xref: /dragonfly/sys/vm/vm_map.c (revision 16777b6b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.12 2003/09/26 19:23:34 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142 
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 		vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153 
154 void
155 vm_map_startup()
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172 	vm_offset_t min, max;
173 {
174 	struct vmspace *vm;
175 
176 	vm = zalloc(vmspace_zone);
177 	vm_map_init(&vm->vm_map, min, max);
178 	pmap_pinit(vmspace_pmap(vm));
179 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
180 	vm->vm_refcnt = 1;
181 	vm->vm_shm = NULL;
182 	vm->vm_exitingcnt = 0;
183 	return (vm);
184 }
185 
186 void
187 vm_init2(void)
188 {
189 	zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192 	pmap_init2();
193 	vm_object_init2();
194 }
195 
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199 	int count;
200 
201 	/*
202 	 * Make sure any SysV shm is freed, it might not have in
203 	 * exit1()
204 	 */
205 	shmexit(vm);
206 
207 	/*
208 	 * Lock the map, to wait out all other references to it.
209 	 * Delete all of the mappings and pages they hold, then call
210 	 * the pmap module to reclaim anything left.
211 	 */
212 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
213 	vm_map_lock(&vm->vm_map);
214 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
215 		vm->vm_map.max_offset, &count);
216 	vm_map_unlock(&vm->vm_map);
217 	vm_map_entry_release(count);
218 
219 	pmap_release(vmspace_pmap(vm));
220 	zfree(vmspace_zone, vm);
221 }
222 
223 void
224 vmspace_free(struct vmspace *vm)
225 {
226 	if (vm->vm_refcnt == 0)
227 		panic("vmspace_free: attempt to free already freed vmspace");
228 
229 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
230 		vmspace_dofree(vm);
231 }
232 
233 void
234 vmspace_exitfree(struct proc *p)
235 {
236 	struct vmspace *vm;
237 
238 	vm = p->p_vmspace;
239 	p->p_vmspace = NULL;
240 
241 	/*
242 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
243 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
244 	 * exitingcnt may increment above 0 and drop back down to zero
245 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
246 	 * may also increment above 0 and drop back down to zero several
247 	 * times while vm_exitingcnt is held non-zero.
248 	 *
249 	 * The last wait on the exiting child's vmspace will clean up
250 	 * the remainder of the vmspace.
251 	 */
252 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
253 		vmspace_dofree(vm);
254 }
255 
256 /*
257  * vmspace_swap_count() - count the approximate swap useage in pages for a
258  *			  vmspace.
259  *
260  *	Swap useage is determined by taking the proportional swap used by
261  *	VM objects backing the VM map.  To make up for fractional losses,
262  *	if the VM object has any swap use at all the associated map entries
263  *	count for at least 1 swap page.
264  */
265 int
266 vmspace_swap_count(struct vmspace *vmspace)
267 {
268 	vm_map_t map = &vmspace->vm_map;
269 	vm_map_entry_t cur;
270 	int count = 0;
271 
272 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
273 		vm_object_t object;
274 
275 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
276 		    (object = cur->object.vm_object) != NULL &&
277 		    object->type == OBJT_SWAP
278 		) {
279 			int n = (cur->end - cur->start) / PAGE_SIZE;
280 
281 			if (object->un_pager.swp.swp_bcount) {
282 				count += object->un_pager.swp.swp_bcount *
283 				    SWAP_META_PAGES * n / object->size + 1;
284 			}
285 		}
286 	}
287 	return(count);
288 }
289 
290 
291 /*
292  *	vm_map_create:
293  *
294  *	Creates and returns a new empty VM map with
295  *	the given physical map structure, and having
296  *	the given lower and upper address bounds.
297  */
298 vm_map_t
299 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
300 {
301 	vm_map_t result;
302 
303 	result = zalloc(mapzone);
304 	vm_map_init(result, min, max);
305 	result->pmap = pmap;
306 	return (result);
307 }
308 
309 /*
310  * Initialize an existing vm_map structure
311  * such as that in the vmspace structure.
312  * The pmap is set elsewhere.
313  */
314 void
315 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
316 {
317 	map->header.next = map->header.prev = &map->header;
318 	map->nentries = 0;
319 	map->size = 0;
320 	map->system_map = 0;
321 	map->infork = 0;
322 	map->min_offset = min;
323 	map->max_offset = max;
324 	map->first_free = &map->header;
325 	map->hint = &map->header;
326 	map->timestamp = 0;
327 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
328 }
329 
330 /*
331  *	vm_map_entry_reserve:
332  *
333  *	Reserves vm_map_entry structures outside of the critical path
334  */
335 int
336 vm_map_entry_reserve(int count)
337 {
338 	struct globaldata *gd = mycpu;
339 	vm_map_entry_t entry;
340 
341 	crit_enter();
342 	gd->gd_vme_avail -= count;
343 
344 	/*
345 	 * Make sure we have enough structures in gd_vme_base to handle
346 	 * the reservation request.
347 	 */
348 	while (gd->gd_vme_avail < 0) {
349 		entry = zalloc(mapentzone);
350 		entry->next = gd->gd_vme_base;
351 		gd->gd_vme_base = entry;
352 		++gd->gd_vme_avail;
353 	}
354 	crit_exit();
355 	return(count);
356 }
357 
358 /*
359  *	vm_map_entry_release:
360  *
361  *	Releases previously reserved vm_map_entry structures that were not
362  *	used.  If we have too much junk in our per-cpu cache clean some of
363  *	it out.
364  */
365 void
366 vm_map_entry_release(int count)
367 {
368 	struct globaldata *gd = mycpu;
369 	vm_map_entry_t entry;
370 
371 	crit_enter();
372 	gd->gd_vme_avail += count;
373 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
374 		entry = gd->gd_vme_base;
375 		KKASSERT(entry != NULL);
376 		gd->gd_vme_base = entry->next;
377 		--gd->gd_vme_avail;
378 		crit_exit();
379 		zfree(mapentzone, entry);
380 		crit_enter();
381 	}
382 	crit_exit();
383 }
384 
385 /*
386  *	vm_map_entry_kreserve:
387  *
388  *	Reserve map entry structures for use in kernel_map or (if it exists)
389  *	kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
390  *	basis.
391  *
392  *	XXX if multiple kernel map entries are used without any intervening
393  *	use by another map the KKASSERT() may assert.
394  */
395 int
396 vm_map_entry_kreserve(int count)
397 {
398 	struct globaldata *gd = mycpu;
399 
400 	crit_enter();
401 	gd->gd_vme_kdeficit += count;
402 	crit_exit();
403 	KKASSERT(gd->gd_vme_base != NULL);
404 	return(count);
405 }
406 
407 /*
408  *	vm_map_entry_krelease:
409  *
410  *	Release previously reserved map entries for kernel_map or kmem_map
411  *	use.  This routine determines how many entries were actually used and
412  *	replentishes the kernel reserve supply from vme_avail.
413  *
414  *	If there is insufficient supply vme_avail will go negative, which is
415  *	ok.  We cannot safely call zalloc in this function without getting
416  *	into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
417  *	to regenerate the lost entries.
418  */
419 void
420 vm_map_entry_krelease(int count)
421 {
422 	struct globaldata *gd = mycpu;
423 
424 	crit_enter();
425 	gd->gd_vme_kdeficit -= count;
426 	gd->gd_vme_avail -= gd->gd_vme_kdeficit;	/* can go negative */
427 	gd->gd_vme_kdeficit = 0;
428 	crit_exit();
429 }
430 
431 /*
432  *	vm_map_entry_create:	[ internal use only ]
433  *
434  *	Allocates a VM map entry for insertion.  No entry fields are filled
435  *	in.
436  *
437  *	This routine may be called from an interrupt thread but not a FAST
438  *	interrupt.  This routine may recurse the map lock.
439  */
440 static vm_map_entry_t
441 vm_map_entry_create(vm_map_t map, int *countp)
442 {
443 	struct globaldata *gd = mycpu;
444 	vm_map_entry_t entry;
445 
446 	KKASSERT(*countp > 0);
447 	--*countp;
448 	crit_enter();
449 	entry = gd->gd_vme_base;
450 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
451 	gd->gd_vme_base = entry->next;
452 	crit_exit();
453 	return(entry);
454 }
455 
456 /*
457  *	vm_map_entry_dispose:	[ internal use only ]
458  *
459  *	Dispose of a vm_map_entry that is no longer being referenced.  This
460  *	function may be called from an interrupt.
461  */
462 static void
463 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
464 {
465 	struct globaldata *gd = mycpu;
466 
467 	++*countp;
468 	crit_enter();
469 	entry->next = gd->gd_vme_base;
470 	gd->gd_vme_base = entry;
471 	crit_exit();
472 }
473 
474 
475 /*
476  *	vm_map_entry_{un,}link:
477  *
478  *	Insert/remove entries from maps.
479  */
480 static __inline void
481 vm_map_entry_link(vm_map_t map,
482 		  vm_map_entry_t after_where,
483 		  vm_map_entry_t entry)
484 {
485 	map->nentries++;
486 	entry->prev = after_where;
487 	entry->next = after_where->next;
488 	entry->next->prev = entry;
489 	after_where->next = entry;
490 }
491 
492 static __inline void
493 vm_map_entry_unlink(vm_map_t map,
494 		    vm_map_entry_t entry)
495 {
496 	vm_map_entry_t prev;
497 	vm_map_entry_t next;
498 
499 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
500 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
501 	prev = entry->prev;
502 	next = entry->next;
503 	next->prev = prev;
504 	prev->next = next;
505 	map->nentries--;
506 }
507 
508 /*
509  *	SAVE_HINT:
510  *
511  *	Saves the specified entry as the hint for
512  *	future lookups.
513  */
514 #define	SAVE_HINT(map,value) \
515 		(map)->hint = (value);
516 
517 /*
518  *	vm_map_lookup_entry:	[ internal use only ]
519  *
520  *	Finds the map entry containing (or
521  *	immediately preceding) the specified address
522  *	in the given map; the entry is returned
523  *	in the "entry" parameter.  The boolean
524  *	result indicates whether the address is
525  *	actually contained in the map.
526  */
527 boolean_t
528 vm_map_lookup_entry(map, address, entry)
529 	vm_map_t map;
530 	vm_offset_t address;
531 	vm_map_entry_t *entry;	/* OUT */
532 {
533 	vm_map_entry_t cur;
534 	vm_map_entry_t last;
535 
536 	/*
537 	 * Start looking either from the head of the list, or from the hint.
538 	 */
539 
540 	cur = map->hint;
541 
542 	if (cur == &map->header)
543 		cur = cur->next;
544 
545 	if (address >= cur->start) {
546 		/*
547 		 * Go from hint to end of list.
548 		 *
549 		 * But first, make a quick check to see if we are already looking
550 		 * at the entry we want (which is usually the case). Note also
551 		 * that we don't need to save the hint here... it is the same
552 		 * hint (unless we are at the header, in which case the hint
553 		 * didn't buy us anything anyway).
554 		 */
555 		last = &map->header;
556 		if ((cur != last) && (cur->end > address)) {
557 			*entry = cur;
558 			return (TRUE);
559 		}
560 	} else {
561 		/*
562 		 * Go from start to hint, *inclusively*
563 		 */
564 		last = cur->next;
565 		cur = map->header.next;
566 	}
567 
568 	/*
569 	 * Search linearly
570 	 */
571 
572 	while (cur != last) {
573 		if (cur->end > address) {
574 			if (address >= cur->start) {
575 				/*
576 				 * Save this lookup for future hints, and
577 				 * return
578 				 */
579 
580 				*entry = cur;
581 				SAVE_HINT(map, cur);
582 				return (TRUE);
583 			}
584 			break;
585 		}
586 		cur = cur->next;
587 	}
588 	*entry = cur->prev;
589 	SAVE_HINT(map, *entry);
590 	return (FALSE);
591 }
592 
593 /*
594  *	vm_map_insert:
595  *
596  *	Inserts the given whole VM object into the target
597  *	map at the specified address range.  The object's
598  *	size should match that of the address range.
599  *
600  *	Requires that the map be locked, and leaves it so.  Requires that
601  *	sufficient vm_map_entry structures have been reserved and tracks
602  *	the use via countp.
603  *
604  *	If object is non-NULL, ref count must be bumped by caller
605  *	prior to making call to account for the new entry.
606  */
607 int
608 vm_map_insert(vm_map_t map, int *countp,
609 	      vm_object_t object, vm_ooffset_t offset,
610 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
611 	      int cow)
612 {
613 	vm_map_entry_t new_entry;
614 	vm_map_entry_t prev_entry;
615 	vm_map_entry_t temp_entry;
616 	vm_eflags_t protoeflags;
617 
618 	/*
619 	 * Check that the start and end points are not bogus.
620 	 */
621 
622 	if ((start < map->min_offset) || (end > map->max_offset) ||
623 	    (start >= end))
624 		return (KERN_INVALID_ADDRESS);
625 
626 	/*
627 	 * Find the entry prior to the proposed starting address; if it's part
628 	 * of an existing entry, this range is bogus.
629 	 */
630 
631 	if (vm_map_lookup_entry(map, start, &temp_entry))
632 		return (KERN_NO_SPACE);
633 
634 	prev_entry = temp_entry;
635 
636 	/*
637 	 * Assert that the next entry doesn't overlap the end point.
