xref: /dragonfly/sys/vm/vm_map.c (revision 23265324)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.55 2007/01/07 08:37:37 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 #define VMEPERCPU	2
138 
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142 
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_split (vm_map_entry_t);
157 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
158 
159 void
160 vm_map_startup(void)
161 {
162 	mapzone = &mapzone_store;
163 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
164 		map_init, MAX_KMAP);
165 	mapentzone = &mapentzone_store;
166 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
167 		map_entry_init, MAX_MAPENT);
168 }
169 
170 /*
171  * Red black tree functions
172  */
173 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
174 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
175 
176 /* a->start is address, and the only field has to be initialized */
177 static int
178 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
179 {
180 	if (a->start < b->start)
181 		return(-1);
182 	else if (a->start > b->start)
183 		return(1);
184 	return(0);
185 }
186 
187 /*
188  * Allocate a vmspace structure, including a vm_map and pmap,
189  * and initialize those structures.  The refcnt is set to 1.
190  * The remaining fields must be initialized by the caller.
191  */
192 struct vmspace *
193 vmspace_alloc(vm_offset_t min, vm_offset_t max)
194 {
195 	struct vmspace *vm;
196 
197 	vm = zalloc(vmspace_zone);
198 	bzero(&vm->vm_startcopy,
199 		(char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
200 	vm_map_init(&vm->vm_map, min, max, NULL);
201 	pmap_pinit(vmspace_pmap(vm));
202 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
203 	vm->vm_refcnt = 1;
204 	vm->vm_shm = NULL;
205 	vm->vm_exitingcnt = 0;
206 	cpu_vmspace_alloc(vm);
207 	return (vm);
208 }
209 
210 void
211 vm_init2(void)
212 {
213 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
214 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
215 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
216 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
217 	pmap_init2();
218 	vm_object_init2();
219 }
220 
221 static __inline void
222 vmspace_dofree(struct vmspace *vm)
223 {
224 	int count;
225 
226 	cpu_vmspace_free(vm);
227 
228 	/*
229 	 * Make sure any SysV shm is freed, it might not have in
230 	 * exit1()
231 	 */
232 	shmexit(vm);
233 
234 	KKASSERT(vm->vm_upcalls == NULL);
235 
236 	/*
237 	 * Lock the map, to wait out all other references to it.
238 	 * Delete all of the mappings and pages they hold, then call
239 	 * the pmap module to reclaim anything left.
240 	 */
241 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
242 	vm_map_lock(&vm->vm_map);
243 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
244 		vm->vm_map.max_offset, &count);
245 	vm_map_unlock(&vm->vm_map);
246 	vm_map_entry_release(count);
247 
248 	pmap_release(vmspace_pmap(vm));
249 	zfree(vmspace_zone, vm);
250 }
251 
252 void
253 vmspace_free(struct vmspace *vm)
254 {
255 	if (vm->vm_refcnt == 0)
256 		panic("vmspace_free: attempt to free already freed vmspace");
257 
258 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
259 		vmspace_dofree(vm);
260 }
261 
262 void
263 vmspace_exitfree(struct proc *p)
264 {
265 	struct vmspace *vm;
266 
267 	vm = p->p_vmspace;
268 	p->p_vmspace = NULL;
269 
270 	/*
271 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
272 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
273 	 * exitingcnt may increment above 0 and drop back down to zero
274 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
275 	 * may also increment above 0 and drop back down to zero several
276 	 * times while vm_exitingcnt is held non-zero.
277 	 *
278 	 * The last wait on the exiting child's vmspace will clean up
279 	 * the remainder of the vmspace.
280 	 */
281 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
282 		vmspace_dofree(vm);
283 }
284 
285 /*
286  * vmspace_swap_count() - count the approximate swap useage in pages for a
287  *			  vmspace.
288  *
289  *	Swap useage is determined by taking the proportional swap used by
290  *	VM objects backing the VM map.  To make up for fractional losses,
291  *	if the VM object has any swap use at all the associated map entries
292  *	count for at least 1 swap page.
293  */
294 int
295 vmspace_swap_count(struct vmspace *vmspace)
296 {
297 	vm_map_t map = &vmspace->vm_map;
298 	vm_map_entry_t cur;
299 	vm_object_t object;
300 	int count = 0;
301 	int n;
302 
303 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
304 		switch(cur->maptype) {
305 		case VM_MAPTYPE_NORMAL:
306 		case VM_MAPTYPE_VPAGETABLE:
307 			if ((object = cur->object.vm_object) == NULL)
308 				break;
309 			if (object->type != OBJT_SWAP)
310 				break;
311 			n = (cur->end - cur->start) / PAGE_SIZE;
312 			if (object->un_pager.swp.swp_bcount) {
313 				count += object->un_pager.swp.swp_bcount *
314 				    SWAP_META_PAGES * n / object->size + 1;
315 			}
316 			break;
317 		default:
318 			break;
319 		}
320 	}
321 	return(count);
322 }
323 
324 
325 /*
326  *	vm_map_create:
327  *
328  *	Creates and returns a new empty VM map with
329  *	the given physical map structure, and having
330  *	the given lower and upper address bounds.
331  */
332 vm_map_t
333 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
334 {
335 	if (result == NULL)
336 		result = zalloc(mapzone);
337 	vm_map_init(result, min, max, pmap);
338 	return (result);
339 }
340 
341 /*
342  * Initialize an existing vm_map structure
343  * such as that in the vmspace structure.
344  * The pmap is set elsewhere.
345  */
346 void
347 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
348 {
349 	map->header.next = map->header.prev = &map->header;
350 	RB_INIT(&map->rb_root);
351 	map->nentries = 0;
352 	map->size = 0;
353 	map->system_map = 0;
354 	map->infork = 0;
355 	map->min_offset = min;
356 	map->max_offset = max;
357 	map->pmap = pmap;
358 	map->first_free = &map->header;
359 	map->hint = &map->header;
360 	map->timestamp = 0;
361 	lockinit(&map->lock, "thrd_sleep", 0, 0);
362 }
363 
364 /*
365  * Shadow the vm_map_entry's object.  This typically needs to be done when
366  * a write fault is taken on an entry which had previously been cloned by
367  * fork().  The shared object (which might be NULL) must become private so
368  * we add a shadow layer above it.
369  *
370  * Object allocation for anonymous mappings is defered as long as possible.
371  * When creating a shadow, however, the underlying object must be instantiated
372  * so it can be shared.
373  *
374  * If the map segment is governed by a virtual page table then it is
375  * possible to address offsets beyond the mapped area.  Just allocate
376  * a maximally sized object for this case.
377  */
378 static
379 void
380 vm_map_entry_shadow(vm_map_entry_t entry)
381 {
382 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
383 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
384 				 0x7FFFFFFF);	/* XXX */
385 	} else {
386 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
387 				 atop(entry->end - entry->start));
388 	}
389 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
390 }
391 
392 /*
393  * Allocate an object for a vm_map_entry.
394  *
395  * Object allocation for anonymous mappings is defered as long as possible.
396  * This function is called when we can defer no longer, generally when a map
397  * entry might be split or forked or takes a page fault.
398  *
399  * If the map segment is governed by a virtual page table then it is
400  * possible to address offsets beyond the mapped area.  Just allocate
401  * a maximally sized object for this case.
402  */
403 void
404 vm_map_entry_allocate_object(vm_map_entry_t entry)
405 {
406 	vm_object_t obj;
407 
408 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
409 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
410 	} else {
411 		obj = vm_object_allocate(OBJT_DEFAULT,
412 					 atop(entry->end - entry->start));
413 	}
414 	entry->object.vm_object = obj;
415 	entry->offset = 0;
416 }
417 
418 /*
419  *      vm_map_entry_reserve_cpu_init:
420  *
421  *	Set an initial negative count so the first attempt to reserve
422  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
423  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
424  *	map a new page for vm_map_entry structures.  SMP systems are
425  *	particularly sensitive.
426  *
427  *	This routine is called in early boot so we cannot just call
428  *	vm_map_entry_reserve().
429  *
430  *	May be called for a gd other then mycpu, but may only be called
431  *	during early boot.
432  */
433 void
434 vm_map_entry_reserve_cpu_init(globaldata_t gd)
435 {
436 	vm_map_entry_t entry;
437 	int i;
438 
439 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
440 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
441 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
442 		entry->next = gd->gd_vme_base;
443 		gd->gd_vme_base = entry;
444 	}
445 }
446 
447 /*
448  *	vm_map_entry_reserve:
449  *
450  *	Reserves vm_map_entry structures so code later on can manipulate
451  *	map_entry structures within a locked map without blocking trying
452  *	to allocate a new vm_map_entry.
453  */
454 int
455 vm_map_entry_reserve(int count)
456 {
457 	struct globaldata *gd = mycpu;
458 	vm_map_entry_t entry;
459 
460 	crit_enter();
461 
462 	/*
463 	 * Make sure we have enough structures in gd_vme_base to handle
464 	 * the reservation request.
465 	 */
466 	while (gd->gd_vme_avail < count) {
467 		entry = zalloc(mapentzone);
468 		entry->next = gd->gd_vme_base;
469 		gd->gd_vme_base = entry;
470 		++gd->gd_vme_avail;
471 	}
472 	gd->gd_vme_avail -= count;
473 	crit_exit();
474 	return(count);
475 }
476 
477 /*
478  *	vm_map_entry_release:
479  *
480  *	Releases previously reserved vm_map_entry structures that were not
481  *	used.  If we have too much junk in our per-cpu cache clean some of
482  *	it out.
483  */
484 void
485 vm_map_entry_release(int count)
486 {
487 	struct globaldata *gd = mycpu;
488 	vm_map_entry_t entry;
489 
490 	crit_enter();
491 	gd->gd_vme_avail += count;
492 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
493 		entry = gd->gd_vme_base;
494 		KKASSERT(entry != NULL);
495 		gd->gd_vme_base = entry->next;
496 		--gd->gd_vme_avail;
497 		crit_exit();
498 		zfree(mapentzone, entry);
499 		crit_enter();
500 	}
501 	crit_exit();
502 }
503 
504 /*
505  *	vm_map_entry_kreserve:
506  *
507  *	Reserve map entry structures for use in kernel_map itself.  These
508  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
509  *	was inited.  This function is used by zalloc() to avoid a recursion
510  *	when zalloc() itself needs to allocate additional kernel memory.
511  *
512  *	This function works like the normal reserve but does not load the
513  *	vm_map_entry cache (because that would result in an infinite
514  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
515  *
516  *	Any caller of this function must be sure to renormalize after
517  *	potentially eating entries to ensure that the reserve supply
518  *	remains intact.
519  */
520 int
521 vm_map_entry_kreserve(int count)
522 {
523 	struct globaldata *gd = mycpu;
524 
525 	crit_enter();
526 	gd->gd_vme_avail -= count;
527 	crit_exit();
528 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
529 	return(count);
530 }
531 
532 /*
533  *	vm_map_entry_krelease:
534  *
535  *	Release previously reserved map entries for kernel_map.  We do not
536  *	attempt to clean up like the normal release function as this would
537  *	cause an unnecessary (but probably not fatal) deep procedure call.
538  */
539 void
540 vm_map_entry_krelease(int count)
541 {
542 	struct globaldata *gd = mycpu;
543 
544 	crit_enter();
545 	gd->gd_vme_avail += count;
546 	crit_exit();
547 }
548 
549 /*
550  *	vm_map_entry_create:	[ internal use only ]
551  *
552  *	Allocates a VM map entry for insertion.  No entry fields are filled
553  *	in.
554  *
555  *	This routine may be called from an interrupt thread but not a FAST
556  *	interrupt.  This routine may recurse the map lock.
557  */
558 static vm_map_entry_t
559 vm_map_entry_create(vm_map_t map, int *countp)
560 {
561 	struct globaldata *gd = mycpu;
562 	vm_map_entry_t entry;
563 
564 	KKASSERT(*countp > 0);
565 	--*countp;
566 	crit_enter();
567 	entry = gd->gd_vme_base;
568 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
569 	gd->gd_vme_base = entry->next;
570 	crit_exit();
571 	return(entry);
572 }
573 
574 /*
575  *	vm_map_entry_dispose:	[ internal use only ]
576  *
577  *	Dispose of a vm_map_entry that is no longer being referenced.  This
578  *	function may be called from an interrupt.
579  */
580 static void
581 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
582 {
583 	struct globaldata *gd = mycpu;
584 
585 	KKASSERT(map->hint != entry);
586 	KKASSERT(map->first_free != entry);
587 
588 	++*countp;
589 	crit_enter();
590 	entry->next = gd->gd_vme_base;
591 	gd->gd_vme_base = entry;
592 	crit_exit();
593 }
594 
595 
596 /*
597  *	vm_map_entry_{un,}link:
598  *
599  *	Insert/remove entries from maps.
600  */
601 static __inline void
602 vm_map_entry_link(vm_map_t map,
603 		  vm_map_entry_t after_where,
604 		  vm_map_entry_t entry)
605 {
606 	map->nentries++;
607 	entry->prev = after_where;
608 	entry->next = after_where->next;
609 	entry->next->prev = entry;
610 	after_where->next = entry;
611 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
612 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
613 }
614 
615 static __inline void
616 vm_map_entry_unlink(vm_map_t map,
617 		    vm_map_entry_t entry)
618 {
619 	vm_map_entry_t prev;
620 	vm_map_entry_t next;
621 
622 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
623 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
624 	prev = entry->prev;
625 	next = entry->next;
626 	next->prev = prev;
627 	prev->next = next;
628 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
629 	map->nentries--;
630 }
631 
632 /*
633  *	vm_map_lookup_entry:	[ internal use only ]
634  *
635  *	Finds the map entry containing (or
636  *	immediately preceding) the specified address
637  *	in the given map; the entry is returned
638  *	in the "entry" parameter.  The boolean
639  *	result indicates whether the address is
640  *	actually contained in the map.
