xref: /dragonfly/sys/vm/vm_map.c (revision 193f58b8)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 #include <sys/kern_syscall.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98 
99 #include <sys/random.h>
100 #include <sys/sysctl.h>
101 #include <sys/spinlock.h>
102 
103 #include <sys/thread2.h>
104 #include <sys/spinlock2.h>
105 
106 /*
107  * Virtual memory maps provide for the mapping, protection, and sharing
108  * of virtual memory objects.  In addition, this module provides for an
109  * efficient virtual copy of memory from one map to another.
110  *
111  * Synchronization is required prior to most operations.
112  *
113  * Maps consist of an ordered doubly-linked list of simple entries.
114  * A hint and a RB tree is used to speed-up lookups.
115  *
116  * Callers looking to modify maps specify start/end addresses which cause
117  * the related map entry to be clipped if necessary, and then later
118  * recombined if the pieces remained compatible.
119  *
120  * Virtual copy operations are performed by copying VM object references
121  * from one map to another, and then marking both regions as copy-on-write.
122  */
123 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
124 static void vmspace_dtor(void *obj, void *privdata);
125 static void vmspace_terminate(struct vmspace *vm, int final);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 static struct objcache *vmspace_cache;
129 
130 /*
131  * per-cpu page table cross mappings are initialized in early boot
132  * and might require a considerable number of vm_map_entry structures.
133  */
134 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
135 #define MAPENTRYAP_CACHE	8
136 
137 /*
138  * Partioning threaded programs with large anonymous memory areas can
139  * improve concurrent fault performance.
140  */
141 #define MAP_ENTRY_PARTITION_SIZE	((vm_offset_t)(32 * 1024 * 1024))
142 #define MAP_ENTRY_PARTITION_MASK	(MAP_ENTRY_PARTITION_SIZE - 1)
143 
144 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)	\
145 	((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
146 
147 static struct vm_zone mapentzone_store;
148 static vm_zone_t mapentzone;
149 
150 static struct vm_map_entry map_entry_init[MAX_MAPENT];
151 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
152 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
153 
154 static int randomize_mmap;
155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
156     "Randomize mmap offsets");
157 static int vm_map_relock_enable = 1;
158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
159 	   &vm_map_relock_enable, 0, "insert pop pgtable optimization");
160 static int vm_map_partition_enable = 1;
161 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
162 	   &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
163 
164 static void vmspace_drop_notoken(struct vmspace *vm);
165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
173 		vm_map_entry_t);
174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
175 		vm_offset_t start, vm_offset_t end, int *countp, int flags);
176 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
177 		vm_offset_t vaddr, int *countp);
178 
179 /*
180  * Initialize the vm_map module.  Must be called before any other vm_map
181  * routines.
182  *
183  * Map and entry structures are allocated from the general purpose
184  * memory pool with some exceptions:
185  *
186  *	- The kernel map is allocated statically.
187  *	- Initial kernel map entries are allocated out of a static pool.
188  *	- We must set ZONE_SPECIAL here or the early boot code can get
189  *	  stuck if there are >63 cores.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_map_startup(void)
198 {
199 	mapentzone = &mapentzone_store;
200 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
201 		  map_entry_init, MAX_MAPENT);
202 	mapentzone_store.zflags |= ZONE_SPECIAL;
203 }
204 
205 /*
206  * Called prior to any vmspace allocations.
207  *
208  * Called from the low level boot code only.
209  */
210 void
211 vm_init2(void)
212 {
213 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
214 						sizeof(struct vmspace),
215 						0, ncpus * 4,
216 						vmspace_ctor, vmspace_dtor,
217 						NULL);
218 	zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
219 	pmap_init2();
220 	vm_object_init2();
221 }
222 
223 /*
224  * objcache support.  We leave the pmap root cached as long as possible
225  * for performance reasons.
226  */
227 static
228 boolean_t
229 vmspace_ctor(void *obj, void *privdata, int ocflags)
230 {
231 	struct vmspace *vm = obj;
232 
233 	bzero(vm, sizeof(*vm));
234 	vm->vm_refcnt = VM_REF_DELETED;
235 
236 	return 1;
237 }
238 
239 static
240 void
241 vmspace_dtor(void *obj, void *privdata)
242 {
243 	struct vmspace *vm = obj;
244 
245 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
246 	pmap_puninit(vmspace_pmap(vm));
247 }
248 
249 /*
250  * Red black tree functions
251  *
252  * The caller must hold the related map lock.
253  */
254 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
255 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
256 
257 /* a->start is address, and the only field has to be initialized */
258 static int
259 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
260 {
261 	if (a->start < b->start)
262 		return(-1);
263 	else if (a->start > b->start)
264 		return(1);
265 	return(0);
266 }
267 
268 /*
269  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
270  * every refcnt.
271  */
272 void
273 vmspace_initrefs(struct vmspace *vm)
274 {
275 	vm->vm_refcnt = 1;
276 	vm->vm_holdcnt = 1;
277 }
278 
279 /*
280  * Allocate a vmspace structure, including a vm_map and pmap.
281  * Initialize numerous fields.  While the initial allocation is zerod,
282  * subsequence reuse from the objcache leaves elements of the structure
283  * intact (particularly the pmap), so portions must be zerod.
284  *
285  * Returns a referenced vmspace.
286  *
287  * No requirements.
288  */
289 struct vmspace *
290 vmspace_alloc(vm_offset_t min, vm_offset_t max)
291 {
292 	struct vmspace *vm;
293 
294 	vm = objcache_get(vmspace_cache, M_WAITOK);
295 
296 	bzero(&vm->vm_startcopy,
297 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
298 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
299 
300 	/*
301 	 * NOTE: hold to acquires token for safety.
302 	 *
303 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
304 	 * each refcnt also has a holdcnt.  There can be additional holds
305 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
306 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
307 	 */
308 	KKASSERT(vm->vm_holdcnt == 0);
309 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
310 	vmspace_initrefs(vm);
311 	vmspace_hold(vm);
312 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
313 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
314 	vm->vm_shm = NULL;
315 	vm->vm_flags = 0;
316 	cpu_vmspace_alloc(vm);
317 	vmspace_drop(vm);
318 
319 	return (vm);
320 }
321 
322 /*
323  * NOTE: Can return 0 if the vmspace is exiting.
324  */
325 int
326 vmspace_getrefs(struct vmspace *vm)
327 {
328 	int32_t n;
329 
330 	n = vm->vm_refcnt;
331 	cpu_ccfence();
332 	if (n & VM_REF_DELETED)
333 		n = -1;
334 	return n;
335 }
336 
337 void
338 vmspace_hold(struct vmspace *vm)
339 {
340 	atomic_add_int(&vm->vm_holdcnt, 1);
341 	lwkt_gettoken(&vm->vm_map.token);
342 }
343 
344 /*
345  * Drop with final termination interlock.
346  */
347 void
348 vmspace_drop(struct vmspace *vm)
349 {
350 	lwkt_reltoken(&vm->vm_map.token);
351 	vmspace_drop_notoken(vm);
352 }
353 
354 static void
355 vmspace_drop_notoken(struct vmspace *vm)
356 {
357 	if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
358 		if (vm->vm_refcnt & VM_REF_DELETED)
359 			vmspace_terminate(vm, 1);
360 	}
361 }
362 
363 /*
364  * A vmspace object must not be in a terminated state to be able to obtain
365  * additional refs on it.
366  *
367  * These are official references to the vmspace, the count is used to check
368  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
369  *
370  * XXX we need to combine hold & ref together into one 64-bit field to allow
371  * holds to prevent stage-1 termination.
372  */
373 void
374 vmspace_ref(struct vmspace *vm)
375 {
376 	uint32_t n;
377 
378 	atomic_add_int(&vm->vm_holdcnt, 1);
379 	n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
380 	KKASSERT((n & VM_REF_DELETED) == 0);
381 }
382 
383 /*
384  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
385  * termination of the vmspace.  Then, on the final drop of the hold we
386  * will do stage-2 final termination.
387  */
388 void
389 vmspace_rel(struct vmspace *vm)
390 {
391 	uint32_t n;
392 
393 	/*
394 	 * Drop refs.  Each ref also has a hold which is also dropped.
395 	 *
396 	 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
397 	 * prevent finalization) to start termination processing.
398 	 * Finalization occurs when the last hold count drops to 0.
399 	 */
400 	n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
401 	while (n == 0) {
402 		if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
403 			vmspace_terminate(vm, 0);
404 			break;
405 		}
406 		n = vm->vm_refcnt;
407 		cpu_ccfence();
408 	}
409 	vmspace_drop_notoken(vm);
410 }
411 
412 /*
413  * This is called during exit indicating that the vmspace is no
414  * longer in used by an exiting process, but the process has not yet
415  * been reaped.
416  *
417  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
418  * to prevent stage-2 until the process is reaped.  Note hte order of
419  * operation, we must hold first.
420  *
421  * No requirements.
422  */
423 void
424 vmspace_relexit(struct vmspace *vm)
425 {
426 	atomic_add_int(&vm->vm_holdcnt, 1);
427 	vmspace_rel(vm);
428 }
429 
430 /*
431  * Called during reap to disconnect the remainder of the vmspace from
432  * the process.  On the hold drop the vmspace termination is finalized.
433  *
434  * No requirements.
435  */
436 void
437 vmspace_exitfree(struct proc *p)
438 {
439 	struct vmspace *vm;
440 
441 	vm = p->p_vmspace;
442 	p->p_vmspace = NULL;
443 	vmspace_drop_notoken(vm);
444 }
445 
446 /*
447  * Called in two cases:
448  *
449  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
450  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
451  *     and holdcnt will still be non-zero.
452  *
453  * (2) When holdcnt becomes 0, called with final == 1.  There should no
454  *     longer be anyone with access to the vmspace.
455  *
456  * VMSPACE_EXIT1 flags the primary deactivation
457  * VMSPACE_EXIT2 flags the last reap
458  */
459 static void
460 vmspace_terminate(struct vmspace *vm, int final)
461 {
462 	int count;
463 
464 	lwkt_gettoken(&vm->vm_map.token);
465 	if (final == 0) {
466 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
467 		vm->vm_flags |= VMSPACE_EXIT1;
468 
469 		/*
470 		 * Get rid of most of the resources.  Leave the kernel pmap
471 		 * intact.
472 		 *
473 		 * If the pmap does not contain wired pages we can bulk-delete
474 		 * the pmap as a performance optimization before removing the
475 		 * related mappings.
476 		 *
477 		 * If the pmap contains wired pages we cannot do this
478 		 * pre-optimization because currently vm_fault_unwire()
479 		 * expects the pmap pages to exist and will not decrement
480 		 * p->wire_count if they do not.
481 		 */
482 		shmexit(vm);
483 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
484 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
485 				      VM_MAX_USER_ADDRESS);
486 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
487 					  VM_MAX_USER_ADDRESS);
488 		} else {
489 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
490 					  VM_MAX_USER_ADDRESS);
491 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
492 				      VM_MAX_USER_ADDRESS);
493 		}
494 		lwkt_reltoken(&vm->vm_map.token);
495 	} else {
496 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
497 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
498 
499 		/*
500 		 * Get rid of remaining basic resources.
501 		 */
502 		vm->vm_flags |= VMSPACE_EXIT2;
503 		shmexit(vm);
504 
505 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
506 		vm_map_lock(&vm->vm_map);
507 		cpu_vmspace_free(vm);
508 
509 		/*
510 		 * Lock the map, to wait out all other references to it.
511 		 * Delete all of the mappings and pages they hold, then call
512 		 * the pmap module to reclaim anything left.
513 		 */
514 		vm_map_delete(&vm->vm_map,
515 			      vm_map_min(&vm->vm_map),
516 			      vm_map_max(&vm->vm_map),
517 			      &count);
518 		vm_map_unlock(&vm->vm_map);
519 		vm_map_entry_release(count);
520 
521 		pmap_release(vmspace_pmap(vm));
522 		lwkt_reltoken(&vm->vm_map.token);
523 		objcache_put(vmspace_cache, vm);
524 	}
525 }
526 
527 /*
528  * Swap useage is determined by taking the proportional swap used by
529  * VM objects backing the VM map.  To make up for fractional losses,
530  * if the VM object has any swap use at all the associated map entries
531  * count for at least 1 swap page.
532  *
533  * No requirements.
534  */
535 vm_offset_t
536 vmspace_swap_count(struct vmspace *vm)
537 {
538 	vm_map_t map = &vm->vm_map;
539 	vm_map_entry_t cur;
540 	vm_object_t object;
541 	vm_offset_t count = 0;
542 	vm_offset_t n;
543 
544 	vmspace_hold(vm);
545 
546 	RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
547 		switch(cur->maptype) {
548 		case VM_MAPTYPE_NORMAL:
549 		case VM_MAPTYPE_VPAGETABLE:
550 			if ((object = cur->object.vm_object) == NULL)
551 				break;
552 			if (object->swblock_count) {
553 				n = (cur->end - cur->start) / PAGE_SIZE;
554 				count += object->swblock_count *
555 				    SWAP_META_PAGES * n / object->size + 1;
556 			}
557 			break;
558 		default:
559 			break;
560 		}
561 	}
562 	vmspace_drop(vm);
563 
564 	return(count);
565 }
566 
567 /*
568  * Calculate the approximate number of anonymous pages in use by
569  * this vmspace.  To make up for fractional losses, we count each
570  * VM object as having at least 1 anonymous page.
571  *
572  * No requirements.
573  */
574 vm_offset_t
575 vmspace_anonymous_count(struct vmspace *vm)
576 {
577 	vm_map_t map = &vm->vm_map;
578 	vm_map_entry_t cur;
579 	vm_object_t object;
580 	vm_offset_t count = 0;
581 
582 	vmspace_hold(vm);
583 	RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
584 		switch(cur->maptype) {
585 		case VM_MAPTYPE_NORMAL:
586 		case VM_MAPTYPE_VPAGETABLE:
587 			if ((object = cur->object.vm_object) == NULL)
588 				break;
589 			if (object->type != OBJT_DEFAULT &&
590 			    object->type != OBJT_SWAP) {
591 				break;
592 			}
593 			count += object->resident_page_count;
594 			break;
595 		default:
596 			break;
597 		}
598 	}
599 	vmspace_drop(vm);
600 
601 	return(count);
602 }
603 
604 /*
605  * Initialize an existing vm_map structure such as that in the vmspace
606  * structure.  The pmap is initialized elsewhere.
607  *
608  * No requirements.
609  */
610 void
611 vm_map_init(struct vm_map *map, vm_offset_t min_addr, vm_offset_t max_addr,
612 	    pmap_t pmap)
613 {
614 	RB_INIT(&map->rb_root);
615 	spin_init(&map->ilock_spin, "ilock");
616 	map->ilock_base = NULL;
617 	map->nentries = 0;
618 	map->size = 0;
619 	map->system_map = 0;
620 	vm_map_min(map) = min_addr;
621 	vm_map_max(map) = max_addr;
622 	map->pmap = pmap;
623 	map->timestamp = 0;
624 	map->flags = 0;
625 	bzero(&map->freehint, sizeof(map->freehint));
626 	lwkt_token_init(&map->token, "vm_map");
627 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
628 }
629 
630 /*
631  * Find the first possible free address for the specified request length.
632  * Returns 0 if we don't have one cached.
633  */
634 static
635 vm_offset_t
636 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
637 {
638 	vm_map_freehint_t *scan;
639 
640 	scan = &map->freehint[0];
641 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
642 		if (scan->length == length && scan->align == align)
643 			return(scan->start);
644 		++scan;
645 	}
646 	return 0;
647 }
648 
649 /*
650  * Unconditionally set the freehint.  Called by vm_map_findspace() after
651  * it finds an address.  This will help us iterate optimally on the next
652  * similar findspace.
653  */
654 static
655 void
656 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
657 		       vm_size_t length, vm_size_t align)
658 {
659 	vm_map_freehint_t *scan;
660 
661 	scan = &map->freehint[0];
662 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
663 		if (scan->length == length && scan->align == align) {
664 			scan->start = start;
665 			return;
666 		}
667 		++scan;
668 	}
669 	scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
670 	scan->start = start;
671 	scan->align = align;
672 	scan->length = length;
673 	++map->freehint_newindex;
674 }
675 
676 /*
677  * Update any existing freehints (for any alignment), for the hole we just
678  * added.
679  */
680 static
681 void
682 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
683 {
684 	vm_map_freehint_t *scan;
685 
686 	scan = &map->freehint[0];
687 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
688 		if (scan->length <= length && scan->start > start)
689 			scan->start = start;
690 		++scan;
691 	}
692 }
693 
694 /*
695  * Shadow the vm_map_entry's object.  This typically needs to be done when
696  * a write fault is taken on an entry which had previously been cloned by
697  * fork().  The shared object (which might be NULL) must become private so
698  * we add a shadow layer above it.
699  *
700  * Object allocation for anonymous mappings is defered as long as possible.
701  * When creating a shadow, however, the underlying object must be instantiated
702  * so it can be shared.
703  *
704  * If the map segment is governed by a virtual page table then it is
705  * possible to address offsets beyond the mapped area.  Just allocate
706  * a maximally sized object for this case.
707  *
708  * If addref is non-zero an additional reference is added to the returned
709  * entry.  This mechanic exists because the additional reference might have
710  * to be added atomically and not after return to prevent a premature
711  * collapse.
712  *
713  * The vm_map must be exclusively locked.
714  * No other requirements.
715  */
716 static
717 void
718 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
719 {
720 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
721 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
722 				 0x7FFFFFFF, addref);	/* XXX */
723 	} else {
724 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
725 				 atop(entry->end - entry->start), addref);
726 	}
727 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
728 }
729 
730 /*
731  * Allocate an object for a vm_map_entry.
732  *
733  * Object allocation for anonymous mappings is defered as long as possible.
734  * This function is called when we can defer no longer, generally when a map
735  * entry might be split or forked or takes a page fault.
736  *
737  * If the map segment is governed by a virtual page table then it is
738  * possible to address offsets beyond the mapped area.  Just allocate
739  * a maximally sized object for this case.
740  *
741  * The vm_map must be exclusively locked.
742  * No other requirements.
743  */
744 void
745 vm_map_entry_allocate_object(vm_map_entry_t entry)
746 {
747 	vm_object_t obj;
748 
749 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
750 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
751 	} else {
752 		obj = vm_object_allocate(OBJT_DEFAULT,
753 					 atop(entry->end - entry->start));
754 	}
755 	entry->object.vm_object = obj;
756 	entry->offset = 0;
757 }
758 
759 /*
760  * Set an initial negative count so the first attempt to reserve
761  * space preloads a bunch of vm_map_entry's for this cpu.  Also
762  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
763  * map a new page for vm_map_entry structures.  SMP systems are
764  * particularly sensitive.
