xref: /dragonfly/sys/vm/vm_map.c (revision 0db87cb7)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64 
65 /*
66  *	Virtual memory mapping module.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99 
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120 
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123 
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
129 #define MAPENTRYAP_CACHE	8
130 
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
134 
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
139 
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142     "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145 	   &vm_map_relock_enable, 0, "Randomize mmap offsets");
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157 
158 /*
159  * Initialize the vm_map module.  Must be called before any other vm_map
160  * routines.
161  *
162  * Map and entry structures are allocated from the general purpose
163  * memory pool with some exceptions:
164  *
165  *	- The kernel map is allocated statically.
166  *	- Initial kernel map entries are allocated out of a static pool.
167  *	- We must set ZONE_SPECIAL here or the early boot code can get
168  *	  stuck if there are >63 cores.
169  *
170  *	These restrictions are necessary since malloc() uses the
171  *	maps and requires map entries.
172  *
173  * Called from the low level boot code only.
174  */
175 void
176 vm_map_startup(void)
177 {
178 	mapzone = &mapzone_store;
179 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180 		map_init, MAX_KMAP);
181 	mapentzone = &mapentzone_store;
182 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 		  map_entry_init, MAX_MAPENT);
184 	mapentzone_store.zflags |= ZONE_SPECIAL;
185 }
186 
187 /*
188  * Called prior to any vmspace allocations.
189  *
190  * Called from the low level boot code only.
191  */
192 void
193 vm_init2(void)
194 {
195 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 						sizeof(struct vmspace),
197 						0, ncpus * 4,
198 						vmspace_ctor, vmspace_dtor,
199 						NULL);
200 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
202 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
203 	pmap_init2();
204 	vm_object_init2();
205 }
206 
207 /*
208  * objcache support.  We leave the pmap root cached as long as possible
209  * for performance reasons.
210  */
211 static
212 boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 {
215 	struct vmspace *vm = obj;
216 
217 	bzero(vm, sizeof(*vm));
218 	vm->vm_refcnt = (u_int)-1;
219 
220 	return 1;
221 }
222 
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
226 {
227 	struct vmspace *vm = obj;
228 
229 	KKASSERT(vm->vm_refcnt == (u_int)-1);
230 	pmap_puninit(vmspace_pmap(vm));
231 }
232 
233 /*
234  * Red black tree functions
235  *
236  * The caller must hold the related map lock.
237  */
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240 
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 {
245 	if (a->start < b->start)
246 		return(-1);
247 	else if (a->start > b->start)
248 		return(1);
249 	return(0);
250 }
251 
252 /*
253  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
254  * every refcnt.
255  */
256 void
257 vmspace_initrefs(struct vmspace *vm)
258 {
259 	vm->vm_refcnt = 1;
260 	vm->vm_holdcnt = 1;
261 }
262 
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap.
265  * Initialize numerous fields.  While the initial allocation is zerod,
266  * subsequence reuse from the objcache leaves elements of the structure
267  * intact (particularly the pmap), so portions must be zerod.
268  *
269  * Returns a referenced vmspace.
270  *
271  * No requirements.
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 {
276 	struct vmspace *vm;
277 
278 	vm = objcache_get(vmspace_cache, M_WAITOK);
279 
280 	bzero(&vm->vm_startcopy,
281 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
283 
284 	/*
285 	 * NOTE: hold to acquires token for safety.
286 	 *
287 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
288 	 * each refcnt also has a holdcnt.  There can be additional holds
289 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
290 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
291 	 */
292 	KKASSERT(vm->vm_holdcnt == 0);
293 	KKASSERT(vm->vm_refcnt == (u_int)-1);
294 	vmspace_initrefs(vm);
295 	vmspace_hold(vm);
296 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
297 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
298 	vm->vm_shm = NULL;
299 	vm->vm_flags = 0;
300 	cpu_vmspace_alloc(vm);
301 	vmspace_drop(vm);
302 
303 	return (vm);
304 }
305 
306 /*
307  * NOTE: Can return -1 if the vmspace is exiting.
308  */
309 int
310 vmspace_getrefs(struct vmspace *vm)
311 {
312 	return ((int)vm->vm_refcnt);
313 }
314 
315 /*
316  * A vmspace object must already have a non-zero hold to be able to gain
317  * further holds on it.
318  */
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
321 {
322 	KKASSERT(vm->vm_holdcnt != 0);
323 	refcount_acquire(&vm->vm_holdcnt);
324 }
325 
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
328 {
329 	if (refcount_release(&vm->vm_holdcnt)) {
330 		if (vm->vm_refcnt == (u_int)-1) {
331 			vmspace_terminate(vm, 1);
332 		}
333 	}
334 }
335 
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339 	vmspace_hold_notoken(vm);
340 	lwkt_gettoken(&vm->vm_map.token);
341 }
342 
343 void
344 vmspace_drop(struct vmspace *vm)
345 {
346 	lwkt_reltoken(&vm->vm_map.token);
347 	vmspace_drop_notoken(vm);
348 }
349 
350 /*
351  * A vmspace object must not be in a terminated state to be able to obtain
352  * additional refs on it.
353  *
354  * Ref'ing a vmspace object also increments its hold count.
355  */
356 void
357 vmspace_ref(struct vmspace *vm)
358 {
359 	KKASSERT((int)vm->vm_refcnt >= 0);
360 	vmspace_hold_notoken(vm);
361 	refcount_acquire(&vm->vm_refcnt);
362 }
363 
364 /*
365  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
366  * termination of the vmspace.  Then, on the final drop of the hold we
367  * will do stage-2 final termination.
368  */
369 void
370 vmspace_rel(struct vmspace *vm)
371 {
372 	if (refcount_release(&vm->vm_refcnt)) {
373 		vm->vm_refcnt = (u_int)-1;	/* no other refs possible */
374 		vmspace_terminate(vm, 0);
375 	}
376 	vmspace_drop_notoken(vm);
377 }
378 
379 /*
380  * This is called during exit indicating that the vmspace is no
381  * longer in used by an exiting process, but the process has not yet
382  * been reaped.
383  *
384  * We release the refcnt but not the associated holdcnt.
385  *
386  * No requirements.
387  */
388 void
389 vmspace_relexit(struct vmspace *vm)
390 {
391 	if (refcount_release(&vm->vm_refcnt)) {
392 		vm->vm_refcnt = (u_int)-1;	/* no other refs possible */
393 		vmspace_terminate(vm, 0);
394 	}
395 }
396 
397 /*
398  * Called during reap to disconnect the remainder of the vmspace from
399  * the process.  On the hold drop the vmspace termination is finalized.
400  *
401  * No requirements.
402  */
403 void
404 vmspace_exitfree(struct proc *p)
405 {
406 	struct vmspace *vm;
407 
408 	vm = p->p_vmspace;
409 	p->p_vmspace = NULL;
410 	vmspace_drop_notoken(vm);
411 }
412 
413 /*
414  * Called in two cases:
415  *
416  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
418  *     and holdcnt will still be non-zero.
419  *
420  * (2) When holdcnt becomes 0, called with final == 1.  There should no
421  *     longer be anyone with access to the vmspace.
422  *
423  * VMSPACE_EXIT1 flags the primary deactivation
424  * VMSPACE_EXIT2 flags the last reap
425  */
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
428 {
429 	int count;
430 
431 	lwkt_gettoken(&vm->vm_map.token);
432 	if (final == 0) {
433 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
434 
435 		/*
436 		 * Get rid of most of the resources.  Leave the kernel pmap
437 		 * intact.
438 		 *
439 		 * If the pmap does not contain wired pages we can bulk-delete
440 		 * the pmap as a performance optimization before removing the related mappings.
441 		 *
442 		 * If the pmap contains wired pages we cannot do this pre-optimization
443 		 * because currently vm_fault_unwire() expects the pmap pages to exist
444 		 * and will not decrement p->wire_count if they do not.
445 		 */
446 		vm->vm_flags |= VMSPACE_EXIT1;
447 		shmexit(vm);
448 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
449 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
450 				      VM_MAX_USER_ADDRESS);
451 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
452 					  VM_MAX_USER_ADDRESS);
453 		} else {
454 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
455 					  VM_MAX_USER_ADDRESS);
456 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
457 				      VM_MAX_USER_ADDRESS);
458 		}
459 		lwkt_reltoken(&vm->vm_map.token);
460 	} else {
461 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
462 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
463 
464 		/*
465 		 * Get rid of remaining basic resources.
466 		 */
467 		vm->vm_flags |= VMSPACE_EXIT2;
468 		cpu_vmspace_free(vm);
469 		shmexit(vm);
470 
471 		/*
472 		 * Lock the map, to wait out all other references to it.
473 		 * Delete all of the mappings and pages they hold, then call
474 		 * the pmap module to reclaim anything left.
475 		 */
476 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
477 		vm_map_lock(&vm->vm_map);
478 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
479 			      vm->vm_map.max_offset, &count);
480 		vm_map_unlock(&vm->vm_map);
481 		vm_map_entry_release(count);
482 
483 		lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
484 		pmap_release(vmspace_pmap(vm));
485 		lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
486 		lwkt_reltoken(&vm->vm_map.token);
487 		objcache_put(vmspace_cache, vm);
488 	}
489 }
490 
491 /*
492  * Swap useage is determined by taking the proportional swap used by
493  * VM objects backing the VM map.  To make up for fractional losses,
494  * if the VM object has any swap use at all the associated map entries
495  * count for at least 1 swap page.
496  *
497  * No requirements.
498  */
499 int
500 vmspace_swap_count(struct vmspace *vm)
501 {
502 	vm_map_t map = &vm->vm_map;
503 	vm_map_entry_t cur;
504 	vm_object_t object;
505 	int count = 0;
506 	int n;
507 
508 	vmspace_hold(vm);
509 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
510 		switch(cur->maptype) {
511 		case VM_MAPTYPE_NORMAL:
512 		case VM_MAPTYPE_VPAGETABLE:
513 			if ((object = cur->object.vm_object) == NULL)
514 				break;
515 			if (object->swblock_count) {
516 				n = (cur->end - cur->start) / PAGE_SIZE;
517 				count += object->swblock_count *
518 				    SWAP_META_PAGES * n / object->size + 1;
519 			}
520 			break;
521 		default:
522 			break;
523 		}
524 	}
525 	vmspace_drop(vm);
526 
527 	return(count);
528 }
529 
530 /*
531  * Calculate the approximate number of anonymous pages in use by
532  * this vmspace.  To make up for fractional losses, we count each
533  * VM object as having at least 1 anonymous page.
534  *
535  * No requirements.
536  */
537 int
538 vmspace_anonymous_count(struct vmspace *vm)
539 {
540 	vm_map_t map = &vm->vm_map;
541 	vm_map_entry_t cur;
542 	vm_object_t object;
543 	int count = 0;
544 
545 	vmspace_hold(vm);
546 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
547 		switch(cur->maptype) {
548 		case VM_MAPTYPE_NORMAL:
549 		case VM_MAPTYPE_VPAGETABLE:
550 			if ((object = cur->object.vm_object) == NULL)
551 				break;
552 			if (object->type != OBJT_DEFAULT &&
553 			    object->type != OBJT_SWAP) {
554 				break;
555 			}
556 			count += object->resident_page_count;
557 			break;
558 		default:
559 			break;
560 		}
561 	}
562 	vmspace_drop(vm);
563 
564 	return(count);
565 }
566 
567 /*
568  * Creates and returns a new empty VM map with the given physical map
569  * structure, and having the given lower and upper address bounds.
570  *
571  * No requirements.
572  */
573 vm_map_t
574 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
575 {
576 	if (result == NULL)
577 		result = zalloc(mapzone);
578 	vm_map_init(result, min, max, pmap);
579 	return (result);
580 }
581 
582 /*
583  * Initialize an existing vm_map structure such as that in the vmspace
584  * structure.  The pmap is initialized elsewhere.
585  *
586  * No requirements.
587  */
588 void
589 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
590 {
591 	map->header.next = map->header.prev = &map->header;
592 	RB_INIT(&map->rb_root);
593 	map->nentries = 0;
594 	map->size = 0;
595 	map->system_map = 0;
596 	map->min_offset = min;
597 	map->max_offset = max;
598 	map->pmap = pmap;
599 	map->first_free = &map->header;
600 	map->hint = &map->header;
601 	map->timestamp = 0;
602 	map->flags = 0;
603 	lwkt_token_init(&map->token, "vm_map");
604 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
605 }
606 
607 /*
608  * Shadow the vm_map_entry's object.  This typically needs to be done when
609  * a write fault is taken on an entry which had previously been cloned by
610  * fork().  The shared object (which might be NULL) must become private so
611  * we add a shadow layer above it.
612  *
613  * Object allocation for anonymous mappings is defered as long as possible.
614  * When creating a shadow, however, the underlying object must be instantiated
615  * so it can be shared.
616  *
617  * If the map segment is governed by a virtual page table then it is
618  * possible to address offsets beyond the mapped area.  Just allocate
619  * a maximally sized object for this case.
620  *
621  * If addref is non-zero an additional reference is added to the returned
622  * entry.  This mechanic exists because the additional reference might have
623  * to be added atomically and not after return to prevent a premature
624  * collapse.
625  *
626  * The vm_map must be exclusively locked.
627  * No other requirements.
628  */
629 static
630 void
631 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
632 {
633 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
634 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
635 				 0x7FFFFFFF, addref);	/* XXX */
636 	} else {
637 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
638 				 atop(entry->end - entry->start), addref);
639 	}
640 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
641 }
642 
643 /*
644  * Allocate an object for a vm_map_entry.
645  *
646  * Object allocation for anonymous mappings is defered as long as possible.
647  * This function is called when we can defer no longer, generally when a map
648  * entry might be split or forked or takes a page fault.
649  *
650  * If the map segment is governed by a virtual page table then it is
651  * possible to address offsets beyond the mapped area.  Just allocate
652  * a maximally sized object for this case.
653  *
654  * The vm_map must be exclusively locked.
655  * No other requirements.
656  */
657 void
658 vm_map_entry_allocate_object(vm_map_entry_t entry)
659 {
660 	vm_object_t obj;
661 
662 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
663 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
664 	} else {
665 		obj = vm_object_allocate(OBJT_DEFAULT,
666 					 atop(entry->end - entry->start));
667 	}
668 	entry->object.vm_object = obj;
669 	entry->offset = 0;
670 }
671 
672 /*
673  * Set an initial negative count so the first attempt to reserve
674  * space preloads a bunch of vm_map_entry's for this cpu.  Also
675  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
676  * map a new page for vm_map_entry structures.  SMP systems are
677  * particularly sensitive.
678  *
679  * This routine is called in early boot so we cannot just call
680  * vm_map_entry_reserve().
681  *
682  * Called from the low level boot code only (for each cpu)
683  *
684  * WARNING! Take care not to have too-big a static/BSS structure here
685  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
686  *	    can get blown out by the kernel plus the initrd image.
687  */
688 void
689 vm_map_entry_reserve_cpu_init(globaldata_t gd)
690 {
691 	vm_map_entry_t entry;
692 	int count;
693 	int i;
694 
695 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
696 	if (gd->gd_cpuid == 0) {
697 		entry = &cpu_map_entry_init_bsp[0];
698 		count = MAPENTRYBSP_CACHE;
699 	} else {
700 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
701 		count = MAPENTRYAP_CACHE;
702 	}
703 	for (i = 0; i < count; ++i, ++entry) {
704 		entry->next = gd->gd_vme_base;
705 		gd->gd_vme_base = entry;
706 	}
707 }
708 
709 /*
710  * Reserves vm_map_entry structures so code later on can manipulate
711  * map_entry structures within a locked map without blocking trying
712  * to allocate a new vm_map_entry.
713  *
714  * No requirements.
715  */
716 int
717 vm_map_entry_reserve(int count)
718 {
719 	struct globaldata *gd = mycpu;
720 	vm_map_entry_t entry;
721 
722 	/*
723 	 * Make sure we have enough structures in gd_vme_base to handle
724 	 * the reservation request.
725 	 *
726 	 * The critical section protects access to the per-cpu gd.
727 	 */
728 	crit_enter();
729 	while (gd->gd_vme_avail < count) {
730 		entry = zalloc(mapentzone);
731 		entry->next = gd->gd_vme_base;
732 		gd->gd_vme_base = entry;
733 		++gd->gd_vme_avail;
734 	}
735 	gd->gd_vme_avail -= count;
736 	crit_exit();
737 
738 	return(count);
739 }
740 
741 /*
742  * Releases previously reserved vm_map_entry structures that were not
743  * used.  If we have too much junk in our per-cpu cache clean some of
744  * it out.
745  *
746  * No requirements.