641  */
642 boolean_t
643 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
644     vm_map_entry_t *entry /* OUT */)
645 {
646 	vm_map_entry_t tmp;
647 	vm_map_entry_t last;
648 
649 #if 0
650 	/*
651 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
652 	 * the hint code with the red-black lookup meets with system crashes
653 	 * and lockups.  We do not yet know why.
654 	 *
655 	 * It is possible that the problem is related to the setting
656 	 * of the hint during map_entry deletion, in the code specified
657 	 * at the GGG comment later on in this file.
658 	 */
659 	/*
660 	 * Quickly check the cached hint, there's a good chance of a match.
661 	 */
662 	if (map->hint != &map->header) {
663 		tmp = map->hint;
664 		if (address >= tmp->start && address < tmp->end) {
665 			*entry = tmp;
666 			return(TRUE);
667 		}
668 	}
669 #endif
670 
671 	/*
672 	 * Locate the record from the top of the tree.  'last' tracks the
673 	 * closest prior record and is returned if no match is found, which
674 	 * in binary tree terms means tracking the most recent right-branch
675 	 * taken.  If there is no prior record, &map->header is returned.
676 	 */
677 	last = &map->header;
678 	tmp = RB_ROOT(&map->rb_root);
679 
680 	while (tmp) {
681 		if (address >= tmp->start) {
682 			if (address < tmp->end) {
683 				*entry = tmp;
684 				map->hint = tmp;
685 				return(TRUE);
686 			}
687 			last = tmp;
688 			tmp = RB_RIGHT(tmp, rb_entry);
689 		} else {
690 			tmp = RB_LEFT(tmp, rb_entry);
691 		}
692 	}
693 	*entry = last;
694 	return (FALSE);
695 }
696 
697 /*
698  *	vm_map_insert:
699  *
700  *	Inserts the given whole VM object into the target
701  *	map at the specified address range.  The object's
702  *	size should match that of the address range.
703  *
704  *	Requires that the map be locked, and leaves it so.  Requires that
705  *	sufficient vm_map_entry structures have been reserved and tracks
706  *	the use via countp.
707  *
708  *	If object is non-NULL, ref count must be bumped by caller
709  *	prior to making call to account for the new entry.
710  */
711 int
712 vm_map_insert(vm_map_t map, int *countp,
713 	      vm_object_t object, vm_ooffset_t offset,
714 	      vm_offset_t start, vm_offset_t end,
715 	      vm_maptype_t maptype,
716 	      vm_prot_t prot, vm_prot_t max,
717 	      int cow)
718 {
719 	vm_map_entry_t new_entry;
720 	vm_map_entry_t prev_entry;
721 	vm_map_entry_t temp_entry;
722 	vm_eflags_t protoeflags;
723 
724 	/*
725 	 * Check that the start and end points are not bogus.
726 	 */
727 
728 	if ((start < map->min_offset) || (end > map->max_offset) ||
729 	    (start >= end))
730 		return (KERN_INVALID_ADDRESS);
731 
732 	/*
733 	 * Find the entry prior to the proposed starting address; if it's part
734 	 * of an existing entry, this range is bogus.
735 	 */
736 
737 	if (vm_map_lookup_entry(map, start, &temp_entry))
738 		return (KERN_NO_SPACE);
739 
740 	prev_entry = temp_entry;
741 
742 	/*
743 	 * Assert that the next entry doesn't overlap the end point.
744 	 */
745 
746 	if ((prev_entry->next != &map->header) &&
747 	    (prev_entry->next->start < end))
748 		return (KERN_NO_SPACE);
749 
750 	protoeflags = 0;
751 
752 	if (cow & MAP_COPY_ON_WRITE)
753 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
754 
755 	if (cow & MAP_NOFAULT) {
756 		protoeflags |= MAP_ENTRY_NOFAULT;
757 
758 		KASSERT(object == NULL,
759 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
760 	}
761 	if (cow & MAP_DISABLE_SYNCER)
762 		protoeflags |= MAP_ENTRY_NOSYNC;
763 	if (cow & MAP_DISABLE_COREDUMP)
764 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
765 
766 	if (object) {
767 		/*
768 		 * When object is non-NULL, it could be shared with another
769 		 * process.  We have to set or clear OBJ_ONEMAPPING
770 		 * appropriately.
771 		 */
772 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
773 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
774 		}
775 	}
776 	else if ((prev_entry != &map->header) &&
777 		 (prev_entry->eflags == protoeflags) &&
778 		 (prev_entry->end == start) &&
779 		 (prev_entry->wired_count == 0) &&
780 		 prev_entry->maptype == maptype &&
781 		 ((prev_entry->object.vm_object == NULL) ||
782 		  vm_object_coalesce(prev_entry->object.vm_object,
783 				     OFF_TO_IDX(prev_entry->offset),
784 				     (vm_size_t)(prev_entry->end - prev_entry->start),
785 				     (vm_size_t)(end - prev_entry->end)))) {
786 		/*
787 		 * We were able to extend the object.  Determine if we
788 		 * can extend the previous map entry to include the
789 		 * new range as well.
790 		 */
791 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
792 		    (prev_entry->protection == prot) &&
793 		    (prev_entry->max_protection == max)) {
794 			map->size += (end - prev_entry->end);
795 			prev_entry->end = end;
796 			vm_map_simplify_entry(map, prev_entry, countp);
797 			return (KERN_SUCCESS);
798 		}
799 
800 		/*
801 		 * If we can extend the object but cannot extend the
802 		 * map entry, we have to create a new map entry.  We
803 		 * must bump the ref count on the extended object to
804 		 * account for it.  object may be NULL.
805 		 */
806 		object = prev_entry->object.vm_object;
807 		offset = prev_entry->offset +
808 			(prev_entry->end - prev_entry->start);
809 		vm_object_reference(object);
810 	}
811 
812 	/*
813 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
814 	 * in things like the buffer map where we manage kva but do not manage
815 	 * backing objects.
816 	 */
817 
818 	/*
819 	 * Create a new entry
820 	 */
821 
822 	new_entry = vm_map_entry_create(map, countp);
823 	new_entry->start = start;
824 	new_entry->end = end;
825 
826 	new_entry->maptype = maptype;
827 	new_entry->eflags = protoeflags;
828 	new_entry->object.vm_object = object;
829 	new_entry->offset = offset;
830 	new_entry->aux.master_pde = 0;
831 
832 	new_entry->inheritance = VM_INHERIT_DEFAULT;
833 	new_entry->protection = prot;
834 	new_entry->max_protection = max;
835 	new_entry->wired_count = 0;
836 
837 	/*
838 	 * Insert the new entry into the list
839 	 */
840 
841 	vm_map_entry_link(map, prev_entry, new_entry);
842 	map->size += new_entry->end - new_entry->start;
843 
844 	/*
845 	 * Update the free space hint
846 	 */
847 	if ((map->first_free == prev_entry) &&
848 	    (prev_entry->end >= new_entry->start)) {
849 		map->first_free = new_entry;
850 	}
851 
852 #if 0
853 	/*
854 	 * Temporarily removed to avoid MAP_STACK panic, due to
855 	 * MAP_STACK being a huge hack.  Will be added back in
856 	 * when MAP_STACK (and the user stack mapping) is fixed.
857 	 */
858 	/*
859 	 * It may be possible to simplify the entry
860 	 */
861 	vm_map_simplify_entry(map, new_entry, countp);
862 #endif
863 
864 	/*
865 	 * Try to pre-populate the page table.  Mappings governed by virtual
866 	 * page tables cannot be prepopulated without a lot of work, so
867 	 * don't try.
868 	 */
869 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
870 	    maptype != VM_MAPTYPE_VPAGETABLE) {
871 		pmap_object_init_pt(map->pmap, start, prot,
872 				    object, OFF_TO_IDX(offset), end - start,
873 				    cow & MAP_PREFAULT_PARTIAL);
874 	}
875 
876 	return (KERN_SUCCESS);
877 }
878 
879 /*
880  * Find sufficient space for `length' bytes in the given map, starting at
881  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
882  *
883  * This function will returned an arbitrarily aligned pointer.  If no
884  * particular alignment is required you should pass align as 1.  Note that
885  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
886  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
887  * argument.
888  *
889  * 'align' should be a power of 2 but is not required to be.
890  */
891 int
892 vm_map_findspace(
893 	vm_map_t map,
894 	vm_offset_t start,
895 	vm_size_t length,
896 	vm_offset_t align,
897 	vm_offset_t *addr)
898 {
899 	vm_map_entry_t entry, next;
900 	vm_offset_t end;
901 	vm_offset_t align_mask;
902 
903 	if (start < map->min_offset)
904 		start = map->min_offset;
905 	if (start > map->max_offset)
906 		return (1);
907 
908 	/*
909 	 * If the alignment is not a power of 2 we will have to use
910 	 * a mod/division, set align_mask to a special value.
911 	 */
912 	if ((align | (align - 1)) + 1 != (align << 1))
913 		align_mask = (vm_offset_t)-1;
914 	else
915 		align_mask = align - 1;
916 
917 retry:
918 	/*
919 	 * Look for the first possible address; if there's already something
920 	 * at this address, we have to start after it.
921 	 */
922 	if (start == map->min_offset) {
923 		if ((entry = map->first_free) != &map->header)
924 			start = entry->end;
925 	} else {
926 		vm_map_entry_t tmp;
927 
928 		if (vm_map_lookup_entry(map, start, &tmp))
929 			start = tmp->end;
930 		entry = tmp;
931 	}
932 
933 	/*
934 	 * Look through the rest of the map, trying to fit a new region in the
935 	 * gap between existing regions, or after the very last region.
936 	 */
937 	for (;; start = (entry = next)->end) {
938 		/*
939 		 * Adjust the proposed start by the requested alignment,
940 		 * be sure that we didn't wrap the address.
941 		 */
942 		if (align_mask == (vm_offset_t)-1)
943 			end = ((start + align - 1) / align) * align;
944 		else
945 			end = (start + align_mask) & ~align_mask;
946 		if (end < start)
947 			return (1);
948 		start = end;
949 		/*
950 		 * Find the end of the proposed new region.  Be sure we didn't
951 		 * go beyond the end of the map, or wrap around the address.
952 		 * Then check to see if this is the last entry or if the
953 		 * proposed end fits in the gap between this and the next
954 		 * entry.
955 		 */
956 		end = start + length;
957 		if (end > map->max_offset || end < start)
958 			return (1);
959 		next = entry->next;
960 		if (next == &map->header || next->start >= end)
961 			break;
962 	}
963 	map->hint = entry;
964 	if (map == &kernel_map) {
965 		vm_offset_t ksize;
966 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
967 			pmap_growkernel(ksize);
968 			goto retry;
969 		}
970 	}
971 	*addr = start;
972 	return (0);
973 }
974 
975 /*
976  *	vm_map_find finds an unallocated region in the target address
977  *	map with the given length.  The search is defined to be
978  *	first-fit from the specified address; the region found is
979  *	returned in the same parameter.
980  *
981  *	If object is non-NULL, ref count must be bumped by caller
982  *	prior to making call to account for the new entry.
983  */
984 int
985 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
986 	    vm_offset_t *addr,	vm_size_t length,
987 	    boolean_t find_space,
988 	    vm_maptype_t maptype,
989 	    vm_prot_t prot, vm_prot_t max,
990 	    int cow)
991 {
992 	vm_offset_t start;
993 	int result;
994 	int count;
995 
996 	start = *addr;
997 
998 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
999 	vm_map_lock(map);
1000 	if (find_space) {
1001 		if (vm_map_findspace(map, start, length, 1, addr)) {
1002 			vm_map_unlock(map);
1003 			vm_map_entry_release(count);
1004 			return (KERN_NO_SPACE);
1005 		}
1006 		start = *addr;
1007 	}
1008 	result = vm_map_insert(map, &count, object, offset,
1009 			       start, start + length,
1010 			       maptype,
1011 			       prot, max,
1012 			       cow);
1013 	vm_map_unlock(map);
1014 	vm_map_entry_release(count);
1015 
1016 	return (result);
1017 }
1018 
1019 /*
1020  *	vm_map_simplify_entry:
1021  *
1022  *	Simplify the given map entry by merging with either neighbor.  This
1023  *	routine also has the ability to merge with both neighbors.
1024  *
1025  *	The map must be locked.
1026  *
1027  *	This routine guarentees that the passed entry remains valid (though
1028  *	possibly extended).  When merging, this routine may delete one or
1029  *	both neighbors.  No action is taken on entries which have their
1030  *	in-transition flag set.
