xref: /dragonfly/sys/vm/vm_map.c (revision 28c7b939)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.21 2004/01/20 18:41:52 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142 
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 		vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153 
154 void
155 vm_map_startup()
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172 	vm_offset_t min, max;
173 {
174 	struct vmspace *vm;
175 
176 	vm = zalloc(vmspace_zone);
177 	vm_map_init(&vm->vm_map, min, max);
178 	pmap_pinit(vmspace_pmap(vm));
179 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
180 	vm->vm_refcnt = 1;
181 	vm->vm_shm = NULL;
182 	vm->vm_exitingcnt = 0;
183 	return (vm);
184 }
185 
186 void
187 vm_init2(void)
188 {
189 	zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192 	pmap_init2();
193 	vm_object_init2();
194 }
195 
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199 	int count;
200 
201 	/*
202 	 * Make sure any SysV shm is freed, it might not have in
203 	 * exit1()
204 	 */
205 	shmexit(vm);
206 
207 	KKASSERT(vm->vm_upcalls == NULL);
208 
209 	/*
210 	 * Lock the map, to wait out all other references to it.
211 	 * Delete all of the mappings and pages they hold, then call
212 	 * the pmap module to reclaim anything left.
213 	 */
214 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
215 	vm_map_lock(&vm->vm_map);
216 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217 		vm->vm_map.max_offset, &count);
218 	vm_map_unlock(&vm->vm_map);
219 	vm_map_entry_release(count);
220 
221 	pmap_release(vmspace_pmap(vm));
222 	zfree(vmspace_zone, vm);
223 }
224 
225 void
226 vmspace_free(struct vmspace *vm)
227 {
228 	if (vm->vm_refcnt == 0)
229 		panic("vmspace_free: attempt to free already freed vmspace");
230 
231 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232 		vmspace_dofree(vm);
233 }
234 
235 void
236 vmspace_exitfree(struct proc *p)
237 {
238 	struct vmspace *vm;
239 
240 	vm = p->p_vmspace;
241 	p->p_vmspace = NULL;
242 
243 	/*
244 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
245 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
246 	 * exitingcnt may increment above 0 and drop back down to zero
247 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
248 	 * may also increment above 0 and drop back down to zero several
249 	 * times while vm_exitingcnt is held non-zero.
250 	 *
251 	 * The last wait on the exiting child's vmspace will clean up
252 	 * the remainder of the vmspace.
253 	 */
254 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255 		vmspace_dofree(vm);
256 }
257 
258 /*
259  * vmspace_swap_count() - count the approximate swap useage in pages for a
260  *			  vmspace.
261  *
262  *	Swap useage is determined by taking the proportional swap used by
263  *	VM objects backing the VM map.  To make up for fractional losses,
264  *	if the VM object has any swap use at all the associated map entries
265  *	count for at least 1 swap page.
266  */
267 int
268 vmspace_swap_count(struct vmspace *vmspace)
269 {
270 	vm_map_t map = &vmspace->vm_map;
271 	vm_map_entry_t cur;
272 	int count = 0;
273 
274 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275 		vm_object_t object;
276 
277 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278 		    (object = cur->object.vm_object) != NULL &&
279 		    object->type == OBJT_SWAP
280 		) {
281 			int n = (cur->end - cur->start) / PAGE_SIZE;
282 
283 			if (object->un_pager.swp.swp_bcount) {
284 				count += object->un_pager.swp.swp_bcount *
285 				    SWAP_META_PAGES * n / object->size + 1;
286 			}
287 		}
288 	}
289 	return(count);
290 }
291 
292 
293 /*
294  *	vm_map_create:
295  *
296  *	Creates and returns a new empty VM map with
297  *	the given physical map structure, and having
298  *	the given lower and upper address bounds.
299  */
300 vm_map_t
301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
302 {
303 	vm_map_t result;
304 
305 	result = zalloc(mapzone);
306 	vm_map_init(result, min, max);
307 	result->pmap = pmap;
308 	return (result);
309 }
310 
311 /*
312  * Initialize an existing vm_map structure
313  * such as that in the vmspace structure.
314  * The pmap is set elsewhere.
315  */
316 void
317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
318 {
319 	map->header.next = map->header.prev = &map->header;
320 	map->nentries = 0;
321 	map->size = 0;
322 	map->system_map = 0;
323 	map->infork = 0;
324 	map->min_offset = min;
325 	map->max_offset = max;
326 	map->first_free = &map->header;
327 	map->hint = &map->header;
328 	map->timestamp = 0;
329 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
330 }
331 
332 /*
333  *	vm_map_entry_reserve:
334  *
335  *	Reserves vm_map_entry structures so code later on can manipulate
336  *	map_entry structures within a locked map without blocking trying
337  *	to allocate a new vm_map_entry.
338  */
339 int
340 vm_map_entry_reserve(int count)
341 {
342 	struct globaldata *gd = mycpu;
343 	vm_map_entry_t entry;
344 
345 	crit_enter();
346 	gd->gd_vme_avail -= count;
347 
348 	/*
349 	 * Make sure we have enough structures in gd_vme_base to handle
350 	 * the reservation request.
351 	 */
352 	while (gd->gd_vme_avail < 0) {
353 		entry = zalloc(mapentzone);
354 		entry->next = gd->gd_vme_base;
355 		gd->gd_vme_base = entry;
356 		++gd->gd_vme_avail;
357 	}
358 	crit_exit();
359 	return(count);
360 }
361 
362 /*
363  *	vm_map_entry_release:
364  *
365  *	Releases previously reserved vm_map_entry structures that were not
366  *	used.  If we have too much junk in our per-cpu cache clean some of
367  *	it out.
368  */
369 void
370 vm_map_entry_release(int count)
371 {
372 	struct globaldata *gd = mycpu;
373 	vm_map_entry_t entry;
374 
375 	crit_enter();
376 	gd->gd_vme_avail += count;
377 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
378 		entry = gd->gd_vme_base;
379 		KKASSERT(entry != NULL);
380 		gd->gd_vme_base = entry->next;
381 		--gd->gd_vme_avail;
382 		crit_exit();
383 		zfree(mapentzone, entry);
384 		crit_enter();
385 	}
386 	crit_exit();
387 }
388 
389 /*
390  *	vm_map_entry_kreserve:
391  *
392  *	Reserve map entry structures for use in kernel_map or (if it exists)
393  *	kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
394  *	basis when the map was inited.  This function is used by zalloc()
395  *	to avoid a recursion when zalloc() itself needs to allocate additional
396  *	kernel memory.
397  *
398  *	This function should only be used when the caller intends to later
399  *	call vm_map_entry_reserve() to 'normalize' the reserve cache.
400  */
401 int
402 vm_map_entry_kreserve(int count)
403 {
404 	struct globaldata *gd = mycpu;
405 
406 	crit_enter();
407 	gd->gd_vme_kdeficit += count;
408 	crit_exit();
409 	KKASSERT(gd->gd_vme_base != NULL);
410 	return(count);
411 }
412 
413 /*
414  *	vm_map_entry_krelease:
415  *
416  *	Release previously reserved map entries for kernel_map or kmem_map
417  *	use.  This routine determines how many entries were actually used and
418  *	replentishes the kernel reserve supply from vme_avail.
419  *
420  *	If there is insufficient supply vme_avail will go negative, which is
421  *	ok.  We cannot safely call zalloc in this function without getting
422  *	into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
423  *	to regenerate the lost entries.
424  */
425 void
426 vm_map_entry_krelease(int count)
427 {
428 	struct globaldata *gd = mycpu;
429 
430 	crit_enter();
431 	gd->gd_vme_kdeficit -= count;
432 	gd->gd_vme_avail -= gd->gd_vme_kdeficit;	/* can go negative */
433 	gd->gd_vme_kdeficit = 0;
434 	crit_exit();
435 }
436 
437 /*
438  *	vm_map_entry_create:	[ internal use only ]
439  *
440  *	Allocates a VM map entry for insertion.  No entry fields are filled
441  *	in.
442  *
443  *	This routine may be called from an interrupt thread but not a FAST
444  *	interrupt.  This routine may recurse the map lock.
445  */
446 static vm_map_entry_t
447 vm_map_entry_create(vm_map_t map, int *countp)
448 {
449 	struct globaldata *gd = mycpu;
450 	vm_map_entry_t entry;
451 
452 	KKASSERT(*countp > 0);
453 	--*countp;
454 	crit_enter();
455 	entry = gd->gd_vme_base;
456 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
457 	gd->gd_vme_base = entry->next;
458 	crit_exit();
459 	return(entry);
460 }
461 
462 /*
463  *	vm_map_entry_dispose:	[ internal use only ]
464  *
465  *	Dispose of a vm_map_entry that is no longer being referenced.  This
466  *	function may be called from an interrupt.
467  */
468 static void
469 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
470 {
471 	struct globaldata *gd = mycpu;
472 
473 	++*countp;
474 	crit_enter();
475 	entry->next = gd->gd_vme_base;
476 	gd->gd_vme_base = entry;
477 	crit_exit();
478 }
479 
480 
481 /*
482  *	vm_map_entry_{un,}link:
483  *
484  *	Insert/remove entries from maps.
485  */
486 static __inline void
487 vm_map_entry_link(vm_map_t map,
488 		  vm_map_entry_t after_where,
489 		  vm_map_entry_t entry)
490 {
491 	map->nentries++;
492 	entry->prev = after_where;
493 	entry->next = after_where->next;
494 	entry->next->prev = entry;
495 	after_where->next = entry;
496 }
497 
498 static __inline void
499 vm_map_entry_unlink(vm_map_t map,
500 		    vm_map_entry_t entry)
501 {
502 	vm_map_entry_t prev;
503 	vm_map_entry_t next;
504 
505 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
506 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
507 	prev = entry->prev;
508 	next = entry->next;
509 	next->prev = prev;
510 	prev->next = next;
511 	map->nentries--;
512 }
513 
514 /*
515  *	SAVE_HINT:
516  *
517  *	Saves the specified entry as the hint for
518  *	future lookups.
519  */
520 #define	SAVE_HINT(map,value) \
521 		(map)->hint = (value);
522 
523 /*
524  *	vm_map_lookup_entry:	[ internal use only ]
525  *
526  *	Finds the map entry containing (or
527  *	immediately preceding) the specified address
528  *	in the given map; the entry is returned
529  *	in the "entry" parameter.  The boolean
530  *	result indicates whether the address is
531  *	actually contained in the map.
532  */
533 boolean_t
534 vm_map_lookup_entry(map, address, entry)
535 	vm_map_t map;
536 	vm_offset_t address;
537 	vm_map_entry_t *entry;	/* OUT */
538 {
539 	vm_map_entry_t cur;
540 	vm_map_entry_t last;
541 
542 	/*
543 	 * Start looking either from the head of the list, or from the hint.
544 	 */
545 
546 	cur = map->hint;
547 
548 	if (cur == &map->header)
549 		cur = cur->next;
550 
551 	if (address >= cur->start) {
552 		/*
553 		 * Go from hint to end of list.
554 		 *
555 		 * But first, make a quick check to see if we are already looking
556 		 * at the entry we want (which is usually the case). Note also
557 		 * that we don't need to save the hint here... it is the same
558 		 * hint (unless we are at the header, in which case the hint
559 		 * didn't buy us anything anyway).
560 		 */
561 		last = &map->header;
562 		if ((cur != last) && (cur->end > address)) {
563 			*entry = cur;
564 			return (TRUE);
565 		}
566 	} else {
567 		/*
568 		 * Go from start to hint, *inclusively*
569 		 */
570 		last = cur->next;
571 		cur = map->header.next;
572 	}
573 
574 	/*
575 	 * Search linearly
576 	 */
577 
578 	while (cur != last) {
579 		if (cur->end > address) {
580 			if (address >= cur->start) {
581 				/*
582 				 * Save this lookup for future hints, and
583 				 * return
584 				 */
585 
586 				*entry = cur;
587 				SAVE_HINT(map, cur);
588 				return (TRUE);
589 			}
590 			break;
591 		}
592 		cur = cur->next;
593 	}
594 	*entry = cur->prev;
595 	SAVE_HINT(map, *entry);
596 	return (FALSE);
597 }
598 
599 /*
600  *	vm_map_insert:
601  *
602  *	Inserts the given whole VM object into the target
603  *	map at the specified address range.  The object's
604  *	size should match that of the address range.
605  *
606  *	Requires that the map be locked, and leaves it so.  Requires that
607  *	sufficient vm_map_entry structures have been reserved and tracks
608  *	the use via countp.
609  *
610  *	If object is non-NULL, ref count must be bumped by caller
611  *	prior to making call to account for the new entry.
612  */
613 int
614 vm_map_insert(vm_map_t map, int *countp,
615 	      vm_object_t object, vm_ooffset_t offset,
616 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
617 	      int cow)
618 {
619 	vm_map_entry_t new_entry;
620 	vm_map_entry_t prev_entry;
621 	vm_map_entry_t temp_entry;
622 	vm_eflags_t protoeflags;
623 
624 	/*
625 	 * Check that the start and end points are not bogus.
626 	 */
627 
628 	if ((start < map->min_offset) || (end > map->max_offset) ||
629 	    (start >= end))
630 		return (KERN_INVALID_ADDRESS);
631 
632 	/*
633 	 * Find the entry prior to the proposed starting address; if it's part
634 	 * of an existing entry, this range is bogus.
635 	 */
636 
637 	if (vm_map_lookup_entry(map, start, &temp_entry))
638 		return (KERN_NO_SPACE);
639 
640 	prev_entry = temp_entry;
641 
642 	/*
643 	 * Assert that the next entry doesn't overlap the end point.