747  */
748 void
749 vm_map_entry_release(int count)
750 {
751 	struct globaldata *gd = mycpu;
752 	vm_map_entry_t entry;
753 
754 	crit_enter();
755 	gd->gd_vme_avail += count;
756 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
757 		entry = gd->gd_vme_base;
758 		KKASSERT(entry != NULL);
759 		gd->gd_vme_base = entry->next;
760 		--gd->gd_vme_avail;
761 		crit_exit();
762 		zfree(mapentzone, entry);
763 		crit_enter();
764 	}
765 	crit_exit();
766 }
767 
768 /*
769  * Reserve map entry structures for use in kernel_map itself.  These
770  * entries have *ALREADY* been reserved on a per-cpu basis when the map
771  * was inited.  This function is used by zalloc() to avoid a recursion
772  * when zalloc() itself needs to allocate additional kernel memory.
773  *
774  * This function works like the normal reserve but does not load the
775  * vm_map_entry cache (because that would result in an infinite
776  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
777  *
778  * Any caller of this function must be sure to renormalize after
779  * potentially eating entries to ensure that the reserve supply
780  * remains intact.
781  *
782  * No requirements.
783  */
784 int
785 vm_map_entry_kreserve(int count)
786 {
787 	struct globaldata *gd = mycpu;
788 
789 	crit_enter();
790 	gd->gd_vme_avail -= count;
791 	crit_exit();
792 	KASSERT(gd->gd_vme_base != NULL,
793 		("no reserved entries left, gd_vme_avail = %d",
794 		gd->gd_vme_avail));
795 	return(count);
796 }
797 
798 /*
799  * Release previously reserved map entries for kernel_map.  We do not
800  * attempt to clean up like the normal release function as this would
801  * cause an unnecessary (but probably not fatal) deep procedure call.
802  *
803  * No requirements.
804  */
805 void
806 vm_map_entry_krelease(int count)
807 {
808 	struct globaldata *gd = mycpu;
809 
810 	crit_enter();
811 	gd->gd_vme_avail += count;
812 	crit_exit();
813 }
814 
815 /*
816  * Allocates a VM map entry for insertion.  No entry fields are filled in.
817  *
818  * The entries should have previously been reserved.  The reservation count
819  * is tracked in (*countp).
820  *
821  * No requirements.
822  */
823 static vm_map_entry_t
824 vm_map_entry_create(vm_map_t map, int *countp)
825 {
826 	struct globaldata *gd = mycpu;
827 	vm_map_entry_t entry;
828 
829 	KKASSERT(*countp > 0);
830 	--*countp;
831 	crit_enter();
832 	entry = gd->gd_vme_base;
833 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
834 	gd->gd_vme_base = entry->next;
835 	crit_exit();
836 
837 	return(entry);
838 }
839 
840 /*
841  * Dispose of a vm_map_entry that is no longer being referenced.
842  *
843  * No requirements.
844  */
845 static void
846 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
847 {
848 	struct globaldata *gd = mycpu;
849 
850 	KKASSERT(map->hint != entry);
851 	KKASSERT(map->first_free != entry);
852 
853 	++*countp;
854 	crit_enter();
855 	entry->next = gd->gd_vme_base;
856 	gd->gd_vme_base = entry;
857 	crit_exit();
858 }
859 
860 
861 /*
862  * Insert/remove entries from maps.
863  *
864  * The related map must be exclusively locked.
865  * The caller must hold map->token
866  * No other requirements.
867  */
868 static __inline void
869 vm_map_entry_link(vm_map_t map,
870 		  vm_map_entry_t after_where,
871 		  vm_map_entry_t entry)
872 {
873 	ASSERT_VM_MAP_LOCKED(map);
874 
875 	map->nentries++;
876 	entry->prev = after_where;
877 	entry->next = after_where->next;
878 	entry->next->prev = entry;
879 	after_where->next = entry;
880 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
881 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
882 }
883 
884 static __inline void
885 vm_map_entry_unlink(vm_map_t map,
886 		    vm_map_entry_t entry)
887 {
888 	vm_map_entry_t prev;
889 	vm_map_entry_t next;
890 
891 	ASSERT_VM_MAP_LOCKED(map);
892 
893 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
894 		panic("vm_map_entry_unlink: attempt to mess with "
895 		      "locked entry! %p", entry);
896 	}
897 	prev = entry->prev;
898 	next = entry->next;
899 	next->prev = prev;
900 	prev->next = next;
901 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
902 	map->nentries--;
903 }
904 
905 /*
906  * Finds the map entry containing (or immediately preceding) the specified
907  * address in the given map.  The entry is returned in (*entry).
908  *
909  * The boolean result indicates whether the address is actually contained
910  * in the map.
911  *
912  * The related map must be locked.
913  * No other requirements.
914  */
915 boolean_t
916 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
917 {
918 	vm_map_entry_t tmp;
919 	vm_map_entry_t last;
920 
921 	ASSERT_VM_MAP_LOCKED(map);
922 #if 0
923 	/*
924 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
925 	 * the hint code with the red-black lookup meets with system crashes
926 	 * and lockups.  We do not yet know why.
927 	 *
928 	 * It is possible that the problem is related to the setting
929 	 * of the hint during map_entry deletion, in the code specified
930 	 * at the GGG comment later on in this file.
931 	 *
932 	 * YYY More likely it's because this function can be called with
933 	 * a shared lock on the map, resulting in map->hint updates possibly
934 	 * racing.  Fixed now but untested.
935 	 */
936 	/*
937 	 * Quickly check the cached hint, there's a good chance of a match.
938 	 */
939 	tmp = map->hint;
940 	cpu_ccfence();
941 	if (tmp != &map->header) {
942 		if (address >= tmp->start && address < tmp->end) {
943 			*entry = tmp;
944 			return(TRUE);
945 		}
946 	}
947 #endif
948 
949 	/*
950 	 * Locate the record from the top of the tree.  'last' tracks the
951 	 * closest prior record and is returned if no match is found, which
952 	 * in binary tree terms means tracking the most recent right-branch
953 	 * taken.  If there is no prior record, &map->header is returned.
954 	 */
955 	last = &map->header;
956 	tmp = RB_ROOT(&map->rb_root);
957 
958 	while (tmp) {
959 		if (address >= tmp->start) {
960 			if (address < tmp->end) {
961 				*entry = tmp;
962 				map->hint = tmp;
963 				return(TRUE);
964 			}
965 			last = tmp;
966 			tmp = RB_RIGHT(tmp, rb_entry);
967 		} else {
968 			tmp = RB_LEFT(tmp, rb_entry);
969 		}
970 	}
971 	*entry = last;
972 	return (FALSE);
973 }
974 
975 /*
976  * Inserts the given whole VM object into the target map at the specified
977  * address range.  The object's size should match that of the address range.
978  *
979  * The map must be exclusively locked.
980  * The object must be held.
981  * The caller must have reserved sufficient vm_map_entry structures.
982  *
983  * If object is non-NULL, ref count must be bumped by caller prior to
984  * making call to account for the new entry.
985  */
986 int
987 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
988 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
989 	      vm_maptype_t maptype,
990 	      vm_prot_t prot, vm_prot_t max, int cow)
991 {
992 	vm_map_entry_t new_entry;
993 	vm_map_entry_t prev_entry;
994 	vm_map_entry_t temp_entry;
995 	vm_eflags_t protoeflags;
996 	int must_drop = 0;
997 	vm_object_t object;
998 
999 	if (maptype == VM_MAPTYPE_UKSMAP)
1000 		object = NULL;
1001 	else
1002 		object = map_object;
1003 
1004 	ASSERT_VM_MAP_LOCKED(map);
1005 	if (object)
1006 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1007 
1008 	/*
1009 	 * Check that the start and end points are not bogus.
1010 	 */
1011 	if ((start < map->min_offset) || (end > map->max_offset) ||
1012 	    (start >= end))
1013 		return (KERN_INVALID_ADDRESS);
1014 
1015 	/*
1016 	 * Find the entry prior to the proposed starting address; if it's part
1017 	 * of an existing entry, this range is bogus.
1018 	 */
1019 	if (vm_map_lookup_entry(map, start, &temp_entry))
1020 		return (KERN_NO_SPACE);
1021 
1022 	prev_entry = temp_entry;
1023 
1024 	/*
1025 	 * Assert that the next entry doesn't overlap the end point.
1026 	 */
1027 
1028 	if ((prev_entry->next != &map->header) &&
1029 	    (prev_entry->next->start < end))
1030 		return (KERN_NO_SPACE);
1031 
1032 	protoeflags = 0;
1033 
1034 	if (cow & MAP_COPY_ON_WRITE)
1035 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1036 
1037 	if (cow & MAP_NOFAULT) {
1038 		protoeflags |= MAP_ENTRY_NOFAULT;
1039 
1040 		KASSERT(object == NULL,
1041 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1042 	}
1043 	if (cow & MAP_DISABLE_SYNCER)
1044 		protoeflags |= MAP_ENTRY_NOSYNC;
1045 	if (cow & MAP_DISABLE_COREDUMP)
1046 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1047 	if (cow & MAP_IS_STACK)
1048 		protoeflags |= MAP_ENTRY_STACK;
1049 	if (cow & MAP_IS_KSTACK)
1050 		protoeflags |= MAP_ENTRY_KSTACK;
1051 
1052 	lwkt_gettoken(&map->token);
1053 
1054 	if (object) {
1055 		/*
1056 		 * When object is non-NULL, it could be shared with another
1057 		 * process.  We have to set or clear OBJ_ONEMAPPING
1058 		 * appropriately.
1059 		 *
1060 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1061 		 *	 objects and will already be clear in other types
1062 		 *	 of objects, so a shared object lock is ok for
1063 		 *	 VNODE objects.
1064 		 */
1065 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1066 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1067 		}
1068 	}
1069 	else if ((prev_entry != &map->header) &&
1070 		 (prev_entry->eflags == protoeflags) &&
1071 		 (prev_entry->end == start) &&
1072 		 (prev_entry->wired_count == 0) &&
1073 		 prev_entry->maptype == maptype &&
1074 		 maptype == VM_MAPTYPE_NORMAL &&
1075 		 ((prev_entry->object.vm_object == NULL) ||
1076 		  vm_object_coalesce(prev_entry->object.vm_object,
1077 				     OFF_TO_IDX(prev_entry->offset),
1078 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1079 				     (vm_size_t)(end - prev_entry->end)))) {
1080 		/*
1081 		 * We were able to extend the object.  Determine if we
1082 		 * can extend the previous map entry to include the
1083 		 * new range as well.
1084 		 */
1085 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1086 		    (prev_entry->protection == prot) &&
1087 		    (prev_entry->max_protection == max)) {
1088 			map->size += (end - prev_entry->end);
1089 			prev_entry->end = end;
1090 			vm_map_simplify_entry(map, prev_entry, countp);
1091 			lwkt_reltoken(&map->token);
1092 			return (KERN_SUCCESS);
1093 		}
1094 
1095 		/*
1096 		 * If we can extend the object but cannot extend the
1097 		 * map entry, we have to create a new map entry.  We
1098 		 * must bump the ref count on the extended object to
1099 		 * account for it.  object may be NULL.
1100 		 *
1101 		 * XXX if object is NULL should we set offset to 0 here ?
1102 		 */
1103 		object = prev_entry->object.vm_object;
1104 		offset = prev_entry->offset +
1105 			(prev_entry->end - prev_entry->start);
1106 		if (object) {
1107 			vm_object_hold(object);
1108 			vm_object_chain_wait(object, 0);
1109 			vm_object_reference_locked(object);
1110 			must_drop = 1;
1111 			map_object = object;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1117 	 * in things like the buffer map where we manage kva but do not manage
1118 	 * backing objects.
1119 	 */
1120 
1121 	/*
1122 	 * Create a new entry
1123 	 */
1124 
1125 	new_entry = vm_map_entry_create(map, countp);
1126 	new_entry->start = start;
1127 	new_entry->end = end;
1128 
1129 	new_entry->maptype = maptype;
1130 	new_entry->eflags = protoeflags;
1131 	new_entry->object.map_object = map_object;
1132 	new_entry->aux.master_pde = 0;		/* in case size is different */
1133 	new_entry->aux.map_aux = map_aux;
1134 	new_entry->offset = offset;
1135 
1136 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1137 	new_entry->protection = prot;
1138 	new_entry->max_protection = max;
1139 	new_entry->wired_count = 0;
1140 
1141 	/*
1142 	 * Insert the new entry into the list
1143 	 */
1144 
1145 	vm_map_entry_link(map, prev_entry, new_entry);
1146 	map->size += new_entry->end - new_entry->start;
1147 
1148 	/*
1149 	 * Update the free space hint.  Entries cannot overlap.
1150 	 * An exact comparison is needed to avoid matching
1151 	 * against the map->header.
1152 	 */
1153 	if ((map->first_free == prev_entry) &&
1154 	    (prev_entry->end == new_entry->start)) {
1155 		map->first_free = new_entry;
1156 	}
1157 
1158 #if 0
1159 	/*
1160 	 * Temporarily removed to avoid MAP_STACK panic, due to
1161 	 * MAP_STACK being a huge hack.  Will be added back in
1162 	 * when MAP_STACK (and the user stack mapping) is fixed.
1163 	 */
1164 	/*
1165 	 * It may be possible to simplify the entry
1166 	 */
1167 	vm_map_simplify_entry(map, new_entry, countp);
1168 #endif
1169 
1170 	/*
1171 	 * Try to pre-populate the page table.  Mappings governed by virtual
1172 	 * page tables cannot be prepopulated without a lot of work, so
1173 	 * don't try.
1174 	 */
1175 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1176 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1177 	    maptype != VM_MAPTYPE_UKSMAP) {
1178 		int dorelock = 0;
1179 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1180 			dorelock = 1;
1181 			vm_object_lock_swap();
1182 			vm_object_drop(object);
1183 		}
1184 		pmap_object_init_pt(map->pmap, start, prot,
1185 				    object, OFF_TO_IDX(offset), end - start,
1186 				    cow & MAP_PREFAULT_PARTIAL);
1187 		if (dorelock) {
1188 			vm_object_hold(object);
1189 			vm_object_lock_swap();
1190 		}
1191 	}
1192 	if (must_drop)
1193 		vm_object_drop(object);
1194 
1195 	lwkt_reltoken(&map->token);
1196 	return (KERN_SUCCESS);
1197 }
1198 
1199 /*
1200  * Find sufficient space for `length' bytes in the given map, starting at
1201  * `start'.  Returns 0 on success, 1 on no space.
1202  *
1203  * This function will returned an arbitrarily aligned pointer.  If no
1204  * particular alignment is required you should pass align as 1.  Note that
1205  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1206  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1207  * argument.
1208  *
1209  * 'align' should be a power of 2 but is not required to be.
1210  *
1211  * The map must be exclusively locked.
1212  * No other requirements.
1213  */
1214 int
1215 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1216 		 vm_size_t align, int flags, vm_offset_t *addr)
1217 {
1218 	vm_map_entry_t entry, next;
1219 	vm_offset_t end;
1220 	vm_offset_t align_mask;
1221 
1222 	if (start < map->min_offset)
1223 		start = map->min_offset;
1224 	if (start > map->max_offset)
1225 		return (1);
1226 
1227 	/*
1228 	 * If the alignment is not a power of 2 we will have to use
1229 	 * a mod/division, set align_mask to a special value.
1230 	 */
1231 	if ((align | (align - 1)) + 1 != (align << 1))
1232 		align_mask = (vm_offset_t)-1;
1233 	else
1234 		align_mask = align - 1;
1235 
1236 	/*
1237 	 * Look for the first possible address; if there's already something
1238 	 * at this address, we have to start after it.
1239 	 */
1240 	if (start == map->min_offset) {
1241 		if ((entry = map->first_free) != &map->header)
1242 			start = entry->end;
1243 	} else {
1244 		vm_map_entry_t tmp;
1245 
1246 		if (vm_map_lookup_entry(map, start, &tmp))
1247 			start = tmp->end;
1248 		entry = tmp;
1249 	}
1250 
1251 	/*
1252 	 * Look through the rest of the map, trying to fit a new region in the
1253 	 * gap between existing regions, or after the very last region.
1254 	 */
1255 	for (;; start = (entry = next)->end) {
1256 		/*
1257 		 * Adjust the proposed start by the requested alignment,
1258 		 * be sure that we didn't wrap the address.
1259 		 */
1260 		if (align_mask == (vm_offset_t)-1)
1261 			end = roundup(start, align);
1262 		else
1263 			end = (start + align_mask) & ~align_mask;
1264 		if (end < start)
1265 			return (1);
1266 		start = end;
1267 		/*
1268 		 * Find the end of the proposed new region.  Be sure we didn't
1269 		 * go beyond the end of the map, or wrap around the address.