1031  */
1032 void
1033 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1034 {
1035 	vm_map_entry_t next, prev;
1036 	vm_size_t prevsize, esize;
1037 
1038 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1039 		++mycpu->gd_cnt.v_intrans_coll;
1040 		return;
1041 	}
1042 
1043 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1044 		return;
1045 
1046 	prev = entry->prev;
1047 	if (prev != &map->header) {
1048 		prevsize = prev->end - prev->start;
1049 		if ( (prev->end == entry->start) &&
1050 		     (prev->maptype == entry->maptype) &&
1051 		     (prev->object.vm_object == entry->object.vm_object) &&
1052 		     (!prev->object.vm_object ||
1053 			(prev->offset + prevsize == entry->offset)) &&
1054 		     (prev->eflags == entry->eflags) &&
1055 		     (prev->protection == entry->protection) &&
1056 		     (prev->max_protection == entry->max_protection) &&
1057 		     (prev->inheritance == entry->inheritance) &&
1058 		     (prev->wired_count == entry->wired_count)) {
1059 			if (map->first_free == prev)
1060 				map->first_free = entry;
1061 			if (map->hint == prev)
1062 				map->hint = entry;
1063 			vm_map_entry_unlink(map, prev);
1064 			entry->start = prev->start;
1065 			entry->offset = prev->offset;
1066 			if (prev->object.vm_object)
1067 				vm_object_deallocate(prev->object.vm_object);
1068 			vm_map_entry_dispose(map, prev, countp);
1069 		}
1070 	}
1071 
1072 	next = entry->next;
1073 	if (next != &map->header) {
1074 		esize = entry->end - entry->start;
1075 		if ((entry->end == next->start) &&
1076 		    (next->maptype == entry->maptype) &&
1077 		    (next->object.vm_object == entry->object.vm_object) &&
1078 		     (!entry->object.vm_object ||
1079 			(entry->offset + esize == next->offset)) &&
1080 		    (next->eflags == entry->eflags) &&
1081 		    (next->protection == entry->protection) &&
1082 		    (next->max_protection == entry->max_protection) &&
1083 		    (next->inheritance == entry->inheritance) &&
1084 		    (next->wired_count == entry->wired_count)) {
1085 			if (map->first_free == next)
1086 				map->first_free = entry;
1087 			if (map->hint == next)
1088 				map->hint = entry;
1089 			vm_map_entry_unlink(map, next);
1090 			entry->end = next->end;
1091 			if (next->object.vm_object)
1092 				vm_object_deallocate(next->object.vm_object);
1093 			vm_map_entry_dispose(map, next, countp);
1094 	        }
1095 	}
1096 }
1097 /*
1098  *	vm_map_clip_start:	[ internal use only ]
1099  *
1100  *	Asserts that the given entry begins at or after
1101  *	the specified address; if necessary,
1102  *	it splits the entry into two.
1103  */
1104 #define vm_map_clip_start(map, entry, startaddr, countp) \
1105 { \
1106 	if (startaddr > entry->start) \
1107 		_vm_map_clip_start(map, entry, startaddr, countp); \
1108 }
1109 
1110 /*
1111  *	This routine is called only when it is known that
1112  *	the entry must be split.
1113  */
1114 static void
1115 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1116 {
1117 	vm_map_entry_t new_entry;
1118 
1119 	/*
1120 	 * Split off the front portion -- note that we must insert the new
1121 	 * entry BEFORE this one, so that this entry has the specified
1122 	 * starting address.
1123 	 */
1124 
1125 	vm_map_simplify_entry(map, entry, countp);
1126 
1127 	/*
1128 	 * If there is no object backing this entry, we might as well create
1129 	 * one now.  If we defer it, an object can get created after the map
1130 	 * is clipped, and individual objects will be created for the split-up
1131 	 * map.  This is a bit of a hack, but is also about the best place to
1132 	 * put this improvement.
1133 	 */
1134 	if (entry->object.vm_object == NULL && !map->system_map) {
1135 		vm_map_entry_allocate_object(entry);
1136 	}
1137 
1138 	new_entry = vm_map_entry_create(map, countp);
1139 	*new_entry = *entry;
1140 
1141 	new_entry->end = start;
1142 	entry->offset += (start - entry->start);
1143 	entry->start = start;
1144 
1145 	vm_map_entry_link(map, entry->prev, new_entry);
1146 
1147 	switch(entry->maptype) {
1148 	case VM_MAPTYPE_NORMAL:
1149 	case VM_MAPTYPE_VPAGETABLE:
1150 		vm_object_reference(new_entry->object.vm_object);
1151 		break;
1152 	default:
1153 		break;
1154 	}
1155 }
1156 
1157 /*
1158  *	vm_map_clip_end:	[ internal use only ]
1159  *
1160  *	Asserts that the given entry ends at or before
1161  *	the specified address; if necessary,
1162  *	it splits the entry into two.
1163  */
1164 
1165 #define vm_map_clip_end(map, entry, endaddr, countp) \
1166 { \
1167 	if (endaddr < entry->end) \
1168 		_vm_map_clip_end(map, entry, endaddr, countp); \
1169 }
1170 
1171 /*
1172  *	This routine is called only when it is known that
1173  *	the entry must be split.
1174  */
1175 static void
1176 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1177 {
1178 	vm_map_entry_t new_entry;
1179 
1180 	/*
1181 	 * If there is no object backing this entry, we might as well create
1182 	 * one now.  If we defer it, an object can get created after the map
1183 	 * is clipped, and individual objects will be created for the split-up
1184 	 * map.  This is a bit of a hack, but is also about the best place to
1185 	 * put this improvement.
1186 	 */
1187 
1188 	if (entry->object.vm_object == NULL && !map->system_map) {
1189 		vm_map_entry_allocate_object(entry);
1190 	}
1191 
1192 	/*
1193 	 * Create a new entry and insert it AFTER the specified entry
1194 	 */
1195 
1196 	new_entry = vm_map_entry_create(map, countp);
1197 	*new_entry = *entry;
1198 
1199 	new_entry->start = entry->end = end;
1200 	new_entry->offset += (end - entry->start);
1201 
1202 	vm_map_entry_link(map, entry, new_entry);
1203 
1204 	switch(entry->maptype) {
1205 	case VM_MAPTYPE_NORMAL:
1206 	case VM_MAPTYPE_VPAGETABLE:
1207 		vm_object_reference(new_entry->object.vm_object);
1208 		break;
1209 	default:
1210 		break;
1211 	}
1212 }
1213 
1214 /*
1215  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1216  *
1217  *	Asserts that the starting and ending region
1218  *	addresses fall within the valid range of the map.
1219  */
1220 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1221 		{					\
1222 		if (start < vm_map_min(map))		\
1223 			start = vm_map_min(map);	\
1224 		if (end > vm_map_max(map))		\
1225 			end = vm_map_max(map);		\
1226 		if (start > end)			\
1227 			start = end;			\
1228 		}
1229 
1230 /*
1231  *	vm_map_transition_wait:	[ kernel use only ]
1232  *
1233  *	Used to block when an in-transition collison occurs.  The map
1234  *	is unlocked for the sleep and relocked before the return.
1235  */
1236 static
1237 void
1238 vm_map_transition_wait(vm_map_t map)
1239 {
1240 	vm_map_unlock(map);
1241 	tsleep(map, 0, "vment", 0);
1242 	vm_map_lock(map);
1243 }
1244 
1245 /*
1246  * CLIP_CHECK_BACK
1247  * CLIP_CHECK_FWD
1248  *
1249  *	When we do blocking operations with the map lock held it is
1250  *	possible that a clip might have occured on our in-transit entry,
1251  *	requiring an adjustment to the entry in our loop.  These macros
1252  *	help the pageable and clip_range code deal with the case.  The
1253  *	conditional costs virtually nothing if no clipping has occured.
1254  */
1255 
1256 #define CLIP_CHECK_BACK(entry, save_start)		\
1257     do {						\
1258 	    while (entry->start != save_start) {	\
1259 		    entry = entry->prev;		\
1260 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1261 	    }						\
1262     } while(0)
1263 
1264 #define CLIP_CHECK_FWD(entry, save_end)			\
1265     do {						\
1266 	    while (entry->end != save_end) {		\
1267 		    entry = entry->next;		\
1268 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1269 	    }						\
1270     } while(0)
1271 
1272 
1273 /*
1274  *	vm_map_clip_range:	[ kernel use only ]
1275  *
1276  *	Clip the specified range and return the base entry.  The
1277  *	range may cover several entries starting at the returned base
1278  *	and the first and last entry in the covering sequence will be
1279  *	properly clipped to the requested start and end address.
1280  *
1281  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1282  *	flag.
1283  *
1284  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1285  *	covered by the requested range.
1286  *
1287  *	The map must be exclusively locked on entry and will remain locked
1288  *	on return. If no range exists or the range contains holes and you
1289  *	specified that no holes were allowed, NULL will be returned.  This
1290  *	routine may temporarily unlock the map in order avoid a deadlock when
1291  *	sleeping.
1292  */
1293 static
1294 vm_map_entry_t
1295 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1296 	int *countp, int flags)
1297 {
1298 	vm_map_entry_t start_entry;
1299 	vm_map_entry_t entry;
1300 
1301 	/*
1302 	 * Locate the entry and effect initial clipping.  The in-transition
1303 	 * case does not occur very often so do not try to optimize it.
1304 	 */
1305 again:
1306 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1307 		return (NULL);
1308 	entry = start_entry;
1309 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1310 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1311 		++mycpu->gd_cnt.v_intrans_coll;
1312 		++mycpu->gd_cnt.v_intrans_wait;
1313 		vm_map_transition_wait(map);
1314 		/*
1315 		 * entry and/or start_entry may have been clipped while
1316 		 * we slept, or may have gone away entirely.  We have
1317 		 * to restart from the lookup.
1318 		 */
1319 		goto again;
1320 	}
1321 	/*
1322 	 * Since we hold an exclusive map lock we do not have to restart
1323 	 * after clipping, even though clipping may block in zalloc.
1324 	 */
1325 	vm_map_clip_start(map, entry, start, countp);
1326 	vm_map_clip_end(map, entry, end, countp);
1327 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1328 
1329 	/*
1330 	 * Scan entries covered by the range.  When working on the next
1331 	 * entry a restart need only re-loop on the current entry which
1332 	 * we have already locked, since 'next' may have changed.  Also,
1333 	 * even though entry is safe, it may have been clipped so we
1334 	 * have to iterate forwards through the clip after sleeping.
1335 	 */
1336 	while (entry->next != &map->header && entry->next->start < end) {
1337 		vm_map_entry_t next = entry->next;
1338 
1339 		if (flags & MAP_CLIP_NO_HOLES) {
1340 			if (next->start > entry->end) {
1341 				vm_map_unclip_range(map, start_entry,
1342 					start, entry->end, countp, flags);
1343 				return(NULL);
1344 			}
1345 		}
1346 
1347 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1348 			vm_offset_t save_end = entry->end;
1349 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1350 			++mycpu->gd_cnt.v_intrans_coll;
1351 			++mycpu->gd_cnt.v_intrans_wait;
1352 			vm_map_transition_wait(map);
1353 
1354 			/*
1355 			 * clips might have occured while we blocked.
1356 			 */
1357 			CLIP_CHECK_FWD(entry, save_end);
1358 			CLIP_CHECK_BACK(start_entry, start);
1359 			continue;
1360 		}
1361 		/*
1362 		 * No restart necessary even though clip_end may block, we
1363 		 * are holding the map lock.
1364 		 */
1365 		vm_map_clip_end(map, next, end, countp);
1366 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1367 		entry = next;
1368 	}
1369 	if (flags & MAP_CLIP_NO_HOLES) {
1370 		if (entry->end != end) {
1371 			vm_map_unclip_range(map, start_entry,
1372 				start, entry->end, countp, flags);
1373 			return(NULL);
1374 		}
1375 	}
1376 	return(start_entry);
1377 }
1378 
1379 /*
1380  *	vm_map_unclip_range:	[ kernel use only ]
1381  *
1382  *	Undo the effect of vm_map_clip_range().  You should pass the same
1383  *	flags and the same range that you passed to vm_map_clip_range().
1384  *	This code will clear the in-transition flag on the entries and
1385  *	wake up anyone waiting.  This code will also simplify the sequence
1386  *	and attempt to merge it with entries before and after the sequence.
1387  *
1388  *	The map must be locked on entry and will remain locked on return.
1389  *
1390  *	Note that you should also pass the start_entry returned by
1391  *	vm_map_clip_range().  However, if you block between the two calls
1392  *	with the map unlocked please be aware that the start_entry may
1393  *	have been clipped and you may need to scan it backwards to find
1394  *	the entry corresponding with the original start address.  You are
1395  *	responsible for this, vm_map_unclip_range() expects the correct
1396  *	start_entry to be passed to it and will KASSERT otherwise.
1397  */
1398 static
1399 void
1400 vm_map_unclip_range(
1401 	vm_map_t map,
1402 	vm_map_entry_t start_entry,
1403 	vm_offset_t start,
1404 	vm_offset_t end,
1405 	int *countp,
1406 	int flags)
1407 {
1408 	vm_map_entry_t entry;
1409 
1410 	entry = start_entry;
1411 
1412 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1413 	while (entry != &map->header && entry->start < end) {
1414 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1415 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1416 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1417 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1418 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1419 			wakeup(map);
1420 		}
1421 		entry = entry->next;
1422 	}
1423 
1424 	/*
1425 	 * Simplification does not block so there is no restart case.
1426 	 */
1427 	entry = start_entry;
1428 	while (entry != &map->header && entry->start < end) {
1429 		vm_map_simplify_entry(map, entry, countp);
1430 		entry = entry->next;
1431 	}
1432 }
1433 
1434 /*
1435  *	vm_map_submap:		[ kernel use only ]
1436  *
1437  *	Mark the given range as handled by a subordinate map.
1438  *
1439  *	This range must have been created with vm_map_find,
1440  *	and no other operations may have been performed on this
1441  *	range prior to calling vm_map_submap.