765  *
766  * This routine is called in early boot so we cannot just call
767  * vm_map_entry_reserve().
768  *
769  * Called from the low level boot code only (for each cpu)
770  *
771  * WARNING! Take care not to have too-big a static/BSS structure here
772  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
773  *	    can get blown out by the kernel plus the initrd image.
774  */
775 void
776 vm_map_entry_reserve_cpu_init(globaldata_t gd)
777 {
778 	vm_map_entry_t entry;
779 	int count;
780 	int i;
781 
782 	atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
783 	if (gd->gd_cpuid == 0) {
784 		entry = &cpu_map_entry_init_bsp[0];
785 		count = MAPENTRYBSP_CACHE;
786 	} else {
787 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
788 		count = MAPENTRYAP_CACHE;
789 	}
790 	for (i = 0; i < count; ++i, ++entry) {
791 		MAPENT_FREELIST(entry) = gd->gd_vme_base;
792 		gd->gd_vme_base = entry;
793 	}
794 }
795 
796 /*
797  * Reserves vm_map_entry structures so code later-on can manipulate
798  * map_entry structures within a locked map without blocking trying
799  * to allocate a new vm_map_entry.
800  *
801  * No requirements.
802  *
803  * WARNING!  We must not decrement gd_vme_avail until after we have
804  *	     ensured that sufficient entries exist, otherwise we can
805  *	     get into an endless call recursion in the zalloc code
806  *	     itself.
807  */
808 int
809 vm_map_entry_reserve(int count)
810 {
811 	struct globaldata *gd = mycpu;
812 	vm_map_entry_t entry;
813 
814 	/*
815 	 * Make sure we have enough structures in gd_vme_base to handle
816 	 * the reservation request.
817 	 *
818 	 * Use a critical section to protect against VM faults.  It might
819 	 * not be needed, but we have to be careful here.
820 	 */
821 	if (gd->gd_vme_avail < count) {
822 		crit_enter();
823 		while (gd->gd_vme_avail < count) {
824 			entry = zalloc(mapentzone);
825 			MAPENT_FREELIST(entry) = gd->gd_vme_base;
826 			gd->gd_vme_base = entry;
827 			atomic_add_int(&gd->gd_vme_avail, 1);
828 		}
829 		crit_exit();
830 	}
831 	atomic_add_int(&gd->gd_vme_avail, -count);
832 
833 	return(count);
834 }
835 
836 /*
837  * Releases previously reserved vm_map_entry structures that were not
838  * used.  If we have too much junk in our per-cpu cache clean some of
839  * it out.
840  *
841  * No requirements.
842  */
843 void
844 vm_map_entry_release(int count)
845 {
846 	struct globaldata *gd = mycpu;
847 	vm_map_entry_t entry;
848 	vm_map_entry_t efree;
849 
850 	count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
851 	if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
852 		efree = NULL;
853 		crit_enter();
854 		while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
855 			entry = gd->gd_vme_base;
856 			KKASSERT(entry != NULL);
857 			gd->gd_vme_base = MAPENT_FREELIST(entry);
858 			atomic_add_int(&gd->gd_vme_avail, -1);
859 			MAPENT_FREELIST(entry) = efree;
860 			efree = entry;
861 		}
862 		crit_exit();
863 		while ((entry = efree) != NULL) {
864 			efree = MAPENT_FREELIST(efree);
865 			zfree(mapentzone, entry);
866 		}
867 	}
868 }
869 
870 /*
871  * Reserve map entry structures for use in kernel_map itself.  These
872  * entries have *ALREADY* been reserved on a per-cpu basis when the map
873  * was inited.  This function is used by zalloc() to avoid a recursion
874  * when zalloc() itself needs to allocate additional kernel memory.
875  *
876  * This function works like the normal reserve but does not load the
877  * vm_map_entry cache (because that would result in an infinite
878  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
879  *
880  * Any caller of this function must be sure to renormalize after
881  * potentially eating entries to ensure that the reserve supply
882  * remains intact.
883  *
884  * No requirements.
885  */
886 int
887 vm_map_entry_kreserve(int count)
888 {
889 	struct globaldata *gd = mycpu;
890 
891 	atomic_add_int(&gd->gd_vme_avail, -count);
892 	KASSERT(gd->gd_vme_base != NULL,
893 		("no reserved entries left, gd_vme_avail = %d",
894 		gd->gd_vme_avail));
895 	return(count);
896 }
897 
898 /*
899  * Release previously reserved map entries for kernel_map.  We do not
900  * attempt to clean up like the normal release function as this would
901  * cause an unnecessary (but probably not fatal) deep procedure call.
902  *
903  * No requirements.
904  */
905 void
906 vm_map_entry_krelease(int count)
907 {
908 	struct globaldata *gd = mycpu;
909 
910 	atomic_add_int(&gd->gd_vme_avail, count);
911 }
912 
913 /*
914  * Allocates a VM map entry for insertion.  No entry fields are filled in.
915  *
916  * The entries should have previously been reserved.  The reservation count
917  * is tracked in (*countp).
918  *
919  * No requirements.
920  */
921 static vm_map_entry_t
922 vm_map_entry_create(vm_map_t map, int *countp)
923 {
924 	struct globaldata *gd = mycpu;
925 	vm_map_entry_t entry;
926 
927 	KKASSERT(*countp > 0);
928 	--*countp;
929 	crit_enter();
930 	entry = gd->gd_vme_base;
931 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
932 	gd->gd_vme_base = MAPENT_FREELIST(entry);
933 	crit_exit();
934 
935 	return(entry);
936 }
937 
938 /*
939  * Dispose of a vm_map_entry that is no longer being referenced.
940  *
941  * No requirements.
942  */
943 static void
944 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
945 {
946 	struct globaldata *gd = mycpu;
947 
948 	++*countp;
949 	crit_enter();
950 	MAPENT_FREELIST(entry) = gd->gd_vme_base;
951 	gd->gd_vme_base = entry;
952 	crit_exit();
953 }
954 
955 
956 /*
957  * Insert/remove entries from maps.
958  *
959  * The related map must be exclusively locked.
960  * The caller must hold map->token
961  * No other requirements.
962  */
963 static __inline void
964 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
965 {
966 	ASSERT_VM_MAP_LOCKED(map);
967 
968 	map->nentries++;
969 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
970 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
971 }
972 
973 static __inline void
974 vm_map_entry_unlink(vm_map_t map,
975 		    vm_map_entry_t entry)
976 {
977 	ASSERT_VM_MAP_LOCKED(map);
978 
979 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
980 		panic("vm_map_entry_unlink: attempt to mess with "
981 		      "locked entry! %p", entry);
982 	}
983 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
984 	map->nentries--;
985 }
986 
987 /*
988  * Finds the map entry containing (or immediately preceding) the specified
989  * address in the given map.  The entry is returned in (*entry).
990  *
991  * The boolean result indicates whether the address is actually contained
992  * in the map.
993  *
994  * The related map must be locked.
995  * No other requirements.
996  */
997 boolean_t
998 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
999 {
1000 	vm_map_entry_t tmp;
1001 	vm_map_entry_t last;
1002 
1003 	ASSERT_VM_MAP_LOCKED(map);
1004 
1005 	/*
1006 	 * Locate the record from the top of the tree.  'last' tracks the
1007 	 * closest prior record and is returned if no match is found, which
1008 	 * in binary tree terms means tracking the most recent right-branch
1009 	 * taken.  If there is no prior record, *entry is set to NULL.
1010 	 */
1011 	last = NULL;
1012 	tmp = RB_ROOT(&map->rb_root);
1013 
1014 	while (tmp) {
1015 		if (address >= tmp->start) {
1016 			if (address < tmp->end) {
1017 				*entry = tmp;
1018 				return(TRUE);
1019 			}
1020 			last = tmp;
1021 			tmp = RB_RIGHT(tmp, rb_entry);
1022 		} else {
1023 			tmp = RB_LEFT(tmp, rb_entry);
1024 		}
1025 	}
1026 	*entry = last;
1027 	return (FALSE);
1028 }
1029 
1030 /*
1031  * Inserts the given whole VM object into the target map at the specified
1032  * address range.  The object's size should match that of the address range.
1033  *
1034  * The map must be exclusively locked.
1035  * The object must be held.
1036  * The caller must have reserved sufficient vm_map_entry structures.
1037  *
1038  * If object is non-NULL, ref count must be bumped by caller prior to
1039  * making call to account for the new entry.
1040  */
1041 int
1042 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1043 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1044 	      vm_maptype_t maptype, vm_subsys_t id,
1045 	      vm_prot_t prot, vm_prot_t max, int cow)
1046 {
1047 	vm_map_entry_t new_entry;
1048 	vm_map_entry_t prev_entry;
1049 	vm_map_entry_t next;
1050 	vm_map_entry_t temp_entry;
1051 	vm_eflags_t protoeflags;
1052 	int must_drop = 0;
1053 	vm_object_t object;
1054 
1055 	if (maptype == VM_MAPTYPE_UKSMAP)
1056 		object = NULL;
1057 	else
1058 		object = map_object;
1059 
1060 	ASSERT_VM_MAP_LOCKED(map);
1061 	if (object)
1062 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1063 
1064 	/*
1065 	 * Check that the start and end points are not bogus.
1066 	 */
1067 	if ((start < vm_map_min(map)) || (end > vm_map_max(map)) ||
1068 	    (start >= end)) {
1069 		return (KERN_INVALID_ADDRESS);
1070 	}
1071 
1072 	/*
1073 	 * Find the entry prior to the proposed starting address; if it's part
1074 	 * of an existing entry, this range is bogus.
1075 	 */
1076 	if (vm_map_lookup_entry(map, start, &temp_entry))
1077 		return (KERN_NO_SPACE);
1078 	prev_entry = temp_entry;
1079 
1080 	/*
1081 	 * Assert that the next entry doesn't overlap the end point.
1082 	 */
1083 	if (prev_entry)
1084 		next = vm_map_rb_tree_RB_NEXT(prev_entry);
1085 	else
1086 		next = RB_MIN(vm_map_rb_tree, &map->rb_root);
1087 	if (next && next->start < end)
1088 		return (KERN_NO_SPACE);
1089 
1090 	protoeflags = 0;
1091 
1092 	if (cow & MAP_COPY_ON_WRITE)
1093 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1094 
1095 	if (cow & MAP_NOFAULT) {
1096 		protoeflags |= MAP_ENTRY_NOFAULT;
1097 
1098 		KASSERT(object == NULL,
1099 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1100 	}
1101 	if (cow & MAP_DISABLE_SYNCER)
1102 		protoeflags |= MAP_ENTRY_NOSYNC;
1103 	if (cow & MAP_DISABLE_COREDUMP)
1104 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1105 	if (cow & MAP_IS_STACK)
1106 		protoeflags |= MAP_ENTRY_STACK;
1107 	if (cow & MAP_IS_KSTACK)
1108 		protoeflags |= MAP_ENTRY_KSTACK;
1109 
1110 	lwkt_gettoken(&map->token);
1111 
1112 	if (object) {
1113 		/*
1114 		 * When object is non-NULL, it could be shared with another
1115 		 * process.  We have to set or clear OBJ_ONEMAPPING
1116 		 * appropriately.
1117 		 *
1118 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1119 		 *	 objects and will already be clear in other types
1120 		 *	 of objects, so a shared object lock is ok for
1121 		 *	 VNODE objects.
1122 		 */
1123 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1124 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1125 		}
1126 	}
1127 	else if (prev_entry &&
1128 		 (prev_entry->eflags == protoeflags) &&
1129 		 (prev_entry->end == start) &&
1130 		 (prev_entry->wired_count == 0) &&
1131 		 (prev_entry->id == id) &&
1132 		 prev_entry->maptype == maptype &&
1133 		 maptype == VM_MAPTYPE_NORMAL &&
1134 		 ((prev_entry->object.vm_object == NULL) ||
1135 		  vm_object_coalesce(prev_entry->object.vm_object,
1136 				     OFF_TO_IDX(prev_entry->offset),
1137 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1138 				     (vm_size_t)(end - prev_entry->end)))) {
1139 		/*
1140 		 * We were able to extend the object.  Determine if we
1141 		 * can extend the previous map entry to include the
1142 		 * new range as well.
1143 		 */
1144 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1145 		    (prev_entry->protection == prot) &&
1146 		    (prev_entry->max_protection == max)) {
1147 			map->size += (end - prev_entry->end);
1148 			prev_entry->end = end;
1149 			vm_map_simplify_entry(map, prev_entry, countp);
1150 			lwkt_reltoken(&map->token);
1151 			return (KERN_SUCCESS);
1152 		}
1153 
1154 		/*
1155 		 * If we can extend the object but cannot extend the
1156 		 * map entry, we have to create a new map entry.  We
1157 		 * must bump the ref count on the extended object to
1158 		 * account for it.  object may be NULL.
1159 		 *
1160 		 * XXX if object is NULL should we set offset to 0 here ?
1161 		 */
1162 		object = prev_entry->object.vm_object;
1163 		offset = prev_entry->offset +
1164 			(prev_entry->end - prev_entry->start);
1165 		if (object) {
1166 			vm_object_hold(object);
1167 			vm_object_chain_wait(object, 0);
1168 			vm_object_reference_locked(object);
1169 			must_drop = 1;
1170 			map_object = object;
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1176 	 * in things like the buffer map where we manage kva but do not manage
1177 	 * backing objects.
1178 	 */
1179 
1180 	/*
1181 	 * Create a new entry
1182 	 */
1183 
1184 	new_entry = vm_map_entry_create(map, countp);
1185 	new_entry->start = start;
1186 	new_entry->end = end;
1187 	new_entry->id = id;
1188 
1189 	new_entry->maptype = maptype;
1190 	new_entry->eflags = protoeflags;
1191 	new_entry->object.map_object = map_object;
1192 	new_entry->aux.master_pde = 0;		/* in case size is different */
1193 	new_entry->aux.map_aux = map_aux;
1194 	new_entry->offset = offset;
1195 
1196 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1197 	new_entry->protection = prot;
1198 	new_entry->max_protection = max;
1199 	new_entry->wired_count = 0;
1200 
1201 	/*
1202 	 * Insert the new entry into the list
1203 	 */
1204 
1205 	vm_map_entry_link(map, new_entry);
1206 	map->size += new_entry->end - new_entry->start;
1207 
1208 	/*
1209 	 * Don't worry about updating freehint[] when inserting, allow
1210 	 * addresses to be lower than the actual first free spot.
1211 	 */
1212 #if 0
1213 	/*
1214 	 * Temporarily removed to avoid MAP_STACK panic, due to
1215 	 * MAP_STACK being a huge hack.  Will be added back in
1216 	 * when MAP_STACK (and the user stack mapping) is fixed.
1217 	 */
1218 	/*
1219 	 * It may be possible to simplify the entry
1220 	 */
1221 	vm_map_simplify_entry(map, new_entry, countp);
1222 #endif
1223 
1224 	/*
1225 	 * Try to pre-populate the page table.  Mappings governed by virtual
1226 	 * page tables cannot be prepopulated without a lot of work, so
1227 	 * don't try.
1228 	 */
1229 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1230 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1231 	    maptype != VM_MAPTYPE_UKSMAP) {
1232 		int dorelock = 0;
1233 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1234 			dorelock = 1;
1235 			vm_object_lock_swap();
1236 			vm_object_drop(object);
1237 		}
1238 		pmap_object_init_pt(map->pmap, start, prot,
1239 				    object, OFF_TO_IDX(offset), end - start,
1240 				    cow & MAP_PREFAULT_PARTIAL);
1241 		if (dorelock) {
1242 			vm_object_hold(object);
1243 			vm_object_lock_swap();
1244 		}
1245 	}
1246 	if (must_drop)
1247 		vm_object_drop(object);
1248 
1249 	lwkt_reltoken(&map->token);
1250 	return (KERN_SUCCESS);
1251 }
1252 
1253 /*
1254  * Find sufficient space for `length' bytes in the given map, starting at
1255  * `start'.  Returns 0 on success, 1 on no space.
1256  *
1257  * This function will returned an arbitrarily aligned pointer.  If no
1258  * particular alignment is required you should pass align as 1.  Note that
1259  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1260  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1261  * argument.
1262  *
1263  * 'align' should be a power of 2 but is not required to be.
1264  *
1265  * The map must be exclusively locked.
1266  * No other requirements.
1267  */
1268 int
1269 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1270 		 vm_size_t align, int flags, vm_offset_t *addr)
1271 {
1272 	vm_map_entry_t entry;
1273 	vm_map_entry_t tmp;
1274 	vm_offset_t hole_start;
1275 	vm_offset_t end;
1276 	vm_offset_t align_mask;
1277 
1278 	if (start < vm_map_min(map))
1279 		start = vm_map_min(map);
1280 	if (start > vm_map_max(map))
1281 		return (1);
1282 
1283 	/*
1284 	 * If the alignment is not a power of 2 we will have to use
1285 	 * a mod/division, set align_mask to a special value.
1286 	 */
1287 	if ((align | (align - 1)) + 1 != (align << 1))
1288 		align_mask = (vm_offset_t)-1;
1289 	else
1290 		align_mask = align - 1;
1291 
1292 	/*
1293 	 * Use freehint to adjust the start point, hopefully reducing
1294 	 * the iteration to O(1).
1295 	 */
1296 	hole_start = vm_map_freehint_find(map, length, align);
1297 	if (start < hole_start)
1298 		start = hole_start;
1299 	if (vm_map_lookup_entry(map, start, &tmp))
1300 		start = tmp->end;
1301 	entry = tmp;	/* may be NULL */
1302 
1303 	/*
1304 	 * Look through the rest of the map, trying to fit a new region in the
1305 	 * gap between existing regions, or after the very last region.
1306 	 */
1307 	for (;;) {
1308 		/*
1309 		 * Adjust the proposed start by the requested alignment,
1310 		 * be sure that we didn't wrap the address.
1311 		 */
1312 		if (align_mask == (vm_offset_t)-1)
1313 			end = roundup(start, align);
1314 		else
1315 			end = (start + align_mask) & ~align_mask;
1316 		if (end < start)
1317 			return (1);
1318 		start = end;
1319 
1320 		/*
1321 		 * Find the end of the proposed new region.  Be sure we didn't
1322 		 * go beyond the end of the map, or wrap around the address.
