xref: /dragonfly/sys/vm/vm_map.c (revision 650094e1)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static void vmspace_terminate(struct vmspace *vm);
123 static void vmspace_lock(struct vmspace *vm);
124 static void vmspace_unlock(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.nom_cache =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
140 		.lock = (sysref_lock_func_t)vmspace_lock,
141 		.unlock = (sysref_lock_func_t)vmspace_unlock
142 	}
143 };
144 
145 /*
146  * per-cpu page table cross mappings are initialized in early boot
147  * and might require a considerable number of vm_map_entry structures.
148  */
149 #define VMEPERCPU	(MAXCPU+1)
150 
151 static struct vm_zone mapentzone_store, mapzone_store;
152 static vm_zone_t mapentzone, mapzone;
153 static struct vm_object mapentobj, mapobj;
154 
155 static struct vm_map_entry map_entry_init[MAX_MAPENT];
156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
157 static struct vm_map map_init[MAX_KMAP];
158 
159 static int randomize_mmap;
160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161     "Randomize mmap offsets");
162 
163 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171 		vm_map_entry_t);
172 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
173 
174 /*
175  * Initialize the vm_map module.  Must be called before any other vm_map
176  * routines.
177  *
178  * Map and entry structures are allocated from the general purpose
179  * memory pool with some exceptions:
180  *
181  *	- The kernel map is allocated statically.
182  *	- Initial kernel map entries are allocated out of a static pool.
183  *
184  *	These restrictions are necessary since malloc() uses the
185  *	maps and requires map entries.
186  *
187  * Called from the low level boot code only.
188  */
189 void
190 vm_map_startup(void)
191 {
192 	mapzone = &mapzone_store;
193 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
194 		map_init, MAX_KMAP);
195 	mapentzone = &mapentzone_store;
196 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
197 		map_entry_init, MAX_MAPENT);
198 }
199 
200 /*
201  * Called prior to any vmspace allocations.
202  *
203  * Called from the low level boot code only.
204  */
205 void
206 vm_init2(void)
207 {
208 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
209 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
210 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
211 	pmap_init2();
212 	vm_object_init2();
213 }
214 
215 
216 /*
217  * Red black tree functions
218  *
219  * The caller must hold the related map lock.
220  */
221 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
222 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
223 
224 /* a->start is address, and the only field has to be initialized */
225 static int
226 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
227 {
228 	if (a->start < b->start)
229 		return(-1);
230 	else if (a->start > b->start)
231 		return(1);
232 	return(0);
233 }
234 
235 /*
236  * Allocate a vmspace structure, including a vm_map and pmap.
237  * Initialize numerous fields.  While the initial allocation is zerod,
238  * subsequence reuse from the objcache leaves elements of the structure
239  * intact (particularly the pmap), so portions must be zerod.
240  *
241  * The structure is not considered activated until we call sysref_activate().
242  *
243  * No requirements.
244  */
245 struct vmspace *
246 vmspace_alloc(vm_offset_t min, vm_offset_t max)
247 {
248 	struct vmspace *vm;
249 
250 	vm = sysref_alloc(&vmspace_sysref_class);
251 	bzero(&vm->vm_startcopy,
252 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
253 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
254 
255 	/*
256 	 * Use a hold to prevent any additional racing hold from terminating
257 	 * the vmspace before we manage to activate it.  This also acquires
258 	 * the token for safety.
259 	 */
260 	KKASSERT(vm->vm_holdcount == 0);
261 	KKASSERT(vm->vm_exitingcnt == 0);
262 	vmspace_hold(vm);
263 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
264 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
265 	vm->vm_shm = NULL;
266 	vm->vm_flags = 0;
267 	cpu_vmspace_alloc(vm);
268 	sysref_activate(&vm->vm_sysref);
269 	vmspace_drop(vm);
270 
271 	return (vm);
272 }
273 
274 /*
275  * Free a primary reference to a vmspace.  This can trigger a
276  * stage-1 termination.
277  */
278 void
279 vmspace_free(struct vmspace *vm)
280 {
281 	/*
282 	 * We want all finalization to occur via vmspace_drop() so we
283 	 * need to hold the vm around the put.
284 	 */
285 	vmspace_hold(vm);
286 	sysref_put(&vm->vm_sysref);
287 	vmspace_drop(vm);
288 }
289 
290 void
291 vmspace_ref(struct vmspace *vm)
292 {
293 	sysref_get(&vm->vm_sysref);
294 }
295 
296 void
297 vmspace_hold(struct vmspace *vm)
298 {
299 	refcount_acquire(&vm->vm_holdcount);
300 	lwkt_gettoken(&vm->vm_map.token);
301 }
302 
303 void
304 vmspace_drop(struct vmspace *vm)
305 {
306 	lwkt_reltoken(&vm->vm_map.token);
307 	if (refcount_release(&vm->vm_holdcount)) {
308 		if (vm->vm_exitingcnt == 0 &&
309 		    sysref_isinactive(&vm->vm_sysref)) {
310 			vmspace_terminate(vm);
311 		}
312 	}
313 }
314 
315 /*
316  * dtor function - Some elements of the pmap are retained in the
317  * free-cached vmspaces to improve performance.  We have to clean them up
318  * here before returning the vmspace to the memory pool.
319  *
320  * No requirements.
321  */
322 static void
323 vmspace_dtor(void *obj, void *private)
324 {
325 	struct vmspace *vm = obj;
326 
327 	pmap_puninit(vmspace_pmap(vm));
328 }
329 
330 /*
331  * Called in three cases:
332  *
333  * (1) When the last sysref is dropped and the vmspace becomes inactive.
334  *     (holdcount will not be 0 because the vmspace is held through the op)
335  *
336  * (2) When exitingcount becomes 0 on the last reap
337  *     (holdcount will not be 0 because the vmspace is held through the op)
338  *
339  * (3) When the holdcount becomes 0 in addition to the above two
340  *
341  * sysref will not scrap the object until we call sysref_put() once more
342  * after the last ref has been dropped.
343  *
344  * VMSPACE_EXIT1 flags the primary deactivation
345  * VMSPACE_EXIT2 flags the last reap
346  */
347 static void
348 vmspace_terminate(struct vmspace *vm)
349 {
350 	int count;
351 
352 	/*
353 	 *
354 	 */
355 	lwkt_gettoken(&vm->vm_map.token);
356 	if ((vm->vm_flags & VMSPACE_EXIT1) == 0) {
357 		vm->vm_flags |= VMSPACE_EXIT1;
358 		shmexit(vm);
359 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
360 				  VM_MAX_USER_ADDRESS);
361 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
362 			      VM_MAX_USER_ADDRESS);
363 	}
364 	if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) {
365 		vm->vm_flags |= VMSPACE_EXIT2;
366 		cpu_vmspace_free(vm);
367 		shmexit(vm);
368 		KKASSERT(vm->vm_upcalls == NULL);
369 
370 		/*
371 		 * Lock the map, to wait out all other references to it.
372 		 * Delete all of the mappings and pages they hold, then call
373 		 * the pmap module to reclaim anything left.
374 		 */
375 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
376 		vm_map_lock(&vm->vm_map);
377 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
378 			      vm->vm_map.max_offset, &count);
379 		vm_map_unlock(&vm->vm_map);
380 		vm_map_entry_release(count);
381 
382 		lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
383 		pmap_release(vmspace_pmap(vm));
384 		lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
385 	}
386 
387 	lwkt_reltoken(&vm->vm_map.token);
388 	if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) {
389 		KKASSERT(vm->vm_flags & VMSPACE_EXIT1);
390 		KKASSERT(vm->vm_flags & VMSPACE_EXIT2);
391 		sysref_put(&vm->vm_sysref);
392 	}
393 }
394 
395 /*
396  * vmspaces are not currently locked.
397  */
398 static void
399 vmspace_lock(struct vmspace *vm __unused)
400 {
401 }
402 
403 static void
404 vmspace_unlock(struct vmspace *vm __unused)
405 {
406 }
407 
408 /*
409  * This is called during exit indicating that the vmspace is no
410  * longer in used by an exiting process, but the process has not yet
411  * been reaped.
412  *
413  * No requirements.
414  */
415 void
416 vmspace_exitbump(struct vmspace *vm)
417 {
418 	vmspace_hold(vm);
419 	++vm->vm_exitingcnt;
420 	vmspace_drop(vm);	/* handles termination sequencing */
421 }
422 
423 /*
424  * Decrement the exitingcnt and issue the stage-2 termination if it becomes
425  * zero and the stage1 termination has already occured.
426  *
427  * No requirements.
428  */
429 void
430 vmspace_exitfree(struct proc *p)
431 {
432 	struct vmspace *vm;
433 
434 	vm = p->p_vmspace;
435 	p->p_vmspace = NULL;
436 	vmspace_hold(vm);
437 	KKASSERT(vm->vm_exitingcnt > 0);
438 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
439 		vmspace_terminate(vm);
440 	vmspace_drop(vm);	/* handles termination sequencing */
441 }
442 
443 /*
444  * Swap useage is determined by taking the proportional swap used by
445  * VM objects backing the VM map.  To make up for fractional losses,
446  * if the VM object has any swap use at all the associated map entries
447  * count for at least 1 swap page.
448  *
449  * No requirements.
450  */
451 int
452 vmspace_swap_count(struct vmspace *vm)
453 {
454 	vm_map_t map = &vm->vm_map;
455 	vm_map_entry_t cur;
456 	vm_object_t object;
457 	int count = 0;
458 	int n;
459 
460 	vmspace_hold(vm);
461 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
462 		switch(cur->maptype) {
463 		case VM_MAPTYPE_NORMAL:
464 		case VM_MAPTYPE_VPAGETABLE:
465 			if ((object = cur->object.vm_object) == NULL)
466 				break;
467 			if (object->swblock_count) {
468 				n = (cur->end - cur->start) / PAGE_SIZE;
469 				count += object->swblock_count *
470 				    SWAP_META_PAGES * n / object->size + 1;
471 			}
472 			break;
473 		default:
474 			break;
475 		}
476 	}
477 	vmspace_drop(vm);
478 
479 	return(count);
480 }
481 
482 /*
483  * Calculate the approximate number of anonymous pages in use by
484  * this vmspace.  To make up for fractional losses, we count each
485  * VM object as having at least 1 anonymous page.
486  *
487  * No requirements.
488  */
489 int
490 vmspace_anonymous_count(struct vmspace *vm)
491 {
492 	vm_map_t map = &vm->vm_map;
493 	vm_map_entry_t cur;
494 	vm_object_t object;
495 	int count = 0;
496 
497 	vmspace_hold(vm);
498 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
499 		switch(cur->maptype) {
500 		case VM_MAPTYPE_NORMAL:
501 		case VM_MAPTYPE_VPAGETABLE:
502 			if ((object = cur->object.vm_object) == NULL)
503 				break;
504 			if (object->type != OBJT_DEFAULT &&
505 			    object->type != OBJT_SWAP) {
506 				break;
507 			}
508 			count += object->resident_page_count;
509 			break;
510 		default:
511 			break;
512 		}
513 	}
514 	vmspace_drop(vm);
515 
516 	return(count);
517 }
518 
519 /*
520  * Creates and returns a new empty VM map with the given physical map
521  * structure, and having the given lower and upper address bounds.
522  *
523  * No requirements.
524  */
525 vm_map_t
526 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
527 {
528 	if (result == NULL)
529 		result = zalloc(mapzone);
530 	vm_map_init(result, min, max, pmap);
531 	return (result);
532 }
533 
534 /*
535  * Initialize an existing vm_map structure such as that in the vmspace
536  * structure.  The pmap is initialized elsewhere.
537  *
538  * No requirements.
539  */
540 void
541 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
542 {
543 	map->header.next = map->header.prev = &map->header;
544 	RB_INIT(&map->rb_root);
545 	map->nentries = 0;
546 	map->size = 0;
547 	map->system_map = 0;
548 	map->min_offset = min;
549 	map->max_offset = max;
550 	map->pmap = pmap;
551 	map->first_free = &map->header;
552 	map->hint = &map->header;
553 	map->timestamp = 0;
554 	map->flags = 0;
555 	lwkt_token_init(&map->token, "vm_map");
556 	lockinit(&map->lock, "thrd_sleep", (hz + 9) / 10, 0);
557 	TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
558 }
559 
560 /*
561  * Shadow the vm_map_entry's object.  This typically needs to be done when
562  * a write fault is taken on an entry which had previously been cloned by
563  * fork().  The shared object (which might be NULL) must become private so
564  * we add a shadow layer above it.
565  *
566  * Object allocation for anonymous mappings is defered as long as possible.
567  * When creating a shadow, however, the underlying object must be instantiated
568  * so it can be shared.
569  *
570  * If the map segment is governed by a virtual page table then it is
571  * possible to address offsets beyond the mapped area.  Just allocate
572  * a maximally sized object for this case.
573  *
574  * The vm_map must be exclusively locked.
575  * No other requirements.
576  */
577 static
578 void
579 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
580 {
581 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
582 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
583 				 0x7FFFFFFF, addref);	/* XXX */
584 	} else {
585 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
586 				 atop(entry->end - entry->start), addref);
587 	}
588 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
589 }
590 
591 /*
592  * Allocate an object for a vm_map_entry.
593  *
594  * Object allocation for anonymous mappings is defered as long as possible.
595  * This function is called when we can defer no longer, generally when a map
596  * entry might be split or forked or takes a page fault.
597  *
598  * If the map segment is governed by a virtual page table then it is
599  * possible to address offsets beyond the mapped area.  Just allocate
600  * a maximally sized object for this case.
601  *
602  * The vm_map must be exclusively locked.
603  * No other requirements.
604  */
605 void
606 vm_map_entry_allocate_object(vm_map_entry_t entry)
607 {
608 	vm_object_t obj;
609 
610 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
611 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
612 	} else {
613 		obj = vm_object_allocate(OBJT_DEFAULT,
614 					 atop(entry->end - entry->start));
615 	}
616 	entry->object.vm_object = obj;
617 	entry->offset = 0;
618 }
619 
620 /*
621  * Set an initial negative count so the first attempt to reserve
622  * space preloads a bunch of vm_map_entry's for this cpu.  Also
623  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
624  * map a new page for vm_map_entry structures.  SMP systems are
625  * particularly sensitive.
626  *
627  * This routine is called in early boot so we cannot just call
628  * vm_map_entry_reserve().
629  *
630  * Called from the low level boot code only (for each cpu)
631  */
632 void
633 vm_map_entry_reserve_cpu_init(globaldata_t gd)
634 {
635 	vm_map_entry_t entry;
636 	int i;
637 
638 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
639 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
640 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
641 		entry->next = gd->gd_vme_base;
642 		gd->gd_vme_base = entry;
643 	}
644 }
645 
646 /*
647  * Reserves vm_map_entry structures so code later on can manipulate
648  * map_entry structures within a locked map without blocking trying
649  * to allocate a new vm_map_entry.
650  *
651  * No requirements.
652  */
653 int
654 vm_map_entry_reserve(int count)
655 {
656 	struct globaldata *gd = mycpu;
657 	vm_map_entry_t entry;
658 
659 	/*
660 	 * Make sure we have enough structures in gd_vme_base to handle
661 	 * the reservation request.
662 	 *
663 	 * The critical section protects access to the per-cpu gd.
664 	 */
665 	crit_enter();
666 	while (gd->gd_vme_avail < count) {
667 		entry = zalloc(mapentzone);
668 		entry->next = gd->gd_vme_base;
669 		gd->gd_vme_base = entry;
670 		++gd->gd_vme_avail;
671 	}
672 	gd->gd_vme_avail -= count;
673 	crit_exit();
674 
675 	return(count);
676 }
677 
678 /*
679  * Releases previously reserved vm_map_entry structures that were not
680  * used.  If we have too much junk in our per-cpu cache clean some of
681  * it out.
682  *
683  * No requirements.