1442  *
1443  *	Only a limited number of operations can be performed
1444  *	within this rage after calling vm_map_submap:
1445  *		vm_fault
1446  *	[Don't try vm_map_copy!]
1447  *
1448  *	To remove a submapping, one must first remove the
1449  *	range from the superior map, and then destroy the
1450  *	submap (if desired).  [Better yet, don't try it.]
1451  */
1452 int
1453 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1454 {
1455 	vm_map_entry_t entry;
1456 	int result = KERN_INVALID_ARGUMENT;
1457 	int count;
1458 
1459 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1460 	vm_map_lock(map);
1461 
1462 	VM_MAP_RANGE_CHECK(map, start, end);
1463 
1464 	if (vm_map_lookup_entry(map, start, &entry)) {
1465 		vm_map_clip_start(map, entry, start, &count);
1466 	} else {
1467 		entry = entry->next;
1468 	}
1469 
1470 	vm_map_clip_end(map, entry, end, &count);
1471 
1472 	if ((entry->start == start) && (entry->end == end) &&
1473 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1474 	    (entry->object.vm_object == NULL)) {
1475 		entry->object.sub_map = submap;
1476 		entry->maptype = VM_MAPTYPE_SUBMAP;
1477 		result = KERN_SUCCESS;
1478 	}
1479 	vm_map_unlock(map);
1480 	vm_map_entry_release(count);
1481 
1482 	return (result);
1483 }
1484 
1485 /*
1486  * vm_map_protect:
1487  *
1488  * Sets the protection of the specified address region in the target map.
1489  * If "set_max" is specified, the maximum protection is to be set;
1490  * otherwise, only the current protection is affected.
1491  *
1492  * The protection is not applicable to submaps, but is applicable to normal
1493  * maps and maps governed by virtual page tables.  For example, when operating
1494  * on a virtual page table our protection basically controls how COW occurs
1495  * on the backing object, whereas the virtual page table abstraction itself
1496  * is an abstraction for userland.
1497  */
1498 int
1499 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1500 	       vm_prot_t new_prot, boolean_t set_max)
1501 {
1502 	vm_map_entry_t current;
1503 	vm_map_entry_t entry;
1504 	int count;
1505 
1506 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1507 	vm_map_lock(map);
1508 
1509 	VM_MAP_RANGE_CHECK(map, start, end);
1510 
1511 	if (vm_map_lookup_entry(map, start, &entry)) {
1512 		vm_map_clip_start(map, entry, start, &count);
1513 	} else {
1514 		entry = entry->next;
1515 	}
1516 
1517 	/*
1518 	 * Make a first pass to check for protection violations.
1519 	 */
1520 	current = entry;
1521 	while ((current != &map->header) && (current->start < end)) {
1522 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1523 			vm_map_unlock(map);
1524 			vm_map_entry_release(count);
1525 			return (KERN_INVALID_ARGUMENT);
1526 		}
1527 		if ((new_prot & current->max_protection) != new_prot) {
1528 			vm_map_unlock(map);
1529 			vm_map_entry_release(count);
1530 			return (KERN_PROTECTION_FAILURE);
1531 		}
1532 		current = current->next;
1533 	}
1534 
1535 	/*
1536 	 * Go back and fix up protections. [Note that clipping is not
1537 	 * necessary the second time.]
1538 	 */
1539 	current = entry;
1540 
1541 	while ((current != &map->header) && (current->start < end)) {
1542 		vm_prot_t old_prot;
1543 
1544 		vm_map_clip_end(map, current, end, &count);
1545 
1546 		old_prot = current->protection;
1547 		if (set_max) {
1548 			current->protection =
1549 			    (current->max_protection = new_prot) &
1550 			    old_prot;
1551 		} else {
1552 			current->protection = new_prot;
1553 		}
1554 
1555 		/*
1556 		 * Update physical map if necessary. Worry about copy-on-write
1557 		 * here -- CHECK THIS XXX
1558 		 */
1559 
1560 		if (current->protection != old_prot) {
1561 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1562 							VM_PROT_ALL)
1563 
1564 			pmap_protect(map->pmap, current->start,
1565 			    current->end,
1566 			    current->protection & MASK(current));
1567 #undef	MASK
1568 		}
1569 
1570 		vm_map_simplify_entry(map, current, &count);
1571 
1572 		current = current->next;
1573 	}
1574 
1575 	vm_map_unlock(map);
1576 	vm_map_entry_release(count);
1577 	return (KERN_SUCCESS);
1578 }
1579 
1580 /*
1581  *	vm_map_madvise:
1582  *
1583  * 	This routine traverses a processes map handling the madvise
1584  *	system call.  Advisories are classified as either those effecting
1585  *	the vm_map_entry structure, or those effecting the underlying
1586  *	objects.
1587  *
1588  *	The <value> argument is used for extended madvise calls.
1589  */
1590 int
1591 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1592 	       int behav, off_t value)
1593 {
1594 	vm_map_entry_t current, entry;
1595 	int modify_map = 0;
1596 	int error = 0;
1597 	int count;
1598 
1599 	/*
1600 	 * Some madvise calls directly modify the vm_map_entry, in which case
1601 	 * we need to use an exclusive lock on the map and we need to perform
1602 	 * various clipping operations.  Otherwise we only need a read-lock
1603 	 * on the map.
1604 	 */
1605 
1606 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1607 
1608 	switch(behav) {
1609 	case MADV_NORMAL:
1610 	case MADV_SEQUENTIAL:
1611 	case MADV_RANDOM:
1612 	case MADV_NOSYNC:
1613 	case MADV_AUTOSYNC:
1614 	case MADV_NOCORE:
1615 	case MADV_CORE:
1616 	case MADV_SETMAP:
1617 	case MADV_INVAL:
1618 		modify_map = 1;
1619 		vm_map_lock(map);
1620 		break;
1621 	case MADV_WILLNEED:
1622 	case MADV_DONTNEED:
1623 	case MADV_FREE:
1624 		vm_map_lock_read(map);
1625 		break;
1626 	default:
1627 		vm_map_entry_release(count);
1628 		return (EINVAL);
1629 	}
1630 
1631 	/*
1632 	 * Locate starting entry and clip if necessary.
1633 	 */
1634 
1635 	VM_MAP_RANGE_CHECK(map, start, end);
1636 
1637 	if (vm_map_lookup_entry(map, start, &entry)) {
1638 		if (modify_map)
1639 			vm_map_clip_start(map, entry, start, &count);
1640 	} else {
1641 		entry = entry->next;
1642 	}
1643 
1644 	if (modify_map) {
1645 		/*
1646 		 * madvise behaviors that are implemented in the vm_map_entry.
1647 		 *
1648 		 * We clip the vm_map_entry so that behavioral changes are
1649 		 * limited to the specified address range.
1650 		 */
1651 		for (current = entry;
1652 		     (current != &map->header) && (current->start < end);
1653 		     current = current->next
1654 		) {
1655 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1656 				continue;
1657 
1658 			vm_map_clip_end(map, current, end, &count);
1659 
1660 			switch (behav) {
1661 			case MADV_NORMAL:
1662 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1663 				break;
1664 			case MADV_SEQUENTIAL:
1665 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1666 				break;
1667 			case MADV_RANDOM:
1668 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1669 				break;
1670 			case MADV_NOSYNC:
1671 				current->eflags |= MAP_ENTRY_NOSYNC;
1672 				break;
1673 			case MADV_AUTOSYNC:
1674 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1675 				break;
1676 			case MADV_NOCORE:
1677 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1678 				break;
1679 			case MADV_CORE:
1680 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1681 				break;
1682 			case MADV_INVAL:
1683 				/*
1684 				 * Invalidate the related pmap entries, used
1685 				 * to flush portions of the real kernel's
1686 				 * pmap when the caller has removed or
1687 				 * modified existing mappings in a virtual
1688 				 * page table.
1689 				 */
1690 				pmap_remove(map->pmap,
1691 					    current->start, current->end);
1692 				break;
1693 			case MADV_SETMAP:
1694 				/*
1695 				 * Set the page directory page for a map
1696 				 * governed by a virtual page table.  Mark
1697 				 * the entry as being governed by a virtual
1698 				 * page table if it is not.
1699 				 *
1700 				 * XXX the page directory page is stored
1701 				 * in the avail_ssize field if the map_entry.
1702 				 *
1703 				 * XXX the map simplification code does not
1704 				 * compare this field so weird things may
1705 				 * happen if you do not apply this function
1706 				 * to the entire mapping governed by the
1707 				 * virtual page table.
1708 				 */
1709 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1710 					error = EINVAL;
1711 					break;
1712 				}
1713 				current->aux.master_pde = value;
1714 				pmap_remove(map->pmap,
1715 					    current->start, current->end);
1716 				break;
1717 			default:
1718 				error = EINVAL;
1719 				break;
1720 			}
1721 			vm_map_simplify_entry(map, current, &count);
1722 		}
1723 		vm_map_unlock(map);
1724 	} else {
1725 		vm_pindex_t pindex;
1726 		int count;
1727 
1728 		/*
1729 		 * madvise behaviors that are implemented in the underlying
1730 		 * vm_object.
1731 		 *
1732 		 * Since we don't clip the vm_map_entry, we have to clip
1733 		 * the vm_object pindex and count.
1734 		 *
1735 		 * NOTE!  We currently do not support these functions on
1736 		 * virtual page tables.
1737 		 */
1738 		for (current = entry;
1739 		     (current != &map->header) && (current->start < end);
1740 		     current = current->next
1741 		) {
1742 			vm_offset_t useStart;
1743 
1744 			if (current->maptype != VM_MAPTYPE_NORMAL)
1745 				continue;
1746 
1747 			pindex = OFF_TO_IDX(current->offset);
1748 			count = atop(current->end - current->start);
1749 			useStart = current->start;
1750 
1751 			if (current->start < start) {
1752 				pindex += atop(start - current->start);
1753 				count -= atop(start - current->start);
1754 				useStart = start;
1755 			}
1756 			if (current->end > end)
1757 				count -= atop(current->end - end);
1758 
1759 			if (count <= 0)
1760 				continue;
1761 
1762 			vm_object_madvise(current->object.vm_object,
1763 					  pindex, count, behav);
1764 
1765 			/*
1766 			 * Try to populate the page table.  Mappings governed
1767 			 * by virtual page tables cannot be pre-populated
1768 			 * without a lot of work so don't try.
1769 			 */
1770 			if (behav == MADV_WILLNEED &&
1771 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1772 				pmap_object_init_pt(
1773 				    map->pmap,
1774 				    useStart,
1775 				    current->protection,
1776 				    current->object.vm_object,
1777 				    pindex,
1778 				    (count << PAGE_SHIFT),
1779 				    MAP_PREFAULT_MADVISE
1780 				);
1781 			}
1782 		}
1783 		vm_map_unlock_read(map);
1784 	}
1785 	vm_map_entry_release(count);
1786 	return(error);
1787 }
1788 
1789 
1790 /*
1791  *	vm_map_inherit:
1792  *
1793  *	Sets the inheritance of the specified address
1794  *	range in the target map.  Inheritance
1795  *	affects how the map will be shared with
1796  *	child maps at the time of vm_map_fork.
1797  */
1798 int
1799 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1800 	       vm_inherit_t new_inheritance)
1801 {
1802 	vm_map_entry_t entry;
1803 	vm_map_entry_t temp_entry;
1804 	int count;
1805 
1806 	switch (new_inheritance) {
1807 	case VM_INHERIT_NONE:
1808 	case VM_INHERIT_COPY:
1809 	case VM_INHERIT_SHARE:
1810 		break;
1811 	default:
1812 		return (KERN_INVALID_ARGUMENT);
1813 	}
1814 
1815 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1816 	vm_map_lock(map);
1817 
1818 	VM_MAP_RANGE_CHECK(map, start, end);
1819 
1820 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1821 		entry = temp_entry;
1822 		vm_map_clip_start(map, entry, start, &count);
1823 	} else
1824 		entry = temp_entry->next;
1825 
1826 	while ((entry != &map->header) && (entry->start < end)) {
1827 		vm_map_clip_end(map, entry, end, &count);
1828 
1829 		entry->inheritance = new_inheritance;
1830 
1831 		vm_map_simplify_entry(map, entry, &count);
1832 
1833 		entry = entry->next;
1834 	}
1835 	vm_map_unlock(map);
1836 	vm_map_entry_release(count);
1837 	return (KERN_SUCCESS);
1838 }
1839 
1840 /*
1841  * Implement the semantics of mlock
1842  */
1843 int
1844 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1845     boolean_t new_pageable)
1846 {
1847 	vm_map_entry_t entry;
1848 	vm_map_entry_t start_entry;
1849 	vm_offset_t end;
1850 	int rv = KERN_SUCCESS;
1851 	int count;
1852 
1853 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1854 	vm_map_lock(map);
1855 	VM_MAP_RANGE_CHECK(map, start, real_end);
1856 	end = real_end;
1857 
1858 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1859 	if (start_entry == NULL) {
1860 		vm_map_unlock(map);
1861 		vm_map_entry_release(count);
1862 		return (KERN_INVALID_ADDRESS);
1863 	}
1864 
1865 	if (new_pageable == 0) {
1866 		entry = start_entry;
1867 		while ((entry != &map->header) && (entry->start < end)) {
1868 			vm_offset_t save_start;
1869 			vm_offset_t save_end;
1870 
1871 			/*
1872 			 * Already user wired or hard wired (trivial cases)
1873 			 */
1874 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1875 				entry = entry->next;
1876 				continue;
1877 			}
1878 			if (entry->wired_count != 0) {
1879 				entry->wired_count++;
1880 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1881 				entry = entry->next;
1882 				continue;
1883 			}
1884 
1885 			/*
1886 			 * A new wiring requires instantiation of appropriate
1887 			 * management structures and the faulting in of the
1888 			 * page.