1270 		 * Then check to see if this is the last entry or if the
1271 		 * proposed end fits in the gap between this and the next
1272 		 * entry.
1273 		 */
1274 		end = start + length;
1275 		if (end > map->max_offset || end < start)
1276 			return (1);
1277 		next = entry->next;
1278 
1279 		/*
1280 		 * If the next entry's start address is beyond the desired
1281 		 * end address we may have found a good entry.
1282 		 *
1283 		 * If the next entry is a stack mapping we do not map into
1284 		 * the stack's reserved space.
1285 		 *
1286 		 * XXX continue to allow mapping into the stack's reserved
1287 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1288 		 * mapping, for backwards compatibility.  But the caller
1289 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1290 		 * want to do that.
1291 		 */
1292 		if (next == &map->header)
1293 			break;
1294 		if (next->start >= end) {
1295 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1296 				break;
1297 			if (flags & MAP_STACK)
1298 				break;
1299 			if (next->start - next->aux.avail_ssize >= end)
1300 				break;
1301 		}
1302 	}
1303 	map->hint = entry;
1304 
1305 	/*
1306 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1307 	 * if it fails.  The kernel_map is locked and nothing can steal
1308 	 * our address space if pmap_growkernel() blocks.
1309 	 *
1310 	 * NOTE: This may be unconditionally called for kldload areas on
1311 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1312 	 *	 fill 128G worth of page tables!).  Therefore we must not
1313 	 *	 retry.
1314 	 */
1315 	if (map == &kernel_map) {
1316 		vm_offset_t kstop;
1317 
1318 		kstop = round_page(start + length);
1319 		if (kstop > kernel_vm_end)
1320 			pmap_growkernel(start, kstop);
1321 	}
1322 	*addr = start;
1323 	return (0);
1324 }
1325 
1326 /*
1327  * vm_map_find finds an unallocated region in the target address map with
1328  * the given length and allocates it.  The search is defined to be first-fit
1329  * from the specified address; the region found is returned in the same
1330  * parameter.
1331  *
1332  * If object is non-NULL, ref count must be bumped by caller
1333  * prior to making call to account for the new entry.
1334  *
1335  * No requirements.  This function will lock the map temporarily.
1336  */
1337 int
1338 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1339 	    vm_ooffset_t offset, vm_offset_t *addr,
1340 	    vm_size_t length, vm_size_t align,
1341 	    boolean_t fitit,
1342 	    vm_maptype_t maptype,
1343 	    vm_prot_t prot, vm_prot_t max,
1344 	    int cow)
1345 {
1346 	vm_offset_t start;
1347 	vm_object_t object;
1348 	int result;
1349 	int count;
1350 
1351 	if (maptype == VM_MAPTYPE_UKSMAP)
1352 		object = NULL;
1353 	else
1354 		object = map_object;
1355 
1356 	start = *addr;
1357 
1358 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1359 	vm_map_lock(map);
1360 	if (object)
1361 		vm_object_hold_shared(object);
1362 	if (fitit) {
1363 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1364 			if (object)
1365 				vm_object_drop(object);
1366 			vm_map_unlock(map);
1367 			vm_map_entry_release(count);
1368 			return (KERN_NO_SPACE);
1369 		}
1370 		start = *addr;
1371 	}
1372 	result = vm_map_insert(map, &count, map_object, map_aux,
1373 			       offset, start, start + length,
1374 			       maptype, prot, max, cow);
1375 	if (object)
1376 		vm_object_drop(object);
1377 	vm_map_unlock(map);
1378 	vm_map_entry_release(count);
1379 
1380 	return (result);
1381 }
1382 
1383 /*
1384  * Simplify the given map entry by merging with either neighbor.  This
1385  * routine also has the ability to merge with both neighbors.
1386  *
1387  * This routine guarentees that the passed entry remains valid (though
1388  * possibly extended).  When merging, this routine may delete one or
1389  * both neighbors.  No action is taken on entries which have their
1390  * in-transition flag set.
1391  *
1392  * The map must be exclusively locked.
1393  */
1394 void
1395 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1396 {
1397 	vm_map_entry_t next, prev;
1398 	vm_size_t prevsize, esize;
1399 
1400 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1401 		++mycpu->gd_cnt.v_intrans_coll;
1402 		return;
1403 	}
1404 
1405 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1406 		return;
1407 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1408 		return;
1409 
1410 	prev = entry->prev;
1411 	if (prev != &map->header) {
1412 		prevsize = prev->end - prev->start;
1413 		if ( (prev->end == entry->start) &&
1414 		     (prev->maptype == entry->maptype) &&
1415 		     (prev->object.vm_object == entry->object.vm_object) &&
1416 		     (!prev->object.vm_object ||
1417 			(prev->offset + prevsize == entry->offset)) &&
1418 		     (prev->eflags == entry->eflags) &&
1419 		     (prev->protection == entry->protection) &&
1420 		     (prev->max_protection == entry->max_protection) &&
1421 		     (prev->inheritance == entry->inheritance) &&
1422 		     (prev->wired_count == entry->wired_count)) {
1423 			if (map->first_free == prev)
1424 				map->first_free = entry;
1425 			if (map->hint == prev)
1426 				map->hint = entry;
1427 			vm_map_entry_unlink(map, prev);
1428 			entry->start = prev->start;
1429 			entry->offset = prev->offset;
1430 			if (prev->object.vm_object)
1431 				vm_object_deallocate(prev->object.vm_object);
1432 			vm_map_entry_dispose(map, prev, countp);
1433 		}
1434 	}
1435 
1436 	next = entry->next;
1437 	if (next != &map->header) {
1438 		esize = entry->end - entry->start;
1439 		if ((entry->end == next->start) &&
1440 		    (next->maptype == entry->maptype) &&
1441 		    (next->object.vm_object == entry->object.vm_object) &&
1442 		     (!entry->object.vm_object ||
1443 			(entry->offset + esize == next->offset)) &&
1444 		    (next->eflags == entry->eflags) &&
1445 		    (next->protection == entry->protection) &&
1446 		    (next->max_protection == entry->max_protection) &&
1447 		    (next->inheritance == entry->inheritance) &&
1448 		    (next->wired_count == entry->wired_count)) {
1449 			if (map->first_free == next)
1450 				map->first_free = entry;
1451 			if (map->hint == next)
1452 				map->hint = entry;
1453 			vm_map_entry_unlink(map, next);
1454 			entry->end = next->end;
1455 			if (next->object.vm_object)
1456 				vm_object_deallocate(next->object.vm_object);
1457 			vm_map_entry_dispose(map, next, countp);
1458 	        }
1459 	}
1460 }
1461 
1462 /*
1463  * Asserts that the given entry begins at or after the specified address.
1464  * If necessary, it splits the entry into two.
1465  */
1466 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1467 {									\
1468 	if (startaddr > entry->start)					\
1469 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1470 }
1471 
1472 /*
1473  * This routine is called only when it is known that the entry must be split.
1474  *
1475  * The map must be exclusively locked.
1476  */
1477 static void
1478 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1479 		   int *countp)
1480 {
1481 	vm_map_entry_t new_entry;
1482 
1483 	/*
1484 	 * Split off the front portion -- note that we must insert the new
1485 	 * entry BEFORE this one, so that this entry has the specified
1486 	 * starting address.
1487 	 */
1488 
1489 	vm_map_simplify_entry(map, entry, countp);
1490 
1491 	/*
1492 	 * If there is no object backing this entry, we might as well create
1493 	 * one now.  If we defer it, an object can get created after the map
1494 	 * is clipped, and individual objects will be created for the split-up
1495 	 * map.  This is a bit of a hack, but is also about the best place to
1496 	 * put this improvement.
1497 	 */
1498 	if (entry->object.vm_object == NULL && !map->system_map) {
1499 		vm_map_entry_allocate_object(entry);
1500 	}
1501 
1502 	new_entry = vm_map_entry_create(map, countp);
1503 	*new_entry = *entry;
1504 
1505 	new_entry->end = start;
1506 	entry->offset += (start - entry->start);
1507 	entry->start = start;
1508 
1509 	vm_map_entry_link(map, entry->prev, new_entry);
1510 
1511 	switch(entry->maptype) {
1512 	case VM_MAPTYPE_NORMAL:
1513 	case VM_MAPTYPE_VPAGETABLE:
1514 		if (new_entry->object.vm_object) {
1515 			vm_object_hold(new_entry->object.vm_object);
1516 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1517 			vm_object_reference_locked(new_entry->object.vm_object);
1518 			vm_object_drop(new_entry->object.vm_object);
1519 		}
1520 		break;
1521 	default:
1522 		break;
1523 	}
1524 }
1525 
1526 /*
1527  * Asserts that the given entry ends at or before the specified address.
1528  * If necessary, it splits the entry into two.
1529  *
1530  * The map must be exclusively locked.
1531  */
1532 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1533 {								\
1534 	if (endaddr < entry->end)				\
1535 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1536 }
1537 
1538 /*
1539  * This routine is called only when it is known that the entry must be split.
1540  *
1541  * The map must be exclusively locked.
1542  */
1543 static void
1544 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1545 		 int *countp)
1546 {
1547 	vm_map_entry_t new_entry;
1548 
1549 	/*
1550 	 * If there is no object backing this entry, we might as well create
1551 	 * one now.  If we defer it, an object can get created after the map
1552 	 * is clipped, and individual objects will be created for the split-up
1553 	 * map.  This is a bit of a hack, but is also about the best place to
1554 	 * put this improvement.
1555 	 */
1556 
1557 	if (entry->object.vm_object == NULL && !map->system_map) {
1558 		vm_map_entry_allocate_object(entry);
1559 	}
1560 
1561 	/*
1562 	 * Create a new entry and insert it AFTER the specified entry
1563 	 */
1564 
1565 	new_entry = vm_map_entry_create(map, countp);
1566 	*new_entry = *entry;
1567 
1568 	new_entry->start = entry->end = end;
1569 	new_entry->offset += (end - entry->start);
1570 
1571 	vm_map_entry_link(map, entry, new_entry);
1572 
1573 	switch(entry->maptype) {
1574 	case VM_MAPTYPE_NORMAL:
1575 	case VM_MAPTYPE_VPAGETABLE:
1576 		if (new_entry->object.vm_object) {
1577 			vm_object_hold(new_entry->object.vm_object);
1578 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1579 			vm_object_reference_locked(new_entry->object.vm_object);
1580 			vm_object_drop(new_entry->object.vm_object);
1581 		}
1582 		break;
1583 	default:
1584 		break;
1585 	}
1586 }
1587 
1588 /*
1589  * Asserts that the starting and ending region addresses fall within the
1590  * valid range for the map.
1591  */
1592 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1593 {						\
1594 	if (start < vm_map_min(map))		\
1595 		start = vm_map_min(map);	\
1596 	if (end > vm_map_max(map))		\
1597 		end = vm_map_max(map);		\
1598 	if (start > end)			\
1599 		start = end;			\
1600 }
1601 
1602 /*
1603  * Used to block when an in-transition collison occurs.  The map
1604  * is unlocked for the sleep and relocked before the return.
1605  */
1606 void
1607 vm_map_transition_wait(vm_map_t map)
1608 {
1609 	tsleep_interlock(map, 0);
1610 	vm_map_unlock(map);
1611 	tsleep(map, PINTERLOCKED, "vment", 0);
1612 	vm_map_lock(map);
1613 }
1614 
1615 /*
1616  * When we do blocking operations with the map lock held it is
1617  * possible that a clip might have occured on our in-transit entry,
1618  * requiring an adjustment to the entry in our loop.  These macros
1619  * help the pageable and clip_range code deal with the case.  The
1620  * conditional costs virtually nothing if no clipping has occured.
1621  */
1622 
1623 #define CLIP_CHECK_BACK(entry, save_start)		\
1624     do {						\
1625 	    while (entry->start != save_start) {	\
1626 		    entry = entry->prev;		\
1627 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1628 	    }						\
1629     } while(0)
1630 
1631 #define CLIP_CHECK_FWD(entry, save_end)			\
1632     do {						\
1633 	    while (entry->end != save_end) {		\
1634 		    entry = entry->next;		\
1635 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1636 	    }						\
1637     } while(0)
1638 
1639 
1640 /*
1641  * Clip the specified range and return the base entry.  The
1642  * range may cover several entries starting at the returned base
1643  * and the first and last entry in the covering sequence will be
1644  * properly clipped to the requested start and end address.
1645  *
1646  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1647  * flag.
1648  *
1649  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1650  * covered by the requested range.
1651  *
1652  * The map must be exclusively locked on entry and will remain locked
1653  * on return. If no range exists or the range contains holes and you
1654  * specified that no holes were allowed, NULL will be returned.  This
1655  * routine may temporarily unlock the map in order avoid a deadlock when
1656  * sleeping.
1657  */
1658 static
1659 vm_map_entry_t
1660 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1661 		  int *countp, int flags)
1662 {
1663 	vm_map_entry_t start_entry;
1664 	vm_map_entry_t entry;
1665 
1666 	/*
1667 	 * Locate the entry and effect initial clipping.  The in-transition
1668 	 * case does not occur very often so do not try to optimize it.
1669 	 */
1670 again:
1671 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1672 		return (NULL);
1673 	entry = start_entry;
1674 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1675 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1676 		++mycpu->gd_cnt.v_intrans_coll;
1677 		++mycpu->gd_cnt.v_intrans_wait;
1678 		vm_map_transition_wait(map);
1679 		/*
1680 		 * entry and/or start_entry may have been clipped while
1681 		 * we slept, or may have gone away entirely.  We have
1682 		 * to restart from the lookup.
1683 		 */
1684 		goto again;
1685 	}
1686 
1687 	/*
1688 	 * Since we hold an exclusive map lock we do not have to restart
1689 	 * after clipping, even though clipping may block in zalloc.
1690 	 */
1691 	vm_map_clip_start(map, entry, start, countp);
1692 	vm_map_clip_end(map, entry, end, countp);
1693 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1694 
1695 	/*
1696 	 * Scan entries covered by the range.  When working on the next
1697 	 * entry a restart need only re-loop on the current entry which
1698 	 * we have already locked, since 'next' may have changed.  Also,
1699 	 * even though entry is safe, it may have been clipped so we
1700 	 * have to iterate forwards through the clip after sleeping.
1701 	 */
1702 	while (entry->next != &map->header && entry->next->start < end) {
1703 		vm_map_entry_t next = entry->next;
1704 
1705 		if (flags & MAP_CLIP_NO_HOLES) {
1706 			if (next->start > entry->end) {
1707 				vm_map_unclip_range(map, start_entry,
1708 					start, entry->end, countp, flags);
1709 				return(NULL);
1710 			}
1711 		}
1712 
1713 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1714 			vm_offset_t save_end = entry->end;
1715 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1716 			++mycpu->gd_cnt.v_intrans_coll;
1717 			++mycpu->gd_cnt.v_intrans_wait;
1718 			vm_map_transition_wait(map);
1719 
1720 			/*
1721 			 * clips might have occured while we blocked.
1722 			 */
1723 			CLIP_CHECK_FWD(entry, save_end);
1724 			CLIP_CHECK_BACK(start_entry, start);
1725 			continue;
1726 		}
1727 		/*
1728 		 * No restart necessary even though clip_end may block, we
1729 		 * are holding the map lock.
1730 		 */
1731 		vm_map_clip_end(map, next, end, countp);
1732 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1733 		entry = next;
1734 	}
1735 	if (flags & MAP_CLIP_NO_HOLES) {
1736 		if (entry->end != end) {
1737 			vm_map_unclip_range(map, start_entry,
1738 				start, entry->end, countp, flags);
1739 			return(NULL);
1740 		}
1741 	}
1742 	return(start_entry);
1743 }
1744 
1745 /*
1746  * Undo the effect of vm_map_clip_range().  You should pass the same
1747  * flags and the same range that you passed to vm_map_clip_range().
1748  * This code will clear the in-transition flag on the entries and
1749  * wake up anyone waiting.  This code will also simplify the sequence
1750  * and attempt to merge it with entries before and after the sequence.
1751  *
1752  * The map must be locked on entry and will remain locked on return.
1753  *
1754  * Note that you should also pass the start_entry returned by
1755  * vm_map_clip_range().  However, if you block between the two calls
1756  * with the map unlocked please be aware that the start_entry may
1757  * have been clipped and you may need to scan it backwards to find
1758  * the entry corresponding with the original start address.  You are
1759  * responsible for this, vm_map_unclip_range() expects the correct
1760  * start_entry to be passed to it and will KASSERT otherwise.