684  */
685 void
686 vm_map_entry_release(int count)
687 {
688 	struct globaldata *gd = mycpu;
689 	vm_map_entry_t entry;
690 
691 	crit_enter();
692 	gd->gd_vme_avail += count;
693 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
694 		entry = gd->gd_vme_base;
695 		KKASSERT(entry != NULL);
696 		gd->gd_vme_base = entry->next;
697 		--gd->gd_vme_avail;
698 		crit_exit();
699 		zfree(mapentzone, entry);
700 		crit_enter();
701 	}
702 	crit_exit();
703 }
704 
705 /*
706  * Reserve map entry structures for use in kernel_map itself.  These
707  * entries have *ALREADY* been reserved on a per-cpu basis when the map
708  * was inited.  This function is used by zalloc() to avoid a recursion
709  * when zalloc() itself needs to allocate additional kernel memory.
710  *
711  * This function works like the normal reserve but does not load the
712  * vm_map_entry cache (because that would result in an infinite
713  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
714  *
715  * Any caller of this function must be sure to renormalize after
716  * potentially eating entries to ensure that the reserve supply
717  * remains intact.
718  *
719  * No requirements.
720  */
721 int
722 vm_map_entry_kreserve(int count)
723 {
724 	struct globaldata *gd = mycpu;
725 
726 	crit_enter();
727 	gd->gd_vme_avail -= count;
728 	crit_exit();
729 	KASSERT(gd->gd_vme_base != NULL,
730 		("no reserved entries left, gd_vme_avail = %d\n",
731 		gd->gd_vme_avail));
732 	return(count);
733 }
734 
735 /*
736  * Release previously reserved map entries for kernel_map.  We do not
737  * attempt to clean up like the normal release function as this would
738  * cause an unnecessary (but probably not fatal) deep procedure call.
739  *
740  * No requirements.
741  */
742 void
743 vm_map_entry_krelease(int count)
744 {
745 	struct globaldata *gd = mycpu;
746 
747 	crit_enter();
748 	gd->gd_vme_avail += count;
749 	crit_exit();
750 }
751 
752 /*
753  * Allocates a VM map entry for insertion.  No entry fields are filled in.
754  *
755  * The entries should have previously been reserved.  The reservation count
756  * is tracked in (*countp).
757  *
758  * No requirements.
759  */
760 static vm_map_entry_t
761 vm_map_entry_create(vm_map_t map, int *countp)
762 {
763 	struct globaldata *gd = mycpu;
764 	vm_map_entry_t entry;
765 
766 	KKASSERT(*countp > 0);
767 	--*countp;
768 	crit_enter();
769 	entry = gd->gd_vme_base;
770 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
771 	gd->gd_vme_base = entry->next;
772 	crit_exit();
773 
774 	return(entry);
775 }
776 
777 /*
778  * Dispose of a vm_map_entry that is no longer being referenced.
779  *
780  * No requirements.
781  */
782 static void
783 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
784 {
785 	struct globaldata *gd = mycpu;
786 
787 	KKASSERT(map->hint != entry);
788 	KKASSERT(map->first_free != entry);
789 
790 	++*countp;
791 	crit_enter();
792 	entry->next = gd->gd_vme_base;
793 	gd->gd_vme_base = entry;
794 	crit_exit();
795 }
796 
797 
798 /*
799  * Insert/remove entries from maps.
800  *
801  * The related map must be exclusively locked.
802  * The caller must hold map->token
803  * No other requirements.
804  */
805 static __inline void
806 vm_map_entry_link(vm_map_t map,
807 		  vm_map_entry_t after_where,
808 		  vm_map_entry_t entry)
809 {
810 	ASSERT_VM_MAP_LOCKED(map);
811 
812 	map->nentries++;
813 	entry->prev = after_where;
814 	entry->next = after_where->next;
815 	entry->next->prev = entry;
816 	after_where->next = entry;
817 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
818 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
819 }
820 
821 static __inline void
822 vm_map_entry_unlink(vm_map_t map,
823 		    vm_map_entry_t entry)
824 {
825 	vm_map_entry_t prev;
826 	vm_map_entry_t next;
827 
828 	ASSERT_VM_MAP_LOCKED(map);
829 
830 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
831 		panic("vm_map_entry_unlink: attempt to mess with "
832 		      "locked entry! %p", entry);
833 	}
834 	prev = entry->prev;
835 	next = entry->next;
836 	next->prev = prev;
837 	prev->next = next;
838 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
839 	map->nentries--;
840 }
841 
842 /*
843  * Finds the map entry containing (or immediately preceding) the specified
844  * address in the given map.  The entry is returned in (*entry).
845  *
846  * The boolean result indicates whether the address is actually contained
847  * in the map.
848  *
849  * The related map must be locked.
850  * No other requirements.
851  */
852 boolean_t
853 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
854 {
855 	vm_map_entry_t tmp;
856 	vm_map_entry_t last;
857 
858 	ASSERT_VM_MAP_LOCKED(map);
859 #if 0
860 	/*
861 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
862 	 * the hint code with the red-black lookup meets with system crashes
863 	 * and lockups.  We do not yet know why.
864 	 *
865 	 * It is possible that the problem is related to the setting
866 	 * of the hint during map_entry deletion, in the code specified
867 	 * at the GGG comment later on in this file.
868 	 *
869 	 * YYY More likely it's because this function can be called with
870 	 * a shared lock on the map, resulting in map->hint updates possibly
871 	 * racing.  Fixed now but untested.
872 	 */
873 	/*
874 	 * Quickly check the cached hint, there's a good chance of a match.
875 	 */
876 	tmp = map->hint;
877 	cpu_ccfence();
878 	if (tmp != &map->header) {
879 		if (address >= tmp->start && address < tmp->end) {
880 			*entry = tmp;
881 			return(TRUE);
882 		}
883 	}
884 #endif
885 
886 	/*
887 	 * Locate the record from the top of the tree.  'last' tracks the
888 	 * closest prior record and is returned if no match is found, which
889 	 * in binary tree terms means tracking the most recent right-branch
890 	 * taken.  If there is no prior record, &map->header is returned.
891 	 */
892 	last = &map->header;
893 	tmp = RB_ROOT(&map->rb_root);
894 
895 	while (tmp) {
896 		if (address >= tmp->start) {
897 			if (address < tmp->end) {
898 				*entry = tmp;
899 				map->hint = tmp;
900 				return(TRUE);
901 			}
902 			last = tmp;
903 			tmp = RB_RIGHT(tmp, rb_entry);
904 		} else {
905 			tmp = RB_LEFT(tmp, rb_entry);
906 		}
907 	}
908 	*entry = last;
909 	return (FALSE);
910 }
911 
912 /*
913  * Inserts the given whole VM object into the target map at the specified
914  * address range.  The object's size should match that of the address range.
915  *
916  * The map must be exclusively locked.
917  * The object must be held.
918  * The caller must have reserved sufficient vm_map_entry structures.
919  *
920  * If object is non-NULL, ref count must be bumped by caller prior to
921  * making call to account for the new entry.
922  */
923 int
924 vm_map_insert(vm_map_t map, int *countp,
925 	      vm_object_t object, vm_ooffset_t offset,
926 	      vm_offset_t start, vm_offset_t end,
927 	      vm_maptype_t maptype,
928 	      vm_prot_t prot, vm_prot_t max,
929 	      int cow)
930 {
931 	vm_map_entry_t new_entry;
932 	vm_map_entry_t prev_entry;
933 	vm_map_entry_t temp_entry;
934 	vm_eflags_t protoeflags;
935 	int must_drop = 0;
936 
937 	ASSERT_VM_MAP_LOCKED(map);
938 	if (object)
939 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
940 
941 	/*
942 	 * Check that the start and end points are not bogus.
943 	 */
944 	if ((start < map->min_offset) || (end > map->max_offset) ||
945 	    (start >= end))
946 		return (KERN_INVALID_ADDRESS);
947 
948 	/*
949 	 * Find the entry prior to the proposed starting address; if it's part
950 	 * of an existing entry, this range is bogus.
951 	 */
952 	if (vm_map_lookup_entry(map, start, &temp_entry))
953 		return (KERN_NO_SPACE);
954 
955 	prev_entry = temp_entry;
956 
957 	/*
958 	 * Assert that the next entry doesn't overlap the end point.
959 	 */
960 
961 	if ((prev_entry->next != &map->header) &&
962 	    (prev_entry->next->start < end))
963 		return (KERN_NO_SPACE);
964 
965 	protoeflags = 0;
966 
967 	if (cow & MAP_COPY_ON_WRITE)
968 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
969 
970 	if (cow & MAP_NOFAULT) {
971 		protoeflags |= MAP_ENTRY_NOFAULT;
972 
973 		KASSERT(object == NULL,
974 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
975 	}
976 	if (cow & MAP_DISABLE_SYNCER)
977 		protoeflags |= MAP_ENTRY_NOSYNC;
978 	if (cow & MAP_DISABLE_COREDUMP)
979 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
980 	if (cow & MAP_IS_STACK)
981 		protoeflags |= MAP_ENTRY_STACK;
982 	if (cow & MAP_IS_KSTACK)
983 		protoeflags |= MAP_ENTRY_KSTACK;
984 
985 	lwkt_gettoken(&map->token);
986 
987 	if (object) {
988 		/*
989 		 * When object is non-NULL, it could be shared with another
990 		 * process.  We have to set or clear OBJ_ONEMAPPING
991 		 * appropriately.
992 		 */
993 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
994 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
995 		}
996 	}
997 	else if ((prev_entry != &map->header) &&
998 		 (prev_entry->eflags == protoeflags) &&
999 		 (prev_entry->end == start) &&
1000 		 (prev_entry->wired_count == 0) &&
1001 		 prev_entry->maptype == maptype &&
1002 		 ((prev_entry->object.vm_object == NULL) ||
1003 		  vm_object_coalesce(prev_entry->object.vm_object,
1004 				     OFF_TO_IDX(prev_entry->offset),
1005 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1006 				     (vm_size_t)(end - prev_entry->end)))) {
1007 		/*
1008 		 * We were able to extend the object.  Determine if we
1009 		 * can extend the previous map entry to include the
1010 		 * new range as well.
1011 		 */
1012 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1013 		    (prev_entry->protection == prot) &&
1014 		    (prev_entry->max_protection == max)) {
1015 			map->size += (end - prev_entry->end);
1016 			prev_entry->end = end;
1017 			vm_map_simplify_entry(map, prev_entry, countp);
1018 			lwkt_reltoken(&map->token);
1019 			return (KERN_SUCCESS);
1020 		}
1021 
1022 		/*
1023 		 * If we can extend the object but cannot extend the
1024 		 * map entry, we have to create a new map entry.  We
1025 		 * must bump the ref count on the extended object to
1026 		 * account for it.  object may be NULL.
1027 		 */
1028 		object = prev_entry->object.vm_object;
1029 		offset = prev_entry->offset +
1030 			(prev_entry->end - prev_entry->start);
1031 		if (object) {
1032 			vm_object_hold(object);
1033 			vm_object_chain_wait(object);
1034 			vm_object_reference_locked(object);
1035 			must_drop = 1;
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1041 	 * in things like the buffer map where we manage kva but do not manage
1042 	 * backing objects.
1043 	 */
1044 
1045 	/*
1046 	 * Create a new entry
1047 	 */
1048 
1049 	new_entry = vm_map_entry_create(map, countp);
1050 	new_entry->start = start;
1051 	new_entry->end = end;
1052 
1053 	new_entry->maptype = maptype;
1054 	new_entry->eflags = protoeflags;
1055 	new_entry->object.vm_object = object;
1056 	new_entry->offset = offset;
1057 	new_entry->aux.master_pde = 0;
1058 
1059 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1060 	new_entry->protection = prot;
1061 	new_entry->max_protection = max;
1062 	new_entry->wired_count = 0;
1063 
1064 	/*
1065 	 * Insert the new entry into the list
1066 	 */
1067 
1068 	vm_map_entry_link(map, prev_entry, new_entry);
1069 	map->size += new_entry->end - new_entry->start;
1070 
1071 	/*
1072 	 * Update the free space hint.  Entries cannot overlap.
1073 	 * An exact comparison is needed to avoid matching
1074 	 * against the map->header.
1075 	 */
1076 	if ((map->first_free == prev_entry) &&
1077 	    (prev_entry->end == new_entry->start)) {
1078 		map->first_free = new_entry;
1079 	}
1080 
1081 #if 0
1082 	/*
1083 	 * Temporarily removed to avoid MAP_STACK panic, due to
1084 	 * MAP_STACK being a huge hack.  Will be added back in
1085 	 * when MAP_STACK (and the user stack mapping) is fixed.
1086 	 */
1087 	/*
1088 	 * It may be possible to simplify the entry
1089 	 */
1090 	vm_map_simplify_entry(map, new_entry, countp);
1091 #endif
1092 
1093 	/*
1094 	 * Try to pre-populate the page table.  Mappings governed by virtual
1095 	 * page tables cannot be prepopulated without a lot of work, so
1096 	 * don't try.
1097 	 */
1098 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1099 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1100 		pmap_object_init_pt(map->pmap, start, prot,
1101 				    object, OFF_TO_IDX(offset), end - start,
1102 				    cow & MAP_PREFAULT_PARTIAL);
1103 	}
1104 	if (must_drop)
1105 		vm_object_drop(object);
1106 
1107 	lwkt_reltoken(&map->token);
1108 	return (KERN_SUCCESS);
1109 }
1110 
1111 /*
1112  * Find sufficient space for `length' bytes in the given map, starting at
1113  * `start'.  Returns 0 on success, 1 on no space.
1114  *
1115  * This function will returned an arbitrarily aligned pointer.  If no
1116  * particular alignment is required you should pass align as 1.  Note that
1117  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1118  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1119  * argument.
1120  *
1121  * 'align' should be a power of 2 but is not required to be.
1122  *
1123  * The map must be exclusively locked.
1124  * No other requirements.
1125  */
1126 int
1127 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1128 		 vm_size_t align, int flags, vm_offset_t *addr)
1129 {
1130 	vm_map_entry_t entry, next;
1131 	vm_offset_t end;
1132 	vm_offset_t align_mask;
1133 
1134 	if (start < map->min_offset)
1135 		start = map->min_offset;
1136 	if (start > map->max_offset)
1137 		return (1);
1138 
1139 	/*
1140 	 * If the alignment is not a power of 2 we will have to use
1141 	 * a mod/division, set align_mask to a special value.
1142 	 */
1143 	if ((align | (align - 1)) + 1 != (align << 1))
1144 		align_mask = (vm_offset_t)-1;
1145 	else
1146 		align_mask = align - 1;
1147 
1148 	/*
1149 	 * Look for the first possible address; if there's already something
1150 	 * at this address, we have to start after it.
1151 	 */
1152 	if (start == map->min_offset) {
1153 		if ((entry = map->first_free) != &map->header)
1154 			start = entry->end;
1155 	} else {
1156 		vm_map_entry_t tmp;
1157 
1158 		if (vm_map_lookup_entry(map, start, &tmp))
1159 			start = tmp->end;
1160 		entry = tmp;
1161 	}
1162 
1163 	/*
1164 	 * Look through the rest of the map, trying to fit a new region in the
1165 	 * gap between existing regions, or after the very last region.
1166 	 */
1167 	for (;; start = (entry = next)->end) {
1168 		/*
1169 		 * Adjust the proposed start by the requested alignment,
1170 		 * be sure that we didn't wrap the address.
1171 		 */
1172 		if (align_mask == (vm_offset_t)-1)
1173 			end = ((start + align - 1) / align) * align;
1174 		else
1175 			end = (start + align_mask) & ~align_mask;
1176 		if (end < start)
1177 			return (1);
1178 		start = end;
1179 		/*
1180 		 * Find the end of the proposed new region.  Be sure we didn't
1181 		 * go beyond the end of the map, or wrap around the address.
1182 		 * Then check to see if this is the last entry or if the
1183 		 * proposed end fits in the gap between this and the next
1184 		 * entry.