1889 			 */
1890 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1891 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1892 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1893 					vm_map_entry_shadow(entry);
1894 				} else if (entry->object.vm_object == NULL &&
1895 					   !map->system_map) {
1896 					vm_map_entry_allocate_object(entry);
1897 				}
1898 			}
1899 			entry->wired_count++;
1900 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1901 
1902 			/*
1903 			 * Now fault in the area.  Note that vm_fault_wire()
1904 			 * may release the map lock temporarily, it will be
1905 			 * relocked on return.  The in-transition
1906 			 * flag protects the entries.
1907 			 */
1908 			save_start = entry->start;
1909 			save_end = entry->end;
1910 			rv = vm_fault_wire(map, entry, TRUE);
1911 			if (rv) {
1912 				CLIP_CHECK_BACK(entry, save_start);
1913 				for (;;) {
1914 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1915 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1916 					entry->wired_count = 0;
1917 					if (entry->end == save_end)
1918 						break;
1919 					entry = entry->next;
1920 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1921 				}
1922 				end = save_start;	/* unwire the rest */
1923 				break;
1924 			}
1925 			/*
1926 			 * note that even though the entry might have been
1927 			 * clipped, the USER_WIRED flag we set prevents
1928 			 * duplication so we do not have to do a
1929 			 * clip check.
1930 			 */
1931 			entry = entry->next;
1932 		}
1933 
1934 		/*
1935 		 * If we failed fall through to the unwiring section to
1936 		 * unwire what we had wired so far.  'end' has already
1937 		 * been adjusted.
1938 		 */
1939 		if (rv)
1940 			new_pageable = 1;
1941 
1942 		/*
1943 		 * start_entry might have been clipped if we unlocked the
1944 		 * map and blocked.  No matter how clipped it has gotten
1945 		 * there should be a fragment that is on our start boundary.
1946 		 */
1947 		CLIP_CHECK_BACK(start_entry, start);
1948 	}
1949 
1950 	/*
1951 	 * Deal with the unwiring case.
1952 	 */
1953 	if (new_pageable) {
1954 		/*
1955 		 * This is the unwiring case.  We must first ensure that the
1956 		 * range to be unwired is really wired down.  We know there
1957 		 * are no holes.
1958 		 */
1959 		entry = start_entry;
1960 		while ((entry != &map->header) && (entry->start < end)) {
1961 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1962 				rv = KERN_INVALID_ARGUMENT;
1963 				goto done;
1964 			}
1965 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1966 			entry = entry->next;
1967 		}
1968 
1969 		/*
1970 		 * Now decrement the wiring count for each region. If a region
1971 		 * becomes completely unwired, unwire its physical pages and
1972 		 * mappings.
1973 		 */
1974 		/*
1975 		 * The map entries are processed in a loop, checking to
1976 		 * make sure the entry is wired and asserting it has a wired
1977 		 * count. However, another loop was inserted more-or-less in
1978 		 * the middle of the unwiring path. This loop picks up the
1979 		 * "entry" loop variable from the first loop without first
1980 		 * setting it to start_entry. Naturally, the secound loop
1981 		 * is never entered and the pages backing the entries are
1982 		 * never unwired. This can lead to a leak of wired pages.
1983 		 */
1984 		entry = start_entry;
1985 		while ((entry != &map->header) && (entry->start < end)) {
1986 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1987 				("expected USER_WIRED on entry %p", entry));
1988 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1989 			entry->wired_count--;
1990 			if (entry->wired_count == 0)
1991 				vm_fault_unwire(map, entry);
1992 			entry = entry->next;
1993 		}
1994 	}
1995 done:
1996 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1997 		MAP_CLIP_NO_HOLES);
1998 	map->timestamp++;
1999 	vm_map_unlock(map);
2000 	vm_map_entry_release(count);
2001 	return (rv);
2002 }
2003 
2004 /*
2005  *	vm_map_wire:
2006  *
2007  *	Sets the pageability of the specified address
2008  *	range in the target map.  Regions specified
2009  *	as not pageable require locked-down physical
2010  *	memory and physical page maps.
2011  *
2012  *	The map must not be locked, but a reference
2013  *	must remain to the map throughout the call.
2014  *
2015  *	This function may be called via the zalloc path and must properly
2016  *	reserve map entries for kernel_map.
2017  */
2018 int
2019 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2020 {
2021 	vm_map_entry_t entry;
2022 	vm_map_entry_t start_entry;
2023 	vm_offset_t end;
2024 	int rv = KERN_SUCCESS;
2025 	int count;
2026 
2027 	if (kmflags & KM_KRESERVE)
2028 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2029 	else
2030 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2031 	vm_map_lock(map);
2032 	VM_MAP_RANGE_CHECK(map, start, real_end);
2033 	end = real_end;
2034 
2035 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2036 	if (start_entry == NULL) {
2037 		vm_map_unlock(map);
2038 		rv = KERN_INVALID_ADDRESS;
2039 		goto failure;
2040 	}
2041 	if ((kmflags & KM_PAGEABLE) == 0) {
2042 		/*
2043 		 * Wiring.
2044 		 *
2045 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2046 		 * objects that need to be created. Then we clip each map
2047 		 * entry to the region to be wired and increment its wiring
2048 		 * count.  We create objects before clipping the map entries
2049 		 * to avoid object proliferation.
2050 		 *
2051 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2052 		 * fault in the pages for any newly wired area (wired_count is
2053 		 * 1).
2054 		 *
2055 		 * Downgrading to a read lock for vm_fault_wire avoids a
2056 		 * possible deadlock with another process that may have faulted
2057 		 * on one of the pages to be wired (it would mark the page busy,
2058 		 * blocking us, then in turn block on the map lock that we
2059 		 * hold).  Because of problems in the recursive lock package,
2060 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2061 		 * any actions that require the write lock must be done
2062 		 * beforehand.  Because we keep the read lock on the map, the
2063 		 * copy-on-write status of the entries we modify here cannot
2064 		 * change.
2065 		 */
2066 
2067 		entry = start_entry;
2068 		while ((entry != &map->header) && (entry->start < end)) {
2069 			/*
2070 			 * Trivial case if the entry is already wired
2071 			 */
2072 			if (entry->wired_count) {
2073 				entry->wired_count++;
2074 				entry = entry->next;
2075 				continue;
2076 			}
2077 
2078 			/*
2079 			 * The entry is being newly wired, we have to setup
2080 			 * appropriate management structures.  A shadow
2081 			 * object is required for a copy-on-write region,
2082 			 * or a normal object for a zero-fill region.  We
2083 			 * do not have to do this for entries that point to sub
2084 			 * maps because we won't hold the lock on the sub map.
2085 			 */
2086 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2087 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2088 				if (copyflag &&
2089 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2090 					vm_map_entry_shadow(entry);
2091 				} else if (entry->object.vm_object == NULL &&
2092 					   !map->system_map) {
2093 					vm_map_entry_allocate_object(entry);
2094 				}
2095 			}
2096 
2097 			entry->wired_count++;
2098 			entry = entry->next;
2099 		}
2100 
2101 		/*
2102 		 * Pass 2.
2103 		 */
2104 
2105 		/*
2106 		 * HACK HACK HACK HACK
2107 		 *
2108 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2109 		 * protects us from most changes but note that
2110 		 * clipping may still occur.  To prevent clipping from
2111 		 * occuring after the unlock, except for when we are
2112 		 * blocking in vm_fault_wire, we must run in a critical
2113 		 * section, otherwise our accesses to entry->start and
2114 		 * entry->end could be corrupted.  We have to enter the
2115 		 * critical section prior to unlocking so start_entry does
2116 		 * not change out from under us at the very beginning of the
2117 		 * loop.
2118 		 *
2119 		 * HACK HACK HACK HACK
2120 		 */
2121 
2122 		crit_enter();
2123 
2124 		entry = start_entry;
2125 		while (entry != &map->header && entry->start < end) {
2126 			/*
2127 			 * If vm_fault_wire fails for any page we need to undo
2128 			 * what has been done.  We decrement the wiring count
2129 			 * for those pages which have not yet been wired (now)
2130 			 * and unwire those that have (later).
2131 			 */
2132 			vm_offset_t save_start = entry->start;
2133 			vm_offset_t save_end = entry->end;
2134 
2135 			if (entry->wired_count == 1)
2136 				rv = vm_fault_wire(map, entry, FALSE);
2137 			if (rv) {
2138 				CLIP_CHECK_BACK(entry, save_start);
2139 				for (;;) {
2140 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2141 					entry->wired_count = 0;
2142 					if (entry->end == save_end)
2143 						break;
2144 					entry = entry->next;
2145 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2146 				}
2147 				end = save_start;
2148 				break;
2149 			}
2150 			CLIP_CHECK_FWD(entry, save_end);
2151 			entry = entry->next;
2152 		}
2153 		crit_exit();
2154 
2155 		/*
2156 		 * If a failure occured undo everything by falling through
2157 		 * to the unwiring code.  'end' has already been adjusted
2158 		 * appropriately.
2159 		 */
2160 		if (rv)
2161 			kmflags |= KM_PAGEABLE;
2162 
2163 		/*
2164 		 * start_entry is still IN_TRANSITION but may have been
2165 		 * clipped since vm_fault_wire() unlocks and relocks the
2166 		 * map.  No matter how clipped it has gotten there should
2167 		 * be a fragment that is on our start boundary.
2168 		 */
2169 		CLIP_CHECK_BACK(start_entry, start);
2170 	}
2171 
2172 	if (kmflags & KM_PAGEABLE) {
2173 		/*
2174 		 * This is the unwiring case.  We must first ensure that the
2175 		 * range to be unwired is really wired down.  We know there
2176 		 * are no holes.
2177 		 */
2178 		entry = start_entry;
2179 		while ((entry != &map->header) && (entry->start < end)) {
2180 			if (entry->wired_count == 0) {
2181 				rv = KERN_INVALID_ARGUMENT;
2182 				goto done;
2183 			}
2184 			entry = entry->next;
2185 		}
2186 
2187 		/*
2188 		 * Now decrement the wiring count for each region. If a region
2189 		 * becomes completely unwired, unwire its physical pages and
2190 		 * mappings.
2191 		 */
2192 		entry = start_entry;
2193 		while ((entry != &map->header) && (entry->start < end)) {
2194 			entry->wired_count--;
2195 			if (entry->wired_count == 0)
2196 				vm_fault_unwire(map, entry);
2197 			entry = entry->next;
2198 		}
2199 	}
2200 done:
2201 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2202 		MAP_CLIP_NO_HOLES);
2203 	map->timestamp++;
2204 	vm_map_unlock(map);
2205 failure:
2206 	if (kmflags & KM_KRESERVE)
2207 		vm_map_entry_krelease(count);
2208 	else
2209 		vm_map_entry_release(count);
2210 	return (rv);
2211 }
2212 
2213 /*
2214  * vm_map_set_wired_quick()
2215  *
2216  *	Mark a newly allocated address range as wired but do not fault in
2217  *	the pages.  The caller is expected to load the pages into the object.
2218  *
2219  *	The map must be locked on entry and will remain locked on return.
2220  */
2221 void
2222 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2223 {
2224 	vm_map_entry_t scan;
2225 	vm_map_entry_t entry;
2226 
2227 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2228 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2229 	    KKASSERT(entry->wired_count == 0);
2230 	    entry->wired_count = 1;
2231 	}
2232 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2233 }
2234 
2235 /*
2236  * vm_map_clean
2237  *
2238  * Push any dirty cached pages in the address range to their pager.
2239  * If syncio is TRUE, dirty pages are written synchronously.
2240  * If invalidate is TRUE, any cached pages are freed as well.
2241  *
2242  * Returns an error if any part of the specified range is not mapped.
2243  */
2244 int
2245 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2246     boolean_t invalidate)
2247 {
2248 	vm_map_entry_t current;
2249 	vm_map_entry_t entry;
2250 	vm_size_t size;
2251 	vm_object_t object;
2252 	vm_ooffset_t offset;
2253 
2254 	vm_map_lock_read(map);
2255 	VM_MAP_RANGE_CHECK(map, start, end);
2256 	if (!vm_map_lookup_entry(map, start, &entry)) {
2257 		vm_map_unlock_read(map);
2258 		return (KERN_INVALID_ADDRESS);
2259 	}
2260 	/*
2261 	 * Make a first pass to check for holes.
2262 	 */
2263 	for (current = entry; current->start < end; current = current->next) {
2264 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2265 			vm_map_unlock_read(map);
2266 			return (KERN_INVALID_ARGUMENT);
2267 		}
2268 		if (end > current->end &&
2269 		    (current->next == &map->header ||
2270 			current->end != current->next->start)) {
2271 			vm_map_unlock_read(map);
2272 			return (KERN_INVALID_ADDRESS);
2273 		}
2274 	}
2275 
2276 	if (invalidate)
2277 		pmap_remove(vm_map_pmap(map), start, end);
2278 	/*
2279 	 * Make a second pass, cleaning/uncaching pages from the indicated
2280 	 * objects as we go.