1761  */
1762 static
1763 void
1764 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1765 		    vm_offset_t start, vm_offset_t end,
1766 		    int *countp, int flags)
1767 {
1768 	vm_map_entry_t entry;
1769 
1770 	entry = start_entry;
1771 
1772 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1773 	while (entry != &map->header && entry->start < end) {
1774 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1775 			("in-transition flag not set during unclip on: %p",
1776 			entry));
1777 		KASSERT(entry->end <= end,
1778 			("unclip_range: tail wasn't clipped"));
1779 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1780 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1781 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1782 			wakeup(map);
1783 		}
1784 		entry = entry->next;
1785 	}
1786 
1787 	/*
1788 	 * Simplification does not block so there is no restart case.
1789 	 */
1790 	entry = start_entry;
1791 	while (entry != &map->header && entry->start < end) {
1792 		vm_map_simplify_entry(map, entry, countp);
1793 		entry = entry->next;
1794 	}
1795 }
1796 
1797 /*
1798  * Mark the given range as handled by a subordinate map.
1799  *
1800  * This range must have been created with vm_map_find(), and no other
1801  * operations may have been performed on this range prior to calling
1802  * vm_map_submap().
1803  *
1804  * Submappings cannot be removed.
1805  *
1806  * No requirements.
1807  */
1808 int
1809 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1810 {
1811 	vm_map_entry_t entry;
1812 	int result = KERN_INVALID_ARGUMENT;
1813 	int count;
1814 
1815 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1816 	vm_map_lock(map);
1817 
1818 	VM_MAP_RANGE_CHECK(map, start, end);
1819 
1820 	if (vm_map_lookup_entry(map, start, &entry)) {
1821 		vm_map_clip_start(map, entry, start, &count);
1822 	} else {
1823 		entry = entry->next;
1824 	}
1825 
1826 	vm_map_clip_end(map, entry, end, &count);
1827 
1828 	if ((entry->start == start) && (entry->end == end) &&
1829 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1830 	    (entry->object.vm_object == NULL)) {
1831 		entry->object.sub_map = submap;
1832 		entry->maptype = VM_MAPTYPE_SUBMAP;
1833 		result = KERN_SUCCESS;
1834 	}
1835 	vm_map_unlock(map);
1836 	vm_map_entry_release(count);
1837 
1838 	return (result);
1839 }
1840 
1841 /*
1842  * Sets the protection of the specified address region in the target map.
1843  * If "set_max" is specified, the maximum protection is to be set;
1844  * otherwise, only the current protection is affected.
1845  *
1846  * The protection is not applicable to submaps, but is applicable to normal
1847  * maps and maps governed by virtual page tables.  For example, when operating
1848  * on a virtual page table our protection basically controls how COW occurs
1849  * on the backing object, whereas the virtual page table abstraction itself
1850  * is an abstraction for userland.
1851  *
1852  * No requirements.
1853  */
1854 int
1855 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1856 	       vm_prot_t new_prot, boolean_t set_max)
1857 {
1858 	vm_map_entry_t current;
1859 	vm_map_entry_t entry;
1860 	int count;
1861 
1862 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1863 	vm_map_lock(map);
1864 
1865 	VM_MAP_RANGE_CHECK(map, start, end);
1866 
1867 	if (vm_map_lookup_entry(map, start, &entry)) {
1868 		vm_map_clip_start(map, entry, start, &count);
1869 	} else {
1870 		entry = entry->next;
1871 	}
1872 
1873 	/*
1874 	 * Make a first pass to check for protection violations.
1875 	 */
1876 	current = entry;
1877 	while ((current != &map->header) && (current->start < end)) {
1878 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1879 			vm_map_unlock(map);
1880 			vm_map_entry_release(count);
1881 			return (KERN_INVALID_ARGUMENT);
1882 		}
1883 		if ((new_prot & current->max_protection) != new_prot) {
1884 			vm_map_unlock(map);
1885 			vm_map_entry_release(count);
1886 			return (KERN_PROTECTION_FAILURE);
1887 		}
1888 		current = current->next;
1889 	}
1890 
1891 	/*
1892 	 * Go back and fix up protections. [Note that clipping is not
1893 	 * necessary the second time.]
1894 	 */
1895 	current = entry;
1896 
1897 	while ((current != &map->header) && (current->start < end)) {
1898 		vm_prot_t old_prot;
1899 
1900 		vm_map_clip_end(map, current, end, &count);
1901 
1902 		old_prot = current->protection;
1903 		if (set_max) {
1904 			current->protection =
1905 			    (current->max_protection = new_prot) &
1906 			    old_prot;
1907 		} else {
1908 			current->protection = new_prot;
1909 		}
1910 
1911 		/*
1912 		 * Update physical map if necessary. Worry about copy-on-write
1913 		 * here -- CHECK THIS XXX
1914 		 */
1915 
1916 		if (current->protection != old_prot) {
1917 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1918 							VM_PROT_ALL)
1919 
1920 			pmap_protect(map->pmap, current->start,
1921 			    current->end,
1922 			    current->protection & MASK(current));
1923 #undef	MASK
1924 		}
1925 
1926 		vm_map_simplify_entry(map, current, &count);
1927 
1928 		current = current->next;
1929 	}
1930 
1931 	vm_map_unlock(map);
1932 	vm_map_entry_release(count);
1933 	return (KERN_SUCCESS);
1934 }
1935 
1936 /*
1937  * This routine traverses a processes map handling the madvise
1938  * system call.  Advisories are classified as either those effecting
1939  * the vm_map_entry structure, or those effecting the underlying
1940  * objects.
1941  *
1942  * The <value> argument is used for extended madvise calls.
1943  *
1944  * No requirements.
1945  */
1946 int
1947 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1948 	       int behav, off_t value)
1949 {
1950 	vm_map_entry_t current, entry;
1951 	int modify_map = 0;
1952 	int error = 0;
1953 	int count;
1954 
1955 	/*
1956 	 * Some madvise calls directly modify the vm_map_entry, in which case
1957 	 * we need to use an exclusive lock on the map and we need to perform
1958 	 * various clipping operations.  Otherwise we only need a read-lock
1959 	 * on the map.
1960 	 */
1961 
1962 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1963 
1964 	switch(behav) {
1965 	case MADV_NORMAL:
1966 	case MADV_SEQUENTIAL:
1967 	case MADV_RANDOM:
1968 	case MADV_NOSYNC:
1969 	case MADV_AUTOSYNC:
1970 	case MADV_NOCORE:
1971 	case MADV_CORE:
1972 	case MADV_SETMAP:
1973 	case MADV_INVAL:
1974 		modify_map = 1;
1975 		vm_map_lock(map);
1976 		break;
1977 	case MADV_WILLNEED:
1978 	case MADV_DONTNEED:
1979 	case MADV_FREE:
1980 		vm_map_lock_read(map);
1981 		break;
1982 	default:
1983 		vm_map_entry_release(count);
1984 		return (EINVAL);
1985 	}
1986 
1987 	/*
1988 	 * Locate starting entry and clip if necessary.
1989 	 */
1990 
1991 	VM_MAP_RANGE_CHECK(map, start, end);
1992 
1993 	if (vm_map_lookup_entry(map, start, &entry)) {
1994 		if (modify_map)
1995 			vm_map_clip_start(map, entry, start, &count);
1996 	} else {
1997 		entry = entry->next;
1998 	}
1999 
2000 	if (modify_map) {
2001 		/*
2002 		 * madvise behaviors that are implemented in the vm_map_entry.
2003 		 *
2004 		 * We clip the vm_map_entry so that behavioral changes are
2005 		 * limited to the specified address range.
2006 		 */
2007 		for (current = entry;
2008 		     (current != &map->header) && (current->start < end);
2009 		     current = current->next
2010 		) {
2011 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2012 				continue;
2013 
2014 			vm_map_clip_end(map, current, end, &count);
2015 
2016 			switch (behav) {
2017 			case MADV_NORMAL:
2018 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2019 				break;
2020 			case MADV_SEQUENTIAL:
2021 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2022 				break;
2023 			case MADV_RANDOM:
2024 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2025 				break;
2026 			case MADV_NOSYNC:
2027 				current->eflags |= MAP_ENTRY_NOSYNC;
2028 				break;
2029 			case MADV_AUTOSYNC:
2030 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2031 				break;
2032 			case MADV_NOCORE:
2033 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2034 				break;
2035 			case MADV_CORE:
2036 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2037 				break;
2038 			case MADV_INVAL:
2039 				/*
2040 				 * Invalidate the related pmap entries, used
2041 				 * to flush portions of the real kernel's
2042 				 * pmap when the caller has removed or
2043 				 * modified existing mappings in a virtual
2044 				 * page table.
2045 				 */
2046 				pmap_remove(map->pmap,
2047 					    current->start, current->end);
2048 				break;
2049 			case MADV_SETMAP:
2050 				/*
2051 				 * Set the page directory page for a map
2052 				 * governed by a virtual page table.  Mark
2053 				 * the entry as being governed by a virtual
2054 				 * page table if it is not.
2055 				 *
2056 				 * XXX the page directory page is stored
2057 				 * in the avail_ssize field if the map_entry.
2058 				 *
2059 				 * XXX the map simplification code does not
2060 				 * compare this field so weird things may
2061 				 * happen if you do not apply this function
2062 				 * to the entire mapping governed by the
2063 				 * virtual page table.
2064 				 */
2065 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2066 					error = EINVAL;
2067 					break;
2068 				}
2069 				current->aux.master_pde = value;
2070 				pmap_remove(map->pmap,
2071 					    current->start, current->end);
2072 				break;
2073 			default:
2074 				error = EINVAL;
2075 				break;
2076 			}
2077 			vm_map_simplify_entry(map, current, &count);
2078 		}
2079 		vm_map_unlock(map);
2080 	} else {
2081 		vm_pindex_t pindex;
2082 		int count;
2083 
2084 		/*
2085 		 * madvise behaviors that are implemented in the underlying
2086 		 * vm_object.
2087 		 *
2088 		 * Since we don't clip the vm_map_entry, we have to clip
2089 		 * the vm_object pindex and count.
2090 		 *
2091 		 * NOTE!  We currently do not support these functions on
2092 		 * virtual page tables.
2093 		 */
2094 		for (current = entry;
2095 		     (current != &map->header) && (current->start < end);
2096 		     current = current->next
2097 		) {
2098 			vm_offset_t useStart;
2099 
2100 			if (current->maptype != VM_MAPTYPE_NORMAL)
2101 				continue;
2102 
2103 			pindex = OFF_TO_IDX(current->offset);
2104 			count = atop(current->end - current->start);
2105 			useStart = current->start;
2106 
2107 			if (current->start < start) {
2108 				pindex += atop(start - current->start);
2109 				count -= atop(start - current->start);
2110 				useStart = start;
2111 			}
2112 			if (current->end > end)
2113 				count -= atop(current->end - end);
2114 
2115 			if (count <= 0)
2116 				continue;
2117 
2118 			vm_object_madvise(current->object.vm_object,
2119 					  pindex, count, behav);
2120 
2121 			/*
2122 			 * Try to populate the page table.  Mappings governed
2123 			 * by virtual page tables cannot be pre-populated
2124 			 * without a lot of work so don't try.
2125 			 */
2126 			if (behav == MADV_WILLNEED &&
2127 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2128 				pmap_object_init_pt(
2129 				    map->pmap,
2130 				    useStart,
2131 				    current->protection,
2132 				    current->object.vm_object,
2133 				    pindex,
2134 				    (count << PAGE_SHIFT),
2135 				    MAP_PREFAULT_MADVISE
2136 				);
2137 			}
2138 		}
2139 		vm_map_unlock_read(map);
2140 	}
2141 	vm_map_entry_release(count);
2142 	return(error);
2143 }
2144 
2145 
2146 /*
2147  * Sets the inheritance of the specified address range in the target map.
2148  * Inheritance affects how the map will be shared with child maps at the
2149  * time of vm_map_fork.
2150  */
2151 int
2152 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2153 	       vm_inherit_t new_inheritance)
2154 {
2155 	vm_map_entry_t entry;
2156 	vm_map_entry_t temp_entry;
2157 	int count;
2158 
2159 	switch (new_inheritance) {
2160 	case VM_INHERIT_NONE:
2161 	case VM_INHERIT_COPY:
2162 	case VM_INHERIT_SHARE:
2163 		break;
2164 	default:
2165 		return (KERN_INVALID_ARGUMENT);
2166 	}
2167 
2168 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2169 	vm_map_lock(map);
2170 
2171 	VM_MAP_RANGE_CHECK(map, start, end);
2172 
2173 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2174 		entry = temp_entry;
2175 		vm_map_clip_start(map, entry, start, &count);
2176 	} else
2177 		entry = temp_entry->next;
2178 
2179 	while ((entry != &map->header) && (entry->start < end)) {
2180 		vm_map_clip_end(map, entry, end, &count);
2181 
2182 		entry->inheritance = new_inheritance;
2183 
2184 		vm_map_simplify_entry(map, entry, &count);
2185 
2186 		entry = entry->next;
2187 	}
2188 	vm_map_unlock(map);
2189 	vm_map_entry_release(count);
2190 	return (KERN_SUCCESS);
2191 }
2192 
2193 /*
2194  * Implement the semantics of mlock
2195  */
2196 int
2197 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2198 	      boolean_t new_pageable)
2199 {
2200 	vm_map_entry_t entry;
2201 	vm_map_entry_t start_entry;
2202 	vm_offset_t end;
2203 	int rv = KERN_SUCCESS;
2204 	int count;
2205 
2206 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2207 	vm_map_lock(map);
2208 	VM_MAP_RANGE_CHECK(map, start, real_end);
2209 	end = real_end;
2210 
2211 	start_entry = vm_map_clip_range(map, start, end, &count,
2212 					MAP_CLIP_NO_HOLES);
2213 	if (start_entry == NULL) {
2214 		vm_map_unlock(map);
2215 		vm_map_entry_release(count);
2216 		return (KERN_INVALID_ADDRESS);
2217 	}
2218 
2219 	if (new_pageable == 0) {
2220 		entry = start_entry;
2221 		while ((entry != &map->header) && (entry->start < end)) {
2222 			vm_offset_t save_start;
2223 			vm_offset_t save_end;
2224 
2225 			/*
2226 			 * Already user wired or hard wired (trivial cases)
2227 			 */
2228 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2229 				entry = entry->next;
2230 				continue;
2231 			}
2232 			if (entry->wired_count != 0) {
2233 				entry->wired_count++;
2234 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2235 				entry = entry->next;
2236 				continue;
2237 			}
2238 
2239 			/*
2240 			 * A new wiring requires instantiation of appropriate
2241 			 * management structures and the faulting in of the
2242 			 * page.
2243 			 */
2244 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2245 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2246 				int copyflag = entry->eflags &
2247 					       MAP_ENTRY_NEEDS_COPY;
2248 				if (copyflag && ((entry->protection &
2249 						  VM_PROT_WRITE) != 0)) {
2250 					vm_map_entry_shadow(entry, 0);
2251 				} else if (entry->object.vm_object == NULL &&
2252 					   !map->system_map) {
2253 					vm_map_entry_allocate_object(entry);
2254 				}
2255 			}
2256 			entry->wired_count++;
2257 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2258 
2259 			/*
2260 			 * Now fault in the area.  Note that vm_fault_wire()
2261 			 * may release the map lock temporarily, it will be
2262 			 * relocked on return.  The in-transition
2263 			 * flag protects the entries.
2264 			 */
2265 			save_start = entry->start;
2266 			save_end = entry->end;
2267 			rv = vm_fault_wire(map, entry, TRUE, 0);
2268 			if (rv) {
2269 				CLIP_CHECK_BACK(entry, save_start);
2270 				for (;;) {
2271 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2272 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2273 					entry->wired_count = 0;
2274 					if (entry->end == save_end)
2275 						break;
2276 					entry = entry->next;
2277 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2278 				}
2279 				end = save_start;	/* unwire the rest */
2280 				break;
2281 			}
2282 			/*
2283 			 * note that even though the entry might have been
2284 			 * clipped, the USER_WIRED flag we set prevents
2285 			 * duplication so we do not have to do a
2286 			 * clip check.
2287 			 */
2288 			entry = entry->next;
2289 		}
2290 
2291 		/*
2292 		 * If we failed fall through to the unwiring section to
2293 		 * unwire what we had wired so far.  'end' has already
2294 		 * been adjusted.
2295 		 */
2296 		if (rv)
2297 			new_pageable = 1;
2298 
2299 		/*
2300 		 * start_entry might have been clipped if we unlocked the
2301 		 * map and blocked.  No matter how clipped it has gotten
2302 		 * there should be a fragment that is on our start boundary.
2303 		 */
2304 		CLIP_CHECK_BACK(start_entry, start);
2305 	}
2306 
2307 	/*
2308 	 * Deal with the unwiring case.
2309 	 */
2310 	if (new_pageable) {
2311 		/*
2312 		 * This is the unwiring case.  We must first ensure that the
2313 		 * range to be unwired is really wired down.  We know there
2314 		 * are no holes.