1185 		 */
1186 		end = start + length;
1187 		if (end > map->max_offset || end < start)
1188 			return (1);
1189 		next = entry->next;
1190 
1191 		/*
1192 		 * If the next entry's start address is beyond the desired
1193 		 * end address we may have found a good entry.
1194 		 *
1195 		 * If the next entry is a stack mapping we do not map into
1196 		 * the stack's reserved space.
1197 		 *
1198 		 * XXX continue to allow mapping into the stack's reserved
1199 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1200 		 * mapping, for backwards compatibility.  But the caller
1201 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1202 		 * want to do that.
1203 		 */
1204 		if (next == &map->header)
1205 			break;
1206 		if (next->start >= end) {
1207 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1208 				break;
1209 			if (flags & MAP_STACK)
1210 				break;
1211 			if (next->start - next->aux.avail_ssize >= end)
1212 				break;
1213 		}
1214 	}
1215 	map->hint = entry;
1216 
1217 	/*
1218 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1219 	 * if it fails.  The kernel_map is locked and nothing can steal
1220 	 * our address space if pmap_growkernel() blocks.
1221 	 *
1222 	 * NOTE: This may be unconditionally called for kldload areas on
1223 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1224 	 *	 fill 128G worth of page tables!).  Therefore we must not
1225 	 *	 retry.
1226 	 */
1227 	if (map == &kernel_map) {
1228 		vm_offset_t kstop;
1229 
1230 		kstop = round_page(start + length);
1231 		if (kstop > kernel_vm_end)
1232 			pmap_growkernel(start, kstop);
1233 	}
1234 	*addr = start;
1235 	return (0);
1236 }
1237 
1238 /*
1239  * vm_map_find finds an unallocated region in the target address map with
1240  * the given length and allocates it.  The search is defined to be first-fit
1241  * from the specified address; the region found is returned in the same
1242  * parameter.
1243  *
1244  * If object is non-NULL, ref count must be bumped by caller
1245  * prior to making call to account for the new entry.
1246  *
1247  * No requirements.  This function will lock the map temporarily.
1248  */
1249 int
1250 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1251 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1252 	    boolean_t fitit,
1253 	    vm_maptype_t maptype,
1254 	    vm_prot_t prot, vm_prot_t max,
1255 	    int cow)
1256 {
1257 	vm_offset_t start;
1258 	int result;
1259 	int count;
1260 
1261 	start = *addr;
1262 
1263 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1264 	vm_map_lock(map);
1265 	if (object)
1266 		vm_object_hold(object);
1267 	if (fitit) {
1268 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1269 			vm_map_unlock(map);
1270 			vm_map_entry_release(count);
1271 			return (KERN_NO_SPACE);
1272 		}
1273 		start = *addr;
1274 	}
1275 	result = vm_map_insert(map, &count, object, offset,
1276 			       start, start + length,
1277 			       maptype,
1278 			       prot, max,
1279 			       cow);
1280 	if (object)
1281 		vm_object_drop(object);
1282 	vm_map_unlock(map);
1283 	vm_map_entry_release(count);
1284 
1285 	return (result);
1286 }
1287 
1288 /*
1289  * Simplify the given map entry by merging with either neighbor.  This
1290  * routine also has the ability to merge with both neighbors.
1291  *
1292  * This routine guarentees that the passed entry remains valid (though
1293  * possibly extended).  When merging, this routine may delete one or
1294  * both neighbors.  No action is taken on entries which have their
1295  * in-transition flag set.
1296  *
1297  * The map must be exclusively locked.
1298  */
1299 void
1300 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1301 {
1302 	vm_map_entry_t next, prev;
1303 	vm_size_t prevsize, esize;
1304 
1305 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1306 		++mycpu->gd_cnt.v_intrans_coll;
1307 		return;
1308 	}
1309 
1310 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1311 		return;
1312 
1313 	prev = entry->prev;
1314 	if (prev != &map->header) {
1315 		prevsize = prev->end - prev->start;
1316 		if ( (prev->end == entry->start) &&
1317 		     (prev->maptype == entry->maptype) &&
1318 		     (prev->object.vm_object == entry->object.vm_object) &&
1319 		     (!prev->object.vm_object ||
1320 			(prev->offset + prevsize == entry->offset)) &&
1321 		     (prev->eflags == entry->eflags) &&
1322 		     (prev->protection == entry->protection) &&
1323 		     (prev->max_protection == entry->max_protection) &&
1324 		     (prev->inheritance == entry->inheritance) &&
1325 		     (prev->wired_count == entry->wired_count)) {
1326 			if (map->first_free == prev)
1327 				map->first_free = entry;
1328 			if (map->hint == prev)
1329 				map->hint = entry;
1330 			vm_map_entry_unlink(map, prev);
1331 			entry->start = prev->start;
1332 			entry->offset = prev->offset;
1333 			if (prev->object.vm_object)
1334 				vm_object_deallocate(prev->object.vm_object);
1335 			vm_map_entry_dispose(map, prev, countp);
1336 		}
1337 	}
1338 
1339 	next = entry->next;
1340 	if (next != &map->header) {
1341 		esize = entry->end - entry->start;
1342 		if ((entry->end == next->start) &&
1343 		    (next->maptype == entry->maptype) &&
1344 		    (next->object.vm_object == entry->object.vm_object) &&
1345 		     (!entry->object.vm_object ||
1346 			(entry->offset + esize == next->offset)) &&
1347 		    (next->eflags == entry->eflags) &&
1348 		    (next->protection == entry->protection) &&
1349 		    (next->max_protection == entry->max_protection) &&
1350 		    (next->inheritance == entry->inheritance) &&
1351 		    (next->wired_count == entry->wired_count)) {
1352 			if (map->first_free == next)
1353 				map->first_free = entry;
1354 			if (map->hint == next)
1355 				map->hint = entry;
1356 			vm_map_entry_unlink(map, next);
1357 			entry->end = next->end;
1358 			if (next->object.vm_object)
1359 				vm_object_deallocate(next->object.vm_object);
1360 			vm_map_entry_dispose(map, next, countp);
1361 	        }
1362 	}
1363 }
1364 
1365 /*
1366  * Asserts that the given entry begins at or after the specified address.
1367  * If necessary, it splits the entry into two.
1368  */
1369 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1370 {									\
1371 	if (startaddr > entry->start)					\
1372 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1373 }
1374 
1375 /*
1376  * This routine is called only when it is known that the entry must be split.
1377  *
1378  * The map must be exclusively locked.
1379  */
1380 static void
1381 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1382 		   int *countp)
1383 {
1384 	vm_map_entry_t new_entry;
1385 
1386 	/*
1387 	 * Split off the front portion -- note that we must insert the new
1388 	 * entry BEFORE this one, so that this entry has the specified
1389 	 * starting address.
1390 	 */
1391 
1392 	vm_map_simplify_entry(map, entry, countp);
1393 
1394 	/*
1395 	 * If there is no object backing this entry, we might as well create
1396 	 * one now.  If we defer it, an object can get created after the map
1397 	 * is clipped, and individual objects will be created for the split-up
1398 	 * map.  This is a bit of a hack, but is also about the best place to
1399 	 * put this improvement.
1400 	 */
1401 	if (entry->object.vm_object == NULL && !map->system_map) {
1402 		vm_map_entry_allocate_object(entry);
1403 	}
1404 
1405 	new_entry = vm_map_entry_create(map, countp);
1406 	*new_entry = *entry;
1407 
1408 	new_entry->end = start;
1409 	entry->offset += (start - entry->start);
1410 	entry->start = start;
1411 
1412 	vm_map_entry_link(map, entry->prev, new_entry);
1413 
1414 	switch(entry->maptype) {
1415 	case VM_MAPTYPE_NORMAL:
1416 	case VM_MAPTYPE_VPAGETABLE:
1417 		if (new_entry->object.vm_object) {
1418 			vm_object_hold(new_entry->object.vm_object);
1419 			vm_object_chain_wait(new_entry->object.vm_object);
1420 			vm_object_reference_locked(new_entry->object.vm_object);
1421 			vm_object_drop(new_entry->object.vm_object);
1422 		}
1423 		break;
1424 	default:
1425 		break;
1426 	}
1427 }
1428 
1429 /*
1430  * Asserts that the given entry ends at or before the specified address.
1431  * If necessary, it splits the entry into two.
1432  *
1433  * The map must be exclusively locked.
1434  */
1435 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1436 {								\
1437 	if (endaddr < entry->end)				\
1438 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1439 }
1440 
1441 /*
1442  * This routine is called only when it is known that the entry must be split.
1443  *
1444  * The map must be exclusively locked.
1445  */
1446 static void
1447 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1448 		 int *countp)
1449 {
1450 	vm_map_entry_t new_entry;
1451 
1452 	/*
1453 	 * If there is no object backing this entry, we might as well create
1454 	 * one now.  If we defer it, an object can get created after the map
1455 	 * is clipped, and individual objects will be created for the split-up
1456 	 * map.  This is a bit of a hack, but is also about the best place to
1457 	 * put this improvement.
1458 	 */
1459 
1460 	if (entry->object.vm_object == NULL && !map->system_map) {
1461 		vm_map_entry_allocate_object(entry);
1462 	}
1463 
1464 	/*
1465 	 * Create a new entry and insert it AFTER the specified entry
1466 	 */
1467 
1468 	new_entry = vm_map_entry_create(map, countp);
1469 	*new_entry = *entry;
1470 
1471 	new_entry->start = entry->end = end;
1472 	new_entry->offset += (end - entry->start);
1473 
1474 	vm_map_entry_link(map, entry, new_entry);
1475 
1476 	switch(entry->maptype) {
1477 	case VM_MAPTYPE_NORMAL:
1478 	case VM_MAPTYPE_VPAGETABLE:
1479 		if (new_entry->object.vm_object) {
1480 			vm_object_hold(new_entry->object.vm_object);
1481 			vm_object_chain_wait(new_entry->object.vm_object);
1482 			vm_object_reference_locked(new_entry->object.vm_object);
1483 			vm_object_drop(new_entry->object.vm_object);
1484 		}
1485 		break;
1486 	default:
1487 		break;
1488 	}
1489 }
1490 
1491 /*
1492  * Asserts that the starting and ending region addresses fall within the
1493  * valid range for the map.
1494  */
1495 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1496 {						\
1497 	if (start < vm_map_min(map))		\
1498 		start = vm_map_min(map);	\
1499 	if (end > vm_map_max(map))		\
1500 		end = vm_map_max(map);		\
1501 	if (start > end)			\
1502 		start = end;			\
1503 }
1504 
1505 /*
1506  * Used to block when an in-transition collison occurs.  The map
1507  * is unlocked for the sleep and relocked before the return.
1508  */
1509 void
1510 vm_map_transition_wait(vm_map_t map)
1511 {
1512 	tsleep_interlock(map, 0);
1513 	vm_map_unlock(map);
1514 	tsleep(map, PINTERLOCKED, "vment", 0);
1515 	vm_map_lock(map);
1516 }
1517 
1518 /*
1519  * When we do blocking operations with the map lock held it is
1520  * possible that a clip might have occured on our in-transit entry,
1521  * requiring an adjustment to the entry in our loop.  These macros
1522  * help the pageable and clip_range code deal with the case.  The
1523  * conditional costs virtually nothing if no clipping has occured.
1524  */
1525 
1526 #define CLIP_CHECK_BACK(entry, save_start)		\
1527     do {						\
1528 	    while (entry->start != save_start) {	\
1529 		    entry = entry->prev;		\
1530 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1531 	    }						\
1532     } while(0)
1533 
1534 #define CLIP_CHECK_FWD(entry, save_end)			\
1535     do {						\
1536 	    while (entry->end != save_end) {		\
1537 		    entry = entry->next;		\
1538 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1539 	    }						\
1540     } while(0)
1541 
1542 
1543 /*
1544  * Clip the specified range and return the base entry.  The
1545  * range may cover several entries starting at the returned base
1546  * and the first and last entry in the covering sequence will be
1547  * properly clipped to the requested start and end address.
1548  *
1549  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1550  * flag.
1551  *
1552  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1553  * covered by the requested range.
1554  *
1555  * The map must be exclusively locked on entry and will remain locked
1556  * on return. If no range exists or the range contains holes and you
1557  * specified that no holes were allowed, NULL will be returned.  This
1558  * routine may temporarily unlock the map in order avoid a deadlock when
1559  * sleeping.
1560  */
1561 static
1562 vm_map_entry_t
1563 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1564 		  int *countp, int flags)
1565 {
1566 	vm_map_entry_t start_entry;
1567 	vm_map_entry_t entry;
1568 
1569 	/*
1570 	 * Locate the entry and effect initial clipping.  The in-transition
1571 	 * case does not occur very often so do not try to optimize it.
1572 	 */
1573 again:
1574 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1575 		return (NULL);
1576 	entry = start_entry;
1577 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1578 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1579 		++mycpu->gd_cnt.v_intrans_coll;
1580 		++mycpu->gd_cnt.v_intrans_wait;
1581 		vm_map_transition_wait(map);
1582 		/*
1583 		 * entry and/or start_entry may have been clipped while
1584 		 * we slept, or may have gone away entirely.  We have
1585 		 * to restart from the lookup.
1586 		 */
1587 		goto again;
1588 	}
1589 
1590 	/*
1591 	 * Since we hold an exclusive map lock we do not have to restart
1592 	 * after clipping, even though clipping may block in zalloc.
1593 	 */
1594 	vm_map_clip_start(map, entry, start, countp);
1595 	vm_map_clip_end(map, entry, end, countp);
1596 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1597 
1598 	/*
1599 	 * Scan entries covered by the range.  When working on the next
1600 	 * entry a restart need only re-loop on the current entry which
1601 	 * we have already locked, since 'next' may have changed.  Also,
1602 	 * even though entry is safe, it may have been clipped so we
1603 	 * have to iterate forwards through the clip after sleeping.
1604 	 */
1605 	while (entry->next != &map->header && entry->next->start < end) {
1606 		vm_map_entry_t next = entry->next;
1607 
1608 		if (flags & MAP_CLIP_NO_HOLES) {
1609 			if (next->start > entry->end) {
1610 				vm_map_unclip_range(map, start_entry,
1611 					start, entry->end, countp, flags);
1612 				return(NULL);
1613 			}
1614 		}
1615 
1616 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1617 			vm_offset_t save_end = entry->end;
1618 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1619 			++mycpu->gd_cnt.v_intrans_coll;
1620 			++mycpu->gd_cnt.v_intrans_wait;
1621 			vm_map_transition_wait(map);
1622 
1623 			/*
1624 			 * clips might have occured while we blocked.
1625 			 */
1626 			CLIP_CHECK_FWD(entry, save_end);
1627 			CLIP_CHECK_BACK(start_entry, start);
1628 			continue;
1629 		}
1630 		/*
1631 		 * No restart necessary even though clip_end may block, we
1632 		 * are holding the map lock.
1633 		 */
1634 		vm_map_clip_end(map, next, end, countp);
1635 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1636 		entry = next;
1637 	}
1638 	if (flags & MAP_CLIP_NO_HOLES) {
1639 		if (entry->end != end) {
1640 			vm_map_unclip_range(map, start_entry,
1641 				start, entry->end, countp, flags);
1642 			return(NULL);
1643 		}
1644 	}
1645 	return(start_entry);
1646 }
1647 
1648 /*
1649  * Undo the effect of vm_map_clip_range().  You should pass the same
1650  * flags and the same range that you passed to vm_map_clip_range().
1651  * This code will clear the in-transition flag on the entries and
1652  * wake up anyone waiting.  This code will also simplify the sequence
1653  * and attempt to merge it with entries before and after the sequence.
1654  *
1655  * The map must be locked on entry and will remain locked on return.
1656  *
1657  * Note that you should also pass the start_entry returned by
1658  * vm_map_clip_range().  However, if you block between the two calls
1659  * with the map unlocked please be aware that the start_entry may
1660  * have been clipped and you may need to scan it backwards to find
1661  * the entry corresponding with the original start address.  You are
1662  * responsible for this, vm_map_unclip_range() expects the correct
1663  * start_entry to be passed to it and will KASSERT otherwise.