638 	 */
639 
640 	if ((prev_entry->next != &map->header) &&
641 	    (prev_entry->next->start < end))
642 		return (KERN_NO_SPACE);
643 
644 	protoeflags = 0;
645 
646 	if (cow & MAP_COPY_ON_WRITE)
647 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
648 
649 	if (cow & MAP_NOFAULT) {
650 		protoeflags |= MAP_ENTRY_NOFAULT;
651 
652 		KASSERT(object == NULL,
653 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
654 	}
655 	if (cow & MAP_DISABLE_SYNCER)
656 		protoeflags |= MAP_ENTRY_NOSYNC;
657 	if (cow & MAP_DISABLE_COREDUMP)
658 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
659 
660 	if (object) {
661 		/*
662 		 * When object is non-NULL, it could be shared with another
663 		 * process.  We have to set or clear OBJ_ONEMAPPING
664 		 * appropriately.
665 		 */
666 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
667 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
668 		}
669 	}
670 	else if ((prev_entry != &map->header) &&
671 		 (prev_entry->eflags == protoeflags) &&
672 		 (prev_entry->end == start) &&
673 		 (prev_entry->wired_count == 0) &&
674 		 ((prev_entry->object.vm_object == NULL) ||
675 		  vm_object_coalesce(prev_entry->object.vm_object,
676 				     OFF_TO_IDX(prev_entry->offset),
677 				     (vm_size_t)(prev_entry->end - prev_entry->start),
678 				     (vm_size_t)(end - prev_entry->end)))) {
679 		/*
680 		 * We were able to extend the object.  Determine if we
681 		 * can extend the previous map entry to include the
682 		 * new range as well.
683 		 */
684 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
685 		    (prev_entry->protection == prot) &&
686 		    (prev_entry->max_protection == max)) {
687 			map->size += (end - prev_entry->end);
688 			prev_entry->end = end;
689 			vm_map_simplify_entry(map, prev_entry, countp);
690 			return (KERN_SUCCESS);
691 		}
692 
693 		/*
694 		 * If we can extend the object but cannot extend the
695 		 * map entry, we have to create a new map entry.  We
696 		 * must bump the ref count on the extended object to
697 		 * account for it.  object may be NULL.
698 		 */
699 		object = prev_entry->object.vm_object;
700 		offset = prev_entry->offset +
701 			(prev_entry->end - prev_entry->start);
702 		vm_object_reference(object);
703 	}
704 
705 	/*
706 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
707 	 * in things like the buffer map where we manage kva but do not manage
708 	 * backing objects.
709 	 */
710 
711 	/*
712 	 * Create a new entry
713 	 */
714 
715 	new_entry = vm_map_entry_create(map, countp);
716 	new_entry->start = start;
717 	new_entry->end = end;
718 
719 	new_entry->eflags = protoeflags;
720 	new_entry->object.vm_object = object;
721 	new_entry->offset = offset;
722 	new_entry->avail_ssize = 0;
723 
724 	new_entry->inheritance = VM_INHERIT_DEFAULT;
725 	new_entry->protection = prot;
726 	new_entry->max_protection = max;
727 	new_entry->wired_count = 0;
728 
729 	/*
730 	 * Insert the new entry into the list
731 	 */
732 
733 	vm_map_entry_link(map, prev_entry, new_entry);
734 	map->size += new_entry->end - new_entry->start;
735 
736 	/*
737 	 * Update the free space hint
738 	 */
739 	if ((map->first_free == prev_entry) &&
740 	    (prev_entry->end >= new_entry->start)) {
741 		map->first_free = new_entry;
742 	}
743 
744 #if 0
745 	/*
746 	 * Temporarily removed to avoid MAP_STACK panic, due to
747 	 * MAP_STACK being a huge hack.  Will be added back in
748 	 * when MAP_STACK (and the user stack mapping) is fixed.
749 	 */
750 	/*
751 	 * It may be possible to simplify the entry
752 	 */
753 	vm_map_simplify_entry(map, new_entry, countp);
754 #endif
755 
756 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
757 		pmap_object_init_pt(map->pmap, start,
758 				    object, OFF_TO_IDX(offset), end - start,
759 				    cow & MAP_PREFAULT_PARTIAL);
760 	}
761 
762 	return (KERN_SUCCESS);
763 }
764 
765 /*
766  * Find sufficient space for `length' bytes in the given map, starting at
767  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
768  *
769  * This function will returned an arbitrarily aligned pointer.  If no
770  * particular alignment is required you should pass align as 1.  Note that
771  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
772  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
773  * argument.
774  *
775  * 'align' should be a power of 2 but is not required to be.
776  */
777 int
778 vm_map_findspace(
779 	vm_map_t map,
780 	vm_offset_t start,
781 	vm_size_t length,
782 	vm_offset_t align,
783 	vm_offset_t *addr)
784 {
785 	vm_map_entry_t entry, next;
786 	vm_offset_t end;
787 	vm_offset_t align_mask;
788 
789 	if (start < map->min_offset)
790 		start = map->min_offset;
791 	if (start > map->max_offset)
792 		return (1);
793 
794 	/*
795 	 * If the alignment is not a power of 2 we will have to use
796 	 * a mod/division, set align_mask to a special value.
797 	 */
798 	if ((align | (align - 1)) + 1 != (align << 1))
799 		align_mask = (vm_offset_t)-1;
800 	else
801 		align_mask = align - 1;
802 
803 retry:
804 	/*
805 	 * Look for the first possible address; if there's already something
806 	 * at this address, we have to start after it.
807 	 */
808 	if (start == map->min_offset) {
809 		if ((entry = map->first_free) != &map->header)
810 			start = entry->end;
811 	} else {
812 		vm_map_entry_t tmp;
813 
814 		if (vm_map_lookup_entry(map, start, &tmp))
815 			start = tmp->end;
816 		entry = tmp;
817 	}
818 
819 	/*
820 	 * Look through the rest of the map, trying to fit a new region in the
821 	 * gap between existing regions, or after the very last region.
822 	 */
823 	for (;; start = (entry = next)->end) {
824 		/*
825 		 * Adjust the proposed start by the requested alignment,
826 		 * be sure that we didn't wrap the address.
827 		 */
828 		if (align_mask == (vm_offset_t)-1)
829 			end = ((start + align - 1) / align) * align;
830 		else
831 			end = (start + align_mask) & ~align_mask;
832 		if (end < start)
833 			return (1);
834 		start = end;
835 		/*
836 		 * Find the end of the proposed new region.  Be sure we didn't
837 		 * go beyond the end of the map, or wrap around the address.
838 		 * Then check to see if this is the last entry or if the
839 		 * proposed end fits in the gap between this and the next
840 		 * entry.
841 		 */
842 		end = start + length;
843 		if (end > map->max_offset || end < start)
844 			return (1);
845 		next = entry->next;
846 		if (next == &map->header || next->start >= end)
847 			break;
848 	}
849 	SAVE_HINT(map, entry);
850 	if (map == kernel_map) {
851 		vm_offset_t ksize;
852 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
853 			pmap_growkernel(ksize);
854 			goto retry;
855 		}
856 	}
857 	*addr = start;
858 	return (0);
859 }
860 
861 /*
862  *	vm_map_find finds an unallocated region in the target address
863  *	map with the given length.  The search is defined to be
864  *	first-fit from the specified address; the region found is
865  *	returned in the same parameter.
866  *
867  *	If object is non-NULL, ref count must be bumped by caller
868  *	prior to making call to account for the new entry.
869  */
870 int
871 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
872 	    vm_offset_t *addr,	/* IN/OUT */
873 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
874 	    vm_prot_t max, int cow)
875 {
876 	vm_offset_t start;
877 	int result;
878 	int count;
879 #if defined(USE_KMEM_MAP)
880 	int s = 0;
881 #endif
882 
883 	start = *addr;
884 
885 #if defined(USE_KMEM_MAP)
886 	if (map == kmem_map || map == mb_map)
887 		s = splvm();
888 #endif
889 
890 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
891 	vm_map_lock(map);
892 	if (find_space) {
893 		if (vm_map_findspace(map, start, length, 1, addr)) {
894 			vm_map_unlock(map);
895 			vm_map_entry_release(count);
896 #if defined(USE_KMEM_MAP)
897 			if (map == kmem_map || map == mb_map)
898 				splx(s);
899 #endif
900 			return (KERN_NO_SPACE);
901 		}
902 		start = *addr;
903 	}
904 	result = vm_map_insert(map, &count, object, offset,
905 		start, start + length, prot, max, cow);
906 	vm_map_unlock(map);
907 	vm_map_entry_release(count);
908 
909 #if defined(USE_KMEM_MAP)
910 	if (map == kmem_map || map == mb_map)
911 		splx(s);
912 #endif
913 
914 	return (result);
915 }
916 
917 /*
918  *	vm_map_simplify_entry:
919  *
920  *	Simplify the given map entry by merging with either neighbor.  This
921  *	routine also has the ability to merge with both neighbors.
922  *
923  *	The map must be locked.
924  *
925  *	This routine guarentees that the passed entry remains valid (though
926  *	possibly extended).  When merging, this routine may delete one or
927  *	both neighbors.  No action is taken on entries which have their
928  *	in-transition flag set.
929  */
930 void
931 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
932 {
933 	vm_map_entry_t next, prev;
934 	vm_size_t prevsize, esize;
935 
936 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
937 		++mycpu->gd_cnt.v_intrans_coll;
938 		return;
939 	}
940 
941 	prev = entry->prev;
942 	if (prev != &map->header) {
943 		prevsize = prev->end - prev->start;
944 		if ( (prev->end == entry->start) &&
945 		     (prev->object.vm_object == entry->object.vm_object) &&
946 		     (!prev->object.vm_object ||
947 			(prev->offset + prevsize == entry->offset)) &&
948 		     (prev->eflags == entry->eflags) &&
949 		     (prev->protection == entry->protection) &&
950 		     (prev->max_protection == entry->max_protection) &&
951 		     (prev->inheritance == entry->inheritance) &&
952 		     (prev->wired_count == entry->wired_count)) {
953 			if (map->first_free == prev)
954 				map->first_free = entry;
955 			if (map->hint == prev)
956 				map->hint = entry;
957 			vm_map_entry_unlink(map, prev);
958 			entry->start = prev->start;
959 			entry->offset = prev->offset;
960 			if (prev->object.vm_object)
961 				vm_object_deallocate(prev->object.vm_object);
962 			vm_map_entry_dispose(map, prev, countp);
963 		}
964 	}
965 
966 	next = entry->next;
967 	if (next != &map->header) {
968 		esize = entry->end - entry->start;
969 		if ((entry->end == next->start) &&
970 		    (next->object.vm_object == entry->object.vm_object) &&
971 		     (!entry->object.vm_object ||
972 			(entry->offset + esize == next->offset)) &&
973 		    (next->eflags == entry->eflags) &&
974 		    (next->protection == entry->protection) &&
975 		    (next->max_protection == entry->max_protection) &&
976 		    (next->inheritance == entry->inheritance) &&
977 		    (next->wired_count == entry->wired_count)) {
978 			if (map->first_free == next)
979 				map->first_free = entry;
980 			if (map->hint == next)
981 				map->hint = entry;
982 			vm_map_entry_unlink(map, next);
983 			entry->end = next->end;
984 			if (next->object.vm_object)
985 				vm_object_deallocate(next->object.vm_object);
986 			vm_map_entry_dispose(map, next, countp);
987 	        }
988 	}
989 }
990 /*
991  *	vm_map_clip_start:	[ internal use only ]
992  *
993  *	Asserts that the given entry begins at or after
994  *	the specified address; if necessary,
995  *	it splits the entry into two.
996  */
997 #define vm_map_clip_start(map, entry, startaddr, countp) \
998 { \
999 	if (startaddr > entry->start) \
1000 		_vm_map_clip_start(map, entry, startaddr, countp); \
1001 }
1002 
1003 /*
1004  *	This routine is called only when it is known that
1005  *	the entry must be split.
1006  */
1007 static void
1008 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1009 {
1010 	vm_map_entry_t new_entry;
1011 
1012 	/*
1013 	 * Split off the front portion -- note that we must insert the new
1014 	 * entry BEFORE this one, so that this entry has the specified
1015 	 * starting address.
1016 	 */
1017 
1018 	vm_map_simplify_entry(map, entry, countp);
1019 
1020 	/*
1021 	 * If there is no object backing this entry, we might as well create
1022 	 * one now.  If we defer it, an object can get created after the map
1023 	 * is clipped, and individual objects will be created for the split-up
1024 	 * map.  This is a bit of a hack, but is also about the best place to
1025 	 * put this improvement.
1026 	 */
1027 
1028 	if (entry->object.vm_object == NULL && !map->system_map) {
1029 		vm_object_t object;
1030 		object = vm_object_allocate(OBJT_DEFAULT,
1031 				atop(entry->end - entry->start));
1032 		entry->object.vm_object = object;
1033 		entry->offset = 0;
1034 	}
1035 
1036 	new_entry = vm_map_entry_create(map, countp);
1037 	*new_entry = *entry;
1038 
1039 	new_entry->end = start;
1040 	entry->offset += (start - entry->start);
1041 	entry->start = start;
1042 
1043 	vm_map_entry_link(map, entry->prev, new_entry);
1044 
1045 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1046 		vm_object_reference(new_entry->object.vm_object);
1047 	}
1048 }
1049 
1050 /*
1051  *	vm_map_clip_end:	[ internal use only ]
1052  *
1053  *	Asserts that the given entry ends at or before
1054  *	the specified address; if necessary,
1055  *	it splits the entry into two.
1056  */
1057 
1058 #define vm_map_clip_end(map, entry, endaddr, countp) \
1059 { \
1060 	if (endaddr < entry->end) \
1061 		_vm_map_clip_end(map, entry, endaddr, countp); \
1062 }
1063 
1064 /*
1065  *	This routine is called only when it is known that
1066  *	the entry must be split.
1067  */
1068 static void
1069 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1070 {
1071 	vm_map_entry_t new_entry;
1072 
1073 	/*
1074 	 * If there is no object backing this entry, we might as well create
1075 	 * one now.  If we defer it, an object can get created after the map
1076 	 * is clipped, and individual objects will be created for the split-up
1077 	 * map.  This is a bit of a hack, but is also about the best place to
1078 	 * put this improvement.