1323 		 * Then check to see if this is the last entry or if the
1324 		 * proposed end fits in the gap between this and the next
1325 		 * entry.
1326 		 */
1327 		end = start + length;
1328 		if (end > vm_map_max(map) || end < start)
1329 			return (1);
1330 
1331 		/*
1332 		 * Locate the next entry, we can stop if this is the
1333 		 * last entry (we know we are in-bounds so that would
1334 		 * be a sucess).
1335 		 */
1336 		if (entry)
1337 			entry = vm_map_rb_tree_RB_NEXT(entry);
1338 		else
1339 			entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1340 		if (entry == NULL)
1341 			break;
1342 
1343 		/*
1344 		 * Determine if the proposed area would overlap the
1345 		 * next entry.
1346 		 */
1347 		if (entry->start >= end) {
1348 			if ((entry->eflags & MAP_ENTRY_STACK) == 0)
1349 				break;
1350 			if (flags & MAP_STACK)
1351 				break;
1352 			if (entry->start - entry->aux.avail_ssize >= end)
1353 				break;
1354 		}
1355 		start = entry->end;
1356 	}
1357 
1358 	/*
1359 	 * Update the freehint
1360 	 */
1361 	vm_map_freehint_update(map, start, length, align);
1362 
1363 	/*
1364 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1365 	 * if it fails.  The kernel_map is locked and nothing can steal
1366 	 * our address space if pmap_growkernel() blocks.
1367 	 *
1368 	 * NOTE: This may be unconditionally called for kldload areas on
1369 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1370 	 *	 fill 128G worth of page tables!).  Therefore we must not
1371 	 *	 retry.
1372 	 */
1373 	if (map == &kernel_map) {
1374 		vm_offset_t kstop;
1375 
1376 		kstop = round_page(start + length);
1377 		if (kstop > kernel_vm_end)
1378 			pmap_growkernel(start, kstop);
1379 	}
1380 	*addr = start;
1381 	return (0);
1382 }
1383 
1384 /*
1385  * vm_map_find finds an unallocated region in the target address map with
1386  * the given length and allocates it.  The search is defined to be first-fit
1387  * from the specified address; the region found is returned in the same
1388  * parameter.
1389  *
1390  * If object is non-NULL, ref count must be bumped by caller
1391  * prior to making call to account for the new entry.
1392  *
1393  * No requirements.  This function will lock the map temporarily.
1394  */
1395 int
1396 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1397 	    vm_ooffset_t offset, vm_offset_t *addr,
1398 	    vm_size_t length, vm_size_t align, boolean_t fitit,
1399 	    vm_maptype_t maptype, vm_subsys_t id,
1400 	    vm_prot_t prot, vm_prot_t max, int cow)
1401 {
1402 	vm_offset_t start;
1403 	vm_object_t object;
1404 	int result;
1405 	int count;
1406 
1407 	if (maptype == VM_MAPTYPE_UKSMAP)
1408 		object = NULL;
1409 	else
1410 		object = map_object;
1411 
1412 	start = *addr;
1413 
1414 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1415 	vm_map_lock(map);
1416 	if (object)
1417 		vm_object_hold_shared(object);
1418 	if (fitit) {
1419 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1420 			if (object)
1421 				vm_object_drop(object);
1422 			vm_map_unlock(map);
1423 			vm_map_entry_release(count);
1424 			return (KERN_NO_SPACE);
1425 		}
1426 		start = *addr;
1427 	}
1428 	result = vm_map_insert(map, &count, map_object, map_aux,
1429 			       offset, start, start + length,
1430 			       maptype, id, prot, max, cow);
1431 	if (object)
1432 		vm_object_drop(object);
1433 	vm_map_unlock(map);
1434 	vm_map_entry_release(count);
1435 
1436 	return (result);
1437 }
1438 
1439 /*
1440  * Simplify the given map entry by merging with either neighbor.  This
1441  * routine also has the ability to merge with both neighbors.
1442  *
1443  * This routine guarentees that the passed entry remains valid (though
1444  * possibly extended).  When merging, this routine may delete one or
1445  * both neighbors.  No action is taken on entries which have their
1446  * in-transition flag set.
1447  *
1448  * The map must be exclusively locked.
1449  */
1450 void
1451 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1452 {
1453 	vm_map_entry_t next, prev;
1454 	vm_size_t prevsize, esize;
1455 
1456 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1457 		++mycpu->gd_cnt.v_intrans_coll;
1458 		return;
1459 	}
1460 
1461 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1462 		return;
1463 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1464 		return;
1465 
1466 	prev = vm_map_rb_tree_RB_PREV(entry);
1467 	if (prev) {
1468 		prevsize = prev->end - prev->start;
1469 		if ( (prev->end == entry->start) &&
1470 		     (prev->maptype == entry->maptype) &&
1471 		     (prev->object.vm_object == entry->object.vm_object) &&
1472 		     (!prev->object.vm_object ||
1473 			(prev->offset + prevsize == entry->offset)) &&
1474 		     (prev->eflags == entry->eflags) &&
1475 		     (prev->protection == entry->protection) &&
1476 		     (prev->max_protection == entry->max_protection) &&
1477 		     (prev->inheritance == entry->inheritance) &&
1478 		     (prev->id == entry->id) &&
1479 		     (prev->wired_count == entry->wired_count)) {
1480 			vm_map_entry_unlink(map, prev);
1481 			entry->start = prev->start;
1482 			entry->offset = prev->offset;
1483 			if (prev->object.vm_object)
1484 				vm_object_deallocate(prev->object.vm_object);
1485 			vm_map_entry_dispose(map, prev, countp);
1486 		}
1487 	}
1488 
1489 	next = vm_map_rb_tree_RB_NEXT(entry);
1490 	if (next) {
1491 		esize = entry->end - entry->start;
1492 		if ((entry->end == next->start) &&
1493 		    (next->maptype == entry->maptype) &&
1494 		    (next->object.vm_object == entry->object.vm_object) &&
1495 		     (!entry->object.vm_object ||
1496 			(entry->offset + esize == next->offset)) &&
1497 		    (next->eflags == entry->eflags) &&
1498 		    (next->protection == entry->protection) &&
1499 		    (next->max_protection == entry->max_protection) &&
1500 		    (next->inheritance == entry->inheritance) &&
1501 		    (next->id == entry->id) &&
1502 		    (next->wired_count == entry->wired_count)) {
1503 			vm_map_entry_unlink(map, next);
1504 			entry->end = next->end;
1505 			if (next->object.vm_object)
1506 				vm_object_deallocate(next->object.vm_object);
1507 			vm_map_entry_dispose(map, next, countp);
1508 	        }
1509 	}
1510 }
1511 
1512 /*
1513  * Asserts that the given entry begins at or after the specified address.
1514  * If necessary, it splits the entry into two.
1515  */
1516 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1517 {									\
1518 	if (startaddr > entry->start)					\
1519 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1520 }
1521 
1522 /*
1523  * This routine is called only when it is known that the entry must be split.
1524  *
1525  * The map must be exclusively locked.
1526  */
1527 static void
1528 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1529 		   int *countp)
1530 {
1531 	vm_map_entry_t new_entry;
1532 
1533 	/*
1534 	 * Split off the front portion -- note that we must insert the new
1535 	 * entry BEFORE this one, so that this entry has the specified
1536 	 * starting address.
1537 	 */
1538 
1539 	vm_map_simplify_entry(map, entry, countp);
1540 
1541 	/*
1542 	 * If there is no object backing this entry, we might as well create
1543 	 * one now.  If we defer it, an object can get created after the map
1544 	 * is clipped, and individual objects will be created for the split-up
1545 	 * map.  This is a bit of a hack, but is also about the best place to
1546 	 * put this improvement.
1547 	 */
1548 	if (entry->object.vm_object == NULL && !map->system_map &&
1549 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1550 		vm_map_entry_allocate_object(entry);
1551 	}
1552 
1553 	new_entry = vm_map_entry_create(map, countp);
1554 	*new_entry = *entry;
1555 
1556 	new_entry->end = start;
1557 	entry->offset += (start - entry->start);
1558 	entry->start = start;
1559 
1560 	vm_map_entry_link(map, new_entry);
1561 
1562 	switch(entry->maptype) {
1563 	case VM_MAPTYPE_NORMAL:
1564 	case VM_MAPTYPE_VPAGETABLE:
1565 		if (new_entry->object.vm_object) {
1566 			vm_object_hold(new_entry->object.vm_object);
1567 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1568 			vm_object_reference_locked(new_entry->object.vm_object);
1569 			vm_object_drop(new_entry->object.vm_object);
1570 		}
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 }
1576 
1577 /*
1578  * Asserts that the given entry ends at or before the specified address.
1579  * If necessary, it splits the entry into two.
1580  *
1581  * The map must be exclusively locked.
1582  */
1583 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1584 {								\
1585 	if (endaddr < entry->end)				\
1586 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1587 }
1588 
1589 /*
1590  * This routine is called only when it is known that the entry must be split.
1591  *
1592  * The map must be exclusively locked.
1593  */
1594 static void
1595 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1596 		 int *countp)
1597 {
1598 	vm_map_entry_t new_entry;
1599 
1600 	/*
1601 	 * If there is no object backing this entry, we might as well create
1602 	 * one now.  If we defer it, an object can get created after the map
1603 	 * is clipped, and individual objects will be created for the split-up
1604 	 * map.  This is a bit of a hack, but is also about the best place to
1605 	 * put this improvement.
1606 	 */
1607 
1608 	if (entry->object.vm_object == NULL && !map->system_map &&
1609 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1610 		vm_map_entry_allocate_object(entry);
1611 	}
1612 
1613 	/*
1614 	 * Create a new entry and insert it AFTER the specified entry
1615 	 */
1616 	new_entry = vm_map_entry_create(map, countp);
1617 	*new_entry = *entry;
1618 
1619 	new_entry->start = entry->end = end;
1620 	new_entry->offset += (end - entry->start);
1621 
1622 	vm_map_entry_link(map, new_entry);
1623 
1624 	switch(entry->maptype) {
1625 	case VM_MAPTYPE_NORMAL:
1626 	case VM_MAPTYPE_VPAGETABLE:
1627 		if (new_entry->object.vm_object) {
1628 			vm_object_hold(new_entry->object.vm_object);
1629 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1630 			vm_object_reference_locked(new_entry->object.vm_object);
1631 			vm_object_drop(new_entry->object.vm_object);
1632 		}
1633 		break;
1634 	default:
1635 		break;
1636 	}
1637 }
1638 
1639 /*
1640  * Asserts that the starting and ending region addresses fall within the
1641  * valid range for the map.
1642  */
1643 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1644 {						\
1645 	if (start < vm_map_min(map))		\
1646 		start = vm_map_min(map);	\
1647 	if (end > vm_map_max(map))		\
1648 		end = vm_map_max(map);		\
1649 	if (start > end)			\
1650 		start = end;			\
1651 }
1652 
1653 /*
1654  * Used to block when an in-transition collison occurs.  The map
1655  * is unlocked for the sleep and relocked before the return.
1656  */
1657 void
1658 vm_map_transition_wait(vm_map_t map, int relock)
1659 {
1660 	tsleep_interlock(map, 0);
1661 	vm_map_unlock(map);
1662 	tsleep(map, PINTERLOCKED, "vment", 0);
1663 	if (relock)
1664 		vm_map_lock(map);
1665 }
1666 
1667 /*
1668  * When we do blocking operations with the map lock held it is
1669  * possible that a clip might have occured on our in-transit entry,
1670  * requiring an adjustment to the entry in our loop.  These macros
1671  * help the pageable and clip_range code deal with the case.  The
1672  * conditional costs virtually nothing if no clipping has occured.
1673  */
1674 
1675 #define CLIP_CHECK_BACK(entry, save_start)			\
1676     do {							\
1677 	    while (entry->start != save_start) {		\
1678 		    entry = vm_map_rb_tree_RB_PREV(entry);	\
1679 		    KASSERT(entry, ("bad entry clip")); 	\
1680 	    }							\
1681     } while(0)
1682 
1683 #define CLIP_CHECK_FWD(entry, save_end)				\
1684     do {							\
1685 	    while (entry->end != save_end) {			\
1686 		    entry = vm_map_rb_tree_RB_NEXT(entry);	\
1687 		    KASSERT(entry, ("bad entry clip")); 	\
1688 	    }							\
1689     } while(0)
1690 
1691 
1692 /*
1693  * Clip the specified range and return the base entry.  The
1694  * range may cover several entries starting at the returned base
1695  * and the first and last entry in the covering sequence will be
1696  * properly clipped to the requested start and end address.
1697  *
1698  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1699  * flag.
1700  *
1701  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1702  * covered by the requested range.
1703  *
1704  * The map must be exclusively locked on entry and will remain locked
1705  * on return. If no range exists or the range contains holes and you
1706  * specified that no holes were allowed, NULL will be returned.  This
1707  * routine may temporarily unlock the map in order avoid a deadlock when
1708  * sleeping.
1709  */
1710 static
1711 vm_map_entry_t
1712 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1713 		  int *countp, int flags)
1714 {
1715 	vm_map_entry_t start_entry;
1716 	vm_map_entry_t entry;
1717 	vm_map_entry_t next;
1718 
1719 	/*
1720 	 * Locate the entry and effect initial clipping.  The in-transition
1721 	 * case does not occur very often so do not try to optimize it.
1722 	 */
1723 again:
1724 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1725 		return (NULL);
1726 	entry = start_entry;
1727 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1728 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1729 		++mycpu->gd_cnt.v_intrans_coll;
1730 		++mycpu->gd_cnt.v_intrans_wait;
1731 		vm_map_transition_wait(map, 1);
1732 		/*
1733 		 * entry and/or start_entry may have been clipped while
1734 		 * we slept, or may have gone away entirely.  We have
1735 		 * to restart from the lookup.
1736 		 */
1737 		goto again;
1738 	}
1739 
1740 	/*
1741 	 * Since we hold an exclusive map lock we do not have to restart
1742 	 * after clipping, even though clipping may block in zalloc.
1743 	 */
1744 	vm_map_clip_start(map, entry, start, countp);
1745 	vm_map_clip_end(map, entry, end, countp);
1746 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1747 
1748 	/*
1749 	 * Scan entries covered by the range.  When working on the next
1750 	 * entry a restart need only re-loop on the current entry which
1751 	 * we have already locked, since 'next' may have changed.  Also,
1752 	 * even though entry is safe, it may have been clipped so we
1753 	 * have to iterate forwards through the clip after sleeping.
1754 	 */
1755 	for (;;) {
1756 		next = vm_map_rb_tree_RB_NEXT(entry);
1757 		if (next == NULL || next->start >= end)
1758 			break;
1759 		if (flags & MAP_CLIP_NO_HOLES) {
1760 			if (next->start > entry->end) {
1761 				vm_map_unclip_range(map, start_entry,
1762 					start, entry->end, countp, flags);
1763 				return(NULL);
1764 			}
1765 		}
1766 
1767 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1768 			vm_offset_t save_end = entry->end;
1769 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1770 			++mycpu->gd_cnt.v_intrans_coll;
1771 			++mycpu->gd_cnt.v_intrans_wait;
1772 			vm_map_transition_wait(map, 1);
1773 
1774 			/*
1775 			 * clips might have occured while we blocked.
1776 			 */
1777 			CLIP_CHECK_FWD(entry, save_end);
1778 			CLIP_CHECK_BACK(start_entry, start);
1779 			continue;
1780 		}
1781 
1782 		/*
1783 		 * No restart necessary even though clip_end may block, we
1784 		 * are holding the map lock.
1785 		 */
1786 		vm_map_clip_end(map, next, end, countp);
1787 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1788 		entry = next;
1789 	}
1790 	if (flags & MAP_CLIP_NO_HOLES) {
1791 		if (entry->end != end) {
1792 			vm_map_unclip_range(map, start_entry,
1793 				start, entry->end, countp, flags);
1794 			return(NULL);
1795 		}
1796 	}
1797 	return(start_entry);
1798 }
1799 
1800 /*
1801  * Undo the effect of vm_map_clip_range().  You should pass the same
1802  * flags and the same range that you passed to vm_map_clip_range().
1803  * This code will clear the in-transition flag on the entries and
1804  * wake up anyone waiting.  This code will also simplify the sequence
1805  * and attempt to merge it with entries before and after the sequence.
1806  *
1807  * The map must be locked on entry and will remain locked on return.
1808  *
1809  * Note that you should also pass the start_entry returned by
1810  * vm_map_clip_range().  However, if you block between the two calls
1811  * with the map unlocked please be aware that the start_entry may
1812  * have been clipped and you may need to scan it backwards to find
1813  * the entry corresponding with the original start address.  You are
1814  * responsible for this, vm_map_unclip_range() expects the correct
1815  * start_entry to be passed to it and will KASSERT otherwise.
1816  */
1817 static
1818 void
1819 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1820 		    vm_offset_t start, vm_offset_t end,
1821 		    int *countp, int flags)
1822 {
1823 	vm_map_entry_t entry;
1824 
1825 	entry = start_entry;
1826 
1827 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1828 	while (entry && entry->start < end) {
1829 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1830 			("in-transition flag not set during unclip on: %p",
1831 			entry));
1832 		KASSERT(entry->end <= end,
1833 			("unclip_range: tail wasn't clipped"));
1834 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1835 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1836 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1837 			wakeup(map);
1838 		}
1839 		entry = vm_map_rb_tree_RB_NEXT(entry);
1840 	}
1841 
1842 	/*
1843 	 * Simplification does not block so there is no restart case.
1844 	 */
1845 	entry = start_entry;
1846 	while (entry && entry->start < end) {
1847 		vm_map_simplify_entry(map, entry, countp);
1848 		entry = vm_map_rb_tree_RB_NEXT(entry);
1849 	}
1850 }
1851 
1852 /*
1853  * Mark the given range as handled by a subordinate map.
1854  *
1855  * This range must have been created with vm_map_find(), and no other
1856  * operations may have been performed on this range prior to calling
1857  * vm_map_submap().
1858  *
1859  * Submappings cannot be removed.
1860  *
1861  * No requirements.