644 	 */
645 
646 	if ((prev_entry->next != &map->header) &&
647 	    (prev_entry->next->start < end))
648 		return (KERN_NO_SPACE);
649 
650 	protoeflags = 0;
651 
652 	if (cow & MAP_COPY_ON_WRITE)
653 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
654 
655 	if (cow & MAP_NOFAULT) {
656 		protoeflags |= MAP_ENTRY_NOFAULT;
657 
658 		KASSERT(object == NULL,
659 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
660 	}
661 	if (cow & MAP_DISABLE_SYNCER)
662 		protoeflags |= MAP_ENTRY_NOSYNC;
663 	if (cow & MAP_DISABLE_COREDUMP)
664 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
665 
666 	if (object) {
667 		/*
668 		 * When object is non-NULL, it could be shared with another
669 		 * process.  We have to set or clear OBJ_ONEMAPPING
670 		 * appropriately.
671 		 */
672 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
673 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
674 		}
675 	}
676 	else if ((prev_entry != &map->header) &&
677 		 (prev_entry->eflags == protoeflags) &&
678 		 (prev_entry->end == start) &&
679 		 (prev_entry->wired_count == 0) &&
680 		 ((prev_entry->object.vm_object == NULL) ||
681 		  vm_object_coalesce(prev_entry->object.vm_object,
682 				     OFF_TO_IDX(prev_entry->offset),
683 				     (vm_size_t)(prev_entry->end - prev_entry->start),
684 				     (vm_size_t)(end - prev_entry->end)))) {
685 		/*
686 		 * We were able to extend the object.  Determine if we
687 		 * can extend the previous map entry to include the
688 		 * new range as well.
689 		 */
690 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
691 		    (prev_entry->protection == prot) &&
692 		    (prev_entry->max_protection == max)) {
693 			map->size += (end - prev_entry->end);
694 			prev_entry->end = end;
695 			vm_map_simplify_entry(map, prev_entry, countp);
696 			return (KERN_SUCCESS);
697 		}
698 
699 		/*
700 		 * If we can extend the object but cannot extend the
701 		 * map entry, we have to create a new map entry.  We
702 		 * must bump the ref count on the extended object to
703 		 * account for it.  object may be NULL.
704 		 */
705 		object = prev_entry->object.vm_object;
706 		offset = prev_entry->offset +
707 			(prev_entry->end - prev_entry->start);
708 		vm_object_reference(object);
709 	}
710 
711 	/*
712 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
713 	 * in things like the buffer map where we manage kva but do not manage
714 	 * backing objects.
715 	 */
716 
717 	/*
718 	 * Create a new entry
719 	 */
720 
721 	new_entry = vm_map_entry_create(map, countp);
722 	new_entry->start = start;
723 	new_entry->end = end;
724 
725 	new_entry->eflags = protoeflags;
726 	new_entry->object.vm_object = object;
727 	new_entry->offset = offset;
728 	new_entry->avail_ssize = 0;
729 
730 	new_entry->inheritance = VM_INHERIT_DEFAULT;
731 	new_entry->protection = prot;
732 	new_entry->max_protection = max;
733 	new_entry->wired_count = 0;
734 
735 	/*
736 	 * Insert the new entry into the list
737 	 */
738 
739 	vm_map_entry_link(map, prev_entry, new_entry);
740 	map->size += new_entry->end - new_entry->start;
741 
742 	/*
743 	 * Update the free space hint
744 	 */
745 	if ((map->first_free == prev_entry) &&
746 	    (prev_entry->end >= new_entry->start)) {
747 		map->first_free = new_entry;
748 	}
749 
750 #if 0
751 	/*
752 	 * Temporarily removed to avoid MAP_STACK panic, due to
753 	 * MAP_STACK being a huge hack.  Will be added back in
754 	 * when MAP_STACK (and the user stack mapping) is fixed.
755 	 */
756 	/*
757 	 * It may be possible to simplify the entry
758 	 */
759 	vm_map_simplify_entry(map, new_entry, countp);
760 #endif
761 
762 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
763 		pmap_object_init_pt(map->pmap, start,
764 				    object, OFF_TO_IDX(offset), end - start,
765 				    cow & MAP_PREFAULT_PARTIAL);
766 	}
767 
768 	return (KERN_SUCCESS);
769 }
770 
771 /*
772  * Find sufficient space for `length' bytes in the given map, starting at
773  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
774  *
775  * This function will returned an arbitrarily aligned pointer.  If no
776  * particular alignment is required you should pass align as 1.  Note that
777  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
778  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
779  * argument.
780  *
781  * 'align' should be a power of 2 but is not required to be.
782  */
783 int
784 vm_map_findspace(
785 	vm_map_t map,
786 	vm_offset_t start,
787 	vm_size_t length,
788 	vm_offset_t align,
789 	vm_offset_t *addr)
790 {
791 	vm_map_entry_t entry, next;
792 	vm_offset_t end;
793 	vm_offset_t align_mask;
794 
795 	if (start < map->min_offset)
796 		start = map->min_offset;
797 	if (start > map->max_offset)
798 		return (1);
799 
800 	/*
801 	 * If the alignment is not a power of 2 we will have to use
802 	 * a mod/division, set align_mask to a special value.
803 	 */
804 	if ((align | (align - 1)) + 1 != (align << 1))
805 		align_mask = (vm_offset_t)-1;
806 	else
807 		align_mask = align - 1;
808 
809 retry:
810 	/*
811 	 * Look for the first possible address; if there's already something
812 	 * at this address, we have to start after it.
813 	 */
814 	if (start == map->min_offset) {
815 		if ((entry = map->first_free) != &map->header)
816 			start = entry->end;
817 	} else {
818 		vm_map_entry_t tmp;
819 
820 		if (vm_map_lookup_entry(map, start, &tmp))
821 			start = tmp->end;
822 		entry = tmp;
823 	}
824 
825 	/*
826 	 * Look through the rest of the map, trying to fit a new region in the
827 	 * gap between existing regions, or after the very last region.
828 	 */
829 	for (;; start = (entry = next)->end) {
830 		/*
831 		 * Adjust the proposed start by the requested alignment,
832 		 * be sure that we didn't wrap the address.
833 		 */
834 		if (align_mask == (vm_offset_t)-1)
835 			end = ((start + align - 1) / align) * align;
836 		else
837 			end = (start + align_mask) & ~align_mask;
838 		if (end < start)
839 			return (1);
840 		start = end;
841 		/*
842 		 * Find the end of the proposed new region.  Be sure we didn't
843 		 * go beyond the end of the map, or wrap around the address.
844 		 * Then check to see if this is the last entry or if the
845 		 * proposed end fits in the gap between this and the next
846 		 * entry.
847 		 */
848 		end = start + length;
849 		if (end > map->max_offset || end < start)
850 			return (1);
851 		next = entry->next;
852 		if (next == &map->header || next->start >= end)
853 			break;
854 	}
855 	SAVE_HINT(map, entry);
856 	if (map == kernel_map) {
857 		vm_offset_t ksize;
858 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
859 			pmap_growkernel(ksize);
860 			goto retry;
861 		}
862 	}
863 	*addr = start;
864 	return (0);
865 }
866 
867 /*
868  *	vm_map_find finds an unallocated region in the target address
869  *	map with the given length.  The search is defined to be
870  *	first-fit from the specified address; the region found is
871  *	returned in the same parameter.
872  *
873  *	If object is non-NULL, ref count must be bumped by caller
874  *	prior to making call to account for the new entry.
875  */
876 int
877 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
878 	    vm_offset_t *addr,	/* IN/OUT */
879 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
880 	    vm_prot_t max, int cow)
881 {
882 	vm_offset_t start;
883 	int result;
884 	int count;
885 
886 	start = *addr;
887 
888 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
889 	vm_map_lock(map);
890 	if (find_space) {
891 		if (vm_map_findspace(map, start, length, 1, addr)) {
892 			vm_map_unlock(map);
893 			vm_map_entry_release(count);
894 			return (KERN_NO_SPACE);
895 		}
896 		start = *addr;
897 	}
898 	result = vm_map_insert(map, &count, object, offset,
899 		start, start + length, prot, max, cow);
900 	vm_map_unlock(map);
901 	vm_map_entry_release(count);
902 
903 	return (result);
904 }
905 
906 /*
907  *	vm_map_simplify_entry:
908  *
909  *	Simplify the given map entry by merging with either neighbor.  This
910  *	routine also has the ability to merge with both neighbors.
911  *
912  *	The map must be locked.
913  *
914  *	This routine guarentees that the passed entry remains valid (though
915  *	possibly extended).  When merging, this routine may delete one or
916  *	both neighbors.  No action is taken on entries which have their
917  *	in-transition flag set.
918  */
919 void
920 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
921 {
922 	vm_map_entry_t next, prev;
923 	vm_size_t prevsize, esize;
924 
925 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
926 		++mycpu->gd_cnt.v_intrans_coll;
927 		return;
928 	}
929 
930 	prev = entry->prev;
931 	if (prev != &map->header) {
932 		prevsize = prev->end - prev->start;
933 		if ( (prev->end == entry->start) &&
934 		     (prev->object.vm_object == entry->object.vm_object) &&
935 		     (!prev->object.vm_object ||
936 			(prev->offset + prevsize == entry->offset)) &&
937 		     (prev->eflags == entry->eflags) &&
938 		     (prev->protection == entry->protection) &&
939 		     (prev->max_protection == entry->max_protection) &&
940 		     (prev->inheritance == entry->inheritance) &&
941 		     (prev->wired_count == entry->wired_count)) {
942 			if (map->first_free == prev)
943 				map->first_free = entry;
944 			if (map->hint == prev)
945 				map->hint = entry;
946 			vm_map_entry_unlink(map, prev);
947 			entry->start = prev->start;
948 			entry->offset = prev->offset;
949 			if (prev->object.vm_object)
950 				vm_object_deallocate(prev->object.vm_object);
951 			vm_map_entry_dispose(map, prev, countp);
952 		}
953 	}
954 
955 	next = entry->next;
956 	if (next != &map->header) {
957 		esize = entry->end - entry->start;
958 		if ((entry->end == next->start) &&
959 		    (next->object.vm_object == entry->object.vm_object) &&
960 		     (!entry->object.vm_object ||
961 			(entry->offset + esize == next->offset)) &&
962 		    (next->eflags == entry->eflags) &&
963 		    (next->protection == entry->protection) &&
964 		    (next->max_protection == entry->max_protection) &&
965 		    (next->inheritance == entry->inheritance) &&
966 		    (next->wired_count == entry->wired_count)) {
967 			if (map->first_free == next)
968 				map->first_free = entry;
969 			if (map->hint == next)
970 				map->hint = entry;
971 			vm_map_entry_unlink(map, next);
972 			entry->end = next->end;
973 			if (next->object.vm_object)
974 				vm_object_deallocate(next->object.vm_object);
975 			vm_map_entry_dispose(map, next, countp);
976 	        }
977 	}
978 }
979 /*
980  *	vm_map_clip_start:	[ internal use only ]
981  *
982  *	Asserts that the given entry begins at or after
983  *	the specified address; if necessary,
984  *	it splits the entry into two.
985  */
986 #define vm_map_clip_start(map, entry, startaddr, countp) \
987 { \
988 	if (startaddr > entry->start) \
989 		_vm_map_clip_start(map, entry, startaddr, countp); \
990 }
991 
992 /*
993  *	This routine is called only when it is known that
994  *	the entry must be split.
995  */
996 static void
997 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
998 {
999 	vm_map_entry_t new_entry;
1000 
1001 	/*
1002 	 * Split off the front portion -- note that we must insert the new
1003 	 * entry BEFORE this one, so that this entry has the specified
1004 	 * starting address.
1005 	 */
1006 
1007 	vm_map_simplify_entry(map, entry, countp);
1008 
1009 	/*
1010 	 * If there is no object backing this entry, we might as well create
1011 	 * one now.  If we defer it, an object can get created after the map
1012 	 * is clipped, and individual objects will be created for the split-up
1013 	 * map.  This is a bit of a hack, but is also about the best place to
1014 	 * put this improvement.
1015 	 */
1016 
1017 	if (entry->object.vm_object == NULL && !map->system_map) {
1018 		vm_object_t object;
1019 		object = vm_object_allocate(OBJT_DEFAULT,
1020 				atop(entry->end - entry->start));
1021 		entry->object.vm_object = object;
1022 		entry->offset = 0;
1023 	}
1024 
1025 	new_entry = vm_map_entry_create(map, countp);
1026 	*new_entry = *entry;
1027 
1028 	new_entry->end = start;
1029 	entry->offset += (start - entry->start);
1030 	entry->start = start;
1031 
1032 	vm_map_entry_link(map, entry->prev, new_entry);
1033 
1034 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1035 		vm_object_reference(new_entry->object.vm_object);
1036 	}
1037 }
1038 
1039 /*
1040  *	vm_map_clip_end:	[ internal use only ]
1041  *
1042  *	Asserts that the given entry ends at or before
1043  *	the specified address; if necessary,
1044  *	it splits the entry into two.
1045  */
1046 
1047 #define vm_map_clip_end(map, entry, endaddr, countp) \
1048 { \
1049 	if (endaddr < entry->end) \
1050 		_vm_map_clip_end(map, entry, endaddr, countp); \
1051 }
1052 
1053 /*
1054  *	This routine is called only when it is known that
1055  *	the entry must be split.
1056  */
1057 static void
1058 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1059 {
1060 	vm_map_entry_t new_entry;
1061 
1062 	/*
1063 	 * If there is no object backing this entry, we might as well create
1064 	 * one now.  If we defer it, an object can get created after the map
1065 	 * is clipped, and individual objects will be created for the split-up
1066 	 * map.  This is a bit of a hack, but is also about the best place to
1067 	 * put this improvement.