1079 	 */
1080 
1081 	if (entry->object.vm_object == NULL && !map->system_map) {
1082 		vm_object_t object;
1083 		object = vm_object_allocate(OBJT_DEFAULT,
1084 				atop(entry->end - entry->start));
1085 		entry->object.vm_object = object;
1086 		entry->offset = 0;
1087 	}
1088 
1089 	/*
1090 	 * Create a new entry and insert it AFTER the specified entry
1091 	 */
1092 
1093 	new_entry = vm_map_entry_create(map, countp);
1094 	*new_entry = *entry;
1095 
1096 	new_entry->start = entry->end = end;
1097 	new_entry->offset += (end - entry->start);
1098 
1099 	vm_map_entry_link(map, entry, new_entry);
1100 
1101 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1102 		vm_object_reference(new_entry->object.vm_object);
1103 	}
1104 }
1105 
1106 /*
1107  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1108  *
1109  *	Asserts that the starting and ending region
1110  *	addresses fall within the valid range of the map.
1111  */
1112 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1113 		{					\
1114 		if (start < vm_map_min(map))		\
1115 			start = vm_map_min(map);	\
1116 		if (end > vm_map_max(map))		\
1117 			end = vm_map_max(map);		\
1118 		if (start > end)			\
1119 			start = end;			\
1120 		}
1121 
1122 /*
1123  *	vm_map_transition_wait:	[ kernel use only ]
1124  *
1125  *	Used to block when an in-transition collison occurs.  The map
1126  *	is unlocked for the sleep and relocked before the return.
1127  */
1128 static
1129 void
1130 vm_map_transition_wait(vm_map_t map)
1131 {
1132 	vm_map_unlock(map);
1133 	tsleep(map, 0, "vment", 0);
1134 	vm_map_lock(map);
1135 }
1136 
1137 /*
1138  * CLIP_CHECK_BACK
1139  * CLIP_CHECK_FWD
1140  *
1141  *	When we do blocking operations with the map lock held it is
1142  *	possible that a clip might have occured on our in-transit entry,
1143  *	requiring an adjustment to the entry in our loop.  These macros
1144  *	help the pageable and clip_range code deal with the case.  The
1145  *	conditional costs virtually nothing if no clipping has occured.
1146  */
1147 
1148 #define CLIP_CHECK_BACK(entry, save_start)		\
1149     do {						\
1150 	    while (entry->start != save_start) {	\
1151 		    entry = entry->prev;		\
1152 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1153 	    }						\
1154     } while(0)
1155 
1156 #define CLIP_CHECK_FWD(entry, save_end)			\
1157     do {						\
1158 	    while (entry->end != save_end) {		\
1159 		    entry = entry->next;		\
1160 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1161 	    }						\
1162     } while(0)
1163 
1164 
1165 /*
1166  *	vm_map_clip_range:	[ kernel use only ]
1167  *
1168  *	Clip the specified range and return the base entry.  The
1169  *	range may cover several entries starting at the returned base
1170  *	and the first and last entry in the covering sequence will be
1171  *	properly clipped to the requested start and end address.
1172  *
1173  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1174  *	flag.
1175  *
1176  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1177  *	covered by the requested range.
1178  *
1179  *	The map must be exclusively locked on entry and will remain locked
1180  *	on return. If no range exists or the range contains holes and you
1181  *	specified that no holes were allowed, NULL will be returned.  This
1182  *	routine may temporarily unlock the map in order avoid a deadlock when
1183  *	sleeping.
1184  */
1185 static
1186 vm_map_entry_t
1187 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1188 	int *countp, int flags)
1189 {
1190 	vm_map_entry_t start_entry;
1191 	vm_map_entry_t entry;
1192 
1193 	/*
1194 	 * Locate the entry and effect initial clipping.  The in-transition
1195 	 * case does not occur very often so do not try to optimize it.
1196 	 */
1197 again:
1198 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1199 		return (NULL);
1200 	entry = start_entry;
1201 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1202 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1203 		++mycpu->gd_cnt.v_intrans_coll;
1204 		++mycpu->gd_cnt.v_intrans_wait;
1205 		vm_map_transition_wait(map);
1206 		/*
1207 		 * entry and/or start_entry may have been clipped while
1208 		 * we slept, or may have gone away entirely.  We have
1209 		 * to restart from the lookup.
1210 		 */
1211 		goto again;
1212 	}
1213 	/*
1214 	 * Since we hold an exclusive map lock we do not have to restart
1215 	 * after clipping, even though clipping may block in zalloc.
1216 	 */
1217 	vm_map_clip_start(map, entry, start, countp);
1218 	vm_map_clip_end(map, entry, end, countp);
1219 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1220 
1221 	/*
1222 	 * Scan entries covered by the range.  When working on the next
1223 	 * entry a restart need only re-loop on the current entry which
1224 	 * we have already locked, since 'next' may have changed.  Also,
1225 	 * even though entry is safe, it may have been clipped so we
1226 	 * have to iterate forwards through the clip after sleeping.
1227 	 */
1228 	while (entry->next != &map->header && entry->next->start < end) {
1229 		vm_map_entry_t next = entry->next;
1230 
1231 		if (flags & MAP_CLIP_NO_HOLES) {
1232 			if (next->start > entry->end) {
1233 				vm_map_unclip_range(map, start_entry,
1234 					start, entry->end, countp, flags);
1235 				return(NULL);
1236 			}
1237 		}
1238 
1239 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1240 			vm_offset_t save_end = entry->end;
1241 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1242 			++mycpu->gd_cnt.v_intrans_coll;
1243 			++mycpu->gd_cnt.v_intrans_wait;
1244 			vm_map_transition_wait(map);
1245 
1246 			/*
1247 			 * clips might have occured while we blocked.
1248 			 */
1249 			CLIP_CHECK_FWD(entry, save_end);
1250 			CLIP_CHECK_BACK(start_entry, start);
1251 			continue;
1252 		}
1253 		/*
1254 		 * No restart necessary even though clip_end may block, we
1255 		 * are holding the map lock.
1256 		 */
1257 		vm_map_clip_end(map, next, end, countp);
1258 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1259 		entry = next;
1260 	}
1261 	if (flags & MAP_CLIP_NO_HOLES) {
1262 		if (entry->end != end) {
1263 			vm_map_unclip_range(map, start_entry,
1264 				start, entry->end, countp, flags);
1265 			return(NULL);
1266 		}
1267 	}
1268 	return(start_entry);
1269 }
1270 
1271 /*
1272  *	vm_map_unclip_range:	[ kernel use only ]
1273  *
1274  *	Undo the effect of vm_map_clip_range().  You should pass the same
1275  *	flags and the same range that you passed to vm_map_clip_range().
1276  *	This code will clear the in-transition flag on the entries and
1277  *	wake up anyone waiting.  This code will also simplify the sequence
1278  *	and attempt to merge it with entries before and after the sequence.
1279  *
1280  *	The map must be locked on entry and will remain locked on return.
1281  *
1282  *	Note that you should also pass the start_entry returned by
1283  *	vm_map_clip_range().  However, if you block between the two calls
1284  *	with the map unlocked please be aware that the start_entry may
1285  *	have been clipped and you may need to scan it backwards to find
1286  *	the entry corresponding with the original start address.  You are
1287  *	responsible for this, vm_map_unclip_range() expects the correct
1288  *	start_entry to be passed to it and will KASSERT otherwise.
1289  */
1290 static
1291 void
1292 vm_map_unclip_range(
1293 	vm_map_t map,
1294 	vm_map_entry_t start_entry,
1295 	vm_offset_t start,
1296 	vm_offset_t end,
1297 	int *countp,
1298 	int flags)
1299 {
1300 	vm_map_entry_t entry;
1301 
1302 	entry = start_entry;
1303 
1304 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1305 	while (entry != &map->header && entry->start < end) {
1306 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1307 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1308 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1309 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1310 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1311 			wakeup(map);
1312 		}
1313 		entry = entry->next;
1314 	}
1315 
1316 	/*
1317 	 * Simplification does not block so there is no restart case.
1318 	 */
1319 	entry = start_entry;
1320 	while (entry != &map->header && entry->start < end) {
1321 		vm_map_simplify_entry(map, entry, countp);
1322 		entry = entry->next;
1323 	}
1324 }
1325 
1326 /*
1327  *	vm_map_submap:		[ kernel use only ]
1328  *
1329  *	Mark the given range as handled by a subordinate map.
1330  *
1331  *	This range must have been created with vm_map_find,
1332  *	and no other operations may have been performed on this
1333  *	range prior to calling vm_map_submap.
1334  *
1335  *	Only a limited number of operations can be performed
1336  *	within this rage after calling vm_map_submap:
1337  *		vm_fault
1338  *	[Don't try vm_map_copy!]
1339  *
1340  *	To remove a submapping, one must first remove the
1341  *	range from the superior map, and then destroy the
1342  *	submap (if desired).  [Better yet, don't try it.]
1343  */
1344 int
1345 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1346 {
1347 	vm_map_entry_t entry;
1348 	int result = KERN_INVALID_ARGUMENT;
1349 	int count;
1350 
1351 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1352 	vm_map_lock(map);
1353 
1354 	VM_MAP_RANGE_CHECK(map, start, end);
1355 
1356 	if (vm_map_lookup_entry(map, start, &entry)) {
1357 		vm_map_clip_start(map, entry, start, &count);
1358 	} else {
1359 		entry = entry->next;
1360 	}
1361 
1362 	vm_map_clip_end(map, entry, end, &count);
1363 
1364 	if ((entry->start == start) && (entry->end == end) &&
1365 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1366 	    (entry->object.vm_object == NULL)) {
1367 		entry->object.sub_map = submap;
1368 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1369 		result = KERN_SUCCESS;
1370 	}
1371 	vm_map_unlock(map);
1372 	vm_map_entry_release(count);
1373 
1374 	return (result);
1375 }
1376 
1377 /*
1378  *	vm_map_protect:
1379  *
1380  *	Sets the protection of the specified address
1381  *	region in the target map.  If "set_max" is
1382  *	specified, the maximum protection is to be set;
1383  *	otherwise, only the current protection is affected.
1384  */
1385 int
1386 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1387 	       vm_prot_t new_prot, boolean_t set_max)
1388 {
1389 	vm_map_entry_t current;
1390 	vm_map_entry_t entry;
1391 	int count;
1392 
1393 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1394 	vm_map_lock(map);
1395 
1396 	VM_MAP_RANGE_CHECK(map, start, end);
1397 
1398 	if (vm_map_lookup_entry(map, start, &entry)) {
1399 		vm_map_clip_start(map, entry, start, &count);
1400 	} else {
1401 		entry = entry->next;
1402 	}
1403 
1404 	/*
1405 	 * Make a first pass to check for protection violations.
1406 	 */
1407 
1408 	current = entry;
1409 	while ((current != &map->header) && (current->start < end)) {
1410 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1411 			vm_map_unlock(map);
1412 			vm_map_entry_release(count);
1413 			return (KERN_INVALID_ARGUMENT);
1414 		}
1415 		if ((new_prot & current->max_protection) != new_prot) {
1416 			vm_map_unlock(map);
1417 			vm_map_entry_release(count);
1418 			return (KERN_PROTECTION_FAILURE);
1419 		}
1420 		current = current->next;
1421 	}
1422 
1423 	/*
1424 	 * Go back and fix up protections. [Note that clipping is not
1425 	 * necessary the second time.]
1426 	 */
1427 	current = entry;
1428 
1429 	while ((current != &map->header) && (current->start < end)) {
1430 		vm_prot_t old_prot;
1431 
1432 		vm_map_clip_end(map, current, end, &count);
1433 
1434 		old_prot = current->protection;
1435 		if (set_max)
1436 			current->protection =
1437 			    (current->max_protection = new_prot) &
1438 			    old_prot;
1439 		else
1440 			current->protection = new_prot;
1441 
1442 		/*
1443 		 * Update physical map if necessary. Worry about copy-on-write
1444 		 * here -- CHECK THIS XXX
1445 		 */
1446 
1447 		if (current->protection != old_prot) {
1448 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1449 							VM_PROT_ALL)
1450 
1451 			pmap_protect(map->pmap, current->start,
1452 			    current->end,
1453 			    current->protection & MASK(current));
1454 #undef	MASK
1455 		}
1456 
1457 		vm_map_simplify_entry(map, current, &count);
1458 
1459 		current = current->next;
1460 	}
1461 
1462 	vm_map_unlock(map);
1463 	vm_map_entry_release(count);
1464 	return (KERN_SUCCESS);
1465 }
1466 
1467 /*
1468  *	vm_map_madvise:
1469  *
1470  * 	This routine traverses a processes map handling the madvise
1471  *	system call.  Advisories are classified as either those effecting
1472  *	the vm_map_entry structure, or those effecting the underlying
1473  *	objects.
1474  */
1475 
1476 int
1477 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1478 {
1479 	vm_map_entry_t current, entry;
1480 	int modify_map = 0;
1481 	int count;
1482 
1483 	/*
1484 	 * Some madvise calls directly modify the vm_map_entry, in which case
1485 	 * we need to use an exclusive lock on the map and we need to perform
1486 	 * various clipping operations.  Otherwise we only need a read-lock
1487 	 * on the map.
