xref: /dragonfly/sys/vm/vm_map.c (revision 6e285212)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.2 2003/06/17 04:29:00 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_zone.h>
92 
93 /*
94  *	Virtual memory maps provide for the mapping, protection,
95  *	and sharing of virtual memory objects.  In addition,
96  *	this module provides for an efficient virtual copy of
97  *	memory from one map to another.
98  *
99  *	Synchronization is required prior to most operations.
100  *
101  *	Maps consist of an ordered doubly-linked list of simple
102  *	entries; a single hint is used to speed up lookups.
103  *
104  *	Since portions of maps are specified by start/end addresses,
105  *	which may not align with existing map entries, all
106  *	routines merely "clip" entries to these start/end values.
107  *	[That is, an entry is split into two, bordering at a
108  *	start or end value.]  Note that these clippings may not
109  *	always be necessary (as the two resulting entries are then
110  *	not changed); however, the clipping is done for convenience.
111  *
112  *	As mentioned above, virtual copy operations are performed
113  *	by copying VM object references from one map to
114  *	another, and then marking both regions as copy-on-write.
115  */
116 
117 /*
118  *	vm_map_startup:
119  *
120  *	Initialize the vm_map module.  Must be called before
121  *	any other vm_map routines.
122  *
123  *	Map and entry structures are allocated from the general
124  *	purpose memory pool with some exceptions:
125  *
126  *	- The kernel map and kmem submap are allocated statically.
127  *	- Kernel map entries are allocated out of a static pool.
128  *
129  *	These restrictions are necessary since malloc() uses the
130  *	maps and requires map entries.
131  */
132 
133 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
134 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
135 static struct vm_object kmapentobj, mapentobj, mapobj;
136 
137 static struct vm_map_entry map_entry_init[MAX_MAPENT];
138 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
139 static struct vm_map map_init[MAX_KMAP];
140 
141 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
142 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
143 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
144 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
145 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
146 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
147 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
148 		vm_map_entry_t));
149 static void vm_map_split __P((vm_map_entry_t));
150 static void vm_map_unclip_range __P((vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int flags));
151 
152 void
153 vm_map_startup()
154 {
155 	mapzone = &mapzone_store;
156 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
157 		map_init, MAX_KMAP);
158 	kmapentzone = &kmapentzone_store;
159 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
160 		kmap_entry_init, MAX_KMAPENT);
161 	mapentzone = &mapentzone_store;
162 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
163 		map_entry_init, MAX_MAPENT);
164 }
165 
166 /*
167  * Allocate a vmspace structure, including a vm_map and pmap,
168  * and initialize those structures.  The refcnt is set to 1.
169  * The remaining fields must be initialized by the caller.
170  */
171 struct vmspace *
172 vmspace_alloc(min, max)
173 	vm_offset_t min, max;
174 {
175 	struct vmspace *vm;
176 
177 	vm = zalloc(vmspace_zone);
178 	vm_map_init(&vm->vm_map, min, max);
179 	pmap_pinit(vmspace_pmap(vm));
180 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
181 	vm->vm_refcnt = 1;
182 	vm->vm_shm = NULL;
183 	vm->vm_exitingcnt = 0;
184 	return (vm);
185 }
186 
187 void
188 vm_init2(void) {
189 	zinitna(kmapentzone, &kmapentobj,
190 		NULL, 0, lmin((VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE,
191 		cnt.v_page_count) / 8, ZONE_INTERRUPT, 1);
192 	zinitna(mapentzone, &mapentobj,
193 		NULL, 0, 0, 0, 1);
194 	zinitna(mapzone, &mapobj,
195 		NULL, 0, 0, 0, 1);
196 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
197 	pmap_init2();
198 	vm_object_init2();
199 }
200 
201 static __inline void
202 vmspace_dofree(struct vmspace *vm)
203 {
204 	/*
205 	 * Lock the map, to wait out all other references to it.
206 	 * Delete all of the mappings and pages they hold, then call
207 	 * the pmap module to reclaim anything left.
208 	 */
209 	vm_map_lock(&vm->vm_map);
210 	(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
211 	    vm->vm_map.max_offset);
212 	vm_map_unlock(&vm->vm_map);
213 
214 	pmap_release(vmspace_pmap(vm));
215 	zfree(vmspace_zone, vm);
216 }
217 
218 void
219 vmspace_free(struct vmspace *vm)
220 {
221 	if (vm->vm_refcnt == 0)
222 		panic("vmspace_free: attempt to free already freed vmspace");
223 
224 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
225 		vmspace_dofree(vm);
226 }
227 
228 void
229 vmspace_exitfree(struct proc *p)
230 {
231 	struct vmspace *vm;
232 
233 	vm = p->p_vmspace;
234 	p->p_vmspace = NULL;
235 
236 	/*
237 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
238 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
239 	 * exitingcnt may increment above 0 and drop back down to zero
240 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
241 	 * may also increment above 0 and drop back down to zero several
242 	 * times while vm_exitingcnt is held non-zero.
243 	 *
244 	 * The last wait on the exiting child's vmspace will clean up
245 	 * the remainder of the vmspace.
246 	 */
247 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
248 		vmspace_dofree(vm);
249 }
250 
251 /*
252  * vmspace_swap_count() - count the approximate swap useage in pages for a
253  *			  vmspace.
254  *
255  *	Swap useage is determined by taking the proportional swap used by
256  *	VM objects backing the VM map.  To make up for fractional losses,
257  *	if the VM object has any swap use at all the associated map entries
258  *	count for at least 1 swap page.
259  */
260 int
261 vmspace_swap_count(struct vmspace *vmspace)
262 {
263 	vm_map_t map = &vmspace->vm_map;
264 	vm_map_entry_t cur;
265 	int count = 0;
266 
267 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
268 		vm_object_t object;
269 
270 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
271 		    (object = cur->object.vm_object) != NULL &&
272 		    object->type == OBJT_SWAP
273 		) {
274 			int n = (cur->end - cur->start) / PAGE_SIZE;
275 
276 			if (object->un_pager.swp.swp_bcount) {
277 				count += object->un_pager.swp.swp_bcount *
278 				    SWAP_META_PAGES * n / object->size + 1;
279 			}
280 		}
281 	}
282 	return(count);
283 }
284 
285 
286 /*
287  *	vm_map_create:
288  *
289  *	Creates and returns a new empty VM map with
290  *	the given physical map structure, and having
291  *	the given lower and upper address bounds.
292  */
293 vm_map_t
294 vm_map_create(pmap, min, max)
295 	pmap_t pmap;
296 	vm_offset_t min, max;
297 {
298 	vm_map_t result;
299 
300 	result = zalloc(mapzone);
301 	vm_map_init(result, min, max);
302 	result->pmap = pmap;
303 	return (result);
304 }
305 
306 /*
307  * Initialize an existing vm_map structure
308  * such as that in the vmspace structure.
309  * The pmap is set elsewhere.
310  */
311 void
312 vm_map_init(map, min, max)
313 	struct vm_map *map;
314 	vm_offset_t min, max;
315 {
316 	map->header.next = map->header.prev = &map->header;
317 	map->nentries = 0;
318 	map->size = 0;
319 	map->system_map = 0;
320 	map->infork = 0;
321 	map->min_offset = min;
322 	map->max_offset = max;
323 	map->first_free = &map->header;
324 	map->hint = &map->header;
325 	map->timestamp = 0;
326 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
327 }
328 
329 /*
330  *	vm_map_entry_dispose:	[ internal use only ]
331  *
332  *	Inverse of vm_map_entry_create.
333  */
334 static void
335 vm_map_entry_dispose(map, entry)
336 	vm_map_t map;
337 	vm_map_entry_t entry;
338 {
339 	if (map->system_map || !mapentzone)
340 		zfreei(kmapentzone, entry);
341 	else
342 		zfree(mapentzone, entry);
343 }
344 
345 /*
346  *	vm_map_entry_create:	[ internal use only ]
347  *
348  *	Allocates a VM map entry for insertion.