2281 	 */
2282 	for (current = entry; current->start < end; current = current->next) {
2283 		offset = current->offset + (start - current->start);
2284 		size = (end <= current->end ? end : current->end) - start;
2285 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2286 			vm_map_t smap;
2287 			vm_map_entry_t tentry;
2288 			vm_size_t tsize;
2289 
2290 			smap = current->object.sub_map;
2291 			vm_map_lock_read(smap);
2292 			vm_map_lookup_entry(smap, offset, &tentry);
2293 			tsize = tentry->end - offset;
2294 			if (tsize < size)
2295 				size = tsize;
2296 			object = tentry->object.vm_object;
2297 			offset = tentry->offset + (offset - tentry->start);
2298 			vm_map_unlock_read(smap);
2299 		} else {
2300 			object = current->object.vm_object;
2301 		}
2302 		/*
2303 		 * Note that there is absolutely no sense in writing out
2304 		 * anonymous objects, so we track down the vnode object
2305 		 * to write out.
2306 		 * We invalidate (remove) all pages from the address space
2307 		 * anyway, for semantic correctness.
2308 		 *
2309 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2310 		 * may start out with a NULL object.
2311 		 */
2312 		while (object && object->backing_object) {
2313 			offset += object->backing_object_offset;
2314 			object = object->backing_object;
2315 			if (object->size < OFF_TO_IDX( offset + size))
2316 				size = IDX_TO_OFF(object->size) - offset;
2317 		}
2318 		if (object && (object->type == OBJT_VNODE) &&
2319 		    (current->protection & VM_PROT_WRITE)) {
2320 			/*
2321 			 * Flush pages if writing is allowed, invalidate them
2322 			 * if invalidation requested.  Pages undergoing I/O
2323 			 * will be ignored by vm_object_page_remove().
2324 			 *
2325 			 * We cannot lock the vnode and then wait for paging
2326 			 * to complete without deadlocking against vm_fault.
2327 			 * Instead we simply call vm_object_page_remove() and
2328 			 * allow it to block internally on a page-by-page
2329 			 * basis when it encounters pages undergoing async
2330 			 * I/O.
2331 			 */
2332 			int flags;
2333 
2334 			vm_object_reference(object);
2335 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2336 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2337 			flags |= invalidate ? OBJPC_INVAL : 0;
2338 
2339 			/*
2340 			 * When operating on a virtual page table just
2341 			 * flush the whole object.  XXX we probably ought
2342 			 * to
2343 			 */
2344 			switch(current->maptype) {
2345 			case VM_MAPTYPE_NORMAL:
2346 				vm_object_page_clean(object,
2347 				    OFF_TO_IDX(offset),
2348 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2349 				    flags);
2350 				break;
2351 			case VM_MAPTYPE_VPAGETABLE:
2352 				vm_object_page_clean(object, 0, 0, flags);
2353 				break;
2354 			}
2355 			vn_unlock(((struct vnode *)object->handle));
2356 			vm_object_deallocate(object);
2357 		}
2358 		if (object && invalidate &&
2359 		   ((object->type == OBJT_VNODE) ||
2360 		    (object->type == OBJT_DEVICE))) {
2361 			int clean_only =
2362 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2363 			vm_object_reference(object);
2364 			switch(current->maptype) {
2365 			case VM_MAPTYPE_NORMAL:
2366 				vm_object_page_remove(object,
2367 				    OFF_TO_IDX(offset),
2368 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2369 				    clean_only);
2370 				break;
2371 			case VM_MAPTYPE_VPAGETABLE:
2372 				vm_object_page_remove(object, 0, 0, clean_only);
2373 				break;
2374 			}
2375 			vm_object_deallocate(object);
2376 		}
2377 		start += size;
2378 	}
2379 
2380 	vm_map_unlock_read(map);
2381 	return (KERN_SUCCESS);
2382 }
2383 
2384 /*
2385  *	vm_map_entry_unwire:	[ internal use only ]
2386  *
2387  *	Make the region specified by this entry pageable.
2388  *
2389  *	The map in question should be locked.
2390  *	[This is the reason for this routine's existence.]
2391  */
2392 static void
2393 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2394 {
2395 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2396 	entry->wired_count = 0;
2397 	vm_fault_unwire(map, entry);
2398 }
2399 
2400 /*
2401  *	vm_map_entry_delete:	[ internal use only ]
2402  *
2403  *	Deallocate the given entry from the target map.
2404  */
2405 static void
2406 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2407 {
2408 	vm_map_entry_unlink(map, entry);
2409 	map->size -= entry->end - entry->start;
2410 
2411 	switch(entry->maptype) {
2412 	case VM_MAPTYPE_NORMAL:
2413 	case VM_MAPTYPE_VPAGETABLE:
2414 		vm_object_deallocate(entry->object.vm_object);
2415 		break;
2416 	default:
2417 		break;
2418 	}
2419 
2420 	vm_map_entry_dispose(map, entry, countp);
2421 }
2422 
2423 /*
2424  *	vm_map_delete:	[ internal use only ]
2425  *
2426  *	Deallocates the given address range from the target
2427  *	map.
2428  */
2429 int
2430 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2431 {
2432 	vm_object_t object;
2433 	vm_map_entry_t entry;
2434 	vm_map_entry_t first_entry;
2435 
2436 again:
2437 	/*
2438 	 * Find the start of the region, and clip it.  Set entry to point
2439 	 * at the first record containing the requested address or, if no
2440 	 * such record exists, the next record with a greater address.  The
2441 	 * loop will run from this point until a record beyond the termination
2442 	 * address is encountered.
2443 	 *
2444 	 * map->hint must be adjusted to not point to anything we delete,
2445 	 * so set it to the entry prior to the one being deleted.
2446 	 *
2447 	 * GGG see other GGG comment.
2448 	 */
2449 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2450 		entry = first_entry;
2451 		vm_map_clip_start(map, entry, start, countp);
2452 		map->hint = entry->prev;	/* possible problem XXX */
2453 	} else {
2454 		map->hint = first_entry;	/* possible problem XXX */
2455 		entry = first_entry->next;
2456 	}
2457 
2458 	/*
2459 	 * If a hole opens up prior to the current first_free then
2460 	 * adjust first_free.  As with map->hint, map->first_free
2461 	 * cannot be left set to anything we might delete.
2462 	 */
2463 	if (entry == &map->header) {
2464 		map->first_free = &map->header;
2465 	} else if (map->first_free->start >= start) {
2466 		map->first_free = entry->prev;
2467 	}
2468 
2469 	/*
2470 	 * Step through all entries in this region
2471 	 */
2472 
2473 	while ((entry != &map->header) && (entry->start < end)) {
2474 		vm_map_entry_t next;
2475 		vm_offset_t s, e;
2476 		vm_pindex_t offidxstart, offidxend, count;
2477 
2478 		/*
2479 		 * If we hit an in-transition entry we have to sleep and
2480 		 * retry.  It's easier (and not really slower) to just retry
2481 		 * since this case occurs so rarely and the hint is already
2482 		 * pointing at the right place.  We have to reset the
2483 		 * start offset so as not to accidently delete an entry
2484 		 * another process just created in vacated space.
2485 		 */
2486 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2487 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2488 			start = entry->start;
2489 			++mycpu->gd_cnt.v_intrans_coll;
2490 			++mycpu->gd_cnt.v_intrans_wait;
2491 			vm_map_transition_wait(map);
2492 			goto again;
2493 		}
2494 		vm_map_clip_end(map, entry, end, countp);
2495 
2496 		s = entry->start;
2497 		e = entry->end;
2498 		next = entry->next;
2499 
2500 		offidxstart = OFF_TO_IDX(entry->offset);
2501 		count = OFF_TO_IDX(e - s);
2502 		object = entry->object.vm_object;
2503 
2504 		/*
2505 		 * Unwire before removing addresses from the pmap; otherwise,
2506 		 * unwiring will put the entries back in the pmap.
2507 		 */
2508 		if (entry->wired_count != 0)
2509 			vm_map_entry_unwire(map, entry);
2510 
2511 		offidxend = offidxstart + count;
2512 
2513 		if (object == &kernel_object) {
2514 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2515 		} else {
2516 			pmap_remove(map->pmap, s, e);
2517 			if (object != NULL &&
2518 			    object->ref_count != 1 &&
2519 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2520 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2521 				vm_object_collapse(object);
2522 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2523 				if (object->type == OBJT_SWAP) {
2524 					swap_pager_freespace(object, offidxstart, count);
2525 				}
2526 				if (offidxend >= object->size &&
2527 				    offidxstart < object->size) {
2528 					object->size = offidxstart;
2529 				}
2530 			}
2531 		}
2532 
2533 		/*
2534 		 * Delete the entry (which may delete the object) only after
2535 		 * removing all pmap entries pointing to its pages.
2536 		 * (Otherwise, its page frames may be reallocated, and any
2537 		 * modify bits will be set in the wrong object!)
2538 		 */
2539 		vm_map_entry_delete(map, entry, countp);
2540 		entry = next;
2541 	}
2542 	return (KERN_SUCCESS);
2543 }
2544 
2545 /*
2546  *	vm_map_remove:
2547  *
2548  *	Remove the given address range from the target map.
2549  *	This is the exported form of vm_map_delete.
2550  */
2551 int
2552 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2553 {
2554 	int result;
2555 	int count;
2556 
2557 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2558 	vm_map_lock(map);
2559 	VM_MAP_RANGE_CHECK(map, start, end);
2560 	result = vm_map_delete(map, start, end, &count);
2561 	vm_map_unlock(map);
2562 	vm_map_entry_release(count);
2563 
2564 	return (result);
2565 }
2566 
2567 /*
2568  *	vm_map_check_protection:
2569  *
2570  *	Assert that the target map allows the specified
2571  *	privilege on the entire address region given.
2572  *	The entire region must be allocated.
2573  */
2574 boolean_t
2575 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2576 			vm_prot_t protection)
2577 {
2578 	vm_map_entry_t entry;
2579 	vm_map_entry_t tmp_entry;
2580 
2581 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2582 		return (FALSE);
2583 	}
2584 	entry = tmp_entry;
2585 
2586 	while (start < end) {
2587 		if (entry == &map->header) {
2588 			return (FALSE);
2589 		}
2590 		/*
2591 		 * No holes allowed!
2592 		 */
2593 
2594 		if (start < entry->start) {
2595 			return (FALSE);
2596 		}
2597 		/*
2598 		 * Check protection associated with entry.
2599 		 */
2600 
2601 		if ((entry->protection & protection) != protection) {
2602 			return (FALSE);
2603 		}
2604 		/* go to next entry */
2605 
2606 		start = entry->end;
2607 		entry = entry->next;
2608 	}
2609 	return (TRUE);
2610 }
2611 
2612 /*
2613  * Split the pages in a map entry into a new object.  This affords
2614  * easier removal of unused pages, and keeps object inheritance from
2615  * being a negative impact on memory usage.
2616  */
2617 static void
2618 vm_map_split(vm_map_entry_t entry)
2619 {
2620 	vm_page_t m;
2621 	vm_object_t orig_object, new_object, source;
2622 	vm_offset_t s, e;
2623 	vm_pindex_t offidxstart, offidxend, idx;
2624 	vm_size_t size;
2625 	vm_ooffset_t offset;
2626 
2627 	orig_object = entry->object.vm_object;
2628 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2629 		return;
2630 	if (orig_object->ref_count <= 1)
2631 		return;
2632 
2633 	offset = entry->offset;
2634 	s = entry->start;
2635 	e = entry->end;
2636 
2637 	offidxstart = OFF_TO_IDX(offset);
2638 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2639 	size = offidxend - offidxstart;
2640 
2641 	new_object = vm_pager_allocate(orig_object->type, NULL,
2642 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2643 	if (new_object == NULL)
2644 		return;
2645 
2646 	source = orig_object->backing_object;
2647 	if (source != NULL) {
2648 		vm_object_reference(source);	/* Referenced by new_object */
2649 		LIST_INSERT_HEAD(&source->shadow_head,
2650 				  new_object, shadow_list);
2651 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2652 		new_object->backing_object_offset =
2653 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2654 		new_object->backing_object = source;
2655 		source->shadow_count++;
2656 		source->generation++;
2657 	}
2658 
2659 	for (idx = 0; idx < size; idx++) {
2660 		vm_page_t m;
2661 
2662 		/*
2663 		 * A critical section is required to avoid a race between
2664 		 * the lookup and an interrupt/unbusy/free and our busy
2665 		 * check.
2666 		 */
2667 		crit_enter();
2668 	retry:
2669 		m = vm_page_lookup(orig_object, offidxstart + idx);
2670 		if (m == NULL) {
2671 			crit_exit();
2672 			continue;
2673 		}
2674 
2675 		/*
2676 		 * We must wait for pending I/O to complete before we can
2677 		 * rename the page.
2678 		 *
2679 		 * We do not have to VM_PROT_NONE the page as mappings should
2680 		 * not be changed by this operation.
2681 		 */
2682 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2683 			goto retry;
2684 		vm_page_busy(m);
2685 		vm_page_rename(m, new_object, idx);
2686 		/* page automatically made dirty by rename and cache handled */
2687 		vm_page_busy(m);
2688 		crit_exit();
2689 	}
2690 
2691 	if (orig_object->type == OBJT_SWAP) {
2692 		vm_object_pip_add(orig_object, 1);
2693 		/*
2694 		 * copy orig_object pages into new_object
2695 		 * and destroy unneeded pages in
2696 		 * shadow object.