1488 	 */
1489 
1490 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1491 
1492 	switch(behav) {
1493 	case MADV_NORMAL:
1494 	case MADV_SEQUENTIAL:
1495 	case MADV_RANDOM:
1496 	case MADV_NOSYNC:
1497 	case MADV_AUTOSYNC:
1498 	case MADV_NOCORE:
1499 	case MADV_CORE:
1500 		modify_map = 1;
1501 		vm_map_lock(map);
1502 		break;
1503 	case MADV_WILLNEED:
1504 	case MADV_DONTNEED:
1505 	case MADV_FREE:
1506 		vm_map_lock_read(map);
1507 		break;
1508 	default:
1509 		vm_map_entry_release(count);
1510 		return (KERN_INVALID_ARGUMENT);
1511 	}
1512 
1513 	/*
1514 	 * Locate starting entry and clip if necessary.
1515 	 */
1516 
1517 	VM_MAP_RANGE_CHECK(map, start, end);
1518 
1519 	if (vm_map_lookup_entry(map, start, &entry)) {
1520 		if (modify_map)
1521 			vm_map_clip_start(map, entry, start, &count);
1522 	} else {
1523 		entry = entry->next;
1524 	}
1525 
1526 	if (modify_map) {
1527 		/*
1528 		 * madvise behaviors that are implemented in the vm_map_entry.
1529 		 *
1530 		 * We clip the vm_map_entry so that behavioral changes are
1531 		 * limited to the specified address range.
1532 		 */
1533 		for (current = entry;
1534 		     (current != &map->header) && (current->start < end);
1535 		     current = current->next
1536 		) {
1537 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1538 				continue;
1539 
1540 			vm_map_clip_end(map, current, end, &count);
1541 
1542 			switch (behav) {
1543 			case MADV_NORMAL:
1544 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1545 				break;
1546 			case MADV_SEQUENTIAL:
1547 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1548 				break;
1549 			case MADV_RANDOM:
1550 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1551 				break;
1552 			case MADV_NOSYNC:
1553 				current->eflags |= MAP_ENTRY_NOSYNC;
1554 				break;
1555 			case MADV_AUTOSYNC:
1556 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1557 				break;
1558 			case MADV_NOCORE:
1559 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1560 				break;
1561 			case MADV_CORE:
1562 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1563 				break;
1564 			default:
1565 				break;
1566 			}
1567 			vm_map_simplify_entry(map, current, &count);
1568 		}
1569 		vm_map_unlock(map);
1570 	} else {
1571 		vm_pindex_t pindex;
1572 		int count;
1573 
1574 		/*
1575 		 * madvise behaviors that are implemented in the underlying
1576 		 * vm_object.
1577 		 *
1578 		 * Since we don't clip the vm_map_entry, we have to clip
1579 		 * the vm_object pindex and count.
1580 		 */
1581 		for (current = entry;
1582 		     (current != &map->header) && (current->start < end);
1583 		     current = current->next
1584 		) {
1585 			vm_offset_t useStart;
1586 
1587 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1588 				continue;
1589 
1590 			pindex = OFF_TO_IDX(current->offset);
1591 			count = atop(current->end - current->start);
1592 			useStart = current->start;
1593 
1594 			if (current->start < start) {
1595 				pindex += atop(start - current->start);
1596 				count -= atop(start - current->start);
1597 				useStart = start;
1598 			}
1599 			if (current->end > end)
1600 				count -= atop(current->end - end);
1601 
1602 			if (count <= 0)
1603 				continue;
1604 
1605 			vm_object_madvise(current->object.vm_object,
1606 					  pindex, count, behav);
1607 			if (behav == MADV_WILLNEED) {
1608 				pmap_object_init_pt(
1609 				    map->pmap,
1610 				    useStart,
1611 				    current->object.vm_object,
1612 				    pindex,
1613 				    (count << PAGE_SHIFT),
1614 				    MAP_PREFAULT_MADVISE
1615 				);
1616 			}
1617 		}
1618 		vm_map_unlock_read(map);
1619 	}
1620 	vm_map_entry_release(count);
1621 	return(0);
1622 }
1623 
1624 
1625 /*
1626  *	vm_map_inherit:
1627  *
1628  *	Sets the inheritance of the specified address
1629  *	range in the target map.  Inheritance
1630  *	affects how the map will be shared with
1631  *	child maps at the time of vm_map_fork.
1632  */
1633 int
1634 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1635 	       vm_inherit_t new_inheritance)
1636 {
1637 	vm_map_entry_t entry;
1638 	vm_map_entry_t temp_entry;
1639 	int count;
1640 
1641 	switch (new_inheritance) {
1642 	case VM_INHERIT_NONE:
1643 	case VM_INHERIT_COPY:
1644 	case VM_INHERIT_SHARE:
1645 		break;
1646 	default:
1647 		return (KERN_INVALID_ARGUMENT);
1648 	}
1649 
1650 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1651 	vm_map_lock(map);
1652 
1653 	VM_MAP_RANGE_CHECK(map, start, end);
1654 
1655 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1656 		entry = temp_entry;
1657 		vm_map_clip_start(map, entry, start, &count);
1658 	} else
1659 		entry = temp_entry->next;
1660 
1661 	while ((entry != &map->header) && (entry->start < end)) {
1662 		vm_map_clip_end(map, entry, end, &count);
1663 
1664 		entry->inheritance = new_inheritance;
1665 
1666 		vm_map_simplify_entry(map, entry, &count);
1667 
1668 		entry = entry->next;
1669 	}
1670 	vm_map_unlock(map);
1671 	vm_map_entry_release(count);
1672 	return (KERN_SUCCESS);
1673 }
1674 
1675 /*
1676  * Implement the semantics of mlock
1677  */
1678 int
1679 vm_map_user_pageable(map, start, real_end, new_pageable)
1680 	vm_map_t map;
1681 	vm_offset_t start;
1682 	vm_offset_t real_end;
1683 	boolean_t new_pageable;
1684 {
1685 	vm_map_entry_t entry;
1686 	vm_map_entry_t start_entry;
1687 	vm_offset_t end;
1688 	int rv = KERN_SUCCESS;
1689 	int count;
1690 
1691 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1692 	vm_map_lock(map);
1693 	VM_MAP_RANGE_CHECK(map, start, real_end);
1694 	end = real_end;
1695 
1696 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1697 	if (start_entry == NULL) {
1698 		vm_map_unlock(map);
1699 		vm_map_entry_release(count);
1700 		return (KERN_INVALID_ADDRESS);
1701 	}
1702 
1703 	if (new_pageable == 0) {
1704 		entry = start_entry;
1705 		while ((entry != &map->header) && (entry->start < end)) {
1706 			vm_offset_t save_start;
1707 			vm_offset_t save_end;
1708 
1709 			/*
1710 			 * Already user wired or hard wired (trivial cases)
1711 			 */
1712 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1713 				entry = entry->next;
1714 				continue;
1715 			}
1716 			if (entry->wired_count != 0) {
1717 				entry->wired_count++;
1718 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1719 				entry = entry->next;
1720 				continue;
1721 			}
1722 
1723 			/*
1724 			 * A new wiring requires instantiation of appropriate
1725 			 * management structures and the faulting in of the
1726 			 * page.
1727 			 */
1728 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1729 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1730 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1731 
1732 					vm_object_shadow(&entry->object.vm_object,
1733 					    &entry->offset,
1734 					    atop(entry->end - entry->start));
1735 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1736 
1737 				} else if (entry->object.vm_object == NULL &&
1738 					   !map->system_map) {
1739 
1740 					entry->object.vm_object =
1741 					    vm_object_allocate(OBJT_DEFAULT,
1742 						atop(entry->end - entry->start));
1743 					entry->offset = (vm_offset_t) 0;
1744 
1745 				}
1746 			}
1747 			entry->wired_count++;
1748 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1749 
1750 			/*
1751 			 * Now fault in the area.  The map lock needs to be
1752 			 * manipulated to avoid deadlocks.  The in-transition
1753 			 * flag protects the entries.
1754 			 */
1755 			save_start = entry->start;
1756 			save_end = entry->end;
1757 			vm_map_unlock(map);
1758 			map->timestamp++;
1759 			rv = vm_fault_user_wire(map, save_start, save_end);
1760 			vm_map_lock(map);
1761 			if (rv) {
1762 				CLIP_CHECK_BACK(entry, save_start);
1763 				for (;;) {
1764 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1765 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1766 					entry->wired_count = 0;
1767 					if (entry->end == save_end)
1768 						break;
1769 					entry = entry->next;
1770 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1771 				}
1772 				end = save_start;	/* unwire the rest */
1773 				break;
1774 			}
1775 			/*
1776 			 * note that even though the entry might have been
1777 			 * clipped, the USER_WIRED flag we set prevents
1778 			 * duplication so we do not have to do a
1779 			 * clip check.
1780 			 */
1781 			entry = entry->next;
1782 		}
1783 
1784 		/*
1785 		 * If we failed fall through to the unwiring section to
1786 		 * unwire what we had wired so far.  'end' has already
1787 		 * been adjusted.
1788 		 */
1789 		if (rv)
1790 			new_pageable = 1;
1791 
1792 		/*
1793 		 * start_entry might have been clipped if we unlocked the
1794 		 * map and blocked.  No matter how clipped it has gotten
1795 		 * there should be a fragment that is on our start boundary.
1796 		 */
1797 		CLIP_CHECK_BACK(start_entry, start);
1798 	}
1799 
1800 	/*
1801 	 * Deal with the unwiring case.
1802 	 */
1803 	if (new_pageable) {
1804 		/*
1805 		 * This is the unwiring case.  We must first ensure that the
1806 		 * range to be unwired is really wired down.  We know there
1807 		 * are no holes.
1808 		 */
1809 		entry = start_entry;
1810 		while ((entry != &map->header) && (entry->start < end)) {
1811 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1812 				rv = KERN_INVALID_ARGUMENT;
1813 				goto done;
1814 			}
1815 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1816 			entry = entry->next;
1817 		}
1818 
1819 		/*
1820 		 * Now decrement the wiring count for each region. If a region
1821 		 * becomes completely unwired, unwire its physical pages and
1822 		 * mappings.
1823 		 */
1824 		while ((entry != &map->header) && (entry->start < end)) {
1825 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1826 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1827 			entry->wired_count--;
1828 			if (entry->wired_count == 0)
1829 				vm_fault_unwire(map, entry->start, entry->end);
1830 			entry = entry->next;
1831 		}
1832 	}
1833 done:
1834 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1835 		MAP_CLIP_NO_HOLES);
1836 	map->timestamp++;
1837 	vm_map_unlock(map);
1838 	vm_map_entry_release(count);
1839 	return (rv);
1840 }
1841 
1842 /*
1843  *	vm_map_pageable:
1844  *
1845  *	Sets the pageability of the specified address
1846  *	range in the target map.  Regions specified
1847  *	as not pageable require locked-down physical
1848  *	memory and physical page maps.
1849  *
1850  *	The map must not be locked, but a reference
1851  *	must remain to the map throughout the call.
1852  *
1853  *	This function may be called via the zalloc path and must properly
1854  *	reserve map entries for kernel_map.
1855  */
1856 int
1857 vm_map_pageable(vm_map_t map, vm_offset_t start,
1858 	vm_offset_t real_end, boolean_t new_pageable)
1859 {
1860 	vm_map_entry_t entry;
1861 	vm_map_entry_t start_entry;
1862 	vm_offset_t end;
1863 	int rv = KERN_SUCCESS;
1864 	int count;
1865 	int s;
1866 
1867 	if (map == kernel_map)
1868 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1869 #if defined(USE_KMEM_MAP)
1870 	else if (map == kmem_map)
1871 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1872 #endif
1873 	else
1874 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1875 	vm_map_lock(map);
1876 	VM_MAP_RANGE_CHECK(map, start, real_end);
1877 	end = real_end;
1878 
1879 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1880 	if (start_entry == NULL) {
1881 		vm_map_unlock(map);
1882 		rv = KERN_INVALID_ADDRESS;
1883 		goto failure;
1884 	}
1885 	if (new_pageable == 0) {
1886 		/*
1887 		 * Wiring.
1888 		 *
1889 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1890 		 * objects that need to be created. Then we clip each map
1891 		 * entry to the region to be wired and increment its wiring
1892 		 * count.  We create objects before clipping the map entries
1893 		 * to avoid object proliferation.
1894 		 *
1895 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1896 		 * fault in the pages for any newly wired area (wired_count is
1897 		 * 1).
1898 		 *
1899 		 * Downgrading to a read lock for vm_fault_wire avoids a
1900 		 * possible deadlock with another process that may have faulted
1901 		 * on one of the pages to be wired (it would mark the page busy,
1902 		 * blocking us, then in turn block on the map lock that we
1903 		 * hold).  Because of problems in the recursive lock package,
1904 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1905 		 * any actions that require the write lock must be done
1906 		 * beforehand.  Because we keep the read lock on the map, the
1907 		 * copy-on-write status of the entries we modify here cannot
1908 		 * change.
1909 		 */
1910 
1911 		entry = start_entry;
1912 		while ((entry != &map->header) && (entry->start < end)) {
1913 			/*
1914 			 * Trivial case if the entry is already wired
1915 			 */
1916 			if (entry->wired_count) {
1917 				entry->wired_count++;
1918 				entry = entry->next;
1919 				continue;
1920 			}
1921 
1922 			/*
1923 			 * The entry is being newly wired, we have to setup
1924 			 * appropriate management structures.  A shadow
1925 			 * object is required for a copy-on-write region,
1926 			 * or a normal object for a zero-fill region.  We
1927 			 * do not have to do this for entries that point to sub
1928 			 * maps because we won't hold the lock on the sub map.
1929 			 */
1930 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1931 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1932 				if (copyflag &&
1933 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1934 
1935 					vm_object_shadow(&entry->object.vm_object,
1936 					    &entry->offset,
1937 					    atop(entry->end - entry->start));
1938 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1939 				} else if (entry->object.vm_object == NULL &&
1940 					   !map->system_map) {
1941 					entry->object.vm_object =
1942 					    vm_object_allocate(OBJT_DEFAULT,
1943 						atop(entry->end - entry->start));
1944 					entry->offset = (vm_offset_t) 0;
1945 				}
1946 			}
1947 
1948 			entry->wired_count++;
1949 			entry = entry->next;
1950 		}
1951 
1952 		/*
1953 		 * Pass 2.
