xref: /dragonfly/sys/vm/vm_map.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static void vmspace_terminate(struct vmspace *vm);
123 static void vmspace_lock(struct vmspace *vm);
124 static void vmspace_unlock(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.mag_capacity =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
140 		.lock = (sysref_lock_func_t)vmspace_lock,
141 		.unlock = (sysref_lock_func_t)vmspace_unlock
142 	}
143 };
144 
145 /*
146  * per-cpu page table cross mappings are initialized in early boot
147  * and might require a considerable number of vm_map_entry structures.
148  */
149 #define VMEPERCPU	(MAXCPU+1)
150 
151 static struct vm_zone mapentzone_store, mapzone_store;
152 static vm_zone_t mapentzone, mapzone;
153 static struct vm_object mapentobj, mapobj;
154 
155 static struct vm_map_entry map_entry_init[MAX_MAPENT];
156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
157 static struct vm_map map_init[MAX_KMAP];
158 
159 static int randomize_mmap;
160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161     "Randomize mmap offsets");
162 
163 static void vm_map_entry_shadow(vm_map_entry_t entry);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171 		vm_map_entry_t);
172 static void vm_map_split (vm_map_entry_t);
173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
174 
175 /*
176  * Initialize the vm_map module.  Must be called before any other vm_map
177  * routines.
178  *
179  * Map and entry structures are allocated from the general purpose
180  * memory pool with some exceptions:
181  *
182  *	- The kernel map is allocated statically.
183  *	- Initial kernel map entries are allocated out of a static pool.
184  *
185  *	These restrictions are necessary since malloc() uses the
186  *	maps and requires map entries.
187  *
188  * Called from the low level boot code only.
189  */
190 void
191 vm_map_startup(void)
192 {
193 	mapzone = &mapzone_store;
194 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
195 		map_init, MAX_KMAP);
196 	mapentzone = &mapentzone_store;
197 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
198 		map_entry_init, MAX_MAPENT);
199 }
200 
201 /*
202  * Called prior to any vmspace allocations.
203  *
204  * Called from the low level boot code only.
205  */
206 void
207 vm_init2(void)
208 {
209 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 	pmap_init2();
213 	vm_object_init2();
214 }
215 
216 
217 /*
218  * Red black tree functions
219  *
220  * The caller must hold the related map lock.
221  */
222 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
223 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
224 
225 /* a->start is address, and the only field has to be initialized */
226 static int
227 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
228 {
229 	if (a->start < b->start)
230 		return(-1);
231 	else if (a->start > b->start)
232 		return(1);
233 	return(0);
234 }
235 
236 /*
237  * Allocate a vmspace structure, including a vm_map and pmap.
238  * Initialize numerous fields.  While the initial allocation is zerod,
239  * subsequence reuse from the objcache leaves elements of the structure
240  * intact (particularly the pmap), so portions must be zerod.
241  *
242  * The structure is not considered activated until we call sysref_activate().
243  *
244  * No requirements.
245  */
246 struct vmspace *
247 vmspace_alloc(vm_offset_t min, vm_offset_t max)
248 {
249 	struct vmspace *vm;
250 
251 	lwkt_gettoken(&vmspace_token);
252 	vm = sysref_alloc(&vmspace_sysref_class);
253 	bzero(&vm->vm_startcopy,
254 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
255 	vm_map_init(&vm->vm_map, min, max, NULL);
256 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
257 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
258 	vm->vm_shm = NULL;
259 	vm->vm_exitingcnt = 0;
260 	cpu_vmspace_alloc(vm);
261 	sysref_activate(&vm->vm_sysref);
262 	lwkt_reltoken(&vmspace_token);
263 
264 	return (vm);
265 }
266 
267 /*
268  * dtor function - Some elements of the pmap are retained in the
269  * free-cached vmspaces to improve performance.  We have to clean them up
270  * here before returning the vmspace to the memory pool.
271  *
272  * No requirements.
273  */
274 static void
275 vmspace_dtor(void *obj, void *private)
276 {
277 	struct vmspace *vm = obj;
278 
279 	pmap_puninit(vmspace_pmap(vm));
280 }
281 
282 /*
283  * Called in two cases:
284  *
285  * (1) When the last sysref is dropped, but exitingcnt might still be
286  *     non-zero.
287  *
288  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
289  *     exitingcnt becomes zero
290  *
291  * sysref will not scrap the object until we call sysref_put() once more
292  * after the last ref has been dropped.
293  *
294  * Interlocked by the sysref API.
295  */
296 static void
297 vmspace_terminate(struct vmspace *vm)
298 {
299 	int count;
300 
301 	/*
302 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
303 	 * yet, but we can scrap user memory.
304 	 */
305 	lwkt_gettoken(&vmspace_token);
306 	if (vm->vm_exitingcnt) {
307 		shmexit(vm);
308 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
309 				  VM_MAX_USER_ADDRESS);
310 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
311 			      VM_MAX_USER_ADDRESS);
312 		lwkt_reltoken(&vmspace_token);
313 		return;
314 	}
315 	cpu_vmspace_free(vm);
316 
317 	/*
318 	 * Make sure any SysV shm is freed, it might not have in
319 	 * exit1()
320 	 */
321 	shmexit(vm);
322 
323 	KKASSERT(vm->vm_upcalls == NULL);
324 
325 	/*
326 	 * Lock the map, to wait out all other references to it.
327 	 * Delete all of the mappings and pages they hold, then call
328 	 * the pmap module to reclaim anything left.
329 	 */
330 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
331 	vm_map_lock(&vm->vm_map);
332 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
333 		vm->vm_map.max_offset, &count);
334 	vm_map_unlock(&vm->vm_map);
335 	vm_map_entry_release(count);
336 
337 	pmap_release(vmspace_pmap(vm));
338 	sysref_put(&vm->vm_sysref);
339 	lwkt_reltoken(&vmspace_token);
340 }
341 
342 /*
343  * vmspaces are not currently locked.
344  */
345 static void
346 vmspace_lock(struct vmspace *vm __unused)
347 {
348 }
349 
350 static void
351 vmspace_unlock(struct vmspace *vm __unused)
352 {
353 }
354 
355 /*
356  * This is called during exit indicating that the vmspace is no
357  * longer in used by an exiting process, but the process has not yet
358  * been cleaned up.
359  *
360  * No requirements.
361  */
362 void
363 vmspace_exitbump(struct vmspace *vm)
364 {
365 	lwkt_gettoken(&vmspace_token);
366 	++vm->vm_exitingcnt;
367 	lwkt_reltoken(&vmspace_token);
368 }
369 
370 /*
371  * This is called in the wait*() handling code.  The vmspace can be terminated
372  * after the last wait is finished using it.
373  *
374  * No requirements.
375  */
376 void
377 vmspace_exitfree(struct proc *p)
378 {
379 	struct vmspace *vm;
380 
381 	lwkt_gettoken(&vmspace_token);
382 	vm = p->p_vmspace;
383 	p->p_vmspace = NULL;
384 
385 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
386 		vmspace_terminate(vm);
387 	lwkt_reltoken(&vmspace_token);
388 }
389 
390 /*
391  * Swap useage is determined by taking the proportional swap used by
392  * VM objects backing the VM map.  To make up for fractional losses,
393  * if the VM object has any swap use at all the associated map entries
394  * count for at least 1 swap page.
395  *
396  * No requirements.
397  */
398 int
399 vmspace_swap_count(struct vmspace *vmspace)
400 {
401 	vm_map_t map = &vmspace->vm_map;
402 	vm_map_entry_t cur;
403 	vm_object_t object;
404 	int count = 0;
405 	int n;
406 
407 	lwkt_gettoken(&vmspace_token);
408 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
409 		switch(cur->maptype) {
410 		case VM_MAPTYPE_NORMAL:
411 		case VM_MAPTYPE_VPAGETABLE:
412 			if ((object = cur->object.vm_object) == NULL)
413 				break;
414 			if (object->swblock_count) {
415 				n = (cur->end - cur->start) / PAGE_SIZE;
416 				count += object->swblock_count *
417 				    SWAP_META_PAGES * n / object->size + 1;
418 			}
419 			break;
420 		default:
421 			break;
422 		}
423 	}
424 	lwkt_reltoken(&vmspace_token);
425 	return(count);
426 }
427 
428 /*
429  * Calculate the approximate number of anonymous pages in use by
430  * this vmspace.  To make up for fractional losses, we count each
431  * VM object as having at least 1 anonymous page.
432  *
433  * No requirements.
434  */
435 int
436 vmspace_anonymous_count(struct vmspace *vmspace)
437 {
438 	vm_map_t map = &vmspace->vm_map;
439 	vm_map_entry_t cur;
440 	vm_object_t object;
441 	int count = 0;
442 
443 	lwkt_gettoken(&vmspace_token);
444 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
445 		switch(cur->maptype) {
446 		case VM_MAPTYPE_NORMAL:
447 		case VM_MAPTYPE_VPAGETABLE:
448 			if ((object = cur->object.vm_object) == NULL)
449 				break;
450 			if (object->type != OBJT_DEFAULT &&
451 			    object->type != OBJT_SWAP) {
452 				break;
453 			}
454 			count += object->resident_page_count;
455 			break;
456 		default:
457 			break;
458 		}
459 	}
460 	lwkt_reltoken(&vmspace_token);
461 	return(count);
462 }
463 
464 /*
465  * Creates and returns a new empty VM map with the given physical map
466  * structure, and having the given lower and upper address bounds.
467  *
468  * No requirements.
469  */
470 vm_map_t
471 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
472 {
473 	if (result == NULL)
474 		result = zalloc(mapzone);
475 	vm_map_init(result, min, max, pmap);
476 	return (result);
477 }
478 
479 /*
480  * Initialize an existing vm_map structure such as that in the vmspace
481  * structure.  The pmap is initialized elsewhere.
482  *
483  * No requirements.
484  */
485 void
486 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
487 {
488 	map->header.next = map->header.prev = &map->header;
489 	RB_INIT(&map->rb_root);
490 	map->nentries = 0;
491 	map->size = 0;
492 	map->system_map = 0;
493 	map->infork = 0;
494 	map->min_offset = min;
495 	map->max_offset = max;
496 	map->pmap = pmap;
497 	map->first_free = &map->header;
498 	map->hint = &map->header;
499 	map->timestamp = 0;
500 	map->flags = 0;
501 	lockinit(&map->lock, "thrd_sleep", 0, 0);
502 }
503 
504 /*
505  * Shadow the vm_map_entry's object.  This typically needs to be done when
506  * a write fault is taken on an entry which had previously been cloned by
507  * fork().  The shared object (which might be NULL) must become private so
508  * we add a shadow layer above it.
509  *
510  * Object allocation for anonymous mappings is defered as long as possible.
511  * When creating a shadow, however, the underlying object must be instantiated
512  * so it can be shared.
513  *
514  * If the map segment is governed by a virtual page table then it is
515  * possible to address offsets beyond the mapped area.  Just allocate
516  * a maximally sized object for this case.
517  *
518  * The vm_map must be exclusively locked.
519  * No other requirements.
520  */
521 static
522 void
523 vm_map_entry_shadow(vm_map_entry_t entry)
524 {
525 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
526 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
527 				 0x7FFFFFFF);	/* XXX */
528 	} else {
529 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
530 				 atop(entry->end - entry->start));
531 	}
532 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
533 }
534 
535 /*
536  * Allocate an object for a vm_map_entry.
537  *
538  * Object allocation for anonymous mappings is defered as long as possible.
539  * This function is called when we can defer no longer, generally when a map
540  * entry might be split or forked or takes a page fault.
541  *
542  * If the map segment is governed by a virtual page table then it is
543  * possible to address offsets beyond the mapped area.  Just allocate
544  * a maximally sized object for this case.
545  *
546  * The vm_map must be exclusively locked.
547  * No other requirements.
548  */
549 void
550 vm_map_entry_allocate_object(vm_map_entry_t entry)
551 {
552 	vm_object_t obj;
553 
554 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
555 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
556 	} else {
557 		obj = vm_object_allocate(OBJT_DEFAULT,
558 					 atop(entry->end - entry->start));
559 	}
560 	entry->object.vm_object = obj;
561 	entry->offset = 0;
562 }
563 
564 /*
565  * Set an initial negative count so the first attempt to reserve
566  * space preloads a bunch of vm_map_entry's for this cpu.  Also
567  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
568  * map a new page for vm_map_entry structures.  SMP systems are
569  * particularly sensitive.
570  *
571  * This routine is called in early boot so we cannot just call
572  * vm_map_entry_reserve().
573  *
574  * Called from the low level boot code only (for each cpu)
575  */
576 void
577 vm_map_entry_reserve_cpu_init(globaldata_t gd)
578 {
579 	vm_map_entry_t entry;
580 	int i;
581 
582 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
583 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
584 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
585 		entry->next = gd->gd_vme_base;
586 		gd->gd_vme_base = entry;
587 	}
588 }
589 
590 /*
591  * Reserves vm_map_entry structures so code later on can manipulate
592  * map_entry structures within a locked map without blocking trying
593  * to allocate a new vm_map_entry.
594  *
595  * No requirements.
596  */
597 int
598 vm_map_entry_reserve(int count)
599 {
600 	struct globaldata *gd = mycpu;
601 	vm_map_entry_t entry;
602 
603 	/*
604 	 * Make sure we have enough structures in gd_vme_base to handle
605 	 * the reservation request.
606 	 */
607 	crit_enter();
608 	while (gd->gd_vme_avail < count) {
609 		entry = zalloc(mapentzone);
610 		entry->next = gd->gd_vme_base;
611 		gd->gd_vme_base = entry;
612 		++gd->gd_vme_avail;
613 	}
614 	gd->gd_vme_avail -= count;
615 	crit_exit();
616 
617 	return(count);
618 }
619 
620 /*
621  * Releases previously reserved vm_map_entry structures that were not
622  * used.  If we have too much junk in our per-cpu cache clean some of
623  * it out.
624  *
625  * No requirements.
626  */
627 void
628 vm_map_entry_release(int count)
629 {
630 	struct globaldata *gd = mycpu;
631 	vm_map_entry_t entry;
632 
633 	crit_enter();
634 	gd->gd_vme_avail += count;
635 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
636 		entry = gd->gd_vme_base;
637 		KKASSERT(entry != NULL);
638 		gd->gd_vme_base = entry->next;
639 		--gd->gd_vme_avail;
640 		crit_exit();
641 		zfree(mapentzone, entry);
642 		crit_enter();
643 	}
644 	crit_exit();
645 }
646 
647 /*
648  * Reserve map entry structures for use in kernel_map itself.  These
649  * entries have *ALREADY* been reserved on a per-cpu basis when the map
650  * was inited.  This function is used by zalloc() to avoid a recursion
651  * when zalloc() itself needs to allocate additional kernel memory.