349  *	No entry fields are filled in.  This routine is
350  */
351 static vm_map_entry_t
352 vm_map_entry_create(map)
353 	vm_map_t map;
354 {
355 	vm_map_entry_t new_entry;
356 
357 	if (map->system_map || !mapentzone)
358 		new_entry = zalloci(kmapentzone);
359 	else
360 		new_entry = zalloc(mapentzone);
361 	if (new_entry == NULL)
362 	    panic("vm_map_entry_create: kernel resources exhausted");
363 	return(new_entry);
364 }
365 
366 /*
367  *	vm_map_entry_{un,}link:
368  *
369  *	Insert/remove entries from maps.
370  */
371 static __inline void
372 vm_map_entry_link(vm_map_t map,
373 		  vm_map_entry_t after_where,
374 		  vm_map_entry_t entry)
375 {
376 	map->nentries++;
377 	entry->prev = after_where;
378 	entry->next = after_where->next;
379 	entry->next->prev = entry;
380 	after_where->next = entry;
381 }
382 
383 static __inline void
384 vm_map_entry_unlink(vm_map_t map,
385 		    vm_map_entry_t entry)
386 {
387 	vm_map_entry_t prev;
388 	vm_map_entry_t next;
389 
390 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
391 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
392 	prev = entry->prev;
393 	next = entry->next;
394 	next->prev = prev;
395 	prev->next = next;
396 	map->nentries--;
397 }
398 
399 /*
400  *	SAVE_HINT:
401  *
402  *	Saves the specified entry as the hint for
403  *	future lookups.
404  */
405 #define	SAVE_HINT(map,value) \
406 		(map)->hint = (value);
407 
408 /*
409  *	vm_map_lookup_entry:	[ internal use only ]
410  *
411  *	Finds the map entry containing (or
412  *	immediately preceding) the specified address
413  *	in the given map; the entry is returned
414  *	in the "entry" parameter.  The boolean
415  *	result indicates whether the address is
416  *	actually contained in the map.
417  */
418 boolean_t
419 vm_map_lookup_entry(map, address, entry)
420 	vm_map_t map;
421 	vm_offset_t address;
422 	vm_map_entry_t *entry;	/* OUT */
423 {
424 	vm_map_entry_t cur;
425 	vm_map_entry_t last;
426 
427 	/*
428 	 * Start looking either from the head of the list, or from the hint.
429 	 */
430 
431 	cur = map->hint;
432 
433 	if (cur == &map->header)
434 		cur = cur->next;
435 
436 	if (address >= cur->start) {
437 		/*
438 		 * Go from hint to end of list.
439 		 *
440 		 * But first, make a quick check to see if we are already looking
441 		 * at the entry we want (which is usually the case). Note also
442 		 * that we don't need to save the hint here... it is the same
443 		 * hint (unless we are at the header, in which case the hint
444 		 * didn't buy us anything anyway).
445 		 */
446 		last = &map->header;
447 		if ((cur != last) && (cur->end > address)) {
448 			*entry = cur;
449 			return (TRUE);
450 		}
451 	} else {
452 		/*
453 		 * Go from start to hint, *inclusively*
454 		 */
455 		last = cur->next;
456 		cur = map->header.next;
457 	}
458 
459 	/*
460 	 * Search linearly
461 	 */
462 
463 	while (cur != last) {
464 		if (cur->end > address) {
465 			if (address >= cur->start) {
466 				/*
467 				 * Save this lookup for future hints, and
468 				 * return
469 				 */
470 
471 				*entry = cur;
472 				SAVE_HINT(map, cur);
473 				return (TRUE);
474 			}
475 			break;
476 		}
477 		cur = cur->next;
478 	}
479 	*entry = cur->prev;
480 	SAVE_HINT(map, *entry);
481 	return (FALSE);
482 }
483 
484 /*
485  *	vm_map_insert:
486  *
487  *	Inserts the given whole VM object into the target
488  *	map at the specified address range.  The object's
489  *	size should match that of the address range.
490  *
491  *	Requires that the map be locked, and leaves it so.
492  *
493  *	If object is non-NULL, ref count must be bumped by caller
494  *	prior to making call to account for the new entry.
495  */
496 int
497 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
498 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
499 	      int cow)
500 {
501 	vm_map_entry_t new_entry;
502 	vm_map_entry_t prev_entry;
503 	vm_map_entry_t temp_entry;
504 	vm_eflags_t protoeflags;
505 
506 	/*
507 	 * Check that the start and end points are not bogus.
508 	 */
509 
510 	if ((start < map->min_offset) || (end > map->max_offset) ||
511 	    (start >= end))
512 		return (KERN_INVALID_ADDRESS);
513 
514 	/*
515 	 * Find the entry prior to the proposed starting address; if it's part
516 	 * of an existing entry, this range is bogus.
517 	 */
518 
519 	if (vm_map_lookup_entry(map, start, &temp_entry))
520 		return (KERN_NO_SPACE);
521 
522 	prev_entry = temp_entry;
523 
524 	/*
525 	 * Assert that the next entry doesn't overlap the end point.
526 	 */
527 
528 	if ((prev_entry->next != &map->header) &&
529 	    (prev_entry->next->start < end))
530 		return (KERN_NO_SPACE);
531 
532 	protoeflags = 0;
533 
534 	if (cow & MAP_COPY_ON_WRITE)
535 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
536 
537 	if (cow & MAP_NOFAULT) {
538 		protoeflags |= MAP_ENTRY_NOFAULT;
539 
540 		KASSERT(object == NULL,
541 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
542 	}
543 	if (cow & MAP_DISABLE_SYNCER)
544 		protoeflags |= MAP_ENTRY_NOSYNC;
545 	if (cow & MAP_DISABLE_COREDUMP)
546 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
547 
548 	if (object) {
549 		/*
550 		 * When object is non-NULL, it could be shared with another
551 		 * process.  We have to set or clear OBJ_ONEMAPPING
552 		 * appropriately.
553 		 */
554 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
555 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
556 		}
557 	}
558 	else if ((prev_entry != &map->header) &&
559 		 (prev_entry->eflags == protoeflags) &&
560 		 (prev_entry->end == start) &&
561 		 (prev_entry->wired_count == 0) &&
562 		 ((prev_entry->object.vm_object == NULL) ||
563 		  vm_object_coalesce(prev_entry->object.vm_object,
564 				     OFF_TO_IDX(prev_entry->offset),
565 				     (vm_size_t)(prev_entry->end - prev_entry->start),
566 				     (vm_size_t)(end - prev_entry->end)))) {
567 		/*
568 		 * We were able to extend the object.  Determine if we
569 		 * can extend the previous map entry to include the
570 		 * new range as well.
571 		 */
572 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
573 		    (prev_entry->protection == prot) &&
574 		    (prev_entry->max_protection == max)) {
575 			map->size += (end - prev_entry->end);
576 			prev_entry->end = end;
577 			vm_map_simplify_entry(map, prev_entry);
578 			return (KERN_SUCCESS);
579 		}
580 
581 		/*
582 		 * If we can extend the object but cannot extend the
583 		 * map entry, we have to create a new map entry.  We
584 		 * must bump the ref count on the extended object to
585 		 * account for it.  object may be NULL.
586 		 */
587 		object = prev_entry->object.vm_object;
588 		offset = prev_entry->offset +
589 			(prev_entry->end - prev_entry->start);
590 		vm_object_reference(object);
591 	}
592 
593 	/*
594 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
595 	 * in things like the buffer map where we manage kva but do not manage
596 	 * backing objects.
