xref: /dragonfly/sys/vm/vm_map.c (revision 375d1659)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.41 2006/03/02 19:08:00 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 #define VMEPERCPU	2
138 
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142 
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146 
147 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
148 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
149 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
152 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
153 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
154 		vm_map_entry_t);
155 static void vm_map_split (vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157 
158 void
159 vm_map_startup(void)
160 {
161 	mapzone = &mapzone_store;
162 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
163 		map_init, MAX_KMAP);
164 	mapentzone = &mapentzone_store;
165 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
166 		map_entry_init, MAX_MAPENT);
167 }
168 
169 /*
170  * Red black tree functions
171  */
172 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
173 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
174 
175 /* a->start is address, and the only field has to be initialized */
176 static int
177 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
178 {
179 	if (a->start < b->start)
180 		return(-1);
181 	else if (a->start > b->start)
182 		return(1);
183 	return(0);
184 }
185 
186 /*
187  * Allocate a vmspace structure, including a vm_map and pmap,
188  * and initialize those structures.  The refcnt is set to 1.
189  * The remaining fields must be initialized by the caller.
190  */
191 struct vmspace *
192 vmspace_alloc(vm_offset_t min, vm_offset_t max)
193 {
194 	struct vmspace *vm;
195 
196 	vm = zalloc(vmspace_zone);
197 	vm_map_init(&vm->vm_map, min, max);
198 	pmap_pinit(vmspace_pmap(vm));
199 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
200 	vm->vm_refcnt = 1;
201 	vm->vm_shm = NULL;
202 	vm->vm_exitingcnt = 0;
203 	return (vm);
204 }
205 
206 void
207 vm_init2(void)
208 {
209 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
213 	pmap_init2();
214 	vm_object_init2();
215 }
216 
217 static __inline void
218 vmspace_dofree(struct vmspace *vm)
219 {
220 	int count;
221 
222 	/*
223 	 * Make sure any SysV shm is freed, it might not have in
224 	 * exit1()
225 	 */
226 	shmexit(vm);
227 
228 	KKASSERT(vm->vm_upcalls == NULL);
229 
230 	/*
231 	 * Lock the map, to wait out all other references to it.
232 	 * Delete all of the mappings and pages they hold, then call
233 	 * the pmap module to reclaim anything left.
234 	 */
235 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
236 	vm_map_lock(&vm->vm_map);
237 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
238 		vm->vm_map.max_offset, &count);
239 	vm_map_unlock(&vm->vm_map);
240 	vm_map_entry_release(count);
241 
242 	pmap_release(vmspace_pmap(vm));
243 	zfree(vmspace_zone, vm);
244 }
245 
246 void
247 vmspace_free(struct vmspace *vm)
248 {
249 	if (vm->vm_refcnt == 0)
250 		panic("vmspace_free: attempt to free already freed vmspace");
251 
252 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
253 		vmspace_dofree(vm);
254 }
255 
256 void
257 vmspace_exitfree(struct proc *p)
258 {
259 	struct vmspace *vm;
260 
261 	vm = p->p_vmspace;
262 	p->p_vmspace = NULL;
263 
264 	/*
265 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
266 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
267 	 * exitingcnt may increment above 0 and drop back down to zero
268 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
269 	 * may also increment above 0 and drop back down to zero several
270 	 * times while vm_exitingcnt is held non-zero.
271 	 *
272 	 * The last wait on the exiting child's vmspace will clean up
273 	 * the remainder of the vmspace.
274 	 */
275 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
276 		vmspace_dofree(vm);
277 }
278 
279 /*
280  * vmspace_swap_count() - count the approximate swap useage in pages for a
281  *			  vmspace.
282  *
283  *	Swap useage is determined by taking the proportional swap used by
284  *	VM objects backing the VM map.  To make up for fractional losses,
285  *	if the VM object has any swap use at all the associated map entries
286  *	count for at least 1 swap page.
287  */
288 int
289 vmspace_swap_count(struct vmspace *vmspace)
290 {
291 	vm_map_t map = &vmspace->vm_map;
292 	vm_map_entry_t cur;
293 	int count = 0;
294 
295 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
296 		vm_object_t object;
297 
298 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
299 		    (object = cur->object.vm_object) != NULL &&
300 		    object->type == OBJT_SWAP
301 		) {
302 			int n = (cur->end - cur->start) / PAGE_SIZE;
303 
304 			if (object->un_pager.swp.swp_bcount) {
305 				count += object->un_pager.swp.swp_bcount *
306 				    SWAP_META_PAGES * n / object->size + 1;
307 			}
308 		}
309 	}
310 	return(count);
311 }
312 
313 
314 /*
315  *	vm_map_create:
316  *
317  *	Creates and returns a new empty VM map with
318  *	the given physical map structure, and having
319  *	the given lower and upper address bounds.
320  */
321 vm_map_t
322 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
323 {
324 	vm_map_t result;
325 
326 	result = zalloc(mapzone);
327 	vm_map_init(result, min, max);
328 	result->pmap = pmap;
329 	return (result);
330 }
331 
332 /*
333  * Initialize an existing vm_map structure
334  * such as that in the vmspace structure.
335  * The pmap is set elsewhere.
336  */
337 void
338 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
339 {
340 	map->header.next = map->header.prev = &map->header;
341 	RB_INIT(&map->rb_root);
342 	map->nentries = 0;
343 	map->size = 0;
344 	map->system_map = 0;
345 	map->infork = 0;
346 	map->min_offset = min;
347 	map->max_offset = max;
348 	map->first_free = &map->header;
349 	map->hint = &map->header;
350 	map->timestamp = 0;
351 	lockinit(&map->lock, "thrd_sleep", 0, LK_NOPAUSE);
352 }
353 
354 /*
355  *      vm_map_entry_reserve_cpu_init:
356  *
357  *	Set an initial negative count so the first attempt to reserve
358  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
359  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
360  *	map a new page for vm_map_entry structures.  SMP systems are
361  *	particularly sensitive.
362  *
363  *	This routine is called in early boot so we cannot just call
364  *	vm_map_entry_reserve().
365  *
366  *	May be called for a gd other then mycpu, but may only be called
367  *	during early boot.
368  */
369 void
370 vm_map_entry_reserve_cpu_init(globaldata_t gd)
371 {
372 	vm_map_entry_t entry;
373 	int i;
374 
375 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
376 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
377 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
378 		entry->next = gd->gd_vme_base;
379 		gd->gd_vme_base = entry;
380 	}
381 }
382 
383 /*
384  *	vm_map_entry_reserve:
385  *
386  *	Reserves vm_map_entry structures so code later on can manipulate
387  *	map_entry structures within a locked map without blocking trying
388  *	to allocate a new vm_map_entry.
389  */
390 int
391 vm_map_entry_reserve(int count)
392 {
393 	struct globaldata *gd = mycpu;
394 	vm_map_entry_t entry;
395 
396 	crit_enter();
397 
398 	/*
399 	 * Make sure we have enough structures in gd_vme_base to handle
400 	 * the reservation request.
401 	 */
402 	while (gd->gd_vme_avail < count) {
403 		entry = zalloc(mapentzone);
404 		entry->next = gd->gd_vme_base;
405 		gd->gd_vme_base = entry;
406 		++gd->gd_vme_avail;
407 	}
408 	gd->gd_vme_avail -= count;
409 	crit_exit();
410 	return(count);
411 }
412 
413 /*
414  *	vm_map_entry_release:
415  *
416  *	Releases previously reserved vm_map_entry structures that were not
417  *	used.  If we have too much junk in our per-cpu cache clean some of
418  *	it out.
419  */
420 void
421 vm_map_entry_release(int count)
422 {
423 	struct globaldata *gd = mycpu;
424 	vm_map_entry_t entry;
425 
426 	crit_enter();
427 	gd->gd_vme_avail += count;
428 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
429 		entry = gd->gd_vme_base;
430 		KKASSERT(entry != NULL);
431 		gd->gd_vme_base = entry->next;
432 		--gd->gd_vme_avail;
433 		crit_exit();
434 		zfree(mapentzone, entry);
435 		crit_enter();
436 	}
437 	crit_exit();
438 }
439 
440 /*
441  *	vm_map_entry_kreserve:
442  *
443  *	Reserve map entry structures for use in kernel_map itself.  These
444  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
445  *	was inited.  This function is used by zalloc() to avoid a recursion
446  *	when zalloc() itself needs to allocate additional kernel memory.
447  *
448  *	This function works like the normal reserve but does not load the
449  *	vm_map_entry cache (because that would result in an infinite
450  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
451  *
452  *	Any caller of this function must be sure to renormalize after
453  *	potentially eating entries to ensure that the reserve supply
454  *	remains intact.
455  */
456 int
457 vm_map_entry_kreserve(int count)
458 {
459 	struct globaldata *gd = mycpu;
460 
461 	crit_enter();
462 	gd->gd_vme_avail -= count;
463 	crit_exit();
464 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
465 	return(count);
466 }
467 
468 /*
469  *	vm_map_entry_krelease:
470  *
471  *	Release previously reserved map entries for kernel_map.  We do not
472  *	attempt to clean up like the normal release function as this would
473  *	cause an unnecessary (but probably not fatal) deep procedure call.
474  */
475 void
476 vm_map_entry_krelease(int count)
477 {
478 	struct globaldata *gd = mycpu;
479 
480 	crit_enter();
481 	gd->gd_vme_avail += count;
482 	crit_exit();
483 }
484 
485 /*
486  *	vm_map_entry_create:	[ internal use only ]
487  *
488  *	Allocates a VM map entry for insertion.  No entry fields are filled
489  *	in.
490  *
491  *	This routine may be called from an interrupt thread but not a FAST
492  *	interrupt.  This routine may recurse the map lock.
493  */
494 static vm_map_entry_t
495 vm_map_entry_create(vm_map_t map, int *countp)
496 {
497 	struct globaldata *gd = mycpu;
498 	vm_map_entry_t entry;
499 
500 	KKASSERT(*countp > 0);
501 	--*countp;
502 	crit_enter();
503 	entry = gd->gd_vme_base;
504 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
505 	gd->gd_vme_base = entry->next;
506 	crit_exit();
507 	return(entry);
508 }
509 
510 /*
511  *	vm_map_entry_dispose:	[ internal use only ]
512  *
513  *	Dispose of a vm_map_entry that is no longer being referenced.  This
514  *	function may be called from an interrupt.
515  */
516 static void
517 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
518 {
519 	struct globaldata *gd = mycpu;
520 
521 	KKASSERT(map->hint != entry);
522 	KKASSERT(map->first_free != entry);
523 
524 	++*countp;
525 	crit_enter();
526 	entry->next = gd->gd_vme_base;
527 	gd->gd_vme_base = entry;
528 	crit_exit();
529 }
530 
531 
532 /*
533  *	vm_map_entry_{un,}link:
534  *
535  *	Insert/remove entries from maps.
536  */
537 static __inline void
538 vm_map_entry_link(vm_map_t map,
539 		  vm_map_entry_t after_where,
540 		  vm_map_entry_t entry)
541 {
542 	map->nentries++;
543 	entry->prev = after_where;
544 	entry->next = after_where->next;
545 	entry->next->prev = entry;
546 	after_where->next = entry;
547 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
548 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
549 }
550 
551 static __inline void
552 vm_map_entry_unlink(vm_map_t map,
553 		    vm_map_entry_t entry)
554 {
555 	vm_map_entry_t prev;
556 	vm_map_entry_t next;
557 
558 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
559 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
560 	prev = entry->prev;
561 	next = entry->next;
562 	next->prev = prev;
563 	prev->next = next;
564 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
565 	map->nentries--;
566 }
567 
568 /*
569  *	vm_map_lookup_entry:	[ internal use only ]
570  *
571  *	Finds the map entry containing (or
572  *	immediately preceding) the specified address
573  *	in the given map; the entry is returned
574  *	in the "entry" parameter.  The boolean
575  *	result indicates whether the address is
576  *	actually contained in the map.
577  */
578 boolean_t
579 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
580     vm_map_entry_t *entry /* OUT */)
581 {
582 	vm_map_entry_t tmp;
583 	vm_map_entry_t last;
584 
585 #if 0
586 	/*
587 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
588 	 * the hint code with the red-black lookup meets with system crashes
589 	 * and lockups.  We do not yet know why.
590 	 *
591 	 * It is possible that the problem is related to the setting
592 	 * of the hint during map_entry deletion, in the code specified
593 	 * at the GGG comment later on in this file.
594 	 */
595 	/*
596 	 * Quickly check the cached hint, there's a good chance of a match.
597 	 */
598 	if (map->hint != &map->header) {
599 		tmp = map->hint;
600 		if (address >= tmp->start && address < tmp->end) {
601 			*entry = tmp;
602 			return(TRUE);
603 		}
604 	}
605 #endif
606 
607 	/*
608 	 * Locate the record from the top of the tree.  'last' tracks the
609 	 * closest prior record and is returned if no match is found, which
610 	 * in binary tree terms means tracking the most recent right-branch
611 	 * taken.  If there is no prior record, &map->header is returned.