1954 		 */
1955 
1956 		/*
1957 		 * HACK HACK HACK HACK
1958 		 *
1959 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1960 		 * protects us from most changes but note that
1961 		 * clipping may still occur.  To prevent clipping from
1962 		 * occuring after the unlock, except for when we are
1963 		 * blocking in vm_fault_wire, we must run at splvm().
1964 		 * Otherwise our accesses to entry->start and entry->end
1965 		 * could be corrupted.  We have to set splvm() prior to
1966 		 * unlocking so start_entry does not change out from
1967 		 * under us at the very beginning of the loop.
1968 		 *
1969 		 * HACK HACK HACK HACK
1970 		 */
1971 
1972 		s = splvm();
1973 		vm_map_unlock(map);
1974 
1975 		entry = start_entry;
1976 		while (entry != &map->header && entry->start < end) {
1977 			/*
1978 			 * If vm_fault_wire fails for any page we need to undo
1979 			 * what has been done.  We decrement the wiring count
1980 			 * for those pages which have not yet been wired (now)
1981 			 * and unwire those that have (later).
1982 			 */
1983 			vm_offset_t save_start = entry->start;
1984 			vm_offset_t save_end = entry->end;
1985 
1986 			if (entry->wired_count == 1)
1987 				rv = vm_fault_wire(map, entry->start, entry->end);
1988 			if (rv) {
1989 				CLIP_CHECK_BACK(entry, save_start);
1990 				for (;;) {
1991 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1992 					entry->wired_count = 0;
1993 					if (entry->end == save_end)
1994 						break;
1995 					entry = entry->next;
1996 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1997 				}
1998 				end = save_start;
1999 				break;
2000 			}
2001 			CLIP_CHECK_FWD(entry, save_end);
2002 			entry = entry->next;
2003 		}
2004 		splx(s);
2005 
2006 		/*
2007 		 * relock.  start_entry is still IN_TRANSITION and must
2008 		 * still exist, but may have been clipped (handled just
2009 		 * below).
2010 		 */
2011 		vm_map_lock(map);
2012 
2013 		/*
2014 		 * If a failure occured undo everything by falling through
2015 		 * to the unwiring code.  'end' has already been adjusted
2016 		 * appropriately.
2017 		 */
2018 		if (rv)
2019 			new_pageable = 1;
2020 
2021 		/*
2022 		 * start_entry might have been clipped if we unlocked the
2023 		 * map and blocked.  No matter how clipped it has gotten
2024 		 * there should be a fragment that is on our start boundary.
2025 		 */
2026 		CLIP_CHECK_BACK(start_entry, start);
2027 	}
2028 
2029 	if (new_pageable) {
2030 		/*
2031 		 * This is the unwiring case.  We must first ensure that the
2032 		 * range to be unwired is really wired down.  We know there
2033 		 * are no holes.
2034 		 */
2035 		entry = start_entry;
2036 		while ((entry != &map->header) && (entry->start < end)) {
2037 			if (entry->wired_count == 0) {
2038 				rv = KERN_INVALID_ARGUMENT;
2039 				goto done;
2040 			}
2041 			entry = entry->next;
2042 		}
2043 
2044 		/*
2045 		 * Now decrement the wiring count for each region. If a region
2046 		 * becomes completely unwired, unwire its physical pages and
2047 		 * mappings.
2048 		 */
2049 		entry = start_entry;
2050 		while ((entry != &map->header) && (entry->start < end)) {
2051 			entry->wired_count--;
2052 			if (entry->wired_count == 0)
2053 				vm_fault_unwire(map, entry->start, entry->end);
2054 			entry = entry->next;
2055 		}
2056 	}
2057 done:
2058 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2059 		MAP_CLIP_NO_HOLES);
2060 	map->timestamp++;
2061 	vm_map_unlock(map);
2062 failure:
2063 	if (map == kernel_map)
2064 		vm_map_entry_krelease(count);
2065 #if defined(USE_KMEM_MAP)
2066 	else if (map == kmem_map)
2067 		vm_map_entry_krelease(count);
2068 #endif
2069 	else
2070 		vm_map_entry_release(count);
2071 	return (rv);
2072 }
2073 
2074 /*
2075  * vm_map_set_wired_quick()
2076  *
2077  *	Mark a newly allocated address range as wired but do not fault in
2078  *	the pages.  The caller is expected to load the pages into the object.
2079  *
2080  *	The map must be locked on entry and will remain locked on return.
2081  */
2082 void
2083 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2084 {
2085 	vm_map_entry_t scan;
2086 	vm_map_entry_t entry;
2087 
2088 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2089 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2090 	    KKASSERT(entry->wired_count == 0);
2091 	    entry->wired_count = 1;
2092 	}
2093 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2094 }
2095 
2096 /*
2097  * vm_map_clean
2098  *
2099  * Push any dirty cached pages in the address range to their pager.
2100  * If syncio is TRUE, dirty pages are written synchronously.
2101  * If invalidate is TRUE, any cached pages are freed as well.
2102  *
2103  * Returns an error if any part of the specified range is not mapped.
2104  */
2105 int
2106 vm_map_clean(map, start, end, syncio, invalidate)
2107 	vm_map_t map;
2108 	vm_offset_t start;
2109 	vm_offset_t end;
2110 	boolean_t syncio;
2111 	boolean_t invalidate;
2112 {
2113 	vm_map_entry_t current;
2114 	vm_map_entry_t entry;
2115 	vm_size_t size;
2116 	vm_object_t object;
2117 	vm_ooffset_t offset;
2118 
2119 	vm_map_lock_read(map);
2120 	VM_MAP_RANGE_CHECK(map, start, end);
2121 	if (!vm_map_lookup_entry(map, start, &entry)) {
2122 		vm_map_unlock_read(map);
2123 		return (KERN_INVALID_ADDRESS);
2124 	}
2125 	/*
2126 	 * Make a first pass to check for holes.
2127 	 */
2128 	for (current = entry; current->start < end; current = current->next) {
2129 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2130 			vm_map_unlock_read(map);
2131 			return (KERN_INVALID_ARGUMENT);
2132 		}
2133 		if (end > current->end &&
2134 		    (current->next == &map->header ||
2135 			current->end != current->next->start)) {
2136 			vm_map_unlock_read(map);
2137 			return (KERN_INVALID_ADDRESS);
2138 		}
2139 	}
2140 
2141 	if (invalidate)
2142 		pmap_remove(vm_map_pmap(map), start, end);
2143 	/*
2144 	 * Make a second pass, cleaning/uncaching pages from the indicated
2145 	 * objects as we go.
2146 	 */
2147 	for (current = entry; current->start < end; current = current->next) {
2148 		offset = current->offset + (start - current->start);
2149 		size = (end <= current->end ? end : current->end) - start;
2150 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2151 			vm_map_t smap;
2152 			vm_map_entry_t tentry;
2153 			vm_size_t tsize;
2154 
2155 			smap = current->object.sub_map;
2156 			vm_map_lock_read(smap);
2157 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2158 			tsize = tentry->end - offset;
2159 			if (tsize < size)
2160 				size = tsize;
2161 			object = tentry->object.vm_object;
2162 			offset = tentry->offset + (offset - tentry->start);
2163 			vm_map_unlock_read(smap);
2164 		} else {
2165 			object = current->object.vm_object;
2166 		}
2167 		/*
2168 		 * Note that there is absolutely no sense in writing out
2169 		 * anonymous objects, so we track down the vnode object
2170 		 * to write out.
2171 		 * We invalidate (remove) all pages from the address space
2172 		 * anyway, for semantic correctness.
2173 		 *
2174 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2175 		 * may start out with a NULL object.
2176 		 */
2177 		while (object && object->backing_object) {
2178 			object = object->backing_object;
2179 			offset += object->backing_object_offset;
2180 			if (object->size < OFF_TO_IDX( offset + size))
2181 				size = IDX_TO_OFF(object->size) - offset;
2182 		}
2183 		if (object && (object->type == OBJT_VNODE) &&
2184 		    (current->protection & VM_PROT_WRITE)) {
2185 			/*
2186 			 * Flush pages if writing is allowed, invalidate them
2187 			 * if invalidation requested.  Pages undergoing I/O
2188 			 * will be ignored by vm_object_page_remove().
2189 			 *
2190 			 * We cannot lock the vnode and then wait for paging
2191 			 * to complete without deadlocking against vm_fault.
2192 			 * Instead we simply call vm_object_page_remove() and
2193 			 * allow it to block internally on a page-by-page
2194 			 * basis when it encounters pages undergoing async
2195 			 * I/O.
2196 			 */
2197 			int flags;
2198 
2199 			vm_object_reference(object);
2200 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2201 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2202 			flags |= invalidate ? OBJPC_INVAL : 0;
2203 			vm_object_page_clean(object,
2204 			    OFF_TO_IDX(offset),
2205 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2206 			    flags);
2207 			VOP_UNLOCK(object->handle, 0, curthread);
2208 			vm_object_deallocate(object);
2209 		}
2210 		if (object && invalidate &&
2211 		   ((object->type == OBJT_VNODE) ||
2212 		    (object->type == OBJT_DEVICE))) {
2213 			vm_object_reference(object);
2214 			vm_object_page_remove(object,
2215 			    OFF_TO_IDX(offset),
2216 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2217 			    FALSE);
2218 			vm_object_deallocate(object);
2219 		}
2220 		start += size;
2221 	}
2222 
2223 	vm_map_unlock_read(map);
2224 	return (KERN_SUCCESS);
2225 }
2226 
2227 /*
2228  *	vm_map_entry_unwire:	[ internal use only ]
2229  *
2230  *	Make the region specified by this entry pageable.
2231  *
2232  *	The map in question should be locked.
2233  *	[This is the reason for this routine's existence.]
2234  */
2235 static void
2236 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2237 {
2238 	vm_fault_unwire(map, entry->start, entry->end);
2239 	entry->wired_count = 0;
2240 }
2241 
2242 /*
2243  *	vm_map_entry_delete:	[ internal use only ]
2244  *
2245  *	Deallocate the given entry from the target map.
2246  */
2247 static void
2248 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2249 {
2250 	vm_map_entry_unlink(map, entry);
2251 	map->size -= entry->end - entry->start;
2252 
2253 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2254 		vm_object_deallocate(entry->object.vm_object);
2255 	}
2256 
2257 	vm_map_entry_dispose(map, entry, countp);
2258 }
2259 
2260 /*
2261  *	vm_map_delete:	[ internal use only ]
2262  *
2263  *	Deallocates the given address range from the target
2264  *	map.
2265  */
2266 int
2267 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2268 {
2269 	vm_object_t object;
2270 	vm_map_entry_t entry;
2271 	vm_map_entry_t first_entry;
2272 
2273 	/*
2274 	 * Find the start of the region, and clip it
2275 	 */
2276 
2277 again:
2278 	if (!vm_map_lookup_entry(map, start, &first_entry))
2279 		entry = first_entry->next;
2280 	else {
2281 		entry = first_entry;
2282 		vm_map_clip_start(map, entry, start, countp);
2283 		/*
2284 		 * Fix the lookup hint now, rather than each time though the
2285 		 * loop.
2286 		 */
2287 		SAVE_HINT(map, entry->prev);
2288 	}
2289 
2290 	/*
2291 	 * Save the free space hint
2292 	 */
2293 
2294 	if (entry == &map->header) {
2295 		map->first_free = &map->header;
2296 	} else if (map->first_free->start >= start) {
2297 		map->first_free = entry->prev;
2298 	}
2299 
2300 	/*
2301 	 * Step through all entries in this region
2302 	 */
2303 
2304 	while ((entry != &map->header) && (entry->start < end)) {
2305 		vm_map_entry_t next;
2306 		vm_offset_t s, e;
2307 		vm_pindex_t offidxstart, offidxend, count;
2308 
2309 		/*
2310 		 * If we hit an in-transition entry we have to sleep and
2311 		 * retry.  It's easier (and not really slower) to just retry
2312 		 * since this case occurs so rarely and the hint is already
2313 		 * pointing at the right place.  We have to reset the
2314 		 * start offset so as not to accidently delete an entry
2315 		 * another process just created in vacated space.
2316 		 */
2317 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2318 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2319 			start = entry->start;
2320 			++mycpu->gd_cnt.v_intrans_coll;
2321 			++mycpu->gd_cnt.v_intrans_wait;
2322 			vm_map_transition_wait(map);
2323 			goto again;
2324 		}
2325 		vm_map_clip_end(map, entry, end, countp);
2326 
2327 		s = entry->start;
2328 		e = entry->end;
2329 		next = entry->next;
2330 
2331 		offidxstart = OFF_TO_IDX(entry->offset);
2332 		count = OFF_TO_IDX(e - s);
2333 		object = entry->object.vm_object;
2334 
2335 		/*
2336 		 * Unwire before removing addresses from the pmap; otherwise,
2337 		 * unwiring will put the entries back in the pmap.
2338 		 */
2339 		if (entry->wired_count != 0) {
2340 			vm_map_entry_unwire(map, entry);
2341 		}
2342 
2343 		offidxend = offidxstart + count;
2344 
2345 		if ((object == kernel_object) || (object == kmem_object)) {
2346 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2347 		} else {
2348 			pmap_remove(map->pmap, s, e);
2349 			if (object != NULL &&
2350 			    object->ref_count != 1 &&
2351 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2352 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2353 				vm_object_collapse(object);
2354 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2355 				if (object->type == OBJT_SWAP) {
2356 					swap_pager_freespace(object, offidxstart, count);
2357 				}
2358 				if (offidxend >= object->size &&
2359 				    offidxstart < object->size) {
2360 					object->size = offidxstart;
2361 				}
2362 			}
2363 		}
2364 
2365 		/*
2366 		 * Delete the entry (which may delete the object) only after
2367 		 * removing all pmap entries pointing to its pages.