1862  */
1863 int
1864 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1865 {
1866 	vm_map_entry_t entry;
1867 	int result = KERN_INVALID_ARGUMENT;
1868 	int count;
1869 
1870 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1871 	vm_map_lock(map);
1872 
1873 	VM_MAP_RANGE_CHECK(map, start, end);
1874 
1875 	if (vm_map_lookup_entry(map, start, &entry)) {
1876 		vm_map_clip_start(map, entry, start, &count);
1877 	} else if (entry) {
1878 		entry = vm_map_rb_tree_RB_NEXT(entry);
1879 	} else {
1880 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1881 	}
1882 
1883 	vm_map_clip_end(map, entry, end, &count);
1884 
1885 	if ((entry->start == start) && (entry->end == end) &&
1886 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1887 	    (entry->object.vm_object == NULL)) {
1888 		entry->object.sub_map = submap;
1889 		entry->maptype = VM_MAPTYPE_SUBMAP;
1890 		result = KERN_SUCCESS;
1891 	}
1892 	vm_map_unlock(map);
1893 	vm_map_entry_release(count);
1894 
1895 	return (result);
1896 }
1897 
1898 /*
1899  * Sets the protection of the specified address region in the target map.
1900  * If "set_max" is specified, the maximum protection is to be set;
1901  * otherwise, only the current protection is affected.
1902  *
1903  * The protection is not applicable to submaps, but is applicable to normal
1904  * maps and maps governed by virtual page tables.  For example, when operating
1905  * on a virtual page table our protection basically controls how COW occurs
1906  * on the backing object, whereas the virtual page table abstraction itself
1907  * is an abstraction for userland.
1908  *
1909  * No requirements.
1910  */
1911 int
1912 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1913 	       vm_prot_t new_prot, boolean_t set_max)
1914 {
1915 	vm_map_entry_t current;
1916 	vm_map_entry_t entry;
1917 	int count;
1918 
1919 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1920 	vm_map_lock(map);
1921 
1922 	VM_MAP_RANGE_CHECK(map, start, end);
1923 
1924 	if (vm_map_lookup_entry(map, start, &entry)) {
1925 		vm_map_clip_start(map, entry, start, &count);
1926 	} else if (entry) {
1927 		entry = vm_map_rb_tree_RB_NEXT(entry);
1928 	} else {
1929 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1930 	}
1931 
1932 	/*
1933 	 * Make a first pass to check for protection violations.
1934 	 */
1935 	current = entry;
1936 	while (current && current->start < end) {
1937 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1938 			vm_map_unlock(map);
1939 			vm_map_entry_release(count);
1940 			return (KERN_INVALID_ARGUMENT);
1941 		}
1942 		if ((new_prot & current->max_protection) != new_prot) {
1943 			vm_map_unlock(map);
1944 			vm_map_entry_release(count);
1945 			return (KERN_PROTECTION_FAILURE);
1946 		}
1947 
1948 		/*
1949 		 * When making a SHARED+RW file mmap writable, update
1950 		 * v_lastwrite_ts.
1951 		 */
1952 		if (new_prot & PROT_WRITE &&
1953 		    (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
1954 		    (current->maptype == VM_MAPTYPE_NORMAL ||
1955 		     current->maptype == VM_MAPTYPE_VPAGETABLE) &&
1956 		    current->object.vm_object &&
1957 		    current->object.vm_object->type == OBJT_VNODE) {
1958 			struct vnode *vp;
1959 
1960 			vp = current->object.vm_object->handle;
1961 			if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
1962 				vfs_timestamp(&vp->v_lastwrite_ts);
1963 				vsetflags(vp, VLASTWRITETS);
1964 				vn_unlock(vp);
1965 			}
1966 		}
1967 		current = vm_map_rb_tree_RB_NEXT(current);
1968 	}
1969 
1970 	/*
1971 	 * Go back and fix up protections. [Note that clipping is not
1972 	 * necessary the second time.]
1973 	 */
1974 	current = entry;
1975 
1976 	while (current && current->start < end) {
1977 		vm_prot_t old_prot;
1978 
1979 		vm_map_clip_end(map, current, end, &count);
1980 
1981 		old_prot = current->protection;
1982 		if (set_max) {
1983 			current->max_protection = new_prot;
1984 			current->protection = new_prot & old_prot;
1985 		} else {
1986 			current->protection = new_prot;
1987 		}
1988 
1989 		/*
1990 		 * Update physical map if necessary. Worry about copy-on-write
1991 		 * here -- CHECK THIS XXX
1992 		 */
1993 		if (current->protection != old_prot) {
1994 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1995 							VM_PROT_ALL)
1996 
1997 			pmap_protect(map->pmap, current->start,
1998 			    current->end,
1999 			    current->protection & MASK(current));
2000 #undef	MASK
2001 		}
2002 
2003 		vm_map_simplify_entry(map, current, &count);
2004 
2005 		current = vm_map_rb_tree_RB_NEXT(current);
2006 	}
2007 	vm_map_unlock(map);
2008 	vm_map_entry_release(count);
2009 	return (KERN_SUCCESS);
2010 }
2011 
2012 /*
2013  * This routine traverses a processes map handling the madvise
2014  * system call.  Advisories are classified as either those effecting
2015  * the vm_map_entry structure, or those effecting the underlying
2016  * objects.
2017  *
2018  * The <value> argument is used for extended madvise calls.
2019  *
2020  * No requirements.
2021  */
2022 int
2023 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2024 	       int behav, off_t value)
2025 {
2026 	vm_map_entry_t current, entry;
2027 	int modify_map = 0;
2028 	int error = 0;
2029 	int count;
2030 
2031 	/*
2032 	 * Some madvise calls directly modify the vm_map_entry, in which case
2033 	 * we need to use an exclusive lock on the map and we need to perform
2034 	 * various clipping operations.  Otherwise we only need a read-lock
2035 	 * on the map.
2036 	 */
2037 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2038 
2039 	switch(behav) {
2040 	case MADV_NORMAL:
2041 	case MADV_SEQUENTIAL:
2042 	case MADV_RANDOM:
2043 	case MADV_NOSYNC:
2044 	case MADV_AUTOSYNC:
2045 	case MADV_NOCORE:
2046 	case MADV_CORE:
2047 	case MADV_SETMAP:
2048 		modify_map = 1;
2049 		vm_map_lock(map);
2050 		break;
2051 	case MADV_INVAL:
2052 	case MADV_WILLNEED:
2053 	case MADV_DONTNEED:
2054 	case MADV_FREE:
2055 		vm_map_lock_read(map);
2056 		break;
2057 	default:
2058 		vm_map_entry_release(count);
2059 		return (EINVAL);
2060 	}
2061 
2062 	/*
2063 	 * Locate starting entry and clip if necessary.
2064 	 */
2065 
2066 	VM_MAP_RANGE_CHECK(map, start, end);
2067 
2068 	if (vm_map_lookup_entry(map, start, &entry)) {
2069 		if (modify_map)
2070 			vm_map_clip_start(map, entry, start, &count);
2071 	} else if (entry) {
2072 		entry = vm_map_rb_tree_RB_NEXT(entry);
2073 	} else {
2074 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2075 	}
2076 
2077 	if (modify_map) {
2078 		/*
2079 		 * madvise behaviors that are implemented in the vm_map_entry.
2080 		 *
2081 		 * We clip the vm_map_entry so that behavioral changes are
2082 		 * limited to the specified address range.
2083 		 */
2084 		for (current = entry;
2085 		     current && current->start < end;
2086 		     current = vm_map_rb_tree_RB_NEXT(current)) {
2087 			/*
2088 			 * Ignore submaps
2089 			 */
2090 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2091 				continue;
2092 
2093 			vm_map_clip_end(map, current, end, &count);
2094 
2095 			switch (behav) {
2096 			case MADV_NORMAL:
2097 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2098 				break;
2099 			case MADV_SEQUENTIAL:
2100 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2101 				break;
2102 			case MADV_RANDOM:
2103 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2104 				break;
2105 			case MADV_NOSYNC:
2106 				current->eflags |= MAP_ENTRY_NOSYNC;
2107 				break;
2108 			case MADV_AUTOSYNC:
2109 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2110 				break;
2111 			case MADV_NOCORE:
2112 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2113 				break;
2114 			case MADV_CORE:
2115 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2116 				break;
2117 			case MADV_SETMAP:
2118 				/*
2119 				 * Set the page directory page for a map
2120 				 * governed by a virtual page table.  Mark
2121 				 * the entry as being governed by a virtual
2122 				 * page table if it is not.
2123 				 *
2124 				 * XXX the page directory page is stored
2125 				 * in the avail_ssize field if the map_entry.
2126 				 *
2127 				 * XXX the map simplification code does not
2128 				 * compare this field so weird things may
2129 				 * happen if you do not apply this function
2130 				 * to the entire mapping governed by the
2131 				 * virtual page table.
2132 				 */
2133 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2134 					error = EINVAL;
2135 					break;
2136 				}
2137 				current->aux.master_pde = value;
2138 				pmap_remove(map->pmap,
2139 					    current->start, current->end);
2140 				break;
2141 			case MADV_INVAL:
2142 				/*
2143 				 * Invalidate the related pmap entries, used
2144 				 * to flush portions of the real kernel's
2145 				 * pmap when the caller has removed or
2146 				 * modified existing mappings in a virtual
2147 				 * page table.
2148 				 *
2149 				 * (exclusive locked map version does not
2150 				 * need the range interlock).
2151 				 */
2152 				pmap_remove(map->pmap,
2153 					    current->start, current->end);
2154 				break;
2155 			default:
2156 				error = EINVAL;
2157 				break;
2158 			}
2159 			vm_map_simplify_entry(map, current, &count);
2160 		}
2161 		vm_map_unlock(map);
2162 	} else {
2163 		vm_pindex_t pindex;
2164 		vm_pindex_t delta;
2165 
2166 		/*
2167 		 * madvise behaviors that are implemented in the underlying
2168 		 * vm_object.
2169 		 *
2170 		 * Since we don't clip the vm_map_entry, we have to clip
2171 		 * the vm_object pindex and count.
2172 		 *
2173 		 * NOTE!  These functions are only supported on normal maps,
2174 		 *	  except MADV_INVAL which is also supported on
2175 		 *	  virtual page tables.
2176 		 */
2177 		for (current = entry;
2178 		     current && current->start < end;
2179 		     current = vm_map_rb_tree_RB_NEXT(current)) {
2180 			vm_offset_t useStart;
2181 
2182 			if (current->maptype != VM_MAPTYPE_NORMAL &&
2183 			    (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2184 			     behav != MADV_INVAL)) {
2185 				continue;
2186 			}
2187 
2188 			pindex = OFF_TO_IDX(current->offset);
2189 			delta = atop(current->end - current->start);
2190 			useStart = current->start;
2191 
2192 			if (current->start < start) {
2193 				pindex += atop(start - current->start);
2194 				delta -= atop(start - current->start);
2195 				useStart = start;
2196 			}
2197 			if (current->end > end)
2198 				delta -= atop(current->end - end);
2199 
2200 			if ((vm_spindex_t)delta <= 0)
2201 				continue;
2202 
2203 			if (behav == MADV_INVAL) {
2204 				/*
2205 				 * Invalidate the related pmap entries, used
2206 				 * to flush portions of the real kernel's
2207 				 * pmap when the caller has removed or
2208 				 * modified existing mappings in a virtual
2209 				 * page table.
2210 				 *
2211 				 * (shared locked map version needs the
2212 				 * interlock, see vm_fault()).
2213 				 */
2214 				struct vm_map_ilock ilock;
2215 
2216 				KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2217 					    useStart + ptoa(delta) <=
2218 					    VM_MAX_USER_ADDRESS,
2219 					 ("Bad range %016jx-%016jx (%016jx)",
2220 					 useStart, useStart + ptoa(delta),
2221 					 delta));
2222 				vm_map_interlock(map, &ilock,
2223 						 useStart,
2224 						 useStart + ptoa(delta));
2225 				pmap_remove(map->pmap,
2226 					    useStart,
2227 					    useStart + ptoa(delta));
2228 				vm_map_deinterlock(map, &ilock);
2229 			} else {
2230 				vm_object_madvise(current->object.vm_object,
2231 						  pindex, delta, behav);
2232 			}
2233 
2234 			/*
2235 			 * Try to populate the page table.  Mappings governed
2236 			 * by virtual page tables cannot be pre-populated
2237 			 * without a lot of work so don't try.
2238 			 */
2239 			if (behav == MADV_WILLNEED &&
2240 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2241 				pmap_object_init_pt(
2242 				    map->pmap,
2243 				    useStart,
2244 				    current->protection,
2245 				    current->object.vm_object,
2246 				    pindex,
2247 				    (count << PAGE_SHIFT),
2248 				    MAP_PREFAULT_MADVISE
2249 				);
2250 			}
2251 		}
2252 		vm_map_unlock_read(map);
2253 	}
2254 	vm_map_entry_release(count);
2255 	return(error);
2256 }
2257 
2258 
2259 /*
2260  * Sets the inheritance of the specified address range in the target map.
2261  * Inheritance affects how the map will be shared with child maps at the
2262  * time of vm_map_fork.
2263  */
2264 int
2265 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2266 	       vm_inherit_t new_inheritance)
2267 {
2268 	vm_map_entry_t entry;
2269 	vm_map_entry_t temp_entry;
2270 	int count;
2271 
2272 	switch (new_inheritance) {
2273 	case VM_INHERIT_NONE:
2274 	case VM_INHERIT_COPY:
2275 	case VM_INHERIT_SHARE:
2276 		break;
2277 	default:
2278 		return (KERN_INVALID_ARGUMENT);
2279 	}
2280 
2281 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2282 	vm_map_lock(map);
2283 
2284 	VM_MAP_RANGE_CHECK(map, start, end);
2285 
2286 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2287 		entry = temp_entry;
2288 		vm_map_clip_start(map, entry, start, &count);
2289 	} else if (temp_entry) {
2290 		entry = vm_map_rb_tree_RB_NEXT(temp_entry);
2291 	} else {
2292 		entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2293 	}
2294 
2295 	while (entry && entry->start < end) {
2296 		vm_map_clip_end(map, entry, end, &count);
2297 
2298 		entry->inheritance = new_inheritance;
2299 
2300 		vm_map_simplify_entry(map, entry, &count);
2301 
2302 		entry = vm_map_rb_tree_RB_NEXT(entry);
2303 	}
2304 	vm_map_unlock(map);
2305 	vm_map_entry_release(count);
2306 	return (KERN_SUCCESS);
2307 }
2308 
2309 /*
2310  * Implement the semantics of mlock
2311  */
2312 int
2313 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2314 	      boolean_t new_pageable)
2315 {
2316 	vm_map_entry_t entry;
2317 	vm_map_entry_t start_entry;
2318 	vm_offset_t end;
2319 	int rv = KERN_SUCCESS;
2320 	int count;
2321 
2322 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2323 	vm_map_lock(map);
2324 	VM_MAP_RANGE_CHECK(map, start, real_end);
2325 	end = real_end;
2326 
2327 	start_entry = vm_map_clip_range(map, start, end, &count,
2328 					MAP_CLIP_NO_HOLES);
2329 	if (start_entry == NULL) {
2330 		vm_map_unlock(map);
2331 		vm_map_entry_release(count);
2332 		return (KERN_INVALID_ADDRESS);
2333 	}
2334 
2335 	if (new_pageable == 0) {
2336 		entry = start_entry;
2337 		while (entry && entry->start < end) {
2338 			vm_offset_t save_start;
2339 			vm_offset_t save_end;
2340 
2341 			/*
2342 			 * Already user wired or hard wired (trivial cases)
2343 			 */
2344 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2345 				entry = vm_map_rb_tree_RB_NEXT(entry);
2346 				continue;
2347 			}
2348 			if (entry->wired_count != 0) {
2349 				entry->wired_count++;
2350 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2351 				entry = vm_map_rb_tree_RB_NEXT(entry);
2352 				continue;
2353 			}
2354 
2355 			/*
2356 			 * A new wiring requires instantiation of appropriate
2357 			 * management structures and the faulting in of the
2358 			 * page.
2359 			 */
2360 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2361 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2362 				int copyflag = entry->eflags &
2363 					       MAP_ENTRY_NEEDS_COPY;
2364 				if (copyflag && ((entry->protection &
2365 						  VM_PROT_WRITE) != 0)) {
2366 					vm_map_entry_shadow(entry, 0);
2367 				} else if (entry->object.vm_object == NULL &&
2368 					   !map->system_map) {
2369 					vm_map_entry_allocate_object(entry);
2370 				}
2371 			}
2372 			entry->wired_count++;
2373 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2374 
2375 			/*
2376 			 * Now fault in the area.  Note that vm_fault_wire()
2377 			 * may release the map lock temporarily, it will be
2378 			 * relocked on return.  The in-transition
2379 			 * flag protects the entries.
2380 			 */
2381 			save_start = entry->start;
2382 			save_end = entry->end;
2383 			rv = vm_fault_wire(map, entry, TRUE, 0);
2384 			if (rv) {
2385 				CLIP_CHECK_BACK(entry, save_start);
2386 				for (;;) {
2387 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2388 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2389 					entry->wired_count = 0;
2390 					if (entry->end == save_end)
2391 						break;
2392 					entry = vm_map_rb_tree_RB_NEXT(entry);
2393 					KASSERT(entry,
2394 					     ("bad entry clip during backout"));
2395 				}
2396 				end = save_start;	/* unwire the rest */
2397 				break;
2398 			}
2399 			/*
2400 			 * note that even though the entry might have been
2401 			 * clipped, the USER_WIRED flag we set prevents
2402 			 * duplication so we do not have to do a
2403 			 * clip check.
2404 			 */
2405 			entry = vm_map_rb_tree_RB_NEXT(entry);
2406 		}
2407 
2408 		/*
2409 		 * If we failed fall through to the unwiring section to
2410 		 * unwire what we had wired so far.  'end' has already
2411 		 * been adjusted.
2412 		 */
2413 		if (rv)
2414 			new_pageable = 1;
2415 
2416 		/*
2417 		 * start_entry might have been clipped if we unlocked the
2418 		 * map and blocked.  No matter how clipped it has gotten
2419 		 * there should be a fragment that is on our start boundary.
2420 		 */
2421 		CLIP_CHECK_BACK(start_entry, start);
2422 	}
2423 
2424 	/*
2425 	 * Deal with the unwiring case.
2426 	 */
2427 	if (new_pageable) {
2428 		/*
2429 		 * This is the unwiring case.  We must first ensure that the
2430 		 * range to be unwired is really wired down.  We know there
2431 		 * are no holes.