652  *
653  * This function works like the normal reserve but does not load the
654  * vm_map_entry cache (because that would result in an infinite
655  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
656  *
657  * Any caller of this function must be sure to renormalize after
658  * potentially eating entries to ensure that the reserve supply
659  * remains intact.
660  *
661  * No requirements.
662  */
663 int
664 vm_map_entry_kreserve(int count)
665 {
666 	struct globaldata *gd = mycpu;
667 
668 	crit_enter();
669 	gd->gd_vme_avail -= count;
670 	crit_exit();
671 	KASSERT(gd->gd_vme_base != NULL,
672 		("no reserved entries left, gd_vme_avail = %d\n",
673 		gd->gd_vme_avail));
674 	return(count);
675 }
676 
677 /*
678  * Release previously reserved map entries for kernel_map.  We do not
679  * attempt to clean up like the normal release function as this would
680  * cause an unnecessary (but probably not fatal) deep procedure call.
681  *
682  * No requirements.
683  */
684 void
685 vm_map_entry_krelease(int count)
686 {
687 	struct globaldata *gd = mycpu;
688 
689 	crit_enter();
690 	gd->gd_vme_avail += count;
691 	crit_exit();
692 }
693 
694 /*
695  * Allocates a VM map entry for insertion.  No entry fields are filled in.
696  *
697  * The entries should have previously been reserved.  The reservation count
698  * is tracked in (*countp).
699  *
700  * No requirements.
701  */
702 static vm_map_entry_t
703 vm_map_entry_create(vm_map_t map, int *countp)
704 {
705 	struct globaldata *gd = mycpu;
706 	vm_map_entry_t entry;
707 
708 	KKASSERT(*countp > 0);
709 	--*countp;
710 	crit_enter();
711 	entry = gd->gd_vme_base;
712 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
713 	gd->gd_vme_base = entry->next;
714 	crit_exit();
715 
716 	return(entry);
717 }
718 
719 /*
720  * Dispose of a vm_map_entry that is no longer being referenced.
721  *
722  * No requirements.
723  */
724 static void
725 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
726 {
727 	struct globaldata *gd = mycpu;
728 
729 	KKASSERT(map->hint != entry);
730 	KKASSERT(map->first_free != entry);
731 
732 	++*countp;
733 	crit_enter();
734 	entry->next = gd->gd_vme_base;
735 	gd->gd_vme_base = entry;
736 	crit_exit();
737 }
738 
739 
740 /*
741  * Insert/remove entries from maps.
742  *
743  * The related map must be exclusively locked.
744  * No other requirements.
745  *
746  * NOTE! We currently acquire the vmspace_token only to avoid races
747  *	 against the pageout daemon's calls to vmspace_*_count(), which
748  *	 are unable to safely lock the vm_map without potentially
749  *	 deadlocking.
750  */
751 static __inline void
752 vm_map_entry_link(vm_map_t map,
753 		  vm_map_entry_t after_where,
754 		  vm_map_entry_t entry)
755 {
756 	ASSERT_VM_MAP_LOCKED(map);
757 
758 	lwkt_gettoken(&vmspace_token);
759 	map->nentries++;
760 	entry->prev = after_where;
761 	entry->next = after_where->next;
762 	entry->next->prev = entry;
763 	after_where->next = entry;
764 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
765 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
766 	lwkt_reltoken(&vmspace_token);
767 }
768 
769 static __inline void
770 vm_map_entry_unlink(vm_map_t map,
771 		    vm_map_entry_t entry)
772 {
773 	vm_map_entry_t prev;
774 	vm_map_entry_t next;
775 
776 	ASSERT_VM_MAP_LOCKED(map);
777 
778 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
779 		panic("vm_map_entry_unlink: attempt to mess with "
780 		      "locked entry! %p", entry);
781 	}
782 	lwkt_gettoken(&vmspace_token);
783 	prev = entry->prev;
784 	next = entry->next;
785 	next->prev = prev;
786 	prev->next = next;
787 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
788 	map->nentries--;
789 	lwkt_reltoken(&vmspace_token);
790 }
791 
792 /*
793  * Finds the map entry containing (or immediately preceding) the specified
794  * address in the given map.  The entry is returned in (*entry).
795  *
796  * The boolean result indicates whether the address is actually contained
797  * in the map.
798  *
799  * The related map must be locked.
800  * No other requirements.
801  */
802 boolean_t
803 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
804 {
805 	vm_map_entry_t tmp;
806 	vm_map_entry_t last;
807 
808 	ASSERT_VM_MAP_LOCKED(map);
809 #if 0
810 	/*
811 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
812 	 * the hint code with the red-black lookup meets with system crashes
813 	 * and lockups.  We do not yet know why.
814 	 *
815 	 * It is possible that the problem is related to the setting
816 	 * of the hint during map_entry deletion, in the code specified
817 	 * at the GGG comment later on in this file.
818 	 */
819 	/*
820 	 * Quickly check the cached hint, there's a good chance of a match.
821 	 */
822 	if (map->hint != &map->header) {
823 		tmp = map->hint;
824 		if (address >= tmp->start && address < tmp->end) {
825 			*entry = tmp;
826 			return(TRUE);
827 		}
828 	}
829 #endif
830 
831 	/*
832 	 * Locate the record from the top of the tree.  'last' tracks the
833 	 * closest prior record and is returned if no match is found, which
834 	 * in binary tree terms means tracking the most recent right-branch
835 	 * taken.  If there is no prior record, &map->header is returned.
836 	 */
837 	last = &map->header;
838 	tmp = RB_ROOT(&map->rb_root);
839 
840 	while (tmp) {
841 		if (address >= tmp->start) {
842 			if (address < tmp->end) {
843 				*entry = tmp;
844 				map->hint = tmp;
845 				return(TRUE);
846 			}
847 			last = tmp;
848 			tmp = RB_RIGHT(tmp, rb_entry);
849 		} else {
850 			tmp = RB_LEFT(tmp, rb_entry);
851 		}
852 	}
853 	*entry = last;
854 	return (FALSE);
855 }
856 
857 /*
858  * Inserts the given whole VM object into the target map at the specified
859  * address range.  The object's size should match that of the address range.
860  *
861  * The map must be exclusively locked.
862  * The caller must have reserved sufficient vm_map_entry structures.
863  *
864  * If object is non-NULL, ref count must be bumped by caller
865  * prior to making call to account for the new entry.
866  */
867 int
868 vm_map_insert(vm_map_t map, int *countp,
869 	      vm_object_t object, vm_ooffset_t offset,
870 	      vm_offset_t start, vm_offset_t end,
871 	      vm_maptype_t maptype,
872 	      vm_prot_t prot, vm_prot_t max,
873 	      int cow)
874 {
875 	vm_map_entry_t new_entry;
876 	vm_map_entry_t prev_entry;
877 	vm_map_entry_t temp_entry;
878 	vm_eflags_t protoeflags;
879 
880 	ASSERT_VM_MAP_LOCKED(map);
881 
882 	/*
883 	 * Check that the start and end points are not bogus.
884 	 */
885 	if ((start < map->min_offset) || (end > map->max_offset) ||
886 	    (start >= end))
887 		return (KERN_INVALID_ADDRESS);
888 
889 	/*
890 	 * Find the entry prior to the proposed starting address; if it's part
891 	 * of an existing entry, this range is bogus.
892 	 */
893 	if (vm_map_lookup_entry(map, start, &temp_entry))
894 		return (KERN_NO_SPACE);
895 
896 	prev_entry = temp_entry;
897 
898 	/*
899 	 * Assert that the next entry doesn't overlap the end point.
900 	 */
901 
902 	if ((prev_entry->next != &map->header) &&
903 	    (prev_entry->next->start < end))
904 		return (KERN_NO_SPACE);
905 
906 	protoeflags = 0;
907 
908 	if (cow & MAP_COPY_ON_WRITE)
909 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
910 
911 	if (cow & MAP_NOFAULT) {
912 		protoeflags |= MAP_ENTRY_NOFAULT;
913 
914 		KASSERT(object == NULL,
915 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
916 	}
917 	if (cow & MAP_DISABLE_SYNCER)
918 		protoeflags |= MAP_ENTRY_NOSYNC;
919 	if (cow & MAP_DISABLE_COREDUMP)
920 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
921 	if (cow & MAP_IS_STACK)
922 		protoeflags |= MAP_ENTRY_STACK;
923 	if (cow & MAP_IS_KSTACK)
924 		protoeflags |= MAP_ENTRY_KSTACK;
925 
926 	lwkt_gettoken(&vm_token);
927 	lwkt_gettoken(&vmobj_token);
928 
929 	if (object) {
930 		/*
931 		 * When object is non-NULL, it could be shared with another
932 		 * process.  We have to set or clear OBJ_ONEMAPPING
933 		 * appropriately.
934 		 */
935 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
936 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
937 		}
938 	}
939 	else if ((prev_entry != &map->header) &&
940 		 (prev_entry->eflags == protoeflags) &&
941 		 (prev_entry->end == start) &&
942 		 (prev_entry->wired_count == 0) &&
943 		 prev_entry->maptype == maptype &&
944 		 ((prev_entry->object.vm_object == NULL) ||
945 		  vm_object_coalesce(prev_entry->object.vm_object,
946 				     OFF_TO_IDX(prev_entry->offset),
947 				     (vm_size_t)(prev_entry->end - prev_entry->start),
948 				     (vm_size_t)(end - prev_entry->end)))) {
949 		/*
950 		 * We were able to extend the object.  Determine if we
951 		 * can extend the previous map entry to include the
952 		 * new range as well.
953 		 */
954 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
955 		    (prev_entry->protection == prot) &&
956 		    (prev_entry->max_protection == max)) {
957 			lwkt_reltoken(&vmobj_token);
958 			lwkt_reltoken(&vm_token);
959 			map->size += (end - prev_entry->end);
960 			prev_entry->end = end;
961 			vm_map_simplify_entry(map, prev_entry, countp);
962 			return (KERN_SUCCESS);
963 		}
964 
965 		/*
966 		 * If we can extend the object but cannot extend the
967 		 * map entry, we have to create a new map entry.  We
968 		 * must bump the ref count on the extended object to
969 		 * account for it.  object may be NULL.
970 		 */
971 		object = prev_entry->object.vm_object;
972 		offset = prev_entry->offset +
973 			(prev_entry->end - prev_entry->start);
974 		vm_object_reference_locked(object);
975 	}
976 
977 	lwkt_reltoken(&vmobj_token);
978 	lwkt_reltoken(&vm_token);
979 
980 	/*
981 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
982 	 * in things like the buffer map where we manage kva but do not manage
983 	 * backing objects.
984 	 */
985 
986 	/*
987 	 * Create a new entry
988 	 */
989 
990 	new_entry = vm_map_entry_create(map, countp);
991 	new_entry->start = start;
992 	new_entry->end = end;
993 
994 	new_entry->maptype = maptype;
995 	new_entry->eflags = protoeflags;
996 	new_entry->object.vm_object = object;
997 	new_entry->offset = offset;
998 	new_entry->aux.master_pde = 0;
999 
1000 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1001 	new_entry->protection = prot;
1002 	new_entry->max_protection = max;
1003 	new_entry->wired_count = 0;
1004 
1005 	/*
1006 	 * Insert the new entry into the list
1007 	 */
1008 
1009 	vm_map_entry_link(map, prev_entry, new_entry);
1010 	map->size += new_entry->end - new_entry->start;
1011 
1012 	/*
1013 	 * Update the free space hint.  Entries cannot overlap.
1014 	 * An exact comparison is needed to avoid matching
1015 	 * against the map->header.
1016 	 */
1017 	if ((map->first_free == prev_entry) &&
1018 	    (prev_entry->end == new_entry->start)) {
1019 		map->first_free = new_entry;
1020 	}
1021 
1022 #if 0
1023 	/*
1024 	 * Temporarily removed to avoid MAP_STACK panic, due to
1025 	 * MAP_STACK being a huge hack.  Will be added back in
1026 	 * when MAP_STACK (and the user stack mapping) is fixed.
1027 	 */
1028 	/*
1029 	 * It may be possible to simplify the entry
1030 	 */
1031 	vm_map_simplify_entry(map, new_entry, countp);
1032 #endif
1033 
1034 	/*
1035 	 * Try to pre-populate the page table.  Mappings governed by virtual
1036 	 * page tables cannot be prepopulated without a lot of work, so
1037 	 * don't try.
1038 	 */
1039 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1040 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1041 		pmap_object_init_pt(map->pmap, start, prot,
1042 				    object, OFF_TO_IDX(offset), end - start,
1043 				    cow & MAP_PREFAULT_PARTIAL);
1044 	}
1045 
1046 	return (KERN_SUCCESS);
1047 }
1048 
1049 /*
1050  * Find sufficient space for `length' bytes in the given map, starting at
1051  * `start'.  Returns 0 on success, 1 on no space.
1052  *
1053  * This function will returned an arbitrarily aligned pointer.  If no
1054  * particular alignment is required you should pass align as 1.  Note that
1055  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1056  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1057  * argument.
1058  *
1059  * 'align' should be a power of 2 but is not required to be.
1060  *
1061  * The map must be exclusively locked.
1062  * No other requirements.
1063  */
1064 int
1065 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1066 		 vm_size_t align, int flags, vm_offset_t *addr)
1067 {
1068 	vm_map_entry_t entry, next;
1069 	vm_offset_t end;
1070 	vm_offset_t align_mask;
1071 
1072 	if (start < map->min_offset)
1073 		start = map->min_offset;
1074 	if (start > map->max_offset)
1075 		return (1);
1076 
1077 	/*
1078 	 * If the alignment is not a power of 2 we will have to use
1079 	 * a mod/division, set align_mask to a special value.
1080 	 */
1081 	if ((align | (align - 1)) + 1 != (align << 1))
1082 		align_mask = (vm_offset_t)-1;
1083 	else
1084 		align_mask = align - 1;
1085 
1086 	/*
1087 	 * Look for the first possible address; if there's already something
1088 	 * at this address, we have to start after it.
1089 	 */
1090 	if (start == map->min_offset) {
1091 		if ((entry = map->first_free) != &map->header)
1092 			start = entry->end;
1093 	} else {
1094 		vm_map_entry_t tmp;
1095 
1096 		if (vm_map_lookup_entry(map, start, &tmp))
1097 			start = tmp->end;
1098 		entry = tmp;
1099 	}
1100 
1101 	/*
1102 	 * Look through the rest of the map, trying to fit a new region in the
1103 	 * gap between existing regions, or after the very last region.
1104 	 */
1105 	for (;; start = (entry = next)->end) {
1106 		/*
1107 		 * Adjust the proposed start by the requested alignment,
1108 		 * be sure that we didn't wrap the address.
1109 		 */
1110 		if (align_mask == (vm_offset_t)-1)
1111 			end = ((start + align - 1) / align) * align;
1112 		else
1113 			end = (start + align_mask) & ~align_mask;
1114 		if (end < start)
1115 			return (1);
1116 		start = end;
1117 		/*
1118 		 * Find the end of the proposed new region.  Be sure we didn't
1119 		 * go beyond the end of the map, or wrap around the address.