2697 		 */
2698 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2699 		vm_object_pip_wakeup(orig_object);
2700 	}
2701 
2702 	/*
2703 	 * Wakeup the pages we played with.  No spl protection is needed
2704 	 * for a simple wakeup.
2705 	 */
2706 	for (idx = 0; idx < size; idx++) {
2707 		m = vm_page_lookup(new_object, idx);
2708 		if (m)
2709 			vm_page_wakeup(m);
2710 	}
2711 
2712 	entry->object.vm_object = new_object;
2713 	entry->offset = 0LL;
2714 	vm_object_deallocate(orig_object);
2715 }
2716 
2717 /*
2718  *	vm_map_copy_entry:
2719  *
2720  *	Copies the contents of the source entry to the destination
2721  *	entry.  The entries *must* be aligned properly.
2722  */
2723 static void
2724 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2725 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2726 {
2727 	vm_object_t src_object;
2728 
2729 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2730 		return;
2731 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2732 		return;
2733 
2734 	if (src_entry->wired_count == 0) {
2735 		/*
2736 		 * If the source entry is marked needs_copy, it is already
2737 		 * write-protected.
2738 		 */
2739 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2740 			pmap_protect(src_map->pmap,
2741 			    src_entry->start,
2742 			    src_entry->end,
2743 			    src_entry->protection & ~VM_PROT_WRITE);
2744 		}
2745 
2746 		/*
2747 		 * Make a copy of the object.
2748 		 */
2749 		if ((src_object = src_entry->object.vm_object) != NULL) {
2750 			if ((src_object->handle == NULL) &&
2751 				(src_object->type == OBJT_DEFAULT ||
2752 				 src_object->type == OBJT_SWAP)) {
2753 				vm_object_collapse(src_object);
2754 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2755 					vm_map_split(src_entry);
2756 					src_object = src_entry->object.vm_object;
2757 				}
2758 			}
2759 
2760 			vm_object_reference(src_object);
2761 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2762 			dst_entry->object.vm_object = src_object;
2763 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2764 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2765 			dst_entry->offset = src_entry->offset;
2766 		} else {
2767 			dst_entry->object.vm_object = NULL;
2768 			dst_entry->offset = 0;
2769 		}
2770 
2771 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2772 		    dst_entry->end - dst_entry->start, src_entry->start);
2773 	} else {
2774 		/*
2775 		 * Of course, wired down pages can't be set copy-on-write.
2776 		 * Cause wired pages to be copied into the new map by
2777 		 * simulating faults (the new pages are pageable)
2778 		 */
2779 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2780 	}
2781 }
2782 
2783 /*
2784  * vmspace_fork:
2785  * Create a new process vmspace structure and vm_map
2786  * based on those of an existing process.  The new map
2787  * is based on the old map, according to the inheritance
2788  * values on the regions in that map.
2789  *
2790  * The source map must not be locked.
2791  */
2792 struct vmspace *
2793 vmspace_fork(struct vmspace *vm1)
2794 {
2795 	struct vmspace *vm2;
2796 	vm_map_t old_map = &vm1->vm_map;
2797 	vm_map_t new_map;
2798 	vm_map_entry_t old_entry;
2799 	vm_map_entry_t new_entry;
2800 	vm_object_t object;
2801 	int count;
2802 
2803 	vm_map_lock(old_map);
2804 	old_map->infork = 1;
2805 
2806 	/*
2807 	 * XXX Note: upcalls are not copied.
2808 	 */
2809 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2810 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2811 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2812 	new_map = &vm2->vm_map;	/* XXX */
2813 	new_map->timestamp = 1;
2814 
2815 	count = 0;
2816 	old_entry = old_map->header.next;
2817 	while (old_entry != &old_map->header) {
2818 		++count;
2819 		old_entry = old_entry->next;
2820 	}
2821 
2822 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2823 
2824 	old_entry = old_map->header.next;
2825 	while (old_entry != &old_map->header) {
2826 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2827 			panic("vm_map_fork: encountered a submap");
2828 
2829 		switch (old_entry->inheritance) {
2830 		case VM_INHERIT_NONE:
2831 			break;
2832 
2833 		case VM_INHERIT_SHARE:
2834 			/*
2835 			 * Clone the entry, creating the shared object if
2836 			 * necessary.
2837 			 */
2838 			object = old_entry->object.vm_object;
2839 			if (object == NULL) {
2840 				vm_map_entry_allocate_object(old_entry);
2841 				object = old_entry->object.vm_object;
2842 			}
2843 
2844 			/*
2845 			 * Add the reference before calling vm_map_entry_shadow
2846 			 * to insure that a shadow object is created.
2847 			 */
2848 			vm_object_reference(object);
2849 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2850 				vm_map_entry_shadow(old_entry);
2851 				/* Transfer the second reference too. */
2852 				vm_object_reference(
2853 				    old_entry->object.vm_object);
2854 				vm_object_deallocate(object);
2855 				object = old_entry->object.vm_object;
2856 			}
2857 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2858 
2859 			/*
2860 			 * Clone the entry, referencing the shared object.
2861 			 */
2862 			new_entry = vm_map_entry_create(new_map, &count);
2863 			*new_entry = *old_entry;
2864 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2865 			new_entry->wired_count = 0;
2866 
2867 			/*
2868 			 * Insert the entry into the new map -- we know we're
2869 			 * inserting at the end of the new map.
2870 			 */
2871 
2872 			vm_map_entry_link(new_map, new_map->header.prev,
2873 			    new_entry);
2874 
2875 			/*
2876 			 * Update the physical map
2877 			 */
2878 
2879 			pmap_copy(new_map->pmap, old_map->pmap,
2880 			    new_entry->start,
2881 			    (old_entry->end - old_entry->start),
2882 			    old_entry->start);
2883 			break;
2884 
2885 		case VM_INHERIT_COPY:
2886 			/*
2887 			 * Clone the entry and link into the map.
2888 			 */
2889 			new_entry = vm_map_entry_create(new_map, &count);
2890 			*new_entry = *old_entry;
2891 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2892 			new_entry->wired_count = 0;
2893 			new_entry->object.vm_object = NULL;
2894 			vm_map_entry_link(new_map, new_map->header.prev,
2895 			    new_entry);
2896 			vm_map_copy_entry(old_map, new_map, old_entry,
2897 			    new_entry);
2898 			break;
2899 		}
2900 		old_entry = old_entry->next;
2901 	}
2902 
2903 	new_map->size = old_map->size;
2904 	old_map->infork = 0;
2905 	vm_map_unlock(old_map);
2906 	vm_map_entry_release(count);
2907 
2908 	return (vm2);
2909 }
2910 
2911 int
2912 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2913 	      vm_prot_t prot, vm_prot_t max, int cow)
2914 {
2915 	vm_map_entry_t prev_entry;
2916 	vm_map_entry_t new_stack_entry;
2917 	vm_size_t      init_ssize;
2918 	int            rv;
2919 	int		count;
2920 
2921 	if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
2922 		return (KERN_NO_SPACE);
2923 
2924 	if (max_ssize < sgrowsiz)
2925 		init_ssize = max_ssize;
2926 	else
2927 		init_ssize = sgrowsiz;
2928 
2929 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2930 	vm_map_lock(map);
2931 
2932 	/* If addr is already mapped, no go */
2933 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2934 		vm_map_unlock(map);
2935 		vm_map_entry_release(count);
2936 		return (KERN_NO_SPACE);
2937 	}
2938 
2939 	/* If we would blow our VMEM resource limit, no go */
2940 	if (map->size + init_ssize >
2941 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2942 		vm_map_unlock(map);
2943 		vm_map_entry_release(count);
2944 		return (KERN_NO_SPACE);
2945 	}
2946 
2947 	/* If we can't accomodate max_ssize in the current mapping,
2948 	 * no go.  However, we need to be aware that subsequent user
2949 	 * mappings might map into the space we have reserved for
2950 	 * stack, and currently this space is not protected.
2951 	 *
2952 	 * Hopefully we will at least detect this condition
2953 	 * when we try to grow the stack.
2954 	 */
2955 	if ((prev_entry->next != &map->header) &&
2956 	    (prev_entry->next->start < addrbos + max_ssize)) {
2957 		vm_map_unlock(map);
2958 		vm_map_entry_release(count);
2959 		return (KERN_NO_SPACE);
2960 	}
2961 
2962 	/* We initially map a stack of only init_ssize.  We will
2963 	 * grow as needed later.  Since this is to be a grow
2964 	 * down stack, we map at the top of the range.
2965 	 *
2966 	 * Note: we would normally expect prot and max to be
2967 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2968 	 * eliminate these as input parameters, and just
2969 	 * pass these values here in the insert call.
2970 	 */
2971 	rv = vm_map_insert(map, &count,
2972 			   NULL, 0, addrbos + max_ssize - init_ssize,
2973 	                   addrbos + max_ssize,
2974 			   VM_MAPTYPE_NORMAL,
2975 			   prot, max,
2976 			   cow);
2977 
2978 	/* Now set the avail_ssize amount */
2979 	if (rv == KERN_SUCCESS) {
2980 		if (prev_entry != &map->header)
2981 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2982 		new_stack_entry = prev_entry->next;
2983 		if (new_stack_entry->end   != addrbos + max_ssize ||
2984 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2985 			panic ("Bad entry start/end for new stack entry");
2986 		else
2987 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
2988 	}
2989 
2990 	vm_map_unlock(map);
2991 	vm_map_entry_release(count);
2992 	return (rv);
2993 }
2994 
2995 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2996  * desired address is already mapped, or if we successfully grow
2997  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2998  * stack range (this is strange, but preserves compatibility with
2999  * the grow function in vm_machdep.c).
3000  */
3001 int
3002 vm_map_growstack (struct proc *p, vm_offset_t addr)
3003 {
3004 	vm_map_entry_t prev_entry;
3005 	vm_map_entry_t stack_entry;
3006 	vm_map_entry_t new_stack_entry;
3007 	struct vmspace *vm = p->p_vmspace;
3008 	vm_map_t map = &vm->vm_map;
3009 	vm_offset_t    end;
3010 	int grow_amount;
3011 	int rv = KERN_SUCCESS;
3012 	int is_procstack;
3013 	int use_read_lock = 1;
3014 	int count;
3015 
3016 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3017 Retry:
3018 	if (use_read_lock)
3019 		vm_map_lock_read(map);
3020 	else
3021 		vm_map_lock(map);
3022 
3023 	/* If addr is already in the entry range, no need to grow.*/
3024 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3025 		goto done;
3026 
3027 	if ((stack_entry = prev_entry->next) == &map->header)
3028 		goto done;
3029 	if (prev_entry == &map->header)
3030 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3031 	else
3032 		end = prev_entry->end;
3033 
3034 	/* This next test mimics the old grow function in vm_machdep.c.
3035 	 * It really doesn't quite make sense, but we do it anyway
3036 	 * for compatibility.
3037 	 *
3038 	 * If not growable stack, return success.  This signals the
3039 	 * caller to proceed as he would normally with normal vm.
3040 	 */
3041 	if (stack_entry->aux.avail_ssize < 1 ||
3042 	    addr >= stack_entry->start ||
3043 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3044 		goto done;
3045 	}
3046 
3047 	/* Find the minimum grow amount */
3048 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3049 	if (grow_amount > stack_entry->aux.avail_ssize) {
3050 		rv = KERN_NO_SPACE;
3051 		goto done;
3052 	}
3053 
3054 	/* If there is no longer enough space between the entries
3055 	 * nogo, and adjust the available space.  Note: this
3056 	 * should only happen if the user has mapped into the
3057 	 * stack area after the stack was created, and is
3058 	 * probably an error.
3059 	 *
3060 	 * This also effectively destroys any guard page the user
3061 	 * might have intended by limiting the stack size.
3062 	 */
3063 	if (grow_amount > stack_entry->start - end) {
3064 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3065 			use_read_lock = 0;
3066 			goto Retry;
3067 		}
3068 		use_read_lock = 0;
3069 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3070 		rv = KERN_NO_SPACE;
3071 		goto done;
3072 	}
3073 
3074 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3075 
3076 	/* If this is the main process stack, see if we're over the
3077 	 * stack limit.
3078 	 */
3079 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3080 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3081 		rv = KERN_NO_SPACE;
3082 		goto done;
3083 	}
3084 
3085 	/* Round up the grow amount modulo SGROWSIZ */
3086 	grow_amount = roundup (grow_amount, sgrowsiz);
3087 	if (grow_amount > stack_entry->aux.avail_ssize) {
3088 		grow_amount = stack_entry->aux.avail_ssize;
3089 	}
3090 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3091 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3092 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3093 		              ctob(vm->vm_ssize);
3094 	}
3095 
3096 	/* If we would blow our VMEM resource limit, no go */
3097 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3098 		rv = KERN_NO_SPACE;
3099 		goto done;
3100 	}
3101 
3102 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3103 		use_read_lock = 0;
3104 		goto Retry;
3105 	}
3106 	use_read_lock = 0;
3107 
3108 	/* Get the preliminary new entry start value */
3109 	addr = stack_entry->start - grow_amount;
3110 
3111 	/* If this puts us into the previous entry, cut back our growth
3112 	 * to the available space.  Also, see the note above.