612 	 */
613 	last = &map->header;
614 	tmp = RB_ROOT(&map->rb_root);
615 
616 	while (tmp) {
617 		if (address >= tmp->start) {
618 			if (address < tmp->end) {
619 				*entry = tmp;
620 				map->hint = tmp;
621 				return(TRUE);
622 			}
623 			last = tmp;
624 			tmp = RB_RIGHT(tmp, rb_entry);
625 		} else {
626 			tmp = RB_LEFT(tmp, rb_entry);
627 		}
628 	}
629 	*entry = last;
630 	return (FALSE);
631 }
632 
633 /*
634  *	vm_map_insert:
635  *
636  *	Inserts the given whole VM object into the target
637  *	map at the specified address range.  The object's
638  *	size should match that of the address range.
639  *
640  *	Requires that the map be locked, and leaves it so.  Requires that
641  *	sufficient vm_map_entry structures have been reserved and tracks
642  *	the use via countp.
643  *
644  *	If object is non-NULL, ref count must be bumped by caller
645  *	prior to making call to account for the new entry.
646  */
647 int
648 vm_map_insert(vm_map_t map, int *countp,
649 	      vm_object_t object, vm_ooffset_t offset,
650 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
651 	      int cow)
652 {
653 	vm_map_entry_t new_entry;
654 	vm_map_entry_t prev_entry;
655 	vm_map_entry_t temp_entry;
656 	vm_eflags_t protoeflags;
657 
658 	/*
659 	 * Check that the start and end points are not bogus.
660 	 */
661 
662 	if ((start < map->min_offset) || (end > map->max_offset) ||
663 	    (start >= end))
664 		return (KERN_INVALID_ADDRESS);
665 
666 	/*
667 	 * Find the entry prior to the proposed starting address; if it's part
668 	 * of an existing entry, this range is bogus.
669 	 */
670 
671 	if (vm_map_lookup_entry(map, start, &temp_entry))
672 		return (KERN_NO_SPACE);
673 
674 	prev_entry = temp_entry;
675 
676 	/*
677 	 * Assert that the next entry doesn't overlap the end point.
678 	 */
679 
680 	if ((prev_entry->next != &map->header) &&
681 	    (prev_entry->next->start < end))
682 		return (KERN_NO_SPACE);
683 
684 	protoeflags = 0;
685 
686 	if (cow & MAP_COPY_ON_WRITE)
687 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
688 
689 	if (cow & MAP_NOFAULT) {
690 		protoeflags |= MAP_ENTRY_NOFAULT;
691 
692 		KASSERT(object == NULL,
693 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
694 	}
695 	if (cow & MAP_DISABLE_SYNCER)
696 		protoeflags |= MAP_ENTRY_NOSYNC;
697 	if (cow & MAP_DISABLE_COREDUMP)
698 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
699 
700 	if (object) {
701 		/*
702 		 * When object is non-NULL, it could be shared with another
703 		 * process.  We have to set or clear OBJ_ONEMAPPING
704 		 * appropriately.
705 		 */
706 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
707 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
708 		}
709 	}
710 	else if ((prev_entry != &map->header) &&
711 		 (prev_entry->eflags == protoeflags) &&
712 		 (prev_entry->end == start) &&
713 		 (prev_entry->wired_count == 0) &&
714 		 ((prev_entry->object.vm_object == NULL) ||
715 		  vm_object_coalesce(prev_entry->object.vm_object,
716 				     OFF_TO_IDX(prev_entry->offset),
717 				     (vm_size_t)(prev_entry->end - prev_entry->start),
718 				     (vm_size_t)(end - prev_entry->end)))) {
719 		/*
720 		 * We were able to extend the object.  Determine if we
721 		 * can extend the previous map entry to include the
722 		 * new range as well.
723 		 */
724 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
725 		    (prev_entry->protection == prot) &&
726 		    (prev_entry->max_protection == max)) {
727 			map->size += (end - prev_entry->end);
728 			prev_entry->end = end;
729 			vm_map_simplify_entry(map, prev_entry, countp);
730 			return (KERN_SUCCESS);
731 		}
732 
733 		/*
734 		 * If we can extend the object but cannot extend the
735 		 * map entry, we have to create a new map entry.  We
736 		 * must bump the ref count on the extended object to
737 		 * account for it.  object may be NULL.
738 		 */
739 		object = prev_entry->object.vm_object;
740 		offset = prev_entry->offset +
741 			(prev_entry->end - prev_entry->start);
742 		vm_object_reference(object);
743 	}
744 
745 	/*
746 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
747 	 * in things like the buffer map where we manage kva but do not manage
748 	 * backing objects.
749 	 */
750 
751 	/*
752 	 * Create a new entry
753 	 */
754 
755 	new_entry = vm_map_entry_create(map, countp);
756 	new_entry->start = start;
757 	new_entry->end = end;
758 
759 	new_entry->eflags = protoeflags;
760 	new_entry->object.vm_object = object;
761 	new_entry->offset = offset;
762 	new_entry->avail_ssize = 0;
763 
764 	new_entry->inheritance = VM_INHERIT_DEFAULT;
765 	new_entry->protection = prot;
766 	new_entry->max_protection = max;
767 	new_entry->wired_count = 0;
768 
769 	/*
770 	 * Insert the new entry into the list
771 	 */
772 
773 	vm_map_entry_link(map, prev_entry, new_entry);
774 	map->size += new_entry->end - new_entry->start;
775 
776 	/*
777 	 * Update the free space hint
778 	 */
779 	if ((map->first_free == prev_entry) &&
780 	    (prev_entry->end >= new_entry->start)) {
781 		map->first_free = new_entry;
782 	}
783 
784 #if 0
785 	/*
786 	 * Temporarily removed to avoid MAP_STACK panic, due to
787 	 * MAP_STACK being a huge hack.  Will be added back in
788 	 * when MAP_STACK (and the user stack mapping) is fixed.
789 	 */
790 	/*
791 	 * It may be possible to simplify the entry
792 	 */
793 	vm_map_simplify_entry(map, new_entry, countp);
794 #endif
795 
796 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
797 		pmap_object_init_pt(map->pmap, start, prot,
798 				    object, OFF_TO_IDX(offset), end - start,
799 				    cow & MAP_PREFAULT_PARTIAL);
800 	}
801 
802 	return (KERN_SUCCESS);
803 }
804 
805 /*
806  * Find sufficient space for `length' bytes in the given map, starting at
807  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
808  *
809  * This function will returned an arbitrarily aligned pointer.  If no
810  * particular alignment is required you should pass align as 1.  Note that
811  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
812  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
813  * argument.
814  *
815  * 'align' should be a power of 2 but is not required to be.
816  */
817 int
818 vm_map_findspace(
819 	vm_map_t map,
820 	vm_offset_t start,
821 	vm_size_t length,
822 	vm_offset_t align,
823 	vm_offset_t *addr)
824 {
825 	vm_map_entry_t entry, next;
826 	vm_offset_t end;
827 	vm_offset_t align_mask;
828 
829 	if (start < map->min_offset)
830 		start = map->min_offset;
831 	if (start > map->max_offset)
832 		return (1);
833 
834 	/*
835 	 * If the alignment is not a power of 2 we will have to use
836 	 * a mod/division, set align_mask to a special value.
837 	 */
838 	if ((align | (align - 1)) + 1 != (align << 1))
839 		align_mask = (vm_offset_t)-1;
840 	else
841 		align_mask = align - 1;
842 
843 retry:
844 	/*
845 	 * Look for the first possible address; if there's already something
846 	 * at this address, we have to start after it.
847 	 */
848 	if (start == map->min_offset) {
849 		if ((entry = map->first_free) != &map->header)
850 			start = entry->end;
851 	} else {
852 		vm_map_entry_t tmp;
853 
854 		if (vm_map_lookup_entry(map, start, &tmp))
855 			start = tmp->end;
856 		entry = tmp;
857 	}
858 
859 	/*
860 	 * Look through the rest of the map, trying to fit a new region in the
861 	 * gap between existing regions, or after the very last region.
862 	 */
863 	for (;; start = (entry = next)->end) {
864 		/*
865 		 * Adjust the proposed start by the requested alignment,
866 		 * be sure that we didn't wrap the address.
867 		 */
868 		if (align_mask == (vm_offset_t)-1)
869 			end = ((start + align - 1) / align) * align;
870 		else
871 			end = (start + align_mask) & ~align_mask;
872 		if (end < start)
873 			return (1);
874 		start = end;
875 		/*
876 		 * Find the end of the proposed new region.  Be sure we didn't
877 		 * go beyond the end of the map, or wrap around the address.
878 		 * Then check to see if this is the last entry or if the
879 		 * proposed end fits in the gap between this and the next
880 		 * entry.
881 		 */
882 		end = start + length;
883 		if (end > map->max_offset || end < start)
884 			return (1);
885 		next = entry->next;
886 		if (next == &map->header || next->start >= end)
887 			break;
888 	}
889 	map->hint = entry;
890 	if (map == kernel_map) {
891 		vm_offset_t ksize;
892 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
893 			pmap_growkernel(ksize);
894 			goto retry;
895 		}
896 	}
897 	*addr = start;
898 	return (0);
899 }
900 
901 /*
902  *	vm_map_find finds an unallocated region in the target address
903  *	map with the given length.  The search is defined to be
904  *	first-fit from the specified address; the region found is
905  *	returned in the same parameter.
906  *
907  *	If object is non-NULL, ref count must be bumped by caller
908  *	prior to making call to account for the new entry.
909  */
910 int
911 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
912 	    vm_offset_t *addr,	/* IN/OUT */
913 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
914 	    vm_prot_t max, int cow)
915 {
916 	vm_offset_t start;
917 	int result;
918 	int count;
919 
920 	start = *addr;
921 
922 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
923 	vm_map_lock(map);
924 	if (find_space) {
925 		if (vm_map_findspace(map, start, length, 1, addr)) {
926 			vm_map_unlock(map);
927 			vm_map_entry_release(count);
928 			return (KERN_NO_SPACE);
929 		}
930 		start = *addr;
931 	}
932 	result = vm_map_insert(map, &count, object, offset,
933 		start, start + length, prot, max, cow);
934 	vm_map_unlock(map);
935 	vm_map_entry_release(count);
936 
937 	return (result);
938 }
939 
940 /*
941  *	vm_map_simplify_entry:
942  *
943  *	Simplify the given map entry by merging with either neighbor.  This
944  *	routine also has the ability to merge with both neighbors.
945  *
946  *	The map must be locked.
947  *
948  *	This routine guarentees that the passed entry remains valid (though
949  *	possibly extended).  When merging, this routine may delete one or
950  *	both neighbors.  No action is taken on entries which have their
951  *	in-transition flag set.
952  */
953 void
954 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
955 {
956 	vm_map_entry_t next, prev;
957 	vm_size_t prevsize, esize;
958 
959 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
960 		++mycpu->gd_cnt.v_intrans_coll;
961 		return;
962 	}
963 
964 	prev = entry->prev;
965 	if (prev != &map->header) {
966 		prevsize = prev->end - prev->start;
967 		if ( (prev->end == entry->start) &&
968 		     (prev->object.vm_object == entry->object.vm_object) &&
969 		     (!prev->object.vm_object ||
970 			(prev->offset + prevsize == entry->offset)) &&
971 		     (prev->eflags == entry->eflags) &&
972 		     (prev->protection == entry->protection) &&
973 		     (prev->max_protection == entry->max_protection) &&
974 		     (prev->inheritance == entry->inheritance) &&
975 		     (prev->wired_count == entry->wired_count)) {
976 			if (map->first_free == prev)
977 				map->first_free = entry;
978 			if (map->hint == prev)
979 				map->hint = entry;
980 			vm_map_entry_unlink(map, prev);
981 			entry->start = prev->start;
982 			entry->offset = prev->offset;
983 			if (prev->object.vm_object)
984 				vm_object_deallocate(prev->object.vm_object);
985 			vm_map_entry_dispose(map, prev, countp);
986 		}
987 	}
988 
989 	next = entry->next;
990 	if (next != &map->header) {
991 		esize = entry->end - entry->start;
992 		if ((entry->end == next->start) &&
993 		    (next->object.vm_object == entry->object.vm_object) &&
994 		     (!entry->object.vm_object ||
995 			(entry->offset + esize == next->offset)) &&
996 		    (next->eflags == entry->eflags) &&
997 		    (next->protection == entry->protection) &&
998 		    (next->max_protection == entry->max_protection) &&
999 		    (next->inheritance == entry->inheritance) &&
1000 		    (next->wired_count == entry->wired_count)) {
1001 			if (map->first_free == next)
1002 				map->first_free = entry;
1003 			if (map->hint == next)
1004 				map->hint = entry;
1005 			vm_map_entry_unlink(map, next);
1006 			entry->end = next->end;
1007 			if (next->object.vm_object)
1008 				vm_object_deallocate(next->object.vm_object);
1009 			vm_map_entry_dispose(map, next, countp);
1010 	        }
1011 	}
1012 }
1013 /*
1014  *	vm_map_clip_start:	[ internal use only ]
1015  *
1016  *	Asserts that the given entry begins at or after
1017  *	the specified address; if necessary,
1018  *	it splits the entry into two.