1120 		 * Then check to see if this is the last entry or if the
1121 		 * proposed end fits in the gap between this and the next
1122 		 * entry.
1123 		 */
1124 		end = start + length;
1125 		if (end > map->max_offset || end < start)
1126 			return (1);
1127 		next = entry->next;
1128 
1129 		/*
1130 		 * If the next entry's start address is beyond the desired
1131 		 * end address we may have found a good entry.
1132 		 *
1133 		 * If the next entry is a stack mapping we do not map into
1134 		 * the stack's reserved space.
1135 		 *
1136 		 * XXX continue to allow mapping into the stack's reserved
1137 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1138 		 * mapping, for backwards compatibility.  But the caller
1139 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1140 		 * want to do that.
1141 		 */
1142 		if (next == &map->header)
1143 			break;
1144 		if (next->start >= end) {
1145 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1146 				break;
1147 			if (flags & MAP_STACK)
1148 				break;
1149 			if (next->start - next->aux.avail_ssize >= end)
1150 				break;
1151 		}
1152 	}
1153 	map->hint = entry;
1154 
1155 	/*
1156 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1157 	 * if it fails.  The kernel_map is locked and nothing can steal
1158 	 * our address space if pmap_growkernel() blocks.
1159 	 *
1160 	 * NOTE: This may be unconditionally called for kldload areas on
1161 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1162 	 *	 fill 128G worth of page tables!).  Therefore we must not
1163 	 *	 retry.
1164 	 */
1165 	if (map == &kernel_map) {
1166 		vm_offset_t kstop;
1167 
1168 		kstop = round_page(start + length);
1169 		if (kstop > kernel_vm_end)
1170 			pmap_growkernel(start, kstop);
1171 	}
1172 	*addr = start;
1173 	return (0);
1174 }
1175 
1176 /*
1177  * vm_map_find finds an unallocated region in the target address map with
1178  * the given length.  The search is defined to be first-fit from the
1179  * specified address; the region found is returned in the same parameter.
1180  *
1181  * If object is non-NULL, ref count must be bumped by caller
1182  * prior to making call to account for the new entry.
1183  *
1184  * No requirements.  This function will lock the map temporarily.
1185  */
1186 int
1187 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1188 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1189 	    boolean_t fitit,
1190 	    vm_maptype_t maptype,
1191 	    vm_prot_t prot, vm_prot_t max,
1192 	    int cow)
1193 {
1194 	vm_offset_t start;
1195 	int result;
1196 	int count;
1197 
1198 	start = *addr;
1199 
1200 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1201 	vm_map_lock(map);
1202 	if (fitit) {
1203 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1204 			vm_map_unlock(map);
1205 			vm_map_entry_release(count);
1206 			return (KERN_NO_SPACE);
1207 		}
1208 		start = *addr;
1209 	}
1210 	result = vm_map_insert(map, &count, object, offset,
1211 			       start, start + length,
1212 			       maptype,
1213 			       prot, max,
1214 			       cow);
1215 	vm_map_unlock(map);
1216 	vm_map_entry_release(count);
1217 
1218 	return (result);
1219 }
1220 
1221 /*
1222  * Simplify the given map entry by merging with either neighbor.  This
1223  * routine also has the ability to merge with both neighbors.
1224  *
1225  * This routine guarentees that the passed entry remains valid (though
1226  * possibly extended).  When merging, this routine may delete one or
1227  * both neighbors.  No action is taken on entries which have their
1228  * in-transition flag set.
1229  *
1230  * The map must be exclusively locked.
1231  */
1232 void
1233 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1234 {
1235 	vm_map_entry_t next, prev;
1236 	vm_size_t prevsize, esize;
1237 
1238 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1239 		++mycpu->gd_cnt.v_intrans_coll;
1240 		return;
1241 	}
1242 
1243 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1244 		return;
1245 
1246 	prev = entry->prev;
1247 	if (prev != &map->header) {
1248 		prevsize = prev->end - prev->start;
1249 		if ( (prev->end == entry->start) &&
1250 		     (prev->maptype == entry->maptype) &&
1251 		     (prev->object.vm_object == entry->object.vm_object) &&
1252 		     (!prev->object.vm_object ||
1253 			(prev->offset + prevsize == entry->offset)) &&
1254 		     (prev->eflags == entry->eflags) &&
1255 		     (prev->protection == entry->protection) &&
1256 		     (prev->max_protection == entry->max_protection) &&
1257 		     (prev->inheritance == entry->inheritance) &&
1258 		     (prev->wired_count == entry->wired_count)) {
1259 			if (map->first_free == prev)
1260 				map->first_free = entry;
1261 			if (map->hint == prev)
1262 				map->hint = entry;
1263 			vm_map_entry_unlink(map, prev);
1264 			entry->start = prev->start;
1265 			entry->offset = prev->offset;
1266 			if (prev->object.vm_object)
1267 				vm_object_deallocate(prev->object.vm_object);
1268 			vm_map_entry_dispose(map, prev, countp);
1269 		}
1270 	}
1271 
1272 	next = entry->next;
1273 	if (next != &map->header) {
1274 		esize = entry->end - entry->start;
1275 		if ((entry->end == next->start) &&
1276 		    (next->maptype == entry->maptype) &&
1277 		    (next->object.vm_object == entry->object.vm_object) &&
1278 		     (!entry->object.vm_object ||
1279 			(entry->offset + esize == next->offset)) &&
1280 		    (next->eflags == entry->eflags) &&
1281 		    (next->protection == entry->protection) &&
1282 		    (next->max_protection == entry->max_protection) &&
1283 		    (next->inheritance == entry->inheritance) &&
1284 		    (next->wired_count == entry->wired_count)) {
1285 			if (map->first_free == next)
1286 				map->first_free = entry;
1287 			if (map->hint == next)
1288 				map->hint = entry;
1289 			vm_map_entry_unlink(map, next);
1290 			entry->end = next->end;
1291 			if (next->object.vm_object)
1292 				vm_object_deallocate(next->object.vm_object);
1293 			vm_map_entry_dispose(map, next, countp);
1294 	        }
1295 	}
1296 }
1297 
1298 /*
1299  * Asserts that the given entry begins at or after the specified address.
1300  * If necessary, it splits the entry into two.
1301  */
1302 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1303 {									\
1304 	if (startaddr > entry->start)					\
1305 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1306 }
1307 
1308 /*
1309  * This routine is called only when it is known that the entry must be split.
1310  *
1311  * The map must be exclusively locked.
1312  */
1313 static void
1314 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1315 		   int *countp)
1316 {
1317 	vm_map_entry_t new_entry;
1318 
1319 	/*
1320 	 * Split off the front portion -- note that we must insert the new
1321 	 * entry BEFORE this one, so that this entry has the specified
1322 	 * starting address.
1323 	 */
1324 
1325 	vm_map_simplify_entry(map, entry, countp);
1326 
1327 	/*
1328 	 * If there is no object backing this entry, we might as well create
1329 	 * one now.  If we defer it, an object can get created after the map
1330 	 * is clipped, and individual objects will be created for the split-up
1331 	 * map.  This is a bit of a hack, but is also about the best place to
1332 	 * put this improvement.
1333 	 */
1334 	if (entry->object.vm_object == NULL && !map->system_map) {
1335 		vm_map_entry_allocate_object(entry);
1336 	}
1337 
1338 	new_entry = vm_map_entry_create(map, countp);
1339 	*new_entry = *entry;
1340 
1341 	new_entry->end = start;
1342 	entry->offset += (start - entry->start);
1343 	entry->start = start;
1344 
1345 	vm_map_entry_link(map, entry->prev, new_entry);
1346 
1347 	switch(entry->maptype) {
1348 	case VM_MAPTYPE_NORMAL:
1349 	case VM_MAPTYPE_VPAGETABLE:
1350 		vm_object_reference(new_entry->object.vm_object);
1351 		break;
1352 	default:
1353 		break;
1354 	}
1355 }
1356 
1357 /*
1358  * Asserts that the given entry ends at or before the specified address.
1359  * If necessary, it splits the entry into two.
1360  *
1361  * The map must be exclusively locked.
1362  */
1363 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1364 {								\
1365 	if (endaddr < entry->end)				\
1366 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1367 }
1368 
1369 /*
1370  * This routine is called only when it is known that the entry must be split.
1371  *
1372  * The map must be exclusively locked.
1373  */
1374 static void
1375 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1376 		 int *countp)
1377 {
1378 	vm_map_entry_t new_entry;
1379 
1380 	/*
1381 	 * If there is no object backing this entry, we might as well create
1382 	 * one now.  If we defer it, an object can get created after the map
1383 	 * is clipped, and individual objects will be created for the split-up
1384 	 * map.  This is a bit of a hack, but is also about the best place to
1385 	 * put this improvement.
1386 	 */
1387 
1388 	if (entry->object.vm_object == NULL && !map->system_map) {
1389 		vm_map_entry_allocate_object(entry);
1390 	}
1391 
1392 	/*
1393 	 * Create a new entry and insert it AFTER the specified entry
1394 	 */
1395 
1396 	new_entry = vm_map_entry_create(map, countp);
1397 	*new_entry = *entry;
1398 
1399 	new_entry->start = entry->end = end;
1400 	new_entry->offset += (end - entry->start);
1401 
1402 	vm_map_entry_link(map, entry, new_entry);
1403 
1404 	switch(entry->maptype) {
1405 	case VM_MAPTYPE_NORMAL:
1406 	case VM_MAPTYPE_VPAGETABLE:
1407 		vm_object_reference(new_entry->object.vm_object);
1408 		break;
1409 	default:
1410 		break;
1411 	}
1412 }
1413 
1414 /*
1415  * Asserts that the starting and ending region addresses fall within the
1416  * valid range for the map.
1417  */
1418 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1419 {						\
1420 	if (start < vm_map_min(map))		\
1421 		start = vm_map_min(map);	\
1422 	if (end > vm_map_max(map))		\
1423 		end = vm_map_max(map);		\
1424 	if (start > end)			\
1425 		start = end;			\
1426 }
1427 
1428 /*
1429  * Used to block when an in-transition collison occurs.  The map
1430  * is unlocked for the sleep and relocked before the return.
1431  */
1432 void
1433 vm_map_transition_wait(vm_map_t map)
1434 {
1435 	tsleep_interlock(map, 0);
1436 	vm_map_unlock(map);
1437 	tsleep(map, PINTERLOCKED, "vment", 0);
1438 	vm_map_lock(map);
1439 }
1440 
1441 /*
1442  * When we do blocking operations with the map lock held it is
1443  * possible that a clip might have occured on our in-transit entry,
1444  * requiring an adjustment to the entry in our loop.  These macros
1445  * help the pageable and clip_range code deal with the case.  The
1446  * conditional costs virtually nothing if no clipping has occured.
1447  */
1448 
1449 #define CLIP_CHECK_BACK(entry, save_start)		\
1450     do {						\
1451 	    while (entry->start != save_start) {	\
1452 		    entry = entry->prev;		\
1453 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1454 	    }						\
1455     } while(0)
1456 
1457 #define CLIP_CHECK_FWD(entry, save_end)			\
1458     do {						\
1459 	    while (entry->end != save_end) {		\
1460 		    entry = entry->next;		\
1461 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1462 	    }						\
1463     } while(0)
1464 
1465 
1466 /*
1467  * Clip the specified range and return the base entry.  The
1468  * range may cover several entries starting at the returned base
1469  * and the first and last entry in the covering sequence will be
1470  * properly clipped to the requested start and end address.
1471  *
1472  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1473  * flag.
1474  *
1475  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1476  * covered by the requested range.
1477  *
1478  * The map must be exclusively locked on entry and will remain locked
1479  * on return. If no range exists or the range contains holes and you
1480  * specified that no holes were allowed, NULL will be returned.  This
1481  * routine may temporarily unlock the map in order avoid a deadlock when
1482  * sleeping.
1483  */
1484 static
1485 vm_map_entry_t
1486 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1487 		  int *countp, int flags)
1488 {
1489 	vm_map_entry_t start_entry;
1490 	vm_map_entry_t entry;
1491 
1492 	/*
1493 	 * Locate the entry and effect initial clipping.  The in-transition
1494 	 * case does not occur very often so do not try to optimize it.
1495 	 */
1496 again:
1497 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1498 		return (NULL);
1499 	entry = start_entry;
1500 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1501 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1502 		++mycpu->gd_cnt.v_intrans_coll;
1503 		++mycpu->gd_cnt.v_intrans_wait;
1504 		vm_map_transition_wait(map);
1505 		/*
1506 		 * entry and/or start_entry may have been clipped while
1507 		 * we slept, or may have gone away entirely.  We have
1508 		 * to restart from the lookup.
1509 		 */
1510 		goto again;
1511 	}
1512 
1513 	/*
1514 	 * Since we hold an exclusive map lock we do not have to restart
1515 	 * after clipping, even though clipping may block in zalloc.
1516 	 */
1517 	vm_map_clip_start(map, entry, start, countp);
1518 	vm_map_clip_end(map, entry, end, countp);
1519 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1520 
1521 	/*
1522 	 * Scan entries covered by the range.  When working on the next
1523 	 * entry a restart need only re-loop on the current entry which
1524 	 * we have already locked, since 'next' may have changed.  Also,
1525 	 * even though entry is safe, it may have been clipped so we
1526 	 * have to iterate forwards through the clip after sleeping.
1527 	 */
1528 	while (entry->next != &map->header && entry->next->start < end) {
1529 		vm_map_entry_t next = entry->next;
1530 
1531 		if (flags & MAP_CLIP_NO_HOLES) {
1532 			if (next->start > entry->end) {
1533 				vm_map_unclip_range(map, start_entry,
1534 					start, entry->end, countp, flags);
1535 				return(NULL);
1536 			}
1537 		}
1538 
1539 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1540 			vm_offset_t save_end = entry->end;
1541 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1542 			++mycpu->gd_cnt.v_intrans_coll;
1543 			++mycpu->gd_cnt.v_intrans_wait;
1544 			vm_map_transition_wait(map);
1545 
1546 			/*
1547 			 * clips might have occured while we blocked.
1548 			 */
1549 			CLIP_CHECK_FWD(entry, save_end);
1550 			CLIP_CHECK_BACK(start_entry, start);
1551 			continue;
1552 		}
1553 		/*
1554 		 * No restart necessary even though clip_end may block, we
1555 		 * are holding the map lock.
1556 		 */
1557 		vm_map_clip_end(map, next, end, countp);
1558 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1559 		entry = next;
1560 	}
1561 	if (flags & MAP_CLIP_NO_HOLES) {
1562 		if (entry->end != end) {
1563 			vm_map_unclip_range(map, start_entry,
1564 				start, entry->end, countp, flags);
1565 			return(NULL);
1566 		}
1567 	}
1568 	return(start_entry);
1569 }
1570 
1571 /*
1572  * Undo the effect of vm_map_clip_range().  You should pass the same
1573  * flags and the same range that you passed to vm_map_clip_range().