1664  */
1665 static
1666 void
1667 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1668 		    vm_offset_t start, vm_offset_t end,
1669 		    int *countp, int flags)
1670 {
1671 	vm_map_entry_t entry;
1672 
1673 	entry = start_entry;
1674 
1675 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1676 	while (entry != &map->header && entry->start < end) {
1677 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1678 			("in-transition flag not set during unclip on: %p",
1679 			entry));
1680 		KASSERT(entry->end <= end,
1681 			("unclip_range: tail wasn't clipped"));
1682 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1683 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1684 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1685 			wakeup(map);
1686 		}
1687 		entry = entry->next;
1688 	}
1689 
1690 	/*
1691 	 * Simplification does not block so there is no restart case.
1692 	 */
1693 	entry = start_entry;
1694 	while (entry != &map->header && entry->start < end) {
1695 		vm_map_simplify_entry(map, entry, countp);
1696 		entry = entry->next;
1697 	}
1698 }
1699 
1700 /*
1701  * Mark the given range as handled by a subordinate map.
1702  *
1703  * This range must have been created with vm_map_find(), and no other
1704  * operations may have been performed on this range prior to calling
1705  * vm_map_submap().
1706  *
1707  * Submappings cannot be removed.
1708  *
1709  * No requirements.
1710  */
1711 int
1712 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1713 {
1714 	vm_map_entry_t entry;
1715 	int result = KERN_INVALID_ARGUMENT;
1716 	int count;
1717 
1718 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1719 	vm_map_lock(map);
1720 
1721 	VM_MAP_RANGE_CHECK(map, start, end);
1722 
1723 	if (vm_map_lookup_entry(map, start, &entry)) {
1724 		vm_map_clip_start(map, entry, start, &count);
1725 	} else {
1726 		entry = entry->next;
1727 	}
1728 
1729 	vm_map_clip_end(map, entry, end, &count);
1730 
1731 	if ((entry->start == start) && (entry->end == end) &&
1732 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1733 	    (entry->object.vm_object == NULL)) {
1734 		entry->object.sub_map = submap;
1735 		entry->maptype = VM_MAPTYPE_SUBMAP;
1736 		result = KERN_SUCCESS;
1737 	}
1738 	vm_map_unlock(map);
1739 	vm_map_entry_release(count);
1740 
1741 	return (result);
1742 }
1743 
1744 /*
1745  * Sets the protection of the specified address region in the target map.
1746  * If "set_max" is specified, the maximum protection is to be set;
1747  * otherwise, only the current protection is affected.
1748  *
1749  * The protection is not applicable to submaps, but is applicable to normal
1750  * maps and maps governed by virtual page tables.  For example, when operating
1751  * on a virtual page table our protection basically controls how COW occurs
1752  * on the backing object, whereas the virtual page table abstraction itself
1753  * is an abstraction for userland.
1754  *
1755  * No requirements.
1756  */
1757 int
1758 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1759 	       vm_prot_t new_prot, boolean_t set_max)
1760 {
1761 	vm_map_entry_t current;
1762 	vm_map_entry_t entry;
1763 	int count;
1764 
1765 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1766 	vm_map_lock(map);
1767 
1768 	VM_MAP_RANGE_CHECK(map, start, end);
1769 
1770 	if (vm_map_lookup_entry(map, start, &entry)) {
1771 		vm_map_clip_start(map, entry, start, &count);
1772 	} else {
1773 		entry = entry->next;
1774 	}
1775 
1776 	/*
1777 	 * Make a first pass to check for protection violations.
1778 	 */
1779 	current = entry;
1780 	while ((current != &map->header) && (current->start < end)) {
1781 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1782 			vm_map_unlock(map);
1783 			vm_map_entry_release(count);
1784 			return (KERN_INVALID_ARGUMENT);
1785 		}
1786 		if ((new_prot & current->max_protection) != new_prot) {
1787 			vm_map_unlock(map);
1788 			vm_map_entry_release(count);
1789 			return (KERN_PROTECTION_FAILURE);
1790 		}
1791 		current = current->next;
1792 	}
1793 
1794 	/*
1795 	 * Go back and fix up protections. [Note that clipping is not
1796 	 * necessary the second time.]
1797 	 */
1798 	current = entry;
1799 
1800 	while ((current != &map->header) && (current->start < end)) {
1801 		vm_prot_t old_prot;
1802 
1803 		vm_map_clip_end(map, current, end, &count);
1804 
1805 		old_prot = current->protection;
1806 		if (set_max) {
1807 			current->protection =
1808 			    (current->max_protection = new_prot) &
1809 			    old_prot;
1810 		} else {
1811 			current->protection = new_prot;
1812 		}
1813 
1814 		/*
1815 		 * Update physical map if necessary. Worry about copy-on-write
1816 		 * here -- CHECK THIS XXX
1817 		 */
1818 
1819 		if (current->protection != old_prot) {
1820 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1821 							VM_PROT_ALL)
1822 
1823 			pmap_protect(map->pmap, current->start,
1824 			    current->end,
1825 			    current->protection & MASK(current));
1826 #undef	MASK
1827 		}
1828 
1829 		vm_map_simplify_entry(map, current, &count);
1830 
1831 		current = current->next;
1832 	}
1833 
1834 	vm_map_unlock(map);
1835 	vm_map_entry_release(count);
1836 	return (KERN_SUCCESS);
1837 }
1838 
1839 /*
1840  * This routine traverses a processes map handling the madvise
1841  * system call.  Advisories are classified as either those effecting
1842  * the vm_map_entry structure, or those effecting the underlying
1843  * objects.
1844  *
1845  * The <value> argument is used for extended madvise calls.
1846  *
1847  * No requirements.
1848  */
1849 int
1850 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1851 	       int behav, off_t value)
1852 {
1853 	vm_map_entry_t current, entry;
1854 	int modify_map = 0;
1855 	int error = 0;
1856 	int count;
1857 
1858 	/*
1859 	 * Some madvise calls directly modify the vm_map_entry, in which case
1860 	 * we need to use an exclusive lock on the map and we need to perform
1861 	 * various clipping operations.  Otherwise we only need a read-lock
1862 	 * on the map.
1863 	 */
1864 
1865 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1866 
1867 	switch(behav) {
1868 	case MADV_NORMAL:
1869 	case MADV_SEQUENTIAL:
1870 	case MADV_RANDOM:
1871 	case MADV_NOSYNC:
1872 	case MADV_AUTOSYNC:
1873 	case MADV_NOCORE:
1874 	case MADV_CORE:
1875 	case MADV_SETMAP:
1876 	case MADV_INVAL:
1877 		modify_map = 1;
1878 		vm_map_lock(map);
1879 		break;
1880 	case MADV_WILLNEED:
1881 	case MADV_DONTNEED:
1882 	case MADV_FREE:
1883 		vm_map_lock_read(map);
1884 		break;
1885 	default:
1886 		vm_map_entry_release(count);
1887 		return (EINVAL);
1888 	}
1889 
1890 	/*
1891 	 * Locate starting entry and clip if necessary.
1892 	 */
1893 
1894 	VM_MAP_RANGE_CHECK(map, start, end);
1895 
1896 	if (vm_map_lookup_entry(map, start, &entry)) {
1897 		if (modify_map)
1898 			vm_map_clip_start(map, entry, start, &count);
1899 	} else {
1900 		entry = entry->next;
1901 	}
1902 
1903 	if (modify_map) {
1904 		/*
1905 		 * madvise behaviors that are implemented in the vm_map_entry.
1906 		 *
1907 		 * We clip the vm_map_entry so that behavioral changes are
1908 		 * limited to the specified address range.
1909 		 */
1910 		for (current = entry;
1911 		     (current != &map->header) && (current->start < end);
1912 		     current = current->next
1913 		) {
1914 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1915 				continue;
1916 
1917 			vm_map_clip_end(map, current, end, &count);
1918 
1919 			switch (behav) {
1920 			case MADV_NORMAL:
1921 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1922 				break;
1923 			case MADV_SEQUENTIAL:
1924 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1925 				break;
1926 			case MADV_RANDOM:
1927 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1928 				break;
1929 			case MADV_NOSYNC:
1930 				current->eflags |= MAP_ENTRY_NOSYNC;
1931 				break;
1932 			case MADV_AUTOSYNC:
1933 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1934 				break;
1935 			case MADV_NOCORE:
1936 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1937 				break;
1938 			case MADV_CORE:
1939 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1940 				break;
1941 			case MADV_INVAL:
1942 				/*
1943 				 * Invalidate the related pmap entries, used
1944 				 * to flush portions of the real kernel's
1945 				 * pmap when the caller has removed or
1946 				 * modified existing mappings in a virtual
1947 				 * page table.
1948 				 */
1949 				pmap_remove(map->pmap,
1950 					    current->start, current->end);
1951 				break;
1952 			case MADV_SETMAP:
1953 				/*
1954 				 * Set the page directory page for a map
1955 				 * governed by a virtual page table.  Mark
1956 				 * the entry as being governed by a virtual
1957 				 * page table if it is not.
1958 				 *
1959 				 * XXX the page directory page is stored
1960 				 * in the avail_ssize field if the map_entry.
1961 				 *
1962 				 * XXX the map simplification code does not
1963 				 * compare this field so weird things may
1964 				 * happen if you do not apply this function
1965 				 * to the entire mapping governed by the
1966 				 * virtual page table.
1967 				 */
1968 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1969 					error = EINVAL;
1970 					break;
1971 				}
1972 				current->aux.master_pde = value;
1973 				pmap_remove(map->pmap,
1974 					    current->start, current->end);
1975 				break;
1976 			default:
1977 				error = EINVAL;
1978 				break;
1979 			}
1980 			vm_map_simplify_entry(map, current, &count);
1981 		}
1982 		vm_map_unlock(map);
1983 	} else {
1984 		vm_pindex_t pindex;
1985 		int count;
1986 
1987 		/*
1988 		 * madvise behaviors that are implemented in the underlying
1989 		 * vm_object.
1990 		 *
1991 		 * Since we don't clip the vm_map_entry, we have to clip
1992 		 * the vm_object pindex and count.
1993 		 *
1994 		 * NOTE!  We currently do not support these functions on
1995 		 * virtual page tables.
1996 		 */
1997 		for (current = entry;
1998 		     (current != &map->header) && (current->start < end);
1999 		     current = current->next
2000 		) {
2001 			vm_offset_t useStart;
2002 
2003 			if (current->maptype != VM_MAPTYPE_NORMAL)
2004 				continue;
2005 
2006 			pindex = OFF_TO_IDX(current->offset);
2007 			count = atop(current->end - current->start);
2008 			useStart = current->start;
2009 
2010 			if (current->start < start) {
2011 				pindex += atop(start - current->start);
2012 				count -= atop(start - current->start);
2013 				useStart = start;
2014 			}
2015 			if (current->end > end)
2016 				count -= atop(current->end - end);
2017 
2018 			if (count <= 0)
2019 				continue;
2020 
2021 			vm_object_madvise(current->object.vm_object,
2022 					  pindex, count, behav);
2023 
2024 			/*
2025 			 * Try to populate the page table.  Mappings governed
2026 			 * by virtual page tables cannot be pre-populated
2027 			 * without a lot of work so don't try.
2028 			 */
2029 			if (behav == MADV_WILLNEED &&
2030 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2031 				pmap_object_init_pt(
2032 				    map->pmap,
2033 				    useStart,
2034 				    current->protection,
2035 				    current->object.vm_object,
2036 				    pindex,
2037 				    (count << PAGE_SHIFT),
2038 				    MAP_PREFAULT_MADVISE
2039 				);
2040 			}
2041 		}
2042 		vm_map_unlock_read(map);
2043 	}
2044 	vm_map_entry_release(count);
2045 	return(error);
2046 }
2047 
2048 
2049 /*
2050  * Sets the inheritance of the specified address range in the target map.
2051  * Inheritance affects how the map will be shared with child maps at the
2052  * time of vm_map_fork.
2053  */
2054 int
2055 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2056 	       vm_inherit_t new_inheritance)
2057 {
2058 	vm_map_entry_t entry;
2059 	vm_map_entry_t temp_entry;
2060 	int count;
2061 
2062 	switch (new_inheritance) {
2063 	case VM_INHERIT_NONE:
2064 	case VM_INHERIT_COPY:
2065 	case VM_INHERIT_SHARE:
2066 		break;
2067 	default:
2068 		return (KERN_INVALID_ARGUMENT);
2069 	}
2070 
2071 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2072 	vm_map_lock(map);
2073 
2074 	VM_MAP_RANGE_CHECK(map, start, end);
2075 
2076 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2077 		entry = temp_entry;
2078 		vm_map_clip_start(map, entry, start, &count);
2079 	} else
2080 		entry = temp_entry->next;
2081 
2082 	while ((entry != &map->header) && (entry->start < end)) {
2083 		vm_map_clip_end(map, entry, end, &count);
2084 
2085 		entry->inheritance = new_inheritance;
2086 
2087 		vm_map_simplify_entry(map, entry, &count);
2088 
2089 		entry = entry->next;
2090 	}
2091 	vm_map_unlock(map);
2092 	vm_map_entry_release(count);
2093 	return (KERN_SUCCESS);
2094 }
2095 
2096 /*
2097  * Implement the semantics of mlock
2098  */
2099 int
2100 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2101 	      boolean_t new_pageable)
2102 {
2103 	vm_map_entry_t entry;
2104 	vm_map_entry_t start_entry;
2105 	vm_offset_t end;
2106 	int rv = KERN_SUCCESS;
2107 	int count;
2108 
2109 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2110 	vm_map_lock(map);
2111 	VM_MAP_RANGE_CHECK(map, start, real_end);
2112 	end = real_end;
2113 
2114 	start_entry = vm_map_clip_range(map, start, end, &count,
2115 					MAP_CLIP_NO_HOLES);
2116 	if (start_entry == NULL) {
2117 		vm_map_unlock(map);
2118 		vm_map_entry_release(count);
2119 		return (KERN_INVALID_ADDRESS);
2120 	}
2121 
2122 	if (new_pageable == 0) {
2123 		entry = start_entry;
2124 		while ((entry != &map->header) && (entry->start < end)) {
2125 			vm_offset_t save_start;
2126 			vm_offset_t save_end;
2127 
2128 			/*
2129 			 * Already user wired or hard wired (trivial cases)
2130 			 */
2131 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2132 				entry = entry->next;
2133 				continue;
2134 			}
2135 			if (entry->wired_count != 0) {
2136 				entry->wired_count++;
2137 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2138 				entry = entry->next;
2139 				continue;
2140 			}
2141 
2142 			/*
2143 			 * A new wiring requires instantiation of appropriate
2144 			 * management structures and the faulting in of the
2145 			 * page.
2146 			 */
2147 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2148 				int copyflag = entry->eflags &
2149 					       MAP_ENTRY_NEEDS_COPY;
2150 				if (copyflag && ((entry->protection &
2151 						  VM_PROT_WRITE) != 0)) {
2152 					vm_map_entry_shadow(entry, 0);
2153 				} else if (entry->object.vm_object == NULL &&
2154 					   !map->system_map) {
2155 					vm_map_entry_allocate_object(entry);
2156 				}
2157 			}
2158 			entry->wired_count++;
2159 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2160 
2161 			/*
2162 			 * Now fault in the area.  Note that vm_fault_wire()
2163 			 * may release the map lock temporarily, it will be
2164 			 * relocked on return.  The in-transition
2165 			 * flag protects the entries.
2166 			 */
2167 			save_start = entry->start;
2168 			save_end = entry->end;
2169 			rv = vm_fault_wire(map, entry, TRUE);
2170 			if (rv) {
2171 				CLIP_CHECK_BACK(entry, save_start);
2172 				for (;;) {
2173 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2174 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2175 					entry->wired_count = 0;
2176 					if (entry->end == save_end)
2177 						break;
2178 					entry = entry->next;
2179 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2180 				}
2181 				end = save_start;	/* unwire the rest */
2182 				break;
2183 			}
2184 			/*
2185 			 * note that even though the entry might have been
2186 			 * clipped, the USER_WIRED flag we set prevents
2187 			 * duplication so we do not have to do a
2188 			 * clip check.