2315 		 */
2316 		entry = start_entry;
2317 		while ((entry != &map->header) && (entry->start < end)) {
2318 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2319 				rv = KERN_INVALID_ARGUMENT;
2320 				goto done;
2321 			}
2322 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2323 			entry = entry->next;
2324 		}
2325 
2326 		/*
2327 		 * Now decrement the wiring count for each region. If a region
2328 		 * becomes completely unwired, unwire its physical pages and
2329 		 * mappings.
2330 		 */
2331 		/*
2332 		 * The map entries are processed in a loop, checking to
2333 		 * make sure the entry is wired and asserting it has a wired
2334 		 * count. However, another loop was inserted more-or-less in
2335 		 * the middle of the unwiring path. This loop picks up the
2336 		 * "entry" loop variable from the first loop without first
2337 		 * setting it to start_entry. Naturally, the secound loop
2338 		 * is never entered and the pages backing the entries are
2339 		 * never unwired. This can lead to a leak of wired pages.
2340 		 */
2341 		entry = start_entry;
2342 		while ((entry != &map->header) && (entry->start < end)) {
2343 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2344 				("expected USER_WIRED on entry %p", entry));
2345 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2346 			entry->wired_count--;
2347 			if (entry->wired_count == 0)
2348 				vm_fault_unwire(map, entry);
2349 			entry = entry->next;
2350 		}
2351 	}
2352 done:
2353 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2354 		MAP_CLIP_NO_HOLES);
2355 	map->timestamp++;
2356 	vm_map_unlock(map);
2357 	vm_map_entry_release(count);
2358 	return (rv);
2359 }
2360 
2361 /*
2362  * Sets the pageability of the specified address range in the target map.
2363  * Regions specified as not pageable require locked-down physical
2364  * memory and physical page maps.
2365  *
2366  * The map must not be locked, but a reference must remain to the map
2367  * throughout the call.
2368  *
2369  * This function may be called via the zalloc path and must properly
2370  * reserve map entries for kernel_map.
2371  *
2372  * No requirements.
2373  */
2374 int
2375 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2376 {
2377 	vm_map_entry_t entry;
2378 	vm_map_entry_t start_entry;
2379 	vm_offset_t end;
2380 	int rv = KERN_SUCCESS;
2381 	int count;
2382 
2383 	if (kmflags & KM_KRESERVE)
2384 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2385 	else
2386 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2387 	vm_map_lock(map);
2388 	VM_MAP_RANGE_CHECK(map, start, real_end);
2389 	end = real_end;
2390 
2391 	start_entry = vm_map_clip_range(map, start, end, &count,
2392 					MAP_CLIP_NO_HOLES);
2393 	if (start_entry == NULL) {
2394 		vm_map_unlock(map);
2395 		rv = KERN_INVALID_ADDRESS;
2396 		goto failure;
2397 	}
2398 	if ((kmflags & KM_PAGEABLE) == 0) {
2399 		/*
2400 		 * Wiring.
2401 		 *
2402 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2403 		 * objects that need to be created. Then we clip each map
2404 		 * entry to the region to be wired and increment its wiring
2405 		 * count.  We create objects before clipping the map entries
2406 		 * to avoid object proliferation.
2407 		 *
2408 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2409 		 * fault in the pages for any newly wired area (wired_count is
2410 		 * 1).
2411 		 *
2412 		 * Downgrading to a read lock for vm_fault_wire avoids a
2413 		 * possible deadlock with another process that may have faulted
2414 		 * on one of the pages to be wired (it would mark the page busy,
2415 		 * blocking us, then in turn block on the map lock that we
2416 		 * hold).  Because of problems in the recursive lock package,
2417 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2418 		 * any actions that require the write lock must be done
2419 		 * beforehand.  Because we keep the read lock on the map, the
2420 		 * copy-on-write status of the entries we modify here cannot
2421 		 * change.
2422 		 */
2423 		entry = start_entry;
2424 		while ((entry != &map->header) && (entry->start < end)) {
2425 			/*
2426 			 * Trivial case if the entry is already wired
2427 			 */
2428 			if (entry->wired_count) {
2429 				entry->wired_count++;
2430 				entry = entry->next;
2431 				continue;
2432 			}
2433 
2434 			/*
2435 			 * The entry is being newly wired, we have to setup
2436 			 * appropriate management structures.  A shadow
2437 			 * object is required for a copy-on-write region,
2438 			 * or a normal object for a zero-fill region.  We
2439 			 * do not have to do this for entries that point to sub
2440 			 * maps because we won't hold the lock on the sub map.
2441 			 */
2442 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2443 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2444 				int copyflag = entry->eflags &
2445 					       MAP_ENTRY_NEEDS_COPY;
2446 				if (copyflag && ((entry->protection &
2447 						  VM_PROT_WRITE) != 0)) {
2448 					vm_map_entry_shadow(entry, 0);
2449 				} else if (entry->object.vm_object == NULL &&
2450 					   !map->system_map) {
2451 					vm_map_entry_allocate_object(entry);
2452 				}
2453 			}
2454 
2455 			entry->wired_count++;
2456 			entry = entry->next;
2457 		}
2458 
2459 		/*
2460 		 * Pass 2.
2461 		 */
2462 
2463 		/*
2464 		 * HACK HACK HACK HACK
2465 		 *
2466 		 * vm_fault_wire() temporarily unlocks the map to avoid
2467 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2468 		 * call should protect us from changes while the map is
2469 		 * unlocked.  T
2470 		 *
2471 		 * NOTE: Previously this comment stated that clipping might
2472 		 *	 still occur while the entry is unlocked, but from
2473 		 *	 what I can tell it actually cannot.
2474 		 *
2475 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2476 		 *	 are still needed but we keep them in anyway.
2477 		 *
2478 		 * HACK HACK HACK HACK
2479 		 */
2480 
2481 		entry = start_entry;
2482 		while (entry != &map->header && entry->start < end) {
2483 			/*
2484 			 * If vm_fault_wire fails for any page we need to undo
2485 			 * what has been done.  We decrement the wiring count
2486 			 * for those pages which have not yet been wired (now)
2487 			 * and unwire those that have (later).
2488 			 */
2489 			vm_offset_t save_start = entry->start;
2490 			vm_offset_t save_end = entry->end;
2491 
2492 			if (entry->wired_count == 1)
2493 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2494 			if (rv) {
2495 				CLIP_CHECK_BACK(entry, save_start);
2496 				for (;;) {
2497 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2498 					entry->wired_count = 0;
2499 					if (entry->end == save_end)
2500 						break;
2501 					entry = entry->next;
2502 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2503 				}
2504 				end = save_start;
2505 				break;
2506 			}
2507 			CLIP_CHECK_FWD(entry, save_end);
2508 			entry = entry->next;
2509 		}
2510 
2511 		/*
2512 		 * If a failure occured undo everything by falling through
2513 		 * to the unwiring code.  'end' has already been adjusted
2514 		 * appropriately.
2515 		 */
2516 		if (rv)
2517 			kmflags |= KM_PAGEABLE;
2518 
2519 		/*
2520 		 * start_entry is still IN_TRANSITION but may have been
2521 		 * clipped since vm_fault_wire() unlocks and relocks the
2522 		 * map.  No matter how clipped it has gotten there should
2523 		 * be a fragment that is on our start boundary.
2524 		 */
2525 		CLIP_CHECK_BACK(start_entry, start);
2526 	}
2527 
2528 	if (kmflags & KM_PAGEABLE) {
2529 		/*
2530 		 * This is the unwiring case.  We must first ensure that the
2531 		 * range to be unwired is really wired down.  We know there
2532 		 * are no holes.
2533 		 */
2534 		entry = start_entry;
2535 		while ((entry != &map->header) && (entry->start < end)) {
2536 			if (entry->wired_count == 0) {
2537 				rv = KERN_INVALID_ARGUMENT;
2538 				goto done;
2539 			}
2540 			entry = entry->next;
2541 		}
2542 
2543 		/*
2544 		 * Now decrement the wiring count for each region. If a region
2545 		 * becomes completely unwired, unwire its physical pages and
2546 		 * mappings.
2547 		 */
2548 		entry = start_entry;
2549 		while ((entry != &map->header) && (entry->start < end)) {
2550 			entry->wired_count--;
2551 			if (entry->wired_count == 0)
2552 				vm_fault_unwire(map, entry);
2553 			entry = entry->next;
2554 		}
2555 	}
2556 done:
2557 	vm_map_unclip_range(map, start_entry, start, real_end,
2558 			    &count, MAP_CLIP_NO_HOLES);
2559 	map->timestamp++;
2560 	vm_map_unlock(map);
2561 failure:
2562 	if (kmflags & KM_KRESERVE)
2563 		vm_map_entry_krelease(count);
2564 	else
2565 		vm_map_entry_release(count);
2566 	return (rv);
2567 }
2568 
2569 /*
2570  * Mark a newly allocated address range as wired but do not fault in
2571  * the pages.  The caller is expected to load the pages into the object.
2572  *
2573  * The map must be locked on entry and will remain locked on return.
2574  * No other requirements.
2575  */
2576 void
2577 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2578 		       int *countp)
2579 {
2580 	vm_map_entry_t scan;
2581 	vm_map_entry_t entry;
2582 
2583 	entry = vm_map_clip_range(map, addr, addr + size,
2584 				  countp, MAP_CLIP_NO_HOLES);
2585 	for (scan = entry;
2586 	     scan != &map->header && scan->start < addr + size;
2587 	     scan = scan->next) {
2588 	    KKASSERT(scan->wired_count == 0);
2589 	    scan->wired_count = 1;
2590 	}
2591 	vm_map_unclip_range(map, entry, addr, addr + size,
2592 			    countp, MAP_CLIP_NO_HOLES);
2593 }
2594 
2595 /*
2596  * Push any dirty cached pages in the address range to their pager.
2597  * If syncio is TRUE, dirty pages are written synchronously.
2598  * If invalidate is TRUE, any cached pages are freed as well.
2599  *
2600  * This routine is called by sys_msync()
2601  *
2602  * Returns an error if any part of the specified range is not mapped.
2603  *
2604  * No requirements.
2605  */
2606 int
2607 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2608 	     boolean_t syncio, boolean_t invalidate)
2609 {
2610 	vm_map_entry_t current;
2611 	vm_map_entry_t entry;
2612 	vm_size_t size;
2613 	vm_object_t object;
2614 	vm_object_t tobj;
2615 	vm_ooffset_t offset;
2616 
2617 	vm_map_lock_read(map);
2618 	VM_MAP_RANGE_CHECK(map, start, end);
2619 	if (!vm_map_lookup_entry(map, start, &entry)) {
2620 		vm_map_unlock_read(map);
2621 		return (KERN_INVALID_ADDRESS);
2622 	}
2623 	lwkt_gettoken(&map->token);
2624 
2625 	/*
2626 	 * Make a first pass to check for holes.
2627 	 */
2628 	for (current = entry; current->start < end; current = current->next) {
2629 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2630 			lwkt_reltoken(&map->token);
2631 			vm_map_unlock_read(map);
2632 			return (KERN_INVALID_ARGUMENT);
2633 		}
2634 		if (end > current->end &&
2635 		    (current->next == &map->header ||
2636 			current->end != current->next->start)) {
2637 			lwkt_reltoken(&map->token);
2638 			vm_map_unlock_read(map);
2639 			return (KERN_INVALID_ADDRESS);
2640 		}
2641 	}
2642 
2643 	if (invalidate)
2644 		pmap_remove(vm_map_pmap(map), start, end);
2645 
2646 	/*
2647 	 * Make a second pass, cleaning/uncaching pages from the indicated
2648 	 * objects as we go.
2649 	 */
2650 	for (current = entry; current->start < end; current = current->next) {
2651 		offset = current->offset + (start - current->start);
2652 		size = (end <= current->end ? end : current->end) - start;
2653 
2654 		switch(current->maptype) {
2655 		case VM_MAPTYPE_SUBMAP:
2656 		{
2657 			vm_map_t smap;
2658 			vm_map_entry_t tentry;
2659 			vm_size_t tsize;
2660 
2661 			smap = current->object.sub_map;
2662 			vm_map_lock_read(smap);
2663 			vm_map_lookup_entry(smap, offset, &tentry);
2664 			tsize = tentry->end - offset;
2665 			if (tsize < size)
2666 				size = tsize;
2667 			object = tentry->object.vm_object;
2668 			offset = tentry->offset + (offset - tentry->start);
2669 			vm_map_unlock_read(smap);
2670 			break;
2671 		}
2672 		case VM_MAPTYPE_NORMAL:
2673 		case VM_MAPTYPE_VPAGETABLE:
2674 			object = current->object.vm_object;
2675 			break;
2676 		default:
2677 			object = NULL;
2678 			break;
2679 		}
2680 
2681 		if (object)
2682 			vm_object_hold(object);
2683 
2684 		/*
2685 		 * Note that there is absolutely no sense in writing out
2686 		 * anonymous objects, so we track down the vnode object
2687 		 * to write out.
2688 		 * We invalidate (remove) all pages from the address space
2689 		 * anyway, for semantic correctness.
2690 		 *
2691 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2692 		 * may start out with a NULL object.
2693 		 */
2694 		while (object && (tobj = object->backing_object) != NULL) {
2695 			vm_object_hold(tobj);
2696 			if (tobj == object->backing_object) {
2697 				vm_object_lock_swap();
2698 				offset += object->backing_object_offset;
2699 				vm_object_drop(object);
2700 				object = tobj;
2701 				if (object->size < OFF_TO_IDX(offset + size))
2702 					size = IDX_TO_OFF(object->size) -
2703 					       offset;
2704 				break;
2705 			}
2706 			vm_object_drop(tobj);
2707 		}
2708 		if (object && (object->type == OBJT_VNODE) &&
2709 		    (current->protection & VM_PROT_WRITE) &&
2710 		    (object->flags & OBJ_NOMSYNC) == 0) {
2711 			/*
2712 			 * Flush pages if writing is allowed, invalidate them
2713 			 * if invalidation requested.  Pages undergoing I/O
2714 			 * will be ignored by vm_object_page_remove().
2715 			 *
2716 			 * We cannot lock the vnode and then wait for paging
2717 			 * to complete without deadlocking against vm_fault.
2718 			 * Instead we simply call vm_object_page_remove() and
2719 			 * allow it to block internally on a page-by-page
2720 			 * basis when it encounters pages undergoing async
2721 			 * I/O.
2722 			 */
2723 			int flags;
2724 
2725 			/* no chain wait needed for vnode objects */
2726 			vm_object_reference_locked(object);
2727 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2728 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2729 			flags |= invalidate ? OBJPC_INVAL : 0;
2730 
2731 			/*
2732 			 * When operating on a virtual page table just
2733 			 * flush the whole object.  XXX we probably ought
2734 			 * to
2735 			 */
2736 			switch(current->maptype) {
2737 			case VM_MAPTYPE_NORMAL:
2738 				vm_object_page_clean(object,
2739 				    OFF_TO_IDX(offset),
2740 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2741 				    flags);
2742 				break;
2743 			case VM_MAPTYPE_VPAGETABLE:
2744 				vm_object_page_clean(object, 0, 0, flags);
2745 				break;
2746 			}
2747 			vn_unlock(((struct vnode *)object->handle));
2748 			vm_object_deallocate_locked(object);
2749 		}
2750 		if (object && invalidate &&
2751 		   ((object->type == OBJT_VNODE) ||
2752 		    (object->type == OBJT_DEVICE) ||
2753 		    (object->type == OBJT_MGTDEVICE))) {
2754 			int clean_only =
2755 				((object->type == OBJT_DEVICE) ||
2756 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2757 			/* no chain wait needed for vnode/device objects */
2758 			vm_object_reference_locked(object);
2759 			switch(current->maptype) {
2760 			case VM_MAPTYPE_NORMAL:
2761 				vm_object_page_remove(object,
2762 				    OFF_TO_IDX(offset),
2763 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2764 				    clean_only);
2765 				break;
2766 			case VM_MAPTYPE_VPAGETABLE:
2767 				vm_object_page_remove(object, 0, 0, clean_only);
2768 				break;
2769 			}
2770 			vm_object_deallocate_locked(object);
2771 		}
2772 		start += size;
2773 		if (object)
2774 			vm_object_drop(object);
2775 	}
2776 
2777 	lwkt_reltoken(&map->token);
2778 	vm_map_unlock_read(map);
2779 
2780 	return (KERN_SUCCESS);
2781 }
2782 
2783 /*
2784  * Make the region specified by this entry pageable.
2785  *
2786  * The vm_map must be exclusively locked.