597 	 */
598 
599 	/*
600 	 * Create a new entry
601 	 */
602 
603 	new_entry = vm_map_entry_create(map);
604 	new_entry->start = start;
605 	new_entry->end = end;
606 
607 	new_entry->eflags = protoeflags;
608 	new_entry->object.vm_object = object;
609 	new_entry->offset = offset;
610 	new_entry->avail_ssize = 0;
611 
612 	new_entry->inheritance = VM_INHERIT_DEFAULT;
613 	new_entry->protection = prot;
614 	new_entry->max_protection = max;
615 	new_entry->wired_count = 0;
616 
617 	/*
618 	 * Insert the new entry into the list
619 	 */
620 
621 	vm_map_entry_link(map, prev_entry, new_entry);
622 	map->size += new_entry->end - new_entry->start;
623 
624 	/*
625 	 * Update the free space hint
626 	 */
627 	if ((map->first_free == prev_entry) &&
628 	    (prev_entry->end >= new_entry->start)) {
629 		map->first_free = new_entry;
630 	}
631 
632 #if 0
633 	/*
634 	 * Temporarily removed to avoid MAP_STACK panic, due to
635 	 * MAP_STACK being a huge hack.  Will be added back in
636 	 * when MAP_STACK (and the user stack mapping) is fixed.
637 	 */
638 	/*
639 	 * It may be possible to simplify the entry
640 	 */
641 	vm_map_simplify_entry(map, new_entry);
642 #endif
643 
644 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
645 		pmap_object_init_pt(map->pmap, start,
646 				    object, OFF_TO_IDX(offset), end - start,
647 				    cow & MAP_PREFAULT_PARTIAL);
648 	}
649 
650 	return (KERN_SUCCESS);
651 }
652 
653 /*
654  * Find sufficient space for `length' bytes in the given map, starting at
655  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
656  */
657 int
658 vm_map_findspace(map, start, length, addr)
659 	vm_map_t map;
660 	vm_offset_t start;
661 	vm_size_t length;
662 	vm_offset_t *addr;
663 {
664 	vm_map_entry_t entry, next;
665 	vm_offset_t end;
666 
667 	if (start < map->min_offset)
668 		start = map->min_offset;
669 	if (start > map->max_offset)
670 		return (1);
671 
672 	/*
673 	 * Look for the first possible address; if there's already something
674 	 * at this address, we have to start after it.
675 	 */
676 	if (start == map->min_offset) {
677 		if ((entry = map->first_free) != &map->header)
678 			start = entry->end;
679 	} else {
680 		vm_map_entry_t tmp;
681 
682 		if (vm_map_lookup_entry(map, start, &tmp))
683 			start = tmp->end;
684 		entry = tmp;
685 	}
686 
687 	/*
688 	 * Look through the rest of the map, trying to fit a new region in the
689 	 * gap between existing regions, or after the very last region.
690 	 */
691 	for (;; start = (entry = next)->end) {
692 		/*
693 		 * Find the end of the proposed new region.  Be sure we didn't
694 		 * go beyond the end of the map, or wrap around the address;
695 		 * if so, we lose.  Otherwise, if this is the last entry, or
696 		 * if the proposed new region fits before the next entry, we
697 		 * win.
698 		 */
699 		end = start + length;
700 		if (end > map->max_offset || end < start)
701 			return (1);
702 		next = entry->next;
703 		if (next == &map->header || next->start >= end)
704 			break;
705 	}
706 	SAVE_HINT(map, entry);
707 	*addr = start;
708 	if (map == kernel_map) {
709 		vm_offset_t ksize;
710 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
711 			pmap_growkernel(ksize);
712 		}
713 	}
714 	return (0);
715 }
716 
717 /*
718  *	vm_map_find finds an unallocated region in the target address
719  *	map with the given length.  The search is defined to be
720  *	first-fit from the specified address; the region found is
721  *	returned in the same parameter.
722  *
723  *	If object is non-NULL, ref count must be bumped by caller
724  *	prior to making call to account for the new entry.
725  */
726 int
727 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
728 	    vm_offset_t *addr,	/* IN/OUT */
729 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
730 	    vm_prot_t max, int cow)
731 {
732 	vm_offset_t start;
733 	int result, s = 0;
734 
735 	start = *addr;
736 
737 	if (map == kmem_map || map == mb_map)
738 		s = splvm();
739 
740 	vm_map_lock(map);
741 	if (find_space) {
742 		if (vm_map_findspace(map, start, length, addr)) {
743 			vm_map_unlock(map);
744 			if (map == kmem_map || map == mb_map)
745 				splx(s);
746 			return (KERN_NO_SPACE);
747 		}
748 		start = *addr;
749 	}
750 	result = vm_map_insert(map, object, offset,
751 		start, start + length, prot, max, cow);
752 	vm_map_unlock(map);
753 
754 	if (map == kmem_map || map == mb_map)
755 		splx(s);
756 
757 	return (result);
758 }
759 
760 /*
761  *	vm_map_simplify_entry:
762  *
763  *	Simplify the given map entry by merging with either neighbor.  This
764  *	routine also has the ability to merge with both neighbors.
765  *
766  *	The map must be locked.
767  *
768  *	This routine guarentees that the passed entry remains valid (though
769  *	possibly extended).  When merging, this routine may delete one or
770  *	both neighbors.  No action is taken on entries which have their
771  *	in-transition flag set.
772  */
773 void
774 vm_map_simplify_entry(map, entry)
775 	vm_map_t map;
776 	vm_map_entry_t entry;
777 {
778 	vm_map_entry_t next, prev;
779 	vm_size_t prevsize, esize;
780 
781 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
782 		++cnt.v_intrans_coll;
783 		return;
784 	}
785 
786 	prev = entry->prev;
787 	if (prev != &map->header) {
788 		prevsize = prev->end - prev->start;
789 		if ( (prev->end == entry->start) &&
790 		     (prev->object.vm_object == entry->object.vm_object) &&
791 		     (!prev->object.vm_object ||
792 			(prev->offset + prevsize == entry->offset)) &&
793 		     (prev->eflags == entry->eflags) &&
794 		     (prev->protection == entry->protection) &&
795 		     (prev->max_protection == entry->max_protection) &&
796 		     (prev->inheritance == entry->inheritance) &&
797 		     (prev->wired_count == entry->wired_count)) {
798 			if (map->first_free == prev)
799 				map->first_free = entry;
800 			if (map->hint == prev)
801 				map->hint = entry;
802 			vm_map_entry_unlink(map, prev);
803 			entry->start = prev->start;
804 			entry->offset = prev->offset;
805 			if (prev->object.vm_object)
806 				vm_object_deallocate(prev->object.vm_object);
807 			vm_map_entry_dispose(map, prev);
808 		}
809 	}
810 
811 	next = entry->next;
812 	if (next != &map->header) {
813 		esize = entry->end - entry->start;
814 		if ((entry->end == next->start) &&
815 		    (next->object.vm_object == entry->object.vm_object) &&
816 		     (!entry->object.vm_object ||
817 			(entry->offset + esize == next->offset)) &&
818 		    (next->eflags == entry->eflags) &&
819 		    (next->protection == entry->protection) &&
820 		    (next->max_protection == entry->max_protection) &&
821 		    (next->inheritance == entry->inheritance) &&
822 		    (next->wired_count == entry->wired_count)) {
823 			if (map->first_free == next)
824 				map->first_free = entry;
825 			if (map->hint == next)
826 				map->hint = entry;
827 			vm_map_entry_unlink(map, next);
828 			entry->end = next->end;
829 			if (next->object.vm_object)
830 				vm_object_deallocate(next->object.vm_object);
831 			vm_map_entry_dispose(map, next);
832 	        }
833 	}
834 }
835 /*
836  *	vm_map_clip_start:	[ internal use only ]
837  *
838  *	Asserts that the given entry begins at or after
839  *	the specified address; if necessary,
840  *	it splits the entry into two.
841  */
842 #define vm_map_clip_start(map, entry, startaddr) \
843 { \
844 	if (startaddr > entry->start) \
845 		_vm_map_clip_start(map, entry, startaddr); \
846 }
847 
848 /*
849  *	This routine is called only when it is known that
850  *	the entry must be split.