1574  * This code will clear the in-transition flag on the entries and
1575  * wake up anyone waiting.  This code will also simplify the sequence
1576  * and attempt to merge it with entries before and after the sequence.
1577  *
1578  * The map must be locked on entry and will remain locked on return.
1579  *
1580  * Note that you should also pass the start_entry returned by
1581  * vm_map_clip_range().  However, if you block between the two calls
1582  * with the map unlocked please be aware that the start_entry may
1583  * have been clipped and you may need to scan it backwards to find
1584  * the entry corresponding with the original start address.  You are
1585  * responsible for this, vm_map_unclip_range() expects the correct
1586  * start_entry to be passed to it and will KASSERT otherwise.
1587  */
1588 static
1589 void
1590 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1591 		    vm_offset_t start, vm_offset_t end,
1592 		    int *countp, int flags)
1593 {
1594 	vm_map_entry_t entry;
1595 
1596 	entry = start_entry;
1597 
1598 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1599 	while (entry != &map->header && entry->start < end) {
1600 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1601 			("in-transition flag not set during unclip on: %p",
1602 			entry));
1603 		KASSERT(entry->end <= end,
1604 			("unclip_range: tail wasn't clipped"));
1605 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1606 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1607 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1608 			wakeup(map);
1609 		}
1610 		entry = entry->next;
1611 	}
1612 
1613 	/*
1614 	 * Simplification does not block so there is no restart case.
1615 	 */
1616 	entry = start_entry;
1617 	while (entry != &map->header && entry->start < end) {
1618 		vm_map_simplify_entry(map, entry, countp);
1619 		entry = entry->next;
1620 	}
1621 }
1622 
1623 /*
1624  * Mark the given range as handled by a subordinate map.
1625  *
1626  * This range must have been created with vm_map_find(), and no other
1627  * operations may have been performed on this range prior to calling
1628  * vm_map_submap().
1629  *
1630  * Submappings cannot be removed.
1631  *
1632  * No requirements.
1633  */
1634 int
1635 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1636 {
1637 	vm_map_entry_t entry;
1638 	int result = KERN_INVALID_ARGUMENT;
1639 	int count;
1640 
1641 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1642 	vm_map_lock(map);
1643 
1644 	VM_MAP_RANGE_CHECK(map, start, end);
1645 
1646 	if (vm_map_lookup_entry(map, start, &entry)) {
1647 		vm_map_clip_start(map, entry, start, &count);
1648 	} else {
1649 		entry = entry->next;
1650 	}
1651 
1652 	vm_map_clip_end(map, entry, end, &count);
1653 
1654 	if ((entry->start == start) && (entry->end == end) &&
1655 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1656 	    (entry->object.vm_object == NULL)) {
1657 		entry->object.sub_map = submap;
1658 		entry->maptype = VM_MAPTYPE_SUBMAP;
1659 		result = KERN_SUCCESS;
1660 	}
1661 	vm_map_unlock(map);
1662 	vm_map_entry_release(count);
1663 
1664 	return (result);
1665 }
1666 
1667 /*
1668  * Sets the protection of the specified address region in the target map.
1669  * If "set_max" is specified, the maximum protection is to be set;
1670  * otherwise, only the current protection is affected.
1671  *
1672  * The protection is not applicable to submaps, but is applicable to normal
1673  * maps and maps governed by virtual page tables.  For example, when operating
1674  * on a virtual page table our protection basically controls how COW occurs
1675  * on the backing object, whereas the virtual page table abstraction itself
1676  * is an abstraction for userland.
1677  *
1678  * No requirements.
1679  */
1680 int
1681 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1682 	       vm_prot_t new_prot, boolean_t set_max)
1683 {
1684 	vm_map_entry_t current;
1685 	vm_map_entry_t entry;
1686 	int count;
1687 
1688 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1689 	vm_map_lock(map);
1690 
1691 	VM_MAP_RANGE_CHECK(map, start, end);
1692 
1693 	if (vm_map_lookup_entry(map, start, &entry)) {
1694 		vm_map_clip_start(map, entry, start, &count);
1695 	} else {
1696 		entry = entry->next;
1697 	}
1698 
1699 	/*
1700 	 * Make a first pass to check for protection violations.
1701 	 */
1702 	current = entry;
1703 	while ((current != &map->header) && (current->start < end)) {
1704 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1705 			vm_map_unlock(map);
1706 			vm_map_entry_release(count);
1707 			return (KERN_INVALID_ARGUMENT);
1708 		}
1709 		if ((new_prot & current->max_protection) != new_prot) {
1710 			vm_map_unlock(map);
1711 			vm_map_entry_release(count);
1712 			return (KERN_PROTECTION_FAILURE);
1713 		}
1714 		current = current->next;
1715 	}
1716 
1717 	/*
1718 	 * Go back and fix up protections. [Note that clipping is not
1719 	 * necessary the second time.]
1720 	 */
1721 	current = entry;
1722 
1723 	while ((current != &map->header) && (current->start < end)) {
1724 		vm_prot_t old_prot;
1725 
1726 		vm_map_clip_end(map, current, end, &count);
1727 
1728 		old_prot = current->protection;
1729 		if (set_max) {
1730 			current->protection =
1731 			    (current->max_protection = new_prot) &
1732 			    old_prot;
1733 		} else {
1734 			current->protection = new_prot;
1735 		}
1736 
1737 		/*
1738 		 * Update physical map if necessary. Worry about copy-on-write
1739 		 * here -- CHECK THIS XXX
1740 		 */
1741 
1742 		if (current->protection != old_prot) {
1743 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1744 							VM_PROT_ALL)
1745 
1746 			pmap_protect(map->pmap, current->start,
1747 			    current->end,
1748 			    current->protection & MASK(current));
1749 #undef	MASK
1750 		}
1751 
1752 		vm_map_simplify_entry(map, current, &count);
1753 
1754 		current = current->next;
1755 	}
1756 
1757 	vm_map_unlock(map);
1758 	vm_map_entry_release(count);
1759 	return (KERN_SUCCESS);
1760 }
1761 
1762 /*
1763  * This routine traverses a processes map handling the madvise
1764  * system call.  Advisories are classified as either those effecting
1765  * the vm_map_entry structure, or those effecting the underlying
1766  * objects.
1767  *
1768  * The <value> argument is used for extended madvise calls.
1769  *
1770  * No requirements.
1771  */
1772 int
1773 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1774 	       int behav, off_t value)
1775 {
1776 	vm_map_entry_t current, entry;
1777 	int modify_map = 0;
1778 	int error = 0;
1779 	int count;
1780 
1781 	/*
1782 	 * Some madvise calls directly modify the vm_map_entry, in which case
1783 	 * we need to use an exclusive lock on the map and we need to perform
1784 	 * various clipping operations.  Otherwise we only need a read-lock
1785 	 * on the map.
1786 	 */
1787 
1788 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1789 
1790 	switch(behav) {
1791 	case MADV_NORMAL:
1792 	case MADV_SEQUENTIAL:
1793 	case MADV_RANDOM:
1794 	case MADV_NOSYNC:
1795 	case MADV_AUTOSYNC:
1796 	case MADV_NOCORE:
1797 	case MADV_CORE:
1798 	case MADV_SETMAP:
1799 	case MADV_INVAL:
1800 		modify_map = 1;
1801 		vm_map_lock(map);
1802 		break;
1803 	case MADV_WILLNEED:
1804 	case MADV_DONTNEED:
1805 	case MADV_FREE:
1806 		vm_map_lock_read(map);
1807 		break;
1808 	default:
1809 		vm_map_entry_release(count);
1810 		return (EINVAL);
1811 	}
1812 
1813 	/*
1814 	 * Locate starting entry and clip if necessary.
1815 	 */
1816 
1817 	VM_MAP_RANGE_CHECK(map, start, end);
1818 
1819 	if (vm_map_lookup_entry(map, start, &entry)) {
1820 		if (modify_map)
1821 			vm_map_clip_start(map, entry, start, &count);
1822 	} else {
1823 		entry = entry->next;
1824 	}
1825 
1826 	if (modify_map) {
1827 		/*
1828 		 * madvise behaviors that are implemented in the vm_map_entry.
1829 		 *
1830 		 * We clip the vm_map_entry so that behavioral changes are
1831 		 * limited to the specified address range.
1832 		 */
1833 		for (current = entry;
1834 		     (current != &map->header) && (current->start < end);
1835 		     current = current->next
1836 		) {
1837 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1838 				continue;
1839 
1840 			vm_map_clip_end(map, current, end, &count);
1841 
1842 			switch (behav) {
1843 			case MADV_NORMAL:
1844 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1845 				break;
1846 			case MADV_SEQUENTIAL:
1847 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1848 				break;
1849 			case MADV_RANDOM:
1850 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1851 				break;
1852 			case MADV_NOSYNC:
1853 				current->eflags |= MAP_ENTRY_NOSYNC;
1854 				break;
1855 			case MADV_AUTOSYNC:
1856 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1857 				break;
1858 			case MADV_NOCORE:
1859 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1860 				break;
1861 			case MADV_CORE:
1862 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1863 				break;
1864 			case MADV_INVAL:
1865 				/*
1866 				 * Invalidate the related pmap entries, used
1867 				 * to flush portions of the real kernel's
1868 				 * pmap when the caller has removed or
1869 				 * modified existing mappings in a virtual
1870 				 * page table.
1871 				 */
1872 				pmap_remove(map->pmap,
1873 					    current->start, current->end);
1874 				break;
1875 			case MADV_SETMAP:
1876 				/*
1877 				 * Set the page directory page for a map
1878 				 * governed by a virtual page table.  Mark
1879 				 * the entry as being governed by a virtual
1880 				 * page table if it is not.
1881 				 *
1882 				 * XXX the page directory page is stored
1883 				 * in the avail_ssize field if the map_entry.
1884 				 *
1885 				 * XXX the map simplification code does not
1886 				 * compare this field so weird things may
1887 				 * happen if you do not apply this function
1888 				 * to the entire mapping governed by the
1889 				 * virtual page table.
1890 				 */
1891 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1892 					error = EINVAL;
1893 					break;
1894 				}
1895 				current->aux.master_pde = value;
1896 				pmap_remove(map->pmap,
1897 					    current->start, current->end);
1898 				break;
1899 			default:
1900 				error = EINVAL;
1901 				break;
1902 			}
1903 			vm_map_simplify_entry(map, current, &count);
1904 		}
1905 		vm_map_unlock(map);
1906 	} else {
1907 		vm_pindex_t pindex;
1908 		int count;
1909 
1910 		/*
1911 		 * madvise behaviors that are implemented in the underlying
1912 		 * vm_object.
1913 		 *
1914 		 * Since we don't clip the vm_map_entry, we have to clip
1915 		 * the vm_object pindex and count.
1916 		 *
1917 		 * NOTE!  We currently do not support these functions on
1918 		 * virtual page tables.
1919 		 */
1920 		for (current = entry;
1921 		     (current != &map->header) && (current->start < end);
1922 		     current = current->next
1923 		) {
1924 			vm_offset_t useStart;
1925 
1926 			if (current->maptype != VM_MAPTYPE_NORMAL)
1927 				continue;
1928 
1929 			pindex = OFF_TO_IDX(current->offset);
1930 			count = atop(current->end - current->start);
1931 			useStart = current->start;
1932 
1933 			if (current->start < start) {
1934 				pindex += atop(start - current->start);
1935 				count -= atop(start - current->start);
1936 				useStart = start;
1937 			}
1938 			if (current->end > end)
1939 				count -= atop(current->end - end);
1940 
1941 			if (count <= 0)
1942 				continue;
1943 
1944 			vm_object_madvise(current->object.vm_object,
1945 					  pindex, count, behav);
1946 
1947 			/*
1948 			 * Try to populate the page table.  Mappings governed
1949 			 * by virtual page tables cannot be pre-populated
1950 			 * without a lot of work so don't try.
1951 			 */
1952 			if (behav == MADV_WILLNEED &&
1953 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1954 				pmap_object_init_pt(
1955 				    map->pmap,
1956 				    useStart,
1957 				    current->protection,
1958 				    current->object.vm_object,
1959 				    pindex,
1960 				    (count << PAGE_SHIFT),
1961 				    MAP_PREFAULT_MADVISE
1962 				);
1963 			}
1964 		}
1965 		vm_map_unlock_read(map);
1966 	}
1967 	vm_map_entry_release(count);
1968 	return(error);
1969 }
1970 
1971 
1972 /*
1973  * Sets the inheritance of the specified address range in the target map.
1974  * Inheritance affects how the map will be shared with child maps at the
1975  * time of vm_map_fork.
1976  */
1977 int
1978 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1979 	       vm_inherit_t new_inheritance)
1980 {
1981 	vm_map_entry_t entry;
1982 	vm_map_entry_t temp_entry;
1983 	int count;
1984 
1985 	switch (new_inheritance) {
1986 	case VM_INHERIT_NONE:
1987 	case VM_INHERIT_COPY:
1988 	case VM_INHERIT_SHARE:
1989 		break;
1990 	default:
1991 		return (KERN_INVALID_ARGUMENT);
1992 	}
1993 
1994 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1995 	vm_map_lock(map);
1996 
1997 	VM_MAP_RANGE_CHECK(map, start, end);
1998 
1999 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2000 		entry = temp_entry;
2001 		vm_map_clip_start(map, entry, start, &count);
2002 	} else
2003 		entry = temp_entry->next;
2004 
2005 	while ((entry != &map->header) && (entry->start < end)) {
2006 		vm_map_clip_end(map, entry, end, &count);
2007 
2008 		entry->inheritance = new_inheritance;
2009 
2010 		vm_map_simplify_entry(map, entry, &count);
2011 
2012 		entry = entry->next;
2013 	}
2014 	vm_map_unlock(map);
2015 	vm_map_entry_release(count);
2016 	return (KERN_SUCCESS);
2017 }
2018 
2019 /*
2020  * Implement the semantics of mlock
2021  */
2022 int
2023 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2024 	      boolean_t new_pageable)
2025 {
2026 	vm_map_entry_t entry;
2027 	vm_map_entry_t start_entry;
2028 	vm_offset_t end;
2029 	int rv = KERN_SUCCESS;
2030 	int count;
2031 
2032 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2033 	vm_map_lock(map);
2034 	VM_MAP_RANGE_CHECK(map, start, real_end);
2035 	end = real_end;
2036 
2037 	start_entry = vm_map_clip_range(map, start, end, &count,
2038 					MAP_CLIP_NO_HOLES);
2039 	if (start_entry == NULL) {
2040 		vm_map_unlock(map);
2041 		vm_map_entry_release(count);
2042 		return (KERN_INVALID_ADDRESS);
2043 	}
2044 
2045 	if (new_pageable == 0) {
2046 		entry = start_entry;
2047 		while ((entry != &map->header) && (entry->start < end)) {
2048 			vm_offset_t save_start;
2049 			vm_offset_t save_end;
2050 
2051 			/*
2052 			 * Already user wired or hard wired (trivial cases)
2053 			 */
2054 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2055 				entry = entry->next;
2056 				continue;
2057 			}
2058 			if (entry->wired_count != 0) {
2059 				entry->wired_count++;
2060 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2061 				entry = entry->next;
2062 				continue;
2063 			}
2064 
2065 			/*
2066 			 * A new wiring requires instantiation of appropriate
2067 			 * management structures and the faulting in of the
2068 			 * page.