1019  */
1020 #define vm_map_clip_start(map, entry, startaddr, countp) \
1021 { \
1022 	if (startaddr > entry->start) \
1023 		_vm_map_clip_start(map, entry, startaddr, countp); \
1024 }
1025 
1026 /*
1027  *	This routine is called only when it is known that
1028  *	the entry must be split.
1029  */
1030 static void
1031 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1032 {
1033 	vm_map_entry_t new_entry;
1034 
1035 	/*
1036 	 * Split off the front portion -- note that we must insert the new
1037 	 * entry BEFORE this one, so that this entry has the specified
1038 	 * starting address.
1039 	 */
1040 
1041 	vm_map_simplify_entry(map, entry, countp);
1042 
1043 	/*
1044 	 * If there is no object backing this entry, we might as well create
1045 	 * one now.  If we defer it, an object can get created after the map
1046 	 * is clipped, and individual objects will be created for the split-up
1047 	 * map.  This is a bit of a hack, but is also about the best place to
1048 	 * put this improvement.
1049 	 */
1050 
1051 	if (entry->object.vm_object == NULL && !map->system_map) {
1052 		vm_object_t object;
1053 		object = vm_object_allocate(OBJT_DEFAULT,
1054 				atop(entry->end - entry->start));
1055 		entry->object.vm_object = object;
1056 		entry->offset = 0;
1057 	}
1058 
1059 	new_entry = vm_map_entry_create(map, countp);
1060 	*new_entry = *entry;
1061 
1062 	new_entry->end = start;
1063 	entry->offset += (start - entry->start);
1064 	entry->start = start;
1065 
1066 	vm_map_entry_link(map, entry->prev, new_entry);
1067 
1068 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1069 		vm_object_reference(new_entry->object.vm_object);
1070 	}
1071 }
1072 
1073 /*
1074  *	vm_map_clip_end:	[ internal use only ]
1075  *
1076  *	Asserts that the given entry ends at or before
1077  *	the specified address; if necessary,
1078  *	it splits the entry into two.
1079  */
1080 
1081 #define vm_map_clip_end(map, entry, endaddr, countp) \
1082 { \
1083 	if (endaddr < entry->end) \
1084 		_vm_map_clip_end(map, entry, endaddr, countp); \
1085 }
1086 
1087 /*
1088  *	This routine is called only when it is known that
1089  *	the entry must be split.
1090  */
1091 static void
1092 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1093 {
1094 	vm_map_entry_t new_entry;
1095 
1096 	/*
1097 	 * If there is no object backing this entry, we might as well create
1098 	 * one now.  If we defer it, an object can get created after the map
1099 	 * is clipped, and individual objects will be created for the split-up
1100 	 * map.  This is a bit of a hack, but is also about the best place to
1101 	 * put this improvement.
1102 	 */
1103 
1104 	if (entry->object.vm_object == NULL && !map->system_map) {
1105 		vm_object_t object;
1106 		object = vm_object_allocate(OBJT_DEFAULT,
1107 				atop(entry->end - entry->start));
1108 		entry->object.vm_object = object;
1109 		entry->offset = 0;
1110 	}
1111 
1112 	/*
1113 	 * Create a new entry and insert it AFTER the specified entry
1114 	 */
1115 
1116 	new_entry = vm_map_entry_create(map, countp);
1117 	*new_entry = *entry;
1118 
1119 	new_entry->start = entry->end = end;
1120 	new_entry->offset += (end - entry->start);
1121 
1122 	vm_map_entry_link(map, entry, new_entry);
1123 
1124 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1125 		vm_object_reference(new_entry->object.vm_object);
1126 	}
1127 }
1128 
1129 /*
1130  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1131  *
1132  *	Asserts that the starting and ending region
1133  *	addresses fall within the valid range of the map.
1134  */
1135 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1136 		{					\
1137 		if (start < vm_map_min(map))		\
1138 			start = vm_map_min(map);	\
1139 		if (end > vm_map_max(map))		\
1140 			end = vm_map_max(map);		\
1141 		if (start > end)			\
1142 			start = end;			\
1143 		}
1144 
1145 /*
1146  *	vm_map_transition_wait:	[ kernel use only ]
1147  *
1148  *	Used to block when an in-transition collison occurs.  The map
1149  *	is unlocked for the sleep and relocked before the return.
1150  */
1151 static
1152 void
1153 vm_map_transition_wait(vm_map_t map)
1154 {
1155 	vm_map_unlock(map);
1156 	tsleep(map, 0, "vment", 0);
1157 	vm_map_lock(map);
1158 }
1159 
1160 /*
1161  * CLIP_CHECK_BACK
1162  * CLIP_CHECK_FWD
1163  *
1164  *	When we do blocking operations with the map lock held it is
1165  *	possible that a clip might have occured on our in-transit entry,
1166  *	requiring an adjustment to the entry in our loop.  These macros
1167  *	help the pageable and clip_range code deal with the case.  The
1168  *	conditional costs virtually nothing if no clipping has occured.
1169  */
1170 
1171 #define CLIP_CHECK_BACK(entry, save_start)		\
1172     do {						\
1173 	    while (entry->start != save_start) {	\
1174 		    entry = entry->prev;		\
1175 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1176 	    }						\
1177     } while(0)
1178 
1179 #define CLIP_CHECK_FWD(entry, save_end)			\
1180     do {						\
1181 	    while (entry->end != save_end) {		\
1182 		    entry = entry->next;		\
1183 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1184 	    }						\
1185     } while(0)
1186 
1187 
1188 /*
1189  *	vm_map_clip_range:	[ kernel use only ]
1190  *
1191  *	Clip the specified range and return the base entry.  The
1192  *	range may cover several entries starting at the returned base
1193  *	and the first and last entry in the covering sequence will be
1194  *	properly clipped to the requested start and end address.
1195  *
1196  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1197  *	flag.
1198  *
1199  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1200  *	covered by the requested range.
1201  *
1202  *	The map must be exclusively locked on entry and will remain locked
1203  *	on return. If no range exists or the range contains holes and you
1204  *	specified that no holes were allowed, NULL will be returned.  This
1205  *	routine may temporarily unlock the map in order avoid a deadlock when
1206  *	sleeping.
1207  */
1208 static
1209 vm_map_entry_t
1210 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1211 	int *countp, int flags)
1212 {
1213 	vm_map_entry_t start_entry;
1214 	vm_map_entry_t entry;
1215 
1216 	/*
1217 	 * Locate the entry and effect initial clipping.  The in-transition
1218 	 * case does not occur very often so do not try to optimize it.
1219 	 */
1220 again:
1221 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1222 		return (NULL);
1223 	entry = start_entry;
1224 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1225 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1226 		++mycpu->gd_cnt.v_intrans_coll;
1227 		++mycpu->gd_cnt.v_intrans_wait;
1228 		vm_map_transition_wait(map);
1229 		/*
1230 		 * entry and/or start_entry may have been clipped while
1231 		 * we slept, or may have gone away entirely.  We have
1232 		 * to restart from the lookup.
1233 		 */
1234 		goto again;
1235 	}
1236 	/*
1237 	 * Since we hold an exclusive map lock we do not have to restart
1238 	 * after clipping, even though clipping may block in zalloc.
1239 	 */
1240 	vm_map_clip_start(map, entry, start, countp);
1241 	vm_map_clip_end(map, entry, end, countp);
1242 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1243 
1244 	/*
1245 	 * Scan entries covered by the range.  When working on the next
1246 	 * entry a restart need only re-loop on the current entry which
1247 	 * we have already locked, since 'next' may have changed.  Also,
1248 	 * even though entry is safe, it may have been clipped so we
1249 	 * have to iterate forwards through the clip after sleeping.
1250 	 */
1251 	while (entry->next != &map->header && entry->next->start < end) {
1252 		vm_map_entry_t next = entry->next;
1253 
1254 		if (flags & MAP_CLIP_NO_HOLES) {
1255 			if (next->start > entry->end) {
1256 				vm_map_unclip_range(map, start_entry,
1257 					start, entry->end, countp, flags);
1258 				return(NULL);
1259 			}
1260 		}
1261 
1262 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1263 			vm_offset_t save_end = entry->end;
1264 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1265 			++mycpu->gd_cnt.v_intrans_coll;
1266 			++mycpu->gd_cnt.v_intrans_wait;
1267 			vm_map_transition_wait(map);
1268 
1269 			/*
1270 			 * clips might have occured while we blocked.
1271 			 */
1272 			CLIP_CHECK_FWD(entry, save_end);
1273 			CLIP_CHECK_BACK(start_entry, start);
1274 			continue;
1275 		}
1276 		/*
1277 		 * No restart necessary even though clip_end may block, we
1278 		 * are holding the map lock.
1279 		 */
1280 		vm_map_clip_end(map, next, end, countp);
1281 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1282 		entry = next;
1283 	}
1284 	if (flags & MAP_CLIP_NO_HOLES) {
1285 		if (entry->end != end) {
1286 			vm_map_unclip_range(map, start_entry,
1287 				start, entry->end, countp, flags);
1288 			return(NULL);
1289 		}
1290 	}
1291 	return(start_entry);
1292 }
1293 
1294 /*
1295  *	vm_map_unclip_range:	[ kernel use only ]
1296  *
1297  *	Undo the effect of vm_map_clip_range().  You should pass the same
1298  *	flags and the same range that you passed to vm_map_clip_range().
1299  *	This code will clear the in-transition flag on the entries and
1300  *	wake up anyone waiting.  This code will also simplify the sequence
1301  *	and attempt to merge it with entries before and after the sequence.
1302  *
1303  *	The map must be locked on entry and will remain locked on return.
1304  *
1305  *	Note that you should also pass the start_entry returned by
1306  *	vm_map_clip_range().  However, if you block between the two calls
1307  *	with the map unlocked please be aware that the start_entry may
1308  *	have been clipped and you may need to scan it backwards to find
1309  *	the entry corresponding with the original start address.  You are
1310  *	responsible for this, vm_map_unclip_range() expects the correct
1311  *	start_entry to be passed to it and will KASSERT otherwise.
1312  */
1313 static
1314 void
1315 vm_map_unclip_range(
1316 	vm_map_t map,
1317 	vm_map_entry_t start_entry,
1318 	vm_offset_t start,
1319 	vm_offset_t end,
1320 	int *countp,
1321 	int flags)
1322 {
1323 	vm_map_entry_t entry;
1324 
1325 	entry = start_entry;
1326 
1327 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1328 	while (entry != &map->header && entry->start < end) {
1329 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1330 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1331 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1332 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1333 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1334 			wakeup(map);
1335 		}
1336 		entry = entry->next;
1337 	}
1338 
1339 	/*
1340 	 * Simplification does not block so there is no restart case.
1341 	 */
1342 	entry = start_entry;
1343 	while (entry != &map->header && entry->start < end) {
1344 		vm_map_simplify_entry(map, entry, countp);
1345 		entry = entry->next;
1346 	}
1347 }
1348 
1349 /*
1350  *	vm_map_submap:		[ kernel use only ]
1351  *
1352  *	Mark the given range as handled by a subordinate map.
1353  *
1354  *	This range must have been created with vm_map_find,
1355  *	and no other operations may have been performed on this
1356  *	range prior to calling vm_map_submap.
1357  *
1358  *	Only a limited number of operations can be performed
1359  *	within this rage after calling vm_map_submap:
1360  *		vm_fault
1361  *	[Don't try vm_map_copy!]
1362  *
1363  *	To remove a submapping, one must first remove the
1364  *	range from the superior map, and then destroy the
1365  *	submap (if desired).  [Better yet, don't try it.]
1366  */
1367 int
1368 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1369 {
1370 	vm_map_entry_t entry;
1371 	int result = KERN_INVALID_ARGUMENT;
1372 	int count;
1373 
1374 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1375 	vm_map_lock(map);
1376 
1377 	VM_MAP_RANGE_CHECK(map, start, end);
1378 
1379 	if (vm_map_lookup_entry(map, start, &entry)) {
1380 		vm_map_clip_start(map, entry, start, &count);
1381 	} else {
1382 		entry = entry->next;
1383 	}
1384 
1385 	vm_map_clip_end(map, entry, end, &count);
1386 
1387 	if ((entry->start == start) && (entry->end == end) &&
1388 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1389 	    (entry->object.vm_object == NULL)) {
1390 		entry->object.sub_map = submap;
1391 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1392 		result = KERN_SUCCESS;
1393 	}
1394 	vm_map_unlock(map);
1395 	vm_map_entry_release(count);
1396 
1397 	return (result);
1398 }
1399 
1400 /*
1401  *	vm_map_protect:
1402  *
1403  *	Sets the protection of the specified address
1404  *	region in the target map.  If "set_max" is
1405  *	specified, the maximum protection is to be set;
1406  *	otherwise, only the current protection is affected.
