drop(&kernel_object);
372 	for (i = 0; i < size; i += PAGE_SIZE) {
373 		m = vm_page_alloc_contig(low, high, PAGE_SIZE, 0, PAGE_SIZE, memattr);
374 		if (!m) {
375 			return (0);
376 		}
377 		vm_object_hold(&kernel_object);
378 		vm_page_insert(m, &kernel_object, OFF_TO_IDX(offset + i));
379 		vm_object_drop(&kernel_object);
380 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
381 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
382 		m->valid = VM_PAGE_BITS_ALL;
383 	}
384 	vm_map_wire(map, addr, addr + size, 0);
385 	return (addr);
386 }
387 
388 
389 /*
390  * Returns memory to a submap of the kernel, and wakes up any processes
391  * waiting for memory in that map.
392  *
393  * No requirements.
394  */
395 void
396 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
397 {
398 	int count;
399 
400 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
401 	vm_map_lock(map);
402 	vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
403 	wakeup(map);
404 	vm_map_unlock(map);
405 	vm_map_entry_release(count);
406 }
407 
408 /*
409  * Create the kernel_ma for (KvaStart,KvaEnd) and insert mappings to
410  * cover areas already allocated or reserved thus far.
411  *
412  * The areas (virtual_start, virtual_end) and (virtual2_start, virtual2_end)
413  * are available so the cutouts are the areas around these ranges between
414  * KvaStart and KvaEnd.
415  *
416  * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
417  * Called from the low level boot code only.
418  */
419 void
420 kmem_init(void)
421 {
422 	vm_offset_t addr;
423 	vm_map_t m;
424 	int count;
425 
426 	m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
427 	vm_map_lock(m);
428 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
429 	m->system_map = 1;
430 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
431 	addr = KvaStart;
432 	if (virtual2_start) {
433 		if (addr < virtual2_start) {
434 			vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
435 				      addr, virtual2_start,
436 				      VM_MAPTYPE_NORMAL,
437 				      VM_PROT_ALL, VM_PROT_ALL,
438 				      0);
439 		}
440 		addr = virtual2_end;
441 	}
442 	if (addr < virtual_start) {
443 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
444 			      addr, virtual_start,
445 			      VM_MAPTYPE_NORMAL,
446 			      VM_PROT_ALL, VM_PROT_ALL,
447 			      0);
448 	}
449 	addr = virtual_end;
450 	if (addr < KvaEnd) {
451 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
452 			      addr, KvaEnd,
453 			      VM_MAPTYPE_NORMAL,
454 			      VM_PROT_ALL, VM_PROT_ALL,
455 			      0);
456 	}
457 	/* ... and ending with the completion of the above `insert' */
458 	vm_map_unlock(m);
459 	vm_map_entry_release(count);
460 }
461 
462 /*
463  * No requirements.
464  */
465 static int
466 kvm_size(SYSCTL_HANDLER_ARGS)
467 {
468 	unsigned long ksize = KvaSize;
469 
470 	return sysctl_handle_long(oidp, &ksize, 0, req);
471 }
472 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_ULONG|CTLFLAG_RD,
473     0, 0, kvm_size, "LU", "Size of KVM");
474 
475 /*
476  * No requirements.
477  */
478 static int
479 kvm_free(SYSCTL_HANDLER_ARGS)
480 {
481 	unsigned long kfree = virtual_end - kernel_vm_end;
482 
483 	return sysctl_handle_long(oidp, &kfree, 0, req);
484 }
485 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_ULONG|CTLFLAG_RD,
486     0, 0, kvm_free, "LU", "Amount of KVM free");
487 
488