851  */
852 static void
853 _vm_map_clip_start(map, entry, start)
854 	vm_map_t map;
855 	vm_map_entry_t entry;
856 	vm_offset_t start;
857 {
858 	vm_map_entry_t new_entry;
859 
860 	/*
861 	 * Split off the front portion -- note that we must insert the new
862 	 * entry BEFORE this one, so that this entry has the specified
863 	 * starting address.
864 	 */
865 
866 	vm_map_simplify_entry(map, entry);
867 
868 	/*
869 	 * If there is no object backing this entry, we might as well create
870 	 * one now.  If we defer it, an object can get created after the map
871 	 * is clipped, and individual objects will be created for the split-up
872 	 * map.  This is a bit of a hack, but is also about the best place to
873 	 * put this improvement.
874 	 */
875 
876 	if (entry->object.vm_object == NULL && !map->system_map) {
877 		vm_object_t object;
878 		object = vm_object_allocate(OBJT_DEFAULT,
879 				atop(entry->end - entry->start));
880 		entry->object.vm_object = object;
881 		entry->offset = 0;
882 	}
883 
884 	new_entry = vm_map_entry_create(map);
885 	*new_entry = *entry;
886 
887 	new_entry->end = start;
888 	entry->offset += (start - entry->start);
889 	entry->start = start;
890 
891 	vm_map_entry_link(map, entry->prev, new_entry);
892 
893 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
894 		vm_object_reference(new_entry->object.vm_object);
895 	}
896 }
897 
898 /*
899  *	vm_map_clip_end:	[ internal use only ]
900  *
901  *	Asserts that the given entry ends at or before
902  *	the specified address; if necessary,
903  *	it splits the entry into two.
904  */
905 
906 #define vm_map_clip_end(map, entry, endaddr) \
907 { \
908 	if (endaddr < entry->end) \
909 		_vm_map_clip_end(map, entry, endaddr); \
910 }
911 
912 /*
913  *	This routine is called only when it is known that
914  *	the entry must be split.
915  */
916 static void
917 _vm_map_clip_end(map, entry, end)
918 	vm_map_t map;
919 	vm_map_entry_t entry;
920 	vm_offset_t end;
921 {
922 	vm_map_entry_t new_entry;
923 
924 	/*
925 	 * If there is no object backing this entry, we might as well create
926 	 * one now.  If we defer it, an object can get created after the map
927 	 * is clipped, and individual objects will be created for the split-up
928 	 * map.  This is a bit of a hack, but is also about the best place to
929 	 * put this improvement.
930 	 */
931 
932 	if (entry->object.vm_object == NULL && !map->system_map) {
933 		vm_object_t object;
934 		object = vm_object_allocate(OBJT_DEFAULT,
935 				atop(entry->end - entry->start));
936 		entry->object.vm_object = object;
937 		entry->offset = 0;
938 	}
939 
940 	/*
941 	 * Create a new entry and insert it AFTER the specified entry
942 	 */
943 
944 	new_entry = vm_map_entry_create(map);
945 	*new_entry = *entry;
946 
947 	new_entry->start = entry->end = end;
948 	new_entry->offset += (end - entry->start);
949 
950 	vm_map_entry_link(map, entry, new_entry);
951 
952 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
953 		vm_object_reference(new_entry->object.vm_object);
954 	}
955 }
956 
957 /*
958  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
959  *
960  *	Asserts that the starting and ending region
961  *	addresses fall within the valid range of the map.
962  */
963 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
964 		{					\
965 		if (start < vm_map_min(map))		\
966 			start = vm_map_min(map);	\
967 		if (end > vm_map_max(map))		\
968 			end = vm_map_max(map);		\
969 		if (start > end)			\
970 			start = end;			\
971 		}
972 
973 /*
974  *	vm_map_transition_wait:	[ kernel use only ]
975  *
976  *	Used to block when an in-transition collison occurs.  The map
977  *	is unlocked for the sleep and relocked before the return.
978  */
979 static
980 void
981 vm_map_transition_wait(vm_map_t map)
982 {
983 	vm_map_unlock(map);
984 	tsleep(map, PVM, "vment", 0);
985 	vm_map_lock(map);
986 }
987 
988 /*
989  * CLIP_CHECK_BACK
990  * CLIP_CHECK_FWD
991  *
992  *	When we do blocking operations with the map lock held it is
993  *	possible that a clip might have occured on our in-transit entry,
994  *	requiring an adjustment to the entry in our loop.  These macros
995  *	help the pageable and clip_range code deal with the case.  The
996  *	conditional costs virtually nothing if no clipping has occured.
997  */
998 
999 #define CLIP_CHECK_BACK(entry, save_start)		\
1000     do {						\
1001 	    while (entry->start != save_start) {	\
1002 		    entry = entry->prev;		\
1003 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1004 	    }						\
1005     } while(0)
1006 
1007 #define CLIP_CHECK_FWD(entry, save_end)			\
1008     do {						\
1009 	    while (entry->end != save_end) {		\
1010 		    entry = entry->next;		\
1011 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1012 	    }						\
1013     } while(0)
1014 
1015 
1016 /*
1017  *	vm_map_clip_range:	[ kernel use only ]
1018  *
1019  *	Clip the specified range and return the base entry.  The
1020  *	range may cover several entries starting at the returned base
1021  *	and the first and last entry in the covering sequence will be
1022  *	properly clipped to the requested start and end address.
1023  *
1024  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1025  *	flag.
1026  *
1027  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1028  *	covered by the requested range.
1029  *
1030  *	The map must be exclusively locked on entry and will remain locked
1031  *	on return. If no range exists or the range contains holes and you
1032  *	specified that no holes were allowed, NULL will be returned.  This
1033  *	routine may temporarily unlock the map in order avoid a deadlock when
1034  *	sleeping.
1035  */
1036 static
1037 vm_map_entry_t
1038 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
1039 {
1040 	vm_map_entry_t start_entry;
1041 	vm_map_entry_t entry;
1042 
1043 	/*
1044 	 * Locate the entry and effect initial clipping.  The in-transition
1045 	 * case does not occur very often so do not try to optimize it.
1046 	 */
1047 again:
1048 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1049 		return (NULL);
1050 	entry = start_entry;
1051 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1052 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1053 		++cnt.v_intrans_coll;
1054 		++cnt.v_intrans_wait;
1055 		vm_map_transition_wait(map);
1056 		/*
1057 		 * entry and/or start_entry may have been clipped while
1058 		 * we slept, or may have gone away entirely.  We have
1059 		 * to restart from the lookup.
1060 		 */
1061 		goto again;
1062 	}
1063 	/*
1064 	 * Since we hold an exclusive map lock we do not have to restart
1065 	 * after clipping, even though clipping may block in zalloc.
1066 	 */
1067 	vm_map_clip_start(map, entry, start);
1068 	vm_map_clip_end(map, entry, end);
1069 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1070 
1071 	/*
1072 	 * Scan entries covered by the range.  When working on the next
1073 	 * entry a restart need only re-loop on the current entry which
1074 	 * we have already locked, since 'next' may have changed.  Also,
1075 	 * even though entry is safe, it may have been clipped so we
1076 	 * have to iterate forwards through the clip after sleeping.
1077 	 */
1078 	while (entry->next != &map->header && entry->next->start < end) {
1079 		vm_map_entry_t next = entry->next;
1080 
1081 		if (flags & MAP_CLIP_NO_HOLES) {
1082 			if (next->start > entry->end) {
1083 				vm_map_unclip_range(map, start_entry,
1084 					start, entry->end, flags);
1085 				return(NULL);
1086 			}
1087 		}
1088 
1089 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1090 			vm_offset_t save_end = entry->end;
1091 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1092 			++cnt.v_intrans_coll;
1093 			++cnt.v_intrans_wait;
1094 			vm_map_transition_wait(map);
1095 
1096 			/*
1097 			 * clips might have occured while we blocked.