1407  */
1408 int
1409 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1410 	       vm_prot_t new_prot, boolean_t set_max)
1411 {
1412 	vm_map_entry_t current;
1413 	vm_map_entry_t entry;
1414 	int count;
1415 
1416 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1417 	vm_map_lock(map);
1418 
1419 	VM_MAP_RANGE_CHECK(map, start, end);
1420 
1421 	if (vm_map_lookup_entry(map, start, &entry)) {
1422 		vm_map_clip_start(map, entry, start, &count);
1423 	} else {
1424 		entry = entry->next;
1425 	}
1426 
1427 	/*
1428 	 * Make a first pass to check for protection violations.
1429 	 */
1430 
1431 	current = entry;
1432 	while ((current != &map->header) && (current->start < end)) {
1433 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1434 			vm_map_unlock(map);
1435 			vm_map_entry_release(count);
1436 			return (KERN_INVALID_ARGUMENT);
1437 		}
1438 		if ((new_prot & current->max_protection) != new_prot) {
1439 			vm_map_unlock(map);
1440 			vm_map_entry_release(count);
1441 			return (KERN_PROTECTION_FAILURE);
1442 		}
1443 		current = current->next;
1444 	}
1445 
1446 	/*
1447 	 * Go back and fix up protections. [Note that clipping is not
1448 	 * necessary the second time.]
1449 	 */
1450 	current = entry;
1451 
1452 	while ((current != &map->header) && (current->start < end)) {
1453 		vm_prot_t old_prot;
1454 
1455 		vm_map_clip_end(map, current, end, &count);
1456 
1457 		old_prot = current->protection;
1458 		if (set_max)
1459 			current->protection =
1460 			    (current->max_protection = new_prot) &
1461 			    old_prot;
1462 		else
1463 			current->protection = new_prot;
1464 
1465 		/*
1466 		 * Update physical map if necessary. Worry about copy-on-write
1467 		 * here -- CHECK THIS XXX
1468 		 */
1469 
1470 		if (current->protection != old_prot) {
1471 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1472 							VM_PROT_ALL)
1473 
1474 			pmap_protect(map->pmap, current->start,
1475 			    current->end,
1476 			    current->protection & MASK(current));
1477 #undef	MASK
1478 		}
1479 
1480 		vm_map_simplify_entry(map, current, &count);
1481 
1482 		current = current->next;
1483 	}
1484 
1485 	vm_map_unlock(map);
1486 	vm_map_entry_release(count);
1487 	return (KERN_SUCCESS);
1488 }
1489 
1490 /*
1491  *	vm_map_madvise:
1492  *
1493  * 	This routine traverses a processes map handling the madvise
1494  *	system call.  Advisories are classified as either those effecting
1495  *	the vm_map_entry structure, or those effecting the underlying
1496  *	objects.
1497  */
1498 
1499 int
1500 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1501 {
1502 	vm_map_entry_t current, entry;
1503 	int modify_map = 0;
1504 	int count;
1505 
1506 	/*
1507 	 * Some madvise calls directly modify the vm_map_entry, in which case
1508 	 * we need to use an exclusive lock on the map and we need to perform
1509 	 * various clipping operations.  Otherwise we only need a read-lock
1510 	 * on the map.
1511 	 */
1512 
1513 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1514 
1515 	switch(behav) {
1516 	case MADV_NORMAL:
1517 	case MADV_SEQUENTIAL:
1518 	case MADV_RANDOM:
1519 	case MADV_NOSYNC:
1520 	case MADV_AUTOSYNC:
1521 	case MADV_NOCORE:
1522 	case MADV_CORE:
1523 		modify_map = 1;
1524 		vm_map_lock(map);
1525 		break;
1526 	case MADV_WILLNEED:
1527 	case MADV_DONTNEED:
1528 	case MADV_FREE:
1529 		vm_map_lock_read(map);
1530 		break;
1531 	default:
1532 		vm_map_entry_release(count);
1533 		return (KERN_INVALID_ARGUMENT);
1534 	}
1535 
1536 	/*
1537 	 * Locate starting entry and clip if necessary.
1538 	 */
1539 
1540 	VM_MAP_RANGE_CHECK(map, start, end);
1541 
1542 	if (vm_map_lookup_entry(map, start, &entry)) {
1543 		if (modify_map)
1544 			vm_map_clip_start(map, entry, start, &count);
1545 	} else {
1546 		entry = entry->next;
1547 	}
1548 
1549 	if (modify_map) {
1550 		/*
1551 		 * madvise behaviors that are implemented in the vm_map_entry.
1552 		 *
1553 		 * We clip the vm_map_entry so that behavioral changes are
1554 		 * limited to the specified address range.
1555 		 */
1556 		for (current = entry;
1557 		     (current != &map->header) && (current->start < end);
1558 		     current = current->next
1559 		) {
1560 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1561 				continue;
1562 
1563 			vm_map_clip_end(map, current, end, &count);
1564 
1565 			switch (behav) {
1566 			case MADV_NORMAL:
1567 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1568 				break;
1569 			case MADV_SEQUENTIAL:
1570 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1571 				break;
1572 			case MADV_RANDOM:
1573 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1574 				break;
1575 			case MADV_NOSYNC:
1576 				current->eflags |= MAP_ENTRY_NOSYNC;
1577 				break;
1578 			case MADV_AUTOSYNC:
1579 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1580 				break;
1581 			case MADV_NOCORE:
1582 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1583 				break;
1584 			case MADV_CORE:
1585 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1586 				break;
1587 			default:
1588 				break;
1589 			}
1590 			vm_map_simplify_entry(map, current, &count);
1591 		}
1592 		vm_map_unlock(map);
1593 	} else {
1594 		vm_pindex_t pindex;
1595 		int count;
1596 
1597 		/*
1598 		 * madvise behaviors that are implemented in the underlying
1599 		 * vm_object.
1600 		 *
1601 		 * Since we don't clip the vm_map_entry, we have to clip
1602 		 * the vm_object pindex and count.
1603 		 */
1604 		for (current = entry;
1605 		     (current != &map->header) && (current->start < end);
1606 		     current = current->next
1607 		) {
1608 			vm_offset_t useStart;
1609 
1610 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1611 				continue;
1612 
1613 			pindex = OFF_TO_IDX(current->offset);
1614 			count = atop(current->end - current->start);
1615 			useStart = current->start;
1616 
1617 			if (current->start < start) {
1618 				pindex += atop(start - current->start);
1619 				count -= atop(start - current->start);
1620 				useStart = start;
1621 			}
1622 			if (current->end > end)
1623 				count -= atop(current->end - end);
1624 
1625 			if (count <= 0)
1626 				continue;
1627 
1628 			vm_object_madvise(current->object.vm_object,
1629 					  pindex, count, behav);
1630 			if (behav == MADV_WILLNEED) {
1631 				pmap_object_init_pt(
1632 				    map->pmap,
1633 				    useStart,
1634 				    current->protection,
1635 				    current->object.vm_object,
1636 				    pindex,
1637 				    (count << PAGE_SHIFT),
1638 				    MAP_PREFAULT_MADVISE
1639 				);
1640 			}
1641 		}
1642 		vm_map_unlock_read(map);
1643 	}
1644 	vm_map_entry_release(count);
1645 	return(0);
1646 }
1647 
1648 
1649 /*
1650  *	vm_map_inherit:
1651  *
1652  *	Sets the inheritance of the specified address
1653  *	range in the target map.  Inheritance
1654  *	affects how the map will be shared with
1655  *	child maps at the time of vm_map_fork.
1656  */
1657 int
1658 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1659 	       vm_inherit_t new_inheritance)
1660 {
1661 	vm_map_entry_t entry;
1662 	vm_map_entry_t temp_entry;
1663 	int count;
1664 
1665 	switch (new_inheritance) {
1666 	case VM_INHERIT_NONE:
1667 	case VM_INHERIT_COPY:
1668 	case VM_INHERIT_SHARE:
1669 		break;
1670 	default:
1671 		return (KERN_INVALID_ARGUMENT);
1672 	}
1673 
1674 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1675 	vm_map_lock(map);
1676 
1677 	VM_MAP_RANGE_CHECK(map, start, end);
1678 
1679 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1680 		entry = temp_entry;
1681 		vm_map_clip_start(map, entry, start, &count);
1682 	} else
1683 		entry = temp_entry->next;
1684 
1685 	while ((entry != &map->header) && (entry->start < end)) {
1686 		vm_map_clip_end(map, entry, end, &count);
1687 
1688 		entry->inheritance = new_inheritance;
1689 
1690 		vm_map_simplify_entry(map, entry, &count);
1691 
1692 		entry = entry->next;
1693 	}
1694 	vm_map_unlock(map);
1695 	vm_map_entry_release(count);
1696 	return (KERN_SUCCESS);
1697 }
1698 
1699 /*
1700  * Implement the semantics of mlock
1701  */
1702 int
1703 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1704     boolean_t new_pageable)
1705 {
1706 	vm_map_entry_t entry;
1707 	vm_map_entry_t start_entry;
1708 	vm_offset_t end;
1709 	int rv = KERN_SUCCESS;
1710 	int count;
1711 
1712 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1713 	vm_map_lock(map);
1714 	VM_MAP_RANGE_CHECK(map, start, real_end);
1715 	end = real_end;
1716 
1717 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1718 	if (start_entry == NULL) {
1719 		vm_map_unlock(map);
1720 		vm_map_entry_release(count);
1721 		return (KERN_INVALID_ADDRESS);
1722 	}
1723 
1724 	if (new_pageable == 0) {
1725 		entry = start_entry;
1726 		while ((entry != &map->header) && (entry->start < end)) {
1727 			vm_offset_t save_start;
1728 			vm_offset_t save_end;
1729 
1730 			/*
1731 			 * Already user wired or hard wired (trivial cases)
1732 			 */
1733 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1734 				entry = entry->next;
1735 				continue;
1736 			}
1737 			if (entry->wired_count != 0) {
1738 				entry->wired_count++;
1739 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1740 				entry = entry->next;
1741 				continue;
1742 			}
1743 
1744 			/*
1745 			 * A new wiring requires instantiation of appropriate
1746 			 * management structures and the faulting in of the
1747 			 * page.
1748 			 */
1749 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1750 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1751 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1752 
1753 					vm_object_shadow(&entry->object.vm_object,
1754 					    &entry->offset,
1755 					    atop(entry->end - entry->start));
1756 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1757 
1758 				} else if (entry->object.vm_object == NULL &&
1759 					   !map->system_map) {
1760 
1761 					entry->object.vm_object =
1762 					    vm_object_allocate(OBJT_DEFAULT,
1763 						atop(entry->end - entry->start));
1764 					entry->offset = (vm_offset_t) 0;
1765 
1766 				}
1767 			}
1768 			entry->wired_count++;
1769 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1770 
1771 			/*
1772 			 * Now fault in the area.  Note that vm_fault_wire()
1773 			 * may release the map lock temporarily, it will be
1774 			 * relocked on return.  The in-transition
1775 			 * flag protects the entries.
1776 			 */
1777 			save_start = entry->start;
1778 			save_end = entry->end;
1779 			rv = vm_fault_wire(map, entry, TRUE);
1780 			if (rv) {
1781 				CLIP_CHECK_BACK(entry, save_start);
1782 				for (;;) {
1783 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1784 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1785 					entry->wired_count = 0;
1786 					if (entry->end == save_end)
1787 						break;
1788 					entry = entry->next;
1789 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1790 				}
1791 				end = save_start;	/* unwire the rest */
1792 				break;
1793 			}
1794 			/*
1795 			 * note that even though the entry might have been
1796 			 * clipped, the USER_WIRED flag we set prevents
1797 			 * duplication so we do not have to do a
1798 			 * clip check.
1799 			 */
1800 			entry = entry->next;
1801 		}
1802 
1803 		/*
1804 		 * If we failed fall through to the unwiring section to
1805 		 * unwire what we had wired so far.  'end' has already
1806 		 * been adjusted.
1807 		 */
1808 		if (rv)
1809 			new_pageable = 1;
1810 
1811 		/*
1812 		 * start_entry might have been clipped if we unlocked the
1813 		 * map and blocked.  No matter how clipped it has gotten
1814 		 * there should be a fragment that is on our start boundary.
1815 		 */
1816 		CLIP_CHECK_BACK(start_entry, start);
1817 	}
1818 
1819 	/*
1820 	 * Deal with the unwiring case.
1821 	 */
1822 	if (new_pageable) {
1823 		/*
1824 		 * This is the unwiring case.  We must first ensure that the
1825 		 * range to be unwired is really wired down.  We know there
1826 		 * are no holes.
1827 		 */
1828 		entry = start_entry;
1829 		while ((entry != &map->header) && (entry->start < end)) {
1830 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1831 				rv = KERN_INVALID_ARGUMENT;
1832 				goto done;
1833 			}
1834 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1835 			entry = entry->next;
1836 		}
1837 
1838 		/*
1839 		 * Now decrement the wiring count for each region. If a region
1840 		 * becomes completely unwired, unwire its physical pages and
1841 		 * mappings.
1842 		 */
1843 		/*
1844 		 * The map entries are processed in a loop, checking to
1845 		 * make sure the entry is wired and asserting it has a wired
1846 		 * count. However, another loop was inserted more-or-less in
1847 		 * the middle of the unwiring path. This loop picks up the
1848 		 * "entry" loop variable from the first loop without first
1849 		 * setting it to start_entry. Naturally, the secound loop
1850 		 * is never entered and the pages backing the entries are
1851 		 * never unwired. This can lead to a leak of wired pages.