1068 	 */
1069 
1070 	if (entry->object.vm_object == NULL && !map->system_map) {
1071 		vm_object_t object;
1072 		object = vm_object_allocate(OBJT_DEFAULT,
1073 				atop(entry->end - entry->start));
1074 		entry->object.vm_object = object;
1075 		entry->offset = 0;
1076 	}
1077 
1078 	/*
1079 	 * Create a new entry and insert it AFTER the specified entry
1080 	 */
1081 
1082 	new_entry = vm_map_entry_create(map, countp);
1083 	*new_entry = *entry;
1084 
1085 	new_entry->start = entry->end = end;
1086 	new_entry->offset += (end - entry->start);
1087 
1088 	vm_map_entry_link(map, entry, new_entry);
1089 
1090 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1091 		vm_object_reference(new_entry->object.vm_object);
1092 	}
1093 }
1094 
1095 /*
1096  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1097  *
1098  *	Asserts that the starting and ending region
1099  *	addresses fall within the valid range of the map.
1100  */
1101 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1102 		{					\
1103 		if (start < vm_map_min(map))		\
1104 			start = vm_map_min(map);	\
1105 		if (end > vm_map_max(map))		\
1106 			end = vm_map_max(map);		\
1107 		if (start > end)			\
1108 			start = end;			\
1109 		}
1110 
1111 /*
1112  *	vm_map_transition_wait:	[ kernel use only ]
1113  *
1114  *	Used to block when an in-transition collison occurs.  The map
1115  *	is unlocked for the sleep and relocked before the return.
1116  */
1117 static
1118 void
1119 vm_map_transition_wait(vm_map_t map)
1120 {
1121 	vm_map_unlock(map);
1122 	tsleep(map, 0, "vment", 0);
1123 	vm_map_lock(map);
1124 }
1125 
1126 /*
1127  * CLIP_CHECK_BACK
1128  * CLIP_CHECK_FWD
1129  *
1130  *	When we do blocking operations with the map lock held it is
1131  *	possible that a clip might have occured on our in-transit entry,
1132  *	requiring an adjustment to the entry in our loop.  These macros
1133  *	help the pageable and clip_range code deal with the case.  The
1134  *	conditional costs virtually nothing if no clipping has occured.
1135  */
1136 
1137 #define CLIP_CHECK_BACK(entry, save_start)		\
1138     do {						\
1139 	    while (entry->start != save_start) {	\
1140 		    entry = entry->prev;		\
1141 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1142 	    }						\
1143     } while(0)
1144 
1145 #define CLIP_CHECK_FWD(entry, save_end)			\
1146     do {						\
1147 	    while (entry->end != save_end) {		\
1148 		    entry = entry->next;		\
1149 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1150 	    }						\
1151     } while(0)
1152 
1153 
1154 /*
1155  *	vm_map_clip_range:	[ kernel use only ]
1156  *
1157  *	Clip the specified range and return the base entry.  The
1158  *	range may cover several entries starting at the returned base
1159  *	and the first and last entry in the covering sequence will be
1160  *	properly clipped to the requested start and end address.
1161  *
1162  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1163  *	flag.
1164  *
1165  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1166  *	covered by the requested range.
1167  *
1168  *	The map must be exclusively locked on entry and will remain locked
1169  *	on return. If no range exists or the range contains holes and you
1170  *	specified that no holes were allowed, NULL will be returned.  This
1171  *	routine may temporarily unlock the map in order avoid a deadlock when
1172  *	sleeping.
1173  */
1174 static
1175 vm_map_entry_t
1176 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1177 	int *countp, int flags)
1178 {
1179 	vm_map_entry_t start_entry;
1180 	vm_map_entry_t entry;
1181 
1182 	/*
1183 	 * Locate the entry and effect initial clipping.  The in-transition
1184 	 * case does not occur very often so do not try to optimize it.
1185 	 */
1186 again:
1187 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1188 		return (NULL);
1189 	entry = start_entry;
1190 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1191 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1192 		++mycpu->gd_cnt.v_intrans_coll;
1193 		++mycpu->gd_cnt.v_intrans_wait;
1194 		vm_map_transition_wait(map);
1195 		/*
1196 		 * entry and/or start_entry may have been clipped while
1197 		 * we slept, or may have gone away entirely.  We have
1198 		 * to restart from the lookup.
1199 		 */
1200 		goto again;
1201 	}
1202 	/*
1203 	 * Since we hold an exclusive map lock we do not have to restart
1204 	 * after clipping, even though clipping may block in zalloc.
1205 	 */
1206 	vm_map_clip_start(map, entry, start, countp);
1207 	vm_map_clip_end(map, entry, end, countp);
1208 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1209 
1210 	/*
1211 	 * Scan entries covered by the range.  When working on the next
1212 	 * entry a restart need only re-loop on the current entry which
1213 	 * we have already locked, since 'next' may have changed.  Also,
1214 	 * even though entry is safe, it may have been clipped so we
1215 	 * have to iterate forwards through the clip after sleeping.
1216 	 */
1217 	while (entry->next != &map->header && entry->next->start < end) {
1218 		vm_map_entry_t next = entry->next;
1219 
1220 		if (flags & MAP_CLIP_NO_HOLES) {
1221 			if (next->start > entry->end) {
1222 				vm_map_unclip_range(map, start_entry,
1223 					start, entry->end, countp, flags);
1224 				return(NULL);
1225 			}
1226 		}
1227 
1228 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1229 			vm_offset_t save_end = entry->end;
1230 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1231 			++mycpu->gd_cnt.v_intrans_coll;
1232 			++mycpu->gd_cnt.v_intrans_wait;
1233 			vm_map_transition_wait(map);
1234 
1235 			/*
1236 			 * clips might have occured while we blocked.
1237 			 */
1238 			CLIP_CHECK_FWD(entry, save_end);
1239 			CLIP_CHECK_BACK(start_entry, start);
1240 			continue;
1241 		}
1242 		/*
1243 		 * No restart necessary even though clip_end may block, we
1244 		 * are holding the map lock.
1245 		 */
1246 		vm_map_clip_end(map, next, end, countp);
1247 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1248 		entry = next;
1249 	}
1250 	if (flags & MAP_CLIP_NO_HOLES) {
1251 		if (entry->end != end) {
1252 			vm_map_unclip_range(map, start_entry,
1253 				start, entry->end, countp, flags);
1254 			return(NULL);
1255 		}
1256 	}
1257 	return(start_entry);
1258 }
1259 
1260 /*
1261  *	vm_map_unclip_range:	[ kernel use only ]
1262  *
1263  *	Undo the effect of vm_map_clip_range().  You should pass the same
1264  *	flags and the same range that you passed to vm_map_clip_range().
1265  *	This code will clear the in-transition flag on the entries and
1266  *	wake up anyone waiting.  This code will also simplify the sequence
1267  *	and attempt to merge it with entries before and after the sequence.
1268  *
1269  *	The map must be locked on entry and will remain locked on return.
1270  *
1271  *	Note that you should also pass the start_entry returned by
1272  *	vm_map_clip_range().  However, if you block between the two calls
1273  *	with the map unlocked please be aware that the start_entry may
1274  *	have been clipped and you may need to scan it backwards to find
1275  *	the entry corresponding with the original start address.  You are
1276  *	responsible for this, vm_map_unclip_range() expects the correct
1277  *	start_entry to be passed to it and will KASSERT otherwise.
1278  */
1279 static
1280 void
1281 vm_map_unclip_range(
1282 	vm_map_t map,
1283 	vm_map_entry_t start_entry,
1284 	vm_offset_t start,
1285 	vm_offset_t end,
1286 	int *countp,
1287 	int flags)
1288 {
1289 	vm_map_entry_t entry;
1290 
1291 	entry = start_entry;
1292 
1293 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1294 	while (entry != &map->header && entry->start < end) {
1295 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1296 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1297 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1298 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1299 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1300 			wakeup(map);
1301 		}
1302 		entry = entry->next;
1303 	}
1304 
1305 	/*
1306 	 * Simplification does not block so there is no restart case.
1307 	 */
1308 	entry = start_entry;
1309 	while (entry != &map->header && entry->start < end) {
1310 		vm_map_simplify_entry(map, entry, countp);
1311 		entry = entry->next;
1312 	}
1313 }
1314 
1315 /*
1316  *	vm_map_submap:		[ kernel use only ]
1317  *
1318  *	Mark the given range as handled by a subordinate map.
1319  *
1320  *	This range must have been created with vm_map_find,
1321  *	and no other operations may have been performed on this
1322  *	range prior to calling vm_map_submap.
1323  *
1324  *	Only a limited number of operations can be performed
1325  *	within this rage after calling vm_map_submap:
1326  *		vm_fault
1327  *	[Don't try vm_map_copy!]
1328  *
1329  *	To remove a submapping, one must first remove the
1330  *	range from the superior map, and then destroy the
1331  *	submap (if desired).  [Better yet, don't try it.]
1332  */
1333 int
1334 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1335 {
1336 	vm_map_entry_t entry;
1337 	int result = KERN_INVALID_ARGUMENT;
1338 	int count;
1339 
1340 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1341 	vm_map_lock(map);
1342 
1343 	VM_MAP_RANGE_CHECK(map, start, end);
1344 
1345 	if (vm_map_lookup_entry(map, start, &entry)) {
1346 		vm_map_clip_start(map, entry, start, &count);
1347 	} else {
1348 		entry = entry->next;
1349 	}
1350 
1351 	vm_map_clip_end(map, entry, end, &count);
1352 
1353 	if ((entry->start == start) && (entry->end == end) &&
1354 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1355 	    (entry->object.vm_object == NULL)) {
1356 		entry->object.sub_map = submap;
1357 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1358 		result = KERN_SUCCESS;
1359 	}
1360 	vm_map_unlock(map);
1361 	vm_map_entry_release(count);
1362 
1363 	return (result);
1364 }
1365 
1366 /*
1367  *	vm_map_protect:
1368  *
1369  *	Sets the protection of the specified address
1370  *	region in the target map.  If "set_max" is
1371  *	specified, the maximum protection is to be set;
1372  *	otherwise, only the current protection is affected.
1373  */
1374 int
1375 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1376 	       vm_prot_t new_prot, boolean_t set_max)
1377 {
1378 	vm_map_entry_t current;
1379 	vm_map_entry_t entry;
1380 	int count;
1381 
1382 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1383 	vm_map_lock(map);
1384 
1385 	VM_MAP_RANGE_CHECK(map, start, end);
1386 
1387 	if (vm_map_lookup_entry(map, start, &entry)) {
1388 		vm_map_clip_start(map, entry, start, &count);
1389 	} else {
1390 		entry = entry->next;
1391 	}
1392 
1393 	/*
1394 	 * Make a first pass to check for protection violations.
1395 	 */
1396 
1397 	current = entry;
1398 	while ((current != &map->header) && (current->start < end)) {
1399 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1400 			vm_map_unlock(map);
1401 			vm_map_entry_release(count);
1402 			return (KERN_INVALID_ARGUMENT);
1403 		}
1404 		if ((new_prot & current->max_protection) != new_prot) {
1405 			vm_map_unlock(map);
1406 			vm_map_entry_release(count);
1407 			return (KERN_PROTECTION_FAILURE);
1408 		}
1409 		current = current->next;
1410 	}
1411 
1412 	/*
1413 	 * Go back and fix up protections. [Note that clipping is not
1414 	 * necessary the second time.]
1415 	 */
1416 	current = entry;
1417 
1418 	while ((current != &map->header) && (current->start < end)) {
1419 		vm_prot_t old_prot;
1420 
1421 		vm_map_clip_end(map, current, end, &count);
1422 
1423 		old_prot = current->protection;
1424 		if (set_max)
1425 			current->protection =
1426 			    (current->max_protection = new_prot) &
1427 			    old_prot;
1428 		else
1429 			current->protection = new_prot;
1430 
1431 		/*
1432 		 * Update physical map if necessary. Worry about copy-on-write
1433 		 * here -- CHECK THIS XXX
1434 		 */
1435 
1436 		if (current->protection != old_prot) {
1437 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1438 							VM_PROT_ALL)
1439 
1440 			pmap_protect(map->pmap, current->start,
1441 			    current->end,
1442 			    current->protection & MASK(current));
1443 #undef	MASK
1444 		}
1445 
1446 		vm_map_simplify_entry(map, current, &count);
1447 
1448 		current = current->next;
1449 	}
1450 
1451 	vm_map_unlock(map);
1452 	vm_map_entry_release(count);
1453 	return (KERN_SUCCESS);
1454 }
1455 
1456 /*
1457  *	vm_map_madvise:
1458  *
1459  * 	This routine traverses a processes map handling the madvise
1460  *	system call.  Advisories are classified as either those effecting
1461  *	the vm_map_entry structure, or those effecting the underlying
1462  *	objects.
1463  */
1464 
1465 int
1466 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1467 {
1468 	vm_map_entry_t current, entry;
1469 	int modify_map = 0;
1470 	int count;
1471 
1472 	/*
1473 	 * Some madvise calls directly modify the vm_map_entry, in which case
1474 	 * we need to use an exclusive lock on the map and we need to perform
1475 	 * various clipping operations.  Otherwise we only need a read-lock
1476 	 * on the map.
1477 	 */
1478 
1479 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1480 
1481 	switch(behav) {
1482 	case MADV_NORMAL:
1483 	case MADV_SEQUENTIAL:
1484 	case MADV_RANDOM:
1485 	case MADV_NOSYNC:
1486 	case MADV_AUTOSYNC:
1487 	case MADV_NOCORE:
1488 	case MADV_CORE:
1489 		modify_map = 1;
1490 		vm_map_lock(map);
1491 		break;
1492 	case MADV_WILLNEED:
1493 	case MADV_DONTNEED:
1494 	case MADV_FREE:
1495 		vm_map_lock_read(map);
1496 		break;
1497 	default:
1498 		vm_map_entry_release(count);
1499 		return (KERN_INVALID_ARGUMENT);
1500 	}
1501 
1502 	/*
1503 	 * Locate starting entry and clip if necessary.