2432 		 */
2433 		entry = start_entry;
2434 		while (entry && entry->start < end) {
2435 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2436 				rv = KERN_INVALID_ARGUMENT;
2437 				goto done;
2438 			}
2439 			KASSERT(entry->wired_count != 0,
2440 				("wired count was 0 with USER_WIRED set! %p",
2441 				 entry));
2442 			entry = vm_map_rb_tree_RB_NEXT(entry);
2443 		}
2444 
2445 		/*
2446 		 * Now decrement the wiring count for each region. If a region
2447 		 * becomes completely unwired, unwire its physical pages and
2448 		 * mappings.
2449 		 */
2450 		/*
2451 		 * The map entries are processed in a loop, checking to
2452 		 * make sure the entry is wired and asserting it has a wired
2453 		 * count. However, another loop was inserted more-or-less in
2454 		 * the middle of the unwiring path. This loop picks up the
2455 		 * "entry" loop variable from the first loop without first
2456 		 * setting it to start_entry. Naturally, the secound loop
2457 		 * is never entered and the pages backing the entries are
2458 		 * never unwired. This can lead to a leak of wired pages.
2459 		 */
2460 		entry = start_entry;
2461 		while (entry && entry->start < end) {
2462 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2463 				("expected USER_WIRED on entry %p", entry));
2464 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2465 			entry->wired_count--;
2466 			if (entry->wired_count == 0)
2467 				vm_fault_unwire(map, entry);
2468 			entry = vm_map_rb_tree_RB_NEXT(entry);
2469 		}
2470 	}
2471 done:
2472 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2473 		MAP_CLIP_NO_HOLES);
2474 	vm_map_unlock(map);
2475 	vm_map_entry_release(count);
2476 
2477 	return (rv);
2478 }
2479 
2480 /*
2481  * Sets the pageability of the specified address range in the target map.
2482  * Regions specified as not pageable require locked-down physical
2483  * memory and physical page maps.
2484  *
2485  * The map must not be locked, but a reference must remain to the map
2486  * throughout the call.
2487  *
2488  * This function may be called via the zalloc path and must properly
2489  * reserve map entries for kernel_map.
2490  *
2491  * No requirements.
2492  */
2493 int
2494 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2495 {
2496 	vm_map_entry_t entry;
2497 	vm_map_entry_t start_entry;
2498 	vm_offset_t end;
2499 	int rv = KERN_SUCCESS;
2500 	int count;
2501 
2502 	if (kmflags & KM_KRESERVE)
2503 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2504 	else
2505 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2506 	vm_map_lock(map);
2507 	VM_MAP_RANGE_CHECK(map, start, real_end);
2508 	end = real_end;
2509 
2510 	start_entry = vm_map_clip_range(map, start, end, &count,
2511 					MAP_CLIP_NO_HOLES);
2512 	if (start_entry == NULL) {
2513 		vm_map_unlock(map);
2514 		rv = KERN_INVALID_ADDRESS;
2515 		goto failure;
2516 	}
2517 	if ((kmflags & KM_PAGEABLE) == 0) {
2518 		/*
2519 		 * Wiring.
2520 		 *
2521 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2522 		 * objects that need to be created. Then we clip each map
2523 		 * entry to the region to be wired and increment its wiring
2524 		 * count.  We create objects before clipping the map entries
2525 		 * to avoid object proliferation.
2526 		 *
2527 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2528 		 * fault in the pages for any newly wired area (wired_count is
2529 		 * 1).
2530 		 *
2531 		 * Downgrading to a read lock for vm_fault_wire avoids a
2532 		 * possible deadlock with another process that may have faulted
2533 		 * on one of the pages to be wired (it would mark the page busy,
2534 		 * blocking us, then in turn block on the map lock that we
2535 		 * hold).  Because of problems in the recursive lock package,
2536 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2537 		 * any actions that require the write lock must be done
2538 		 * beforehand.  Because we keep the read lock on the map, the
2539 		 * copy-on-write status of the entries we modify here cannot
2540 		 * change.
2541 		 */
2542 		entry = start_entry;
2543 		while (entry && entry->start < end) {
2544 			/*
2545 			 * Trivial case if the entry is already wired
2546 			 */
2547 			if (entry->wired_count) {
2548 				entry->wired_count++;
2549 				entry = vm_map_rb_tree_RB_NEXT(entry);
2550 				continue;
2551 			}
2552 
2553 			/*
2554 			 * The entry is being newly wired, we have to setup
2555 			 * appropriate management structures.  A shadow
2556 			 * object is required for a copy-on-write region,
2557 			 * or a normal object for a zero-fill region.  We
2558 			 * do not have to do this for entries that point to sub
2559 			 * maps because we won't hold the lock on the sub map.
2560 			 */
2561 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2562 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2563 				int copyflag = entry->eflags &
2564 					       MAP_ENTRY_NEEDS_COPY;
2565 				if (copyflag && ((entry->protection &
2566 						  VM_PROT_WRITE) != 0)) {
2567 					vm_map_entry_shadow(entry, 0);
2568 				} else if (entry->object.vm_object == NULL &&
2569 					   !map->system_map) {
2570 					vm_map_entry_allocate_object(entry);
2571 				}
2572 			}
2573 			entry->wired_count++;
2574 			entry = vm_map_rb_tree_RB_NEXT(entry);
2575 		}
2576 
2577 		/*
2578 		 * Pass 2.
2579 		 */
2580 
2581 		/*
2582 		 * HACK HACK HACK HACK
2583 		 *
2584 		 * vm_fault_wire() temporarily unlocks the map to avoid
2585 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2586 		 * call should protect us from changes while the map is
2587 		 * unlocked.  T
2588 		 *
2589 		 * NOTE: Previously this comment stated that clipping might
2590 		 *	 still occur while the entry is unlocked, but from
2591 		 *	 what I can tell it actually cannot.
2592 		 *
2593 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2594 		 *	 are still needed but we keep them in anyway.
2595 		 *
2596 		 * HACK HACK HACK HACK
2597 		 */
2598 
2599 		entry = start_entry;
2600 		while (entry && entry->start < end) {
2601 			/*
2602 			 * If vm_fault_wire fails for any page we need to undo
2603 			 * what has been done.  We decrement the wiring count
2604 			 * for those pages which have not yet been wired (now)
2605 			 * and unwire those that have (later).
2606 			 */
2607 			vm_offset_t save_start = entry->start;
2608 			vm_offset_t save_end = entry->end;
2609 
2610 			if (entry->wired_count == 1)
2611 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2612 			if (rv) {
2613 				CLIP_CHECK_BACK(entry, save_start);
2614 				for (;;) {
2615 					KASSERT(entry->wired_count == 1,
2616 					  ("wired_count changed unexpectedly"));
2617 					entry->wired_count = 0;
2618 					if (entry->end == save_end)
2619 						break;
2620 					entry = vm_map_rb_tree_RB_NEXT(entry);
2621 					KASSERT(entry,
2622 					  ("bad entry clip during backout"));
2623 				}
2624 				end = save_start;
2625 				break;
2626 			}
2627 			CLIP_CHECK_FWD(entry, save_end);
2628 			entry = vm_map_rb_tree_RB_NEXT(entry);
2629 		}
2630 
2631 		/*
2632 		 * If a failure occured undo everything by falling through
2633 		 * to the unwiring code.  'end' has already been adjusted
2634 		 * appropriately.
2635 		 */
2636 		if (rv)
2637 			kmflags |= KM_PAGEABLE;
2638 
2639 		/*
2640 		 * start_entry is still IN_TRANSITION but may have been
2641 		 * clipped since vm_fault_wire() unlocks and relocks the
2642 		 * map.  No matter how clipped it has gotten there should
2643 		 * be a fragment that is on our start boundary.
2644 		 */
2645 		CLIP_CHECK_BACK(start_entry, start);
2646 	}
2647 
2648 	if (kmflags & KM_PAGEABLE) {
2649 		/*
2650 		 * This is the unwiring case.  We must first ensure that the
2651 		 * range to be unwired is really wired down.  We know there
2652 		 * are no holes.
2653 		 */
2654 		entry = start_entry;
2655 		while (entry && entry->start < end) {
2656 			if (entry->wired_count == 0) {
2657 				rv = KERN_INVALID_ARGUMENT;
2658 				goto done;
2659 			}
2660 			entry = vm_map_rb_tree_RB_NEXT(entry);
2661 		}
2662 
2663 		/*
2664 		 * Now decrement the wiring count for each region. If a region
2665 		 * becomes completely unwired, unwire its physical pages and
2666 		 * mappings.
2667 		 */
2668 		entry = start_entry;
2669 		while (entry && entry->start < end) {
2670 			entry->wired_count--;
2671 			if (entry->wired_count == 0)
2672 				vm_fault_unwire(map, entry);
2673 			entry = vm_map_rb_tree_RB_NEXT(entry);
2674 		}
2675 	}
2676 done:
2677 	vm_map_unclip_range(map, start_entry, start, real_end,
2678 			    &count, MAP_CLIP_NO_HOLES);
2679 	vm_map_unlock(map);
2680 failure:
2681 	if (kmflags & KM_KRESERVE)
2682 		vm_map_entry_krelease(count);
2683 	else
2684 		vm_map_entry_release(count);
2685 	return (rv);
2686 }
2687 
2688 /*
2689  * Mark a newly allocated address range as wired but do not fault in
2690  * the pages.  The caller is expected to load the pages into the object.
2691  *
2692  * The map must be locked on entry and will remain locked on return.
2693  * No other requirements.
2694  */
2695 void
2696 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2697 		       int *countp)
2698 {
2699 	vm_map_entry_t scan;
2700 	vm_map_entry_t entry;
2701 
2702 	entry = vm_map_clip_range(map, addr, addr + size,
2703 				  countp, MAP_CLIP_NO_HOLES);
2704 	scan = entry;
2705 	while (scan && scan->start < addr + size) {
2706 		KKASSERT(scan->wired_count == 0);
2707 		scan->wired_count = 1;
2708 		scan = vm_map_rb_tree_RB_NEXT(scan);
2709 	}
2710 	vm_map_unclip_range(map, entry, addr, addr + size,
2711 			    countp, MAP_CLIP_NO_HOLES);
2712 }
2713 
2714 /*
2715  * Push any dirty cached pages in the address range to their pager.
2716  * If syncio is TRUE, dirty pages are written synchronously.
2717  * If invalidate is TRUE, any cached pages are freed as well.
2718  *
2719  * This routine is called by sys_msync()
2720  *
2721  * Returns an error if any part of the specified range is not mapped.
2722  *
2723  * No requirements.
2724  */
2725 int
2726 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2727 	     boolean_t syncio, boolean_t invalidate)
2728 {
2729 	vm_map_entry_t current;
2730 	vm_map_entry_t next;
2731 	vm_map_entry_t entry;
2732 	vm_size_t size;
2733 	vm_object_t object;
2734 	vm_object_t tobj;
2735 	vm_ooffset_t offset;
2736 
2737 	vm_map_lock_read(map);
2738 	VM_MAP_RANGE_CHECK(map, start, end);
2739 	if (!vm_map_lookup_entry(map, start, &entry)) {
2740 		vm_map_unlock_read(map);
2741 		return (KERN_INVALID_ADDRESS);
2742 	}
2743 	lwkt_gettoken(&map->token);
2744 
2745 	/*
2746 	 * Make a first pass to check for holes.
2747 	 */
2748 	current = entry;
2749 	while (current && current->start < end) {
2750 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2751 			lwkt_reltoken(&map->token);
2752 			vm_map_unlock_read(map);
2753 			return (KERN_INVALID_ARGUMENT);
2754 		}
2755 		next = vm_map_rb_tree_RB_NEXT(current);
2756 		if (end > current->end &&
2757 		    (next == NULL ||
2758 		     current->end != next->start)) {
2759 			lwkt_reltoken(&map->token);
2760 			vm_map_unlock_read(map);
2761 			return (KERN_INVALID_ADDRESS);
2762 		}
2763 		current = next;
2764 	}
2765 
2766 	if (invalidate)
2767 		pmap_remove(vm_map_pmap(map), start, end);
2768 
2769 	/*
2770 	 * Make a second pass, cleaning/uncaching pages from the indicated
2771 	 * objects as we go.
2772 	 */
2773 	current = entry;
2774 	while (current && current->start < end) {
2775 		offset = current->offset + (start - current->start);
2776 		size = (end <= current->end ? end : current->end) - start;
2777 
2778 		switch(current->maptype) {
2779 		case VM_MAPTYPE_SUBMAP:
2780 		{
2781 			vm_map_t smap;
2782 			vm_map_entry_t tentry;
2783 			vm_size_t tsize;
2784 
2785 			smap = current->object.sub_map;
2786 			vm_map_lock_read(smap);
2787 			vm_map_lookup_entry(smap, offset, &tentry);
2788 			if (tentry == NULL) {
2789 				tsize = vm_map_max(smap) - offset;
2790 				object = NULL;
2791 				offset = 0 + (offset - vm_map_min(smap));
2792 			} else {
2793 				tsize = tentry->end - offset;
2794 				object = tentry->object.vm_object;
2795 				offset = tentry->offset +
2796 					 (offset - tentry->start);
2797 			}
2798 			vm_map_unlock_read(smap);
2799 			if (tsize < size)
2800 				size = tsize;
2801 			break;
2802 		}
2803 		case VM_MAPTYPE_NORMAL:
2804 		case VM_MAPTYPE_VPAGETABLE:
2805 			object = current->object.vm_object;
2806 			break;
2807 		default:
2808 			object = NULL;
2809 			break;
2810 		}
2811 
2812 		if (object)
2813 			vm_object_hold(object);
2814 
2815 		/*
2816 		 * Note that there is absolutely no sense in writing out
2817 		 * anonymous objects, so we track down the vnode object
2818 		 * to write out.
2819 		 * We invalidate (remove) all pages from the address space
2820 		 * anyway, for semantic correctness.
2821 		 *
2822 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2823 		 * may start out with a NULL object.
2824 		 */
2825 		while (object && (tobj = object->backing_object) != NULL) {
2826 			vm_object_hold(tobj);
2827 			if (tobj == object->backing_object) {
2828 				vm_object_lock_swap();
2829 				offset += object->backing_object_offset;
2830 				vm_object_drop(object);
2831 				object = tobj;
2832 				if (object->size < OFF_TO_IDX(offset + size))
2833 					size = IDX_TO_OFF(object->size) -
2834 					       offset;
2835 				break;
2836 			}
2837 			vm_object_drop(tobj);
2838 		}
2839 		if (object && (object->type == OBJT_VNODE) &&
2840 		    (current->protection & VM_PROT_WRITE) &&
2841 		    (object->flags & OBJ_NOMSYNC) == 0) {
2842 			/*
2843 			 * Flush pages if writing is allowed, invalidate them
2844 			 * if invalidation requested.  Pages undergoing I/O
2845 			 * will be ignored by vm_object_page_remove().
2846 			 *
2847 			 * We cannot lock the vnode and then wait for paging
2848 			 * to complete without deadlocking against vm_fault.
2849 			 * Instead we simply call vm_object_page_remove() and
2850 			 * allow it to block internally on a page-by-page
2851 			 * basis when it encounters pages undergoing async
2852 			 * I/O.
2853 			 */
2854 			int flags;
2855 
2856 			/* no chain wait needed for vnode objects */
2857 			vm_object_reference_locked(object);
2858 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2859 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2860 			flags |= invalidate ? OBJPC_INVAL : 0;
2861 
2862 			/*
2863 			 * When operating on a virtual page table just
2864 			 * flush the whole object.  XXX we probably ought
2865 			 * to
2866 			 */
2867 			switch(current->maptype) {
2868 			case VM_MAPTYPE_NORMAL:
2869 				vm_object_page_clean(object,
2870 				    OFF_TO_IDX(offset),
2871 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2872 				    flags);
2873 				break;
2874 			case VM_MAPTYPE_VPAGETABLE:
2875 				vm_object_page_clean(object, 0, 0, flags);
2876 				break;
2877 			}
2878 			vn_unlock(((struct vnode *)object->handle));
2879 			vm_object_deallocate_locked(object);
2880 		}
2881 		if (object && invalidate &&
2882 		   ((object->type == OBJT_VNODE) ||
2883 		    (object->type == OBJT_DEVICE) ||
2884 		    (object->type == OBJT_MGTDEVICE))) {
2885 			int clean_only =
2886 				((object->type == OBJT_DEVICE) ||
2887 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2888 			/* no chain wait needed for vnode/device objects */
2889 			vm_object_reference_locked(object);
2890 			switch(current->maptype) {
2891 			case VM_MAPTYPE_NORMAL:
2892 				vm_object_page_remove(object,
2893 				    OFF_TO_IDX(offset),
2894 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2895 				    clean_only);
2896 				break;
2897 			case VM_MAPTYPE_VPAGETABLE:
2898 				vm_object_page_remove(object, 0, 0, clean_only);
2899 				break;
2900 			}
2901 			vm_object_deallocate_locked(object);
2902 		}
2903 		start += size;
2904 		if (object)
2905 			vm_object_drop(object);
2906 		current = vm_map_rb_tree_RB_NEXT(current);
2907 	}
2908 
2909 	lwkt_reltoken(&map->token);
2910 	vm_map_unlock_read(map);
2911 
2912 	return (KERN_SUCCESS);
2913 }
2914 
2915 /*
2916  * Make the region specified by this entry pageable.
2917  *
2918  * The vm_map must be exclusively locked.
2919  */
2920 static void
2921 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2922 {
2923 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2924 	entry->wired_count = 0;
2925 	vm_fault_unwire(map, entry);
2926 }
2927 
2928 /*
2929  * Deallocate the given entry from the target map.
2930  *
2931  * The vm_map must be exclusively locked.
2932  */
2933 static void
2934 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2935 {
2936 	vm_map_entry_unlink(map, entry);
2937 	map->size -= entry->end - entry->start;
2938 
2939 	switch(entry->maptype) {
2940 	case VM_MAPTYPE_NORMAL:
2941 	case VM_MAPTYPE_VPAGETABLE:
2942 	case VM_MAPTYPE_SUBMAP:
2943 		vm_object_deallocate(entry->object.vm_object);
2944 		break;
2945 	case VM_MAPTYPE_UKSMAP:
2946 		/* XXX TODO */
2947 		break;
2948 	default:
2949 		break;
2950 	}
2951 
2952 	vm_map_entry_dispose(map, entry, countp);
2953 }
2954 
2955 /*
2956  * Deallocates the given address range from the target map.
2957  *
2958  * The vm_map must be exclusively locked.