1852 		 */
1853 		entry = start_entry;
1854 		while ((entry != &map->header) && (entry->start < end)) {
1855 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1856 				("expected USER_WIRED on entry %p", entry));
1857 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1858 			entry->wired_count--;
1859 			if (entry->wired_count == 0)
1860 				vm_fault_unwire(map, entry);
1861 			entry = entry->next;
1862 		}
1863 	}
1864 done:
1865 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1866 		MAP_CLIP_NO_HOLES);
1867 	map->timestamp++;
1868 	vm_map_unlock(map);
1869 	vm_map_entry_release(count);
1870 	return (rv);
1871 }
1872 
1873 /*
1874  *	vm_map_wire:
1875  *
1876  *	Sets the pageability of the specified address
1877  *	range in the target map.  Regions specified
1878  *	as not pageable require locked-down physical
1879  *	memory and physical page maps.
1880  *
1881  *	The map must not be locked, but a reference
1882  *	must remain to the map throughout the call.
1883  *
1884  *	This function may be called via the zalloc path and must properly
1885  *	reserve map entries for kernel_map.
1886  */
1887 int
1888 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1889 {
1890 	vm_map_entry_t entry;
1891 	vm_map_entry_t start_entry;
1892 	vm_offset_t end;
1893 	int rv = KERN_SUCCESS;
1894 	int count;
1895 
1896 	if (kmflags & KM_KRESERVE)
1897 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1898 	else
1899 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1900 	vm_map_lock(map);
1901 	VM_MAP_RANGE_CHECK(map, start, real_end);
1902 	end = real_end;
1903 
1904 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1905 	if (start_entry == NULL) {
1906 		vm_map_unlock(map);
1907 		rv = KERN_INVALID_ADDRESS;
1908 		goto failure;
1909 	}
1910 	if ((kmflags & KM_PAGEABLE) == 0) {
1911 		/*
1912 		 * Wiring.
1913 		 *
1914 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1915 		 * objects that need to be created. Then we clip each map
1916 		 * entry to the region to be wired and increment its wiring
1917 		 * count.  We create objects before clipping the map entries
1918 		 * to avoid object proliferation.
1919 		 *
1920 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1921 		 * fault in the pages for any newly wired area (wired_count is
1922 		 * 1).
1923 		 *
1924 		 * Downgrading to a read lock for vm_fault_wire avoids a
1925 		 * possible deadlock with another process that may have faulted
1926 		 * on one of the pages to be wired (it would mark the page busy,
1927 		 * blocking us, then in turn block on the map lock that we
1928 		 * hold).  Because of problems in the recursive lock package,
1929 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1930 		 * any actions that require the write lock must be done
1931 		 * beforehand.  Because we keep the read lock on the map, the
1932 		 * copy-on-write status of the entries we modify here cannot
1933 		 * change.
1934 		 */
1935 
1936 		entry = start_entry;
1937 		while ((entry != &map->header) && (entry->start < end)) {
1938 			/*
1939 			 * Trivial case if the entry is already wired
1940 			 */
1941 			if (entry->wired_count) {
1942 				entry->wired_count++;
1943 				entry = entry->next;
1944 				continue;
1945 			}
1946 
1947 			/*
1948 			 * The entry is being newly wired, we have to setup
1949 			 * appropriate management structures.  A shadow
1950 			 * object is required for a copy-on-write region,
1951 			 * or a normal object for a zero-fill region.  We
1952 			 * do not have to do this for entries that point to sub
1953 			 * maps because we won't hold the lock on the sub map.
1954 			 */
1955 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1956 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1957 				if (copyflag &&
1958 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1959 
1960 					vm_object_shadow(&entry->object.vm_object,
1961 					    &entry->offset,
1962 					    atop(entry->end - entry->start));
1963 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1964 				} else if (entry->object.vm_object == NULL &&
1965 					   !map->system_map) {
1966 					entry->object.vm_object =
1967 					    vm_object_allocate(OBJT_DEFAULT,
1968 						atop(entry->end - entry->start));
1969 					entry->offset = (vm_offset_t) 0;
1970 				}
1971 			}
1972 
1973 			entry->wired_count++;
1974 			entry = entry->next;
1975 		}
1976 
1977 		/*
1978 		 * Pass 2.
1979 		 */
1980 
1981 		/*
1982 		 * HACK HACK HACK HACK
1983 		 *
1984 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1985 		 * protects us from most changes but note that
1986 		 * clipping may still occur.  To prevent clipping from
1987 		 * occuring after the unlock, except for when we are
1988 		 * blocking in vm_fault_wire, we must run in a critical
1989 		 * section, otherwise our accesses to entry->start and
1990 		 * entry->end could be corrupted.  We have to enter the
1991 		 * critical section prior to unlocking so start_entry does
1992 		 * not change out from under us at the very beginning of the
1993 		 * loop.
1994 		 *
1995 		 * HACK HACK HACK HACK
1996 		 */
1997 
1998 		crit_enter();
1999 
2000 		entry = start_entry;
2001 		while (entry != &map->header && entry->start < end) {
2002 			/*
2003 			 * If vm_fault_wire fails for any page we need to undo
2004 			 * what has been done.  We decrement the wiring count
2005 			 * for those pages which have not yet been wired (now)
2006 			 * and unwire those that have (later).
2007 			 */
2008 			vm_offset_t save_start = entry->start;
2009 			vm_offset_t save_end = entry->end;
2010 
2011 			if (entry->wired_count == 1)
2012 				rv = vm_fault_wire(map, entry, FALSE);
2013 			if (rv) {
2014 				CLIP_CHECK_BACK(entry, save_start);
2015 				for (;;) {
2016 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2017 					entry->wired_count = 0;
2018 					if (entry->end == save_end)
2019 						break;
2020 					entry = entry->next;
2021 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2022 				}
2023 				end = save_start;
2024 				break;
2025 			}
2026 			CLIP_CHECK_FWD(entry, save_end);
2027 			entry = entry->next;
2028 		}
2029 		crit_exit();
2030 
2031 		/*
2032 		 * If a failure occured undo everything by falling through
2033 		 * to the unwiring code.  'end' has already been adjusted
2034 		 * appropriately.
2035 		 */
2036 		if (rv)
2037 			kmflags |= KM_PAGEABLE;
2038 
2039 		/*
2040 		 * start_entry is still IN_TRANSITION but may have been
2041 		 * clipped since vm_fault_wire() unlocks and relocks the
2042 		 * map.  No matter how clipped it has gotten there should
2043 		 * be a fragment that is on our start boundary.
2044 		 */
2045 		CLIP_CHECK_BACK(start_entry, start);
2046 	}
2047 
2048 	if (kmflags & KM_PAGEABLE) {
2049 		/*
2050 		 * This is the unwiring case.  We must first ensure that the
2051 		 * range to be unwired is really wired down.  We know there
2052 		 * are no holes.
2053 		 */
2054 		entry = start_entry;
2055 		while ((entry != &map->header) && (entry->start < end)) {
2056 			if (entry->wired_count == 0) {
2057 				rv = KERN_INVALID_ARGUMENT;
2058 				goto done;
2059 			}
2060 			entry = entry->next;
2061 		}
2062 
2063 		/*
2064 		 * Now decrement the wiring count for each region. If a region
2065 		 * becomes completely unwired, unwire its physical pages and
2066 		 * mappings.
2067 		 */
2068 		entry = start_entry;
2069 		while ((entry != &map->header) && (entry->start < end)) {
2070 			entry->wired_count--;
2071 			if (entry->wired_count == 0)
2072 				vm_fault_unwire(map, entry);
2073 			entry = entry->next;
2074 		}
2075 	}
2076 done:
2077 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2078 		MAP_CLIP_NO_HOLES);
2079 	map->timestamp++;
2080 	vm_map_unlock(map);
2081 failure:
2082 	if (kmflags & KM_KRESERVE)
2083 		vm_map_entry_krelease(count);
2084 	else
2085 		vm_map_entry_release(count);
2086 	return (rv);
2087 }
2088 
2089 /*
2090  * vm_map_set_wired_quick()
2091  *
2092  *	Mark a newly allocated address range as wired but do not fault in
2093  *	the pages.  The caller is expected to load the pages into the object.
2094  *
2095  *	The map must be locked on entry and will remain locked on return.
2096  */
2097 void
2098 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2099 {
2100 	vm_map_entry_t scan;
2101 	vm_map_entry_t entry;
2102 
2103 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2104 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2105 	    KKASSERT(entry->wired_count == 0);
2106 	    entry->wired_count = 1;
2107 	}
2108 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2109 }
2110 
2111 /*
2112  * vm_map_clean
2113  *
2114  * Push any dirty cached pages in the address range to their pager.
2115  * If syncio is TRUE, dirty pages are written synchronously.
2116  * If invalidate is TRUE, any cached pages are freed as well.
2117  *
2118  * Returns an error if any part of the specified range is not mapped.
2119  */
2120 int
2121 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2122     boolean_t invalidate)
2123 {
2124 	vm_map_entry_t current;
2125 	vm_map_entry_t entry;
2126 	vm_size_t size;
2127 	vm_object_t object;
2128 	vm_ooffset_t offset;
2129 
2130 	vm_map_lock_read(map);
2131 	VM_MAP_RANGE_CHECK(map, start, end);
2132 	if (!vm_map_lookup_entry(map, start, &entry)) {
2133 		vm_map_unlock_read(map);
2134 		return (KERN_INVALID_ADDRESS);
2135 	}
2136 	/*
2137 	 * Make a first pass to check for holes.
2138 	 */
2139 	for (current = entry; current->start < end; current = current->next) {
2140 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2141 			vm_map_unlock_read(map);
2142 			return (KERN_INVALID_ARGUMENT);
2143 		}
2144 		if (end > current->end &&
2145 		    (current->next == &map->header ||
2146 			current->end != current->next->start)) {
2147 			vm_map_unlock_read(map);
2148 			return (KERN_INVALID_ADDRESS);
2149 		}
2150 	}
2151 
2152 	if (invalidate)
2153 		pmap_remove(vm_map_pmap(map), start, end);
2154 	/*
2155 	 * Make a second pass, cleaning/uncaching pages from the indicated
2156 	 * objects as we go.
2157 	 */
2158 	for (current = entry; current->start < end; current = current->next) {
2159 		offset = current->offset + (start - current->start);
2160 		size = (end <= current->end ? end : current->end) - start;
2161 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2162 			vm_map_t smap;
2163 			vm_map_entry_t tentry;
2164 			vm_size_t tsize;
2165 
2166 			smap = current->object.sub_map;
2167 			vm_map_lock_read(smap);
2168 			vm_map_lookup_entry(smap, offset, &tentry);
2169 			tsize = tentry->end - offset;
2170 			if (tsize < size)
2171 				size = tsize;
2172 			object = tentry->object.vm_object;
2173 			offset = tentry->offset + (offset - tentry->start);
2174 			vm_map_unlock_read(smap);
2175 		} else {
2176 			object = current->object.vm_object;
2177 		}
2178 		/*
2179 		 * Note that there is absolutely no sense in writing out
2180 		 * anonymous objects, so we track down the vnode object
2181 		 * to write out.
2182 		 * We invalidate (remove) all pages from the address space
2183 		 * anyway, for semantic correctness.
2184 		 *
2185 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2186 		 * may start out with a NULL object.
2187 		 */
2188 		while (object && object->backing_object) {
2189 			offset += object->backing_object_offset;
2190 			object = object->backing_object;
2191 			if (object->size < OFF_TO_IDX( offset + size))
2192 				size = IDX_TO_OFF(object->size) - offset;
2193 		}
2194 		if (object && (object->type == OBJT_VNODE) &&
2195 		    (current->protection & VM_PROT_WRITE)) {
2196 			/*
2197 			 * Flush pages if writing is allowed, invalidate them
2198 			 * if invalidation requested.  Pages undergoing I/O
2199 			 * will be ignored by vm_object_page_remove().
2200 			 *
2201 			 * We cannot lock the vnode and then wait for paging
2202 			 * to complete without deadlocking against vm_fault.
2203 			 * Instead we simply call vm_object_page_remove() and
2204 			 * allow it to block internally on a page-by-page
2205 			 * basis when it encounters pages undergoing async
2206 			 * I/O.
2207 			 */
2208 			int flags;
2209 
2210 			vm_object_reference(object);
2211 			vn_lock(object->handle,
2212 				LK_EXCLUSIVE | LK_RETRY, curthread);
2213 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2214 			flags |= invalidate ? OBJPC_INVAL : 0;
2215 			vm_object_page_clean(object,
2216 			    OFF_TO_IDX(offset),
2217 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2218 			    flags);
2219 			VOP_UNLOCK(((struct vnode *)object->handle),
2220 				    0, curthread);
2221 			vm_object_deallocate(object);
2222 		}
2223 		if (object && invalidate &&
2224 		   ((object->type == OBJT_VNODE) ||
2225 		    (object->type == OBJT_DEVICE))) {
2226 			int clean_only =
2227 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2228 			vm_object_reference(object);
2229 			vm_object_page_remove(object,
2230 			    OFF_TO_IDX(offset),
2231 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2232 			    clean_only);
2233 			vm_object_deallocate(object);
2234 		}
2235 		start += size;
2236 	}
2237 
2238 	vm_map_unlock_read(map);
2239 	return (KERN_SUCCESS);
2240 }
2241 
2242 /*
2243  *	vm_map_entry_unwire:	[ internal use only ]
2244  *
2245  *	Make the region specified by this entry pageable.