1504 	 */
1505 
1506 	VM_MAP_RANGE_CHECK(map, start, end);
1507 
1508 	if (vm_map_lookup_entry(map, start, &entry)) {
1509 		if (modify_map)
1510 			vm_map_clip_start(map, entry, start, &count);
1511 	} else {
1512 		entry = entry->next;
1513 	}
1514 
1515 	if (modify_map) {
1516 		/*
1517 		 * madvise behaviors that are implemented in the vm_map_entry.
1518 		 *
1519 		 * We clip the vm_map_entry so that behavioral changes are
1520 		 * limited to the specified address range.
1521 		 */
1522 		for (current = entry;
1523 		     (current != &map->header) && (current->start < end);
1524 		     current = current->next
1525 		) {
1526 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1527 				continue;
1528 
1529 			vm_map_clip_end(map, current, end, &count);
1530 
1531 			switch (behav) {
1532 			case MADV_NORMAL:
1533 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1534 				break;
1535 			case MADV_SEQUENTIAL:
1536 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1537 				break;
1538 			case MADV_RANDOM:
1539 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1540 				break;
1541 			case MADV_NOSYNC:
1542 				current->eflags |= MAP_ENTRY_NOSYNC;
1543 				break;
1544 			case MADV_AUTOSYNC:
1545 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1546 				break;
1547 			case MADV_NOCORE:
1548 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1549 				break;
1550 			case MADV_CORE:
1551 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1552 				break;
1553 			default:
1554 				break;
1555 			}
1556 			vm_map_simplify_entry(map, current, &count);
1557 		}
1558 		vm_map_unlock(map);
1559 	} else {
1560 		vm_pindex_t pindex;
1561 		int count;
1562 
1563 		/*
1564 		 * madvise behaviors that are implemented in the underlying
1565 		 * vm_object.
1566 		 *
1567 		 * Since we don't clip the vm_map_entry, we have to clip
1568 		 * the vm_object pindex and count.
1569 		 */
1570 		for (current = entry;
1571 		     (current != &map->header) && (current->start < end);
1572 		     current = current->next
1573 		) {
1574 			vm_offset_t useStart;
1575 
1576 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1577 				continue;
1578 
1579 			pindex = OFF_TO_IDX(current->offset);
1580 			count = atop(current->end - current->start);
1581 			useStart = current->start;
1582 
1583 			if (current->start < start) {
1584 				pindex += atop(start - current->start);
1585 				count -= atop(start - current->start);
1586 				useStart = start;
1587 			}
1588 			if (current->end > end)
1589 				count -= atop(current->end - end);
1590 
1591 			if (count <= 0)
1592 				continue;
1593 
1594 			vm_object_madvise(current->object.vm_object,
1595 					  pindex, count, behav);
1596 			if (behav == MADV_WILLNEED) {
1597 				pmap_object_init_pt(
1598 				    map->pmap,
1599 				    useStart,
1600 				    current->object.vm_object,
1601 				    pindex,
1602 				    (count << PAGE_SHIFT),
1603 				    MAP_PREFAULT_MADVISE
1604 				);
1605 			}
1606 		}
1607 		vm_map_unlock_read(map);
1608 	}
1609 	vm_map_entry_release(count);
1610 	return(0);
1611 }
1612 
1613 
1614 /*
1615  *	vm_map_inherit:
1616  *
1617  *	Sets the inheritance of the specified address
1618  *	range in the target map.  Inheritance
1619  *	affects how the map will be shared with
1620  *	child maps at the time of vm_map_fork.
1621  */
1622 int
1623 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1624 	       vm_inherit_t new_inheritance)
1625 {
1626 	vm_map_entry_t entry;
1627 	vm_map_entry_t temp_entry;
1628 	int count;
1629 
1630 	switch (new_inheritance) {
1631 	case VM_INHERIT_NONE:
1632 	case VM_INHERIT_COPY:
1633 	case VM_INHERIT_SHARE:
1634 		break;
1635 	default:
1636 		return (KERN_INVALID_ARGUMENT);
1637 	}
1638 
1639 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1640 	vm_map_lock(map);
1641 
1642 	VM_MAP_RANGE_CHECK(map, start, end);
1643 
1644 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1645 		entry = temp_entry;
1646 		vm_map_clip_start(map, entry, start, &count);
1647 	} else
1648 		entry = temp_entry->next;
1649 
1650 	while ((entry != &map->header) && (entry->start < end)) {
1651 		vm_map_clip_end(map, entry, end, &count);
1652 
1653 		entry->inheritance = new_inheritance;
1654 
1655 		vm_map_simplify_entry(map, entry, &count);
1656 
1657 		entry = entry->next;
1658 	}
1659 	vm_map_unlock(map);
1660 	vm_map_entry_release(count);
1661 	return (KERN_SUCCESS);
1662 }
1663 
1664 /*
1665  * Implement the semantics of mlock
1666  */
1667 int
1668 vm_map_unwire(map, start, real_end, new_pageable)
1669 	vm_map_t map;
1670 	vm_offset_t start;
1671 	vm_offset_t real_end;
1672 	boolean_t new_pageable;
1673 {
1674 	vm_map_entry_t entry;
1675 	vm_map_entry_t start_entry;
1676 	vm_offset_t end;
1677 	int rv = KERN_SUCCESS;
1678 	int count;
1679 
1680 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1681 	vm_map_lock(map);
1682 	VM_MAP_RANGE_CHECK(map, start, real_end);
1683 	end = real_end;
1684 
1685 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1686 	if (start_entry == NULL) {
1687 		vm_map_unlock(map);
1688 		vm_map_entry_release(count);
1689 		return (KERN_INVALID_ADDRESS);
1690 	}
1691 
1692 	if (new_pageable == 0) {
1693 		entry = start_entry;
1694 		while ((entry != &map->header) && (entry->start < end)) {
1695 			vm_offset_t save_start;
1696 			vm_offset_t save_end;
1697 
1698 			/*
1699 			 * Already user wired or hard wired (trivial cases)
1700 			 */
1701 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1702 				entry = entry->next;
1703 				continue;
1704 			}
1705 			if (entry->wired_count != 0) {
1706 				entry->wired_count++;
1707 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1708 				entry = entry->next;
1709 				continue;
1710 			}
1711 
1712 			/*
1713 			 * A new wiring requires instantiation of appropriate
1714 			 * management structures and the faulting in of the
1715 			 * page.
1716 			 */
1717 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1719 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1720 
1721 					vm_object_shadow(&entry->object.vm_object,
1722 					    &entry->offset,
1723 					    atop(entry->end - entry->start));
1724 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1725 
1726 				} else if (entry->object.vm_object == NULL &&
1727 					   !map->system_map) {
1728 
1729 					entry->object.vm_object =
1730 					    vm_object_allocate(OBJT_DEFAULT,
1731 						atop(entry->end - entry->start));
1732 					entry->offset = (vm_offset_t) 0;
1733 
1734 				}
1735 			}
1736 			entry->wired_count++;
1737 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1738 
1739 			/*
1740 			 * Now fault in the area.  The map lock needs to be
1741 			 * manipulated to avoid deadlocks.  The in-transition
1742 			 * flag protects the entries.
1743 			 */
1744 			save_start = entry->start;
1745 			save_end = entry->end;
1746 			vm_map_unlock(map);
1747 			map->timestamp++;
1748 			rv = vm_fault_user_wire(map, save_start, save_end);
1749 			vm_map_lock(map);
1750 			if (rv) {
1751 				CLIP_CHECK_BACK(entry, save_start);
1752 				for (;;) {
1753 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1754 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1755 					entry->wired_count = 0;
1756 					if (entry->end == save_end)
1757 						break;
1758 					entry = entry->next;
1759 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1760 				}
1761 				end = save_start;	/* unwire the rest */
1762 				break;
1763 			}
1764 			/*
1765 			 * note that even though the entry might have been
1766 			 * clipped, the USER_WIRED flag we set prevents
1767 			 * duplication so we do not have to do a
1768 			 * clip check.
1769 			 */
1770 			entry = entry->next;
1771 		}
1772 
1773 		/*
1774 		 * If we failed fall through to the unwiring section to
1775 		 * unwire what we had wired so far.  'end' has already
1776 		 * been adjusted.
1777 		 */
1778 		if (rv)
1779 			new_pageable = 1;
1780 
1781 		/*
1782 		 * start_entry might have been clipped if we unlocked the
1783 		 * map and blocked.  No matter how clipped it has gotten
1784 		 * there should be a fragment that is on our start boundary.
1785 		 */
1786 		CLIP_CHECK_BACK(start_entry, start);
1787 	}
1788 
1789 	/*
1790 	 * Deal with the unwiring case.
1791 	 */
1792 	if (new_pageable) {
1793 		/*
1794 		 * This is the unwiring case.  We must first ensure that the
1795 		 * range to be unwired is really wired down.  We know there
1796 		 * are no holes.
1797 		 */
1798 		entry = start_entry;
1799 		while ((entry != &map->header) && (entry->start < end)) {
1800 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1801 				rv = KERN_INVALID_ARGUMENT;
1802 				goto done;
1803 			}
1804 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1805 			entry = entry->next;
1806 		}
1807 
1808 		/*
1809 		 * Now decrement the wiring count for each region. If a region
1810 		 * becomes completely unwired, unwire its physical pages and
1811 		 * mappings.
1812 		 */
1813 		/*
1814 		 * The map entries are processed in a loop, checking to
1815 		 * make sure the entry is wired and asserting it has a wired
1816 		 * count. However, another loop was inserted more-or-less in
1817 		 * the middle of the unwiring path. This loop picks up the
1818 		 * "entry" loop variable from the first loop without first
1819 		 * setting it to start_entry. Naturally, the secound loop
1820 		 * is never entered and the pages backing the entries are
1821 		 * never unwired. This can lead to a leak of wired pages.
1822 		 */
1823 		entry = start_entry;
1824 		while ((entry != &map->header) && (entry->start < end)) {
1825 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1826 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1827 			entry->wired_count--;
1828 			if (entry->wired_count == 0)
1829 				vm_fault_unwire(map, entry->start, entry->end);
1830 			entry = entry->next;
1831 		}
1832 	}
1833 done:
1834 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1835 		MAP_CLIP_NO_HOLES);
1836 	map->timestamp++;
1837 	vm_map_unlock(map);
1838 	vm_map_entry_release(count);
1839 	return (rv);
1840 }
1841 
1842 /*
1843  *	vm_map_wire:
1844  *
1845  *	Sets the pageability of the specified address
1846  *	range in the target map.  Regions specified
1847  *	as not pageable require locked-down physical
1848  *	memory and physical page maps.
1849  *
1850  *	The map must not be locked, but a reference
1851  *	must remain to the map throughout the call.
1852  *
1853  *	This function may be called via the zalloc path and must properly
1854  *	reserve map entries for kernel_map.
1855  */
1856 int
1857 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1858 {
1859 	vm_map_entry_t entry;
1860 	vm_map_entry_t start_entry;
1861 	vm_offset_t end;
1862 	int rv = KERN_SUCCESS;
1863 	int count;
1864 	int s;
1865 
1866 	if (kmflags & KM_KRESERVE)
1867 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1868 	else
1869 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1870 	vm_map_lock(map);
1871 	VM_MAP_RANGE_CHECK(map, start, real_end);
1872 	end = real_end;
1873 
1874 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1875 	if (start_entry == NULL) {
1876 		vm_map_unlock(map);
1877 		rv = KERN_INVALID_ADDRESS;
1878 		goto failure;
1879 	}
1880 	if ((kmflags & KM_PAGEABLE) == 0) {
1881 		/*
1882 		 * Wiring.
1883 		 *
1884 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1885 		 * objects that need to be created. Then we clip each map
1886 		 * entry to the region to be wired and increment its wiring
1887 		 * count.  We create objects before clipping the map entries
1888 		 * to avoid object proliferation.
1889 		 *
1890 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1891 		 * fault in the pages for any newly wired area (wired_count is
1892 		 * 1).
1893 		 *
1894 		 * Downgrading to a read lock for vm_fault_wire avoids a
1895 		 * possible deadlock with another process that may have faulted
1896 		 * on one of the pages to be wired (it would mark the page busy,
1897 		 * blocking us, then in turn block on the map lock that we
1898 		 * hold).  Because of problems in the recursive lock package,
1899 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1900 		 * any actions that require the write lock must be done
1901 		 * beforehand.  Because we keep the read lock on the map, the
1902 		 * copy-on-write status of the entries we modify here cannot
1903 		 * change.
1904 		 */
1905 
1906 		entry = start_entry;
1907 		while ((entry != &map->header) && (entry->start < end)) {
1908 			/*
1909 			 * Trivial case if the entry is already wired
1910 			 */
1911 			if (entry->wired_count) {
1912 				entry->wired_count++;
1913 				entry = entry->next;
1914 				continue;
1915 			}
1916 
1917 			/*
1918 			 * The entry is being newly wired, we have to setup
1919 			 * appropriate management structures.  A shadow
1920 			 * object is required for a copy-on-write region,
1921 			 * or a normal object for a zero-fill region.  We
1922 			 * do not have to do this for entries that point to sub
1923 			 * maps because we won't hold the lock on the sub map.