1098 			 */
1099 			CLIP_CHECK_FWD(entry, save_end);
1100 			CLIP_CHECK_BACK(start_entry, start);
1101 			continue;
1102 		}
1103 		/*
1104 		 * No restart necessary even though clip_end may block, we
1105 		 * are holding the map lock.
1106 		 */
1107 		vm_map_clip_end(map, next, end);
1108 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1109 		entry = next;
1110 	}
1111 	if (flags & MAP_CLIP_NO_HOLES) {
1112 		if (entry->end != end) {
1113 			vm_map_unclip_range(map, start_entry,
1114 				start, entry->end, flags);
1115 			return(NULL);
1116 		}
1117 	}
1118 	return(start_entry);
1119 }
1120 
1121 /*
1122  *	vm_map_unclip_range:	[ kernel use only ]
1123  *
1124  *	Undo the effect of vm_map_clip_range().  You should pass the same
1125  *	flags and the same range that you passed to vm_map_clip_range().
1126  *	This code will clear the in-transition flag on the entries and
1127  *	wake up anyone waiting.  This code will also simplify the sequence
1128  *	and attempt to merge it with entries before and after the sequence.
1129  *
1130  *	The map must be locked on entry and will remain locked on return.
1131  *
1132  *	Note that you should also pass the start_entry returned by
1133  *	vm_map_clip_range().  However, if you block between the two calls
1134  *	with the map unlocked please be aware that the start_entry may
1135  *	have been clipped and you may need to scan it backwards to find
1136  *	the entry corresponding with the original start address.  You are
1137  *	responsible for this, vm_map_unclip_range() expects the correct
1138  *	start_entry to be passed to it and will KASSERT otherwise.
1139  */
1140 static
1141 void
1142 vm_map_unclip_range(
1143 	vm_map_t map,
1144 	vm_map_entry_t start_entry,
1145 	vm_offset_t start,
1146 	vm_offset_t end,
1147 	int flags)
1148 {
1149 	vm_map_entry_t entry;
1150 
1151 	entry = start_entry;
1152 
1153 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1154 	while (entry != &map->header && entry->start < end) {
1155 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1156 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1157 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1158 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1159 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1160 			wakeup(map);
1161 		}
1162 		entry = entry->next;
1163 	}
1164 
1165 	/*
1166 	 * Simplification does not block so there is no restart case.
1167 	 */
1168 	entry = start_entry;
1169 	while (entry != &map->header && entry->start < end) {
1170 		vm_map_simplify_entry(map, entry);
1171 		entry = entry->next;
1172 	}
1173 }
1174 
1175 /*
1176  *	vm_map_submap:		[ kernel use only ]
1177  *
1178  *	Mark the given range as handled by a subordinate map.
1179  *
1180  *	This range must have been created with vm_map_find,
1181  *	and no other operations may have been performed on this
1182  *	range prior to calling vm_map_submap.
1183  *
1184  *	Only a limited number of operations can be performed
1185  *	within this rage after calling vm_map_submap:
1186  *		vm_fault
1187  *	[Don't try vm_map_copy!]
1188  *
1189  *	To remove a submapping, one must first remove the
1190  *	range from the superior map, and then destroy the
1191  *	submap (if desired).  [Better yet, don't try it.]
1192  */
1193 int
1194 vm_map_submap(map, start, end, submap)
1195 	vm_map_t map;
1196 	vm_offset_t start;
1197 	vm_offset_t end;
1198 	vm_map_t submap;
1199 {
1200 	vm_map_entry_t entry;
1201 	int result = KERN_INVALID_ARGUMENT;
1202 
1203 	vm_map_lock(map);
1204 
1205 	VM_MAP_RANGE_CHECK(map, start, end);
1206 
1207 	if (vm_map_lookup_entry(map, start, &entry)) {
1208 		vm_map_clip_start(map, entry, start);
1209 	} else {
1210 		entry = entry->next;
1211 	}
1212 
1213 	vm_map_clip_end(map, entry, end);
1214 
1215 	if ((entry->start == start) && (entry->end == end) &&
1216 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1217 	    (entry->object.vm_object == NULL)) {
1218 		entry->object.sub_map = submap;
1219 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1220 		result = KERN_SUCCESS;
1221 	}
1222 	vm_map_unlock(map);
1223 
1224 	return (result);
1225 }
1226 
1227 /*
1228  *	vm_map_protect:
1229  *
1230  *	Sets the protection of the specified address
1231  *	region in the target map.  If "set_max" is
1232  *	specified, the maximum protection is to be set;
1233  *	otherwise, only the current protection is affected.
1234  */
1235 int
1236 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1237 	       vm_prot_t new_prot, boolean_t set_max)
1238 {
1239 	vm_map_entry_t current;
1240 	vm_map_entry_t entry;
1241 
1242 	vm_map_lock(map);
1243 
1244 	VM_MAP_RANGE_CHECK(map, start, end);
1245 
1246 	if (vm_map_lookup_entry(map, start, &entry)) {
1247 		vm_map_clip_start(map, entry, start);
1248 	} else {
1249 		entry = entry->next;
1250 	}
1251 
1252 	/*
1253 	 * Make a first pass to check for protection violations.
1254 	 */
1255 
1256 	current = entry;
1257 	while ((current != &map->header) && (current->start < end)) {
1258 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1259 			vm_map_unlock(map);
1260 			return (KERN_INVALID_ARGUMENT);
1261 		}
1262 		if ((new_prot & current->max_protection) != new_prot) {
1263 			vm_map_unlock(map);
1264 			return (KERN_PROTECTION_FAILURE);
1265 		}
1266 		current = current->next;
1267 	}
1268 
1269 	/*
1270 	 * Go back and fix up protections. [Note that clipping is not
1271 	 * necessary the second time.]
1272 	 */
1273 
1274 	current = entry;
1275 
1276 	while ((current != &map->header) && (current->start < end)) {
1277 		vm_prot_t old_prot;
1278 
1279 		vm_map_clip_end(map, current, end);
1280 
1281 		old_prot = current->protection;
1282 		if (set_max)
1283 			current->protection =
1284 			    (current->max_protection = new_prot) &
1285 			    old_prot;
1286 		else
1287 			current->protection = new_prot;
1288 
1289 		/*
1290 		 * Update physical map if necessary. Worry about copy-on-write
1291 		 * here -- CHECK THIS XXX
1292 		 */
1293 
1294 		if (current->protection != old_prot) {
1295 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1296 							VM_PROT_ALL)
1297 
1298 			pmap_protect(map->pmap, current->start,
1299 			    current->end,
1300 			    current->protection & MASK(current));
1301 #undef	MASK
1302 		}
1303 
1304 		vm_map_simplify_entry(map, current);
1305 
1306 		current = current->next;
1307 	}
1308 
1309 	vm_map_unlock(map);
1310 	return (KERN_SUCCESS);
1311 }
1312 
1313 /*
1314  *	vm_map_madvise:
1315  *
1316  * 	This routine traverses a processes map handling the madvise
1317  *	system call.  Advisories are classified as either those effecting
1318  *	the vm_map_entry structure, or those effecting the underlying
1319  *	objects.
1320  */
1321 
1322 int
1323 vm_map_madvise(map, start, end, behav)
1324 	vm_map_t map;
1325 	vm_offset_t start, end;
1326 	int behav;
1327 {
1328 	vm_map_entry_t current, entry;
1329 	int modify_map = 0;
1330 
1331 	/*
1332 	 * Some madvise calls directly modify the vm_map_entry, in which case
1333 	 * we need to use an exclusive lock on the map and we need to perform
1334 	 * various clipping operations.  Otherwise we only need a read-lock
1335 	 * on the map.