2959  */
2960 int
2961 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2962 {
2963 	vm_object_t object;
2964 	vm_map_entry_t entry;
2965 	vm_map_entry_t first_entry;
2966 	vm_offset_t hole_start;
2967 
2968 	ASSERT_VM_MAP_LOCKED(map);
2969 	lwkt_gettoken(&map->token);
2970 again:
2971 	/*
2972 	 * Find the start of the region, and clip it.  Set entry to point
2973 	 * at the first record containing the requested address or, if no
2974 	 * such record exists, the next record with a greater address.  The
2975 	 * loop will run from this point until a record beyond the termination
2976 	 * address is encountered.
2977 	 *
2978 	 * Adjust freehint[] for either the clip case or the extension case.
2979 	 *
2980 	 * GGG see other GGG comment.
2981 	 */
2982 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2983 		entry = first_entry;
2984 		vm_map_clip_start(map, entry, start, countp);
2985 		hole_start = start;
2986 	} else {
2987 		if (first_entry) {
2988 			entry = vm_map_rb_tree_RB_NEXT(first_entry);
2989 			if (entry == NULL)
2990 				hole_start = first_entry->start;
2991 			else
2992 				hole_start = first_entry->end;
2993 		} else {
2994 			entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2995 			if (entry == NULL)
2996 				hole_start = vm_map_min(map);
2997 			else
2998 				hole_start = vm_map_max(map);
2999 		}
3000 	}
3001 
3002 	/*
3003 	 * Step through all entries in this region
3004 	 */
3005 	while (entry && entry->start < end) {
3006 		vm_map_entry_t next;
3007 		vm_offset_t s, e;
3008 		vm_pindex_t offidxstart, offidxend, count;
3009 
3010 		/*
3011 		 * If we hit an in-transition entry we have to sleep and
3012 		 * retry.  It's easier (and not really slower) to just retry
3013 		 * since this case occurs so rarely and the hint is already
3014 		 * pointing at the right place.  We have to reset the
3015 		 * start offset so as not to accidently delete an entry
3016 		 * another process just created in vacated space.
3017 		 */
3018 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3019 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3020 			start = entry->start;
3021 			++mycpu->gd_cnt.v_intrans_coll;
3022 			++mycpu->gd_cnt.v_intrans_wait;
3023 			vm_map_transition_wait(map, 1);
3024 			goto again;
3025 		}
3026 		vm_map_clip_end(map, entry, end, countp);
3027 
3028 		s = entry->start;
3029 		e = entry->end;
3030 		next = vm_map_rb_tree_RB_NEXT(entry);
3031 
3032 		offidxstart = OFF_TO_IDX(entry->offset);
3033 		count = OFF_TO_IDX(e - s);
3034 
3035 		switch(entry->maptype) {
3036 		case VM_MAPTYPE_NORMAL:
3037 		case VM_MAPTYPE_VPAGETABLE:
3038 		case VM_MAPTYPE_SUBMAP:
3039 			object = entry->object.vm_object;
3040 			break;
3041 		default:
3042 			object = NULL;
3043 			break;
3044 		}
3045 
3046 		/*
3047 		 * Unwire before removing addresses from the pmap; otherwise,
3048 		 * unwiring will put the entries back in the pmap.
3049 		 *
3050 		 * Generally speaking, doing a bulk pmap_remove() before
3051 		 * removing the pages from the VM object is better at
3052 		 * reducing unnecessary IPIs.  The pmap code is now optimized
3053 		 * to not blindly iterate the range when pt and pd pages
3054 		 * are missing.
3055 		 */
3056 		if (entry->wired_count != 0)
3057 			vm_map_entry_unwire(map, entry);
3058 
3059 		offidxend = offidxstart + count;
3060 
3061 		if (object == &kernel_object) {
3062 			pmap_remove(map->pmap, s, e);
3063 			vm_object_hold(object);
3064 			vm_object_page_remove(object, offidxstart,
3065 					      offidxend, FALSE);
3066 			vm_object_drop(object);
3067 		} else if (object && object->type != OBJT_DEFAULT &&
3068 			   object->type != OBJT_SWAP) {
3069 			/*
3070 			 * vnode object routines cannot be chain-locked,
3071 			 * but since we aren't removing pages from the
3072 			 * object here we can use a shared hold.
3073 			 */
3074 			vm_object_hold_shared(object);
3075 			pmap_remove(map->pmap, s, e);
3076 			vm_object_drop(object);
3077 		} else if (object) {
3078 			vm_object_hold(object);
3079 			vm_object_chain_acquire(object, 0);
3080 			pmap_remove(map->pmap, s, e);
3081 
3082 			if (object != NULL &&
3083 			    object->ref_count != 1 &&
3084 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3085 			     OBJ_ONEMAPPING &&
3086 			    (object->type == OBJT_DEFAULT ||
3087 			     object->type == OBJT_SWAP)) {
3088 				/*
3089 				 * When ONEMAPPING is set we can destroy the
3090 				 * pages underlying the entry's range.
3091 				 */
3092 				vm_object_collapse(object, NULL);
3093 				vm_object_page_remove(object, offidxstart,
3094 						      offidxend, FALSE);
3095 				if (object->type == OBJT_SWAP) {
3096 					swap_pager_freespace(object,
3097 							     offidxstart,
3098 							     count);
3099 				}
3100 				if (offidxend >= object->size &&
3101 				    offidxstart < object->size) {
3102 					object->size = offidxstart;
3103 				}
3104 			}
3105 			vm_object_chain_release(object);
3106 			vm_object_drop(object);
3107 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3108 			pmap_remove(map->pmap, s, e);
3109 		}
3110 
3111 		/*
3112 		 * Delete the entry (which may delete the object) only after
3113 		 * removing all pmap entries pointing to its pages.
3114 		 * (Otherwise, its page frames may be reallocated, and any
3115 		 * modify bits will be set in the wrong object!)
3116 		 */
3117 		vm_map_entry_delete(map, entry, countp);
3118 		entry = next;
3119 	}
3120 
3121 	/*
3122 	 * We either reached the end and use vm_map_max as the end
3123 	 * address, or we didn't and we use the next entry as the
3124 	 * end address.
3125 	 */
3126 	if (entry == NULL) {
3127 		vm_map_freehint_hole(map, hole_start,
3128 				     vm_map_max(map) - hole_start);
3129 	} else {
3130 		vm_map_freehint_hole(map, hole_start,
3131 				     entry->start - hole_start);
3132 	}
3133 
3134 	lwkt_reltoken(&map->token);
3135 
3136 	return (KERN_SUCCESS);
3137 }
3138 
3139 /*
3140  * Remove the given address range from the target map.
3141  * This is the exported form of vm_map_delete.
3142  *
3143  * No requirements.
3144  */
3145 int
3146 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3147 {
3148 	int result;
3149 	int count;
3150 
3151 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3152 	vm_map_lock(map);
3153 	VM_MAP_RANGE_CHECK(map, start, end);
3154 	result = vm_map_delete(map, start, end, &count);
3155 	vm_map_unlock(map);
3156 	vm_map_entry_release(count);
3157 
3158 	return (result);
3159 }
3160 
3161 /*
3162  * Assert that the target map allows the specified privilege on the
3163  * entire address region given.  The entire region must be allocated.
3164  *
3165  * The caller must specify whether the vm_map is already locked or not.
3166  */
3167 boolean_t
3168 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3169 			vm_prot_t protection, boolean_t have_lock)
3170 {
3171 	vm_map_entry_t entry;
3172 	vm_map_entry_t tmp_entry;
3173 	boolean_t result;
3174 
3175 	if (have_lock == FALSE)
3176 		vm_map_lock_read(map);
3177 
3178 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3179 		if (have_lock == FALSE)
3180 			vm_map_unlock_read(map);
3181 		return (FALSE);
3182 	}
3183 	entry = tmp_entry;
3184 
3185 	result = TRUE;
3186 	while (start < end) {
3187 		if (entry == NULL) {
3188 			result = FALSE;
3189 			break;
3190 		}
3191 
3192 		/*
3193 		 * No holes allowed!
3194 		 */
3195 
3196 		if (start < entry->start) {
3197 			result = FALSE;
3198 			break;
3199 		}
3200 		/*
3201 		 * Check protection associated with entry.
3202 		 */
3203 
3204 		if ((entry->protection & protection) != protection) {
3205 			result = FALSE;
3206 			break;
3207 		}
3208 		/* go to next entry */
3209 		start = entry->end;
3210 		entry = vm_map_rb_tree_RB_NEXT(entry);
3211 	}
3212 	if (have_lock == FALSE)
3213 		vm_map_unlock_read(map);
3214 	return (result);
3215 }
3216 
3217 /*
3218  * If appropriate this function shadows the original object with a new object
3219  * and moves the VM pages from the original object to the new object.
3220  * The original object will also be collapsed, if possible.
3221  *
3222  * Caller must supply entry->object.vm_object held and chain_acquired, and
3223  * should chain_release and drop the object upon return.
3224  *
3225  * We can only do this for normal memory objects with a single mapping, and
3226  * it only makes sense to do it if there are 2 or more refs on the original
3227  * object.  i.e. typically a memory object that has been extended into
3228  * multiple vm_map_entry's with non-overlapping ranges.
3229  *
3230  * This makes it easier to remove unused pages and keeps object inheritance
3231  * from being a negative impact on memory usage.
3232  *
3233  * On return the (possibly new) entry->object.vm_object will have an
3234  * additional ref on it for the caller to dispose of (usually by cloning
3235  * the vm_map_entry).  The additional ref had to be done in this routine
3236  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3237  * cleared.
3238  *
3239  * The vm_map must be locked and its token held.
3240  */
3241 static void
3242 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3243 {
3244 	/* OPTIMIZED */
3245 	vm_object_t nobject, bobject;
3246 	vm_offset_t s, e;
3247 	vm_page_t m;
3248 	vm_pindex_t offidxstart, offidxend, idx;
3249 	vm_size_t size;
3250 	vm_ooffset_t offset;
3251 	int useshadowlist;
3252 
3253 	/*
3254 	 * Optimize away object locks for vnode objects.  Important exit/exec
3255 	 * critical path.
3256 	 *
3257 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3258 	 * anyway.
3259 	 */
3260 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3261 		vm_object_reference_quick(oobject);
3262 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3263 		return;
3264 	}
3265 
3266 #if 0
3267 	/*
3268 	 * Original object cannot be split?
3269 	 */
3270 	if (oobject->handle == NULL) {
3271 		vm_object_reference_locked_chain_held(oobject);
3272 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3273 		return;
3274 	}
3275 #endif
3276 
3277 	/*
3278 	 * Collapse original object with its backing store as an
3279 	 * optimization to reduce chain lengths when possible.
3280 	 *
3281 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3282 	 * for oobject, so there's no point collapsing it.
3283 	 *
3284 	 * Then re-check whether the object can be split.
3285 	 */
3286 	vm_object_collapse(oobject, NULL);
3287 
3288 	if (oobject->ref_count <= 1 ||
3289 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3290 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3291 		vm_object_reference_locked_chain_held(oobject);
3292 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3293 		return;
3294 	}
3295 
3296 	/*
3297 	 * Acquire the chain lock on the backing object.
3298 	 *
3299 	 * Give bobject an additional ref count for when it will be shadowed
3300 	 * by nobject.
3301 	 */
3302 	useshadowlist = 0;
3303 	if ((bobject = oobject->backing_object) != NULL) {
3304 		if (bobject->type != OBJT_VNODE) {
3305 			useshadowlist = 1;
3306 			vm_object_hold(bobject);
3307 			vm_object_chain_wait(bobject, 0);
3308 			/* ref for shadowing below */
3309 			vm_object_reference_locked(bobject);
3310 			vm_object_chain_acquire(bobject, 0);
3311 			KKASSERT(oobject->backing_object == bobject);
3312 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3313 		} else {
3314 			/*
3315 			 * vnodes are not placed on the shadow list but
3316 			 * they still get another ref for the backing_object
3317 			 * reference.
3318 			 */
3319 			vm_object_reference_quick(bobject);
3320 		}
3321 	}
3322 
3323 	/*
3324 	 * Calculate the object page range and allocate the new object.
3325 	 */
3326 	offset = entry->offset;
3327 	s = entry->start;
3328 	e = entry->end;
3329 
3330 	offidxstart = OFF_TO_IDX(offset);
3331 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3332 	size = offidxend - offidxstart;
3333 
3334 	switch(oobject->type) {
3335 	case OBJT_DEFAULT:
3336 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3337 					      VM_PROT_ALL, 0);
3338 		break;
3339 	case OBJT_SWAP:
3340 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3341 					   VM_PROT_ALL, 0);
3342 		break;
3343 	default:
3344 		/* not reached */
3345 		nobject = NULL;
3346 		KKASSERT(0);
3347 	}
3348 
3349 	/*
3350 	 * If we could not allocate nobject just clear ONEMAPPING on
3351 	 * oobject and return.
3352 	 */
3353 	if (nobject == NULL) {
3354 		if (bobject) {
3355 			if (useshadowlist) {
3356 				vm_object_chain_release(bobject);
3357 				vm_object_deallocate(bobject);
3358 				vm_object_drop(bobject);
3359 			} else {
3360 				vm_object_deallocate(bobject);
3361 			}
3362 		}
3363 		vm_object_reference_locked_chain_held(oobject);
3364 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3365 		return;
3366 	}
3367 
3368 	/*
3369 	 * The new object will replace entry->object.vm_object so it needs
3370 	 * a second reference (the caller expects an additional ref).
3371 	 */
3372 	vm_object_hold(nobject);
3373 	vm_object_reference_locked(nobject);
3374 	vm_object_chain_acquire(nobject, 0);
3375 
3376 	/*
3377 	 * nobject shadows bobject (oobject already shadows bobject).
3378 	 *
3379 	 * Adding an object to bobject's shadow list requires refing bobject
3380 	 * which we did above in the useshadowlist case.
3381 	 *
3382 	 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3383 	 *     or not.
3384 	 */
3385 	if (bobject) {
3386 		nobject->backing_object_offset =
3387 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3388 		nobject->backing_object = bobject;
3389 		if (useshadowlist) {
3390 			bobject->shadow_count++;
3391 			atomic_add_int(&bobject->generation, 1);
3392 			LIST_INSERT_HEAD(&bobject->shadow_head,
3393 					 nobject, shadow_list);
3394 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3395 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3396 		}
3397 	}
3398 
3399 	/*
3400 	 * Move the VM pages from oobject to nobject
3401 	 */
3402 	for (idx = 0; idx < size; idx++) {
3403 		vm_page_t m;
3404 
3405 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3406 					     TRUE, "vmpg");
3407 		if (m == NULL)
3408 			continue;
3409 
3410 		/*
3411 		 * We must wait for pending I/O to complete before we can
3412 		 * rename the page.
3413 		 *
3414 		 * We do not have to VM_PROT_NONE the page as mappings should
3415 		 * not be changed by this operation.
3416 		 *
3417 		 * NOTE: The act of renaming a page updates chaingen for both
3418 		 *	 objects.
3419 		 */
3420 		vm_page_rename(m, nobject, idx);
3421 		/* page automatically made dirty by rename and cache handled */
3422 		/* page remains busy */
3423 	}
3424 
3425 	if (oobject->type == OBJT_SWAP) {
3426 		vm_object_pip_add(oobject, 1);
3427 		/*
3428 		 * copy oobject pages into nobject and destroy unneeded
3429 		 * pages in shadow object.
3430 		 */
3431 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3432 		vm_object_pip_wakeup(oobject);
3433 	}
3434 
3435 	/*
3436 	 * Wakeup the pages we played with.  No spl protection is needed
3437 	 * for a simple wakeup.
3438 	 */
3439 	for (idx = 0; idx < size; idx++) {
3440 		m = vm_page_lookup(nobject, idx);
3441 		if (m) {
3442 			KKASSERT(m->busy_count & PBUSY_LOCKED);
3443 			vm_page_wakeup(m);
3444 		}
3445 	}
3446 	entry->object.vm_object = nobject;
3447 	entry->offset = 0LL;
3448 
3449 	/*
3450 	 * The map is being split and nobject is going to wind up on both
3451 	 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3452 	 * nobject.
3453 	 */
3454 	vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3455 
3456 	/*
3457 	 * Cleanup
3458 	 *
3459 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3460 	 *	 related pages were moved and are no longer applicable to the
3461 	 *	 original object.
3462 	 *
3463 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3464 	 *	 replaced by nobject).
3465 	 */
3466 	vm_object_chain_release(nobject);
3467 	vm_object_drop(nobject);
3468 	if (bobject && useshadowlist) {
3469 		vm_object_chain_release(bobject);
3470 		vm_object_drop(bobject);
3471 	}
3472 
3473 #if 0
3474 	if (oobject->resident_page_count) {
3475 		kprintf("oobject %p still contains %jd pages!\n",
3476 			oobject, (intmax_t)oobject->resident_page_count);
3477 		for (idx = 0; idx < size; idx++) {
3478 			vm_page_t m;
3479 
3480 			m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3481 						     TRUE, "vmpg");
3482 			if (m) {
3483 				kprintf("oobject %p idx %jd\n",
3484 					oobject,
3485 					offidxstart + idx);
3486 				vm_page_wakeup(m);
3487 			}
3488 		}
3489 	}
3490 #endif
3491 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3492 	vm_object_deallocate_locked(oobject);
3493 }
3494 
3495 /*
3496  * Copies the contents of the source entry to the destination
3497  * entry.  The entries *must* be aligned properly.
3498  *
3499  * The vm_maps must be exclusively locked.
3500  * The vm_map's token must be held.
3501  *
3502  * Because the maps are locked no faults can be in progress during the
3503  * operation.
3504  */
3505 static void
3506 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3507 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3508 {
3509 	vm_object_t src_object;
3510 	vm_object_t oobject;
3511 
3512 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3513 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3514 		return;
3515 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3516 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3517 		return;
3518 
3519 	if (src_entry->wired_count == 0) {
3520 		/*
3521 		 * If the source entry is marked needs_copy, it is already
3522 		 * write-protected.
3523 		 *
3524 		 * To avoid interacting with a vm_fault that might have
3525 		 * released its vm_map, we must acquire the fronting
3526 		 * object.
3527 		 */
3528 		oobject = src_entry->object.vm_object;
3529 		if (oobject) {
3530 			vm_object_hold(oobject);
3531 			vm_object_chain_acquire(oobject, 0);
3532 		}
3533 
3534 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3535 			pmap_protect(src_map->pmap,
3536 			    src_entry->start,
3537 			    src_entry->end,
3538 			    src_entry->protection & ~VM_PROT_WRITE);
3539 		}
3540 
3541 		/*
3542 		 * Make a copy of the object.