1924 			 */
1925 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1926 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1927 				if (copyflag &&
1928 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1929 
1930 					vm_object_shadow(&entry->object.vm_object,
1931 					    &entry->offset,
1932 					    atop(entry->end - entry->start));
1933 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1934 				} else if (entry->object.vm_object == NULL &&
1935 					   !map->system_map) {
1936 					entry->object.vm_object =
1937 					    vm_object_allocate(OBJT_DEFAULT,
1938 						atop(entry->end - entry->start));
1939 					entry->offset = (vm_offset_t) 0;
1940 				}
1941 			}
1942 
1943 			entry->wired_count++;
1944 			entry = entry->next;
1945 		}
1946 
1947 		/*
1948 		 * Pass 2.
1949 		 */
1950 
1951 		/*
1952 		 * HACK HACK HACK HACK
1953 		 *
1954 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1955 		 * protects us from most changes but note that
1956 		 * clipping may still occur.  To prevent clipping from
1957 		 * occuring after the unlock, except for when we are
1958 		 * blocking in vm_fault_wire, we must run at splvm().
1959 		 * Otherwise our accesses to entry->start and entry->end
1960 		 * could be corrupted.  We have to set splvm() prior to
1961 		 * unlocking so start_entry does not change out from
1962 		 * under us at the very beginning of the loop.
1963 		 *
1964 		 * HACK HACK HACK HACK
1965 		 */
1966 
1967 		s = splvm();
1968 		vm_map_unlock(map);
1969 
1970 		entry = start_entry;
1971 		while (entry != &map->header && entry->start < end) {
1972 			/*
1973 			 * If vm_fault_wire fails for any page we need to undo
1974 			 * what has been done.  We decrement the wiring count
1975 			 * for those pages which have not yet been wired (now)
1976 			 * and unwire those that have (later).
1977 			 */
1978 			vm_offset_t save_start = entry->start;
1979 			vm_offset_t save_end = entry->end;
1980 
1981 			if (entry->wired_count == 1)
1982 				rv = vm_fault_wire(map, entry->start, entry->end);
1983 			if (rv) {
1984 				CLIP_CHECK_BACK(entry, save_start);
1985 				for (;;) {
1986 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1987 					entry->wired_count = 0;
1988 					if (entry->end == save_end)
1989 						break;
1990 					entry = entry->next;
1991 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1992 				}
1993 				end = save_start;
1994 				break;
1995 			}
1996 			CLIP_CHECK_FWD(entry, save_end);
1997 			entry = entry->next;
1998 		}
1999 		splx(s);
2000 
2001 		/*
2002 		 * relock.  start_entry is still IN_TRANSITION and must
2003 		 * still exist, but may have been clipped (handled just
2004 		 * below).
2005 		 */
2006 		vm_map_lock(map);
2007 
2008 		/*
2009 		 * If a failure occured undo everything by falling through
2010 		 * to the unwiring code.  'end' has already been adjusted
2011 		 * appropriately.
2012 		 */
2013 		if (rv)
2014 			kmflags |= KM_PAGEABLE;
2015 
2016 		/*
2017 		 * start_entry might have been clipped if we unlocked the
2018 		 * map and blocked.  No matter how clipped it has gotten
2019 		 * there should be a fragment that is on our start boundary.
2020 		 */
2021 		CLIP_CHECK_BACK(start_entry, start);
2022 	}
2023 
2024 	if (kmflags & KM_PAGEABLE) {
2025 		/*
2026 		 * This is the unwiring case.  We must first ensure that the
2027 		 * range to be unwired is really wired down.  We know there
2028 		 * are no holes.
2029 		 */
2030 		entry = start_entry;
2031 		while ((entry != &map->header) && (entry->start < end)) {
2032 			if (entry->wired_count == 0) {
2033 				rv = KERN_INVALID_ARGUMENT;
2034 				goto done;
2035 			}
2036 			entry = entry->next;
2037 		}
2038 
2039 		/*
2040 		 * Now decrement the wiring count for each region. If a region
2041 		 * becomes completely unwired, unwire its physical pages and
2042 		 * mappings.
2043 		 */
2044 		entry = start_entry;
2045 		while ((entry != &map->header) && (entry->start < end)) {
2046 			entry->wired_count--;
2047 			if (entry->wired_count == 0)
2048 				vm_fault_unwire(map, entry->start, entry->end);
2049 			entry = entry->next;
2050 		}
2051 	}
2052 done:
2053 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2054 		MAP_CLIP_NO_HOLES);
2055 	map->timestamp++;
2056 	vm_map_unlock(map);
2057 failure:
2058 	if (kmflags & KM_KRESERVE)
2059 		vm_map_entry_krelease(count);
2060 	else
2061 		vm_map_entry_release(count);
2062 	return (rv);
2063 }
2064 
2065 /*
2066  * vm_map_set_wired_quick()
2067  *
2068  *	Mark a newly allocated address range as wired but do not fault in
2069  *	the pages.  The caller is expected to load the pages into the object.
2070  *
2071  *	The map must be locked on entry and will remain locked on return.
2072  */
2073 void
2074 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2075 {
2076 	vm_map_entry_t scan;
2077 	vm_map_entry_t entry;
2078 
2079 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2080 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2081 	    KKASSERT(entry->wired_count == 0);
2082 	    entry->wired_count = 1;
2083 	}
2084 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2085 }
2086 
2087 /*
2088  * vm_map_clean
2089  *
2090  * Push any dirty cached pages in the address range to their pager.
2091  * If syncio is TRUE, dirty pages are written synchronously.
2092  * If invalidate is TRUE, any cached pages are freed as well.
2093  *
2094  * Returns an error if any part of the specified range is not mapped.
2095  */
2096 int
2097 vm_map_clean(map, start, end, syncio, invalidate)
2098 	vm_map_t map;
2099 	vm_offset_t start;
2100 	vm_offset_t end;
2101 	boolean_t syncio;
2102 	boolean_t invalidate;
2103 {
2104 	vm_map_entry_t current;
2105 	vm_map_entry_t entry;
2106 	vm_size_t size;
2107 	vm_object_t object;
2108 	vm_ooffset_t offset;
2109 
2110 	vm_map_lock_read(map);
2111 	VM_MAP_RANGE_CHECK(map, start, end);
2112 	if (!vm_map_lookup_entry(map, start, &entry)) {
2113 		vm_map_unlock_read(map);
2114 		return (KERN_INVALID_ADDRESS);
2115 	}
2116 	/*
2117 	 * Make a first pass to check for holes.
2118 	 */
2119 	for (current = entry; current->start < end; current = current->next) {
2120 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2121 			vm_map_unlock_read(map);
2122 			return (KERN_INVALID_ARGUMENT);
2123 		}
2124 		if (end > current->end &&
2125 		    (current->next == &map->header ||
2126 			current->end != current->next->start)) {
2127 			vm_map_unlock_read(map);
2128 			return (KERN_INVALID_ADDRESS);
2129 		}
2130 	}
2131 
2132 	if (invalidate)
2133 		pmap_remove(vm_map_pmap(map), start, end);
2134 	/*
2135 	 * Make a second pass, cleaning/uncaching pages from the indicated
2136 	 * objects as we go.
2137 	 */
2138 	for (current = entry; current->start < end; current = current->next) {
2139 		offset = current->offset + (start - current->start);
2140 		size = (end <= current->end ? end : current->end) - start;
2141 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2142 			vm_map_t smap;
2143 			vm_map_entry_t tentry;
2144 			vm_size_t tsize;
2145 
2146 			smap = current->object.sub_map;
2147 			vm_map_lock_read(smap);
2148 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2149 			tsize = tentry->end - offset;
2150 			if (tsize < size)
2151 				size = tsize;
2152 			object = tentry->object.vm_object;
2153 			offset = tentry->offset + (offset - tentry->start);
2154 			vm_map_unlock_read(smap);
2155 		} else {
2156 			object = current->object.vm_object;
2157 		}
2158 		/*
2159 		 * Note that there is absolutely no sense in writing out
2160 		 * anonymous objects, so we track down the vnode object
2161 		 * to write out.
2162 		 * We invalidate (remove) all pages from the address space
2163 		 * anyway, for semantic correctness.
2164 		 *
2165 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2166 		 * may start out with a NULL object.
2167 		 */
2168 		while (object && object->backing_object) {
2169 			object = object->backing_object;
2170 			offset += object->backing_object_offset;
2171 			if (object->size < OFF_TO_IDX( offset + size))
2172 				size = IDX_TO_OFF(object->size) - offset;
2173 		}
2174 		if (object && (object->type == OBJT_VNODE) &&
2175 		    (current->protection & VM_PROT_WRITE)) {
2176 			/*
2177 			 * Flush pages if writing is allowed, invalidate them
2178 			 * if invalidation requested.  Pages undergoing I/O
2179 			 * will be ignored by vm_object_page_remove().
2180 			 *
2181 			 * We cannot lock the vnode and then wait for paging
2182 			 * to complete without deadlocking against vm_fault.
2183 			 * Instead we simply call vm_object_page_remove() and
2184 			 * allow it to block internally on a page-by-page
2185 			 * basis when it encounters pages undergoing async
2186 			 * I/O.
2187 			 */
2188 			int flags;
2189 
2190 			vm_object_reference(object);
2191 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2192 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2193 			flags |= invalidate ? OBJPC_INVAL : 0;
2194 			vm_object_page_clean(object,
2195 			    OFF_TO_IDX(offset),
2196 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2197 			    flags);
2198 			VOP_UNLOCK(object->handle, 0, curthread);
2199 			vm_object_deallocate(object);
2200 		}
2201 		if (object && invalidate &&
2202 		   ((object->type == OBJT_VNODE) ||
2203 		    (object->type == OBJT_DEVICE))) {
2204 			vm_object_reference(object);
2205 			vm_object_page_remove(object,
2206 			    OFF_TO_IDX(offset),
2207 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2208 			    FALSE);
2209 			vm_object_deallocate(object);
2210 		}
2211 		start += size;
2212 	}
2213 
2214 	vm_map_unlock_read(map);
2215 	return (KERN_SUCCESS);
2216 }
2217 
2218 /*
2219  *	vm_map_entry_unwire:	[ internal use only ]
2220  *
2221  *	Make the region specified by this entry pageable.
2222  *
2223  *	The map in question should be locked.
2224  *	[This is the reason for this routine's existence.]
2225  */
2226 static void
2227 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2228 {
2229 	vm_fault_unwire(map, entry->start, entry->end);
2230 	entry->wired_count = 0;
2231 }
2232 
2233 /*
2234  *	vm_map_entry_delete:	[ internal use only ]
2235  *
2236  *	Deallocate the given entry from the target map.
2237  */
2238 static void
2239 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2240 {
2241 	vm_map_entry_unlink(map, entry);
2242 	map->size -= entry->end - entry->start;
2243 
2244 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2245 		vm_object_deallocate(entry->object.vm_object);
2246 	}
2247 
2248 	vm_map_entry_dispose(map, entry, countp);
2249 }
2250 
2251 /*
2252  *	vm_map_delete:	[ internal use only ]
2253  *
2254  *	Deallocates the given address range from the target
2255  *	map.
2256  */
2257 int
2258 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2259 {
2260 	vm_object_t object;
2261 	vm_map_entry_t entry;
2262 	vm_map_entry_t first_entry;
2263 
2264 	/*
2265 	 * Find the start of the region, and clip it
2266 	 */
2267 
2268 again:
2269 	if (!vm_map_lookup_entry(map, start, &first_entry))
2270 		entry = first_entry->next;
2271 	else {
2272 		entry = first_entry;
2273 		vm_map_clip_start(map, entry, start, countp);
2274 		/*
2275 		 * Fix the lookup hint now, rather than each time though the
2276 		 * loop.
2277 		 */
2278 		SAVE_HINT(map, entry->prev);
2279 	}
2280 
2281 	/*
2282 	 * Save the free space hint
2283 	 */
2284 
2285 	if (entry == &map->header) {
2286 		map->first_free = &map->header;
2287 	} else if (map->first_free->start >= start) {
2288 		map->first_free = entry->prev;
2289 	}
2290 
2291 	/*
2292 	 * Step through all entries in this region
2293 	 */
2294 
2295 	while ((entry != &map->header) && (entry->start < end)) {
2296 		vm_map_entry_t next;
2297 		vm_offset_t s, e;
2298 		vm_pindex_t offidxstart, offidxend, count;
2299 
2300 		/*
2301 		 * If we hit an in-transition entry we have to sleep and
2302 		 * retry.  It's easier (and not really slower) to just retry
2303 		 * since this case occurs so rarely and the hint is already
2304 		 * pointing at the right place.  We have to reset the
2305 		 * start offset so as not to accidently delete an entry
2306 		 * another process just created in vacated space.
2307 		 */
2308 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2309 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2310 			start = entry->start;
2311 			++mycpu->gd_cnt.v_intrans_coll;
2312 			++mycpu->gd_cnt.v_intrans_wait;
2313 			vm_map_transition_wait(map);
2314 			goto again;
2315 		}
2316 		vm_map_clip_end(map, entry, end, countp);
2317 
2318 		s = entry->start;
2319 		e = entry->end;
2320 		next = entry->next;
2321 
2322 		offidxstart = OFF_TO_IDX(entry->offset);
2323 		count = OFF_TO_IDX(e - s);
2324 		object = entry->object.vm_object;
2325 
2326 		/*
2327 		 * Unwire before removing addresses from the pmap; otherwise,
2328 		 * unwiring will put the entries back in the pmap.
2329 		 */
2330 		if (entry->wired_count != 0) {
2331 			vm_map_entry_unwire(map, entry);
2332 		}
2333 
2334 		offidxend = offidxstart + count;
2335 
2336 		if ((object == kernel_object) || (object == kmem_object)) {
2337 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2338 		} else {
2339 			pmap_remove(map->pmap, s, e);
2340 			if (object != NULL &&
2341 			    object->ref_count != 1 &&
2342 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2343 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2344 				vm_object_collapse(object);
2345 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2346 				if (object->type == OBJT_SWAP) {
2347 					swap_pager_freespace(object, offidxstart, count);
2348 				}
2349 				if (offidxend >= object->size &&
2350 				    offidxstart < object->size) {
2351 					object->size = offidxstart;
2352 				}
2353 			}
2354 		}
2355 
2356 		/*
2357 		 * Delete the entry (which may delete the object) only after
2358 		 * removing all pmap entries pointing to its pages.