1336 	 */
1337 
1338 	switch(behav) {
1339 	case MADV_NORMAL:
1340 	case MADV_SEQUENTIAL:
1341 	case MADV_RANDOM:
1342 	case MADV_NOSYNC:
1343 	case MADV_AUTOSYNC:
1344 	case MADV_NOCORE:
1345 	case MADV_CORE:
1346 		modify_map = 1;
1347 		vm_map_lock(map);
1348 		break;
1349 	case MADV_WILLNEED:
1350 	case MADV_DONTNEED:
1351 	case MADV_FREE:
1352 		vm_map_lock_read(map);
1353 		break;
1354 	default:
1355 		return (KERN_INVALID_ARGUMENT);
1356 	}
1357 
1358 	/*
1359 	 * Locate starting entry and clip if necessary.
1360 	 */
1361 
1362 	VM_MAP_RANGE_CHECK(map, start, end);
1363 
1364 	if (vm_map_lookup_entry(map, start, &entry)) {
1365 		if (modify_map)
1366 			vm_map_clip_start(map, entry, start);
1367 	} else {
1368 		entry = entry->next;
1369 	}
1370 
1371 	if (modify_map) {
1372 		/*
1373 		 * madvise behaviors that are implemented in the vm_map_entry.
1374 		 *
1375 		 * We clip the vm_map_entry so that behavioral changes are
1376 		 * limited to the specified address range.
1377 		 */
1378 		for (current = entry;
1379 		     (current != &map->header) && (current->start < end);
1380 		     current = current->next
1381 		) {
1382 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1383 				continue;
1384 
1385 			vm_map_clip_end(map, current, end);
1386 
1387 			switch (behav) {
1388 			case MADV_NORMAL:
1389 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1390 				break;
1391 			case MADV_SEQUENTIAL:
1392 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1393 				break;
1394 			case MADV_RANDOM:
1395 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1396 				break;
1397 			case MADV_NOSYNC:
1398 				current->eflags |= MAP_ENTRY_NOSYNC;
1399 				break;
1400 			case MADV_AUTOSYNC:
1401 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1402 				break;
1403 			case MADV_NOCORE:
1404 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1405 				break;
1406 			case MADV_CORE:
1407 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1408 				break;
1409 			default:
1410 				break;
1411 			}
1412 			vm_map_simplify_entry(map, current);
1413 		}
1414 		vm_map_unlock(map);
1415 	} else {
1416 		vm_pindex_t pindex;
1417 		int count;
1418 
1419 		/*
1420 		 * madvise behaviors that are implemented in the underlying
1421 		 * vm_object.
1422 		 *
1423 		 * Since we don't clip the vm_map_entry, we have to clip
1424 		 * the vm_object pindex and count.
1425 		 */
1426 		for (current = entry;
1427 		     (current != &map->header) && (current->start < end);
1428 		     current = current->next
1429 		) {
1430 			vm_offset_t useStart;
1431 
1432 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1433 				continue;
1434 
1435 			pindex = OFF_TO_IDX(current->offset);
1436 			count = atop(current->end - current->start);
1437 			useStart = current->start;
1438 
1439 			if (current->start < start) {
1440 				pindex += atop(start - current->start);
1441 				count -= atop(start - current->start);
1442 				useStart = start;
1443 			}
1444 			if (current->end > end)
1445 				count -= atop(current->end - end);
1446 
1447 			if (count <= 0)
1448 				continue;
1449 
1450 			vm_object_madvise(current->object.vm_object,
1451 					  pindex, count, behav);
1452 			if (behav == MADV_WILLNEED) {
1453 				pmap_object_init_pt(
1454 				    map->pmap,
1455 				    useStart,
1456 				    current->object.vm_object,
1457 				    pindex,
1458 				    (count << PAGE_SHIFT),
1459 				    MAP_PREFAULT_MADVISE
1460 				);
1461 			}
1462 		}
1463 		vm_map_unlock_read(map);
1464 	}
1465 	return(0);
1466 }
1467 
1468 
1469 /*
1470  *	vm_map_inherit:
1471  *
1472  *	Sets the inheritance of the specified address
1473  *	range in the target map.  Inheritance
1474  *	affects how the map will be shared with
1475  *	child maps at the time of vm_map_fork.
1476  */
1477 int
1478 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1479 	       vm_inherit_t new_inheritance)
1480 {
1481 	vm_map_entry_t entry;
1482 	vm_map_entry_t temp_entry;
1483 
1484 	switch (new_inheritance) {
1485 	case VM_INHERIT_NONE:
1486 	case VM_INHERIT_COPY:
1487 	case VM_INHERIT_SHARE:
1488 		break;
1489 	default:
1490 		return (KERN_INVALID_ARGUMENT);
1491 	}
1492 
1493 	vm_map_lock(map);
1494 
1495 	VM_MAP_RANGE_CHECK(map, start, end);
1496 
1497 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1498 		entry = temp_entry;
1499 		vm_map_clip_start(map, entry, start);
1500 	} else
1501 		entry = temp_entry->next;
1502 
1503 	while ((entry != &map->header) && (entry->start < end)) {
1504 		vm_map_clip_end(map, entry, end);
1505 
1506 		entry->inheritance = new_inheritance;
1507 
1508 		vm_map_simplify_entry(map, entry);
1509 
1510 		entry = entry->next;
1511 	}
1512 
1513 	vm_map_unlock(map);
1514 	return (KERN_SUCCESS);
1515 }
1516 
1517 /*
1518  * Implement the semantics of mlock
1519  */
1520 int
1521 vm_map_user_pageable(map, start, real_end, new_pageable)
1522 	vm_map_t map;
1523 	vm_offset_t start;
1524 	vm_offset_t real_end;
1525 	boolean_t new_pageable;
1526 {
1527 	vm_map_entry_t entry;
1528 	vm_map_entry_t start_entry;
1529 	vm_offset_t end;
1530 	int rv = KERN_SUCCESS;
1531 
1532 	vm_map_lock(map);
1533 	VM_MAP_RANGE_CHECK(map, start, real_end);
1534 	end = real_end;
1535 
1536 	start_entry = vm_map_clip_range(map, start, end, MAP_CLIP_NO_HOLES);
1537 	if (start_entry == NULL) {
1538 		vm_map_unlock(map);
1539 		return (KERN_INVALID_ADDRESS);
1540 	}
1541 
1542 	if (new_pageable == 0) {
1543 		entry = start_entry;
1544 		while ((entry != &map->header) && (entry->start < end)) {
1545 			vm_offset_t save_start;
1546 			vm_offset_t save_end;
1547 
1548 			/*
1549 			 * Already user wired or hard wired (trivial cases)
1550 			 */
1551 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1552 				entry = entry->next;
1553 				continue;
1554 			}
1555 			if (entry->wired_count != 0) {
1556 				entry->wired_count++;
1557 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1558 				entry = entry->next;
1559 				continue;
1560 			}
1561 
1562 			/*
1563 			 * A new wiring requires instantiation of appropriate
1564 			 * management structures and the faulting in of the
1565 			 * page.
1566 			 */
1567 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1568 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1569 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1570 
1571 					vm_object_shadow(&entry->object.vm_object,
1572 					    &entry->offset,
1573 					    atop(entry->end - entry->start));
1574 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1575 
1576 				} else if (entry->object.vm_object == NULL &&
1577 					   !map->system_map) {
1578 
1579 					entry->object.vm_object =
1580 					    vm_object_allocate(OBJT_DEFAULT,
1581 						atop(entry->end - entry->start));
1582 					entry->offset = (vm_offset_t) 0;
1583 
1584 				}
1585 			}
1586 			entry->wired_count++;
1587 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1588 
1589 			/*
1590 			 * Now fault in the area.  The map lock needs to be
1591 			 * manipulated to avoid deadlocks.  The in-transition
1592 			 * flag protects the entries.