2246  *
2247  *	The map in question should be locked.
2248  *	[This is the reason for this routine's existence.]
2249  */
2250 static void
2251 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2252 {
2253 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2254 	entry->wired_count = 0;
2255 	vm_fault_unwire(map, entry);
2256 }
2257 
2258 /*
2259  *	vm_map_entry_delete:	[ internal use only ]
2260  *
2261  *	Deallocate the given entry from the target map.
2262  */
2263 static void
2264 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2265 {
2266 	vm_map_entry_unlink(map, entry);
2267 	map->size -= entry->end - entry->start;
2268 
2269 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2270 		vm_object_deallocate(entry->object.vm_object);
2271 	}
2272 
2273 	vm_map_entry_dispose(map, entry, countp);
2274 }
2275 
2276 /*
2277  *	vm_map_delete:	[ internal use only ]
2278  *
2279  *	Deallocates the given address range from the target
2280  *	map.
2281  */
2282 int
2283 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2284 {
2285 	vm_object_t object;
2286 	vm_map_entry_t entry;
2287 	vm_map_entry_t first_entry;
2288 
2289 again:
2290 	/*
2291 	 * Find the start of the region, and clip it.  Set entry to point
2292 	 * at the first record containing the requested address or, if no
2293 	 * such record exists, the next record with a greater address.  The
2294 	 * loop will run from this point until a record beyond the termination
2295 	 * address is encountered.
2296 	 *
2297 	 * map->hint must be adjusted to not point to anything we delete,
2298 	 * so set it to the entry prior to the one being deleted.
2299 	 *
2300 	 * GGG see other GGG comment.
2301 	 */
2302 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2303 		entry = first_entry;
2304 		vm_map_clip_start(map, entry, start, countp);
2305 		map->hint = entry->prev;	/* possible problem XXX */
2306 	} else {
2307 		map->hint = first_entry;	/* possible problem XXX */
2308 		entry = first_entry->next;
2309 	}
2310 
2311 	/*
2312 	 * If a hole opens up prior to the current first_free then
2313 	 * adjust first_free.  As with map->hint, map->first_free
2314 	 * cannot be left set to anything we might delete.
2315 	 */
2316 	if (entry == &map->header) {
2317 		map->first_free = &map->header;
2318 	} else if (map->first_free->start >= start) {
2319 		map->first_free = entry->prev;
2320 	}
2321 
2322 	/*
2323 	 * Step through all entries in this region
2324 	 */
2325 
2326 	while ((entry != &map->header) && (entry->start < end)) {
2327 		vm_map_entry_t next;
2328 		vm_offset_t s, e;
2329 		vm_pindex_t offidxstart, offidxend, count;
2330 
2331 		/*
2332 		 * If we hit an in-transition entry we have to sleep and
2333 		 * retry.  It's easier (and not really slower) to just retry
2334 		 * since this case occurs so rarely and the hint is already
2335 		 * pointing at the right place.  We have to reset the
2336 		 * start offset so as not to accidently delete an entry
2337 		 * another process just created in vacated space.
2338 		 */
2339 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2340 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2341 			start = entry->start;
2342 			++mycpu->gd_cnt.v_intrans_coll;
2343 			++mycpu->gd_cnt.v_intrans_wait;
2344 			vm_map_transition_wait(map);
2345 			goto again;
2346 		}
2347 		vm_map_clip_end(map, entry, end, countp);
2348 
2349 		s = entry->start;
2350 		e = entry->end;
2351 		next = entry->next;
2352 
2353 		offidxstart = OFF_TO_IDX(entry->offset);
2354 		count = OFF_TO_IDX(e - s);
2355 		object = entry->object.vm_object;
2356 
2357 		/*
2358 		 * Unwire before removing addresses from the pmap; otherwise,
2359 		 * unwiring will put the entries back in the pmap.
2360 		 */
2361 		if (entry->wired_count != 0)
2362 			vm_map_entry_unwire(map, entry);
2363 
2364 		offidxend = offidxstart + count;
2365 
2366 		if ((object == kernel_object) || (object == kmem_object)) {
2367 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2368 		} else {
2369 			pmap_remove(map->pmap, s, e);
2370 			if (object != NULL &&
2371 			    object->ref_count != 1 &&
2372 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2373 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2374 				vm_object_collapse(object);
2375 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2376 				if (object->type == OBJT_SWAP) {
2377 					swap_pager_freespace(object, offidxstart, count);
2378 				}
2379 				if (offidxend >= object->size &&
2380 				    offidxstart < object->size) {
2381 					object->size = offidxstart;
2382 				}
2383 			}
2384 		}
2385 
2386 		/*
2387 		 * Delete the entry (which may delete the object) only after
2388 		 * removing all pmap entries pointing to its pages.
2389 		 * (Otherwise, its page frames may be reallocated, and any
2390 		 * modify bits will be set in the wrong object!)
2391 		 */
2392 		vm_map_entry_delete(map, entry, countp);
2393 		entry = next;
2394 	}
2395 	return (KERN_SUCCESS);
2396 }
2397 
2398 /*
2399  *	vm_map_remove:
2400  *
2401  *	Remove the given address range from the target map.
2402  *	This is the exported form of vm_map_delete.
2403  */
2404 int
2405 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2406 {
2407 	int result;
2408 	int count;
2409 
2410 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2411 	vm_map_lock(map);
2412 	VM_MAP_RANGE_CHECK(map, start, end);
2413 	result = vm_map_delete(map, start, end, &count);
2414 	vm_map_unlock(map);
2415 	vm_map_entry_release(count);
2416 
2417 	return (result);
2418 }
2419 
2420 /*
2421  *	vm_map_check_protection:
2422  *
2423  *	Assert that the target map allows the specified
2424  *	privilege on the entire address region given.
2425  *	The entire region must be allocated.
2426  */
2427 boolean_t
2428 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2429 			vm_prot_t protection)
2430 {
2431 	vm_map_entry_t entry;
2432 	vm_map_entry_t tmp_entry;
2433 
2434 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2435 		return (FALSE);
2436 	}
2437 	entry = tmp_entry;
2438 
2439 	while (start < end) {
2440 		if (entry == &map->header) {
2441 			return (FALSE);
2442 		}
2443 		/*
2444 		 * No holes allowed!
2445 		 */
2446 
2447 		if (start < entry->start) {
2448 			return (FALSE);
2449 		}
2450 		/*
2451 		 * Check protection associated with entry.
2452 		 */
2453 
2454 		if ((entry->protection & protection) != protection) {
2455 			return (FALSE);
2456 		}
2457 		/* go to next entry */
2458 
2459 		start = entry->end;
2460 		entry = entry->next;
2461 	}
2462 	return (TRUE);
2463 }
2464 
2465 /*
2466  * Split the pages in a map entry into a new object.  This affords
2467  * easier removal of unused pages, and keeps object inheritance from
2468  * being a negative impact on memory usage.
2469  */
2470 static void
2471 vm_map_split(vm_map_entry_t entry)
2472 {
2473 	vm_page_t m;
2474 	vm_object_t orig_object, new_object, source;
2475 	vm_offset_t s, e;
2476 	vm_pindex_t offidxstart, offidxend, idx;
2477 	vm_size_t size;
2478 	vm_ooffset_t offset;
2479 
2480 	orig_object = entry->object.vm_object;
2481 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2482 		return;
2483 	if (orig_object->ref_count <= 1)
2484 		return;
2485 
2486 	offset = entry->offset;
2487 	s = entry->start;
2488 	e = entry->end;
2489 
2490 	offidxstart = OFF_TO_IDX(offset);
2491 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2492 	size = offidxend - offidxstart;
2493 
2494 	new_object = vm_pager_allocate(orig_object->type,
2495 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2496 	if (new_object == NULL)
2497 		return;
2498 
2499 	source = orig_object->backing_object;
2500 	if (source != NULL) {
2501 		vm_object_reference(source);	/* Referenced by new_object */
2502 		LIST_INSERT_HEAD(&source->shadow_head,
2503 				  new_object, shadow_list);
2504 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2505 		new_object->backing_object_offset =
2506 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2507 		new_object->backing_object = source;
2508 		source->shadow_count++;
2509 		source->generation++;
2510 	}
2511 
2512 	for (idx = 0; idx < size; idx++) {
2513 		vm_page_t m;
2514 
2515 		/*
2516 		 * A critical section is required to avoid a race between
2517 		 * the lookup and an interrupt/unbusy/free and our busy
2518 		 * check.
2519 		 */
2520 		crit_enter();
2521 	retry:
2522 		m = vm_page_lookup(orig_object, offidxstart + idx);
2523 		if (m == NULL) {
2524 			crit_exit();
2525 			continue;
2526 		}
2527 
2528 		/*
2529 		 * We must wait for pending I/O to complete before we can
2530 		 * rename the page.
2531 		 *
2532 		 * We do not have to VM_PROT_NONE the page as mappings should
2533 		 * not be changed by this operation.
2534 		 */
2535 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2536 			goto retry;
2537 		vm_page_busy(m);
2538 		vm_page_rename(m, new_object, idx);
2539 		/* page automatically made dirty by rename and cache handled */
2540 		vm_page_busy(m);
2541 		crit_exit();
2542 	}
2543 
2544 	if (orig_object->type == OBJT_SWAP) {
2545 		vm_object_pip_add(orig_object, 1);
2546 		/*
2547 		 * copy orig_object pages into new_object
2548 		 * and destroy unneeded pages in
2549 		 * shadow object.
2550 		 */
2551 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2552 		vm_object_pip_wakeup(orig_object);
2553 	}
2554 
2555 	/*
2556 	 * Wakeup the pages we played with.  No spl protection is needed
2557 	 * for a simple wakeup.
2558 	 */
2559 	for (idx = 0; idx < size; idx++) {
2560 		m = vm_page_lookup(new_object, idx);
2561 		if (m)
2562 			vm_page_wakeup(m);
2563 	}
2564 
2565 	entry->object.vm_object = new_object;
2566 	entry->offset = 0LL;
2567 	vm_object_deallocate(orig_object);
2568 }
2569 
2570 /*
2571  *	vm_map_copy_entry:
2572  *
2573  *	Copies the contents of the source entry to the destination
2574  *	entry.  The entries *must* be aligned properly.
2575  */
2576 static void
2577 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2578 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2579 {
2580 	vm_object_t src_object;
2581 
2582 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2583 		return;
2584 
2585 	if (src_entry->wired_count == 0) {
2586 
2587 		/*
2588 		 * If the source entry is marked needs_copy, it is already
2589 		 * write-protected.
2590 		 */
2591 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2592 			pmap_protect(src_map->pmap,
2593 			    src_entry->start,
2594 			    src_entry->end,
2595 			    src_entry->protection & ~VM_PROT_WRITE);
2596 		}
2597 
2598 		/*
2599 		 * Make a copy of the object.
2600 		 */
2601 		if ((src_object = src_entry->object.vm_object) != NULL) {
2602 
2603 			if ((src_object->handle == NULL) &&
2604 				(src_object->type == OBJT_DEFAULT ||
2605 				 src_object->type == OBJT_SWAP)) {
2606 				vm_object_collapse(src_object);
2607 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2608 					vm_map_split(src_entry);
2609 					src_object = src_entry->object.vm_object;
2610 				}
2611 			}
2612 
2613 			vm_object_reference(src_object);
2614 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2615 			dst_entry->object.vm_object = src_object;
2616 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2617 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2618 			dst_entry->offset = src_entry->offset;
2619 		} else {
2620 			dst_entry->object.vm_object = NULL;
2621 			dst_entry->offset = 0;
2622 		}
2623 
2624 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2625 		    dst_entry->end - dst_entry->start, src_entry->start);
2626 	} else {
2627 		/*
2628 		 * Of course, wired down pages can't be set copy-on-write.
2629 		 * Cause wired pages to be copied into the new map by
2630 		 * simulating faults (the new pages are pageable)
2631 		 */
2632 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2633 	}
2634 }
2635 
2636 /*
2637  * vmspace_fork:
2638  * Create a new process vmspace structure and vm_map
2639  * based on those of an existing process.  The new map
2640  * is based on the old map, according to the inheritance
2641  * values on the regions in that map.
2642  *
2643  * The source map must not be locked.
2644  */
2645 struct vmspace *
2646 vmspace_fork(struct vmspace *vm1)
2647 {
2648 	struct vmspace *vm2;
2649 	vm_map_t old_map = &vm1->vm_map;
2650 	vm_map_t new_map;
2651 	vm_map_entry_t old_entry;
2652 	vm_map_entry_t new_entry;
2653 	vm_object_t object;
2654 	int count;
2655 
2656 	vm_map_lock(old_map);
2657 	old_map->infork = 1;
2658 
2659 	/*
2660 	 * XXX Note: upcalls are not copied.