2189 			 */
2190 			entry = entry->next;
2191 		}
2192 
2193 		/*
2194 		 * If we failed fall through to the unwiring section to
2195 		 * unwire what we had wired so far.  'end' has already
2196 		 * been adjusted.
2197 		 */
2198 		if (rv)
2199 			new_pageable = 1;
2200 
2201 		/*
2202 		 * start_entry might have been clipped if we unlocked the
2203 		 * map and blocked.  No matter how clipped it has gotten
2204 		 * there should be a fragment that is on our start boundary.
2205 		 */
2206 		CLIP_CHECK_BACK(start_entry, start);
2207 	}
2208 
2209 	/*
2210 	 * Deal with the unwiring case.
2211 	 */
2212 	if (new_pageable) {
2213 		/*
2214 		 * This is the unwiring case.  We must first ensure that the
2215 		 * range to be unwired is really wired down.  We know there
2216 		 * are no holes.
2217 		 */
2218 		entry = start_entry;
2219 		while ((entry != &map->header) && (entry->start < end)) {
2220 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2221 				rv = KERN_INVALID_ARGUMENT;
2222 				goto done;
2223 			}
2224 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2225 			entry = entry->next;
2226 		}
2227 
2228 		/*
2229 		 * Now decrement the wiring count for each region. If a region
2230 		 * becomes completely unwired, unwire its physical pages and
2231 		 * mappings.
2232 		 */
2233 		/*
2234 		 * The map entries are processed in a loop, checking to
2235 		 * make sure the entry is wired and asserting it has a wired
2236 		 * count. However, another loop was inserted more-or-less in
2237 		 * the middle of the unwiring path. This loop picks up the
2238 		 * "entry" loop variable from the first loop without first
2239 		 * setting it to start_entry. Naturally, the secound loop
2240 		 * is never entered and the pages backing the entries are
2241 		 * never unwired. This can lead to a leak of wired pages.
2242 		 */
2243 		entry = start_entry;
2244 		while ((entry != &map->header) && (entry->start < end)) {
2245 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2246 				("expected USER_WIRED on entry %p", entry));
2247 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2248 			entry->wired_count--;
2249 			if (entry->wired_count == 0)
2250 				vm_fault_unwire(map, entry);
2251 			entry = entry->next;
2252 		}
2253 	}
2254 done:
2255 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2256 		MAP_CLIP_NO_HOLES);
2257 	map->timestamp++;
2258 	vm_map_unlock(map);
2259 	vm_map_entry_release(count);
2260 	return (rv);
2261 }
2262 
2263 /*
2264  * Sets the pageability of the specified address range in the target map.
2265  * Regions specified as not pageable require locked-down physical
2266  * memory and physical page maps.
2267  *
2268  * The map must not be locked, but a reference must remain to the map
2269  * throughout the call.
2270  *
2271  * This function may be called via the zalloc path and must properly
2272  * reserve map entries for kernel_map.
2273  *
2274  * No requirements.
2275  */
2276 int
2277 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2278 {
2279 	vm_map_entry_t entry;
2280 	vm_map_entry_t start_entry;
2281 	vm_offset_t end;
2282 	int rv = KERN_SUCCESS;
2283 	int count;
2284 
2285 	if (kmflags & KM_KRESERVE)
2286 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2287 	else
2288 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2289 	vm_map_lock(map);
2290 	VM_MAP_RANGE_CHECK(map, start, real_end);
2291 	end = real_end;
2292 
2293 	start_entry = vm_map_clip_range(map, start, end, &count,
2294 					MAP_CLIP_NO_HOLES);
2295 	if (start_entry == NULL) {
2296 		vm_map_unlock(map);
2297 		rv = KERN_INVALID_ADDRESS;
2298 		goto failure;
2299 	}
2300 	if ((kmflags & KM_PAGEABLE) == 0) {
2301 		/*
2302 		 * Wiring.
2303 		 *
2304 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2305 		 * objects that need to be created. Then we clip each map
2306 		 * entry to the region to be wired and increment its wiring
2307 		 * count.  We create objects before clipping the map entries
2308 		 * to avoid object proliferation.
2309 		 *
2310 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2311 		 * fault in the pages for any newly wired area (wired_count is
2312 		 * 1).
2313 		 *
2314 		 * Downgrading to a read lock for vm_fault_wire avoids a
2315 		 * possible deadlock with another process that may have faulted
2316 		 * on one of the pages to be wired (it would mark the page busy,
2317 		 * blocking us, then in turn block on the map lock that we
2318 		 * hold).  Because of problems in the recursive lock package,
2319 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2320 		 * any actions that require the write lock must be done
2321 		 * beforehand.  Because we keep the read lock on the map, the
2322 		 * copy-on-write status of the entries we modify here cannot
2323 		 * change.
2324 		 */
2325 		entry = start_entry;
2326 		while ((entry != &map->header) && (entry->start < end)) {
2327 			/*
2328 			 * Trivial case if the entry is already wired
2329 			 */
2330 			if (entry->wired_count) {
2331 				entry->wired_count++;
2332 				entry = entry->next;
2333 				continue;
2334 			}
2335 
2336 			/*
2337 			 * The entry is being newly wired, we have to setup
2338 			 * appropriate management structures.  A shadow
2339 			 * object is required for a copy-on-write region,
2340 			 * or a normal object for a zero-fill region.  We
2341 			 * do not have to do this for entries that point to sub
2342 			 * maps because we won't hold the lock on the sub map.
2343 			 */
2344 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2345 				int copyflag = entry->eflags &
2346 					       MAP_ENTRY_NEEDS_COPY;
2347 				if (copyflag && ((entry->protection &
2348 						  VM_PROT_WRITE) != 0)) {
2349 					vm_map_entry_shadow(entry, 0);
2350 				} else if (entry->object.vm_object == NULL &&
2351 					   !map->system_map) {
2352 					vm_map_entry_allocate_object(entry);
2353 				}
2354 			}
2355 
2356 			entry->wired_count++;
2357 			entry = entry->next;
2358 		}
2359 
2360 		/*
2361 		 * Pass 2.
2362 		 */
2363 
2364 		/*
2365 		 * HACK HACK HACK HACK
2366 		 *
2367 		 * vm_fault_wire() temporarily unlocks the map to avoid
2368 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2369 		 * call should protect us from changes while the map is
2370 		 * unlocked.  T
2371 		 *
2372 		 * NOTE: Previously this comment stated that clipping might
2373 		 *	 still occur while the entry is unlocked, but from
2374 		 *	 what I can tell it actually cannot.
2375 		 *
2376 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2377 		 *	 are still needed but we keep them in anyway.
2378 		 *
2379 		 * HACK HACK HACK HACK
2380 		 */
2381 
2382 		entry = start_entry;
2383 		while (entry != &map->header && entry->start < end) {
2384 			/*
2385 			 * If vm_fault_wire fails for any page we need to undo
2386 			 * what has been done.  We decrement the wiring count
2387 			 * for those pages which have not yet been wired (now)
2388 			 * and unwire those that have (later).
2389 			 */
2390 			vm_offset_t save_start = entry->start;
2391 			vm_offset_t save_end = entry->end;
2392 
2393 			if (entry->wired_count == 1)
2394 				rv = vm_fault_wire(map, entry, FALSE);
2395 			if (rv) {
2396 				CLIP_CHECK_BACK(entry, save_start);
2397 				for (;;) {
2398 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2399 					entry->wired_count = 0;
2400 					if (entry->end == save_end)
2401 						break;
2402 					entry = entry->next;
2403 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2404 				}
2405 				end = save_start;
2406 				break;
2407 			}
2408 			CLIP_CHECK_FWD(entry, save_end);
2409 			entry = entry->next;
2410 		}
2411 
2412 		/*
2413 		 * If a failure occured undo everything by falling through
2414 		 * to the unwiring code.  'end' has already been adjusted
2415 		 * appropriately.
2416 		 */
2417 		if (rv)
2418 			kmflags |= KM_PAGEABLE;
2419 
2420 		/*
2421 		 * start_entry is still IN_TRANSITION but may have been
2422 		 * clipped since vm_fault_wire() unlocks and relocks the
2423 		 * map.  No matter how clipped it has gotten there should
2424 		 * be a fragment that is on our start boundary.
2425 		 */
2426 		CLIP_CHECK_BACK(start_entry, start);
2427 	}
2428 
2429 	if (kmflags & KM_PAGEABLE) {
2430 		/*
2431 		 * This is the unwiring case.  We must first ensure that the
2432 		 * range to be unwired is really wired down.  We know there
2433 		 * are no holes.
2434 		 */
2435 		entry = start_entry;
2436 		while ((entry != &map->header) && (entry->start < end)) {
2437 			if (entry->wired_count == 0) {
2438 				rv = KERN_INVALID_ARGUMENT;
2439 				goto done;
2440 			}
2441 			entry = entry->next;
2442 		}
2443 
2444 		/*
2445 		 * Now decrement the wiring count for each region. If a region
2446 		 * becomes completely unwired, unwire its physical pages and
2447 		 * mappings.
2448 		 */
2449 		entry = start_entry;
2450 		while ((entry != &map->header) && (entry->start < end)) {
2451 			entry->wired_count--;
2452 			if (entry->wired_count == 0)
2453 				vm_fault_unwire(map, entry);
2454 			entry = entry->next;
2455 		}
2456 	}
2457 done:
2458 	vm_map_unclip_range(map, start_entry, start, real_end,
2459 			    &count, MAP_CLIP_NO_HOLES);
2460 	map->timestamp++;
2461 	vm_map_unlock(map);
2462 failure:
2463 	if (kmflags & KM_KRESERVE)
2464 		vm_map_entry_krelease(count);
2465 	else
2466 		vm_map_entry_release(count);
2467 	return (rv);
2468 }
2469 
2470 /*
2471  * Mark a newly allocated address range as wired but do not fault in
2472  * the pages.  The caller is expected to load the pages into the object.
2473  *
2474  * The map must be locked on entry and will remain locked on return.
2475  * No other requirements.
2476  */
2477 void
2478 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2479 		       int *countp)
2480 {
2481 	vm_map_entry_t scan;
2482 	vm_map_entry_t entry;
2483 
2484 	entry = vm_map_clip_range(map, addr, addr + size,
2485 				  countp, MAP_CLIP_NO_HOLES);
2486 	for (scan = entry;
2487 	     scan != &map->header && scan->start < addr + size;
2488 	     scan = scan->next) {
2489 	    KKASSERT(entry->wired_count == 0);
2490 	    entry->wired_count = 1;
2491 	}
2492 	vm_map_unclip_range(map, entry, addr, addr + size,
2493 			    countp, MAP_CLIP_NO_HOLES);
2494 }
2495 
2496 /*
2497  * Push any dirty cached pages in the address range to their pager.
2498  * If syncio is TRUE, dirty pages are written synchronously.
2499  * If invalidate is TRUE, any cached pages are freed as well.
2500  *
2501  * This routine is called by sys_msync()
2502  *
2503  * Returns an error if any part of the specified range is not mapped.
2504  *
2505  * No requirements.
2506  */
2507 int
2508 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2509 	     boolean_t syncio, boolean_t invalidate)
2510 {
2511 	vm_map_entry_t current;
2512 	vm_map_entry_t entry;
2513 	vm_size_t size;
2514 	vm_object_t object;
2515 	vm_object_t tobj;
2516 	vm_ooffset_t offset;
2517 
2518 	vm_map_lock_read(map);
2519 	VM_MAP_RANGE_CHECK(map, start, end);
2520 	if (!vm_map_lookup_entry(map, start, &entry)) {
2521 		vm_map_unlock_read(map);
2522 		return (KERN_INVALID_ADDRESS);
2523 	}
2524 	lwkt_gettoken(&map->token);
2525 
2526 	/*
2527 	 * Make a first pass to check for holes.
2528 	 */
2529 	for (current = entry; current->start < end; current = current->next) {
2530 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2531 			lwkt_reltoken(&map->token);
2532 			vm_map_unlock_read(map);
2533 			return (KERN_INVALID_ARGUMENT);
2534 		}
2535 		if (end > current->end &&
2536 		    (current->next == &map->header ||
2537 			current->end != current->next->start)) {
2538 			lwkt_reltoken(&map->token);
2539 			vm_map_unlock_read(map);
2540 			return (KERN_INVALID_ADDRESS);
2541 		}
2542 	}
2543 
2544 	if (invalidate)
2545 		pmap_remove(vm_map_pmap(map), start, end);
2546 
2547 	/*
2548 	 * Make a second pass, cleaning/uncaching pages from the indicated
2549 	 * objects as we go.
2550 	 */
2551 	for (current = entry; current->start < end; current = current->next) {
2552 		offset = current->offset + (start - current->start);
2553 		size = (end <= current->end ? end : current->end) - start;
2554 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2555 			vm_map_t smap;
2556 			vm_map_entry_t tentry;
2557 			vm_size_t tsize;
2558 
2559 			smap = current->object.sub_map;
2560 			vm_map_lock_read(smap);
2561 			vm_map_lookup_entry(smap, offset, &tentry);
2562 			tsize = tentry->end - offset;
2563 			if (tsize < size)
2564 				size = tsize;
2565 			object = tentry->object.vm_object;
2566 			offset = tentry->offset + (offset - tentry->start);
2567 			vm_map_unlock_read(smap);
2568 		} else {
2569 			object = current->object.vm_object;
2570 		}
2571 
2572 		if (object)
2573 			vm_object_hold(object);
2574 
2575 		/*
2576 		 * Note that there is absolutely no sense in writing out
2577 		 * anonymous objects, so we track down the vnode object
2578 		 * to write out.
2579 		 * We invalidate (remove) all pages from the address space
2580 		 * anyway, for semantic correctness.
2581 		 *
2582 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2583 		 * may start out with a NULL object.
2584 		 */
2585 		while (object && (tobj = object->backing_object) != NULL) {
2586 			vm_object_hold(tobj);
2587 			if (tobj == object->backing_object) {
2588 				vm_object_lock_swap();
2589 				offset += object->backing_object_offset;
2590 				vm_object_drop(object);
2591 				object = tobj;
2592 				if (object->size < OFF_TO_IDX(offset + size))
2593 					size = IDX_TO_OFF(object->size) -
2594 					       offset;
2595 				break;
2596 			}
2597 			vm_object_drop(tobj);
2598 		}
2599 		if (object && (object->type == OBJT_VNODE) &&
2600 		    (current->protection & VM_PROT_WRITE) &&
2601 		    (object->flags & OBJ_NOMSYNC) == 0) {
2602 			/*
2603 			 * Flush pages if writing is allowed, invalidate them
2604 			 * if invalidation requested.  Pages undergoing I/O
2605 			 * will be ignored by vm_object_page_remove().
2606 			 *
2607 			 * We cannot lock the vnode and then wait for paging
2608 			 * to complete without deadlocking against vm_fault.
2609 			 * Instead we simply call vm_object_page_remove() and
2610 			 * allow it to block internally on a page-by-page
2611 			 * basis when it encounters pages undergoing async
2612 			 * I/O.