3543 		 *
3544 		 * The object must be locked prior to checking the object type
3545 		 * and for the call to vm_object_collapse() and vm_map_split().
3546 		 * We cannot use *_hold() here because the split code will
3547 		 * probably try to destroy the object.  The lock is a pool
3548 		 * token and doesn't care.
3549 		 *
3550 		 * We must bump src_map->timestamp when setting
3551 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3552 		 * to retry, otherwise the concurrent fault might improperly
3553 		 * install a RW pte when its supposed to be a RO(COW) pte.
3554 		 * This race can occur because a vnode-backed fault may have
3555 		 * to temporarily release the map lock.  This was handled
3556 		 * when the caller locked the map exclusively.
3557 		 */
3558 		if (oobject) {
3559 			vm_map_split(src_entry, oobject);
3560 
3561 			src_object = src_entry->object.vm_object;
3562 			dst_entry->object.vm_object = src_object;
3563 			src_entry->eflags |= (MAP_ENTRY_COW |
3564 					      MAP_ENTRY_NEEDS_COPY);
3565 			dst_entry->eflags |= (MAP_ENTRY_COW |
3566 					      MAP_ENTRY_NEEDS_COPY);
3567 			dst_entry->offset = src_entry->offset;
3568 		} else {
3569 			dst_entry->object.vm_object = NULL;
3570 			dst_entry->offset = 0;
3571 		}
3572 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3573 			  dst_entry->end - dst_entry->start,
3574 			  src_entry->start);
3575 		if (oobject) {
3576 			vm_object_chain_release(oobject);
3577 			vm_object_drop(oobject);
3578 		}
3579 	} else {
3580 		/*
3581 		 * Of course, wired down pages can't be set copy-on-write.
3582 		 * Cause wired pages to be copied into the new map by
3583 		 * simulating faults (the new pages are pageable)
3584 		 */
3585 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3586 	}
3587 }
3588 
3589 /*
3590  * vmspace_fork:
3591  * Create a new process vmspace structure and vm_map
3592  * based on those of an existing process.  The new map
3593  * is based on the old map, according to the inheritance
3594  * values on the regions in that map.
3595  *
3596  * The source map must not be locked.
3597  * No requirements.
3598  */
3599 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3600 			  vm_map_entry_t old_entry, int *countp);
3601 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3602 			  vm_map_entry_t old_entry, int *countp);
3603 
3604 struct vmspace *
3605 vmspace_fork(struct vmspace *vm1)
3606 {
3607 	struct vmspace *vm2;
3608 	vm_map_t old_map = &vm1->vm_map;
3609 	vm_map_t new_map;
3610 	vm_map_entry_t old_entry;
3611 	int count;
3612 
3613 	lwkt_gettoken(&vm1->vm_map.token);
3614 	vm_map_lock(old_map);
3615 
3616 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map));
3617 	lwkt_gettoken(&vm2->vm_map.token);
3618 
3619 	/*
3620 	 * We must bump the timestamp to force any concurrent fault
3621 	 * to retry.
3622 	 */
3623 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3624 	      (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3625 	new_map = &vm2->vm_map;	/* XXX */
3626 	new_map->timestamp = 1;
3627 
3628 	vm_map_lock(new_map);
3629 
3630 	count = old_map->nentries;
3631 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3632 
3633 	RB_FOREACH(old_entry, vm_map_rb_tree, &old_map->rb_root) {
3634 		switch(old_entry->maptype) {
3635 		case VM_MAPTYPE_SUBMAP:
3636 			panic("vm_map_fork: encountered a submap");
3637 			break;
3638 		case VM_MAPTYPE_UKSMAP:
3639 			vmspace_fork_uksmap_entry(old_map, new_map,
3640 						  old_entry, &count);
3641 			break;
3642 		case VM_MAPTYPE_NORMAL:
3643 		case VM_MAPTYPE_VPAGETABLE:
3644 			vmspace_fork_normal_entry(old_map, new_map,
3645 						  old_entry, &count);
3646 			break;
3647 		}
3648 	}
3649 
3650 	new_map->size = old_map->size;
3651 	vm_map_unlock(old_map);
3652 	vm_map_unlock(new_map);
3653 	vm_map_entry_release(count);
3654 
3655 	lwkt_reltoken(&vm2->vm_map.token);
3656 	lwkt_reltoken(&vm1->vm_map.token);
3657 
3658 	return (vm2);
3659 }
3660 
3661 static
3662 void
3663 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3664 			  vm_map_entry_t old_entry, int *countp)
3665 {
3666 	vm_map_entry_t new_entry;
3667 	vm_object_t object;
3668 
3669 	switch (old_entry->inheritance) {
3670 	case VM_INHERIT_NONE:
3671 		break;
3672 	case VM_INHERIT_SHARE:
3673 		/*
3674 		 * Clone the entry, creating the shared object if
3675 		 * necessary.
3676 		 */
3677 		if (old_entry->object.vm_object == NULL)
3678 			vm_map_entry_allocate_object(old_entry);
3679 
3680 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3681 			/*
3682 			 * Shadow a map_entry which needs a copy,
3683 			 * replacing its object with a new object
3684 			 * that points to the old one.  Ask the
3685 			 * shadow code to automatically add an
3686 			 * additional ref.  We can't do it afterwords
3687 			 * because we might race a collapse.  The call
3688 			 * to vm_map_entry_shadow() will also clear
3689 			 * OBJ_ONEMAPPING.
3690 			 */
3691 			vm_map_entry_shadow(old_entry, 1);
3692 		} else if (old_entry->object.vm_object) {
3693 			/*
3694 			 * We will make a shared copy of the object,
3695 			 * and must clear OBJ_ONEMAPPING.
3696 			 *
3697 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3698 			 * is non-applicable but clear it anyway,
3699 			 * and its terminal so we don't have to deal
3700 			 * with chains.  Reduces SMP conflicts.
3701 			 *
3702 			 * XXX assert that object.vm_object != NULL
3703 			 *     since we allocate it above.
3704 			 */
3705 			object = old_entry->object.vm_object;
3706 			if (object->type == OBJT_VNODE) {
3707 				vm_object_reference_quick(object);
3708 				vm_object_clear_flag(object,
3709 						     OBJ_ONEMAPPING);
3710 			} else {
3711 				vm_object_hold(object);
3712 				vm_object_chain_wait(object, 0);
3713 				vm_object_reference_locked(object);
3714 				vm_object_clear_flag(object,
3715 						     OBJ_ONEMAPPING);
3716 				vm_object_drop(object);
3717 			}
3718 		}
3719 
3720 		/*
3721 		 * Clone the entry.  We've already bumped the ref on
3722 		 * any vm_object.
3723 		 */
3724 		new_entry = vm_map_entry_create(new_map, countp);
3725 		*new_entry = *old_entry;
3726 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3727 		new_entry->wired_count = 0;
3728 
3729 		/*
3730 		 * Insert the entry into the new map -- we know we're
3731 		 * inserting at the end of the new map.
3732 		 */
3733 		vm_map_entry_link(new_map, new_entry);
3734 
3735 		/*
3736 		 * Update the physical map
3737 		 */
3738 		pmap_copy(new_map->pmap, old_map->pmap,
3739 			  new_entry->start,
3740 			  (old_entry->end - old_entry->start),
3741 			  old_entry->start);
3742 		break;
3743 	case VM_INHERIT_COPY:
3744 		/*
3745 		 * Clone the entry and link into the map.
3746 		 */
3747 		new_entry = vm_map_entry_create(new_map, countp);
3748 		*new_entry = *old_entry;
3749 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3750 		new_entry->wired_count = 0;
3751 		new_entry->object.vm_object = NULL;
3752 		vm_map_entry_link(new_map, new_entry);
3753 		vm_map_copy_entry(old_map, new_map, old_entry,
3754 				  new_entry);
3755 		break;
3756 	}
3757 }
3758 
3759 /*
3760  * When forking user-kernel shared maps, the map might change in the
3761  * child so do not try to copy the underlying pmap entries.
3762  */
3763 static
3764 void
3765 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3766 			  vm_map_entry_t old_entry, int *countp)
3767 {
3768 	vm_map_entry_t new_entry;
3769 
3770 	new_entry = vm_map_entry_create(new_map, countp);
3771 	*new_entry = *old_entry;
3772 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3773 	new_entry->wired_count = 0;
3774 	vm_map_entry_link(new_map, new_entry);
3775 }
3776 
3777 /*
3778  * Create an auto-grow stack entry
3779  *
3780  * No requirements.
3781  */
3782 int
3783 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3784 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3785 {
3786 	vm_map_entry_t	prev_entry;
3787 	vm_map_entry_t	next;
3788 	vm_size_t	init_ssize;
3789 	int		rv;
3790 	int		count;
3791 	vm_offset_t	tmpaddr;
3792 
3793 	cow |= MAP_IS_STACK;
3794 
3795 	if (max_ssize < sgrowsiz)
3796 		init_ssize = max_ssize;
3797 	else
3798 		init_ssize = sgrowsiz;
3799 
3800 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3801 	vm_map_lock(map);
3802 
3803 	/*
3804 	 * Find space for the mapping
3805 	 */
3806 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3807 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3808 				     flags, &tmpaddr)) {
3809 			vm_map_unlock(map);
3810 			vm_map_entry_release(count);
3811 			return (KERN_NO_SPACE);
3812 		}
3813 		addrbos = tmpaddr;
3814 	}
3815 
3816 	/* If addr is already mapped, no go */
3817 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3818 		vm_map_unlock(map);
3819 		vm_map_entry_release(count);
3820 		return (KERN_NO_SPACE);
3821 	}
3822 
3823 #if 0
3824 	/* XXX already handled by kern_mmap() */
3825 	/* If we would blow our VMEM resource limit, no go */
3826 	if (map->size + init_ssize >
3827 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3828 		vm_map_unlock(map);
3829 		vm_map_entry_release(count);
3830 		return (KERN_NO_SPACE);
3831 	}
3832 #endif
3833 
3834 	/*
3835 	 * If we can't accomodate max_ssize in the current mapping,
3836 	 * no go.  However, we need to be aware that subsequent user
3837 	 * mappings might map into the space we have reserved for
3838 	 * stack, and currently this space is not protected.
3839 	 *
3840 	 * Hopefully we will at least detect this condition
3841 	 * when we try to grow the stack.
3842 	 */
3843 	if (prev_entry)
3844 		next = vm_map_rb_tree_RB_NEXT(prev_entry);
3845 	else
3846 		next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3847 
3848 	if (next && next->start < addrbos + max_ssize) {
3849 		vm_map_unlock(map);
3850 		vm_map_entry_release(count);
3851 		return (KERN_NO_SPACE);
3852 	}
3853 
3854 	/*
3855 	 * We initially map a stack of only init_ssize.  We will
3856 	 * grow as needed later.  Since this is to be a grow
3857 	 * down stack, we map at the top of the range.
3858 	 *
3859 	 * Note: we would normally expect prot and max to be
3860 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3861 	 * eliminate these as input parameters, and just
3862 	 * pass these values here in the insert call.
3863 	 */
3864 	rv = vm_map_insert(map, &count, NULL, NULL,
3865 			   0, addrbos + max_ssize - init_ssize,
3866 	                   addrbos + max_ssize,
3867 			   VM_MAPTYPE_NORMAL,
3868 			   VM_SUBSYS_STACK, prot, max, cow);
3869 
3870 	/* Now set the avail_ssize amount */
3871 	if (rv == KERN_SUCCESS) {
3872 		if (prev_entry)
3873 			next = vm_map_rb_tree_RB_NEXT(prev_entry);
3874 		else
3875 			next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3876 		if (prev_entry != NULL) {
3877 			vm_map_clip_end(map,
3878 					prev_entry,
3879 					addrbos + max_ssize - init_ssize,
3880 					&count);
3881 		}
3882 		if (next->end   != addrbos + max_ssize ||
3883 		    next->start != addrbos + max_ssize - init_ssize){
3884 			panic ("Bad entry start/end for new stack entry");
3885 		} else {
3886 			next->aux.avail_ssize = max_ssize - init_ssize;
3887 		}
3888 	}
3889 
3890 	vm_map_unlock(map);
3891 	vm_map_entry_release(count);
3892 	return (rv);
3893 }
3894 
3895 /*
3896  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3897  * desired address is already mapped, or if we successfully grow
3898  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3899  * stack range (this is strange, but preserves compatibility with
3900  * the grow function in vm_machdep.c).
3901  *
3902  * No requirements.
3903  */
3904 int
3905 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3906 {
3907 	vm_map_entry_t prev_entry;
3908 	vm_map_entry_t stack_entry;
3909 	vm_map_entry_t next;
3910 	struct vmspace *vm;
3911 	struct lwp *lp;
3912 	struct proc *p;
3913 	vm_offset_t    end;
3914 	int grow_amount;
3915 	int rv = KERN_SUCCESS;
3916 	int is_procstack;
3917 	int use_read_lock = 1;
3918 	int count;
3919 
3920 	/*
3921 	 * Find the vm
3922 	 */
3923 	lp = curthread->td_lwp;
3924 	p = curthread->td_proc;
3925 	KKASSERT(lp != NULL);
3926 	vm = lp->lwp_vmspace;
3927 
3928 	/*
3929 	 * Growstack is only allowed on the current process.  We disallow
3930 	 * other use cases, e.g. trying to access memory via procfs that
3931 	 * the stack hasn't grown into.
3932 	 */
3933 	if (map != &vm->vm_map) {
3934 		return KERN_FAILURE;
3935 	}
3936 
3937 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3938 Retry:
3939 	if (use_read_lock)
3940 		vm_map_lock_read(map);
3941 	else
3942 		vm_map_lock(map);
3943 
3944 	/*
3945 	 * If addr is already in the entry range, no need to grow.
3946 	 * prev_entry returns NULL if addr is at the head.
3947 	 */
3948 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3949 		goto done;
3950 	if (prev_entry)
3951 		stack_entry = vm_map_rb_tree_RB_NEXT(prev_entry);
3952 	else
3953 		stack_entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
3954 
3955 	if (stack_entry == NULL)
3956 		goto done;
3957 	if (prev_entry == NULL)
3958 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3959 	else
3960 		end = prev_entry->end;
3961 
3962 	/*
3963 	 * This next test mimics the old grow function in vm_machdep.c.
3964 	 * It really doesn't quite make sense, but we do it anyway
3965 	 * for compatibility.
3966 	 *
3967 	 * If not growable stack, return success.  This signals the
3968 	 * caller to proceed as he would normally with normal vm.
3969 	 */
3970 	if (stack_entry->aux.avail_ssize < 1 ||
3971 	    addr >= stack_entry->start ||
3972 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3973 		goto done;
3974 	}
3975 
3976 	/* Find the minimum grow amount */
3977 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3978 	if (grow_amount > stack_entry->aux.avail_ssize) {
3979 		rv = KERN_NO_SPACE;
3980 		goto done;
3981 	}
3982 
3983 	/*
3984 	 * If there is no longer enough space between the entries
3985 	 * nogo, and adjust the available space.  Note: this
3986 	 * should only happen if the user has mapped into the
3987 	 * stack area after the stack was created, and is
3988 	 * probably an error.
3989 	 *
3990 	 * This also effectively destroys any guard page the user
3991 	 * might have intended by limiting the stack size.
3992 	 */
3993 	if (grow_amount > stack_entry->start - end) {
3994 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3995 			/* lost lock */
3996 			use_read_lock = 0;
3997 			goto Retry;
3998 		}
3999 		use_read_lock = 0;
4000 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4001 		rv = KERN_NO_SPACE;
4002 		goto done;
4003 	}
4004 
4005 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
4006 
4007 	/* If this is the main process stack, see if we're over the
4008 	 * stack limit.
4009 	 */
4010 	if (is_procstack && (vm->vm_ssize + grow_amount >
4011 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4012 		rv = KERN_NO_SPACE;
4013 		goto done;
4014 	}
4015 
4016 	/* Round up the grow amount modulo SGROWSIZ */
4017 	grow_amount = roundup (grow_amount, sgrowsiz);
4018 	if (grow_amount > stack_entry->aux.avail_ssize) {
4019 		grow_amount = stack_entry->aux.avail_ssize;
4020 	}
4021 	if (is_procstack && (vm->vm_ssize + grow_amount >
4022 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4023 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize;
4024 	}
4025 
4026 	/* If we would blow our VMEM resource limit, no go */
4027 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
4028 		rv = KERN_NO_SPACE;
4029 		goto done;
4030 	}
4031 
4032 	if (use_read_lock && vm_map_lock_upgrade(map)) {
4033 		/* lost lock */
4034 		use_read_lock = 0;
4035 		goto Retry;
4036 	}
4037 	use_read_lock = 0;
4038 
4039 	/* Get the preliminary new entry start value */
4040 	addr = stack_entry->start - grow_amount;
4041 
4042 	/* If this puts us into the previous entry, cut back our growth
4043 	 * to the available space.  Also, see the note above.
4044 	 */
4045 	if (addr < end) {
4046 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4047 		addr = end;
4048 	}
4049 
4050 	rv = vm_map_insert(map, &count, NULL, NULL,
4051 			   0, addr, stack_entry->start,
4052 			   VM_MAPTYPE_NORMAL,
4053 			   VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4054 
4055 	/* Adjust the available stack space by the amount we grew. */
4056 	if (rv == KERN_SUCCESS) {
4057 		if (prev_entry) {
4058 			vm_map_clip_end(map, prev_entry, addr, &count);
4059 			next = vm_map_rb_tree_RB_NEXT(prev_entry);
4060 		} else {
4061 			next = RB_MIN(vm_map_rb_tree, &map->rb_root);
4062 		}
4063 		if (next->end != stack_entry->start  ||
4064 		    next->start != addr) {
4065 			panic ("Bad stack grow start/end in new stack entry");
4066 		} else {
4067 			next->aux.avail_ssize =
4068 				stack_entry->aux.avail_ssize -
4069 				(next->end - next->start);
4070 			if (is_procstack) {
4071 				vm->vm_ssize += next->end -
4072 						next->start;
4073 			}
4074 		}
4075 
4076 		if (map->flags & MAP_WIREFUTURE)
4077 			vm_map_unwire(map, next->start, next->end, FALSE);
4078 	}
4079 
4080 done:
4081 	if (use_read_lock)
4082 		vm_map_unlock_read(map);
4083 	else
4084 		vm_map_unlock(map);
4085 	vm_map_entry_release(count);
4086 	return (rv);
4087 }
4088 
4089 /*
4090  * Unshare the specified VM space for exec.  If other processes are
4091  * mapped to it, then create a new one.  The new vmspace is null.