2368 		 * (Otherwise, its page frames may be reallocated, and any
2369 		 * modify bits will be set in the wrong object!)
2370 		 */
2371 		vm_map_entry_delete(map, entry, countp);
2372 		entry = next;
2373 	}
2374 	return (KERN_SUCCESS);
2375 }
2376 
2377 /*
2378  *	vm_map_remove:
2379  *
2380  *	Remove the given address range from the target map.
2381  *	This is the exported form of vm_map_delete.
2382  */
2383 int
2384 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2385 {
2386 	int result;
2387 	int count;
2388 #if defined(USE_KMEM_MAP)
2389 	int s = 0;
2390 #endif
2391 
2392 #if defined(USE_KMEM_MAP)
2393 	if (map == kmem_map || map == mb_map)
2394 		s = splvm();
2395 #endif
2396 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2397 	vm_map_lock(map);
2398 	VM_MAP_RANGE_CHECK(map, start, end);
2399 	result = vm_map_delete(map, start, end, &count);
2400 	vm_map_unlock(map);
2401 	vm_map_entry_release(count);
2402 
2403 #if defined(USE_KMEM_MAP)
2404 	if (map == kmem_map || map == mb_map)
2405 		splx(s);
2406 #endif
2407 
2408 	return (result);
2409 }
2410 
2411 /*
2412  *	vm_map_check_protection:
2413  *
2414  *	Assert that the target map allows the specified
2415  *	privilege on the entire address region given.
2416  *	The entire region must be allocated.
2417  */
2418 boolean_t
2419 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2420 			vm_prot_t protection)
2421 {
2422 	vm_map_entry_t entry;
2423 	vm_map_entry_t tmp_entry;
2424 
2425 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2426 		return (FALSE);
2427 	}
2428 	entry = tmp_entry;
2429 
2430 	while (start < end) {
2431 		if (entry == &map->header) {
2432 			return (FALSE);
2433 		}
2434 		/*
2435 		 * No holes allowed!
2436 		 */
2437 
2438 		if (start < entry->start) {
2439 			return (FALSE);
2440 		}
2441 		/*
2442 		 * Check protection associated with entry.
2443 		 */
2444 
2445 		if ((entry->protection & protection) != protection) {
2446 			return (FALSE);
2447 		}
2448 		/* go to next entry */
2449 
2450 		start = entry->end;
2451 		entry = entry->next;
2452 	}
2453 	return (TRUE);
2454 }
2455 
2456 /*
2457  * Split the pages in a map entry into a new object.  This affords
2458  * easier removal of unused pages, and keeps object inheritance from
2459  * being a negative impact on memory usage.
2460  */
2461 static void
2462 vm_map_split(vm_map_entry_t entry)
2463 {
2464 	vm_page_t m;
2465 	vm_object_t orig_object, new_object, source;
2466 	vm_offset_t s, e;
2467 	vm_pindex_t offidxstart, offidxend, idx;
2468 	vm_size_t size;
2469 	vm_ooffset_t offset;
2470 
2471 	orig_object = entry->object.vm_object;
2472 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2473 		return;
2474 	if (orig_object->ref_count <= 1)
2475 		return;
2476 
2477 	offset = entry->offset;
2478 	s = entry->start;
2479 	e = entry->end;
2480 
2481 	offidxstart = OFF_TO_IDX(offset);
2482 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2483 	size = offidxend - offidxstart;
2484 
2485 	new_object = vm_pager_allocate(orig_object->type,
2486 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2487 	if (new_object == NULL)
2488 		return;
2489 
2490 	source = orig_object->backing_object;
2491 	if (source != NULL) {
2492 		vm_object_reference(source);	/* Referenced by new_object */
2493 		LIST_INSERT_HEAD(&source->shadow_head,
2494 				  new_object, shadow_list);
2495 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2496 		new_object->backing_object_offset =
2497 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2498 		new_object->backing_object = source;
2499 		source->shadow_count++;
2500 		source->generation++;
2501 	}
2502 
2503 	for (idx = 0; idx < size; idx++) {
2504 		vm_page_t m;
2505 
2506 	retry:
2507 		m = vm_page_lookup(orig_object, offidxstart + idx);
2508 		if (m == NULL)
2509 			continue;
2510 
2511 		/*
2512 		 * We must wait for pending I/O to complete before we can
2513 		 * rename the page.
2514 		 *
2515 		 * We do not have to VM_PROT_NONE the page as mappings should
2516 		 * not be changed by this operation.
2517 		 */
2518 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2519 			goto retry;
2520 
2521 		vm_page_busy(m);
2522 		vm_page_rename(m, new_object, idx);
2523 		/* page automatically made dirty by rename and cache handled */
2524 		vm_page_busy(m);
2525 	}
2526 
2527 	if (orig_object->type == OBJT_SWAP) {
2528 		vm_object_pip_add(orig_object, 1);
2529 		/*
2530 		 * copy orig_object pages into new_object
2531 		 * and destroy unneeded pages in
2532 		 * shadow object.
2533 		 */
2534 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2535 		vm_object_pip_wakeup(orig_object);
2536 	}
2537 
2538 	for (idx = 0; idx < size; idx++) {
2539 		m = vm_page_lookup(new_object, idx);
2540 		if (m) {
2541 			vm_page_wakeup(m);
2542 		}
2543 	}
2544 
2545 	entry->object.vm_object = new_object;
2546 	entry->offset = 0LL;
2547 	vm_object_deallocate(orig_object);
2548 }
2549 
2550 /*
2551  *	vm_map_copy_entry:
2552  *
2553  *	Copies the contents of the source entry to the destination
2554  *	entry.  The entries *must* be aligned properly.
2555  */
2556 static void
2557 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2558 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2559 {
2560 	vm_object_t src_object;
2561 
2562 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2563 		return;
2564 
2565 	if (src_entry->wired_count == 0) {
2566 
2567 		/*
2568 		 * If the source entry is marked needs_copy, it is already
2569 		 * write-protected.
2570 		 */
2571 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2572 			pmap_protect(src_map->pmap,
2573 			    src_entry->start,
2574 			    src_entry->end,
2575 			    src_entry->protection & ~VM_PROT_WRITE);
2576 		}
2577 
2578 		/*
2579 		 * Make a copy of the object.
2580 		 */
2581 		if ((src_object = src_entry->object.vm_object) != NULL) {
2582 
2583 			if ((src_object->handle == NULL) &&
2584 				(src_object->type == OBJT_DEFAULT ||
2585 				 src_object->type == OBJT_SWAP)) {
2586 				vm_object_collapse(src_object);
2587 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2588 					vm_map_split(src_entry);
2589 					src_object = src_entry->object.vm_object;
2590 				}
2591 			}
2592 
2593 			vm_object_reference(src_object);
2594 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2595 			dst_entry->object.vm_object = src_object;
2596 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2597 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2598 			dst_entry->offset = src_entry->offset;
2599 		} else {
2600 			dst_entry->object.vm_object = NULL;
2601 			dst_entry->offset = 0;
2602 		}
2603 
2604 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2605 		    dst_entry->end - dst_entry->start, src_entry->start);
2606 	} else {
2607 		/*
2608 		 * Of course, wired down pages can't be set copy-on-write.
2609 		 * Cause wired pages to be copied into the new map by
2610 		 * simulating faults (the new pages are pageable)
2611 		 */
2612 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2613 	}
2614 }
2615 
2616 /*
2617  * vmspace_fork:
2618  * Create a new process vmspace structure and vm_map
2619  * based on those of an existing process.  The new map
2620  * is based on the old map, according to the inheritance
2621  * values on the regions in that map.
2622  *
2623  * The source map must not be locked.
2624  */
2625 struct vmspace *
2626 vmspace_fork(struct vmspace *vm1)
2627 {
2628 	struct vmspace *vm2;
2629 	vm_map_t old_map = &vm1->vm_map;
2630 	vm_map_t new_map;
2631 	vm_map_entry_t old_entry;
2632 	vm_map_entry_t new_entry;
2633 	vm_object_t object;
2634 	int count;
2635 
2636 	vm_map_lock(old_map);
2637 	old_map->infork = 1;
2638 
2639 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2640 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2641 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2642 	new_map = &vm2->vm_map;	/* XXX */
2643 	new_map->timestamp = 1;
2644 
2645 	count = 0;
2646 	old_entry = old_map->header.next;
2647 	while (old_entry != &old_map->header) {
2648 		++count;
2649 		old_entry = old_entry->next;
2650 	}
2651 
2652 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2653 
2654 	old_entry = old_map->header.next;
2655 	while (old_entry != &old_map->header) {
2656 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2657 			panic("vm_map_fork: encountered a submap");
2658 
2659 		switch (old_entry->inheritance) {
2660 		case VM_INHERIT_NONE:
2661 			break;
2662 
2663 		case VM_INHERIT_SHARE:
2664 			/*
2665 			 * Clone the entry, creating the shared object if necessary.
2666 			 */
2667 			object = old_entry->object.vm_object;
2668 			if (object == NULL) {
2669 				object = vm_object_allocate(OBJT_DEFAULT,
2670 					atop(old_entry->end - old_entry->start));
2671 				old_entry->object.vm_object = object;
2672 				old_entry->offset = (vm_offset_t) 0;
2673 			}
2674 
2675 			/*
2676 			 * Add the reference before calling vm_object_shadow
2677 			 * to insure that a shadow object is created.
2678 			 */
2679 			vm_object_reference(object);
2680 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2681 				vm_object_shadow(&old_entry->object.vm_object,
2682 					&old_entry->offset,
2683 					atop(old_entry->end - old_entry->start));
2684 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2685 				/* Transfer the second reference too. */
2686 				vm_object_reference(
2687 				    old_entry->object.vm_object);
2688 				vm_object_deallocate(object);
2689 				object = old_entry->object.vm_object;
2690 			}
2691 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2692 
2693 			/*
2694 			 * Clone the entry, referencing the shared object.
2695 			 */
2696 			new_entry = vm_map_entry_create(new_map, &count);
2697 			*new_entry = *old_entry;
2698 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2699 			new_entry->wired_count = 0;
2700 
2701 			/*
2702 			 * Insert the entry into the new map -- we know we're
2703 			 * inserting at the end of the new map.
2704 			 */
2705 
2706 			vm_map_entry_link(new_map, new_map->header.prev,
2707 			    new_entry);
2708 
2709 			/*
2710 			 * Update the physical map
2711 			 */
2712 
2713 			pmap_copy(new_map->pmap, old_map->pmap,
2714 			    new_entry->start,
2715 			    (old_entry->end - old_entry->start),
2716 			    old_entry->start);
2717 			break;
2718 
2719 		case VM_INHERIT_COPY:
2720 			/*
2721 			 * Clone the entry and link into the map.
2722 			 */
2723 			new_entry = vm_map_entry_create(new_map, &count);
2724 			*new_entry = *old_entry;
2725 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2726 			new_entry->wired_count = 0;
2727 			new_entry->object.vm_object = NULL;
2728 			vm_map_entry_link(new_map, new_map->header.prev,
2729 			    new_entry);
2730 			vm_map_copy_entry(old_map, new_map, old_entry,
2731 			    new_entry);
2732 			break;
2733 		}
2734 		old_entry = old_entry->next;
2735 	}
2736 
2737 	new_map->size = old_map->size;
2738 	old_map->infork = 0;
2739 	vm_map_unlock(old_map);
2740 	vm_map_entry_release(count);
2741 
2742 	return (vm2);
2743 }
2744 
2745 int
2746 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2747 	      vm_prot_t prot, vm_prot_t max, int cow)
2748 {
2749 	vm_map_entry_t prev_entry;
2750 	vm_map_entry_t new_stack_entry;
2751 	vm_size_t      init_ssize;
2752 	int            rv;
2753 	int		count;
2754 
2755 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2756 		return (KERN_NO_SPACE);
2757 
2758 	if (max_ssize < sgrowsiz)
2759 		init_ssize = max_ssize;
2760 	else
2761 		init_ssize = sgrowsiz;
2762 
2763 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2764 	vm_map_lock(map);
2765 
2766 	/* If addr is already mapped, no go */
2767 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2768 		vm_map_unlock(map);
2769 		vm_map_entry_release(count);
2770 		return (KERN_NO_SPACE);
2771 	}
2772 
2773 	/* If we would blow our VMEM resource limit, no go */
2774 	if (map->size + init_ssize >
2775 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2776 		vm_map_unlock(map);
2777 		vm_map_entry_release(count);
2778 		return (KERN_NO_SPACE);
2779 	}
2780 
2781 	/* If we can't accomodate max_ssize in the current mapping,
2782 	 * no go.  However, we need to be aware that subsequent user
2783 	 * mappings might map into the space we have reserved for
2784 	 * stack, and currently this space is not protected.
2785 	 *
2786 	 * Hopefully we will at least detect this condition
2787 	 * when we try to grow the stack.
2788 	 */
2789 	if ((prev_entry->next != &map->header) &&
2790 	    (prev_entry->next->start < addrbos + max_ssize)) {
2791 		vm_map_unlock(map);
2792 		vm_map_entry_release(count);
2793 		return (KERN_NO_SPACE);
2794 	}
2795 
2796 	/* We initially map a stack of only init_ssize.  We will
2797 	 * grow as needed later.  Since this is to be a grow
2798 	 * down stack, we map at the top of the range.