2069 			 */
2070 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2071 				int copyflag = entry->eflags &
2072 					       MAP_ENTRY_NEEDS_COPY;
2073 				if (copyflag && ((entry->protection &
2074 						  VM_PROT_WRITE) != 0)) {
2075 					vm_map_entry_shadow(entry);
2076 				} else if (entry->object.vm_object == NULL &&
2077 					   !map->system_map) {
2078 					vm_map_entry_allocate_object(entry);
2079 				}
2080 			}
2081 			entry->wired_count++;
2082 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2083 
2084 			/*
2085 			 * Now fault in the area.  Note that vm_fault_wire()
2086 			 * may release the map lock temporarily, it will be
2087 			 * relocked on return.  The in-transition
2088 			 * flag protects the entries.
2089 			 */
2090 			save_start = entry->start;
2091 			save_end = entry->end;
2092 			rv = vm_fault_wire(map, entry, TRUE);
2093 			if (rv) {
2094 				CLIP_CHECK_BACK(entry, save_start);
2095 				for (;;) {
2096 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2097 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2098 					entry->wired_count = 0;
2099 					if (entry->end == save_end)
2100 						break;
2101 					entry = entry->next;
2102 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2103 				}
2104 				end = save_start;	/* unwire the rest */
2105 				break;
2106 			}
2107 			/*
2108 			 * note that even though the entry might have been
2109 			 * clipped, the USER_WIRED flag we set prevents
2110 			 * duplication so we do not have to do a
2111 			 * clip check.
2112 			 */
2113 			entry = entry->next;
2114 		}
2115 
2116 		/*
2117 		 * If we failed fall through to the unwiring section to
2118 		 * unwire what we had wired so far.  'end' has already
2119 		 * been adjusted.
2120 		 */
2121 		if (rv)
2122 			new_pageable = 1;
2123 
2124 		/*
2125 		 * start_entry might have been clipped if we unlocked the
2126 		 * map and blocked.  No matter how clipped it has gotten
2127 		 * there should be a fragment that is on our start boundary.
2128 		 */
2129 		CLIP_CHECK_BACK(start_entry, start);
2130 	}
2131 
2132 	/*
2133 	 * Deal with the unwiring case.
2134 	 */
2135 	if (new_pageable) {
2136 		/*
2137 		 * This is the unwiring case.  We must first ensure that the
2138 		 * range to be unwired is really wired down.  We know there
2139 		 * are no holes.
2140 		 */
2141 		entry = start_entry;
2142 		while ((entry != &map->header) && (entry->start < end)) {
2143 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2144 				rv = KERN_INVALID_ARGUMENT;
2145 				goto done;
2146 			}
2147 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2148 			entry = entry->next;
2149 		}
2150 
2151 		/*
2152 		 * Now decrement the wiring count for each region. If a region
2153 		 * becomes completely unwired, unwire its physical pages and
2154 		 * mappings.
2155 		 */
2156 		/*
2157 		 * The map entries are processed in a loop, checking to
2158 		 * make sure the entry is wired and asserting it has a wired
2159 		 * count. However, another loop was inserted more-or-less in
2160 		 * the middle of the unwiring path. This loop picks up the
2161 		 * "entry" loop variable from the first loop without first
2162 		 * setting it to start_entry. Naturally, the secound loop
2163 		 * is never entered and the pages backing the entries are
2164 		 * never unwired. This can lead to a leak of wired pages.
2165 		 */
2166 		entry = start_entry;
2167 		while ((entry != &map->header) && (entry->start < end)) {
2168 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2169 				("expected USER_WIRED on entry %p", entry));
2170 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2171 			entry->wired_count--;
2172 			if (entry->wired_count == 0)
2173 				vm_fault_unwire(map, entry);
2174 			entry = entry->next;
2175 		}
2176 	}
2177 done:
2178 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2179 		MAP_CLIP_NO_HOLES);
2180 	map->timestamp++;
2181 	vm_map_unlock(map);
2182 	vm_map_entry_release(count);
2183 	return (rv);
2184 }
2185 
2186 /*
2187  * Sets the pageability of the specified address range in the target map.
2188  * Regions specified as not pageable require locked-down physical
2189  * memory and physical page maps.
2190  *
2191  * The map must not be locked, but a reference must remain to the map
2192  * throughout the call.
2193  *
2194  * This function may be called via the zalloc path and must properly
2195  * reserve map entries for kernel_map.
2196  *
2197  * No requirements.
2198  */
2199 int
2200 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2201 {
2202 	vm_map_entry_t entry;
2203 	vm_map_entry_t start_entry;
2204 	vm_offset_t end;
2205 	int rv = KERN_SUCCESS;
2206 	int count;
2207 
2208 	if (kmflags & KM_KRESERVE)
2209 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2210 	else
2211 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2212 	vm_map_lock(map);
2213 	VM_MAP_RANGE_CHECK(map, start, real_end);
2214 	end = real_end;
2215 
2216 	start_entry = vm_map_clip_range(map, start, end, &count,
2217 					MAP_CLIP_NO_HOLES);
2218 	if (start_entry == NULL) {
2219 		vm_map_unlock(map);
2220 		rv = KERN_INVALID_ADDRESS;
2221 		goto failure;
2222 	}
2223 	if ((kmflags & KM_PAGEABLE) == 0) {
2224 		/*
2225 		 * Wiring.
2226 		 *
2227 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2228 		 * objects that need to be created. Then we clip each map
2229 		 * entry to the region to be wired and increment its wiring
2230 		 * count.  We create objects before clipping the map entries
2231 		 * to avoid object proliferation.
2232 		 *
2233 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2234 		 * fault in the pages for any newly wired area (wired_count is
2235 		 * 1).
2236 		 *
2237 		 * Downgrading to a read lock for vm_fault_wire avoids a
2238 		 * possible deadlock with another process that may have faulted
2239 		 * on one of the pages to be wired (it would mark the page busy,
2240 		 * blocking us, then in turn block on the map lock that we
2241 		 * hold).  Because of problems in the recursive lock package,
2242 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2243 		 * any actions that require the write lock must be done
2244 		 * beforehand.  Because we keep the read lock on the map, the
2245 		 * copy-on-write status of the entries we modify here cannot
2246 		 * change.
2247 		 */
2248 		entry = start_entry;
2249 		while ((entry != &map->header) && (entry->start < end)) {
2250 			/*
2251 			 * Trivial case if the entry is already wired
2252 			 */
2253 			if (entry->wired_count) {
2254 				entry->wired_count++;
2255 				entry = entry->next;
2256 				continue;
2257 			}
2258 
2259 			/*
2260 			 * The entry is being newly wired, we have to setup
2261 			 * appropriate management structures.  A shadow
2262 			 * object is required for a copy-on-write region,
2263 			 * or a normal object for a zero-fill region.  We
2264 			 * do not have to do this for entries that point to sub
2265 			 * maps because we won't hold the lock on the sub map.
2266 			 */
2267 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2268 				int copyflag = entry->eflags &
2269 					       MAP_ENTRY_NEEDS_COPY;
2270 				if (copyflag && ((entry->protection &
2271 						  VM_PROT_WRITE) != 0)) {
2272 					vm_map_entry_shadow(entry);
2273 				} else if (entry->object.vm_object == NULL &&
2274 					   !map->system_map) {
2275 					vm_map_entry_allocate_object(entry);
2276 				}
2277 			}
2278 
2279 			entry->wired_count++;
2280 			entry = entry->next;
2281 		}
2282 
2283 		/*
2284 		 * Pass 2.
2285 		 */
2286 
2287 		/*
2288 		 * HACK HACK HACK HACK
2289 		 *
2290 		 * vm_fault_wire() temporarily unlocks the map to avoid
2291 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2292 		 * call should protect us from changes while the map is
2293 		 * unlocked.  T
2294 		 *
2295 		 * NOTE: Previously this comment stated that clipping might
2296 		 *	 still occur while the entry is unlocked, but from
2297 		 *	 what I can tell it actually cannot.
2298 		 *
2299 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2300 		 *	 are still needed but we keep them in anyway.
2301 		 *
2302 		 * HACK HACK HACK HACK
2303 		 */
2304 
2305 		entry = start_entry;
2306 		while (entry != &map->header && entry->start < end) {
2307 			/*
2308 			 * If vm_fault_wire fails for any page we need to undo
2309 			 * what has been done.  We decrement the wiring count
2310 			 * for those pages which have not yet been wired (now)
2311 			 * and unwire those that have (later).
2312 			 */
2313 			vm_offset_t save_start = entry->start;
2314 			vm_offset_t save_end = entry->end;
2315 
2316 			if (entry->wired_count == 1)
2317 				rv = vm_fault_wire(map, entry, FALSE);
2318 			if (rv) {
2319 				CLIP_CHECK_BACK(entry, save_start);
2320 				for (;;) {
2321 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2322 					entry->wired_count = 0;
2323 					if (entry->end == save_end)
2324 						break;
2325 					entry = entry->next;
2326 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2327 				}
2328 				end = save_start;
2329 				break;
2330 			}
2331 			CLIP_CHECK_FWD(entry, save_end);
2332 			entry = entry->next;
2333 		}
2334 
2335 		/*
2336 		 * If a failure occured undo everything by falling through
2337 		 * to the unwiring code.  'end' has already been adjusted
2338 		 * appropriately.
2339 		 */
2340 		if (rv)
2341 			kmflags |= KM_PAGEABLE;
2342 
2343 		/*
2344 		 * start_entry is still IN_TRANSITION but may have been
2345 		 * clipped since vm_fault_wire() unlocks and relocks the
2346 		 * map.  No matter how clipped it has gotten there should
2347 		 * be a fragment that is on our start boundary.
2348 		 */
2349 		CLIP_CHECK_BACK(start_entry, start);
2350 	}
2351 
2352 	if (kmflags & KM_PAGEABLE) {
2353 		/*
2354 		 * This is the unwiring case.  We must first ensure that the
2355 		 * range to be unwired is really wired down.  We know there
2356 		 * are no holes.
2357 		 */
2358 		entry = start_entry;
2359 		while ((entry != &map->header) && (entry->start < end)) {
2360 			if (entry->wired_count == 0) {
2361 				rv = KERN_INVALID_ARGUMENT;
2362 				goto done;
2363 			}
2364 			entry = entry->next;
2365 		}
2366 
2367 		/*
2368 		 * Now decrement the wiring count for each region. If a region
2369 		 * becomes completely unwired, unwire its physical pages and
2370 		 * mappings.
2371 		 */
2372 		entry = start_entry;
2373 		while ((entry != &map->header) && (entry->start < end)) {
2374 			entry->wired_count--;
2375 			if (entry->wired_count == 0)
2376 				vm_fault_unwire(map, entry);
2377 			entry = entry->next;
2378 		}
2379 	}
2380 done:
2381 	vm_map_unclip_range(map, start_entry, start, real_end,
2382 			    &count, MAP_CLIP_NO_HOLES);
2383 	map->timestamp++;
2384 	vm_map_unlock(map);
2385 failure:
2386 	if (kmflags & KM_KRESERVE)
2387 		vm_map_entry_krelease(count);
2388 	else
2389 		vm_map_entry_release(count);
2390 	return (rv);
2391 }
2392 
2393 /*
2394  * Mark a newly allocated address range as wired but do not fault in
2395  * the pages.  The caller is expected to load the pages into the object.
2396  *
2397  * The map must be locked on entry and will remain locked on return.
2398  * No other requirements.
2399  */
2400 void
2401 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2402 		       int *countp)
2403 {
2404 	vm_map_entry_t scan;
2405 	vm_map_entry_t entry;
2406 
2407 	entry = vm_map_clip_range(map, addr, addr + size,
2408 				  countp, MAP_CLIP_NO_HOLES);
2409 	for (scan = entry;
2410 	     scan != &map->header && scan->start < addr + size;
2411 	     scan = scan->next) {
2412 	    KKASSERT(entry->wired_count == 0);
2413 	    entry->wired_count = 1;
2414 	}
2415 	vm_map_unclip_range(map, entry, addr, addr + size,
2416 			    countp, MAP_CLIP_NO_HOLES);
2417 }
2418 
2419 /*
2420  * Push any dirty cached pages in the address range to their pager.
2421  * If syncio is TRUE, dirty pages are written synchronously.
2422  * If invalidate is TRUE, any cached pages are freed as well.
2423  *
2424  * This routine is called by sys_msync()
2425  *
2426  * Returns an error if any part of the specified range is not mapped.
2427  *
2428  * No requirements.
2429  */
2430 int
2431 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2432 	     boolean_t syncio, boolean_t invalidate)
2433 {
2434 	vm_map_entry_t current;
2435 	vm_map_entry_t entry;
2436 	vm_size_t size;
2437 	vm_object_t object;
2438 	vm_ooffset_t offset;
2439 
2440 	vm_map_lock_read(map);
2441 	VM_MAP_RANGE_CHECK(map, start, end);
2442 	if (!vm_map_lookup_entry(map, start, &entry)) {
2443 		vm_map_unlock_read(map);
2444 		return (KERN_INVALID_ADDRESS);
2445 	}
2446 	/*
2447 	 * Make a first pass to check for holes.
2448 	 */
2449 	for (current = entry; current->start < end; current = current->next) {
2450 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2451 			vm_map_unlock_read(map);
2452 			return (KERN_INVALID_ARGUMENT);
2453 		}
2454 		if (end > current->end &&
2455 		    (current->next == &map->header ||
2456 			current->end != current->next->start)) {
2457 			vm_map_unlock_read(map);
2458 			return (KERN_INVALID_ADDRESS);
2459 		}
2460 	}
2461 
2462 	if (invalidate)
2463 		pmap_remove(vm_map_pmap(map), start, end);
2464 
2465 	/*
2466 	 * Make a second pass, cleaning/uncaching pages from the indicated
2467 	 * objects as we go.