2613 			 */
2614 			int flags;
2615 
2616 			/* no chain wait needed for vnode objects */
2617 			vm_object_reference_locked(object);
2618 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2619 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2620 			flags |= invalidate ? OBJPC_INVAL : 0;
2621 
2622 			/*
2623 			 * When operating on a virtual page table just
2624 			 * flush the whole object.  XXX we probably ought
2625 			 * to
2626 			 */
2627 			switch(current->maptype) {
2628 			case VM_MAPTYPE_NORMAL:
2629 				vm_object_page_clean(object,
2630 				    OFF_TO_IDX(offset),
2631 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2632 				    flags);
2633 				break;
2634 			case VM_MAPTYPE_VPAGETABLE:
2635 				vm_object_page_clean(object, 0, 0, flags);
2636 				break;
2637 			}
2638 			vn_unlock(((struct vnode *)object->handle));
2639 			vm_object_deallocate_locked(object);
2640 		}
2641 		if (object && invalidate &&
2642 		   ((object->type == OBJT_VNODE) ||
2643 		    (object->type == OBJT_DEVICE))) {
2644 			int clean_only =
2645 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2646 			/* no chain wait needed for vnode/device objects */
2647 			vm_object_reference_locked(object);
2648 			switch(current->maptype) {
2649 			case VM_MAPTYPE_NORMAL:
2650 				vm_object_page_remove(object,
2651 				    OFF_TO_IDX(offset),
2652 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2653 				    clean_only);
2654 				break;
2655 			case VM_MAPTYPE_VPAGETABLE:
2656 				vm_object_page_remove(object, 0, 0, clean_only);
2657 				break;
2658 			}
2659 			vm_object_deallocate_locked(object);
2660 		}
2661 		start += size;
2662 		if (object)
2663 			vm_object_drop(object);
2664 	}
2665 
2666 	lwkt_reltoken(&map->token);
2667 	vm_map_unlock_read(map);
2668 
2669 	return (KERN_SUCCESS);
2670 }
2671 
2672 /*
2673  * Make the region specified by this entry pageable.
2674  *
2675  * The vm_map must be exclusively locked.
2676  */
2677 static void
2678 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2679 {
2680 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2681 	entry->wired_count = 0;
2682 	vm_fault_unwire(map, entry);
2683 }
2684 
2685 /*
2686  * Deallocate the given entry from the target map.
2687  *
2688  * The vm_map must be exclusively locked.
2689  */
2690 static void
2691 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2692 {
2693 	vm_map_entry_unlink(map, entry);
2694 	map->size -= entry->end - entry->start;
2695 
2696 	switch(entry->maptype) {
2697 	case VM_MAPTYPE_NORMAL:
2698 	case VM_MAPTYPE_VPAGETABLE:
2699 		vm_object_deallocate(entry->object.vm_object);
2700 		break;
2701 	default:
2702 		break;
2703 	}
2704 
2705 	vm_map_entry_dispose(map, entry, countp);
2706 }
2707 
2708 /*
2709  * Deallocates the given address range from the target map.
2710  *
2711  * The vm_map must be exclusively locked.
2712  */
2713 int
2714 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2715 {
2716 	vm_object_t object;
2717 	vm_map_entry_t entry;
2718 	vm_map_entry_t first_entry;
2719 
2720 	ASSERT_VM_MAP_LOCKED(map);
2721 	lwkt_gettoken(&map->token);
2722 again:
2723 	/*
2724 	 * Find the start of the region, and clip it.  Set entry to point
2725 	 * at the first record containing the requested address or, if no
2726 	 * such record exists, the next record with a greater address.  The
2727 	 * loop will run from this point until a record beyond the termination
2728 	 * address is encountered.
2729 	 *
2730 	 * map->hint must be adjusted to not point to anything we delete,
2731 	 * so set it to the entry prior to the one being deleted.
2732 	 *
2733 	 * GGG see other GGG comment.
2734 	 */
2735 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2736 		entry = first_entry;
2737 		vm_map_clip_start(map, entry, start, countp);
2738 		map->hint = entry->prev;	/* possible problem XXX */
2739 	} else {
2740 		map->hint = first_entry;	/* possible problem XXX */
2741 		entry = first_entry->next;
2742 	}
2743 
2744 	/*
2745 	 * If a hole opens up prior to the current first_free then
2746 	 * adjust first_free.  As with map->hint, map->first_free
2747 	 * cannot be left set to anything we might delete.
2748 	 */
2749 	if (entry == &map->header) {
2750 		map->first_free = &map->header;
2751 	} else if (map->first_free->start >= start) {
2752 		map->first_free = entry->prev;
2753 	}
2754 
2755 	/*
2756 	 * Step through all entries in this region
2757 	 */
2758 	while ((entry != &map->header) && (entry->start < end)) {
2759 		vm_map_entry_t next;
2760 		vm_offset_t s, e;
2761 		vm_pindex_t offidxstart, offidxend, count;
2762 
2763 		/*
2764 		 * If we hit an in-transition entry we have to sleep and
2765 		 * retry.  It's easier (and not really slower) to just retry
2766 		 * since this case occurs so rarely and the hint is already
2767 		 * pointing at the right place.  We have to reset the
2768 		 * start offset so as not to accidently delete an entry
2769 		 * another process just created in vacated space.
2770 		 */
2771 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2772 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2773 			start = entry->start;
2774 			++mycpu->gd_cnt.v_intrans_coll;
2775 			++mycpu->gd_cnt.v_intrans_wait;
2776 			vm_map_transition_wait(map);
2777 			goto again;
2778 		}
2779 		vm_map_clip_end(map, entry, end, countp);
2780 
2781 		s = entry->start;
2782 		e = entry->end;
2783 		next = entry->next;
2784 
2785 		offidxstart = OFF_TO_IDX(entry->offset);
2786 		count = OFF_TO_IDX(e - s);
2787 		object = entry->object.vm_object;
2788 
2789 		/*
2790 		 * Unwire before removing addresses from the pmap; otherwise,
2791 		 * unwiring will put the entries back in the pmap.
2792 		 */
2793 		if (entry->wired_count != 0)
2794 			vm_map_entry_unwire(map, entry);
2795 
2796 		offidxend = offidxstart + count;
2797 
2798 		if (object == &kernel_object) {
2799 			vm_object_hold(object);
2800 			vm_object_page_remove(object, offidxstart,
2801 					      offidxend, FALSE);
2802 			vm_object_drop(object);
2803 		} else if (object && object->type != OBJT_DEFAULT &&
2804 			   object->type != OBJT_SWAP) {
2805 			/*
2806 			 * vnode object routines cannot be chain-locked
2807 			 */
2808 			vm_object_hold(object);
2809 			pmap_remove(map->pmap, s, e);
2810 			vm_object_drop(object);
2811 		} else if (object) {
2812 			vm_object_hold(object);
2813 			vm_object_chain_acquire(object);
2814 			pmap_remove(map->pmap, s, e);
2815 
2816 			if (object != NULL &&
2817 			    object->ref_count != 1 &&
2818 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2819 			     OBJ_ONEMAPPING &&
2820 			    (object->type == OBJT_DEFAULT ||
2821 			     object->type == OBJT_SWAP)) {
2822 				vm_object_collapse(object, NULL);
2823 				vm_object_page_remove(object, offidxstart,
2824 						      offidxend, FALSE);
2825 				if (object->type == OBJT_SWAP) {
2826 					swap_pager_freespace(object,
2827 							     offidxstart,
2828 							     count);
2829 				}
2830 				if (offidxend >= object->size &&
2831 				    offidxstart < object->size) {
2832 					object->size = offidxstart;
2833 				}
2834 			}
2835 			vm_object_chain_release(object);
2836 			vm_object_drop(object);
2837 		}
2838 
2839 		/*
2840 		 * Delete the entry (which may delete the object) only after
2841 		 * removing all pmap entries pointing to its pages.
2842 		 * (Otherwise, its page frames may be reallocated, and any
2843 		 * modify bits will be set in the wrong object!)
2844 		 */
2845 		vm_map_entry_delete(map, entry, countp);
2846 		entry = next;
2847 	}
2848 	lwkt_reltoken(&map->token);
2849 	return (KERN_SUCCESS);
2850 }
2851 
2852 /*
2853  * Remove the given address range from the target map.
2854  * This is the exported form of vm_map_delete.
2855  *
2856  * No requirements.
2857  */
2858 int
2859 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2860 {
2861 	int result;
2862 	int count;
2863 
2864 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2865 	vm_map_lock(map);
2866 	VM_MAP_RANGE_CHECK(map, start, end);
2867 	result = vm_map_delete(map, start, end, &count);
2868 	vm_map_unlock(map);
2869 	vm_map_entry_release(count);
2870 
2871 	return (result);
2872 }
2873 
2874 /*
2875  * Assert that the target map allows the specified privilege on the
2876  * entire address region given.  The entire region must be allocated.
2877  *
2878  * The caller must specify whether the vm_map is already locked or not.
2879  */
2880 boolean_t
2881 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2882 			vm_prot_t protection, boolean_t have_lock)
2883 {
2884 	vm_map_entry_t entry;
2885 	vm_map_entry_t tmp_entry;
2886 	boolean_t result;
2887 
2888 	if (have_lock == FALSE)
2889 		vm_map_lock_read(map);
2890 
2891 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2892 		if (have_lock == FALSE)
2893 			vm_map_unlock_read(map);
2894 		return (FALSE);
2895 	}
2896 	entry = tmp_entry;
2897 
2898 	result = TRUE;
2899 	while (start < end) {
2900 		if (entry == &map->header) {
2901 			result = FALSE;
2902 			break;
2903 		}
2904 		/*
2905 		 * No holes allowed!
2906 		 */
2907 
2908 		if (start < entry->start) {
2909 			result = FALSE;
2910 			break;
2911 		}
2912 		/*
2913 		 * Check protection associated with entry.
2914 		 */
2915 
2916 		if ((entry->protection & protection) != protection) {
2917 			result = FALSE;
2918 			break;
2919 		}
2920 		/* go to next entry */
2921 
2922 		start = entry->end;
2923 		entry = entry->next;
2924 	}
2925 	if (have_lock == FALSE)
2926 		vm_map_unlock_read(map);
2927 	return (result);
2928 }
2929 
2930 /*
2931  * If appropriate this function shadows the original object with a new object
2932  * and moves the VM pages from the original object to the new object.
2933  * The original object will also be collapsed, if possible.
2934  *
2935  * We can only do this for normal memory objects with a single mapping, and
2936  * it only makes sense to do it if there are 2 or more refs on the original
2937  * object.  i.e. typically a memory object that has been extended into
2938  * multiple vm_map_entry's with non-overlapping ranges.
2939  *
2940  * This makes it easier to remove unused pages and keeps object inheritance
2941  * from being a negative impact on memory usage.
2942  *
2943  * On return the (possibly new) entry->object.vm_object will have an
2944  * additional ref on it for the caller to dispose of (usually by cloning
2945  * the vm_map_entry).  The additional ref had to be done in this routine
2946  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2947  * cleared.
2948  *
2949  * The vm_map must be locked and its token held.
2950  */
2951 static void
2952 vm_map_split(vm_map_entry_t entry)
2953 {
2954 #if 0
2955 	/* UNOPTIMIZED */
2956 	vm_object_t oobject;
2957 
2958 	oobject = entry->object.vm_object;
2959 	vm_object_hold(oobject);
2960 	vm_object_chain_wait(oobject);
2961 	vm_object_reference_locked(oobject);
2962 	vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2963 	vm_object_drop(oobject);
2964 #else
2965 	/* OPTIMIZED */
2966 	vm_object_t oobject, nobject, bobject;
2967 	vm_offset_t s, e;
2968 	vm_page_t m;
2969 	vm_pindex_t offidxstart, offidxend, idx;
2970 	vm_size_t size;
2971 	vm_ooffset_t offset;
2972 
2973 	/*
2974 	 * Setup.  Chain lock the original object throughout the entire
2975 	 * routine to prevent new page faults from occuring.
2976 	 *
2977 	 * XXX can madvise WILLNEED interfere with us too?
2978 	 */
2979 	oobject = entry->object.vm_object;
2980 	vm_object_hold(oobject);
2981 	vm_object_chain_acquire(oobject);
2982 
2983 	/*
2984 	 * Original object cannot be split?
2985 	 */
2986 	if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
2987 					oobject->type != OBJT_SWAP)) {
2988 		vm_object_chain_release(oobject);
2989 		vm_object_reference_locked(oobject);
2990 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2991 		vm_object_drop(oobject);
2992 		return;
2993 	}
2994 
2995 	/*
2996 	 * Collapse original object with its backing store as an
2997 	 * optimization to reduce chain lengths when possible.
2998 	 *
2999 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3000 	 * for oobject, so there's no point collapsing it.
3001 	 *
3002 	 * Then re-check whether the object can be split.
3003 	 */
3004 	vm_object_collapse(oobject, NULL);
3005 
3006 	if (oobject->ref_count <= 1 ||
3007 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3008 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3009 		vm_object_chain_release(oobject);
3010 		vm_object_reference_locked(oobject);
3011 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3012 		vm_object_drop(oobject);
3013 		return;
3014 	}
3015 
3016 	/*
3017 	 * Acquire the chain lock on the backing object.
3018 	 *
3019 	 * Give bobject an additional ref count for when it will be shadowed
3020 	 * by nobject.
3021 	 */
3022 	if ((bobject = oobject->backing_object) != NULL) {
3023 		vm_object_hold(bobject);
3024 		vm_object_chain_wait(bobject);
3025 		vm_object_reference_locked(bobject);
3026 		vm_object_chain_acquire(bobject);
3027 		KKASSERT(bobject->backing_object == bobject);
3028 		KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3029 	}
3030 
3031 	/*
3032 	 * Calculate the object page range and allocate the new object.
3033 	 */
3034 	offset = entry->offset;
3035 	s = entry->start;
3036 	e = entry->end;
3037 
3038 	offidxstart = OFF_TO_IDX(offset);
3039 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3040 	size = offidxend - offidxstart;
3041 
3042 	switch(oobject->type) {
3043 	case OBJT_DEFAULT:
3044 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3045 					      VM_PROT_ALL, 0);
3046 		break;
3047 	case OBJT_SWAP:
3048 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3049 					   VM_PROT_ALL, 0);
3050 		break;
3051 	default:
3052 		/* not reached */
3053 		nobject = NULL;
3054 		KKASSERT(0);
3055 	}
3056 
3057 	if (nobject == NULL) {
3058 		if (bobject) {
3059 			vm_object_chain_release(bobject);
3060 			vm_object_deallocate(bobject);
3061 			vm_object_drop(bobject);
3062 		}
3063 		vm_object_chain_release(oobject);
3064 		vm_object_reference_locked(oobject);
3065 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3066 		vm_object_drop(oobject);
3067 		return;
3068 	}
3069 
3070 	/*
3071 	 * The new object will replace entry->object.vm_object so it needs
3072 	 * a second reference (the caller expects an additional ref).
3073 	 */
3074 	vm_object_hold(nobject);
3075 	vm_object_reference_locked(nobject);
3076 	vm_object_chain_acquire(nobject);
3077 
3078 	/*
3079 	 * nobject shadows bobject (oobject already shadows bobject).
3080 	 */
3081 	if (bobject) {
3082 		nobject->backing_object_offset =
3083 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3084 		nobject->backing_object = bobject;
3085 		bobject->shadow_count++;
3086 		bobject->generation++;
3087 		LIST_INSERT_HEAD(&bobject->shadow_head, nobject, shadow_list);
3088 		vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /* XXX? */
3089 		vm_object_chain_release(bobject);
3090 		vm_object_drop(bobject);
3091 	}
3092 
3093 	/*
3094 	 * Move the VM pages from oobject to nobject
3095 	 */
3096 	for (idx = 0; idx < size; idx++) {
3097 		vm_page_t m;
3098 
3099 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3100 					     TRUE, "vmpg");
3101 		if (m == NULL)
3102 			continue;
3103 
3104 		/*
3105 		 * We must wait for pending I/O to complete before we can
3106 		 * rename the page.
3107 		 *
3108 		 * We do not have to VM_PROT_NONE the page as mappings should
3109 		 * not be changed by this operation.
3110 		 *
3111 		 * NOTE: The act of renaming a page updates chaingen for both
3112 		 *	 objects.
3113 		 */
3114 		vm_page_rename(m, nobject, idx);
3115 		/* page automatically made dirty by rename and cache handled */
3116 		/* page remains busy */
3117 	}
3118 
3119 	if (oobject->type == OBJT_SWAP) {
3120 		vm_object_pip_add(oobject, 1);
3121 		/*
3122 		 * copy oobject pages into nobject and destroy unneeded
3123 		 * pages in shadow object.