1593 			 */
1594 			save_start = entry->start;
1595 			save_end = entry->end;
1596 			vm_map_unlock(map);
1597 			map->timestamp++;
1598 			rv = vm_fault_user_wire(map, save_start, save_end);
1599 			vm_map_lock(map);
1600 			if (rv) {
1601 				CLIP_CHECK_BACK(entry, save_start);
1602 				for (;;) {
1603 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1604 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1605 					entry->wired_count = 0;
1606 					if (entry->end == save_end)
1607 						break;
1608 					entry = entry->next;
1609 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1610 				}
1611 				end = save_start;	/* unwire the rest */
1612 				break;
1613 			}
1614 			/*
1615 			 * note that even though the entry might have been
1616 			 * clipped, the USER_WIRED flag we set prevents
1617 			 * duplication so we do not have to do a
1618 			 * clip check.
1619 			 */
1620 			entry = entry->next;
1621 		}
1622 
1623 		/*
1624 		 * If we failed fall through to the unwiring section to
1625 		 * unwire what we had wired so far.  'end' has already
1626 		 * been adjusted.
1627 		 */
1628 		if (rv)
1629 			new_pageable = 1;
1630 
1631 		/*
1632 		 * start_entry might have been clipped if we unlocked the
1633 		 * map and blocked.  No matter how clipped it has gotten
1634 		 * there should be a fragment that is on our start boundary.
1635 		 */
1636 		CLIP_CHECK_BACK(start_entry, start);
1637 	}
1638 
1639 	/*
1640 	 * Deal with the unwiring case.
1641 	 */
1642 	if (new_pageable) {
1643 		/*
1644 		 * This is the unwiring case.  We must first ensure that the
1645 		 * range to be unwired is really wired down.  We know there
1646 		 * are no holes.
1647 		 */
1648 		entry = start_entry;
1649 		while ((entry != &map->header) && (entry->start < end)) {
1650 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1651 				rv = KERN_INVALID_ARGUMENT;
1652 				goto done;
1653 			}
1654 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1655 			entry = entry->next;
1656 		}
1657 
1658 		/*
1659 		 * Now decrement the wiring count for each region. If a region
1660 		 * becomes completely unwired, unwire its physical pages and
1661 		 * mappings.
1662 		 */
1663 		while ((entry != &map->header) && (entry->start < end)) {
1664 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1665 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1666 			entry->wired_count--;
1667 			if (entry->wired_count == 0)
1668 				vm_fault_unwire(map, entry->start, entry->end);
1669 			entry = entry->next;
1670 		}
1671 	}
1672 done:
1673 	vm_map_unclip_range(map, start_entry, start, real_end,
1674 		MAP_CLIP_NO_HOLES);
1675 	map->timestamp++;
1676 	vm_map_unlock(map);
1677 	return (rv);
1678 }
1679 
1680 /*
1681  *	vm_map_pageable:
1682  *
1683  *	Sets the pageability of the specified address
1684  *	range in the target map.  Regions specified
1685  *	as not pageable require locked-down physical
1686  *	memory and physical page maps.
1687  *
1688  *	The map must not be locked, but a reference
1689  *	must remain to the map throughout the call.
1690  */
1691 int
1692 vm_map_pageable(map, start, real_end, new_pageable)
1693 	vm_map_t map;
1694 	vm_offset_t start;
1695 	vm_offset_t real_end;
1696 	boolean_t new_pageable;
1697 {
1698 	vm_map_entry_t entry;
1699 	vm_map_entry_t start_entry;
1700 	vm_offset_t end;
1701 	int rv = KERN_SUCCESS;
1702 	int s;
1703 
1704 	vm_map_lock(map);
1705 	VM_MAP_RANGE_CHECK(map, start, real_end);
1706 	end = real_end;
1707 
1708 	start_entry = vm_map_clip_range(map, start, end, MAP_CLIP_NO_HOLES);
1709 	if (start_entry == NULL) {
1710 		vm_map_unlock(map);
1711 		return (KERN_INVALID_ADDRESS);
1712 	}
1713 	if (new_pageable == 0) {
1714 		/*
1715 		 * Wiring.
1716 		 *
1717 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1718 		 * objects that need to be created. Then we clip each map
1719 		 * entry to the region to be wired and increment its wiring
1720 		 * count.  We create objects before clipping the map entries
1721 		 * to avoid object proliferation.
1722 		 *
1723 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1724 		 * fault in the pages for any newly wired area (wired_count is
1725 		 * 1).
1726 		 *
1727 		 * Downgrading to a read lock for vm_fault_wire avoids a
1728 		 * possible deadlock with another process that may have faulted
1729 		 * on one of the pages to be wired (it would mark the page busy,
1730 		 * blocking us, then in turn block on the map lock that we
1731 		 * hold).  Because of problems in the recursive lock package,
1732 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1733 		 * any actions that require the write lock must be done
1734 		 * beforehand.  Because we keep the read lock on the map, the
1735 		 * copy-on-write status of the entries we modify here cannot
1736 		 * change.
1737 		 */
1738 
1739 		entry = start_entry;
1740 		while ((entry != &map->header) && (entry->start < end)) {
1741 			/*
1742 			 * Trivial case if the entry is already wired
1743 			 */
1744 			if (entry->wired_count) {
1745 				entry->wired_count++;
1746 				entry = entry->next;
1747 				continue;
1748 			}
1749 
1750 			/*
1751 			 * The entry is being newly wired, we have to setup
1752 			 * appropriate management structures.  A shadow
1753 			 * object is required for a copy-on-write region,
1754 			 * or a normal object for a zero-fill region.  We
1755 			 * do not have to do this for entries that point to sub
1756 			 * maps because we won't hold the lock on the sub map.
1757 			 */
1758 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1759 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1760 				if (copyflag &&
1761 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1762 
1763 					vm_object_shadow(&entry->object.vm_object,
1764 					    &entry->offset,
1765 					    atop(entry->end - entry->start));
1766 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1767 				} else if (entry->object.vm_object == NULL &&
1768 					   !map->system_map) {
1769 					entry->object.vm_object =
1770 					    vm_object_allocate(OBJT_DEFAULT,
1771 						atop(entry->end - entry->start));
1772 					entry->offset = (vm_offset_t) 0;
1773 				}
1774 			}
1775 
1776 			entry->wired_count++;
1777 			entry = entry->next;
1778 		}
1779 
1780 		/*
1781 		 * Pass 2.
1782 		 */
1783 
1784 		/*
1785 		 * HACK HACK HACK HACK
1786 		 *
1787 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1788 		 * protects us from most changes but note that
1789 		 * clipping may still occur.  To prevent clipping from
1790 		 * occuring after the unlock, except for when we are
1791 		 * blocking in vm_fault_wire, we must run at splvm().
1792 		 * Otherwise our accesses to entry->start and entry->end
1793 		 * could be corrupted.  We have to set splvm() prior to
1794 		 * unlocking so start_entry does not change out from
1795 		 * under us at the very beginning of the loop.
1796 		 *
1797 		 * HACK HACK HACK HACK
1798 		 */
1799 
1800 		s = splvm();
1801 		vm_map_unlock(map);
1802 
1803 		entry = start_entry;
1804 		while (entry != &map->header && entry->start < end) {
1805 			/*
1806 			 * If vm_fault_wire fails for any page we need to undo
1807 			 * what has been done.  We decrement the wiring count
1808 			 * for those pages which have not yet been wired (now)
1809 			 * and unwire those that have (later).
1810 			 */
1811 			vm_offset_t save_start = entry->start;
1812 			vm_offset_t save_end = entry->end;
1813 
1814 			if (entry->wired_count == 1)
1815 				rv = vm_fault_wire(map, entry->start, entry->end);
1816 			if (rv) {
1817 				CLIP_CHECK_BACK(entry, save_start);
1818 				for (;;) {
1819 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1820 					entry->wired_count = 0;
1821 					if (entry->end == save_end)
1822 						break;
1823 					entry = entry->next;
1824 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1825 				}
1826 				end = save_start;
1827 				break;
1828 			}
1829 			CLIP_CHECK_FWD(entry, save_end);
1830 			entry = entry->next;
1831 		}
1832 		splx(s);
1833 
1834 		/*
1835 		 * relock.  start_entry is still IN_TRANSITION and must
1836 		 * still exist, but may have been clipped (handled just
1837 		 * below).