2468 	 *
2469 	 * Hold vm_token to avoid blocking in vm_object_reference()
2470 	 */
2471 	lwkt_gettoken(&vm_token);
2472 	lwkt_gettoken(&vmobj_token);
2473 
2474 	for (current = entry; current->start < end; current = current->next) {
2475 		offset = current->offset + (start - current->start);
2476 		size = (end <= current->end ? end : current->end) - start;
2477 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2478 			vm_map_t smap;
2479 			vm_map_entry_t tentry;
2480 			vm_size_t tsize;
2481 
2482 			smap = current->object.sub_map;
2483 			vm_map_lock_read(smap);
2484 			vm_map_lookup_entry(smap, offset, &tentry);
2485 			tsize = tentry->end - offset;
2486 			if (tsize < size)
2487 				size = tsize;
2488 			object = tentry->object.vm_object;
2489 			offset = tentry->offset + (offset - tentry->start);
2490 			vm_map_unlock_read(smap);
2491 		} else {
2492 			object = current->object.vm_object;
2493 		}
2494 		/*
2495 		 * Note that there is absolutely no sense in writing out
2496 		 * anonymous objects, so we track down the vnode object
2497 		 * to write out.
2498 		 * We invalidate (remove) all pages from the address space
2499 		 * anyway, for semantic correctness.
2500 		 *
2501 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2502 		 * may start out with a NULL object.
2503 		 */
2504 		while (object && object->backing_object) {
2505 			offset += object->backing_object_offset;
2506 			object = object->backing_object;
2507 			if (object->size < OFF_TO_IDX( offset + size))
2508 				size = IDX_TO_OFF(object->size) - offset;
2509 		}
2510 		if (object && (object->type == OBJT_VNODE) &&
2511 		    (current->protection & VM_PROT_WRITE) &&
2512 		    (object->flags & OBJ_NOMSYNC) == 0) {
2513 			/*
2514 			 * Flush pages if writing is allowed, invalidate them
2515 			 * if invalidation requested.  Pages undergoing I/O
2516 			 * will be ignored by vm_object_page_remove().
2517 			 *
2518 			 * We cannot lock the vnode and then wait for paging
2519 			 * to complete without deadlocking against vm_fault.
2520 			 * Instead we simply call vm_object_page_remove() and
2521 			 * allow it to block internally on a page-by-page
2522 			 * basis when it encounters pages undergoing async
2523 			 * I/O.
2524 			 */
2525 			int flags;
2526 
2527 			vm_object_reference_locked(object);
2528 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2529 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2530 			flags |= invalidate ? OBJPC_INVAL : 0;
2531 
2532 			/*
2533 			 * When operating on a virtual page table just
2534 			 * flush the whole object.  XXX we probably ought
2535 			 * to
2536 			 */
2537 			switch(current->maptype) {
2538 			case VM_MAPTYPE_NORMAL:
2539 				vm_object_page_clean(object,
2540 				    OFF_TO_IDX(offset),
2541 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2542 				    flags);
2543 				break;
2544 			case VM_MAPTYPE_VPAGETABLE:
2545 				vm_object_page_clean(object, 0, 0, flags);
2546 				break;
2547 			}
2548 			vn_unlock(((struct vnode *)object->handle));
2549 			vm_object_deallocate_locked(object);
2550 		}
2551 		if (object && invalidate &&
2552 		   ((object->type == OBJT_VNODE) ||
2553 		    (object->type == OBJT_DEVICE))) {
2554 			int clean_only =
2555 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2556 			vm_object_reference_locked(object);
2557 			switch(current->maptype) {
2558 			case VM_MAPTYPE_NORMAL:
2559 				vm_object_page_remove(object,
2560 				    OFF_TO_IDX(offset),
2561 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2562 				    clean_only);
2563 				break;
2564 			case VM_MAPTYPE_VPAGETABLE:
2565 				vm_object_page_remove(object, 0, 0, clean_only);
2566 				break;
2567 			}
2568 			vm_object_deallocate_locked(object);
2569 		}
2570 		start += size;
2571 	}
2572 
2573 	lwkt_reltoken(&vmobj_token);
2574 	lwkt_reltoken(&vm_token);
2575 	vm_map_unlock_read(map);
2576 
2577 	return (KERN_SUCCESS);
2578 }
2579 
2580 /*
2581  * Make the region specified by this entry pageable.
2582  *
2583  * The vm_map must be exclusively locked.
2584  */
2585 static void
2586 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2587 {
2588 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2589 	entry->wired_count = 0;
2590 	vm_fault_unwire(map, entry);
2591 }
2592 
2593 /*
2594  * Deallocate the given entry from the target map.
2595  *
2596  * The vm_map must be exclusively locked.
2597  */
2598 static void
2599 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2600 {
2601 	vm_map_entry_unlink(map, entry);
2602 	map->size -= entry->end - entry->start;
2603 
2604 	switch(entry->maptype) {
2605 	case VM_MAPTYPE_NORMAL:
2606 	case VM_MAPTYPE_VPAGETABLE:
2607 		vm_object_deallocate(entry->object.vm_object);
2608 		break;
2609 	default:
2610 		break;
2611 	}
2612 
2613 	vm_map_entry_dispose(map, entry, countp);
2614 }
2615 
2616 /*
2617  * Deallocates the given address range from the target map.
2618  *
2619  * The vm_map must be exclusively locked.
2620  */
2621 int
2622 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2623 {
2624 	vm_object_t object;
2625 	vm_map_entry_t entry;
2626 	vm_map_entry_t first_entry;
2627 
2628 	ASSERT_VM_MAP_LOCKED(map);
2629 again:
2630 	/*
2631 	 * Find the start of the region, and clip it.  Set entry to point
2632 	 * at the first record containing the requested address or, if no
2633 	 * such record exists, the next record with a greater address.  The
2634 	 * loop will run from this point until a record beyond the termination
2635 	 * address is encountered.
2636 	 *
2637 	 * map->hint must be adjusted to not point to anything we delete,
2638 	 * so set it to the entry prior to the one being deleted.
2639 	 *
2640 	 * GGG see other GGG comment.
2641 	 */
2642 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2643 		entry = first_entry;
2644 		vm_map_clip_start(map, entry, start, countp);
2645 		map->hint = entry->prev;	/* possible problem XXX */
2646 	} else {
2647 		map->hint = first_entry;	/* possible problem XXX */
2648 		entry = first_entry->next;
2649 	}
2650 
2651 	/*
2652 	 * If a hole opens up prior to the current first_free then
2653 	 * adjust first_free.  As with map->hint, map->first_free
2654 	 * cannot be left set to anything we might delete.
2655 	 */
2656 	if (entry == &map->header) {
2657 		map->first_free = &map->header;
2658 	} else if (map->first_free->start >= start) {
2659 		map->first_free = entry->prev;
2660 	}
2661 
2662 	/*
2663 	 * Step through all entries in this region
2664 	 */
2665 	while ((entry != &map->header) && (entry->start < end)) {
2666 		vm_map_entry_t next;
2667 		vm_offset_t s, e;
2668 		vm_pindex_t offidxstart, offidxend, count;
2669 
2670 		/*
2671 		 * If we hit an in-transition entry we have to sleep and
2672 		 * retry.  It's easier (and not really slower) to just retry
2673 		 * since this case occurs so rarely and the hint is already
2674 		 * pointing at the right place.  We have to reset the
2675 		 * start offset so as not to accidently delete an entry
2676 		 * another process just created in vacated space.
2677 		 */
2678 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2679 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2680 			start = entry->start;
2681 			++mycpu->gd_cnt.v_intrans_coll;
2682 			++mycpu->gd_cnt.v_intrans_wait;
2683 			vm_map_transition_wait(map);
2684 			goto again;
2685 		}
2686 		vm_map_clip_end(map, entry, end, countp);
2687 
2688 		s = entry->start;
2689 		e = entry->end;
2690 		next = entry->next;
2691 
2692 		offidxstart = OFF_TO_IDX(entry->offset);
2693 		count = OFF_TO_IDX(e - s);
2694 		object = entry->object.vm_object;
2695 
2696 		/*
2697 		 * Unwire before removing addresses from the pmap; otherwise,
2698 		 * unwiring will put the entries back in the pmap.
2699 		 */
2700 		if (entry->wired_count != 0)
2701 			vm_map_entry_unwire(map, entry);
2702 
2703 		offidxend = offidxstart + count;
2704 
2705 		/*
2706 		 * Hold vm_token when manipulating vm_objects,
2707 		 *
2708 		 * Hold vmobj_token when potentially adding or removing
2709 		 * objects (collapse requires both).
2710 		 */
2711 		lwkt_gettoken(&vm_token);
2712 		lwkt_gettoken(&vmobj_token);
2713 
2714 		if (object == &kernel_object) {
2715 			vm_object_page_remove(object, offidxstart,
2716 					      offidxend, FALSE);
2717 		} else {
2718 			pmap_remove(map->pmap, s, e);
2719 
2720 			if (object != NULL &&
2721 			    object->ref_count != 1 &&
2722 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2723 			     OBJ_ONEMAPPING &&
2724 			    (object->type == OBJT_DEFAULT ||
2725 			     object->type == OBJT_SWAP)) {
2726 				vm_object_collapse(object);
2727 				vm_object_page_remove(object, offidxstart,
2728 						      offidxend, FALSE);
2729 				if (object->type == OBJT_SWAP) {
2730 					swap_pager_freespace(object,
2731 							     offidxstart,
2732 							     count);
2733 				}
2734 				if (offidxend >= object->size &&
2735 				    offidxstart < object->size) {
2736 					object->size = offidxstart;
2737 				}
2738 			}
2739 		}
2740 		lwkt_reltoken(&vmobj_token);
2741 		lwkt_reltoken(&vm_token);
2742 
2743 		/*
2744 		 * Delete the entry (which may delete the object) only after
2745 		 * removing all pmap entries pointing to its pages.
2746 		 * (Otherwise, its page frames may be reallocated, and any
2747 		 * modify bits will be set in the wrong object!)
2748 		 */
2749 		vm_map_entry_delete(map, entry, countp);
2750 		entry = next;
2751 	}
2752 	return (KERN_SUCCESS);
2753 }
2754 
2755 /*
2756  * Remove the given address range from the target map.
2757  * This is the exported form of vm_map_delete.
2758  *
2759  * No requirements.
2760  */
2761 int
2762 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2763 {
2764 	int result;
2765 	int count;
2766 
2767 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2768 	vm_map_lock(map);
2769 	VM_MAP_RANGE_CHECK(map, start, end);
2770 	result = vm_map_delete(map, start, end, &count);
2771 	vm_map_unlock(map);
2772 	vm_map_entry_release(count);
2773 
2774 	return (result);
2775 }
2776 
2777 /*
2778  * Assert that the target map allows the specified privilege on the
2779  * entire address region given.  The entire region must be allocated.
2780  *
2781  * The caller must specify whether the vm_map is already locked or not.
2782  */
2783 boolean_t
2784 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2785 			vm_prot_t protection, boolean_t have_lock)
2786 {
2787 	vm_map_entry_t entry;
2788 	vm_map_entry_t tmp_entry;
2789 	boolean_t result;
2790 
2791 	if (have_lock == FALSE)
2792 		vm_map_lock_read(map);
2793 
2794 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2795 		if (have_lock == FALSE)
2796 			vm_map_unlock_read(map);
2797 		return (FALSE);
2798 	}
2799 	entry = tmp_entry;
2800 
2801 	result = TRUE;
2802 	while (start < end) {
2803 		if (entry == &map->header) {
2804 			result = FALSE;
2805 			break;
2806 		}
2807 		/*
2808 		 * No holes allowed!
2809 		 */
2810 
2811 		if (start < entry->start) {
2812 			result = FALSE;
2813 			break;
2814 		}
2815 		/*
2816 		 * Check protection associated with entry.
2817 		 */
2818 
2819 		if ((entry->protection & protection) != protection) {
2820 			result = FALSE;
2821 			break;
2822 		}
2823 		/* go to next entry */
2824 
2825 		start = entry->end;
2826 		entry = entry->next;
2827 	}
2828 	if (have_lock == FALSE)
2829 		vm_map_unlock_read(map);
2830 	return (result);
2831 }
2832 
2833 /*
2834  * Split the pages in a map entry into a new object.  This affords
2835  * easier removal of unused pages, and keeps object inheritance from
2836  * being a negative impact on memory usage.
2837  *
2838  * The vm_map must be exclusively locked.
2839  */
2840 static void
2841 vm_map_split(vm_map_entry_t entry)
2842 {
2843 	vm_page_t m;
2844 	vm_object_t orig_object, new_object, source;
2845 	vm_offset_t s, e;
2846 	vm_pindex_t offidxstart, offidxend, idx;
2847 	vm_size_t size;
2848 	vm_ooffset_t offset;
2849 
2850 	orig_object = entry->object.vm_object;
2851 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2852 		return;
2853 	if (orig_object->ref_count <= 1)
2854 		return;
2855 
2856 	offset = entry->offset;
2857 	s = entry->start;
2858 	e = entry->end;
2859 
2860 	offidxstart = OFF_TO_IDX(offset);
2861 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2862 	size = offidxend - offidxstart;
2863 
2864 	switch(orig_object->type) {
2865 	case OBJT_DEFAULT:
2866 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2867 						 VM_PROT_ALL, 0);
2868 		break;
2869 	case OBJT_SWAP:
2870 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2871 					      VM_PROT_ALL, 0);
2872 		break;
2873 	default:
2874 		/* not reached */
2875 		new_object = NULL;
2876 		KKASSERT(0);
2877 	}
2878 	if (new_object == NULL)
2879 		return;
2880 
2881 	/*
2882 	 * vm_token required when manipulating vm_objects.
2883 	 */
2884 	lwkt_gettoken(&vm_token);
2885 	lwkt_gettoken(&vmobj_token);
2886 
2887 	source = orig_object->backing_object;
2888 	if (source != NULL) {
2889 		/* Referenced by new_object */
2890 		vm_object_reference_locked(source);
2891 		LIST_INSERT_HEAD(&source->shadow_head,
2892 				 new_object, shadow_list);
2893 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2894 		new_object->backing_object_offset =
2895 			orig_object->backing_object_offset +
2896 			IDX_TO_OFF(offidxstart);
2897 		new_object->backing_object = source;
2898 		source->shadow_count++;
2899 		source->generation++;
2900 	}
2901 
2902 	for (idx = 0; idx < size; idx++) {
2903 		vm_page_t m;
2904 
2905 	retry:
2906 		m = vm_page_lookup(orig_object, offidxstart + idx);
2907 		if (m == NULL)
2908 			continue;
2909 
2910 		/*
2911 		 * We must wait for pending I/O to complete before we can
2912 		 * rename the page.
2913 		 *
2914 		 * We do not have to VM_PROT_NONE the page as mappings should
2915 		 * not be changed by this operation.
2916 		 */
2917 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2918 			goto retry;
2919 		vm_page_busy(m);
2920 		vm_page_rename(m, new_object, idx);
2921 		/* page automatically made dirty by rename and cache handled */
2922 		vm_page_busy(m);
2923 	}
2924 
2925 	if (orig_object->type == OBJT_SWAP) {
2926 		vm_object_pip_add(orig_object, 1);
2927 		/*
2928 		 * copy orig_object pages into new_object
2929 		 * and destroy unneeded pages in
2930 		 * shadow object.