2787  */
2788 static void
2789 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2790 {
2791 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2792 	entry->wired_count = 0;
2793 	vm_fault_unwire(map, entry);
2794 }
2795 
2796 /*
2797  * Deallocate the given entry from the target map.
2798  *
2799  * The vm_map must be exclusively locked.
2800  */
2801 static void
2802 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2803 {
2804 	vm_map_entry_unlink(map, entry);
2805 	map->size -= entry->end - entry->start;
2806 
2807 	switch(entry->maptype) {
2808 	case VM_MAPTYPE_NORMAL:
2809 	case VM_MAPTYPE_VPAGETABLE:
2810 	case VM_MAPTYPE_SUBMAP:
2811 		vm_object_deallocate(entry->object.vm_object);
2812 		break;
2813 	case VM_MAPTYPE_UKSMAP:
2814 		/* XXX TODO */
2815 		break;
2816 	default:
2817 		break;
2818 	}
2819 
2820 	vm_map_entry_dispose(map, entry, countp);
2821 }
2822 
2823 /*
2824  * Deallocates the given address range from the target map.
2825  *
2826  * The vm_map must be exclusively locked.
2827  */
2828 int
2829 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2830 {
2831 	vm_object_t object;
2832 	vm_map_entry_t entry;
2833 	vm_map_entry_t first_entry;
2834 
2835 	ASSERT_VM_MAP_LOCKED(map);
2836 	lwkt_gettoken(&map->token);
2837 again:
2838 	/*
2839 	 * Find the start of the region, and clip it.  Set entry to point
2840 	 * at the first record containing the requested address or, if no
2841 	 * such record exists, the next record with a greater address.  The
2842 	 * loop will run from this point until a record beyond the termination
2843 	 * address is encountered.
2844 	 *
2845 	 * map->hint must be adjusted to not point to anything we delete,
2846 	 * so set it to the entry prior to the one being deleted.
2847 	 *
2848 	 * GGG see other GGG comment.
2849 	 */
2850 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2851 		entry = first_entry;
2852 		vm_map_clip_start(map, entry, start, countp);
2853 		map->hint = entry->prev;	/* possible problem XXX */
2854 	} else {
2855 		map->hint = first_entry;	/* possible problem XXX */
2856 		entry = first_entry->next;
2857 	}
2858 
2859 	/*
2860 	 * If a hole opens up prior to the current first_free then
2861 	 * adjust first_free.  As with map->hint, map->first_free
2862 	 * cannot be left set to anything we might delete.
2863 	 */
2864 	if (entry == &map->header) {
2865 		map->first_free = &map->header;
2866 	} else if (map->first_free->start >= start) {
2867 		map->first_free = entry->prev;
2868 	}
2869 
2870 	/*
2871 	 * Step through all entries in this region
2872 	 */
2873 	while ((entry != &map->header) && (entry->start < end)) {
2874 		vm_map_entry_t next;
2875 		vm_offset_t s, e;
2876 		vm_pindex_t offidxstart, offidxend, count;
2877 
2878 		/*
2879 		 * If we hit an in-transition entry we have to sleep and
2880 		 * retry.  It's easier (and not really slower) to just retry
2881 		 * since this case occurs so rarely and the hint is already
2882 		 * pointing at the right place.  We have to reset the
2883 		 * start offset so as not to accidently delete an entry
2884 		 * another process just created in vacated space.
2885 		 */
2886 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2887 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2888 			start = entry->start;
2889 			++mycpu->gd_cnt.v_intrans_coll;
2890 			++mycpu->gd_cnt.v_intrans_wait;
2891 			vm_map_transition_wait(map);
2892 			goto again;
2893 		}
2894 		vm_map_clip_end(map, entry, end, countp);
2895 
2896 		s = entry->start;
2897 		e = entry->end;
2898 		next = entry->next;
2899 
2900 		offidxstart = OFF_TO_IDX(entry->offset);
2901 		count = OFF_TO_IDX(e - s);
2902 
2903 		switch(entry->maptype) {
2904 		case VM_MAPTYPE_NORMAL:
2905 		case VM_MAPTYPE_VPAGETABLE:
2906 		case VM_MAPTYPE_SUBMAP:
2907 			object = entry->object.vm_object;
2908 			break;
2909 		default:
2910 			object = NULL;
2911 			break;
2912 		}
2913 
2914 		/*
2915 		 * Unwire before removing addresses from the pmap; otherwise,
2916 		 * unwiring will put the entries back in the pmap.
2917 		 */
2918 		if (entry->wired_count != 0)
2919 			vm_map_entry_unwire(map, entry);
2920 
2921 		offidxend = offidxstart + count;
2922 
2923 		if (object == &kernel_object) {
2924 			vm_object_hold(object);
2925 			vm_object_page_remove(object, offidxstart,
2926 					      offidxend, FALSE);
2927 			vm_object_drop(object);
2928 		} else if (object && object->type != OBJT_DEFAULT &&
2929 			   object->type != OBJT_SWAP) {
2930 			/*
2931 			 * vnode object routines cannot be chain-locked,
2932 			 * but since we aren't removing pages from the
2933 			 * object here we can use a shared hold.
2934 			 */
2935 			vm_object_hold_shared(object);
2936 			pmap_remove(map->pmap, s, e);
2937 			vm_object_drop(object);
2938 		} else if (object) {
2939 			vm_object_hold(object);
2940 			vm_object_chain_acquire(object, 0);
2941 			pmap_remove(map->pmap, s, e);
2942 
2943 			if (object != NULL &&
2944 			    object->ref_count != 1 &&
2945 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2946 			     OBJ_ONEMAPPING &&
2947 			    (object->type == OBJT_DEFAULT ||
2948 			     object->type == OBJT_SWAP)) {
2949 				vm_object_collapse(object, NULL);
2950 				vm_object_page_remove(object, offidxstart,
2951 						      offidxend, FALSE);
2952 				if (object->type == OBJT_SWAP) {
2953 					swap_pager_freespace(object,
2954 							     offidxstart,
2955 							     count);
2956 				}
2957 				if (offidxend >= object->size &&
2958 				    offidxstart < object->size) {
2959 					object->size = offidxstart;
2960 				}
2961 			}
2962 			vm_object_chain_release(object);
2963 			vm_object_drop(object);
2964 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2965 			pmap_remove(map->pmap, s, e);
2966 		}
2967 
2968 		/*
2969 		 * Delete the entry (which may delete the object) only after
2970 		 * removing all pmap entries pointing to its pages.
2971 		 * (Otherwise, its page frames may be reallocated, and any
2972 		 * modify bits will be set in the wrong object!)
2973 		 */
2974 		vm_map_entry_delete(map, entry, countp);
2975 		entry = next;
2976 	}
2977 	lwkt_reltoken(&map->token);
2978 	return (KERN_SUCCESS);
2979 }
2980 
2981 /*
2982  * Remove the given address range from the target map.
2983  * This is the exported form of vm_map_delete.
2984  *
2985  * No requirements.
2986  */
2987 int
2988 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2989 {
2990 	int result;
2991 	int count;
2992 
2993 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2994 	vm_map_lock(map);
2995 	VM_MAP_RANGE_CHECK(map, start, end);
2996 	result = vm_map_delete(map, start, end, &count);
2997 	vm_map_unlock(map);
2998 	vm_map_entry_release(count);
2999 
3000 	return (result);
3001 }
3002 
3003 /*
3004  * Assert that the target map allows the specified privilege on the
3005  * entire address region given.  The entire region must be allocated.
3006  *
3007  * The caller must specify whether the vm_map is already locked or not.
3008  */
3009 boolean_t
3010 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3011 			vm_prot_t protection, boolean_t have_lock)
3012 {
3013 	vm_map_entry_t entry;
3014 	vm_map_entry_t tmp_entry;
3015 	boolean_t result;
3016 
3017 	if (have_lock == FALSE)
3018 		vm_map_lock_read(map);
3019 
3020 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3021 		if (have_lock == FALSE)
3022 			vm_map_unlock_read(map);
3023 		return (FALSE);
3024 	}
3025 	entry = tmp_entry;
3026 
3027 	result = TRUE;
3028 	while (start < end) {
3029 		if (entry == &map->header) {
3030 			result = FALSE;
3031 			break;
3032 		}
3033 		/*
3034 		 * No holes allowed!
3035 		 */
3036 
3037 		if (start < entry->start) {
3038 			result = FALSE;
3039 			break;
3040 		}
3041 		/*
3042 		 * Check protection associated with entry.
3043 		 */
3044 
3045 		if ((entry->protection & protection) != protection) {
3046 			result = FALSE;
3047 			break;
3048 		}
3049 		/* go to next entry */
3050 
3051 		start = entry->end;
3052 		entry = entry->next;
3053 	}
3054 	if (have_lock == FALSE)
3055 		vm_map_unlock_read(map);
3056 	return (result);
3057 }
3058 
3059 /*
3060  * If appropriate this function shadows the original object with a new object
3061  * and moves the VM pages from the original object to the new object.
3062  * The original object will also be collapsed, if possible.
3063  *
3064  * We can only do this for normal memory objects with a single mapping, and
3065  * it only makes sense to do it if there are 2 or more refs on the original
3066  * object.  i.e. typically a memory object that has been extended into
3067  * multiple vm_map_entry's with non-overlapping ranges.
3068  *
3069  * This makes it easier to remove unused pages and keeps object inheritance
3070  * from being a negative impact on memory usage.
3071  *
3072  * On return the (possibly new) entry->object.vm_object will have an
3073  * additional ref on it for the caller to dispose of (usually by cloning
3074  * the vm_map_entry).  The additional ref had to be done in this routine
3075  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3076  * cleared.
3077  *
3078  * The vm_map must be locked and its token held.
3079  */
3080 static void
3081 vm_map_split(vm_map_entry_t entry)
3082 {
3083 	/* OPTIMIZED */
3084 	vm_object_t oobject, nobject, bobject;
3085 	vm_offset_t s, e;
3086 	vm_page_t m;
3087 	vm_pindex_t offidxstart, offidxend, idx;
3088 	vm_size_t size;
3089 	vm_ooffset_t offset;
3090 	int useshadowlist;
3091 
3092 	/*
3093 	 * Optimize away object locks for vnode objects.  Important exit/exec
3094 	 * critical path.
3095 	 *
3096 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3097 	 * anyway.
3098 	 */
3099 	oobject = entry->object.vm_object;
3100 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3101 		vm_object_reference_quick(oobject);
3102 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3103 		return;
3104 	}
3105 
3106 	/*
3107 	 * Setup.  Chain lock the original object throughout the entire
3108 	 * routine to prevent new page faults from occuring.
3109 	 *
3110 	 * XXX can madvise WILLNEED interfere with us too?
3111 	 */
3112 	vm_object_hold(oobject);
3113 	vm_object_chain_acquire(oobject, 0);
3114 
3115 	/*
3116 	 * Original object cannot be split?  Might have also changed state.
3117 	 */
3118 	if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3119 					oobject->type != OBJT_SWAP)) {
3120 		vm_object_chain_release(oobject);
3121 		vm_object_reference_locked(oobject);
3122 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3123 		vm_object_drop(oobject);
3124 		return;
3125 	}
3126 
3127 	/*
3128 	 * Collapse original object with its backing store as an
3129 	 * optimization to reduce chain lengths when possible.
3130 	 *
3131 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3132 	 * for oobject, so there's no point collapsing it.
3133 	 *
3134 	 * Then re-check whether the object can be split.
3135 	 */
3136 	vm_object_collapse(oobject, NULL);
3137 
3138 	if (oobject->ref_count <= 1 ||
3139 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3140 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3141 		vm_object_chain_release(oobject);
3142 		vm_object_reference_locked(oobject);
3143 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3144 		vm_object_drop(oobject);
3145 		return;
3146 	}
3147 
3148 	/*
3149 	 * Acquire the chain lock on the backing object.
3150 	 *
3151 	 * Give bobject an additional ref count for when it will be shadowed
3152 	 * by nobject.
3153 	 */
3154 	useshadowlist = 0;
3155 	if ((bobject = oobject->backing_object) != NULL) {
3156 		if (bobject->type != OBJT_VNODE) {
3157 			useshadowlist = 1;
3158 			vm_object_hold(bobject);
3159 			vm_object_chain_wait(bobject, 0);
3160 			/* ref for shadowing below */
3161 			vm_object_reference_locked(bobject);
3162 			vm_object_chain_acquire(bobject, 0);
3163 			KKASSERT(bobject->backing_object == bobject);
3164 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3165 		} else {
3166 			/*
3167 			 * vnodes are not placed on the shadow list but
3168 			 * they still get another ref for the backing_object
3169 			 * reference.
3170 			 */
3171 			vm_object_reference_quick(bobject);
3172 		}
3173 	}
3174 
3175 	/*
3176 	 * Calculate the object page range and allocate the new object.
3177 	 */
3178 	offset = entry->offset;
3179 	s = entry->start;
3180 	e = entry->end;
3181 
3182 	offidxstart = OFF_TO_IDX(offset);
3183 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3184 	size = offidxend - offidxstart;
3185 
3186 	switch(oobject->type) {
3187 	case OBJT_DEFAULT:
3188 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3189 					      VM_PROT_ALL, 0);
3190 		break;
3191 	case OBJT_SWAP:
3192 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3193 					   VM_PROT_ALL, 0);
3194 		break;
3195 	default:
3196 		/* not reached */
3197 		nobject = NULL;
3198 		KKASSERT(0);
3199 	}
3200 
3201 	if (nobject == NULL) {
3202 		if (bobject) {
3203 			if (useshadowlist) {
3204 				vm_object_chain_release(bobject);
3205 				vm_object_deallocate(bobject);
3206 				vm_object_drop(bobject);
3207 			} else {
3208 				vm_object_deallocate(bobject);
3209 			}
3210 		}
3211 		vm_object_chain_release(oobject);
3212 		vm_object_reference_locked(oobject);
3213 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3214 		vm_object_drop(oobject);
3215 		return;
3216 	}
3217 
3218 	/*
3219 	 * The new object will replace entry->object.vm_object so it needs
3220 	 * a second reference (the caller expects an additional ref).
3221 	 */
3222 	vm_object_hold(nobject);
3223 	vm_object_reference_locked(nobject);
3224 	vm_object_chain_acquire(nobject, 0);
3225 
3226 	/*
3227 	 * nobject shadows bobject (oobject already shadows bobject).
3228 	 *
3229 	 * Adding an object to bobject's shadow list requires refing bobject
3230 	 * which we did above in the useshadowlist case.
3231 	 */
3232 	if (bobject) {
3233 		nobject->backing_object_offset =
3234 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3235 		nobject->backing_object = bobject;
3236 		if (useshadowlist) {
3237 			bobject->shadow_count++;
3238 			bobject->generation++;
3239 			LIST_INSERT_HEAD(&bobject->shadow_head,
3240 					 nobject, shadow_list);
3241 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3242 			vm_object_chain_release(bobject);
3243 			vm_object_drop(bobject);
3244 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3245 		}
3246 	}
3247 
3248 	/*
3249 	 * Move the VM pages from oobject to nobject
3250 	 */
3251 	for (idx = 0; idx < size; idx++) {
3252 		vm_page_t m;
3253 
3254 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3255 					     TRUE, "vmpg");
3256 		if (m == NULL)
3257 			continue;
3258 
3259 		/*
3260 		 * We must wait for pending I/O to complete before we can
3261 		 * rename the page.
3262 		 *
3263 		 * We do not have to VM_PROT_NONE the page as mappings should
3264 		 * not be changed by this operation.
3265 		 *
3266 		 * NOTE: The act of renaming a page updates chaingen for both
3267 		 *	 objects.
3268 		 */
3269 		vm_page_rename(m, nobject, idx);
3270 		/* page automatically made dirty by rename and cache handled */
3271 		/* page remains busy */
3272 	}
3273 
3274 	if (oobject->type == OBJT_SWAP) {
3275 		vm_object_pip_add(oobject, 1);
3276 		/*
3277 		 * copy oobject pages into nobject and destroy unneeded
3278 		 * pages in shadow object.
3279 		 */
3280 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3281 		vm_object_pip_wakeup(oobject);
3282 	}
3283 
3284 	/*
3285 	 * Wakeup the pages we played with.  No spl protection is needed
3286 	 * for a simple wakeup.
3287 	 */
3288 	for (idx = 0; idx < size; idx++) {
3289 		m = vm_page_lookup(nobject, idx);
3290 		if (m) {
3291 			KKASSERT(m->flags & PG_BUSY);
3292 			vm_page_wakeup(m);
3293 		}
3294 	}
3295 	entry->object.vm_object = nobject;
3296 	entry->offset = 0LL;
3297 
3298 	/*
3299 	 * Cleanup
3300 	 *
3301 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3302 	 *	 related pages were moved and are no longer applicable to the
3303 	 *	 original object.