3124 		 */
3125 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3126 		vm_object_pip_wakeup(oobject);
3127 	}
3128 
3129 	/*
3130 	 * Wakeup the pages we played with.  No spl protection is needed
3131 	 * for a simple wakeup.
3132 	 */
3133 	for (idx = 0; idx < size; idx++) {
3134 		m = vm_page_lookup(nobject, idx);
3135 		if (m) {
3136 			KKASSERT(m->flags & PG_BUSY);
3137 			vm_page_wakeup(m);
3138 		}
3139 	}
3140 	entry->object.vm_object = nobject;
3141 	entry->offset = 0LL;
3142 
3143 	/*
3144 	 * Cleanup
3145 	 *
3146 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3147 	 *	 related pages were moved and are no longer applicable to the
3148 	 *	 original object.
3149 	 *
3150 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3151 	 *	 replaced by nobject).
3152 	 */
3153 	vm_object_chain_release(nobject);
3154 	vm_object_drop(nobject);
3155 	if (bobject) {
3156 		vm_object_chain_release(bobject);
3157 		vm_object_drop(bobject);
3158 	}
3159 	vm_object_chain_release(oobject);
3160 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3161 	vm_object_deallocate_locked(oobject);
3162 	vm_object_drop(oobject);
3163 #endif
3164 }
3165 
3166 /*
3167  * Copies the contents of the source entry to the destination
3168  * entry.  The entries *must* be aligned properly.
3169  *
3170  * The vm_maps must be exclusively locked.
3171  * The vm_map's token must be held.
3172  *
3173  * Because the maps are locked no faults can be in progress during the
3174  * operation.
3175  */
3176 static void
3177 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3178 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3179 {
3180 	vm_object_t src_object;
3181 
3182 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3183 		return;
3184 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3185 		return;
3186 
3187 	if (src_entry->wired_count == 0) {
3188 		/*
3189 		 * If the source entry is marked needs_copy, it is already
3190 		 * write-protected.
3191 		 */
3192 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3193 			pmap_protect(src_map->pmap,
3194 			    src_entry->start,
3195 			    src_entry->end,
3196 			    src_entry->protection & ~VM_PROT_WRITE);
3197 		}
3198 
3199 		/*
3200 		 * Make a copy of the object.
3201 		 *
3202 		 * The object must be locked prior to checking the object type
3203 		 * and for the call to vm_object_collapse() and vm_map_split().
3204 		 * We cannot use *_hold() here because the split code will
3205 		 * probably try to destroy the object.  The lock is a pool
3206 		 * token and doesn't care.
3207 		 *
3208 		 * We must bump src_map->timestamp when setting
3209 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3210 		 * to retry, otherwise the concurrent fault might improperly
3211 		 * install a RW pte when its supposed to be a RO(COW) pte.
3212 		 * This race can occur because a vnode-backed fault may have
3213 		 * to temporarily release the map lock.
3214 		 */
3215 		if (src_entry->object.vm_object != NULL) {
3216 			vm_map_split(src_entry);
3217 			src_object = src_entry->object.vm_object;
3218 			dst_entry->object.vm_object = src_object;
3219 			src_entry->eflags |= (MAP_ENTRY_COW |
3220 					      MAP_ENTRY_NEEDS_COPY);
3221 			dst_entry->eflags |= (MAP_ENTRY_COW |
3222 					      MAP_ENTRY_NEEDS_COPY);
3223 			dst_entry->offset = src_entry->offset;
3224 			++src_map->timestamp;
3225 		} else {
3226 			dst_entry->object.vm_object = NULL;
3227 			dst_entry->offset = 0;
3228 		}
3229 
3230 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3231 		    dst_entry->end - dst_entry->start, src_entry->start);
3232 	} else {
3233 		/*
3234 		 * Of course, wired down pages can't be set copy-on-write.
3235 		 * Cause wired pages to be copied into the new map by
3236 		 * simulating faults (the new pages are pageable)
3237 		 */
3238 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3239 	}
3240 }
3241 
3242 /*
3243  * vmspace_fork:
3244  * Create a new process vmspace structure and vm_map
3245  * based on those of an existing process.  The new map
3246  * is based on the old map, according to the inheritance
3247  * values on the regions in that map.
3248  *
3249  * The source map must not be locked.
3250  * No requirements.
3251  */
3252 struct vmspace *
3253 vmspace_fork(struct vmspace *vm1)
3254 {
3255 	struct vmspace *vm2;
3256 	vm_map_t old_map = &vm1->vm_map;
3257 	vm_map_t new_map;
3258 	vm_map_entry_t old_entry;
3259 	vm_map_entry_t new_entry;
3260 	vm_object_t object;
3261 	int count;
3262 
3263 	lwkt_gettoken(&vm1->vm_map.token);
3264 	vm_map_lock(old_map);
3265 
3266 	/*
3267 	 * XXX Note: upcalls are not copied.
3268 	 */
3269 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3270 	lwkt_gettoken(&vm2->vm_map.token);
3271 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3272 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3273 	new_map = &vm2->vm_map;	/* XXX */
3274 	new_map->timestamp = 1;
3275 
3276 	vm_map_lock(new_map);
3277 
3278 	count = 0;
3279 	old_entry = old_map->header.next;
3280 	while (old_entry != &old_map->header) {
3281 		++count;
3282 		old_entry = old_entry->next;
3283 	}
3284 
3285 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3286 
3287 	old_entry = old_map->header.next;
3288 	while (old_entry != &old_map->header) {
3289 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3290 			panic("vm_map_fork: encountered a submap");
3291 
3292 		switch (old_entry->inheritance) {
3293 		case VM_INHERIT_NONE:
3294 			break;
3295 		case VM_INHERIT_SHARE:
3296 			/*
3297 			 * Clone the entry, creating the shared object if
3298 			 * necessary.
3299 			 */
3300 			if (old_entry->object.vm_object == NULL)
3301 				vm_map_entry_allocate_object(old_entry);
3302 
3303 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3304 				/*
3305 				 * Shadow a map_entry which needs a copy,
3306 				 * replacing its object with a new object
3307 				 * that points to the old one.  Ask the
3308 				 * shadow code to automatically add an
3309 				 * additional ref.  We can't do it afterwords
3310 				 * because we might race a collapse.  The call
3311 				 * to vm_map_entry_shadow() will also clear
3312 				 * OBJ_ONEMAPPING.
3313 				 */
3314 				vm_map_entry_shadow(old_entry, 1);
3315 			} else {
3316 				/*
3317 				 * We will make a shared copy of the object,
3318 				 * and must clear OBJ_ONEMAPPING.
3319 				 *
3320 				 * XXX assert that object.vm_object != NULL
3321 				 *     since we allocate it above.
3322 				 */
3323 				if (old_entry->object.vm_object) {
3324 					object = old_entry->object.vm_object;
3325 					vm_object_hold(object);
3326 					vm_object_chain_wait(object);
3327 					vm_object_reference_locked(object);
3328 					vm_object_clear_flag(object,
3329 							     OBJ_ONEMAPPING);
3330 					vm_object_drop(object);
3331 				}
3332 			}
3333 
3334 			/*
3335 			 * Clone the entry.  We've already bumped the ref on
3336 			 * any vm_object.
3337 			 */
3338 			new_entry = vm_map_entry_create(new_map, &count);
3339 			*new_entry = *old_entry;
3340 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3341 			new_entry->wired_count = 0;
3342 
3343 			/*
3344 			 * Insert the entry into the new map -- we know we're
3345 			 * inserting at the end of the new map.
3346 			 */
3347 
3348 			vm_map_entry_link(new_map, new_map->header.prev,
3349 					  new_entry);
3350 
3351 			/*
3352 			 * Update the physical map
3353 			 */
3354 			pmap_copy(new_map->pmap, old_map->pmap,
3355 			    new_entry->start,
3356 			    (old_entry->end - old_entry->start),
3357 			    old_entry->start);
3358 			break;
3359 		case VM_INHERIT_COPY:
3360 			/*
3361 			 * Clone the entry and link into the map.
3362 			 */
3363 			new_entry = vm_map_entry_create(new_map, &count);
3364 			*new_entry = *old_entry;
3365 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3366 			new_entry->wired_count = 0;
3367 			new_entry->object.vm_object = NULL;
3368 			vm_map_entry_link(new_map, new_map->header.prev,
3369 					  new_entry);
3370 			vm_map_copy_entry(old_map, new_map, old_entry,
3371 					  new_entry);
3372 			break;
3373 		}
3374 		old_entry = old_entry->next;
3375 	}
3376 
3377 	new_map->size = old_map->size;
3378 	vm_map_unlock(old_map);
3379 	vm_map_unlock(new_map);
3380 	vm_map_entry_release(count);
3381 
3382 	lwkt_reltoken(&vm2->vm_map.token);
3383 	lwkt_reltoken(&vm1->vm_map.token);
3384 
3385 	return (vm2);
3386 }
3387 
3388 /*
3389  * Create an auto-grow stack entry
3390  *
3391  * No requirements.
3392  */
3393 int
3394 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3395 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3396 {
3397 	vm_map_entry_t	prev_entry;
3398 	vm_map_entry_t	new_stack_entry;
3399 	vm_size_t	init_ssize;
3400 	int		rv;
3401 	int		count;
3402 	vm_offset_t	tmpaddr;
3403 
3404 	cow |= MAP_IS_STACK;
3405 
3406 	if (max_ssize < sgrowsiz)
3407 		init_ssize = max_ssize;
3408 	else
3409 		init_ssize = sgrowsiz;
3410 
3411 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3412 	vm_map_lock(map);
3413 
3414 	/*
3415 	 * Find space for the mapping
3416 	 */
3417 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3418 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3419 				     flags, &tmpaddr)) {
3420 			vm_map_unlock(map);
3421 			vm_map_entry_release(count);
3422 			return (KERN_NO_SPACE);
3423 		}
3424 		addrbos = tmpaddr;
3425 	}
3426 
3427 	/* If addr is already mapped, no go */
3428 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3429 		vm_map_unlock(map);
3430 		vm_map_entry_release(count);
3431 		return (KERN_NO_SPACE);
3432 	}
3433 
3434 #if 0
3435 	/* XXX already handled by kern_mmap() */
3436 	/* If we would blow our VMEM resource limit, no go */
3437 	if (map->size + init_ssize >
3438 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3439 		vm_map_unlock(map);
3440 		vm_map_entry_release(count);
3441 		return (KERN_NO_SPACE);
3442 	}
3443 #endif
3444 
3445 	/*
3446 	 * If we can't accomodate max_ssize in the current mapping,
3447 	 * no go.  However, we need to be aware that subsequent user
3448 	 * mappings might map into the space we have reserved for
3449 	 * stack, and currently this space is not protected.
3450 	 *
3451 	 * Hopefully we will at least detect this condition
3452 	 * when we try to grow the stack.
3453 	 */
3454 	if ((prev_entry->next != &map->header) &&
3455 	    (prev_entry->next->start < addrbos + max_ssize)) {
3456 		vm_map_unlock(map);
3457 		vm_map_entry_release(count);
3458 		return (KERN_NO_SPACE);
3459 	}
3460 
3461 	/*
3462 	 * We initially map a stack of only init_ssize.  We will
3463 	 * grow as needed later.  Since this is to be a grow
3464 	 * down stack, we map at the top of the range.
3465 	 *
3466 	 * Note: we would normally expect prot and max to be
3467 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3468 	 * eliminate these as input parameters, and just
3469 	 * pass these values here in the insert call.
3470 	 */
3471 	rv = vm_map_insert(map, &count,
3472 			   NULL, 0, addrbos + max_ssize - init_ssize,
3473 	                   addrbos + max_ssize,
3474 			   VM_MAPTYPE_NORMAL,
3475 			   prot, max,
3476 			   cow);
3477 
3478 	/* Now set the avail_ssize amount */
3479 	if (rv == KERN_SUCCESS) {
3480 		if (prev_entry != &map->header)
3481 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3482 		new_stack_entry = prev_entry->next;
3483 		if (new_stack_entry->end   != addrbos + max_ssize ||
3484 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3485 			panic ("Bad entry start/end for new stack entry");
3486 		else
3487 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3488 	}
3489 
3490 	vm_map_unlock(map);
3491 	vm_map_entry_release(count);
3492 	return (rv);
3493 }
3494 
3495 /*
3496  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3497  * desired address is already mapped, or if we successfully grow
3498  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3499  * stack range (this is strange, but preserves compatibility with
3500  * the grow function in vm_machdep.c).
3501  *
3502  * No requirements.
3503  */
3504 int
3505 vm_map_growstack (struct proc *p, vm_offset_t addr)
3506 {
3507 	vm_map_entry_t prev_entry;
3508 	vm_map_entry_t stack_entry;
3509 	vm_map_entry_t new_stack_entry;
3510 	struct vmspace *vm = p->p_vmspace;
3511 	vm_map_t map = &vm->vm_map;
3512 	vm_offset_t    end;
3513 	int grow_amount;
3514 	int rv = KERN_SUCCESS;
3515 	int is_procstack;
3516 	int use_read_lock = 1;
3517 	int count;
3518 
3519 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3520 Retry:
3521 	if (use_read_lock)
3522 		vm_map_lock_read(map);
3523 	else
3524 		vm_map_lock(map);
3525 
3526 	/* If addr is already in the entry range, no need to grow.*/
3527 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3528 		goto done;
3529 
3530 	if ((stack_entry = prev_entry->next) == &map->header)
3531 		goto done;
3532 	if (prev_entry == &map->header)
3533 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3534 	else
3535 		end = prev_entry->end;
3536 
3537 	/*
3538 	 * This next test mimics the old grow function in vm_machdep.c.
3539 	 * It really doesn't quite make sense, but we do it anyway
3540 	 * for compatibility.
3541 	 *
3542 	 * If not growable stack, return success.  This signals the
3543 	 * caller to proceed as he would normally with normal vm.
3544 	 */
3545 	if (stack_entry->aux.avail_ssize < 1 ||
3546 	    addr >= stack_entry->start ||
3547 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3548 		goto done;
3549 	}
3550 
3551 	/* Find the minimum grow amount */
3552 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3553 	if (grow_amount > stack_entry->aux.avail_ssize) {
3554 		rv = KERN_NO_SPACE;
3555 		goto done;
3556 	}
3557 
3558 	/*
3559 	 * If there is no longer enough space between the entries
3560 	 * nogo, and adjust the available space.  Note: this
3561 	 * should only happen if the user has mapped into the
3562 	 * stack area after the stack was created, and is
3563 	 * probably an error.
3564 	 *
3565 	 * This also effectively destroys any guard page the user
3566 	 * might have intended by limiting the stack size.
3567 	 */
3568 	if (grow_amount > stack_entry->start - end) {
3569 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3570 			/* lost lock */
3571 			use_read_lock = 0;
3572 			goto Retry;
3573 		}
3574 		use_read_lock = 0;
3575 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3576 		rv = KERN_NO_SPACE;
3577 		goto done;
3578 	}
3579 
3580 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3581 
3582 	/* If this is the main process stack, see if we're over the
3583 	 * stack limit.
3584 	 */
3585 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3586 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3587 		rv = KERN_NO_SPACE;
3588 		goto done;
3589 	}
3590 
3591 	/* Round up the grow amount modulo SGROWSIZ */
3592 	grow_amount = roundup (grow_amount, sgrowsiz);
3593 	if (grow_amount > stack_entry->aux.avail_ssize) {
3594 		grow_amount = stack_entry->aux.avail_ssize;
3595 	}
3596 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3597 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3598 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3599 		              ctob(vm->vm_ssize);
3600 	}
3601 
3602 	/* If we would blow our VMEM resource limit, no go */
3603 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3604 		rv = KERN_NO_SPACE;
3605 		goto done;
3606 	}
3607 
3608 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3609 		/* lost lock */
3610 		use_read_lock = 0;
3611 		goto Retry;
3612 	}
3613 	use_read_lock = 0;
3614 
3615 	/* Get the preliminary new entry start value */
3616 	addr = stack_entry->start - grow_amount;
3617 
3618 	/* If this puts us into the previous entry, cut back our growth
3619 	 * to the available space.  Also, see the note above.