4092  *
4093  * No requirements.
4094  */
4095 void
4096 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4097 {
4098 	struct vmspace *oldvmspace = p->p_vmspace;
4099 	struct vmspace *newvmspace;
4100 	vm_map_t map = &p->p_vmspace->vm_map;
4101 
4102 	/*
4103 	 * If we are execing a resident vmspace we fork it, otherwise
4104 	 * we create a new vmspace.  Note that exitingcnt is not
4105 	 * copied to the new vmspace.
4106 	 */
4107 	lwkt_gettoken(&oldvmspace->vm_map.token);
4108 	if (vmcopy)  {
4109 		newvmspace = vmspace_fork(vmcopy);
4110 		lwkt_gettoken(&newvmspace->vm_map.token);
4111 	} else {
4112 		newvmspace = vmspace_alloc(vm_map_min(map), vm_map_max(map));
4113 		lwkt_gettoken(&newvmspace->vm_map.token);
4114 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4115 		      (caddr_t)&oldvmspace->vm_endcopy -
4116 		       (caddr_t)&oldvmspace->vm_startcopy);
4117 	}
4118 
4119 	/*
4120 	 * Finish initializing the vmspace before assigning it
4121 	 * to the process.  The vmspace will become the current vmspace
4122 	 * if p == curproc.
4123 	 */
4124 	pmap_pinit2(vmspace_pmap(newvmspace));
4125 	pmap_replacevm(p, newvmspace, 0);
4126 	lwkt_reltoken(&newvmspace->vm_map.token);
4127 	lwkt_reltoken(&oldvmspace->vm_map.token);
4128 	vmspace_rel(oldvmspace);
4129 }
4130 
4131 /*
4132  * Unshare the specified VM space for forcing COW.  This
4133  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4134  */
4135 void
4136 vmspace_unshare(struct proc *p)
4137 {
4138 	struct vmspace *oldvmspace = p->p_vmspace;
4139 	struct vmspace *newvmspace;
4140 
4141 	lwkt_gettoken(&oldvmspace->vm_map.token);
4142 	if (vmspace_getrefs(oldvmspace) == 1) {
4143 		lwkt_reltoken(&oldvmspace->vm_map.token);
4144 		return;
4145 	}
4146 	newvmspace = vmspace_fork(oldvmspace);
4147 	lwkt_gettoken(&newvmspace->vm_map.token);
4148 	pmap_pinit2(vmspace_pmap(newvmspace));
4149 	pmap_replacevm(p, newvmspace, 0);
4150 	lwkt_reltoken(&newvmspace->vm_map.token);
4151 	lwkt_reltoken(&oldvmspace->vm_map.token);
4152 	vmspace_rel(oldvmspace);
4153 }
4154 
4155 /*
4156  * vm_map_hint: return the beginning of the best area suitable for
4157  * creating a new mapping with "prot" protection.
4158  *
4159  * No requirements.
4160  */
4161 vm_offset_t
4162 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4163 {
4164 	struct vmspace *vms = p->p_vmspace;
4165 	struct rlimit limit;
4166 	rlim_t dsiz;
4167 
4168 	/*
4169 	 * Acquire datasize limit for mmap() operation,
4170 	 * calculate nearest power of 2.
4171 	 */
4172 	if (kern_getrlimit(RLIMIT_DATA, &limit))
4173 		limit.rlim_cur = maxdsiz;
4174 	dsiz = limit.rlim_cur;
4175 
4176 	if (!randomize_mmap || addr != 0) {
4177 		/*
4178 		 * Set a reasonable start point for the hint if it was
4179 		 * not specified or if it falls within the heap space.
4180 		 * Hinted mmap()s do not allocate out of the heap space.
4181 		 */
4182 		if (addr == 0 ||
4183 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4184 		     addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) {
4185 			addr = round_page((vm_offset_t)vms->vm_daddr + dsiz);
4186 		}
4187 
4188 		return addr;
4189 	}
4190 
4191 	/*
4192 	 * randomize_mmap && addr == 0.  For now randomize the
4193 	 * address within a dsiz range beyond the data limit.
4194 	 */
4195 	addr = (vm_offset_t)vms->vm_daddr + dsiz;
4196 	if (dsiz)
4197 		addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz;
4198 	return (round_page(addr));
4199 }
4200 
4201 /*
4202  * Finds the VM object, offset, and protection for a given virtual address
4203  * in the specified map, assuming a page fault of the type specified.
4204  *
4205  * Leaves the map in question locked for read; return values are guaranteed
4206  * until a vm_map_lookup_done call is performed.  Note that the map argument
4207  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4208  *
4209  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4210  * that fast.
4211  *
4212  * If a lookup is requested with "write protection" specified, the map may
4213  * be changed to perform virtual copying operations, although the data
4214  * referenced will remain the same.
4215  *
4216  * No requirements.
4217  */
4218 int
4219 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4220 	      vm_offset_t vaddr,
4221 	      vm_prot_t fault_typea,
4222 	      vm_map_entry_t *out_entry,	/* OUT */
4223 	      vm_object_t *object,		/* OUT */
4224 	      vm_pindex_t *pindex,		/* OUT */
4225 	      vm_prot_t *out_prot,		/* OUT */
4226 	      int *wflags)			/* OUT */
4227 {
4228 	vm_map_entry_t entry;
4229 	vm_map_t map = *var_map;
4230 	vm_prot_t prot;
4231 	vm_prot_t fault_type = fault_typea;
4232 	int use_read_lock = 1;
4233 	int rv = KERN_SUCCESS;
4234 	int count;
4235 	thread_t td = curthread;
4236 
4237 	/*
4238 	 * vm_map_entry_reserve() implements an important mitigation
4239 	 * against mmap() span running the kernel out of vm_map_entry
4240 	 * structures, but it can also cause an infinite call recursion.
4241 	 * Use td_nest_count to prevent an infinite recursion (allows
4242 	 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4243 	 */
4244 	count = 0;
4245 	if (td->td_nest_count == 0) {
4246 		++td->td_nest_count;
4247 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4248 		--td->td_nest_count;
4249 	}
4250 RetryLookup:
4251 	if (use_read_lock)
4252 		vm_map_lock_read(map);
4253 	else
4254 		vm_map_lock(map);
4255 
4256 	/*
4257 	 * Always do a full lookup.  The hint doesn't get us much anymore
4258 	 * now that the map is RB'd.
4259 	 */
4260 	cpu_ccfence();
4261 	*out_entry = NULL;
4262 	*object = NULL;
4263 
4264 	{
4265 		vm_map_entry_t tmp_entry;
4266 
4267 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4268 			rv = KERN_INVALID_ADDRESS;
4269 			goto done;
4270 		}
4271 		entry = tmp_entry;
4272 		*out_entry = entry;
4273 	}
4274 
4275 	/*
4276 	 * Handle submaps.
4277 	 */
4278 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4279 		vm_map_t old_map = map;
4280 
4281 		*var_map = map = entry->object.sub_map;
4282 		if (use_read_lock)
4283 			vm_map_unlock_read(old_map);
4284 		else
4285 			vm_map_unlock(old_map);
4286 		use_read_lock = 1;
4287 		goto RetryLookup;
4288 	}
4289 
4290 	/*
4291 	 * Check whether this task is allowed to have this page.
4292 	 * Note the special case for MAP_ENTRY_COW pages with an override.
4293 	 * This is to implement a forced COW for debuggers.
4294 	 */
4295 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4296 		prot = entry->max_protection;
4297 	else
4298 		prot = entry->protection;
4299 
4300 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4301 	if ((fault_type & prot) != fault_type) {
4302 		rv = KERN_PROTECTION_FAILURE;
4303 		goto done;
4304 	}
4305 
4306 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4307 	    (entry->eflags & MAP_ENTRY_COW) &&
4308 	    (fault_type & VM_PROT_WRITE) &&
4309 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4310 		rv = KERN_PROTECTION_FAILURE;
4311 		goto done;
4312 	}
4313 
4314 	/*
4315 	 * If this page is not pageable, we have to get it for all possible
4316 	 * accesses.
4317 	 */
4318 	*wflags = 0;
4319 	if (entry->wired_count) {
4320 		*wflags |= FW_WIRED;
4321 		prot = fault_type = entry->protection;
4322 	}
4323 
4324 	/*
4325 	 * Virtual page tables may need to update the accessed (A) bit
4326 	 * in a page table entry.  Upgrade the fault to a write fault for
4327 	 * that case if the map will support it.  If the map does not support
4328 	 * it the page table entry simply will not be updated.
4329 	 */
4330 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4331 		if (prot & VM_PROT_WRITE)
4332 			fault_type |= VM_PROT_WRITE;
4333 	}
4334 
4335 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4336 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4337 		if ((prot & VM_PROT_WRITE) == 0)
4338 			fault_type |= VM_PROT_WRITE;
4339 	}
4340 
4341 	/*
4342 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4343 	 */
4344 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4345 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4346 		*object = NULL;
4347 		goto skip;
4348 	}
4349 
4350 	/*
4351 	 * If the entry was copy-on-write, we either ...
4352 	 */
4353 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4354 		/*
4355 		 * If we want to write the page, we may as well handle that
4356 		 * now since we've got the map locked.
4357 		 *
4358 		 * If we don't need to write the page, we just demote the
4359 		 * permissions allowed.
4360 		 */
4361 		if (fault_type & VM_PROT_WRITE) {
4362 			/*
4363 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4364 			 * operation can deadlock against the faulting
4365 			 * function due to the copy-on-write.
4366 			 */
4367 			if (curthread->td_flags & TDF_NOFAULT) {
4368 				rv = KERN_FAILURE_NOFAULT;
4369 				goto done;
4370 			}
4371 
4372 			/*
4373 			 * Make a new object, and place it in the object
4374 			 * chain.  Note that no new references have appeared
4375 			 * -- one just moved from the map to the new
4376 			 * object.
4377 			 */
4378 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4379 				/* lost lock */
4380 				use_read_lock = 0;
4381 				goto RetryLookup;
4382 			}
4383 			use_read_lock = 0;
4384 			vm_map_entry_shadow(entry, 0);
4385 			*wflags |= FW_DIDCOW;
4386 		} else {
4387 			/*
4388 			 * We're attempting to read a copy-on-write page --
4389 			 * don't allow writes.
4390 			 */
4391 			prot &= ~VM_PROT_WRITE;
4392 		}
4393 	}
4394 
4395 	/*
4396 	 * Create an object if necessary.  This code also handles
4397 	 * partitioning large entries to improve vm_fault performance.
4398 	 */
4399 	if (entry->object.vm_object == NULL && !map->system_map) {
4400 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4401 			/* lost lock */
4402 			use_read_lock = 0;
4403 			goto RetryLookup;
4404 		}
4405 		use_read_lock = 0;
4406 
4407 		/*
4408 		 * Partition large entries, giving each its own VM object,
4409 		 * to improve concurrent fault performance.  This is only
4410 		 * applicable to userspace.
4411 		 */
4412 		if (map != &kernel_map &&
4413 		    entry->maptype == VM_MAPTYPE_NORMAL &&
4414 		    ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4415 		    vm_map_partition_enable) {
4416 			if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4417 				entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4418 				++mycpu->gd_cnt.v_intrans_coll;
4419 				++mycpu->gd_cnt.v_intrans_wait;
4420 				vm_map_transition_wait(map, 0);
4421 				goto RetryLookup;
4422 			}
4423 			vm_map_entry_partition(map, entry, vaddr, &count);
4424 		}
4425 		vm_map_entry_allocate_object(entry);
4426 	}
4427 
4428 	/*
4429 	 * Return the object/offset from this entry.  If the entry was
4430 	 * copy-on-write or empty, it has been fixed up.
4431 	 */
4432 	*object = entry->object.vm_object;
4433 
4434 skip:
4435 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4436 
4437 	/*
4438 	 * Return whether this is the only map sharing this data.  On
4439 	 * success we return with a read lock held on the map.  On failure
4440 	 * we return with the map unlocked.
4441 	 */
4442 	*out_prot = prot;
4443 done:
4444 	if (rv == KERN_SUCCESS) {
4445 		if (use_read_lock == 0)
4446 			vm_map_lock_downgrade(map);
4447 	} else if (use_read_lock) {
4448 		vm_map_unlock_read(map);
4449 	} else {
4450 		vm_map_unlock(map);
4451 	}
4452 	if (count > 0)
4453 		vm_map_entry_release(count);
4454 
4455 	return (rv);
4456 }
4457 
4458 /*
4459  * Releases locks acquired by a vm_map_lookup()
4460  * (according to the handle returned by that lookup).
4461  *
4462  * No other requirements.
4463  */
4464 void
4465 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4466 {
4467 	/*
4468 	 * Unlock the main-level map
4469 	 */
4470 	vm_map_unlock_read(map);
4471 	if (count)
4472 		vm_map_entry_release(count);
4473 }
4474 
4475 static void
4476 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4477 		       vm_offset_t vaddr, int *countp)
4478 {
4479 	vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4480 	vm_map_clip_start(map, entry, vaddr, countp);
4481 	vaddr += MAP_ENTRY_PARTITION_SIZE;
4482 	vm_map_clip_end(map, entry, vaddr, countp);
4483 }
4484 
4485 /*
4486  * Quick hack, needs some help to make it more SMP friendly.
4487  */
4488 void
4489 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4490 		 vm_offset_t ran_beg, vm_offset_t ran_end)
4491 {
4492 	struct vm_map_ilock *scan;
4493 
4494 	ilock->ran_beg = ran_beg;
4495 	ilock->ran_end = ran_end;
4496 	ilock->flags = 0;
4497 
4498 	spin_lock(&map->ilock_spin);
4499 restart:
4500 	for (scan = map->ilock_base; scan; scan = scan->next) {
4501 		if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4502 			scan->flags |= ILOCK_WAITING;
4503 			ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4504 			goto restart;
4505 		}
4506 	}
4507 	ilock->next = map->ilock_base;
4508 	map->ilock_base = ilock;
4509 	spin_unlock(&map->ilock_spin);
4510 }
4511 
4512 void
4513 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4514 {
4515 	struct vm_map_ilock *scan;
4516 	struct vm_map_ilock **scanp;
4517 
4518 	spin_lock(&map->ilock_spin);
4519 	scanp = &map->ilock_base;
4520 	while ((scan = *scanp) != NULL) {
4521 		if (scan == ilock) {
4522 			*scanp = ilock->next;
4523 			spin_unlock(&map->ilock_spin);
4524 			if (ilock->flags & ILOCK_WAITING)
4525 				wakeup(ilock);
4526 			return;
4527 		}
4528 		scanp = &scan->next;
4529 	}
4530 	spin_unlock(&map->ilock_spin);
4531 	panic("vm_map_deinterlock: missing ilock!");
4532 }
4533 
4534 #include "opt_ddb.h"
4535 #ifdef DDB
4536 #include <ddb/ddb.h>
4537 
4538 /*
4539  * Debugging only
4540  */
4541 DB_SHOW_COMMAND(map, vm_map_print)
4542 {
4543 	static int nlines;
4544 	/* XXX convert args. */
4545 	vm_map_t map = (vm_map_t)addr;
4546 	boolean_t full = have_addr;
4547 
4548 	vm_map_entry_t entry;
4549 
4550 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4551 	    (void *)map,
4552 	    (void *)map->pmap, map->nentries, map->timestamp);
4553 	nlines++;
4554 
4555 	if (!full && db_indent)
4556 		return;
4557 
4558 	db_indent += 2;
4559 	RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) {
4560 		db_iprintf("map entry %p: start=%p, end=%p\n",
4561 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4562 		nlines++;
4563 		{
4564 			static char *inheritance_name[4] =
4565 			{"share", "copy", "none", "donate_copy"};
4566 
4567 			db_iprintf(" prot=%x/%x/%s",
4568 			    entry->protection,
4569 			    entry->max_protection,
4570 			    inheritance_name[(int)(unsigned char)
4571 						entry->inheritance]);
4572 			if (entry->wired_count != 0)
4573 				db_printf(", wired");
4574 		}
4575 		switch(entry->maptype) {
4576 		case VM_MAPTYPE_SUBMAP:
4577 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4578 			db_printf(", share=%p, offset=0x%lx\n",
4579 			    (void *)entry->object.sub_map,
4580 			    (long)entry->offset);
4581 			nlines++;
4582 
4583 			db_indent += 2;
4584 			vm_map_print((db_expr_t)(intptr_t)
4585 				     entry->object.sub_map,
4586 				     full, 0, NULL);
4587 			db_indent -= 2;
4588 			break;
4589 		case VM_MAPTYPE_NORMAL:
4590 		case VM_MAPTYPE_VPAGETABLE:
4591 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4592 			db_printf(", object=%p, offset=0x%lx",
4593 			    (void *)entry->object.vm_object,
4594 			    (long)entry->offset);
4595 			if (entry->eflags & MAP_ENTRY_COW)
4596 				db_printf(", copy (%s)",
4597 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4598 			db_printf("\n");
4599 			nlines++;
4600 
4601 			if (entry->object.vm_object) {
4602 				db_indent += 2;
4603 				vm_object_print((db_expr_t)(intptr_t)
4604 						entry->object.vm_object,
4605 						full, 0, NULL);
4606 				nlines += 4;
4607 				db_indent -= 2;
4608 			}
4609 			break;
4610 		case VM_MAPTYPE_UKSMAP:
4611 			db_printf(", uksmap=%p, offset=0x%lx",
4612 			    (void *)entry->object.uksmap,
4613 			    (long)entry->offset);
4614 			if (entry->eflags & MAP_ENTRY_COW)
4615 				db_printf(", copy (%s)",
4616 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4617 			db_printf("\n");
4618 			nlines++;
4619 			break;
4620 		default:
4621 			break;
4622 		}
4623 	}
4624 	db_indent -= 2;
4625 	if (db_indent == 0)
4626 		nlines = 0;
4627 }
4628 
4629 /*
4630  * Debugging only
4631  */
4632 DB_SHOW_COMMAND(procvm, procvm)
4633 {
4634 	struct proc *p;
4635 
4636 	if (have_addr) {
4637 		p = (struct proc *) addr;
4638 	} else {
4639 		p = curproc;
4640 	}
4641 
4642 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4643 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4644 	    (void *)vmspace_pmap(p->p_vmspace));
4645 
4646 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4647 }
4648 
4649 #endif /* DDB */
4650