3304 	 *
3305 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3306 	 *	 replaced by nobject).
3307 	 */
3308 	vm_object_chain_release(nobject);
3309 	vm_object_drop(nobject);
3310 	if (bobject && useshadowlist) {
3311 		vm_object_chain_release(bobject);
3312 		vm_object_drop(bobject);
3313 	}
3314 	vm_object_chain_release(oobject);
3315 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3316 	vm_object_deallocate_locked(oobject);
3317 	vm_object_drop(oobject);
3318 }
3319 
3320 /*
3321  * Copies the contents of the source entry to the destination
3322  * entry.  The entries *must* be aligned properly.
3323  *
3324  * The vm_maps must be exclusively locked.
3325  * The vm_map's token must be held.
3326  *
3327  * Because the maps are locked no faults can be in progress during the
3328  * operation.
3329  */
3330 static void
3331 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3332 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3333 {
3334 	vm_object_t src_object;
3335 
3336 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3337 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3338 		return;
3339 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3340 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3341 		return;
3342 
3343 	if (src_entry->wired_count == 0) {
3344 		/*
3345 		 * If the source entry is marked needs_copy, it is already
3346 		 * write-protected.
3347 		 */
3348 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3349 			pmap_protect(src_map->pmap,
3350 			    src_entry->start,
3351 			    src_entry->end,
3352 			    src_entry->protection & ~VM_PROT_WRITE);
3353 		}
3354 
3355 		/*
3356 		 * Make a copy of the object.
3357 		 *
3358 		 * The object must be locked prior to checking the object type
3359 		 * and for the call to vm_object_collapse() and vm_map_split().
3360 		 * We cannot use *_hold() here because the split code will
3361 		 * probably try to destroy the object.  The lock is a pool
3362 		 * token and doesn't care.
3363 		 *
3364 		 * We must bump src_map->timestamp when setting
3365 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3366 		 * to retry, otherwise the concurrent fault might improperly
3367 		 * install a RW pte when its supposed to be a RO(COW) pte.
3368 		 * This race can occur because a vnode-backed fault may have
3369 		 * to temporarily release the map lock.
3370 		 */
3371 		if (src_entry->object.vm_object != NULL) {
3372 			vm_map_split(src_entry);
3373 			src_object = src_entry->object.vm_object;
3374 			dst_entry->object.vm_object = src_object;
3375 			src_entry->eflags |= (MAP_ENTRY_COW |
3376 					      MAP_ENTRY_NEEDS_COPY);
3377 			dst_entry->eflags |= (MAP_ENTRY_COW |
3378 					      MAP_ENTRY_NEEDS_COPY);
3379 			dst_entry->offset = src_entry->offset;
3380 			++src_map->timestamp;
3381 		} else {
3382 			dst_entry->object.vm_object = NULL;
3383 			dst_entry->offset = 0;
3384 		}
3385 
3386 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3387 		    dst_entry->end - dst_entry->start, src_entry->start);
3388 	} else {
3389 		/*
3390 		 * Of course, wired down pages can't be set copy-on-write.
3391 		 * Cause wired pages to be copied into the new map by
3392 		 * simulating faults (the new pages are pageable)
3393 		 */
3394 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3395 	}
3396 }
3397 
3398 /*
3399  * vmspace_fork:
3400  * Create a new process vmspace structure and vm_map
3401  * based on those of an existing process.  The new map
3402  * is based on the old map, according to the inheritance
3403  * values on the regions in that map.
3404  *
3405  * The source map must not be locked.
3406  * No requirements.
3407  */
3408 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3409 			  vm_map_entry_t old_entry, int *countp);
3410 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3411 			  vm_map_entry_t old_entry, int *countp);
3412 
3413 struct vmspace *
3414 vmspace_fork(struct vmspace *vm1)
3415 {
3416 	struct vmspace *vm2;
3417 	vm_map_t old_map = &vm1->vm_map;
3418 	vm_map_t new_map;
3419 	vm_map_entry_t old_entry;
3420 	int count;
3421 
3422 	lwkt_gettoken(&vm1->vm_map.token);
3423 	vm_map_lock(old_map);
3424 
3425 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3426 	lwkt_gettoken(&vm2->vm_map.token);
3427 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3428 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3429 	new_map = &vm2->vm_map;	/* XXX */
3430 	new_map->timestamp = 1;
3431 
3432 	vm_map_lock(new_map);
3433 
3434 	count = 0;
3435 	old_entry = old_map->header.next;
3436 	while (old_entry != &old_map->header) {
3437 		++count;
3438 		old_entry = old_entry->next;
3439 	}
3440 
3441 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3442 
3443 	old_entry = old_map->header.next;
3444 	while (old_entry != &old_map->header) {
3445 		switch(old_entry->maptype) {
3446 		case VM_MAPTYPE_SUBMAP:
3447 			panic("vm_map_fork: encountered a submap");
3448 			break;
3449 		case VM_MAPTYPE_UKSMAP:
3450 			vmspace_fork_uksmap_entry(old_map, new_map,
3451 						  old_entry, &count);
3452 			break;
3453 		case VM_MAPTYPE_NORMAL:
3454 		case VM_MAPTYPE_VPAGETABLE:
3455 			vmspace_fork_normal_entry(old_map, new_map,
3456 						  old_entry, &count);
3457 			break;
3458 		}
3459 		old_entry = old_entry->next;
3460 	}
3461 
3462 	new_map->size = old_map->size;
3463 	vm_map_unlock(old_map);
3464 	vm_map_unlock(new_map);
3465 	vm_map_entry_release(count);
3466 
3467 	lwkt_reltoken(&vm2->vm_map.token);
3468 	lwkt_reltoken(&vm1->vm_map.token);
3469 
3470 	return (vm2);
3471 }
3472 
3473 static
3474 void
3475 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3476 			  vm_map_entry_t old_entry, int *countp)
3477 {
3478 	vm_map_entry_t new_entry;
3479 	vm_object_t object;
3480 
3481 	switch (old_entry->inheritance) {
3482 	case VM_INHERIT_NONE:
3483 		break;
3484 	case VM_INHERIT_SHARE:
3485 		/*
3486 		 * Clone the entry, creating the shared object if
3487 		 * necessary.
3488 		 */
3489 		if (old_entry->object.vm_object == NULL)
3490 			vm_map_entry_allocate_object(old_entry);
3491 
3492 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3493 			/*
3494 			 * Shadow a map_entry which needs a copy,
3495 			 * replacing its object with a new object
3496 			 * that points to the old one.  Ask the
3497 			 * shadow code to automatically add an
3498 			 * additional ref.  We can't do it afterwords
3499 			 * because we might race a collapse.  The call
3500 			 * to vm_map_entry_shadow() will also clear
3501 			 * OBJ_ONEMAPPING.
3502 			 */
3503 			vm_map_entry_shadow(old_entry, 1);
3504 		} else if (old_entry->object.vm_object) {
3505 			/*
3506 			 * We will make a shared copy of the object,
3507 			 * and must clear OBJ_ONEMAPPING.
3508 			 *
3509 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3510 			 * is non-applicable but clear it anyway,
3511 			 * and its terminal so we don'th ave to deal
3512 			 * with chains.  Reduces SMP conflicts.
3513 			 *
3514 			 * XXX assert that object.vm_object != NULL
3515 			 *     since we allocate it above.
3516 			 */
3517 			object = old_entry->object.vm_object;
3518 			if (object->type == OBJT_VNODE) {
3519 				vm_object_reference_quick(object);
3520 				vm_object_clear_flag(object,
3521 						     OBJ_ONEMAPPING);
3522 			} else {
3523 				vm_object_hold(object);
3524 				vm_object_chain_wait(object, 0);
3525 				vm_object_reference_locked(object);
3526 				vm_object_clear_flag(object,
3527 						     OBJ_ONEMAPPING);
3528 				vm_object_drop(object);
3529 			}
3530 		}
3531 
3532 		/*
3533 		 * Clone the entry.  We've already bumped the ref on
3534 		 * any vm_object.
3535 		 */
3536 		new_entry = vm_map_entry_create(new_map, countp);
3537 		*new_entry = *old_entry;
3538 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3539 		new_entry->wired_count = 0;
3540 
3541 		/*
3542 		 * Insert the entry into the new map -- we know we're
3543 		 * inserting at the end of the new map.
3544 		 */
3545 
3546 		vm_map_entry_link(new_map, new_map->header.prev,
3547 				  new_entry);
3548 
3549 		/*
3550 		 * Update the physical map
3551 		 */
3552 		pmap_copy(new_map->pmap, old_map->pmap,
3553 			  new_entry->start,
3554 			  (old_entry->end - old_entry->start),
3555 			  old_entry->start);
3556 		break;
3557 	case VM_INHERIT_COPY:
3558 		/*
3559 		 * Clone the entry and link into the map.
3560 		 */
3561 		new_entry = vm_map_entry_create(new_map, countp);
3562 		*new_entry = *old_entry;
3563 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3564 		new_entry->wired_count = 0;
3565 		new_entry->object.vm_object = NULL;
3566 		vm_map_entry_link(new_map, new_map->header.prev,
3567 				  new_entry);
3568 		vm_map_copy_entry(old_map, new_map, old_entry,
3569 				  new_entry);
3570 		break;
3571 	}
3572 }
3573 
3574 /*
3575  * When forking user-kernel shared maps, the map might change in the
3576  * child so do not try to copy the underlying pmap entries.
3577  */
3578 static
3579 void
3580 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3581 			  vm_map_entry_t old_entry, int *countp)
3582 {
3583 	vm_map_entry_t new_entry;
3584 
3585 	new_entry = vm_map_entry_create(new_map, countp);
3586 	*new_entry = *old_entry;
3587 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3588 	new_entry->wired_count = 0;
3589 	vm_map_entry_link(new_map, new_map->header.prev,
3590 			  new_entry);
3591 }
3592 
3593 /*
3594  * Create an auto-grow stack entry
3595  *
3596  * No requirements.
3597  */
3598 int
3599 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3600 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3601 {
3602 	vm_map_entry_t	prev_entry;
3603 	vm_map_entry_t	new_stack_entry;
3604 	vm_size_t	init_ssize;
3605 	int		rv;
3606 	int		count;
3607 	vm_offset_t	tmpaddr;
3608 
3609 	cow |= MAP_IS_STACK;
3610 
3611 	if (max_ssize < sgrowsiz)
3612 		init_ssize = max_ssize;
3613 	else
3614 		init_ssize = sgrowsiz;
3615 
3616 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3617 	vm_map_lock(map);
3618 
3619 	/*
3620 	 * Find space for the mapping
3621 	 */
3622 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3623 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3624 				     flags, &tmpaddr)) {
3625 			vm_map_unlock(map);
3626 			vm_map_entry_release(count);
3627 			return (KERN_NO_SPACE);
3628 		}
3629 		addrbos = tmpaddr;
3630 	}
3631 
3632 	/* If addr is already mapped, no go */
3633 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3634 		vm_map_unlock(map);
3635 		vm_map_entry_release(count);
3636 		return (KERN_NO_SPACE);
3637 	}
3638 
3639 #if 0
3640 	/* XXX already handled by kern_mmap() */
3641 	/* If we would blow our VMEM resource limit, no go */
3642 	if (map->size + init_ssize >
3643 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3644 		vm_map_unlock(map);
3645 		vm_map_entry_release(count);
3646 		return (KERN_NO_SPACE);
3647 	}
3648 #endif
3649 
3650 	/*
3651 	 * If we can't accomodate max_ssize in the current mapping,
3652 	 * no go.  However, we need to be aware that subsequent user
3653 	 * mappings might map into the space we have reserved for
3654 	 * stack, and currently this space is not protected.
3655 	 *
3656 	 * Hopefully we will at least detect this condition
3657 	 * when we try to grow the stack.
3658 	 */
3659 	if ((prev_entry->next != &map->header) &&
3660 	    (prev_entry->next->start < addrbos + max_ssize)) {
3661 		vm_map_unlock(map);
3662 		vm_map_entry_release(count);
3663 		return (KERN_NO_SPACE);
3664 	}
3665 
3666 	/*
3667 	 * We initially map a stack of only init_ssize.  We will
3668 	 * grow as needed later.  Since this is to be a grow
3669 	 * down stack, we map at the top of the range.
3670 	 *
3671 	 * Note: we would normally expect prot and max to be
3672 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3673 	 * eliminate these as input parameters, and just
3674 	 * pass these values here in the insert call.
3675 	 */
3676 	rv = vm_map_insert(map, &count, NULL, NULL,
3677 			   0, addrbos + max_ssize - init_ssize,
3678 	                   addrbos + max_ssize,
3679 			   VM_MAPTYPE_NORMAL,
3680 			   prot, max, cow);
3681 
3682 	/* Now set the avail_ssize amount */
3683 	if (rv == KERN_SUCCESS) {
3684 		if (prev_entry != &map->header)
3685 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3686 		new_stack_entry = prev_entry->next;
3687 		if (new_stack_entry->end   != addrbos + max_ssize ||
3688 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3689 			panic ("Bad entry start/end for new stack entry");
3690 		else
3691 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3692 	}
3693 
3694 	vm_map_unlock(map);
3695 	vm_map_entry_release(count);
3696 	return (rv);
3697 }
3698 
3699 /*
3700  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3701  * desired address is already mapped, or if we successfully grow
3702  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3703  * stack range (this is strange, but preserves compatibility with
3704  * the grow function in vm_machdep.c).
3705  *
3706  * No requirements.
3707  */
3708 int
3709 vm_map_growstack (struct proc *p, vm_offset_t addr)
3710 {
3711 	vm_map_entry_t prev_entry;
3712 	vm_map_entry_t stack_entry;
3713 	vm_map_entry_t new_stack_entry;
3714 	struct vmspace *vm = p->p_vmspace;
3715 	vm_map_t map = &vm->vm_map;
3716 	vm_offset_t    end;
3717 	int grow_amount;
3718 	int rv = KERN_SUCCESS;
3719 	int is_procstack;
3720 	int use_read_lock = 1;
3721 	int count;
3722 
3723 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3724 Retry:
3725 	if (use_read_lock)
3726 		vm_map_lock_read(map);
3727 	else
3728 		vm_map_lock(map);
3729 
3730 	/* If addr is already in the entry range, no need to grow.*/
3731 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3732 		goto done;
3733 
3734 	if ((stack_entry = prev_entry->next) == &map->header)
3735 		goto done;
3736 	if (prev_entry == &map->header)
3737 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3738 	else
3739 		end = prev_entry->end;
3740 
3741 	/*
3742 	 * This next test mimics the old grow function in vm_machdep.c.
3743 	 * It really doesn't quite make sense, but we do it anyway
3744 	 * for compatibility.
3745 	 *
3746 	 * If not growable stack, return success.  This signals the
3747 	 * caller to proceed as he would normally with normal vm.
3748 	 */
3749 	if (stack_entry->aux.avail_ssize < 1 ||
3750 	    addr >= stack_entry->start ||
3751 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3752 		goto done;
3753 	}
3754 
3755 	/* Find the minimum grow amount */
3756 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3757 	if (grow_amount > stack_entry->aux.avail_ssize) {
3758 		rv = KERN_NO_SPACE;
3759 		goto done;
3760 	}
3761 
3762 	/*
3763 	 * If there is no longer enough space between the entries
3764 	 * nogo, and adjust the available space.  Note: this
3765 	 * should only happen if the user has mapped into the
3766 	 * stack area after the stack was created, and is
3767 	 * probably an error.
3768 	 *
3769 	 * This also effectively destroys any guard page the user
3770 	 * might have intended by limiting the stack size.
3771 	 */
3772 	if (grow_amount > stack_entry->start - end) {
3773 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3774 			/* lost lock */
3775 			use_read_lock = 0;
3776 			goto Retry;
3777 		}
3778 		use_read_lock = 0;
3779 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3780 		rv = KERN_NO_SPACE;
3781 		goto done;
3782 	}
3783 
3784 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3785 
3786 	/* If this is the main process stack, see if we're over the
3787 	 * stack limit.
3788 	 */
3789 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3790 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3791 		rv = KERN_NO_SPACE;
3792 		goto done;
3793 	}
3794 
3795 	/* Round up the grow amount modulo SGROWSIZ */
3796 	grow_amount = roundup (grow_amount, sgrowsiz);
3797 	if (grow_amount > stack_entry->aux.avail_ssize) {
3798 		grow_amount = stack_entry->aux.avail_ssize;
3799 	}
3800 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3801 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3802 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3803 		              ctob(vm->vm_ssize);
3804 	}
3805 
3806 	/* If we would blow our VMEM resource limit, no go */
3807 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3808 		rv = KERN_NO_SPACE;
3809 		goto done;
3810 	}
3811 
3812 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3813 		/* lost lock */
3814 		use_read_lock = 0;
3815 		goto Retry;
3816 	}
3817 	use_read_lock = 0;
3818 
3819 	/* Get the preliminary new entry start value */
3820 	addr = stack_entry->start - grow_amount;
3821 
3822 	/* If this puts us into the previous entry, cut back our growth
3823 	 * to the available space.  Also, see the note above.