2799 	 *
2800 	 * Note: we would normally expect prot and max to be
2801 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2802 	 * eliminate these as input parameters, and just
2803 	 * pass these values here in the insert call.
2804 	 */
2805 	rv = vm_map_insert(map, &count,
2806 			   NULL, 0, addrbos + max_ssize - init_ssize,
2807 	                   addrbos + max_ssize, prot, max, cow);
2808 
2809 	/* Now set the avail_ssize amount */
2810 	if (rv == KERN_SUCCESS){
2811 		if (prev_entry != &map->header)
2812 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2813 		new_stack_entry = prev_entry->next;
2814 		if (new_stack_entry->end   != addrbos + max_ssize ||
2815 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2816 			panic ("Bad entry start/end for new stack entry");
2817 		else
2818 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2819 	}
2820 
2821 	vm_map_unlock(map);
2822 	vm_map_entry_release(count);
2823 	return (rv);
2824 }
2825 
2826 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2827  * desired address is already mapped, or if we successfully grow
2828  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2829  * stack range (this is strange, but preserves compatibility with
2830  * the grow function in vm_machdep.c).
2831  */
2832 int
2833 vm_map_growstack (struct proc *p, vm_offset_t addr)
2834 {
2835 	vm_map_entry_t prev_entry;
2836 	vm_map_entry_t stack_entry;
2837 	vm_map_entry_t new_stack_entry;
2838 	struct vmspace *vm = p->p_vmspace;
2839 	vm_map_t map = &vm->vm_map;
2840 	vm_offset_t    end;
2841 	int grow_amount;
2842 	int rv = KERN_SUCCESS;
2843 	int is_procstack;
2844 	int use_read_lock = 1;
2845 	int count;
2846 
2847 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2848 Retry:
2849 	if (use_read_lock)
2850 		vm_map_lock_read(map);
2851 	else
2852 		vm_map_lock(map);
2853 
2854 	/* If addr is already in the entry range, no need to grow.*/
2855 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2856 		goto done;
2857 
2858 	if ((stack_entry = prev_entry->next) == &map->header)
2859 		goto done;
2860 	if (prev_entry == &map->header)
2861 		end = stack_entry->start - stack_entry->avail_ssize;
2862 	else
2863 		end = prev_entry->end;
2864 
2865 	/* This next test mimics the old grow function in vm_machdep.c.
2866 	 * It really doesn't quite make sense, but we do it anyway
2867 	 * for compatibility.
2868 	 *
2869 	 * If not growable stack, return success.  This signals the
2870 	 * caller to proceed as he would normally with normal vm.
2871 	 */
2872 	if (stack_entry->avail_ssize < 1 ||
2873 	    addr >= stack_entry->start ||
2874 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2875 		goto done;
2876 	}
2877 
2878 	/* Find the minimum grow amount */
2879 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2880 	if (grow_amount > stack_entry->avail_ssize) {
2881 		rv = KERN_NO_SPACE;
2882 		goto done;
2883 	}
2884 
2885 	/* If there is no longer enough space between the entries
2886 	 * nogo, and adjust the available space.  Note: this
2887 	 * should only happen if the user has mapped into the
2888 	 * stack area after the stack was created, and is
2889 	 * probably an error.
2890 	 *
2891 	 * This also effectively destroys any guard page the user
2892 	 * might have intended by limiting the stack size.
2893 	 */
2894 	if (grow_amount > stack_entry->start - end) {
2895 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2896 			use_read_lock = 0;
2897 			goto Retry;
2898 		}
2899 		use_read_lock = 0;
2900 		stack_entry->avail_ssize = stack_entry->start - end;
2901 		rv = KERN_NO_SPACE;
2902 		goto done;
2903 	}
2904 
2905 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2906 
2907 	/* If this is the main process stack, see if we're over the
2908 	 * stack limit.
2909 	 */
2910 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2911 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2912 		rv = KERN_NO_SPACE;
2913 		goto done;
2914 	}
2915 
2916 	/* Round up the grow amount modulo SGROWSIZ */
2917 	grow_amount = roundup (grow_amount, sgrowsiz);
2918 	if (grow_amount > stack_entry->avail_ssize) {
2919 		grow_amount = stack_entry->avail_ssize;
2920 	}
2921 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2922 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2923 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2924 		              ctob(vm->vm_ssize);
2925 	}
2926 
2927 	/* If we would blow our VMEM resource limit, no go */
2928 	if (map->size + grow_amount >
2929 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2930 		rv = KERN_NO_SPACE;
2931 		goto done;
2932 	}
2933 
2934 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2935 		use_read_lock = 0;
2936 		goto Retry;
2937 	}
2938 	use_read_lock = 0;
2939 
2940 	/* Get the preliminary new entry start value */
2941 	addr = stack_entry->start - grow_amount;
2942 
2943 	/* If this puts us into the previous entry, cut back our growth
2944 	 * to the available space.  Also, see the note above.
2945 	 */
2946 	if (addr < end) {
2947 		stack_entry->avail_ssize = stack_entry->start - end;
2948 		addr = end;
2949 	}
2950 
2951 	rv = vm_map_insert(map, &count,
2952 			   NULL, 0, addr, stack_entry->start,
2953 			   VM_PROT_ALL,
2954 			   VM_PROT_ALL,
2955 			   0);
2956 
2957 	/* Adjust the available stack space by the amount we grew. */
2958 	if (rv == KERN_SUCCESS) {
2959 		if (prev_entry != &map->header)
2960 			vm_map_clip_end(map, prev_entry, addr, &count);
2961 		new_stack_entry = prev_entry->next;
2962 		if (new_stack_entry->end   != stack_entry->start  ||
2963 		    new_stack_entry->start != addr)
2964 			panic ("Bad stack grow start/end in new stack entry");
2965 		else {
2966 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2967 							(new_stack_entry->end -
2968 							 new_stack_entry->start);
2969 			if (is_procstack)
2970 				vm->vm_ssize += btoc(new_stack_entry->end -
2971 						     new_stack_entry->start);
2972 		}
2973 	}
2974 
2975 done:
2976 	if (use_read_lock)
2977 		vm_map_unlock_read(map);
2978 	else
2979 		vm_map_unlock(map);
2980 	vm_map_entry_release(count);
2981 	return (rv);
2982 }
2983 
2984 /*
2985  * Unshare the specified VM space for exec.  If other processes are
2986  * mapped to it, then create a new one.  The new vmspace is null.
2987  */
2988 
2989 void
2990 vmspace_exec(struct proc *p)
2991 {
2992 	struct vmspace *oldvmspace = p->p_vmspace;
2993 	struct vmspace *newvmspace;
2994 	vm_map_t map = &p->p_vmspace->vm_map;
2995 
2996 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2997 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2998 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2999 	/*
3000 	 * This code is written like this for prototype purposes.  The
3001 	 * goal is to avoid running down the vmspace here, but let the
3002 	 * other process's that are still using the vmspace to finally
3003 	 * run it down.  Even though there is little or no chance of blocking
3004 	 * here, it is a good idea to keep this form for future mods.
3005 	 */
3006 	vmspace_free(oldvmspace);
3007 	p->p_vmspace = newvmspace;
3008 	pmap_pinit2(vmspace_pmap(newvmspace));
3009 	if (p == curproc)
3010 		pmap_activate(p);
3011 }
3012 
3013 /*
3014  * Unshare the specified VM space for forcing COW.  This
3015  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3016  */
3017 
3018 void
3019 vmspace_unshare(struct proc *p)
3020 {
3021 	struct vmspace *oldvmspace = p->p_vmspace;
3022 	struct vmspace *newvmspace;
3023 
3024 	if (oldvmspace->vm_refcnt == 1)
3025 		return;
3026 	newvmspace = vmspace_fork(oldvmspace);
3027 	vmspace_free(oldvmspace);
3028 	p->p_vmspace = newvmspace;
3029 	pmap_pinit2(vmspace_pmap(newvmspace));
3030 	if (p == curproc)
3031 		pmap_activate(p);
3032 }
3033 
3034 /*
3035  *	vm_map_lookup:
3036  *
3037  *	Finds the VM object, offset, and
3038  *	protection for a given virtual address in the
3039  *	specified map, assuming a page fault of the
3040  *	type specified.
3041  *
3042  *	Leaves the map in question locked for read; return
3043  *	values are guaranteed until a vm_map_lookup_done
3044  *	call is performed.  Note that the map argument
3045  *	is in/out; the returned map must be used in
3046  *	the call to vm_map_lookup_done.
3047  *
3048  *	A handle (out_entry) is returned for use in
3049  *	vm_map_lookup_done, to make that fast.
3050  *
3051  *	If a lookup is requested with "write protection"
3052  *	specified, the map may be changed to perform virtual
3053  *	copying operations, although the data referenced will
3054  *	remain the same.
3055  */
3056 int
3057 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3058 	      vm_offset_t vaddr,
3059 	      vm_prot_t fault_typea,
3060 	      vm_map_entry_t *out_entry,	/* OUT */
3061 	      vm_object_t *object,		/* OUT */
3062 	      vm_pindex_t *pindex,		/* OUT */
3063 	      vm_prot_t *out_prot,		/* OUT */
3064 	      boolean_t *wired)			/* OUT */
3065 {
3066 	vm_map_entry_t entry;
3067 	vm_map_t map = *var_map;
3068 	vm_prot_t prot;
3069 	vm_prot_t fault_type = fault_typea;
3070 	int use_read_lock = 1;
3071 	int rv = KERN_SUCCESS;
3072 
3073 RetryLookup:
3074 	if (use_read_lock)
3075 		vm_map_lock_read(map);
3076 	else
3077 		vm_map_lock(map);
3078 
3079 	/*
3080 	 * If the map has an interesting hint, try it before calling full
3081 	 * blown lookup routine.
3082 	 */
3083 	entry = map->hint;
3084 	*out_entry = entry;
3085 
3086 	if ((entry == &map->header) ||
3087 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3088 		vm_map_entry_t tmp_entry;
3089 
3090 		/*
3091 		 * Entry was either not a valid hint, or the vaddr was not
3092 		 * contained in the entry, so do a full lookup.
3093 		 */
3094 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3095 			rv = KERN_INVALID_ADDRESS;
3096 			goto done;
3097 		}
3098 
3099 		entry = tmp_entry;
3100 		*out_entry = entry;
3101 	}
3102 
3103 	/*
3104 	 * Handle submaps.
3105 	 */
3106 
3107 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3108 		vm_map_t old_map = map;
3109 
3110 		*var_map = map = entry->object.sub_map;
3111 		if (use_read_lock)
3112 			vm_map_unlock_read(old_map);
3113 		else
3114 			vm_map_unlock(old_map);
3115 		use_read_lock = 1;
3116 		goto RetryLookup;
3117 	}
3118 
3119 	/*
3120 	 * Check whether this task is allowed to have this page.
3121 	 * Note the special case for MAP_ENTRY_COW
3122 	 * pages with an override.  This is to implement a forced
3123 	 * COW for debuggers.
3124 	 */
3125 
3126 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3127 		prot = entry->max_protection;
3128 	else
3129 		prot = entry->protection;
3130 
3131 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3132 	if ((fault_type & prot) != fault_type) {
3133 		rv = KERN_PROTECTION_FAILURE;
3134 		goto done;
3135 	}
3136 
3137 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3138 	    (entry->eflags & MAP_ENTRY_COW) &&
3139 	    (fault_type & VM_PROT_WRITE) &&
3140 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3141 		rv = KERN_PROTECTION_FAILURE;
3142 		goto done;
3143 	}
3144 
3145 	/*
3146 	 * If this page is not pageable, we have to get it for all possible
3147 	 * accesses.
3148 	 */
3149 
3150 	*wired = (entry->wired_count != 0);
3151 	if (*wired)
3152 		prot = fault_type = entry->protection;
3153 
3154 	/*
3155 	 * If the entry was copy-on-write, we either ...
3156 	 */
3157 
3158 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3159 		/*
3160 		 * If we want to write the page, we may as well handle that
3161 		 * now since we've got the map locked.
3162 		 *
3163 		 * If we don't need to write the page, we just demote the
3164 		 * permissions allowed.
3165 		 */
3166 
3167 		if (fault_type & VM_PROT_WRITE) {
3168 			/*
3169 			 * Make a new object, and place it in the object
3170 			 * chain.  Note that no new references have appeared
3171 			 * -- one just moved from the map to the new
3172 			 * object.
3173 			 */
3174 
3175 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3176 				use_read_lock = 0;
3177 				goto RetryLookup;
3178 			}
3179 			use_read_lock = 0;
3180 
3181 			vm_object_shadow(
3182 			    &entry->object.vm_object,
3183 			    &entry->offset,
3184 			    atop(entry->end - entry->start));
3185 
3186 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3187 		} else {
3188 			/*
3189 			 * We're attempting to read a copy-on-write page --
3190 			 * don't allow writes.
3191 			 */
3192 
3193 			prot &= ~VM_PROT_WRITE;
3194 		}
3195 	}
3196 
3197 	/*
3198 	 * Create an object if necessary.
3199 	 */
3200 	if (entry->object.vm_object == NULL &&
3201 	    !map->system_map) {
3202 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3203 			use_read_lock = 0;
3204 			goto RetryLookup;
3205 		}
3206 		use_read_lock = 0;
3207 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3208 		    atop(entry->end - entry->start));
3209 		entry->offset = 0;
3210 	}
3211 
3212 	/*
3213 	 * Return the object/offset from this entry.  If the entry was
3214 	 * copy-on-write or empty, it has been fixed up.
3215 	 */
3216 
3217 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3218 	*object = entry->object.vm_object;
3219 
3220 	/*
3221 	 * Return whether this is the only map sharing this data.  On
3222 	 * success we return with a read lock held on the map.  On failure
3223 	 * we return with the map unlocked.