3620 	 */
3621 	if (addr < end) {
3622 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3623 		addr = end;
3624 	}
3625 
3626 	rv = vm_map_insert(map, &count,
3627 			   NULL, 0, addr, stack_entry->start,
3628 			   VM_MAPTYPE_NORMAL,
3629 			   VM_PROT_ALL, VM_PROT_ALL,
3630 			   0);
3631 
3632 	/* Adjust the available stack space by the amount we grew. */
3633 	if (rv == KERN_SUCCESS) {
3634 		if (prev_entry != &map->header)
3635 			vm_map_clip_end(map, prev_entry, addr, &count);
3636 		new_stack_entry = prev_entry->next;
3637 		if (new_stack_entry->end   != stack_entry->start  ||
3638 		    new_stack_entry->start != addr)
3639 			panic ("Bad stack grow start/end in new stack entry");
3640 		else {
3641 			new_stack_entry->aux.avail_ssize =
3642 				stack_entry->aux.avail_ssize -
3643 				(new_stack_entry->end - new_stack_entry->start);
3644 			if (is_procstack)
3645 				vm->vm_ssize += btoc(new_stack_entry->end -
3646 						     new_stack_entry->start);
3647 		}
3648 
3649 		if (map->flags & MAP_WIREFUTURE)
3650 			vm_map_unwire(map, new_stack_entry->start,
3651 				      new_stack_entry->end, FALSE);
3652 	}
3653 
3654 done:
3655 	if (use_read_lock)
3656 		vm_map_unlock_read(map);
3657 	else
3658 		vm_map_unlock(map);
3659 	vm_map_entry_release(count);
3660 	return (rv);
3661 }
3662 
3663 /*
3664  * Unshare the specified VM space for exec.  If other processes are
3665  * mapped to it, then create a new one.  The new vmspace is null.
3666  *
3667  * No requirements.
3668  */
3669 void
3670 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3671 {
3672 	struct vmspace *oldvmspace = p->p_vmspace;
3673 	struct vmspace *newvmspace;
3674 	vm_map_t map = &p->p_vmspace->vm_map;
3675 
3676 	/*
3677 	 * If we are execing a resident vmspace we fork it, otherwise
3678 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3679 	 * are not copied to the new vmspace.
3680 	 */
3681 	lwkt_gettoken(&oldvmspace->vm_map.token);
3682 	if (vmcopy)  {
3683 		newvmspace = vmspace_fork(vmcopy);
3684 		lwkt_gettoken(&newvmspace->vm_map.token);
3685 	} else {
3686 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3687 		lwkt_gettoken(&newvmspace->vm_map.token);
3688 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3689 		      (caddr_t)&oldvmspace->vm_endcopy -
3690 		       (caddr_t)&oldvmspace->vm_startcopy);
3691 	}
3692 
3693 	/*
3694 	 * Finish initializing the vmspace before assigning it
3695 	 * to the process.  The vmspace will become the current vmspace
3696 	 * if p == curproc.
3697 	 */
3698 	pmap_pinit2(vmspace_pmap(newvmspace));
3699 	pmap_replacevm(p, newvmspace, 0);
3700 	lwkt_reltoken(&newvmspace->vm_map.token);
3701 	lwkt_reltoken(&oldvmspace->vm_map.token);
3702 	vmspace_free(oldvmspace);
3703 }
3704 
3705 /*
3706  * Unshare the specified VM space for forcing COW.  This
3707  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3708  */
3709 void
3710 vmspace_unshare(struct proc *p)
3711 {
3712 	struct vmspace *oldvmspace = p->p_vmspace;
3713 	struct vmspace *newvmspace;
3714 
3715 	lwkt_gettoken(&oldvmspace->vm_map.token);
3716 	if (oldvmspace->vm_sysref.refcnt == 1) {
3717 		lwkt_reltoken(&oldvmspace->vm_map.token);
3718 		return;
3719 	}
3720 	newvmspace = vmspace_fork(oldvmspace);
3721 	lwkt_gettoken(&newvmspace->vm_map.token);
3722 	pmap_pinit2(vmspace_pmap(newvmspace));
3723 	pmap_replacevm(p, newvmspace, 0);
3724 	lwkt_reltoken(&newvmspace->vm_map.token);
3725 	lwkt_reltoken(&oldvmspace->vm_map.token);
3726 	vmspace_free(oldvmspace);
3727 }
3728 
3729 /*
3730  * vm_map_hint: return the beginning of the best area suitable for
3731  * creating a new mapping with "prot" protection.
3732  *
3733  * No requirements.
3734  */
3735 vm_offset_t
3736 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3737 {
3738 	struct vmspace *vms = p->p_vmspace;
3739 
3740 	if (!randomize_mmap) {
3741 		/*
3742 		 * Set a reasonable start point for the hint if it was
3743 		 * not specified or if it falls within the heap space.
3744 		 * Hinted mmap()s do not allocate out of the heap space.
3745 		 */
3746 		if (addr == 0 ||
3747 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3748 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3749 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3750 		}
3751 
3752 		return addr;
3753 	}
3754 
3755 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3756 		return addr;
3757 
3758 #ifdef notyet
3759 #ifdef __i386__
3760 	/*
3761 	 * If executable skip first two pages, otherwise start
3762 	 * after data + heap region.
3763 	 */
3764 	if ((prot & VM_PROT_EXECUTE) &&
3765 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3766 		addr = (PAGE_SIZE * 2) +
3767 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3768 		return (round_page(addr));
3769 	}
3770 #endif /* __i386__ */
3771 #endif /* notyet */
3772 
3773 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3774 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3775 
3776 	return (round_page(addr));
3777 }
3778 
3779 /*
3780  * Finds the VM object, offset, and protection for a given virtual address
3781  * in the specified map, assuming a page fault of the type specified.
3782  *
3783  * Leaves the map in question locked for read; return values are guaranteed
3784  * until a vm_map_lookup_done call is performed.  Note that the map argument
3785  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3786  *
3787  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3788  * that fast.
3789  *
3790  * If a lookup is requested with "write protection" specified, the map may
3791  * be changed to perform virtual copying operations, although the data
3792  * referenced will remain the same.
3793  *
3794  * No requirements.
3795  */
3796 int
3797 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3798 	      vm_offset_t vaddr,
3799 	      vm_prot_t fault_typea,
3800 	      vm_map_entry_t *out_entry,	/* OUT */
3801 	      vm_object_t *object,		/* OUT */
3802 	      vm_pindex_t *pindex,		/* OUT */
3803 	      vm_prot_t *out_prot,		/* OUT */
3804 	      boolean_t *wired)			/* OUT */
3805 {
3806 	vm_map_entry_t entry;
3807 	vm_map_t map = *var_map;
3808 	vm_prot_t prot;
3809 	vm_prot_t fault_type = fault_typea;
3810 	int use_read_lock = 1;
3811 	int rv = KERN_SUCCESS;
3812 
3813 RetryLookup:
3814 	if (use_read_lock)
3815 		vm_map_lock_read(map);
3816 	else
3817 		vm_map_lock(map);
3818 
3819 	/*
3820 	 * If the map has an interesting hint, try it before calling full
3821 	 * blown lookup routine.
3822 	 */
3823 	entry = map->hint;
3824 	cpu_ccfence();
3825 	*out_entry = entry;
3826 	*object = NULL;
3827 
3828 	if ((entry == &map->header) ||
3829 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3830 		vm_map_entry_t tmp_entry;
3831 
3832 		/*
3833 		 * Entry was either not a valid hint, or the vaddr was not
3834 		 * contained in the entry, so do a full lookup.
3835 		 */
3836 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3837 			rv = KERN_INVALID_ADDRESS;
3838 			goto done;
3839 		}
3840 
3841 		entry = tmp_entry;
3842 		*out_entry = entry;
3843 	}
3844 
3845 	/*
3846 	 * Handle submaps.
3847 	 */
3848 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3849 		vm_map_t old_map = map;
3850 
3851 		*var_map = map = entry->object.sub_map;
3852 		if (use_read_lock)
3853 			vm_map_unlock_read(old_map);
3854 		else
3855 			vm_map_unlock(old_map);
3856 		use_read_lock = 1;
3857 		goto RetryLookup;
3858 	}
3859 
3860 	/*
3861 	 * Check whether this task is allowed to have this page.
3862 	 * Note the special case for MAP_ENTRY_COW
3863 	 * pages with an override.  This is to implement a forced
3864 	 * COW for debuggers.
3865 	 */
3866 
3867 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3868 		prot = entry->max_protection;
3869 	else
3870 		prot = entry->protection;
3871 
3872 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3873 	if ((fault_type & prot) != fault_type) {
3874 		rv = KERN_PROTECTION_FAILURE;
3875 		goto done;
3876 	}
3877 
3878 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3879 	    (entry->eflags & MAP_ENTRY_COW) &&
3880 	    (fault_type & VM_PROT_WRITE) &&
3881 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3882 		rv = KERN_PROTECTION_FAILURE;
3883 		goto done;
3884 	}
3885 
3886 	/*
3887 	 * If this page is not pageable, we have to get it for all possible
3888 	 * accesses.
3889 	 */
3890 	*wired = (entry->wired_count != 0);
3891 	if (*wired)
3892 		prot = fault_type = entry->protection;
3893 
3894 	/*
3895 	 * Virtual page tables may need to update the accessed (A) bit
3896 	 * in a page table entry.  Upgrade the fault to a write fault for
3897 	 * that case if the map will support it.  If the map does not support
3898 	 * it the page table entry simply will not be updated.
3899 	 */
3900 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3901 		if (prot & VM_PROT_WRITE)
3902 			fault_type |= VM_PROT_WRITE;
3903 	}
3904 
3905 	/*
3906 	 * If the entry was copy-on-write, we either ...
3907 	 */
3908 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3909 		/*
3910 		 * If we want to write the page, we may as well handle that
3911 		 * now since we've got the map locked.
3912 		 *
3913 		 * If we don't need to write the page, we just demote the
3914 		 * permissions allowed.
3915 		 */
3916 
3917 		if (fault_type & VM_PROT_WRITE) {
3918 			/*
3919 			 * Make a new object, and place it in the object
3920 			 * chain.  Note that no new references have appeared
3921 			 * -- one just moved from the map to the new
3922 			 * object.
3923 			 */
3924 
3925 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3926 				/* lost lock */
3927 				use_read_lock = 0;
3928 				goto RetryLookup;
3929 			}
3930 			use_read_lock = 0;
3931 
3932 			vm_map_entry_shadow(entry, 0);
3933 		} else {
3934 			/*
3935 			 * We're attempting to read a copy-on-write page --
3936 			 * don't allow writes.
3937 			 */
3938 
3939 			prot &= ~VM_PROT_WRITE;
3940 		}
3941 	}
3942 
3943 	/*
3944 	 * Create an object if necessary.
3945 	 */
3946 	if (entry->object.vm_object == NULL && !map->system_map) {
3947 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3948 			/* lost lock */
3949 			use_read_lock = 0;
3950 			goto RetryLookup;
3951 		}
3952 		use_read_lock = 0;
3953 		vm_map_entry_allocate_object(entry);
3954 	}
3955 
3956 	/*
3957 	 * Return the object/offset from this entry.  If the entry was
3958 	 * copy-on-write or empty, it has been fixed up.
3959 	 */
3960 
3961 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3962 	*object = entry->object.vm_object;
3963 
3964 	/*
3965 	 * Return whether this is the only map sharing this data.  On
3966 	 * success we return with a read lock held on the map.  On failure
3967 	 * we return with the map unlocked.
3968 	 */
3969 	*out_prot = prot;
3970 done:
3971 	if (rv == KERN_SUCCESS) {
3972 		if (use_read_lock == 0)
3973 			vm_map_lock_downgrade(map);
3974 	} else if (use_read_lock) {
3975 		vm_map_unlock_read(map);
3976 	} else {
3977 		vm_map_unlock(map);
3978 	}
3979 	return (rv);
3980 }
3981 
3982 /*
3983  * Releases locks acquired by a vm_map_lookup()
3984  * (according to the handle returned by that lookup).
3985  *
3986  * No other requirements.
3987  */
3988 void
3989 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3990 {
3991 	/*
3992 	 * Unlock the main-level map
3993 	 */
3994 	vm_map_unlock_read(map);
3995 	if (count)
3996 		vm_map_entry_release(count);
3997 }
3998 
3999 #include "opt_ddb.h"
4000 #ifdef DDB
4001 #include <sys/kernel.h>
4002 
4003 #include <ddb/ddb.h>
4004 
4005 /*
4006  * Debugging only
4007  */
4008 DB_SHOW_COMMAND(map, vm_map_print)
4009 {
4010 	static int nlines;
4011 	/* XXX convert args. */
4012 	vm_map_t map = (vm_map_t)addr;
4013 	boolean_t full = have_addr;
4014 
4015 	vm_map_entry_t entry;
4016 
4017 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4018 	    (void *)map,
4019 	    (void *)map->pmap, map->nentries, map->timestamp);
4020 	nlines++;
4021 
4022 	if (!full && db_indent)
4023 		return;
4024 
4025 	db_indent += 2;
4026 	for (entry = map->header.next; entry != &map->header;
4027 	    entry = entry->next) {
4028 		db_iprintf("map entry %p: start=%p, end=%p\n",
4029 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4030 		nlines++;
4031 		{
4032 			static char *inheritance_name[4] =
4033 			{"share", "copy", "none", "donate_copy"};
4034 
4035 			db_iprintf(" prot=%x/%x/%s",
4036 			    entry->protection,
4037 			    entry->max_protection,
4038 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4039 			if (entry->wired_count != 0)
4040 				db_printf(", wired");
4041 		}
4042 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4043 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4044 			db_printf(", share=%p, offset=0x%lx\n",
4045 			    (void *)entry->object.sub_map,
4046 			    (long)entry->offset);
4047 			nlines++;
4048 			if ((entry->prev == &map->header) ||
4049 			    (entry->prev->object.sub_map !=
4050 				entry->object.sub_map)) {
4051 				db_indent += 2;
4052 				vm_map_print((db_expr_t)(intptr_t)
4053 					     entry->object.sub_map,
4054 					     full, 0, NULL);
4055 				db_indent -= 2;
4056 			}
4057 		} else {
4058 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4059 			db_printf(", object=%p, offset=0x%lx",
4060 			    (void *)entry->object.vm_object,
4061 			    (long)entry->offset);
4062 			if (entry->eflags & MAP_ENTRY_COW)
4063 				db_printf(", copy (%s)",
4064 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4065 			db_printf("\n");
4066 			nlines++;
4067 
4068 			if ((entry->prev == &map->header) ||
4069 			    (entry->prev->object.vm_object !=
4070 				entry->object.vm_object)) {
4071 				db_indent += 2;
4072 				vm_object_print((db_expr_t)(intptr_t)
4073 						entry->object.vm_object,
4074 						full, 0, NULL);
4075 				nlines += 4;
4076 				db_indent -= 2;
4077 			}
4078 		}
4079 	}
4080 	db_indent -= 2;
4081 	if (db_indent == 0)
4082 		nlines = 0;
4083 }
4084 
4085 /*
4086  * Debugging only
4087  */
4088 DB_SHOW_COMMAND(procvm, procvm)
4089 {
4090 	struct proc *p;
4091 
4092 	if (have_addr) {
4093 		p = (struct proc *) addr;
4094 	} else {
4095 		p = curproc;
4096 	}
4097 
4098 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4099 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4100 	    (void *)vmspace_pmap(p->p_vmspace));
4101 
4102 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4103 }
4104 
4105 #endif /* DDB */
4106