3824 	 */
3825 	if (addr < end) {
3826 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3827 		addr = end;
3828 	}
3829 
3830 	rv = vm_map_insert(map, &count, NULL, NULL,
3831 			   0, addr, stack_entry->start,
3832 			   VM_MAPTYPE_NORMAL,
3833 			   VM_PROT_ALL, VM_PROT_ALL, 0);
3834 
3835 	/* Adjust the available stack space by the amount we grew. */
3836 	if (rv == KERN_SUCCESS) {
3837 		if (prev_entry != &map->header)
3838 			vm_map_clip_end(map, prev_entry, addr, &count);
3839 		new_stack_entry = prev_entry->next;
3840 		if (new_stack_entry->end   != stack_entry->start  ||
3841 		    new_stack_entry->start != addr)
3842 			panic ("Bad stack grow start/end in new stack entry");
3843 		else {
3844 			new_stack_entry->aux.avail_ssize =
3845 				stack_entry->aux.avail_ssize -
3846 				(new_stack_entry->end - new_stack_entry->start);
3847 			if (is_procstack)
3848 				vm->vm_ssize += btoc(new_stack_entry->end -
3849 						     new_stack_entry->start);
3850 		}
3851 
3852 		if (map->flags & MAP_WIREFUTURE)
3853 			vm_map_unwire(map, new_stack_entry->start,
3854 				      new_stack_entry->end, FALSE);
3855 	}
3856 
3857 done:
3858 	if (use_read_lock)
3859 		vm_map_unlock_read(map);
3860 	else
3861 		vm_map_unlock(map);
3862 	vm_map_entry_release(count);
3863 	return (rv);
3864 }
3865 
3866 /*
3867  * Unshare the specified VM space for exec.  If other processes are
3868  * mapped to it, then create a new one.  The new vmspace is null.
3869  *
3870  * No requirements.
3871  */
3872 void
3873 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3874 {
3875 	struct vmspace *oldvmspace = p->p_vmspace;
3876 	struct vmspace *newvmspace;
3877 	vm_map_t map = &p->p_vmspace->vm_map;
3878 
3879 	/*
3880 	 * If we are execing a resident vmspace we fork it, otherwise
3881 	 * we create a new vmspace.  Note that exitingcnt is not
3882 	 * copied to the new vmspace.
3883 	 */
3884 	lwkt_gettoken(&oldvmspace->vm_map.token);
3885 	if (vmcopy)  {
3886 		newvmspace = vmspace_fork(vmcopy);
3887 		lwkt_gettoken(&newvmspace->vm_map.token);
3888 	} else {
3889 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3890 		lwkt_gettoken(&newvmspace->vm_map.token);
3891 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3892 		      (caddr_t)&oldvmspace->vm_endcopy -
3893 		       (caddr_t)&oldvmspace->vm_startcopy);
3894 	}
3895 
3896 	/*
3897 	 * Finish initializing the vmspace before assigning it
3898 	 * to the process.  The vmspace will become the current vmspace
3899 	 * if p == curproc.
3900 	 */
3901 	pmap_pinit2(vmspace_pmap(newvmspace));
3902 	pmap_replacevm(p, newvmspace, 0);
3903 	lwkt_reltoken(&newvmspace->vm_map.token);
3904 	lwkt_reltoken(&oldvmspace->vm_map.token);
3905 	vmspace_rel(oldvmspace);
3906 }
3907 
3908 /*
3909  * Unshare the specified VM space for forcing COW.  This
3910  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3911  */
3912 void
3913 vmspace_unshare(struct proc *p)
3914 {
3915 	struct vmspace *oldvmspace = p->p_vmspace;
3916 	struct vmspace *newvmspace;
3917 
3918 	lwkt_gettoken(&oldvmspace->vm_map.token);
3919 	if (vmspace_getrefs(oldvmspace) == 1) {
3920 		lwkt_reltoken(&oldvmspace->vm_map.token);
3921 		return;
3922 	}
3923 	newvmspace = vmspace_fork(oldvmspace);
3924 	lwkt_gettoken(&newvmspace->vm_map.token);
3925 	pmap_pinit2(vmspace_pmap(newvmspace));
3926 	pmap_replacevm(p, newvmspace, 0);
3927 	lwkt_reltoken(&newvmspace->vm_map.token);
3928 	lwkt_reltoken(&oldvmspace->vm_map.token);
3929 	vmspace_rel(oldvmspace);
3930 }
3931 
3932 /*
3933  * vm_map_hint: return the beginning of the best area suitable for
3934  * creating a new mapping with "prot" protection.
3935  *
3936  * No requirements.
3937  */
3938 vm_offset_t
3939 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3940 {
3941 	struct vmspace *vms = p->p_vmspace;
3942 
3943 	if (!randomize_mmap || addr != 0) {
3944 		/*
3945 		 * Set a reasonable start point for the hint if it was
3946 		 * not specified or if it falls within the heap space.
3947 		 * Hinted mmap()s do not allocate out of the heap space.
3948 		 */
3949 		if (addr == 0 ||
3950 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3951 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3952 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3953 		}
3954 
3955 		return addr;
3956 	}
3957 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3958 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3959 
3960 	return (round_page(addr));
3961 }
3962 
3963 /*
3964  * Finds the VM object, offset, and protection for a given virtual address
3965  * in the specified map, assuming a page fault of the type specified.
3966  *
3967  * Leaves the map in question locked for read; return values are guaranteed
3968  * until a vm_map_lookup_done call is performed.  Note that the map argument
3969  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3970  *
3971  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3972  * that fast.
3973  *
3974  * If a lookup is requested with "write protection" specified, the map may
3975  * be changed to perform virtual copying operations, although the data
3976  * referenced will remain the same.
3977  *
3978  * No requirements.
3979  */
3980 int
3981 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3982 	      vm_offset_t vaddr,
3983 	      vm_prot_t fault_typea,
3984 	      vm_map_entry_t *out_entry,	/* OUT */
3985 	      vm_object_t *object,		/* OUT */
3986 	      vm_pindex_t *pindex,		/* OUT */
3987 	      vm_prot_t *out_prot,		/* OUT */
3988 	      boolean_t *wired)			/* OUT */
3989 {
3990 	vm_map_entry_t entry;
3991 	vm_map_t map = *var_map;
3992 	vm_prot_t prot;
3993 	vm_prot_t fault_type = fault_typea;
3994 	int use_read_lock = 1;
3995 	int rv = KERN_SUCCESS;
3996 
3997 RetryLookup:
3998 	if (use_read_lock)
3999 		vm_map_lock_read(map);
4000 	else
4001 		vm_map_lock(map);
4002 
4003 	/*
4004 	 * If the map has an interesting hint, try it before calling full
4005 	 * blown lookup routine.
4006 	 */
4007 	entry = map->hint;
4008 	cpu_ccfence();
4009 	*out_entry = entry;
4010 	*object = NULL;
4011 
4012 	if ((entry == &map->header) ||
4013 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
4014 		vm_map_entry_t tmp_entry;
4015 
4016 		/*
4017 		 * Entry was either not a valid hint, or the vaddr was not
4018 		 * contained in the entry, so do a full lookup.
4019 		 */
4020 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4021 			rv = KERN_INVALID_ADDRESS;
4022 			goto done;
4023 		}
4024 
4025 		entry = tmp_entry;
4026 		*out_entry = entry;
4027 	}
4028 
4029 	/*
4030 	 * Handle submaps.
4031 	 */
4032 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4033 		vm_map_t old_map = map;
4034 
4035 		*var_map = map = entry->object.sub_map;
4036 		if (use_read_lock)
4037 			vm_map_unlock_read(old_map);
4038 		else
4039 			vm_map_unlock(old_map);
4040 		use_read_lock = 1;
4041 		goto RetryLookup;
4042 	}
4043 
4044 	/*
4045 	 * Check whether this task is allowed to have this page.
4046 	 * Note the special case for MAP_ENTRY_COW
4047 	 * pages with an override.  This is to implement a forced
4048 	 * COW for debuggers.
4049 	 */
4050 
4051 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4052 		prot = entry->max_protection;
4053 	else
4054 		prot = entry->protection;
4055 
4056 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4057 	if ((fault_type & prot) != fault_type) {
4058 		rv = KERN_PROTECTION_FAILURE;
4059 		goto done;
4060 	}
4061 
4062 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4063 	    (entry->eflags & MAP_ENTRY_COW) &&
4064 	    (fault_type & VM_PROT_WRITE) &&
4065 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4066 		rv = KERN_PROTECTION_FAILURE;
4067 		goto done;
4068 	}
4069 
4070 	/*
4071 	 * If this page is not pageable, we have to get it for all possible
4072 	 * accesses.
4073 	 */
4074 	*wired = (entry->wired_count != 0);
4075 	if (*wired)
4076 		prot = fault_type = entry->protection;
4077 
4078 	/*
4079 	 * Virtual page tables may need to update the accessed (A) bit
4080 	 * in a page table entry.  Upgrade the fault to a write fault for
4081 	 * that case if the map will support it.  If the map does not support
4082 	 * it the page table entry simply will not be updated.
4083 	 */
4084 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4085 		if (prot & VM_PROT_WRITE)
4086 			fault_type |= VM_PROT_WRITE;
4087 	}
4088 
4089 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4090 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4091 		if ((prot & VM_PROT_WRITE) == 0)
4092 			fault_type |= VM_PROT_WRITE;
4093 	}
4094 
4095 	/*
4096 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4097 	 */
4098 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4099 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4100 		*object = NULL;
4101 		goto skip;
4102 	}
4103 
4104 	/*
4105 	 * If the entry was copy-on-write, we either ...
4106 	 */
4107 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4108 		/*
4109 		 * If we want to write the page, we may as well handle that
4110 		 * now since we've got the map locked.
4111 		 *
4112 		 * If we don't need to write the page, we just demote the
4113 		 * permissions allowed.
4114 		 */
4115 
4116 		if (fault_type & VM_PROT_WRITE) {
4117 			/*
4118 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4119 			 * operation can deadlock against the faulting
4120 			 * function due to the copy-on-write.
4121 			 */
4122 			if (curthread->td_flags & TDF_NOFAULT) {
4123 				rv = KERN_FAILURE_NOFAULT;
4124 				goto done;
4125 			}
4126 
4127 			/*
4128 			 * Make a new object, and place it in the object
4129 			 * chain.  Note that no new references have appeared
4130 			 * -- one just moved from the map to the new
4131 			 * object.
4132 			 */
4133 
4134 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4135 				/* lost lock */
4136 				use_read_lock = 0;
4137 				goto RetryLookup;
4138 			}
4139 			use_read_lock = 0;
4140 
4141 			vm_map_entry_shadow(entry, 0);
4142 		} else {
4143 			/*
4144 			 * We're attempting to read a copy-on-write page --
4145 			 * don't allow writes.
4146 			 */
4147 
4148 			prot &= ~VM_PROT_WRITE;
4149 		}
4150 	}
4151 
4152 	/*
4153 	 * Create an object if necessary.
4154 	 */
4155 	if (entry->object.vm_object == NULL && !map->system_map) {
4156 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4157 			/* lost lock */
4158 			use_read_lock = 0;
4159 			goto RetryLookup;
4160 		}
4161 		use_read_lock = 0;
4162 		vm_map_entry_allocate_object(entry);
4163 	}
4164 
4165 	/*
4166 	 * Return the object/offset from this entry.  If the entry was
4167 	 * copy-on-write or empty, it has been fixed up.
4168 	 */
4169 	*object = entry->object.vm_object;
4170 
4171 skip:
4172 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4173 
4174 	/*
4175 	 * Return whether this is the only map sharing this data.  On
4176 	 * success we return with a read lock held on the map.  On failure
4177 	 * we return with the map unlocked.
4178 	 */
4179 	*out_prot = prot;
4180 done:
4181 	if (rv == KERN_SUCCESS) {
4182 		if (use_read_lock == 0)
4183 			vm_map_lock_downgrade(map);
4184 	} else if (use_read_lock) {
4185 		vm_map_unlock_read(map);
4186 	} else {
4187 		vm_map_unlock(map);
4188 	}
4189 	return (rv);
4190 }
4191 
4192 /*
4193  * Releases locks acquired by a vm_map_lookup()
4194  * (according to the handle returned by that lookup).
4195  *
4196  * No other requirements.
4197  */
4198 void
4199 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4200 {
4201 	/*
4202 	 * Unlock the main-level map
4203 	 */
4204 	vm_map_unlock_read(map);
4205 	if (count)
4206 		vm_map_entry_release(count);
4207 }
4208 
4209 #include "opt_ddb.h"
4210 #ifdef DDB
4211 #include <sys/kernel.h>
4212 
4213 #include <ddb/ddb.h>
4214 
4215 /*
4216  * Debugging only
4217  */
4218 DB_SHOW_COMMAND(map, vm_map_print)
4219 {
4220 	static int nlines;
4221 	/* XXX convert args. */
4222 	vm_map_t map = (vm_map_t)addr;
4223 	boolean_t full = have_addr;
4224 
4225 	vm_map_entry_t entry;
4226 
4227 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4228 	    (void *)map,
4229 	    (void *)map->pmap, map->nentries, map->timestamp);
4230 	nlines++;
4231 
4232 	if (!full && db_indent)
4233 		return;
4234 
4235 	db_indent += 2;
4236 	for (entry = map->header.next; entry != &map->header;
4237 	    entry = entry->next) {
4238 		db_iprintf("map entry %p: start=%p, end=%p\n",
4239 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4240 		nlines++;
4241 		{
4242 			static char *inheritance_name[4] =
4243 			{"share", "copy", "none", "donate_copy"};
4244 
4245 			db_iprintf(" prot=%x/%x/%s",
4246 			    entry->protection,
4247 			    entry->max_protection,
4248 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4249 			if (entry->wired_count != 0)
4250 				db_printf(", wired");
4251 		}
4252 		switch(entry->maptype) {
4253 		case VM_MAPTYPE_SUBMAP:
4254 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4255 			db_printf(", share=%p, offset=0x%lx\n",
4256 			    (void *)entry->object.sub_map,
4257 			    (long)entry->offset);
4258 			nlines++;
4259 			if ((entry->prev == &map->header) ||
4260 			    (entry->prev->object.sub_map !=
4261 				entry->object.sub_map)) {
4262 				db_indent += 2;
4263 				vm_map_print((db_expr_t)(intptr_t)
4264 					     entry->object.sub_map,
4265 					     full, 0, NULL);
4266 				db_indent -= 2;
4267 			}
4268 			break;
4269 		case VM_MAPTYPE_NORMAL:
4270 		case VM_MAPTYPE_VPAGETABLE:
4271 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4272 			db_printf(", object=%p, offset=0x%lx",
4273 			    (void *)entry->object.vm_object,
4274 			    (long)entry->offset);
4275 			if (entry->eflags & MAP_ENTRY_COW)
4276 				db_printf(", copy (%s)",
4277 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4278 			db_printf("\n");
4279 			nlines++;
4280 
4281 			if ((entry->prev == &map->header) ||
4282 			    (entry->prev->object.vm_object !=
4283 				entry->object.vm_object)) {
4284 				db_indent += 2;
4285 				vm_object_print((db_expr_t)(intptr_t)
4286 						entry->object.vm_object,
4287 						full, 0, NULL);
4288 				nlines += 4;
4289 				db_indent -= 2;
4290 			}
4291 			break;
4292 		case VM_MAPTYPE_UKSMAP:
4293 			db_printf(", uksmap=%p, offset=0x%lx",
4294 			    (void *)entry->object.uksmap,
4295 			    (long)entry->offset);
4296 			if (entry->eflags & MAP_ENTRY_COW)
4297 				db_printf(", copy (%s)",
4298 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4299 			db_printf("\n");
4300 			nlines++;
4301 			break;
4302 		default:
4303 			break;
4304 		}
4305 	}
4306 	db_indent -= 2;
4307 	if (db_indent == 0)
4308 		nlines = 0;
4309 }
4310 
4311 /*
4312  * Debugging only
4313  */
4314 DB_SHOW_COMMAND(procvm, procvm)
4315 {
4316 	struct proc *p;
4317 
4318 	if (have_addr) {
4319 		p = (struct proc *) addr;
4320 	} else {
4321 		p = curproc;
4322 	}
4323 
4324 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4325 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4326 	    (void *)vmspace_pmap(p->p_vmspace));
4327 
4328 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4329 }
4330 
4331 #endif /* DDB */
4332