2359 		 * (Otherwise, its page frames may be reallocated, and any
2360 		 * modify bits will be set in the wrong object!)
2361 		 */
2362 		vm_map_entry_delete(map, entry, countp);
2363 		entry = next;
2364 	}
2365 	return (KERN_SUCCESS);
2366 }
2367 
2368 /*
2369  *	vm_map_remove:
2370  *
2371  *	Remove the given address range from the target map.
2372  *	This is the exported form of vm_map_delete.
2373  */
2374 int
2375 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2376 {
2377 	int result;
2378 	int count;
2379 
2380 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2381 	vm_map_lock(map);
2382 	VM_MAP_RANGE_CHECK(map, start, end);
2383 	result = vm_map_delete(map, start, end, &count);
2384 	vm_map_unlock(map);
2385 	vm_map_entry_release(count);
2386 
2387 	return (result);
2388 }
2389 
2390 /*
2391  *	vm_map_check_protection:
2392  *
2393  *	Assert that the target map allows the specified
2394  *	privilege on the entire address region given.
2395  *	The entire region must be allocated.
2396  */
2397 boolean_t
2398 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2399 			vm_prot_t protection)
2400 {
2401 	vm_map_entry_t entry;
2402 	vm_map_entry_t tmp_entry;
2403 
2404 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2405 		return (FALSE);
2406 	}
2407 	entry = tmp_entry;
2408 
2409 	while (start < end) {
2410 		if (entry == &map->header) {
2411 			return (FALSE);
2412 		}
2413 		/*
2414 		 * No holes allowed!
2415 		 */
2416 
2417 		if (start < entry->start) {
2418 			return (FALSE);
2419 		}
2420 		/*
2421 		 * Check protection associated with entry.
2422 		 */
2423 
2424 		if ((entry->protection & protection) != protection) {
2425 			return (FALSE);
2426 		}
2427 		/* go to next entry */
2428 
2429 		start = entry->end;
2430 		entry = entry->next;
2431 	}
2432 	return (TRUE);
2433 }
2434 
2435 /*
2436  * Split the pages in a map entry into a new object.  This affords
2437  * easier removal of unused pages, and keeps object inheritance from
2438  * being a negative impact on memory usage.
2439  */
2440 static void
2441 vm_map_split(vm_map_entry_t entry)
2442 {
2443 	vm_page_t m;
2444 	vm_object_t orig_object, new_object, source;
2445 	vm_offset_t s, e;
2446 	vm_pindex_t offidxstart, offidxend, idx;
2447 	vm_size_t size;
2448 	vm_ooffset_t offset;
2449 
2450 	orig_object = entry->object.vm_object;
2451 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2452 		return;
2453 	if (orig_object->ref_count <= 1)
2454 		return;
2455 
2456 	offset = entry->offset;
2457 	s = entry->start;
2458 	e = entry->end;
2459 
2460 	offidxstart = OFF_TO_IDX(offset);
2461 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2462 	size = offidxend - offidxstart;
2463 
2464 	new_object = vm_pager_allocate(orig_object->type,
2465 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2466 	if (new_object == NULL)
2467 		return;
2468 
2469 	source = orig_object->backing_object;
2470 	if (source != NULL) {
2471 		vm_object_reference(source);	/* Referenced by new_object */
2472 		LIST_INSERT_HEAD(&source->shadow_head,
2473 				  new_object, shadow_list);
2474 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2475 		new_object->backing_object_offset =
2476 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2477 		new_object->backing_object = source;
2478 		source->shadow_count++;
2479 		source->generation++;
2480 	}
2481 
2482 	for (idx = 0; idx < size; idx++) {
2483 		vm_page_t m;
2484 
2485 	retry:
2486 		m = vm_page_lookup(orig_object, offidxstart + idx);
2487 		if (m == NULL)
2488 			continue;
2489 
2490 		/*
2491 		 * We must wait for pending I/O to complete before we can
2492 		 * rename the page.
2493 		 *
2494 		 * We do not have to VM_PROT_NONE the page as mappings should
2495 		 * not be changed by this operation.
2496 		 */
2497 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2498 			goto retry;
2499 
2500 		vm_page_busy(m);
2501 		vm_page_rename(m, new_object, idx);
2502 		/* page automatically made dirty by rename and cache handled */
2503 		vm_page_busy(m);
2504 	}
2505 
2506 	if (orig_object->type == OBJT_SWAP) {
2507 		vm_object_pip_add(orig_object, 1);
2508 		/*
2509 		 * copy orig_object pages into new_object
2510 		 * and destroy unneeded pages in
2511 		 * shadow object.
2512 		 */
2513 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2514 		vm_object_pip_wakeup(orig_object);
2515 	}
2516 
2517 	for (idx = 0; idx < size; idx++) {
2518 		m = vm_page_lookup(new_object, idx);
2519 		if (m) {
2520 			vm_page_wakeup(m);
2521 		}
2522 	}
2523 
2524 	entry->object.vm_object = new_object;
2525 	entry->offset = 0LL;
2526 	vm_object_deallocate(orig_object);
2527 }
2528 
2529 /*
2530  *	vm_map_copy_entry:
2531  *
2532  *	Copies the contents of the source entry to the destination
2533  *	entry.  The entries *must* be aligned properly.
2534  */
2535 static void
2536 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2537 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2538 {
2539 	vm_object_t src_object;
2540 
2541 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2542 		return;
2543 
2544 	if (src_entry->wired_count == 0) {
2545 
2546 		/*
2547 		 * If the source entry is marked needs_copy, it is already
2548 		 * write-protected.
2549 		 */
2550 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2551 			pmap_protect(src_map->pmap,
2552 			    src_entry->start,
2553 			    src_entry->end,
2554 			    src_entry->protection & ~VM_PROT_WRITE);
2555 		}
2556 
2557 		/*
2558 		 * Make a copy of the object.
2559 		 */
2560 		if ((src_object = src_entry->object.vm_object) != NULL) {
2561 
2562 			if ((src_object->handle == NULL) &&
2563 				(src_object->type == OBJT_DEFAULT ||
2564 				 src_object->type == OBJT_SWAP)) {
2565 				vm_object_collapse(src_object);
2566 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2567 					vm_map_split(src_entry);
2568 					src_object = src_entry->object.vm_object;
2569 				}
2570 			}
2571 
2572 			vm_object_reference(src_object);
2573 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2574 			dst_entry->object.vm_object = src_object;
2575 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2576 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2577 			dst_entry->offset = src_entry->offset;
2578 		} else {
2579 			dst_entry->object.vm_object = NULL;
2580 			dst_entry->offset = 0;
2581 		}
2582 
2583 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2584 		    dst_entry->end - dst_entry->start, src_entry->start);
2585 	} else {
2586 		/*
2587 		 * Of course, wired down pages can't be set copy-on-write.
2588 		 * Cause wired pages to be copied into the new map by
2589 		 * simulating faults (the new pages are pageable)
2590 		 */
2591 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2592 	}
2593 }
2594 
2595 /*
2596  * vmspace_fork:
2597  * Create a new process vmspace structure and vm_map
2598  * based on those of an existing process.  The new map
2599  * is based on the old map, according to the inheritance
2600  * values on the regions in that map.
2601  *
2602  * The source map must not be locked.
2603  */
2604 struct vmspace *
2605 vmspace_fork(struct vmspace *vm1)
2606 {
2607 	struct vmspace *vm2;
2608 	vm_map_t old_map = &vm1->vm_map;
2609 	vm_map_t new_map;
2610 	vm_map_entry_t old_entry;
2611 	vm_map_entry_t new_entry;
2612 	vm_object_t object;
2613 	int count;
2614 
2615 	vm_map_lock(old_map);
2616 	old_map->infork = 1;
2617 
2618 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2619 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2620 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2621 	new_map = &vm2->vm_map;	/* XXX */
2622 	new_map->timestamp = 1;
2623 
2624 	count = 0;
2625 	old_entry = old_map->header.next;
2626 	while (old_entry != &old_map->header) {
2627 		++count;
2628 		old_entry = old_entry->next;
2629 	}
2630 
2631 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2632 
2633 	old_entry = old_map->header.next;
2634 	while (old_entry != &old_map->header) {
2635 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2636 			panic("vm_map_fork: encountered a submap");
2637 
2638 		switch (old_entry->inheritance) {
2639 		case VM_INHERIT_NONE:
2640 			break;
2641 
2642 		case VM_INHERIT_SHARE:
2643 			/*
2644 			 * Clone the entry, creating the shared object if necessary.
2645 			 */
2646 			object = old_entry->object.vm_object;
2647 			if (object == NULL) {
2648 				object = vm_object_allocate(OBJT_DEFAULT,
2649 					atop(old_entry->end - old_entry->start));
2650 				old_entry->object.vm_object = object;
2651 				old_entry->offset = (vm_offset_t) 0;
2652 			}
2653 
2654 			/*
2655 			 * Add the reference before calling vm_object_shadow
2656 			 * to insure that a shadow object is created.
2657 			 */
2658 			vm_object_reference(object);
2659 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2660 				vm_object_shadow(&old_entry->object.vm_object,
2661 					&old_entry->offset,
2662 					atop(old_entry->end - old_entry->start));
2663 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2664 				/* Transfer the second reference too. */
2665 				vm_object_reference(
2666 				    old_entry->object.vm_object);
2667 				vm_object_deallocate(object);
2668 				object = old_entry->object.vm_object;
2669 			}
2670 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2671 
2672 			/*
2673 			 * Clone the entry, referencing the shared object.
2674 			 */
2675 			new_entry = vm_map_entry_create(new_map, &count);
2676 			*new_entry = *old_entry;
2677 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2678 			new_entry->wired_count = 0;
2679 
2680 			/*
2681 			 * Insert the entry into the new map -- we know we're
2682 			 * inserting at the end of the new map.
2683 			 */
2684 
2685 			vm_map_entry_link(new_map, new_map->header.prev,
2686 			    new_entry);
2687 
2688 			/*
2689 			 * Update the physical map
2690 			 */
2691 
2692 			pmap_copy(new_map->pmap, old_map->pmap,
2693 			    new_entry->start,
2694 			    (old_entry->end - old_entry->start),
2695 			    old_entry->start);
2696 			break;
2697 
2698 		case VM_INHERIT_COPY:
2699 			/*
2700 			 * Clone the entry and link into the map.
2701 			 */
2702 			new_entry = vm_map_entry_create(new_map, &count);
2703 			*new_entry = *old_entry;
2704 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2705 			new_entry->wired_count = 0;
2706 			new_entry->object.vm_object = NULL;
2707 			vm_map_entry_link(new_map, new_map->header.prev,
2708 			    new_entry);
2709 			vm_map_copy_entry(old_map, new_map, old_entry,
2710 			    new_entry);
2711 			break;
2712 		}
2713 		old_entry = old_entry->next;
2714 	}
2715 
2716 	new_map->size = old_map->size;
2717 	old_map->infork = 0;
2718 	vm_map_unlock(old_map);
2719 	vm_map_entry_release(count);
2720 
2721 	return (vm2);
2722 }
2723 
2724 int
2725 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2726 	      vm_prot_t prot, vm_prot_t max, int cow)
2727 {
2728 	vm_map_entry_t prev_entry;
2729 	vm_map_entry_t new_stack_entry;
2730 	vm_size_t      init_ssize;
2731 	int            rv;
2732 	int		count;
2733 
2734 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2735 		return (KERN_NO_SPACE);
2736 
2737 	if (max_ssize < sgrowsiz)
2738 		init_ssize = max_ssize;
2739 	else
2740 		init_ssize = sgrowsiz;
2741 
2742 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2743 	vm_map_lock(map);
2744 
2745 	/* If addr is already mapped, no go */
2746 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2747 		vm_map_unlock(map);
2748 		vm_map_entry_release(count);
2749 		return (KERN_NO_SPACE);
2750 	}
2751 
2752 	/* If we would blow our VMEM resource limit, no go */
2753 	if (map->size + init_ssize >
2754 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2755 		vm_map_unlock(map);
2756 		vm_map_entry_release(count);
2757 		return (KERN_NO_SPACE);
2758 	}
2759 
2760 	/* If we can't accomodate max_ssize in the current mapping,
2761 	 * no go.  However, we need to be aware that subsequent user
2762 	 * mappings might map into the space we have reserved for
2763 	 * stack, and currently this space is not protected.
2764 	 *
2765 	 * Hopefully we will at least detect this condition
2766 	 * when we try to grow the stack.
2767 	 */
2768 	if ((prev_entry->next != &map->header) &&
2769 	    (prev_entry->next->start < addrbos + max_ssize)) {
2770 		vm_map_unlock(map);
2771 		vm_map_entry_release(count);
2772 		return (KERN_NO_SPACE);
2773 	}
2774 
2775 	/* We initially map a stack of only init_ssize.  We will
2776 	 * grow as needed later.  Since this is to be a grow
2777 	 * down stack, we map at the top of the range.
2778 	 *
2779 	 * Note: we would normally expect prot and max to be
2780 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2781 	 * eliminate these as input parameters, and just
2782 	 * pass these values here in the insert call.