2661 	 */
2662 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2663 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2664 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2665 	new_map = &vm2->vm_map;	/* XXX */
2666 	new_map->timestamp = 1;
2667 
2668 	count = 0;
2669 	old_entry = old_map->header.next;
2670 	while (old_entry != &old_map->header) {
2671 		++count;
2672 		old_entry = old_entry->next;
2673 	}
2674 
2675 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2676 
2677 	old_entry = old_map->header.next;
2678 	while (old_entry != &old_map->header) {
2679 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2680 			panic("vm_map_fork: encountered a submap");
2681 
2682 		switch (old_entry->inheritance) {
2683 		case VM_INHERIT_NONE:
2684 			break;
2685 
2686 		case VM_INHERIT_SHARE:
2687 			/*
2688 			 * Clone the entry, creating the shared object if necessary.
2689 			 */
2690 			object = old_entry->object.vm_object;
2691 			if (object == NULL) {
2692 				object = vm_object_allocate(OBJT_DEFAULT,
2693 					atop(old_entry->end - old_entry->start));
2694 				old_entry->object.vm_object = object;
2695 				old_entry->offset = (vm_offset_t) 0;
2696 			}
2697 
2698 			/*
2699 			 * Add the reference before calling vm_object_shadow
2700 			 * to insure that a shadow object is created.
2701 			 */
2702 			vm_object_reference(object);
2703 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2704 				vm_object_shadow(&old_entry->object.vm_object,
2705 					&old_entry->offset,
2706 					atop(old_entry->end - old_entry->start));
2707 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2708 				/* Transfer the second reference too. */
2709 				vm_object_reference(
2710 				    old_entry->object.vm_object);
2711 				vm_object_deallocate(object);
2712 				object = old_entry->object.vm_object;
2713 			}
2714 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2715 
2716 			/*
2717 			 * Clone the entry, referencing the shared object.
2718 			 */
2719 			new_entry = vm_map_entry_create(new_map, &count);
2720 			*new_entry = *old_entry;
2721 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2722 			new_entry->wired_count = 0;
2723 
2724 			/*
2725 			 * Insert the entry into the new map -- we know we're
2726 			 * inserting at the end of the new map.
2727 			 */
2728 
2729 			vm_map_entry_link(new_map, new_map->header.prev,
2730 			    new_entry);
2731 
2732 			/*
2733 			 * Update the physical map
2734 			 */
2735 
2736 			pmap_copy(new_map->pmap, old_map->pmap,
2737 			    new_entry->start,
2738 			    (old_entry->end - old_entry->start),
2739 			    old_entry->start);
2740 			break;
2741 
2742 		case VM_INHERIT_COPY:
2743 			/*
2744 			 * Clone the entry and link into the map.
2745 			 */
2746 			new_entry = vm_map_entry_create(new_map, &count);
2747 			*new_entry = *old_entry;
2748 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2749 			new_entry->wired_count = 0;
2750 			new_entry->object.vm_object = NULL;
2751 			vm_map_entry_link(new_map, new_map->header.prev,
2752 			    new_entry);
2753 			vm_map_copy_entry(old_map, new_map, old_entry,
2754 			    new_entry);
2755 			break;
2756 		}
2757 		old_entry = old_entry->next;
2758 	}
2759 
2760 	new_map->size = old_map->size;
2761 	old_map->infork = 0;
2762 	vm_map_unlock(old_map);
2763 	vm_map_entry_release(count);
2764 
2765 	return (vm2);
2766 }
2767 
2768 int
2769 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2770 	      vm_prot_t prot, vm_prot_t max, int cow)
2771 {
2772 	vm_map_entry_t prev_entry;
2773 	vm_map_entry_t new_stack_entry;
2774 	vm_size_t      init_ssize;
2775 	int            rv;
2776 	int		count;
2777 
2778 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2779 		return (KERN_NO_SPACE);
2780 
2781 	if (max_ssize < sgrowsiz)
2782 		init_ssize = max_ssize;
2783 	else
2784 		init_ssize = sgrowsiz;
2785 
2786 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2787 	vm_map_lock(map);
2788 
2789 	/* If addr is already mapped, no go */
2790 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2791 		vm_map_unlock(map);
2792 		vm_map_entry_release(count);
2793 		return (KERN_NO_SPACE);
2794 	}
2795 
2796 	/* If we would blow our VMEM resource limit, no go */
2797 	if (map->size + init_ssize >
2798 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2799 		vm_map_unlock(map);
2800 		vm_map_entry_release(count);
2801 		return (KERN_NO_SPACE);
2802 	}
2803 
2804 	/* If we can't accomodate max_ssize in the current mapping,
2805 	 * no go.  However, we need to be aware that subsequent user
2806 	 * mappings might map into the space we have reserved for
2807 	 * stack, and currently this space is not protected.
2808 	 *
2809 	 * Hopefully we will at least detect this condition
2810 	 * when we try to grow the stack.
2811 	 */
2812 	if ((prev_entry->next != &map->header) &&
2813 	    (prev_entry->next->start < addrbos + max_ssize)) {
2814 		vm_map_unlock(map);
2815 		vm_map_entry_release(count);
2816 		return (KERN_NO_SPACE);
2817 	}
2818 
2819 	/* We initially map a stack of only init_ssize.  We will
2820 	 * grow as needed later.  Since this is to be a grow
2821 	 * down stack, we map at the top of the range.
2822 	 *
2823 	 * Note: we would normally expect prot and max to be
2824 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2825 	 * eliminate these as input parameters, and just
2826 	 * pass these values here in the insert call.
2827 	 */
2828 	rv = vm_map_insert(map, &count,
2829 			   NULL, 0, addrbos + max_ssize - init_ssize,
2830 	                   addrbos + max_ssize, prot, max, cow);
2831 
2832 	/* Now set the avail_ssize amount */
2833 	if (rv == KERN_SUCCESS) {
2834 		if (prev_entry != &map->header)
2835 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2836 		new_stack_entry = prev_entry->next;
2837 		if (new_stack_entry->end   != addrbos + max_ssize ||
2838 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2839 			panic ("Bad entry start/end for new stack entry");
2840 		else
2841 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2842 	}
2843 
2844 	vm_map_unlock(map);
2845 	vm_map_entry_release(count);
2846 	return (rv);
2847 }
2848 
2849 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2850  * desired address is already mapped, or if we successfully grow
2851  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2852  * stack range (this is strange, but preserves compatibility with
2853  * the grow function in vm_machdep.c).
2854  */
2855 int
2856 vm_map_growstack (struct proc *p, vm_offset_t addr)
2857 {
2858 	vm_map_entry_t prev_entry;
2859 	vm_map_entry_t stack_entry;
2860 	vm_map_entry_t new_stack_entry;
2861 	struct vmspace *vm = p->p_vmspace;
2862 	vm_map_t map = &vm->vm_map;
2863 	vm_offset_t    end;
2864 	int grow_amount;
2865 	int rv = KERN_SUCCESS;
2866 	int is_procstack;
2867 	int use_read_lock = 1;
2868 	int count;
2869 
2870 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2871 Retry:
2872 	if (use_read_lock)
2873 		vm_map_lock_read(map);
2874 	else
2875 		vm_map_lock(map);
2876 
2877 	/* If addr is already in the entry range, no need to grow.*/
2878 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2879 		goto done;
2880 
2881 	if ((stack_entry = prev_entry->next) == &map->header)
2882 		goto done;
2883 	if (prev_entry == &map->header)
2884 		end = stack_entry->start - stack_entry->avail_ssize;
2885 	else
2886 		end = prev_entry->end;
2887 
2888 	/* This next test mimics the old grow function in vm_machdep.c.
2889 	 * It really doesn't quite make sense, but we do it anyway
2890 	 * for compatibility.
2891 	 *
2892 	 * If not growable stack, return success.  This signals the
2893 	 * caller to proceed as he would normally with normal vm.
2894 	 */
2895 	if (stack_entry->avail_ssize < 1 ||
2896 	    addr >= stack_entry->start ||
2897 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2898 		goto done;
2899 	}
2900 
2901 	/* Find the minimum grow amount */
2902 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2903 	if (grow_amount > stack_entry->avail_ssize) {
2904 		rv = KERN_NO_SPACE;
2905 		goto done;
2906 	}
2907 
2908 	/* If there is no longer enough space between the entries
2909 	 * nogo, and adjust the available space.  Note: this
2910 	 * should only happen if the user has mapped into the
2911 	 * stack area after the stack was created, and is
2912 	 * probably an error.
2913 	 *
2914 	 * This also effectively destroys any guard page the user
2915 	 * might have intended by limiting the stack size.
2916 	 */
2917 	if (grow_amount > stack_entry->start - end) {
2918 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2919 			use_read_lock = 0;
2920 			goto Retry;
2921 		}
2922 		use_read_lock = 0;
2923 		stack_entry->avail_ssize = stack_entry->start - end;
2924 		rv = KERN_NO_SPACE;
2925 		goto done;
2926 	}
2927 
2928 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2929 
2930 	/* If this is the main process stack, see if we're over the
2931 	 * stack limit.
2932 	 */
2933 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2934 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2935 		rv = KERN_NO_SPACE;
2936 		goto done;
2937 	}
2938 
2939 	/* Round up the grow amount modulo SGROWSIZ */
2940 	grow_amount = roundup (grow_amount, sgrowsiz);
2941 	if (grow_amount > stack_entry->avail_ssize) {
2942 		grow_amount = stack_entry->avail_ssize;
2943 	}
2944 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2945 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2946 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2947 		              ctob(vm->vm_ssize);
2948 	}
2949 
2950 	/* If we would blow our VMEM resource limit, no go */
2951 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2952 		rv = KERN_NO_SPACE;
2953 		goto done;
2954 	}
2955 
2956 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2957 		use_read_lock = 0;
2958 		goto Retry;
2959 	}
2960 	use_read_lock = 0;
2961 
2962 	/* Get the preliminary new entry start value */
2963 	addr = stack_entry->start - grow_amount;
2964 
2965 	/* If this puts us into the previous entry, cut back our growth
2966 	 * to the available space.  Also, see the note above.
2967 	 */
2968 	if (addr < end) {
2969 		stack_entry->avail_ssize = stack_entry->start - end;
2970 		addr = end;
2971 	}
2972 
2973 	rv = vm_map_insert(map, &count,
2974 			   NULL, 0, addr, stack_entry->start,
2975 			   VM_PROT_ALL,
2976 			   VM_PROT_ALL,
2977 			   0);
2978 
2979 	/* Adjust the available stack space by the amount we grew. */
2980 	if (rv == KERN_SUCCESS) {
2981 		if (prev_entry != &map->header)
2982 			vm_map_clip_end(map, prev_entry, addr, &count);
2983 		new_stack_entry = prev_entry->next;
2984 		if (new_stack_entry->end   != stack_entry->start  ||
2985 		    new_stack_entry->start != addr)
2986 			panic ("Bad stack grow start/end in new stack entry");
2987 		else {
2988 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2989 							(new_stack_entry->end -
2990 							 new_stack_entry->start);
2991 			if (is_procstack)
2992 				vm->vm_ssize += btoc(new_stack_entry->end -
2993 						     new_stack_entry->start);
2994 		}
2995 	}
2996 
2997 done:
2998 	if (use_read_lock)
2999 		vm_map_unlock_read(map);
3000 	else
3001 		vm_map_unlock(map);
3002 	vm_map_entry_release(count);
3003 	return (rv);
3004 }
3005 
3006 /*
3007  * Unshare the specified VM space for exec.  If other processes are
3008  * mapped to it, then create a new one.  The new vmspace is null.
3009  */
3010 
3011 void
3012 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3013 {
3014 	struct vmspace *oldvmspace = p->p_vmspace;
3015 	struct vmspace *newvmspace;
3016 	vm_map_t map = &p->p_vmspace->vm_map;
3017 
3018 	/*
3019 	 * If we are execing a resident vmspace we fork it, otherwise
3020 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3021 	 * are not copied to the new vmspace.
3022 	 */
3023 	if (vmcopy)  {
3024 	    newvmspace = vmspace_fork(vmcopy);
3025 	} else {
3026 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3027 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3028 		(caddr_t)&oldvmspace->vm_endcopy -
3029 		    (caddr_t)&oldvmspace->vm_startcopy);
3030 	}
3031 
3032 	/*
3033 	 * This code is written like this for prototype purposes.  The
3034 	 * goal is to avoid running down the vmspace here, but let the
3035 	 * other process's that are still using the vmspace to finally
3036 	 * run it down.  Even though there is little or no chance of blocking
3037 	 * here, it is a good idea to keep this form for future mods.
3038 	 */
3039 	p->p_vmspace = newvmspace;
3040 	pmap_pinit2(vmspace_pmap(newvmspace));
3041 	if (p == curproc)
3042 		pmap_activate(p);
3043 	vmspace_free(oldvmspace);
3044 }
3045 
3046 /*
3047  * Unshare the specified VM space for forcing COW.  This
3048  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3049  *
3050  * The exitingcnt test is not strictly necessary but has been
3051  * included for code sanity (to make the code a bit more deterministic).