2931 		 */
2932 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2933 		vm_object_pip_wakeup(orig_object);
2934 	}
2935 
2936 	/*
2937 	 * Wakeup the pages we played with.  No spl protection is needed
2938 	 * for a simple wakeup.
2939 	 */
2940 	for (idx = 0; idx < size; idx++) {
2941 		m = vm_page_lookup(new_object, idx);
2942 		if (m)
2943 			vm_page_wakeup(m);
2944 	}
2945 
2946 	entry->object.vm_object = new_object;
2947 	entry->offset = 0LL;
2948 	vm_object_deallocate_locked(orig_object);
2949 	lwkt_reltoken(&vmobj_token);
2950 	lwkt_reltoken(&vm_token);
2951 }
2952 
2953 /*
2954  * Copies the contents of the source entry to the destination
2955  * entry.  The entries *must* be aligned properly.
2956  *
2957  * The vm_map must be exclusively locked.
2958  * vm_token must be held
2959  */
2960 static void
2961 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2962 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2963 {
2964 	vm_object_t src_object;
2965 
2966 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2967 		return;
2968 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2969 		return;
2970 
2971 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
2972 	lwkt_gettoken(&vmobj_token);		/* required for collapse */
2973 
2974 	if (src_entry->wired_count == 0) {
2975 		/*
2976 		 * If the source entry is marked needs_copy, it is already
2977 		 * write-protected.
2978 		 */
2979 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2980 			pmap_protect(src_map->pmap,
2981 			    src_entry->start,
2982 			    src_entry->end,
2983 			    src_entry->protection & ~VM_PROT_WRITE);
2984 		}
2985 
2986 		/*
2987 		 * Make a copy of the object.
2988 		 */
2989 		if ((src_object = src_entry->object.vm_object) != NULL) {
2990 			if ((src_object->handle == NULL) &&
2991 				(src_object->type == OBJT_DEFAULT ||
2992 				 src_object->type == OBJT_SWAP)) {
2993 				vm_object_collapse(src_object);
2994 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2995 					vm_map_split(src_entry);
2996 					src_object = src_entry->object.vm_object;
2997 				}
2998 			}
2999 
3000 			vm_object_reference_locked(src_object);
3001 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3002 			dst_entry->object.vm_object = src_object;
3003 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3004 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3005 			dst_entry->offset = src_entry->offset;
3006 		} else {
3007 			dst_entry->object.vm_object = NULL;
3008 			dst_entry->offset = 0;
3009 		}
3010 
3011 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3012 		    dst_entry->end - dst_entry->start, src_entry->start);
3013 	} else {
3014 		/*
3015 		 * Of course, wired down pages can't be set copy-on-write.
3016 		 * Cause wired pages to be copied into the new map by
3017 		 * simulating faults (the new pages are pageable)
3018 		 */
3019 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3020 	}
3021 	lwkt_reltoken(&vmobj_token);
3022 }
3023 
3024 /*
3025  * vmspace_fork:
3026  * Create a new process vmspace structure and vm_map
3027  * based on those of an existing process.  The new map
3028  * is based on the old map, according to the inheritance
3029  * values on the regions in that map.
3030  *
3031  * The source map must not be locked.
3032  * No requirements.
3033  */
3034 struct vmspace *
3035 vmspace_fork(struct vmspace *vm1)
3036 {
3037 	struct vmspace *vm2;
3038 	vm_map_t old_map = &vm1->vm_map;
3039 	vm_map_t new_map;
3040 	vm_map_entry_t old_entry;
3041 	vm_map_entry_t new_entry;
3042 	vm_object_t object;
3043 	int count;
3044 
3045 	lwkt_gettoken(&vm_token);
3046 	lwkt_gettoken(&vmspace_token);
3047 	lwkt_gettoken(&vmobj_token);
3048 	vm_map_lock(old_map);
3049 	old_map->infork = 1;
3050 
3051 	/*
3052 	 * XXX Note: upcalls are not copied.
3053 	 */
3054 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3055 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3056 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3057 	new_map = &vm2->vm_map;	/* XXX */
3058 	new_map->timestamp = 1;
3059 
3060 	vm_map_lock(new_map);
3061 
3062 	count = 0;
3063 	old_entry = old_map->header.next;
3064 	while (old_entry != &old_map->header) {
3065 		++count;
3066 		old_entry = old_entry->next;
3067 	}
3068 
3069 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3070 
3071 	old_entry = old_map->header.next;
3072 	while (old_entry != &old_map->header) {
3073 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3074 			panic("vm_map_fork: encountered a submap");
3075 
3076 		switch (old_entry->inheritance) {
3077 		case VM_INHERIT_NONE:
3078 			break;
3079 		case VM_INHERIT_SHARE:
3080 			/*
3081 			 * Clone the entry, creating the shared object if
3082 			 * necessary.
3083 			 */
3084 			object = old_entry->object.vm_object;
3085 			if (object == NULL) {
3086 				vm_map_entry_allocate_object(old_entry);
3087 				object = old_entry->object.vm_object;
3088 			}
3089 
3090 			/*
3091 			 * Add the reference before calling vm_map_entry_shadow
3092 			 * to insure that a shadow object is created.
3093 			 */
3094 			vm_object_reference_locked(object);
3095 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3096 				vm_map_entry_shadow(old_entry);
3097 				/* Transfer the second reference too. */
3098 				vm_object_reference_locked(
3099 				    old_entry->object.vm_object);
3100 				vm_object_deallocate_locked(object);
3101 				object = old_entry->object.vm_object;
3102 			}
3103 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3104 
3105 			/*
3106 			 * Clone the entry, referencing the shared object.
3107 			 */
3108 			new_entry = vm_map_entry_create(new_map, &count);
3109 			*new_entry = *old_entry;
3110 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3111 			new_entry->wired_count = 0;
3112 
3113 			/*
3114 			 * Insert the entry into the new map -- we know we're
3115 			 * inserting at the end of the new map.
3116 			 */
3117 
3118 			vm_map_entry_link(new_map, new_map->header.prev,
3119 					  new_entry);
3120 
3121 			/*
3122 			 * Update the physical map
3123 			 */
3124 			pmap_copy(new_map->pmap, old_map->pmap,
3125 			    new_entry->start,
3126 			    (old_entry->end - old_entry->start),
3127 			    old_entry->start);
3128 			break;
3129 		case VM_INHERIT_COPY:
3130 			/*
3131 			 * Clone the entry and link into the map.
3132 			 */
3133 			new_entry = vm_map_entry_create(new_map, &count);
3134 			*new_entry = *old_entry;
3135 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3136 			new_entry->wired_count = 0;
3137 			new_entry->object.vm_object = NULL;
3138 			vm_map_entry_link(new_map, new_map->header.prev,
3139 					  new_entry);
3140 			vm_map_copy_entry(old_map, new_map, old_entry,
3141 					  new_entry);
3142 			break;
3143 		}
3144 		old_entry = old_entry->next;
3145 	}
3146 
3147 	new_map->size = old_map->size;
3148 	old_map->infork = 0;
3149 	vm_map_unlock(old_map);
3150 	vm_map_unlock(new_map);
3151 	vm_map_entry_release(count);
3152 
3153 	lwkt_reltoken(&vmobj_token);
3154 	lwkt_reltoken(&vmspace_token);
3155 	lwkt_reltoken(&vm_token);
3156 
3157 	return (vm2);
3158 }
3159 
3160 /*
3161  * Create an auto-grow stack entry
3162  *
3163  * No requirements.
3164  */
3165 int
3166 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3167 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3168 {
3169 	vm_map_entry_t	prev_entry;
3170 	vm_map_entry_t	new_stack_entry;
3171 	vm_size_t	init_ssize;
3172 	int		rv;
3173 	int		count;
3174 	vm_offset_t	tmpaddr;
3175 
3176 	cow |= MAP_IS_STACK;
3177 
3178 	if (max_ssize < sgrowsiz)
3179 		init_ssize = max_ssize;
3180 	else
3181 		init_ssize = sgrowsiz;
3182 
3183 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3184 	vm_map_lock(map);
3185 
3186 	/*
3187 	 * Find space for the mapping
3188 	 */
3189 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3190 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3191 				     flags, &tmpaddr)) {
3192 			vm_map_unlock(map);
3193 			vm_map_entry_release(count);
3194 			return (KERN_NO_SPACE);
3195 		}
3196 		addrbos = tmpaddr;
3197 	}
3198 
3199 	/* If addr is already mapped, no go */
3200 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3201 		vm_map_unlock(map);
3202 		vm_map_entry_release(count);
3203 		return (KERN_NO_SPACE);
3204 	}
3205 
3206 #if 0
3207 	/* XXX already handled by kern_mmap() */
3208 	/* If we would blow our VMEM resource limit, no go */
3209 	if (map->size + init_ssize >
3210 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3211 		vm_map_unlock(map);
3212 		vm_map_entry_release(count);
3213 		return (KERN_NO_SPACE);
3214 	}
3215 #endif
3216 
3217 	/*
3218 	 * If we can't accomodate max_ssize in the current mapping,
3219 	 * no go.  However, we need to be aware that subsequent user
3220 	 * mappings might map into the space we have reserved for
3221 	 * stack, and currently this space is not protected.
3222 	 *
3223 	 * Hopefully we will at least detect this condition
3224 	 * when we try to grow the stack.
3225 	 */
3226 	if ((prev_entry->next != &map->header) &&
3227 	    (prev_entry->next->start < addrbos + max_ssize)) {
3228 		vm_map_unlock(map);
3229 		vm_map_entry_release(count);
3230 		return (KERN_NO_SPACE);
3231 	}
3232 
3233 	/*
3234 	 * We initially map a stack of only init_ssize.  We will
3235 	 * grow as needed later.  Since this is to be a grow
3236 	 * down stack, we map at the top of the range.
3237 	 *
3238 	 * Note: we would normally expect prot and max to be
3239 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3240 	 * eliminate these as input parameters, and just
3241 	 * pass these values here in the insert call.
3242 	 */
3243 	rv = vm_map_insert(map, &count,
3244 			   NULL, 0, addrbos + max_ssize - init_ssize,
3245 	                   addrbos + max_ssize,
3246 			   VM_MAPTYPE_NORMAL,
3247 			   prot, max,
3248 			   cow);
3249 
3250 	/* Now set the avail_ssize amount */
3251 	if (rv == KERN_SUCCESS) {
3252 		if (prev_entry != &map->header)
3253 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3254 		new_stack_entry = prev_entry->next;
3255 		if (new_stack_entry->end   != addrbos + max_ssize ||
3256 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3257 			panic ("Bad entry start/end for new stack entry");
3258 		else
3259 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3260 	}
3261 
3262 	vm_map_unlock(map);
3263 	vm_map_entry_release(count);
3264 	return (rv);
3265 }
3266 
3267 /*
3268  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3269  * desired address is already mapped, or if we successfully grow
3270  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3271  * stack range (this is strange, but preserves compatibility with
3272  * the grow function in vm_machdep.c).
3273  *
3274  * No requirements.
3275  */
3276 int
3277 vm_map_growstack (struct proc *p, vm_offset_t addr)
3278 {
3279 	vm_map_entry_t prev_entry;
3280 	vm_map_entry_t stack_entry;
3281 	vm_map_entry_t new_stack_entry;
3282 	struct vmspace *vm = p->p_vmspace;
3283 	vm_map_t map = &vm->vm_map;
3284 	vm_offset_t    end;
3285 	int grow_amount;
3286 	int rv = KERN_SUCCESS;
3287 	int is_procstack;
3288 	int use_read_lock = 1;
3289 	int count;
3290 
3291 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3292 Retry:
3293 	if (use_read_lock)
3294 		vm_map_lock_read(map);
3295 	else
3296 		vm_map_lock(map);
3297 
3298 	/* If addr is already in the entry range, no need to grow.*/
3299 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3300 		goto done;
3301 
3302 	if ((stack_entry = prev_entry->next) == &map->header)
3303 		goto done;
3304 	if (prev_entry == &map->header)
3305 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3306 	else
3307 		end = prev_entry->end;
3308 
3309 	/*
3310 	 * This next test mimics the old grow function in vm_machdep.c.
3311 	 * It really doesn't quite make sense, but we do it anyway
3312 	 * for compatibility.
3313 	 *
3314 	 * If not growable stack, return success.  This signals the
3315 	 * caller to proceed as he would normally with normal vm.
3316 	 */
3317 	if (stack_entry->aux.avail_ssize < 1 ||
3318 	    addr >= stack_entry->start ||
3319 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3320 		goto done;
3321 	}
3322 
3323 	/* Find the minimum grow amount */
3324 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3325 	if (grow_amount > stack_entry->aux.avail_ssize) {
3326 		rv = KERN_NO_SPACE;
3327 		goto done;
3328 	}
3329 
3330 	/*
3331 	 * If there is no longer enough space between the entries
3332 	 * nogo, and adjust the available space.  Note: this
3333 	 * should only happen if the user has mapped into the
3334 	 * stack area after the stack was created, and is
3335 	 * probably an error.
3336 	 *
3337 	 * This also effectively destroys any guard page the user
3338 	 * might have intended by limiting the stack size.
3339 	 */
3340 	if (grow_amount > stack_entry->start - end) {
3341 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3342 			use_read_lock = 0;
3343 			goto Retry;
3344 		}
3345 		use_read_lock = 0;
3346 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3347 		rv = KERN_NO_SPACE;
3348 		goto done;
3349 	}
3350 
3351 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3352 
3353 	/* If this is the main process stack, see if we're over the
3354 	 * stack limit.
3355 	 */
3356 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3357 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3358 		rv = KERN_NO_SPACE;
3359 		goto done;
3360 	}
3361 
3362 	/* Round up the grow amount modulo SGROWSIZ */
3363 	grow_amount = roundup (grow_amount, sgrowsiz);
3364 	if (grow_amount > stack_entry->aux.avail_ssize) {
3365 		grow_amount = stack_entry->aux.avail_ssize;
3366 	}
3367 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3368 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3369 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3370 		              ctob(vm->vm_ssize);
3371 	}
3372 
3373 	/* If we would blow our VMEM resource limit, no go */
3374 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3375 		rv = KERN_NO_SPACE;
3376 		goto done;
3377 	}
3378 
3379 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3380 		use_read_lock = 0;
3381 		goto Retry;
3382 	}
3383 	use_read_lock = 0;
3384 
3385 	/* Get the preliminary new entry start value */
3386 	addr = stack_entry->start - grow_amount;
3387 
3388 	/* If this puts us into the previous entry, cut back our growth
3389 	 * to the available space.  Also, see the note above.