3224 	 */
3225 	*out_prot = prot;
3226 done:
3227 	if (rv == KERN_SUCCESS) {
3228 		if (use_read_lock == 0)
3229 			vm_map_lock_downgrade(map);
3230 	} else if (use_read_lock) {
3231 		vm_map_unlock_read(map);
3232 	} else {
3233 		vm_map_unlock(map);
3234 	}
3235 	return (rv);
3236 }
3237 
3238 /*
3239  *	vm_map_lookup_done:
3240  *
3241  *	Releases locks acquired by a vm_map_lookup
3242  *	(according to the handle returned by that lookup).
3243  */
3244 
3245 void
3246 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3247 {
3248 	/*
3249 	 * Unlock the main-level map
3250 	 */
3251 	vm_map_unlock_read(map);
3252 	if (count)
3253 		vm_map_entry_release(count);
3254 }
3255 
3256 /*
3257  * Implement uiomove with VM operations.  This handles (and collateral changes)
3258  * support every combination of source object modification, and COW type
3259  * operations.
3260  */
3261 int
3262 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3263 	vm_map_t mapa;
3264 	vm_object_t srcobject;
3265 	off_t cp;
3266 	int cnta;
3267 	vm_offset_t uaddra;
3268 	int *npages;
3269 {
3270 	vm_map_t map;
3271 	vm_object_t first_object, oldobject, object;
3272 	vm_map_entry_t entry;
3273 	vm_prot_t prot;
3274 	boolean_t wired;
3275 	int tcnt, rv;
3276 	vm_offset_t uaddr, start, end, tend;
3277 	vm_pindex_t first_pindex, osize, oindex;
3278 	off_t ooffset;
3279 	int cnt;
3280 	int count;
3281 
3282 	if (npages)
3283 		*npages = 0;
3284 
3285 	cnt = cnta;
3286 	uaddr = uaddra;
3287 
3288 	while (cnt > 0) {
3289 		map = mapa;
3290 
3291 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3292 
3293 		if ((vm_map_lookup(&map, uaddr,
3294 			VM_PROT_READ, &entry, &first_object,
3295 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3296 			return EFAULT;
3297 		}
3298 
3299 		vm_map_clip_start(map, entry, uaddr, &count);
3300 
3301 		tcnt = cnt;
3302 		tend = uaddr + tcnt;
3303 		if (tend > entry->end) {
3304 			tcnt = entry->end - uaddr;
3305 			tend = entry->end;
3306 		}
3307 
3308 		vm_map_clip_end(map, entry, tend, &count);
3309 
3310 		start = entry->start;
3311 		end = entry->end;
3312 
3313 		osize = atop(tcnt);
3314 
3315 		oindex = OFF_TO_IDX(cp);
3316 		if (npages) {
3317 			vm_pindex_t idx;
3318 			for (idx = 0; idx < osize; idx++) {
3319 				vm_page_t m;
3320 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3321 					vm_map_lookup_done(map, entry, count);
3322 					return 0;
3323 				}
3324 				/*
3325 				 * disallow busy or invalid pages, but allow
3326 				 * m->busy pages if they are entirely valid.
3327 				 */
3328 				if ((m->flags & PG_BUSY) ||
3329 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3330 					vm_map_lookup_done(map, entry, count);
3331 					return 0;
3332 				}
3333 			}
3334 		}
3335 
3336 /*
3337  * If we are changing an existing map entry, just redirect
3338  * the object, and change mappings.
3339  */
3340 		if ((first_object->type == OBJT_VNODE) &&
3341 			((oldobject = entry->object.vm_object) == first_object)) {
3342 
3343 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3344 				/*
3345    				* Remove old window into the file
3346    				*/
3347 				pmap_remove (map->pmap, uaddr, tend);
3348 
3349 				/*
3350    				* Force copy on write for mmaped regions
3351    				*/
3352 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3353 
3354 				/*
3355    				* Point the object appropriately
3356    				*/
3357 				if (oldobject != srcobject) {
3358 
3359 				/*
3360    				* Set the object optimization hint flag
3361    				*/
3362 					vm_object_set_flag(srcobject, OBJ_OPT);
3363 					vm_object_reference(srcobject);
3364 					entry->object.vm_object = srcobject;
3365 
3366 					if (oldobject) {
3367 						vm_object_deallocate(oldobject);
3368 					}
3369 				}
3370 
3371 				entry->offset = cp;
3372 				map->timestamp++;
3373 			} else {
3374 				pmap_remove (map->pmap, uaddr, tend);
3375 			}
3376 
3377 		} else if ((first_object->ref_count == 1) &&
3378 			(first_object->size == osize) &&
3379 			((first_object->type == OBJT_DEFAULT) ||
3380 				(first_object->type == OBJT_SWAP)) ) {
3381 
3382 			oldobject = first_object->backing_object;
3383 
3384 			if ((first_object->backing_object_offset != cp) ||
3385 				(oldobject != srcobject)) {
3386 				/*
3387    				* Remove old window into the file
3388    				*/
3389 				pmap_remove (map->pmap, uaddr, tend);
3390 
3391 				/*
3392 				 * Remove unneeded old pages
3393 				 */
3394 				vm_object_page_remove(first_object, 0, 0, 0);
3395 
3396 				/*
3397 				 * Invalidate swap space
3398 				 */
3399 				if (first_object->type == OBJT_SWAP) {
3400 					swap_pager_freespace(first_object,
3401 						0,
3402 						first_object->size);
3403 				}
3404 
3405 				/*
3406    				* Force copy on write for mmaped regions
3407    				*/
3408 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3409 
3410 				/*
3411    				* Point the object appropriately
3412    				*/
3413 				if (oldobject != srcobject) {
3414 
3415 				/*
3416    				* Set the object optimization hint flag
3417    				*/
3418 					vm_object_set_flag(srcobject, OBJ_OPT);
3419 					vm_object_reference(srcobject);
3420 
3421 					if (oldobject) {
3422 						LIST_REMOVE(
3423 							first_object, shadow_list);
3424 						oldobject->shadow_count--;
3425 						/* XXX bump generation? */
3426 						vm_object_deallocate(oldobject);
3427 					}
3428 
3429 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3430 						first_object, shadow_list);
3431 					srcobject->shadow_count++;
3432 					/* XXX bump generation? */
3433 
3434 					first_object->backing_object = srcobject;
3435 				}
3436 				first_object->backing_object_offset = cp;
3437 				map->timestamp++;
3438 			} else {
3439 				pmap_remove (map->pmap, uaddr, tend);
3440 			}
3441 /*
3442  * Otherwise, we have to do a logical mmap.
3443  */
3444 		} else {
3445 
3446 			vm_object_set_flag(srcobject, OBJ_OPT);
3447 			vm_object_reference(srcobject);
3448 
3449 			pmap_remove (map->pmap, uaddr, tend);
3450 
3451 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3452 			vm_map_lock_upgrade(map);
3453 
3454 			if (entry == &map->header) {
3455 				map->first_free = &map->header;
3456 			} else if (map->first_free->start >= start) {
3457 				map->first_free = entry->prev;
3458 			}
3459 
3460 			SAVE_HINT(map, entry->prev);
3461 			vm_map_entry_delete(map, entry, &count);
3462 
3463 			object = srcobject;
3464 			ooffset = cp;
3465 
3466 			rv = vm_map_insert(map, &count,
3467 				object, ooffset, start, tend,
3468 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3469 
3470 			if (rv != KERN_SUCCESS)
3471 				panic("vm_uiomove: could not insert new entry: %d", rv);
3472 		}
3473 
3474 /*
3475  * Map the window directly, if it is already in memory
3476  */
3477 		pmap_object_init_pt(map->pmap, uaddr,
3478 			srcobject, oindex, tcnt, 0);
3479 
3480 		map->timestamp++;
3481 		vm_map_unlock(map);
3482 		vm_map_entry_release(count);
3483 
3484 		cnt -= tcnt;
3485 		uaddr += tcnt;
3486 		cp += tcnt;
3487 		if (npages)
3488 			*npages += osize;
3489 	}
3490 	return 0;
3491 }
3492 
3493 /*
3494  * Performs the copy_on_write operations necessary to allow the virtual copies
3495  * into user space to work.  This has to be called for write(2) system calls
3496  * from other processes, file unlinking, and file size shrinkage.
3497  */
3498 void
3499 vm_freeze_copyopts(object, froma, toa)
3500 	vm_object_t object;
3501 	vm_pindex_t froma, toa;
3502 {
3503 	int rv;
3504 	vm_object_t robject;
3505 	vm_pindex_t idx;
3506 
3507 	if ((object == NULL) ||
3508 		((object->flags & OBJ_OPT) == 0))
3509 		return;
3510 
3511 	if (object->shadow_count > object->ref_count)
3512 		panic("vm_freeze_copyopts: sc > rc");
3513 
3514 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3515 		vm_pindex_t bo_pindex;
3516 		vm_page_t m_in, m_out;
3517 
3518 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3519 
3520 		vm_object_reference(robject);
3521 
3522 		vm_object_pip_wait(robject, "objfrz");
3523 
3524 		if (robject->ref_count == 1) {
3525 			vm_object_deallocate(robject);
3526 			continue;
3527 		}
3528 
3529 		vm_object_pip_add(robject, 1);
3530 
3531 		for (idx = 0; idx < robject->size; idx++) {
3532 
3533 			m_out = vm_page_grab(robject, idx,
3534 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3535 
3536 			if (m_out->valid == 0) {
3537 				m_in = vm_page_grab(object, bo_pindex + idx,
3538 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3539 				if (m_in->valid == 0) {
3540 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3541 					if (rv != VM_PAGER_OK) {
3542 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3543 						continue;
3544 					}
3545 					vm_page_deactivate(m_in);
3546 				}
3547 
3548 				vm_page_protect(m_in, VM_PROT_NONE);
3549 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3550 				m_out->valid = m_in->valid;
3551 				vm_page_dirty(m_out);
3552 				vm_page_activate(m_out);
3553 				vm_page_wakeup(m_in);
3554 			}
3555 			vm_page_wakeup(m_out);
3556 		}
3557 
3558 		object->shadow_count--;
3559 		object->ref_count--;
3560 		LIST_REMOVE(robject, shadow_list);
3561 		robject->backing_object = NULL;
3562 		robject->backing_object_offset = 0;
3563 
3564 		vm_object_pip_wakeup(robject);
3565 		vm_object_deallocate(robject);
3566 	}
3567 
3568 	vm_object_clear_flag(object, OBJ_OPT);
3569 }
3570 
3571 #include "opt_ddb.h"
3572 #ifdef DDB
3573 #include <sys/kernel.h>
3574 
3575 #include <ddb/ddb.h>
3576 
3577 /*
3578  *	vm_map_print:	[ debug ]
3579  */
3580 DB_SHOW_COMMAND(map, vm_map_print)
3581 {
3582 	static int nlines;
3583 	/* XXX convert args. */
3584 	vm_map_t map = (vm_map_t)addr;
3585 	boolean_t full = have_addr;
3586 
3587 	vm_map_entry_t entry;
3588 
3589 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3590 	    (void *)map,
3591 	    (void *)map->pmap, map->nentries, map->timestamp);
3592 	nlines++;
3593 
3594 	if (!full && db_indent)
3595 		return;
3596 
3597 	db_indent += 2;
3598 	for (entry = map->header.next; entry != &map->header;
3599 	    entry = entry->next) {
3600 		db_iprintf("map entry %p: start=%p, end=%p\n",
3601 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3602 		nlines++;
3603 		{
3604 			static char *inheritance_name[4] =
3605 			{"share", "copy", "none", "donate_copy"};
3606 
3607 			db_iprintf(" prot=%x/%x/%s",
3608 			    entry->protection,
3609 			    entry->max_protection,
3610 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3611 			if (entry->wired_count != 0)
3612 				db_printf(", wired");
3613 		}
3614 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3615 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3616 			db_printf(", share=%p, offset=0x%lx\n",
3617 			    (void *)entry->object.sub_map,
3618 			    (long)entry->offset);
3619 			nlines++;
3620 			if ((entry->prev == &map->header) ||
3621 			    (entry->prev->object.sub_map !=
3622 				entry->object.sub_map)) {
3623 				db_indent += 2;
3624 				vm_map_print((db_expr_t)(intptr_t)
3625 					     entry->object.sub_map,
3626 					     full, 0, (char *)0);
3627 				db_indent -= 2;
3628 			}
3629 		} else {
3630 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3631 			db_printf(", object=%p, offset=0x%lx",
3632 			    (void *)entry->object.vm_object,
3633 			    (long)entry->offset);
3634 			if (entry->eflags & MAP_ENTRY_COW)
3635 				db_printf(", copy (%s)",
3636 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3637 			db_printf("\n");
3638 			nlines++;
3639 
3640 			if ((entry->prev == &map->header) ||
3641 			    (entry->prev->object.vm_object !=
3642 				entry->object.vm_object)) {
3643 				db_indent += 2;
3644 				vm_object_print((db_expr_t)(intptr_t)
3645 						entry->object.vm_object,
3646 						full, 0, (char *)0);
3647 				nlines += 4;
3648 				db_indent -= 2;
3649 			}
3650 		}
3651 	}
3652 	db_indent -= 2;
3653 	if (db_indent == 0)
3654 		nlines = 0;
3655 }
3656 
3657 
3658 DB_SHOW_COMMAND(procvm, procvm)
3659 {
3660 	struct proc *p;
3661 
3662 	if (have_addr) {
3663 		p = (struct proc *) addr;
3664 	} else {
3665 		p = curproc;
3666 	}
3667 
3668 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3669 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3670 	    (void *)vmspace_pmap(p->p_vmspace));
3671 
3672 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3673 }
3674 
3675 #endif /* DDB */
3676