3052  */
3053 
3054 void
3055 vmspace_unshare(struct proc *p)
3056 {
3057 	struct vmspace *oldvmspace = p->p_vmspace;
3058 	struct vmspace *newvmspace;
3059 
3060 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3061 		return;
3062 	newvmspace = vmspace_fork(oldvmspace);
3063 	p->p_vmspace = newvmspace;
3064 	pmap_pinit2(vmspace_pmap(newvmspace));
3065 	if (p == curproc)
3066 		pmap_activate(p);
3067 	vmspace_free(oldvmspace);
3068 }
3069 
3070 /*
3071  *	vm_map_lookup:
3072  *
3073  *	Finds the VM object, offset, and
3074  *	protection for a given virtual address in the
3075  *	specified map, assuming a page fault of the
3076  *	type specified.
3077  *
3078  *	Leaves the map in question locked for read; return
3079  *	values are guaranteed until a vm_map_lookup_done
3080  *	call is performed.  Note that the map argument
3081  *	is in/out; the returned map must be used in
3082  *	the call to vm_map_lookup_done.
3083  *
3084  *	A handle (out_entry) is returned for use in
3085  *	vm_map_lookup_done, to make that fast.
3086  *
3087  *	If a lookup is requested with "write protection"
3088  *	specified, the map may be changed to perform virtual
3089  *	copying operations, although the data referenced will
3090  *	remain the same.
3091  */
3092 int
3093 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3094 	      vm_offset_t vaddr,
3095 	      vm_prot_t fault_typea,
3096 	      vm_map_entry_t *out_entry,	/* OUT */
3097 	      vm_object_t *object,		/* OUT */
3098 	      vm_pindex_t *pindex,		/* OUT */
3099 	      vm_prot_t *out_prot,		/* OUT */
3100 	      boolean_t *wired)			/* OUT */
3101 {
3102 	vm_map_entry_t entry;
3103 	vm_map_t map = *var_map;
3104 	vm_prot_t prot;
3105 	vm_prot_t fault_type = fault_typea;
3106 	int use_read_lock = 1;
3107 	int rv = KERN_SUCCESS;
3108 
3109 RetryLookup:
3110 	if (use_read_lock)
3111 		vm_map_lock_read(map);
3112 	else
3113 		vm_map_lock(map);
3114 
3115 	/*
3116 	 * If the map has an interesting hint, try it before calling full
3117 	 * blown lookup routine.
3118 	 */
3119 	entry = map->hint;
3120 	*out_entry = entry;
3121 
3122 	if ((entry == &map->header) ||
3123 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3124 		vm_map_entry_t tmp_entry;
3125 
3126 		/*
3127 		 * Entry was either not a valid hint, or the vaddr was not
3128 		 * contained in the entry, so do a full lookup.
3129 		 */
3130 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3131 			rv = KERN_INVALID_ADDRESS;
3132 			goto done;
3133 		}
3134 
3135 		entry = tmp_entry;
3136 		*out_entry = entry;
3137 	}
3138 
3139 	/*
3140 	 * Handle submaps.
3141 	 */
3142 
3143 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3144 		vm_map_t old_map = map;
3145 
3146 		*var_map = map = entry->object.sub_map;
3147 		if (use_read_lock)
3148 			vm_map_unlock_read(old_map);
3149 		else
3150 			vm_map_unlock(old_map);
3151 		use_read_lock = 1;
3152 		goto RetryLookup;
3153 	}
3154 
3155 	/*
3156 	 * Check whether this task is allowed to have this page.
3157 	 * Note the special case for MAP_ENTRY_COW
3158 	 * pages with an override.  This is to implement a forced
3159 	 * COW for debuggers.
3160 	 */
3161 
3162 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3163 		prot = entry->max_protection;
3164 	else
3165 		prot = entry->protection;
3166 
3167 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3168 	if ((fault_type & prot) != fault_type) {
3169 		rv = KERN_PROTECTION_FAILURE;
3170 		goto done;
3171 	}
3172 
3173 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3174 	    (entry->eflags & MAP_ENTRY_COW) &&
3175 	    (fault_type & VM_PROT_WRITE) &&
3176 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3177 		rv = KERN_PROTECTION_FAILURE;
3178 		goto done;
3179 	}
3180 
3181 	/*
3182 	 * If this page is not pageable, we have to get it for all possible
3183 	 * accesses.
3184 	 */
3185 
3186 	*wired = (entry->wired_count != 0);
3187 	if (*wired)
3188 		prot = fault_type = entry->protection;
3189 
3190 	/*
3191 	 * If the entry was copy-on-write, we either ...
3192 	 */
3193 
3194 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3195 		/*
3196 		 * If we want to write the page, we may as well handle that
3197 		 * now since we've got the map locked.
3198 		 *
3199 		 * If we don't need to write the page, we just demote the
3200 		 * permissions allowed.
3201 		 */
3202 
3203 		if (fault_type & VM_PROT_WRITE) {
3204 			/*
3205 			 * Make a new object, and place it in the object
3206 			 * chain.  Note that no new references have appeared
3207 			 * -- one just moved from the map to the new
3208 			 * object.
3209 			 */
3210 
3211 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3212 				use_read_lock = 0;
3213 				goto RetryLookup;
3214 			}
3215 			use_read_lock = 0;
3216 
3217 			vm_object_shadow(
3218 			    &entry->object.vm_object,
3219 			    &entry->offset,
3220 			    atop(entry->end - entry->start));
3221 
3222 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3223 		} else {
3224 			/*
3225 			 * We're attempting to read a copy-on-write page --
3226 			 * don't allow writes.
3227 			 */
3228 
3229 			prot &= ~VM_PROT_WRITE;
3230 		}
3231 	}
3232 
3233 	/*
3234 	 * Create an object if necessary.
3235 	 */
3236 	if (entry->object.vm_object == NULL &&
3237 	    !map->system_map) {
3238 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3239 			use_read_lock = 0;
3240 			goto RetryLookup;
3241 		}
3242 		use_read_lock = 0;
3243 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3244 		    atop(entry->end - entry->start));
3245 		entry->offset = 0;
3246 	}
3247 
3248 	/*
3249 	 * Return the object/offset from this entry.  If the entry was
3250 	 * copy-on-write or empty, it has been fixed up.
3251 	 */
3252 
3253 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3254 	*object = entry->object.vm_object;
3255 
3256 	/*
3257 	 * Return whether this is the only map sharing this data.  On
3258 	 * success we return with a read lock held on the map.  On failure
3259 	 * we return with the map unlocked.
3260 	 */
3261 	*out_prot = prot;
3262 done:
3263 	if (rv == KERN_SUCCESS) {
3264 		if (use_read_lock == 0)
3265 			vm_map_lock_downgrade(map);
3266 	} else if (use_read_lock) {
3267 		vm_map_unlock_read(map);
3268 	} else {
3269 		vm_map_unlock(map);
3270 	}
3271 	return (rv);
3272 }
3273 
3274 /*
3275  *	vm_map_lookup_done:
3276  *
3277  *	Releases locks acquired by a vm_map_lookup
3278  *	(according to the handle returned by that lookup).
3279  */
3280 
3281 void
3282 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3283 {
3284 	/*
3285 	 * Unlock the main-level map
3286 	 */
3287 	vm_map_unlock_read(map);
3288 	if (count)
3289 		vm_map_entry_release(count);
3290 }
3291 
3292 /*
3293  * Performs the copy_on_write operations necessary to allow the virtual copies
3294  * into user space to work.  This has to be called for write(2) system calls
3295  * from other processes, file unlinking, and file size shrinkage.
3296  */
3297 void
3298 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3299 {
3300 	int rv;
3301 	vm_object_t robject;
3302 	vm_pindex_t idx;
3303 
3304 	if ((object == NULL) ||
3305 		((object->flags & OBJ_OPT) == 0))
3306 		return;
3307 
3308 	if (object->shadow_count > object->ref_count)
3309 		panic("vm_freeze_copyopts: sc > rc");
3310 
3311 	while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3312 		vm_pindex_t bo_pindex;
3313 		vm_page_t m_in, m_out;
3314 
3315 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3316 
3317 		vm_object_reference(robject);
3318 
3319 		vm_object_pip_wait(robject, "objfrz");
3320 
3321 		if (robject->ref_count == 1) {
3322 			vm_object_deallocate(robject);
3323 			continue;
3324 		}
3325 
3326 		vm_object_pip_add(robject, 1);
3327 
3328 		for (idx = 0; idx < robject->size; idx++) {
3329 
3330 			m_out = vm_page_grab(robject, idx,
3331 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3332 
3333 			if (m_out->valid == 0) {
3334 				m_in = vm_page_grab(object, bo_pindex + idx,
3335 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3336 				if (m_in->valid == 0) {
3337 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3338 					if (rv != VM_PAGER_OK) {
3339 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3340 						continue;
3341 					}
3342 					vm_page_deactivate(m_in);
3343 				}
3344 
3345 				vm_page_protect(m_in, VM_PROT_NONE);
3346 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3347 				m_out->valid = m_in->valid;
3348 				vm_page_dirty(m_out);
3349 				vm_page_activate(m_out);
3350 				vm_page_wakeup(m_in);
3351 			}
3352 			vm_page_wakeup(m_out);
3353 		}
3354 
3355 		object->shadow_count--;
3356 		object->ref_count--;
3357 		LIST_REMOVE(robject, shadow_list);
3358 		robject->backing_object = NULL;
3359 		robject->backing_object_offset = 0;
3360 
3361 		vm_object_pip_wakeup(robject);
3362 		vm_object_deallocate(robject);
3363 	}
3364 
3365 	vm_object_clear_flag(object, OBJ_OPT);
3366 }
3367 
3368 #include "opt_ddb.h"
3369 #ifdef DDB
3370 #include <sys/kernel.h>
3371 
3372 #include <ddb/ddb.h>
3373 
3374 /*
3375  *	vm_map_print:	[ debug ]
3376  */
3377 DB_SHOW_COMMAND(map, vm_map_print)
3378 {
3379 	static int nlines;
3380 	/* XXX convert args. */
3381 	vm_map_t map = (vm_map_t)addr;
3382 	boolean_t full = have_addr;
3383 
3384 	vm_map_entry_t entry;
3385 
3386 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3387 	    (void *)map,
3388 	    (void *)map->pmap, map->nentries, map->timestamp);
3389 	nlines++;
3390 
3391 	if (!full && db_indent)
3392 		return;
3393 
3394 	db_indent += 2;
3395 	for (entry = map->header.next; entry != &map->header;
3396 	    entry = entry->next) {
3397 		db_iprintf("map entry %p: start=%p, end=%p\n",
3398 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3399 		nlines++;
3400 		{
3401 			static char *inheritance_name[4] =
3402 			{"share", "copy", "none", "donate_copy"};
3403 
3404 			db_iprintf(" prot=%x/%x/%s",
3405 			    entry->protection,
3406 			    entry->max_protection,
3407 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3408 			if (entry->wired_count != 0)
3409 				db_printf(", wired");
3410 		}
3411 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3412 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3413 			db_printf(", share=%p, offset=0x%lx\n",
3414 			    (void *)entry->object.sub_map,
3415 			    (long)entry->offset);
3416 			nlines++;
3417 			if ((entry->prev == &map->header) ||
3418 			    (entry->prev->object.sub_map !=
3419 				entry->object.sub_map)) {
3420 				db_indent += 2;
3421 				vm_map_print((db_expr_t)(intptr_t)
3422 					     entry->object.sub_map,
3423 					     full, 0, (char *)0);
3424 				db_indent -= 2;
3425 			}
3426 		} else {
3427 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3428 			db_printf(", object=%p, offset=0x%lx",
3429 			    (void *)entry->object.vm_object,
3430 			    (long)entry->offset);
3431 			if (entry->eflags & MAP_ENTRY_COW)
3432 				db_printf(", copy (%s)",
3433 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3434 			db_printf("\n");
3435 			nlines++;
3436 
3437 			if ((entry->prev == &map->header) ||
3438 			    (entry->prev->object.vm_object !=
3439 				entry->object.vm_object)) {
3440 				db_indent += 2;
3441 				vm_object_print((db_expr_t)(intptr_t)
3442 						entry->object.vm_object,
3443 						full, 0, (char *)0);
3444 				nlines += 4;
3445 				db_indent -= 2;
3446 			}
3447 		}
3448 	}
3449 	db_indent -= 2;
3450 	if (db_indent == 0)
3451 		nlines = 0;
3452 }
3453 
3454 
3455 DB_SHOW_COMMAND(procvm, procvm)
3456 {
3457 	struct proc *p;
3458 
3459 	if (have_addr) {
3460 		p = (struct proc *) addr;
3461 	} else {
3462 		p = curproc;
3463 	}
3464 
3465 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3466 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3467 	    (void *)vmspace_pmap(p->p_vmspace));
3468 
3469 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3470 }
3471 
3472 #endif /* DDB */
3473