3113 	 */
3114 	if (addr < end) {
3115 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3116 		addr = end;
3117 	}
3118 
3119 	rv = vm_map_insert(map, &count,
3120 			   NULL, 0, addr, stack_entry->start,
3121 			   VM_MAPTYPE_NORMAL,
3122 			   VM_PROT_ALL, VM_PROT_ALL,
3123 			   0);
3124 
3125 	/* Adjust the available stack space by the amount we grew. */
3126 	if (rv == KERN_SUCCESS) {
3127 		if (prev_entry != &map->header)
3128 			vm_map_clip_end(map, prev_entry, addr, &count);
3129 		new_stack_entry = prev_entry->next;
3130 		if (new_stack_entry->end   != stack_entry->start  ||
3131 		    new_stack_entry->start != addr)
3132 			panic ("Bad stack grow start/end in new stack entry");
3133 		else {
3134 			new_stack_entry->aux.avail_ssize =
3135 				stack_entry->aux.avail_ssize -
3136 				(new_stack_entry->end - new_stack_entry->start);
3137 			if (is_procstack)
3138 				vm->vm_ssize += btoc(new_stack_entry->end -
3139 						     new_stack_entry->start);
3140 		}
3141 	}
3142 
3143 done:
3144 	if (use_read_lock)
3145 		vm_map_unlock_read(map);
3146 	else
3147 		vm_map_unlock(map);
3148 	vm_map_entry_release(count);
3149 	return (rv);
3150 }
3151 
3152 /*
3153  * Unshare the specified VM space for exec.  If other processes are
3154  * mapped to it, then create a new one.  The new vmspace is null.
3155  */
3156 
3157 void
3158 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3159 {
3160 	struct vmspace *oldvmspace = p->p_vmspace;
3161 	struct vmspace *newvmspace;
3162 	vm_map_t map = &p->p_vmspace->vm_map;
3163 
3164 	/*
3165 	 * If we are execing a resident vmspace we fork it, otherwise
3166 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3167 	 * are not copied to the new vmspace.
3168 	 */
3169 	if (vmcopy)  {
3170 	    newvmspace = vmspace_fork(vmcopy);
3171 	} else {
3172 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3173 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3174 		(caddr_t)&oldvmspace->vm_endcopy -
3175 		    (caddr_t)&oldvmspace->vm_startcopy);
3176 	}
3177 
3178 	/*
3179 	 * This code is written like this for prototype purposes.  The
3180 	 * goal is to avoid running down the vmspace here, but let the
3181 	 * other process's that are still using the vmspace to finally
3182 	 * run it down.  Even though there is little or no chance of blocking
3183 	 * here, it is a good idea to keep this form for future mods.
3184 	 */
3185 	p->p_vmspace = newvmspace;
3186 	pmap_pinit2(vmspace_pmap(newvmspace));
3187 	if (p == curproc)
3188 		pmap_activate(p);
3189 	vmspace_free(oldvmspace);
3190 }
3191 
3192 /*
3193  * Unshare the specified VM space for forcing COW.  This
3194  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3195  *
3196  * The exitingcnt test is not strictly necessary but has been
3197  * included for code sanity (to make the code a bit more deterministic).
3198  */
3199 
3200 void
3201 vmspace_unshare(struct proc *p)
3202 {
3203 	struct vmspace *oldvmspace = p->p_vmspace;
3204 	struct vmspace *newvmspace;
3205 
3206 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3207 		return;
3208 	newvmspace = vmspace_fork(oldvmspace);
3209 	p->p_vmspace = newvmspace;
3210 	pmap_pinit2(vmspace_pmap(newvmspace));
3211 	if (p == curproc)
3212 		pmap_activate(p);
3213 	vmspace_free(oldvmspace);
3214 }
3215 
3216 /*
3217  *	vm_map_lookup:
3218  *
3219  *	Finds the VM object, offset, and
3220  *	protection for a given virtual address in the
3221  *	specified map, assuming a page fault of the
3222  *	type specified.
3223  *
3224  *	Leaves the map in question locked for read; return
3225  *	values are guaranteed until a vm_map_lookup_done
3226  *	call is performed.  Note that the map argument
3227  *	is in/out; the returned map must be used in
3228  *	the call to vm_map_lookup_done.
3229  *
3230  *	A handle (out_entry) is returned for use in
3231  *	vm_map_lookup_done, to make that fast.
3232  *
3233  *	If a lookup is requested with "write protection"
3234  *	specified, the map may be changed to perform virtual
3235  *	copying operations, although the data referenced will
3236  *	remain the same.
3237  */
3238 int
3239 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3240 	      vm_offset_t vaddr,
3241 	      vm_prot_t fault_typea,
3242 	      vm_map_entry_t *out_entry,	/* OUT */
3243 	      vm_object_t *object,		/* OUT */
3244 	      vm_pindex_t *pindex,		/* OUT */
3245 	      vm_prot_t *out_prot,		/* OUT */
3246 	      boolean_t *wired)			/* OUT */
3247 {
3248 	vm_map_entry_t entry;
3249 	vm_map_t map = *var_map;
3250 	vm_prot_t prot;
3251 	vm_prot_t fault_type = fault_typea;
3252 	int use_read_lock = 1;
3253 	int rv = KERN_SUCCESS;
3254 
3255 RetryLookup:
3256 	if (use_read_lock)
3257 		vm_map_lock_read(map);
3258 	else
3259 		vm_map_lock(map);
3260 
3261 	/*
3262 	 * If the map has an interesting hint, try it before calling full
3263 	 * blown lookup routine.
3264 	 */
3265 	entry = map->hint;
3266 	*out_entry = entry;
3267 
3268 	if ((entry == &map->header) ||
3269 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3270 		vm_map_entry_t tmp_entry;
3271 
3272 		/*
3273 		 * Entry was either not a valid hint, or the vaddr was not
3274 		 * contained in the entry, so do a full lookup.
3275 		 */
3276 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3277 			rv = KERN_INVALID_ADDRESS;
3278 			goto done;
3279 		}
3280 
3281 		entry = tmp_entry;
3282 		*out_entry = entry;
3283 	}
3284 
3285 	/*
3286 	 * Handle submaps.
3287 	 */
3288 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3289 		vm_map_t old_map = map;
3290 
3291 		*var_map = map = entry->object.sub_map;
3292 		if (use_read_lock)
3293 			vm_map_unlock_read(old_map);
3294 		else
3295 			vm_map_unlock(old_map);
3296 		use_read_lock = 1;
3297 		goto RetryLookup;
3298 	}
3299 
3300 	/*
3301 	 * Check whether this task is allowed to have this page.
3302 	 * Note the special case for MAP_ENTRY_COW
3303 	 * pages with an override.  This is to implement a forced
3304 	 * COW for debuggers.
3305 	 */
3306 
3307 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3308 		prot = entry->max_protection;
3309 	else
3310 		prot = entry->protection;
3311 
3312 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3313 	if ((fault_type & prot) != fault_type) {
3314 		rv = KERN_PROTECTION_FAILURE;
3315 		goto done;
3316 	}
3317 
3318 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3319 	    (entry->eflags & MAP_ENTRY_COW) &&
3320 	    (fault_type & VM_PROT_WRITE) &&
3321 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3322 		rv = KERN_PROTECTION_FAILURE;
3323 		goto done;
3324 	}
3325 
3326 	/*
3327 	 * If this page is not pageable, we have to get it for all possible
3328 	 * accesses.
3329 	 */
3330 	*wired = (entry->wired_count != 0);
3331 	if (*wired)
3332 		prot = fault_type = entry->protection;
3333 
3334 	/*
3335 	 * Virtual page tables may need to update the accessed (A) bit
3336 	 * in a page table entry.  Upgrade the fault to a write fault for
3337 	 * that case if the map will support it.  If the map does not support
3338 	 * it the page table entry simply will not be updated.
3339 	 */
3340 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3341 		if (prot & VM_PROT_WRITE)
3342 			fault_type |= VM_PROT_WRITE;
3343 	}
3344 
3345 	/*
3346 	 * If the entry was copy-on-write, we either ...
3347 	 */
3348 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3349 		/*
3350 		 * If we want to write the page, we may as well handle that
3351 		 * now since we've got the map locked.
3352 		 *
3353 		 * If we don't need to write the page, we just demote the
3354 		 * permissions allowed.
3355 		 */
3356 
3357 		if (fault_type & VM_PROT_WRITE) {
3358 			/*
3359 			 * Make a new object, and place it in the object
3360 			 * chain.  Note that no new references have appeared
3361 			 * -- one just moved from the map to the new
3362 			 * object.
3363 			 */
3364 
3365 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3366 				use_read_lock = 0;
3367 				goto RetryLookup;
3368 			}
3369 			use_read_lock = 0;
3370 
3371 			vm_map_entry_shadow(entry);
3372 		} else {
3373 			/*
3374 			 * We're attempting to read a copy-on-write page --
3375 			 * don't allow writes.
3376 			 */
3377 
3378 			prot &= ~VM_PROT_WRITE;
3379 		}
3380 	}
3381 
3382 	/*
3383 	 * Create an object if necessary.
3384 	 */
3385 	if (entry->object.vm_object == NULL &&
3386 	    !map->system_map) {
3387 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3388 			use_read_lock = 0;
3389 			goto RetryLookup;
3390 		}
3391 		use_read_lock = 0;
3392 		vm_map_entry_allocate_object(entry);
3393 	}
3394 
3395 	/*
3396 	 * Return the object/offset from this entry.  If the entry was
3397 	 * copy-on-write or empty, it has been fixed up.
3398 	 */
3399 
3400 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3401 	*object = entry->object.vm_object;
3402 
3403 	/*
3404 	 * Return whether this is the only map sharing this data.  On
3405 	 * success we return with a read lock held on the map.  On failure
3406 	 * we return with the map unlocked.
3407 	 */
3408 	*out_prot = prot;
3409 done:
3410 	if (rv == KERN_SUCCESS) {
3411 		if (use_read_lock == 0)
3412 			vm_map_lock_downgrade(map);
3413 	} else if (use_read_lock) {
3414 		vm_map_unlock_read(map);
3415 	} else {
3416 		vm_map_unlock(map);
3417 	}
3418 	return (rv);
3419 }
3420 
3421 /*
3422  *	vm_map_lookup_done:
3423  *
3424  *	Releases locks acquired by a vm_map_lookup
3425  *	(according to the handle returned by that lookup).
3426  */
3427 
3428 void
3429 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3430 {
3431 	/*
3432 	 * Unlock the main-level map
3433 	 */
3434 	vm_map_unlock_read(map);
3435 	if (count)
3436 		vm_map_entry_release(count);
3437 }
3438 
3439 #include "opt_ddb.h"
3440 #ifdef DDB
3441 #include <sys/kernel.h>
3442 
3443 #include <ddb/ddb.h>
3444 
3445 /*
3446  *	vm_map_print:	[ debug ]
3447  */
3448 DB_SHOW_COMMAND(map, vm_map_print)
3449 {
3450 	static int nlines;
3451 	/* XXX convert args. */
3452 	vm_map_t map = (vm_map_t)addr;
3453 	boolean_t full = have_addr;
3454 
3455 	vm_map_entry_t entry;
3456 
3457 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3458 	    (void *)map,
3459 	    (void *)map->pmap, map->nentries, map->timestamp);
3460 	nlines++;
3461 
3462 	if (!full && db_indent)
3463 		return;
3464 
3465 	db_indent += 2;
3466 	for (entry = map->header.next; entry != &map->header;
3467 	    entry = entry->next) {
3468 		db_iprintf("map entry %p: start=%p, end=%p\n",
3469 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3470 		nlines++;
3471 		{
3472 			static char *inheritance_name[4] =
3473 			{"share", "copy", "none", "donate_copy"};
3474 
3475 			db_iprintf(" prot=%x/%x/%s",
3476 			    entry->protection,
3477 			    entry->max_protection,
3478 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3479 			if (entry->wired_count != 0)
3480 				db_printf(", wired");
3481 		}
3482 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3483 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3484 			db_printf(", share=%p, offset=0x%lx\n",
3485 			    (void *)entry->object.sub_map,
3486 			    (long)entry->offset);
3487 			nlines++;
3488 			if ((entry->prev == &map->header) ||
3489 			    (entry->prev->object.sub_map !=
3490 				entry->object.sub_map)) {
3491 				db_indent += 2;
3492 				vm_map_print((db_expr_t)(intptr_t)
3493 					     entry->object.sub_map,
3494 					     full, 0, (char *)0);
3495 				db_indent -= 2;
3496 			}
3497 		} else {
3498 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3499 			db_printf(", object=%p, offset=0x%lx",
3500 			    (void *)entry->object.vm_object,
3501 			    (long)entry->offset);
3502 			if (entry->eflags & MAP_ENTRY_COW)
3503 				db_printf(", copy (%s)",
3504 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3505 			db_printf("\n");
3506 			nlines++;
3507 
3508 			if ((entry->prev == &map->header) ||
3509 			    (entry->prev->object.vm_object !=
3510 				entry->object.vm_object)) {
3511 				db_indent += 2;
3512 				vm_object_print((db_expr_t)(intptr_t)
3513 						entry->object.vm_object,
3514 						full, 0, (char *)0);
3515 				nlines += 4;
3516 				db_indent -= 2;
3517 			}
3518 		}
3519 	}
3520 	db_indent -= 2;
3521 	if (db_indent == 0)
3522 		nlines = 0;
3523 }
3524 
3525 
3526 DB_SHOW_COMMAND(procvm, procvm)
3527 {
3528 	struct proc *p;
3529 
3530 	if (have_addr) {
3531 		p = (struct proc *) addr;
3532 	} else {
3533 		p = curproc;
3534 	}
3535 
3536 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3537 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3538 	    (void *)vmspace_pmap(p->p_vmspace));
3539 
3540 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3541 }
3542 
3543 #endif /* DDB */
3544