3390 	 */
3391 	if (addr < end) {
3392 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3393 		addr = end;
3394 	}
3395 
3396 	rv = vm_map_insert(map, &count,
3397 			   NULL, 0, addr, stack_entry->start,
3398 			   VM_MAPTYPE_NORMAL,
3399 			   VM_PROT_ALL, VM_PROT_ALL,
3400 			   0);
3401 
3402 	/* Adjust the available stack space by the amount we grew. */
3403 	if (rv == KERN_SUCCESS) {
3404 		if (prev_entry != &map->header)
3405 			vm_map_clip_end(map, prev_entry, addr, &count);
3406 		new_stack_entry = prev_entry->next;
3407 		if (new_stack_entry->end   != stack_entry->start  ||
3408 		    new_stack_entry->start != addr)
3409 			panic ("Bad stack grow start/end in new stack entry");
3410 		else {
3411 			new_stack_entry->aux.avail_ssize =
3412 				stack_entry->aux.avail_ssize -
3413 				(new_stack_entry->end - new_stack_entry->start);
3414 			if (is_procstack)
3415 				vm->vm_ssize += btoc(new_stack_entry->end -
3416 						     new_stack_entry->start);
3417 		}
3418 
3419 		if (map->flags & MAP_WIREFUTURE)
3420 			vm_map_unwire(map, new_stack_entry->start,
3421 				      new_stack_entry->end, FALSE);
3422 	}
3423 
3424 done:
3425 	if (use_read_lock)
3426 		vm_map_unlock_read(map);
3427 	else
3428 		vm_map_unlock(map);
3429 	vm_map_entry_release(count);
3430 	return (rv);
3431 }
3432 
3433 /*
3434  * Unshare the specified VM space for exec.  If other processes are
3435  * mapped to it, then create a new one.  The new vmspace is null.
3436  *
3437  * No requirements.
3438  */
3439 void
3440 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3441 {
3442 	struct vmspace *oldvmspace = p->p_vmspace;
3443 	struct vmspace *newvmspace;
3444 	vm_map_t map = &p->p_vmspace->vm_map;
3445 
3446 	/*
3447 	 * If we are execing a resident vmspace we fork it, otherwise
3448 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3449 	 * are not copied to the new vmspace.
3450 	 */
3451 	lwkt_gettoken(&vmspace_token);
3452 	if (vmcopy)  {
3453 		newvmspace = vmspace_fork(vmcopy);
3454 	} else {
3455 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3456 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3457 		      (caddr_t)&oldvmspace->vm_endcopy -
3458 		       (caddr_t)&oldvmspace->vm_startcopy);
3459 	}
3460 
3461 	/*
3462 	 * Finish initializing the vmspace before assigning it
3463 	 * to the process.  The vmspace will become the current vmspace
3464 	 * if p == curproc.
3465 	 */
3466 	pmap_pinit2(vmspace_pmap(newvmspace));
3467 	pmap_replacevm(p, newvmspace, 0);
3468 	sysref_put(&oldvmspace->vm_sysref);
3469 	lwkt_reltoken(&vmspace_token);
3470 }
3471 
3472 /*
3473  * Unshare the specified VM space for forcing COW.  This
3474  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3475  *
3476  * The exitingcnt test is not strictly necessary but has been
3477  * included for code sanity (to make the code a bit more deterministic).
3478  */
3479 void
3480 vmspace_unshare(struct proc *p)
3481 {
3482 	struct vmspace *oldvmspace = p->p_vmspace;
3483 	struct vmspace *newvmspace;
3484 
3485 	lwkt_gettoken(&vmspace_token);
3486 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3487 		return;
3488 	newvmspace = vmspace_fork(oldvmspace);
3489 	pmap_pinit2(vmspace_pmap(newvmspace));
3490 	pmap_replacevm(p, newvmspace, 0);
3491 	sysref_put(&oldvmspace->vm_sysref);
3492 	lwkt_reltoken(&vmspace_token);
3493 }
3494 
3495 /*
3496  * vm_map_hint: return the beginning of the best area suitable for
3497  * creating a new mapping with "prot" protection.
3498  *
3499  * No requirements.
3500  */
3501 vm_offset_t
3502 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3503 {
3504 	struct vmspace *vms = p->p_vmspace;
3505 
3506 	if (!randomize_mmap) {
3507 		/*
3508 		 * Set a reasonable start point for the hint if it was
3509 		 * not specified or if it falls within the heap space.
3510 		 * Hinted mmap()s do not allocate out of the heap space.
3511 		 */
3512 		if (addr == 0 ||
3513 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3514 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3515 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3516 		}
3517 
3518 		return addr;
3519 	}
3520 
3521 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3522 		return addr;
3523 
3524 #ifdef notyet
3525 #ifdef __i386__
3526 	/*
3527 	 * If executable skip first two pages, otherwise start
3528 	 * after data + heap region.
3529 	 */
3530 	if ((prot & VM_PROT_EXECUTE) &&
3531 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3532 		addr = (PAGE_SIZE * 2) +
3533 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3534 		return (round_page(addr));
3535 	}
3536 #endif /* __i386__ */
3537 #endif /* notyet */
3538 
3539 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3540 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3541 
3542 	return (round_page(addr));
3543 }
3544 
3545 /*
3546  * Finds the VM object, offset, and protection for a given virtual address
3547  * in the specified map, assuming a page fault of the type specified.
3548  *
3549  * Leaves the map in question locked for read; return values are guaranteed
3550  * until a vm_map_lookup_done call is performed.  Note that the map argument
3551  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3552  *
3553  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3554  * that fast.
3555  *
3556  * If a lookup is requested with "write protection" specified, the map may
3557  * be changed to perform virtual copying operations, although the data
3558  * referenced will remain the same.
3559  *
3560  * No requirements.
3561  */
3562 int
3563 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3564 	      vm_offset_t vaddr,
3565 	      vm_prot_t fault_typea,
3566 	      vm_map_entry_t *out_entry,	/* OUT */
3567 	      vm_object_t *object,		/* OUT */
3568 	      vm_pindex_t *pindex,		/* OUT */
3569 	      vm_prot_t *out_prot,		/* OUT */
3570 	      boolean_t *wired)			/* OUT */
3571 {
3572 	vm_map_entry_t entry;
3573 	vm_map_t map = *var_map;
3574 	vm_prot_t prot;
3575 	vm_prot_t fault_type = fault_typea;
3576 	int use_read_lock = 1;
3577 	int rv = KERN_SUCCESS;
3578 
3579 RetryLookup:
3580 	if (use_read_lock)
3581 		vm_map_lock_read(map);
3582 	else
3583 		vm_map_lock(map);
3584 
3585 	/*
3586 	 * If the map has an interesting hint, try it before calling full
3587 	 * blown lookup routine.
3588 	 */
3589 	entry = map->hint;
3590 	*out_entry = entry;
3591 
3592 	if ((entry == &map->header) ||
3593 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3594 		vm_map_entry_t tmp_entry;
3595 
3596 		/*
3597 		 * Entry was either not a valid hint, or the vaddr was not
3598 		 * contained in the entry, so do a full lookup.
3599 		 */
3600 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3601 			rv = KERN_INVALID_ADDRESS;
3602 			goto done;
3603 		}
3604 
3605 		entry = tmp_entry;
3606 		*out_entry = entry;
3607 	}
3608 
3609 	/*
3610 	 * Handle submaps.
3611 	 */
3612 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3613 		vm_map_t old_map = map;
3614 
3615 		*var_map = map = entry->object.sub_map;
3616 		if (use_read_lock)
3617 			vm_map_unlock_read(old_map);
3618 		else
3619 			vm_map_unlock(old_map);
3620 		use_read_lock = 1;
3621 		goto RetryLookup;
3622 	}
3623 
3624 	/*
3625 	 * Check whether this task is allowed to have this page.
3626 	 * Note the special case for MAP_ENTRY_COW
3627 	 * pages with an override.  This is to implement a forced
3628 	 * COW for debuggers.
3629 	 */
3630 
3631 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3632 		prot = entry->max_protection;
3633 	else
3634 		prot = entry->protection;
3635 
3636 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3637 	if ((fault_type & prot) != fault_type) {
3638 		rv = KERN_PROTECTION_FAILURE;
3639 		goto done;
3640 	}
3641 
3642 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3643 	    (entry->eflags & MAP_ENTRY_COW) &&
3644 	    (fault_type & VM_PROT_WRITE) &&
3645 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3646 		rv = KERN_PROTECTION_FAILURE;
3647 		goto done;
3648 	}
3649 
3650 	/*
3651 	 * If this page is not pageable, we have to get it for all possible
3652 	 * accesses.
3653 	 */
3654 	*wired = (entry->wired_count != 0);
3655 	if (*wired)
3656 		prot = fault_type = entry->protection;
3657 
3658 	/*
3659 	 * Virtual page tables may need to update the accessed (A) bit
3660 	 * in a page table entry.  Upgrade the fault to a write fault for
3661 	 * that case if the map will support it.  If the map does not support
3662 	 * it the page table entry simply will not be updated.
3663 	 */
3664 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3665 		if (prot & VM_PROT_WRITE)
3666 			fault_type |= VM_PROT_WRITE;
3667 	}
3668 
3669 	/*
3670 	 * If the entry was copy-on-write, we either ...
3671 	 */
3672 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3673 		/*
3674 		 * If we want to write the page, we may as well handle that
3675 		 * now since we've got the map locked.
3676 		 *
3677 		 * If we don't need to write the page, we just demote the
3678 		 * permissions allowed.
3679 		 */
3680 
3681 		if (fault_type & VM_PROT_WRITE) {
3682 			/*
3683 			 * Make a new object, and place it in the object
3684 			 * chain.  Note that no new references have appeared
3685 			 * -- one just moved from the map to the new
3686 			 * object.
3687 			 */
3688 
3689 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3690 				use_read_lock = 0;
3691 				goto RetryLookup;
3692 			}
3693 			use_read_lock = 0;
3694 
3695 			vm_map_entry_shadow(entry);
3696 		} else {
3697 			/*
3698 			 * We're attempting to read a copy-on-write page --
3699 			 * don't allow writes.
3700 			 */
3701 
3702 			prot &= ~VM_PROT_WRITE;
3703 		}
3704 	}
3705 
3706 	/*
3707 	 * Create an object if necessary.
3708 	 */
3709 	if (entry->object.vm_object == NULL &&
3710 	    !map->system_map) {
3711 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3712 			use_read_lock = 0;
3713 			goto RetryLookup;
3714 		}
3715 		use_read_lock = 0;
3716 		vm_map_entry_allocate_object(entry);
3717 	}
3718 
3719 	/*
3720 	 * Return the object/offset from this entry.  If the entry was
3721 	 * copy-on-write or empty, it has been fixed up.
3722 	 */
3723 
3724 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3725 	*object = entry->object.vm_object;
3726 
3727 	/*
3728 	 * Return whether this is the only map sharing this data.  On
3729 	 * success we return with a read lock held on the map.  On failure
3730 	 * we return with the map unlocked.
3731 	 */
3732 	*out_prot = prot;
3733 done:
3734 	if (rv == KERN_SUCCESS) {
3735 		if (use_read_lock == 0)
3736 			vm_map_lock_downgrade(map);
3737 	} else if (use_read_lock) {
3738 		vm_map_unlock_read(map);
3739 	} else {
3740 		vm_map_unlock(map);
3741 	}
3742 	return (rv);
3743 }
3744 
3745 /*
3746  * Releases locks acquired by a vm_map_lookup()
3747  * (according to the handle returned by that lookup).
3748  *
3749  * No other requirements.
3750  */
3751 void
3752 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3753 {
3754 	/*
3755 	 * Unlock the main-level map
3756 	 */
3757 	vm_map_unlock_read(map);
3758 	if (count)
3759 		vm_map_entry_release(count);
3760 }
3761 
3762 #include "opt_ddb.h"
3763 #ifdef DDB
3764 #include <sys/kernel.h>
3765 
3766 #include <ddb/ddb.h>
3767 
3768 /*
3769  * Debugging only
3770  */
3771 DB_SHOW_COMMAND(map, vm_map_print)
3772 {
3773 	static int nlines;
3774 	/* XXX convert args. */
3775 	vm_map_t map = (vm_map_t)addr;
3776 	boolean_t full = have_addr;
3777 
3778 	vm_map_entry_t entry;
3779 
3780 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3781 	    (void *)map,
3782 	    (void *)map->pmap, map->nentries, map->timestamp);
3783 	nlines++;
3784 
3785 	if (!full && db_indent)
3786 		return;
3787 
3788 	db_indent += 2;
3789 	for (entry = map->header.next; entry != &map->header;
3790 	    entry = entry->next) {
3791 		db_iprintf("map entry %p: start=%p, end=%p\n",
3792 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3793 		nlines++;
3794 		{
3795 			static char *inheritance_name[4] =
3796 			{"share", "copy", "none", "donate_copy"};
3797 
3798 			db_iprintf(" prot=%x/%x/%s",
3799 			    entry->protection,
3800 			    entry->max_protection,
3801 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3802 			if (entry->wired_count != 0)
3803 				db_printf(", wired");
3804 		}
3805 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3806 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3807 			db_printf(", share=%p, offset=0x%lx\n",
3808 			    (void *)entry->object.sub_map,
3809 			    (long)entry->offset);
3810 			nlines++;
3811 			if ((entry->prev == &map->header) ||
3812 			    (entry->prev->object.sub_map !=
3813 				entry->object.sub_map)) {
3814 				db_indent += 2;
3815 				vm_map_print((db_expr_t)(intptr_t)
3816 					     entry->object.sub_map,
3817 					     full, 0, NULL);
3818 				db_indent -= 2;
3819 			}
3820 		} else {
3821 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3822 			db_printf(", object=%p, offset=0x%lx",
3823 			    (void *)entry->object.vm_object,
3824 			    (long)entry->offset);
3825 			if (entry->eflags & MAP_ENTRY_COW)
3826 				db_printf(", copy (%s)",
3827 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3828 			db_printf("\n");
3829 			nlines++;
3830 
3831 			if ((entry->prev == &map->header) ||
3832 			    (entry->prev->object.vm_object !=
3833 				entry->object.vm_object)) {
3834 				db_indent += 2;
3835 				vm_object_print((db_expr_t)(intptr_t)
3836 						entry->object.vm_object,
3837 						full, 0, NULL);
3838 				nlines += 4;
3839 				db_indent -= 2;
3840 			}
3841 		}
3842 	}
3843 	db_indent -= 2;
3844 	if (db_indent == 0)
3845 		nlines = 0;
3846 }
3847 
3848 /*
3849  * Debugging only
3850  */
3851 DB_SHOW_COMMAND(procvm, procvm)
3852 {
3853 	struct proc *p;
3854 
3855 	if (have_addr) {
3856 		p = (struct proc *) addr;
3857 	} else {
3858 		p = curproc;
3859 	}
3860 
3861 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3862 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3863 	    (void *)vmspace_pmap(p->p_vmspace));
3864 
3865 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3866 }
3867 
3868 #endif /* DDB */
3869