2783 	 */
2784 	rv = vm_map_insert(map, &count,
2785 			   NULL, 0, addrbos + max_ssize - init_ssize,
2786 	                   addrbos + max_ssize, prot, max, cow);
2787 
2788 	/* Now set the avail_ssize amount */
2789 	if (rv == KERN_SUCCESS){
2790 		if (prev_entry != &map->header)
2791 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2792 		new_stack_entry = prev_entry->next;
2793 		if (new_stack_entry->end   != addrbos + max_ssize ||
2794 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2795 			panic ("Bad entry start/end for new stack entry");
2796 		else
2797 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2798 	}
2799 
2800 	vm_map_unlock(map);
2801 	vm_map_entry_release(count);
2802 	return (rv);
2803 }
2804 
2805 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2806  * desired address is already mapped, or if we successfully grow
2807  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2808  * stack range (this is strange, but preserves compatibility with
2809  * the grow function in vm_machdep.c).
2810  */
2811 int
2812 vm_map_growstack (struct proc *p, vm_offset_t addr)
2813 {
2814 	vm_map_entry_t prev_entry;
2815 	vm_map_entry_t stack_entry;
2816 	vm_map_entry_t new_stack_entry;
2817 	struct vmspace *vm = p->p_vmspace;
2818 	vm_map_t map = &vm->vm_map;
2819 	vm_offset_t    end;
2820 	int grow_amount;
2821 	int rv = KERN_SUCCESS;
2822 	int is_procstack;
2823 	int use_read_lock = 1;
2824 	int count;
2825 
2826 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2827 Retry:
2828 	if (use_read_lock)
2829 		vm_map_lock_read(map);
2830 	else
2831 		vm_map_lock(map);
2832 
2833 	/* If addr is already in the entry range, no need to grow.*/
2834 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2835 		goto done;
2836 
2837 	if ((stack_entry = prev_entry->next) == &map->header)
2838 		goto done;
2839 	if (prev_entry == &map->header)
2840 		end = stack_entry->start - stack_entry->avail_ssize;
2841 	else
2842 		end = prev_entry->end;
2843 
2844 	/* This next test mimics the old grow function in vm_machdep.c.
2845 	 * It really doesn't quite make sense, but we do it anyway
2846 	 * for compatibility.
2847 	 *
2848 	 * If not growable stack, return success.  This signals the
2849 	 * caller to proceed as he would normally with normal vm.
2850 	 */
2851 	if (stack_entry->avail_ssize < 1 ||
2852 	    addr >= stack_entry->start ||
2853 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2854 		goto done;
2855 	}
2856 
2857 	/* Find the minimum grow amount */
2858 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2859 	if (grow_amount > stack_entry->avail_ssize) {
2860 		rv = KERN_NO_SPACE;
2861 		goto done;
2862 	}
2863 
2864 	/* If there is no longer enough space between the entries
2865 	 * nogo, and adjust the available space.  Note: this
2866 	 * should only happen if the user has mapped into the
2867 	 * stack area after the stack was created, and is
2868 	 * probably an error.
2869 	 *
2870 	 * This also effectively destroys any guard page the user
2871 	 * might have intended by limiting the stack size.
2872 	 */
2873 	if (grow_amount > stack_entry->start - end) {
2874 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2875 			use_read_lock = 0;
2876 			goto Retry;
2877 		}
2878 		use_read_lock = 0;
2879 		stack_entry->avail_ssize = stack_entry->start - end;
2880 		rv = KERN_NO_SPACE;
2881 		goto done;
2882 	}
2883 
2884 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2885 
2886 	/* If this is the main process stack, see if we're over the
2887 	 * stack limit.
2888 	 */
2889 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2890 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2891 		rv = KERN_NO_SPACE;
2892 		goto done;
2893 	}
2894 
2895 	/* Round up the grow amount modulo SGROWSIZ */
2896 	grow_amount = roundup (grow_amount, sgrowsiz);
2897 	if (grow_amount > stack_entry->avail_ssize) {
2898 		grow_amount = stack_entry->avail_ssize;
2899 	}
2900 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2901 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2902 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2903 		              ctob(vm->vm_ssize);
2904 	}
2905 
2906 	/* If we would blow our VMEM resource limit, no go */
2907 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2908 		rv = KERN_NO_SPACE;
2909 		goto done;
2910 	}
2911 
2912 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2913 		use_read_lock = 0;
2914 		goto Retry;
2915 	}
2916 	use_read_lock = 0;
2917 
2918 	/* Get the preliminary new entry start value */
2919 	addr = stack_entry->start - grow_amount;
2920 
2921 	/* If this puts us into the previous entry, cut back our growth
2922 	 * to the available space.  Also, see the note above.
2923 	 */
2924 	if (addr < end) {
2925 		stack_entry->avail_ssize = stack_entry->start - end;
2926 		addr = end;
2927 	}
2928 
2929 	rv = vm_map_insert(map, &count,
2930 			   NULL, 0, addr, stack_entry->start,
2931 			   VM_PROT_ALL,
2932 			   VM_PROT_ALL,
2933 			   0);
2934 
2935 	/* Adjust the available stack space by the amount we grew. */
2936 	if (rv == KERN_SUCCESS) {
2937 		if (prev_entry != &map->header)
2938 			vm_map_clip_end(map, prev_entry, addr, &count);
2939 		new_stack_entry = prev_entry->next;
2940 		if (new_stack_entry->end   != stack_entry->start  ||
2941 		    new_stack_entry->start != addr)
2942 			panic ("Bad stack grow start/end in new stack entry");
2943 		else {
2944 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2945 							(new_stack_entry->end -
2946 							 new_stack_entry->start);
2947 			if (is_procstack)
2948 				vm->vm_ssize += btoc(new_stack_entry->end -
2949 						     new_stack_entry->start);
2950 		}
2951 	}
2952 
2953 done:
2954 	if (use_read_lock)
2955 		vm_map_unlock_read(map);
2956 	else
2957 		vm_map_unlock(map);
2958 	vm_map_entry_release(count);
2959 	return (rv);
2960 }
2961 
2962 /*
2963  * Unshare the specified VM space for exec.  If other processes are
2964  * mapped to it, then create a new one.  The new vmspace is null.
2965  */
2966 
2967 void
2968 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
2969 {
2970 	struct vmspace *oldvmspace = p->p_vmspace;
2971 	struct vmspace *newvmspace;
2972 	vm_map_t map = &p->p_vmspace->vm_map;
2973 
2974 	/*
2975 	 * If we are execing a resident vmspace we fork it, otherwise
2976 	 * we create a new vmspace.
2977 	 */
2978 	if (vmcopy)  {
2979 	    newvmspace = vmspace_fork(vmcopy);
2980 	} else {
2981 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2982 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2983 		(caddr_t)(newvmspace+1) - (caddr_t) &newvmspace->vm_startcopy);
2984 	}
2985 
2986 	/*
2987 	 * This code is written like this for prototype purposes.  The
2988 	 * goal is to avoid running down the vmspace here, but let the
2989 	 * other process's that are still using the vmspace to finally
2990 	 * run it down.  Even though there is little or no chance of blocking
2991 	 * here, it is a good idea to keep this form for future mods.
2992 	 */
2993 	p->p_vmspace = newvmspace;
2994 	pmap_pinit2(vmspace_pmap(newvmspace));
2995 	if (p == curproc)
2996 		pmap_activate(p);
2997 	vmspace_free(oldvmspace);
2998 }
2999 
3000 /*
3001  * Unshare the specified VM space for forcing COW.  This
3002  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3003  */
3004 
3005 void
3006 vmspace_unshare(struct proc *p)
3007 {
3008 	struct vmspace *oldvmspace = p->p_vmspace;
3009 	struct vmspace *newvmspace;
3010 
3011 	if (oldvmspace->vm_refcnt == 1)
3012 		return;
3013 	newvmspace = vmspace_fork(oldvmspace);
3014 	p->p_vmspace = newvmspace;
3015 	pmap_pinit2(vmspace_pmap(newvmspace));
3016 	if (p == curproc)
3017 		pmap_activate(p);
3018 	vmspace_free(oldvmspace);
3019 }
3020 
3021 /*
3022  *	vm_map_lookup:
3023  *
3024  *	Finds the VM object, offset, and
3025  *	protection for a given virtual address in the
3026  *	specified map, assuming a page fault of the
3027  *	type specified.
3028  *
3029  *	Leaves the map in question locked for read; return
3030  *	values are guaranteed until a vm_map_lookup_done
3031  *	call is performed.  Note that the map argument
3032  *	is in/out; the returned map must be used in
3033  *	the call to vm_map_lookup_done.
3034  *
3035  *	A handle (out_entry) is returned for use in
3036  *	vm_map_lookup_done, to make that fast.
3037  *
3038  *	If a lookup is requested with "write protection"
3039  *	specified, the map may be changed to perform virtual
3040  *	copying operations, although the data referenced will
3041  *	remain the same.
3042  */
3043 int
3044 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3045 	      vm_offset_t vaddr,
3046 	      vm_prot_t fault_typea,
3047 	      vm_map_entry_t *out_entry,	/* OUT */
3048 	      vm_object_t *object,		/* OUT */
3049 	      vm_pindex_t *pindex,		/* OUT */
3050 	      vm_prot_t *out_prot,		/* OUT */
3051 	      boolean_t *wired)			/* OUT */
3052 {
3053 	vm_map_entry_t entry;
3054 	vm_map_t map = *var_map;
3055 	vm_prot_t prot;
3056 	vm_prot_t fault_type = fault_typea;
3057 	int use_read_lock = 1;
3058 	int rv = KERN_SUCCESS;
3059 
3060 RetryLookup:
3061 	if (use_read_lock)
3062 		vm_map_lock_read(map);
3063 	else
3064 		vm_map_lock(map);
3065 
3066 	/*
3067 	 * If the map has an interesting hint, try it before calling full
3068 	 * blown lookup routine.
3069 	 */
3070 	entry = map->hint;
3071 	*out_entry = entry;
3072 
3073 	if ((entry == &map->header) ||
3074 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3075 		vm_map_entry_t tmp_entry;
3076 
3077 		/*
3078 		 * Entry was either not a valid hint, or the vaddr was not
3079 		 * contained in the entry, so do a full lookup.
3080 		 */
3081 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3082 			rv = KERN_INVALID_ADDRESS;
3083 			goto done;
3084 		}
3085 
3086 		entry = tmp_entry;
3087 		*out_entry = entry;
3088 	}
3089 
3090 	/*
3091 	 * Handle submaps.
3092 	 */
3093 
3094 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3095 		vm_map_t old_map = map;
3096 
3097 		*var_map = map = entry->object.sub_map;
3098 		if (use_read_lock)
3099 			vm_map_unlock_read(old_map);
3100 		else
3101 			vm_map_unlock(old_map);
3102 		use_read_lock = 1;
3103 		goto RetryLookup;
3104 	}
3105 
3106 	/*
3107 	 * Check whether this task is allowed to have this page.
3108 	 * Note the special case for MAP_ENTRY_COW
3109 	 * pages with an override.  This is to implement a forced
3110 	 * COW for debuggers.
3111 	 */
3112 
3113 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3114 		prot = entry->max_protection;
3115 	else
3116 		prot = entry->protection;
3117 
3118 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3119 	if ((fault_type & prot) != fault_type) {
3120 		rv = KERN_PROTECTION_FAILURE;
3121 		goto done;
3122 	}
3123 
3124 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3125 	    (entry->eflags & MAP_ENTRY_COW) &&
3126 	    (fault_type & VM_PROT_WRITE) &&
3127 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3128 		rv = KERN_PROTECTION_FAILURE;
3129 		goto done;
3130 	}
3131 
3132 	/*
3133 	 * If this page is not pageable, we have to get it for all possible
3134 	 * accesses.
3135 	 */
3136 
3137 	*wired = (entry->wired_count != 0);
3138 	if (*wired)
3139 		prot = fault_type = entry->protection;
3140 
3141 	/*
3142 	 * If the entry was copy-on-write, we either ...
3143 	 */
3144 
3145 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3146 		/*
3147 		 * If we want to write the page, we may as well handle that
3148 		 * now since we've got the map locked.
3149 		 *
3150 		 * If we don't need to write the page, we just demote the
3151 		 * permissions allowed.
3152 		 */
3153 
3154 		if (fault_type & VM_PROT_WRITE) {
3155 			/*
3156 			 * Make a new object, and place it in the object
3157 			 * chain.  Note that no new references have appeared
3158 			 * -- one just moved from the map to the new
3159 			 * object.
3160 			 */
3161 
3162 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3163 				use_read_lock = 0;
3164 				goto RetryLookup;
3165 			}
3166 			use_read_lock = 0;
3167 
3168 			vm_object_shadow(
3169 			    &entry->object.vm_object,
3170 			    &entry->offset,
3171 			    atop(entry->end - entry->start));
3172 
3173 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3174 		} else {
3175 			/*
3176 			 * We're attempting to read a copy-on-write page --
3177 			 * don't allow writes.
3178 			 */
3179 
3180 			prot &= ~VM_PROT_WRITE;
3181 		}
3182 	}
3183 
3184 	/*
3185 	 * Create an object if necessary.
3186 	 */
3187 	if (entry->object.vm_object == NULL &&
3188 	    !map->system_map) {
3189 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3190 			use_read_lock = 0;
3191 			goto RetryLookup;
3192 		}
3193 		use_read_lock = 0;
3194 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3195 		    atop(entry->end - entry->start));
3196 		entry->offset = 0;
3197 	}
3198 
3199 	/*
3200 	 * Return the object/offset from this entry.  If the entry was
3201 	 * copy-on-write or empty, it has been fixed up.
3202 	 */
3203 
3204 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3205 	*object = entry->object.vm_object;
3206 
3207 	/*
3208 	 * Return whether this is the only map sharing this data.  On
3209 	 * success we return with a read lock held on the map.  On failure
3210 	 * we return with the map unlocked.
3211 	 */
3212 	*out_prot = prot;
3213 done:
3214 	if (rv == KERN_SUCCESS) {
3215 		if (use_read_lock == 0)
3216 			vm_map_lock_downgrade(map);
3217 	} else if (use_read_lock) {
3218 		vm_map_unlock_read(map);
3219 	} else {
3220 		vm_map_unlock(map);
3221 	}
3222 	return (rv);
3223 }
3224 
3225 /*
3226  *	vm_map_lookup_done:
3227  *
3228  *	Releases locks acquired by a vm_map_lookup
3229  *	(according to the handle returned by that lookup).
3230  */
3231 
3232 void
3233 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3234 {
3235 	/*
3236 	 * Unlock the main-level map
3237 	 */
3238 	vm_map_unlock_read(map);
3239 	if (count)
3240 		vm_map_entry_release(count);
3241 }
3242 
3243 #ifdef ENABLE_VFS_IOOPT
3244 
3245 /*
3246  * Implement uiomove with VM operations.  This handles (and collateral changes)
3247  * support every combination of source object modification, and COW type
3248  * operations.
3249  */
3250 int
3251 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3252 	vm_map_t mapa;
3253 	vm_object_t srcobject;
3254 	off_t cp;
3255 	int cnta;
3256 	vm_offset_t uaddra;
3257 	int *npages;
3258 {
3259 	vm_map_t map;
3260 	vm_object_t first_object, oldobject, object;
3261 	vm_map_entry_t entry;
3262 	vm_prot_t prot;
3263 	boolean_t wired;
3264 	int tcnt, rv;
3265 	vm_offset_t uaddr, start, end, tend;
3266 	vm_pindex_t first_pindex, osize, oindex;
3267 	off_t ooffset;
3268 	int cnt;
3269 	int count;
3270 
3271 	if (npages)
3272 		*npages = 0;
3273 
3274 	cnt = cnta;
3275 	uaddr = uaddra;
3276 
3277 	while (cnt > 0) {
3278 		map = mapa;
3279 
3280 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3281 
3282 		if ((vm_map_lookup(&map, uaddr,
3283 			VM_PROT_READ, &entry, &first_object,
3284 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3285 			return EFAULT;
3286 		}
3287 
3288 		vm_map_clip_start(map, entry, uaddr, &count);
3289 
3290 		tcnt = cnt;
3291 		tend = uaddr + tcnt;
3292 		if (tend > entry->end) {
3293 			tcnt = entry->end - uaddr;
3294 			tend = entry->end;
3295 		}
3296 
3297 		vm_map_clip_end(map, entry, tend, &count);
3298 
3299 		start = entry->start;
3300 		end = entry->end;
3301 
3302 		osize = atop(tcnt);
3303 
3304 		oindex = OFF_TO_IDX(cp);
3305 		if (npages) {
3306 			vm_pindex_t idx;
3307 			for (idx = 0; idx < osize; idx++) {
3308 				vm_page_t m;
3309 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3310 					vm_map_lookup_done(map, entry, count);
3311 					return 0;
3312 				}
3313 				/*
3314 				 * disallow busy or invalid pages, but allow
3315 				 * m->busy pages if they are entirely valid.
3316 				 */
3317 				if ((m->flags & PG_BUSY) ||
3318 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3319 					vm_map_lookup_done(map, entry, count);
3320 					return 0;
3321 				}
3322 			}
3323 		}
3324 
3325 /*
3326  * If we are changing an existing map entry, just redirect
3327  * the object, and change mappings.
3328  */
3329 		if ((first_object->type == OBJT_VNODE) &&
3330 			((oldobject = entry->object.vm_object) == first_object)) {
3331 
3332 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3333 				/*
3334    				* Remove old window into the file
3335    				*/
3336 				pmap_remove (map->pmap, uaddr, tend);
3337 
3338 				/*
3339    				* Force copy on write for mmaped regions
3340    				*/
3341 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3342 
3343 				/*
3344    				* Point the object appropriately
3345    				*/
3346 				if (oldobject != srcobject) {
3347 
3348 				/*
3349    				* Set the object optimization hint flag
3350    				*/
3351 					vm_object_set_flag(srcobject, OBJ_OPT);
3352 					vm_object_reference(srcobject);
3353 					entry->object.vm_object = srcobject;
3354 
3355 					if (oldobject) {
3356 						vm_object_deallocate(oldobject);
3357 					}
3358 				}
3359 
3360 				entry->offset = cp;
3361 				map->timestamp++;
3362 			} else {
3363 				pmap_remove (map->pmap, uaddr, tend);
3364 			}
3365 
3366 		} else if ((first_object->ref_count == 1) &&
3367 			(first_object->size == osize) &&
3368 			((first_object->type == OBJT_DEFAULT) ||
3369 				(first_object->type == OBJT_SWAP)) ) {
3370 
3371 			oldobject = first_object->backing_object;
3372 
3373 			if ((first_object->backing_object_offset != cp) ||
3374 				(oldobject != srcobject)) {
3375 				/*
3376    				* Remove old window into the file
3377    				*/
3378 				pmap_remove (map->pmap, uaddr, tend);
3379 
3380 				/*
3381 				 * Remove unneeded old pages
3382 				 */
3383 				vm_object_page_remove(first_object, 0, 0, 0);
3384 
3385 				/*
3386 				 * Invalidate swap space
3387 				 */
3388 				if (first_object->type == OBJT_SWAP) {
3389 					swap_pager_freespace(first_object,
3390 						0,
3391 						first_object->size);
3392 				}
3393 
3394 				/*
3395    				* Force copy on write for mmaped regions
3396    				*/
3397 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3398 
3399 				/*
3400    				* Point the object appropriately
3401    				*/
3402 				if (oldobject != srcobject) {
3403 
3404 				/*
3405    				* Set the object optimization hint flag
3406    				*/
3407 					vm_object_set_flag(srcobject, OBJ_OPT);
3408 					vm_object_reference(srcobject);
3409 
3410 					if (oldobject) {
3411 						LIST_REMOVE(
3412 							first_object, shadow_list);
3413 						oldobject->shadow_count--;
3414 						/* XXX bump generation? */
3415 						vm_object_deallocate(oldobject);
3416 					}
3417 
3418 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3419 						first_object, shadow_list);
3420 					srcobject->shadow_count++;
3421 					/* XXX bump generation? */
3422 
3423 					first_object->backing_object = srcobject;
3424 				}
3425 				first_object->backing_object_offset = cp;
3426 				map->timestamp++;
3427 			} else {
3428 				pmap_remove (map->pmap, uaddr, tend);
3429 			}
3430 /*
3431  * Otherwise, we have to do a logical mmap.
3432  */
3433 		} else {
3434 
3435 			vm_object_set_flag(srcobject, OBJ_OPT);
3436 			vm_object_reference(srcobject);
3437 
3438 			pmap_remove (map->pmap, uaddr, tend);
3439 
3440 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3441 			vm_map_lock_upgrade(map);
3442 
3443 			if (entry == &map->header) {
3444 				map->first_free = &map->header;
3445 			} else if (map->first_free->start >= start) {
3446 				map->first_free = entry->prev;
3447 			}
3448 
3449 			SAVE_HINT(map, entry->prev);
3450 			vm_map_entry_delete(map, entry, &count);
3451 
3452 			object = srcobject;
3453 			ooffset = cp;
3454 
3455 			rv = vm_map_insert(map, &count,
3456 				object, ooffset, start, tend,
3457 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3458 
3459 			if (rv != KERN_SUCCESS)
3460 				panic("vm_uiomove: could not insert new entry: %d", rv);
3461 		}
3462 
3463 /*
3464  * Map the window directly, if it is already in memory
3465  */
3466 		pmap_object_init_pt(map->pmap, uaddr,
3467 			srcobject, oindex, tcnt, 0);
3468 
3469 		map->timestamp++;
3470 		vm_map_unlock(map);
3471 		vm_map_entry_release(count);
3472 
3473 		cnt -= tcnt;
3474 		uaddr += tcnt;
3475 		cp += tcnt;
3476 		if (npages)
3477 			*npages += osize;
3478 	}
3479 	return 0;
3480 }
3481 
3482 #endif
3483 
3484 /*
3485  * Performs the copy_on_write operations necessary to allow the virtual copies
3486  * into user space to work.  This has to be called for write(2) system calls
3487  * from other processes, file unlinking, and file size shrinkage.
3488  */
3489 void
3490 vm_freeze_copyopts(object, froma, toa)
3491 	vm_object_t object;
3492 	vm_pindex_t froma, toa;
3493 {
3494 	int rv;
3495 	vm_object_t robject;
3496 	vm_pindex_t idx;
3497 
3498 	if ((object == NULL) ||
3499 		((object->flags & OBJ_OPT) == 0))
3500 		return;
3501 
3502 	if (object->shadow_count > object->ref_count)
3503 		panic("vm_freeze_copyopts: sc > rc");
3504 
3505 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3506 		vm_pindex_t bo_pindex;
3507 		vm_page_t m_in, m_out;
3508 
3509 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3510 
3511 		vm_object_reference(robject);
3512 
3513 		vm_object_pip_wait(robject, "objfrz");
3514 
3515 		if (robject->ref_count == 1) {
3516 			vm_object_deallocate(robject);
3517 			continue;
3518 		}
3519 
3520 		vm_object_pip_add(robject, 1);
3521 
3522 		for (idx = 0; idx < robject->size; idx++) {
3523 
3524 			m_out = vm_page_grab(robject, idx,
3525 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3526 
3527 			if (m_out->valid == 0) {
3528 				m_in = vm_page_grab(object, bo_pindex + idx,
3529 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3530 				if (m_in->valid == 0) {
3531 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3532 					if (rv != VM_PAGER_OK) {
3533 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3534 						continue;
3535 					}
3536 					vm_page_deactivate(m_in);
3537 				}
3538 
3539 				vm_page_protect(m_in, VM_PROT_NONE);
3540 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3541 				m_out->valid = m_in->valid;
3542 				vm_page_dirty(m_out);
3543 				vm_page_activate(m_out);
3544 				vm_page_wakeup(m_in);
3545 			}
3546 			vm_page_wakeup(m_out);
3547 		}
3548 
3549 		object->shadow_count--;
3550 		object->ref_count--;
3551 		LIST_REMOVE(robject, shadow_list);
3552 		robject->backing_object = NULL;
3553 		robject->backing_object_offset = 0;
3554 
3555 		vm_object_pip_wakeup(robject);
3556 		vm_object_deallocate(robject);
3557 	}
3558 
3559 	vm_object_clear_flag(object, OBJ_OPT);
3560 }
3561 
3562 #include "opt_ddb.h"
3563 #ifdef DDB
3564 #include <sys/kernel.h>
3565 
3566 #include <ddb/ddb.h>
3567 
3568 /*
3569  *	vm_map_print:	[ debug ]
3570  */
3571 DB_SHOW_COMMAND(map, vm_map_print)
3572 {
3573 	static int nlines;
3574 	/* XXX convert args. */
3575 	vm_map_t map = (vm_map_t)addr;
3576 	boolean_t full = have_addr;
3577 
3578 	vm_map_entry_t entry;
3579 
3580 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3581 	    (void *)map,
3582 	    (void *)map->pmap, map->nentries, map->timestamp);
3583 	nlines++;
3584 
3585 	if (!full && db_indent)
3586 		return;
3587 
3588 	db_indent += 2;
3589 	for (entry = map->header.next; entry != &map->header;
3590 	    entry = entry->next) {
3591 		db_iprintf("map entry %p: start=%p, end=%p\n",
3592 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3593 		nlines++;
3594 		{
3595 			static char *inheritance_name[4] =
3596 			{"share", "copy", "none", "donate_copy"};
3597 
3598 			db_iprintf(" prot=%x/%x/%s",
3599 			    entry->protection,
3600 			    entry->max_protection,
3601 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3602 			if (entry->wired_count != 0)
3603 				db_printf(", wired");
3604 		}
3605 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3606 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3607 			db_printf(", share=%p, offset=0x%lx\n",
3608 			    (void *)entry->object.sub_map,
3609 			    (long)entry->offset);
3610 			nlines++;
3611 			if ((entry->prev == &map->header) ||
3612 			    (entry->prev->object.sub_map !=
3613 				entry->object.sub_map)) {
3614 				db_indent += 2;
3615 				vm_map_print((db_expr_t)(intptr_t)
3616 					     entry->object.sub_map,
3617 					     full, 0, (char *)0);
3618 				db_indent -= 2;
3619 			}
3620 		} else {
3621 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3622 			db_printf(", object=%p, offset=0x%lx",
3623 			    (void *)entry->object.vm_object,
3624 			    (long)entry->offset);
3625 			if (entry->eflags & MAP_ENTRY_COW)
3626 				db_printf(", copy (%s)",
3627 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3628 			db_printf("\n");
3629 			nlines++;
3630 
3631 			if ((entry->prev == &map->header) ||
3632 			    (entry->prev->object.vm_object !=
3633 				entry->object.vm_object)) {
3634 				db_indent += 2;
3635 				vm_object_print((db_expr_t)(intptr_t)
3636 						entry->object.vm_object,
3637 						full, 0, (char *)0);
3638 				nlines += 4;
3639 				db_indent -= 2;
3640 			}
3641 		}
3642 	}
3643 	db_indent -= 2;
3644 	if (db_indent == 0)
3645 		nlines = 0;
3646 }
3647 
3648 
3649 DB_SHOW_COMMAND(procvm, procvm)
3650 {
3651 	struct proc *p;
3652 
3653 	if (have_addr) {
3654 		p = (struct proc *) addr;
3655 	} else {
3656 		p = curproc;
3657 	}
3658 
3659 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3660 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3661 	    (void *)vmspace_pmap(p->p_vmspace));
3662 
3663 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3664 }
3665 
3666 #endif /* DDB */
3667