1838 		 */
1839 		vm_map_lock(map);
1840 
1841 		/*
1842 		 * If a failure occured undo everything by falling through
1843 		 * to the unwiring code.  'end' has already been adjusted
1844 		 * appropriately.
1845 		 */
1846 		if (rv)
1847 			new_pageable = 1;
1848 
1849 		/*
1850 		 * start_entry might have been clipped if we unlocked the
1851 		 * map and blocked.  No matter how clipped it has gotten
1852 		 * there should be a fragment that is on our start boundary.
1853 		 */
1854 		CLIP_CHECK_BACK(start_entry, start);
1855 	}
1856 
1857 	if (new_pageable) {
1858 		/*
1859 		 * This is the unwiring case.  We must first ensure that the
1860 		 * range to be unwired is really wired down.  We know there
1861 		 * are no holes.
1862 		 */
1863 		entry = start_entry;
1864 		while ((entry != &map->header) && (entry->start < end)) {
1865 			if (entry->wired_count == 0) {
1866 				rv = KERN_INVALID_ARGUMENT;
1867 				goto done;
1868 			}
1869 			entry = entry->next;
1870 		}
1871 
1872 		/*
1873 		 * Now decrement the wiring count for each region. If a region
1874 		 * becomes completely unwired, unwire its physical pages and
1875 		 * mappings.
1876 		 */
1877 		entry = start_entry;
1878 		while ((entry != &map->header) && (entry->start < end)) {
1879 			entry->wired_count--;
1880 			if (entry->wired_count == 0)
1881 				vm_fault_unwire(map, entry->start, entry->end);
1882 			entry = entry->next;
1883 		}
1884 	}
1885 done:
1886 	vm_map_unclip_range(map, start_entry, start, real_end,
1887 		MAP_CLIP_NO_HOLES);
1888 	map->timestamp++;
1889 	vm_map_unlock(map);
1890 	return (rv);
1891 }
1892 
1893 /*
1894  * vm_map_clean
1895  *
1896  * Push any dirty cached pages in the address range to their pager.
1897  * If syncio is TRUE, dirty pages are written synchronously.
1898  * If invalidate is TRUE, any cached pages are freed as well.
1899  *
1900  * Returns an error if any part of the specified range is not mapped.
1901  */
1902 int
1903 vm_map_clean(map, start, end, syncio, invalidate)
1904 	vm_map_t map;
1905 	vm_offset_t start;
1906 	vm_offset_t end;
1907 	boolean_t syncio;
1908 	boolean_t invalidate;
1909 {
1910 	vm_map_entry_t current;
1911 	vm_map_entry_t entry;
1912 	vm_size_t size;
1913 	vm_object_t object;
1914 	vm_ooffset_t offset;
1915 
1916 	vm_map_lock_read(map);
1917 	VM_MAP_RANGE_CHECK(map, start, end);
1918 	if (!vm_map_lookup_entry(map, start, &entry)) {
1919 		vm_map_unlock_read(map);
1920 		return (KERN_INVALID_ADDRESS);
1921 	}
1922 	/*
1923 	 * Make a first pass to check for holes.
1924 	 */
1925 	for (current = entry; current->start < end; current = current->next) {
1926 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1927 			vm_map_unlock_read(map);
1928 			return (KERN_INVALID_ARGUMENT);
1929 		}
1930 		if (end > current->end &&
1931 		    (current->next == &map->header ||
1932 			current->end != current->next->start)) {
1933 			vm_map_unlock_read(map);
1934 			return (KERN_INVALID_ADDRESS);
1935 		}
1936 	}
1937 
1938 	if (invalidate)
1939 		pmap_remove(vm_map_pmap(map), start, end);
1940 	/*
1941 	 * Make a second pass, cleaning/uncaching pages from the indicated
1942 	 * objects as we go.
1943 	 */
1944 	for (current = entry; current->start < end; current = current->next) {
1945 		offset = current->offset + (start - current->start);
1946 		size = (end <= current->end ? end : current->end) - start;
1947 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1948 			vm_map_t smap;
1949 			vm_map_entry_t tentry;
1950 			vm_size_t tsize;
1951 
1952 			smap = current->object.sub_map;
1953 			vm_map_lock_read(smap);
1954 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1955 			tsize = tentry->end - offset;
1956 			if (tsize < size)
1957 				size = tsize;
1958 			object = tentry->object.vm_object;
1959 			offset = tentry->offset + (offset - tentry->start);
1960 			vm_map_unlock_read(smap);
1961 		} else {
1962 			object = current->object.vm_object;
1963 		}
1964 		/*
1965 		 * Note that there is absolutely no sense in writing out
1966 		 * anonymous objects, so we track down the vnode object
1967 		 * to write out.
1968 		 * We invalidate (remove) all pages from the address space
1969 		 * anyway, for semantic correctness.
1970 		 *
1971 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1972 		 * may start out with a NULL object.
1973 		 */
1974 		while (object && object->backing_object) {
1975 			object = object->backing_object;
1976 			offset += object->backing_object_offset;
1977 			if (object->size < OFF_TO_IDX( offset + size))
1978 				size = IDX_TO_OFF(object->size) - offset;
1979 		}
1980 		if (object && (object->type == OBJT_VNODE) &&
1981 		    (current->protection & VM_PROT_WRITE)) {
1982 			/*
1983 			 * Flush pages if writing is allowed, invalidate them
1984 			 * if invalidation requested.  Pages undergoing I/O
1985 			 * will be ignored by vm_object_page_remove().
1986 			 *
1987 			 * We cannot lock the vnode and then wait for paging
1988 			 * to complete without deadlocking against vm_fault.
1989 			 * Instead we simply call vm_object_page_remove() and
1990 			 * allow it to block internally on a page-by-page
1991 			 * basis when it encounters pages undergoing async
1992 			 * I/O.
1993 			 */
1994 			int flags;
1995 
1996 			vm_object_reference(object);
1997 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1998 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1999 			flags |= invalidate ? OBJPC_INVAL : 0;
2000 			vm_object_page_clean(object,
2001 			    OFF_TO_IDX(offset),
2002 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2003 			    flags);
2004 			VOP_UNLOCK(object->handle, 0, curproc);
2005 			vm_object_deallocate(object);
2006 		}
2007 		if (object && invalidate &&
2008 		   ((object->type == OBJT_VNODE) ||
2009 		    (object->type == OBJT_DEVICE))) {
2010 			vm_object_reference(object);
2011 			vm_object_page_remove(object,
2012 			    OFF_TO_IDX(offset),
2013 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2014 			    FALSE);
2015 			vm_object_deallocate(object);
2016 		}
2017 		start += size;
2018 	}
2019 
2020 	vm_map_unlock_read(map);
2021 	return (KERN_SUCCESS);
2022 }
2023 
2024 /*
2025  *	vm_map_entry_unwire:	[ internal use only ]
2026  *
2027  *	Make the region specified by this entry pageable.
2028  *
2029  *	The map in question should be locked.
2030  *	[This is the reason for this routine's existence.]
2031  */
2032 static void
2033 vm_map_entry_unwire(map, entry)
2034 	vm_map_t map;
2035 	vm_map_entry_t entry;
2036 {
2037 	vm_fault_unwire(map, entry->start, entry->end);
2038 	entry->wired_count = 0;
2039 }
2040 
2041 /*
2042  *	vm_map_entry_delete:	[ internal use only ]
2043  *
2044  *	Deallocate the given entry from the target map.
2045  */
2046 static void
2047 vm_map_entry_delete(map, entry)
2048 	vm_map_t map;
2049 	vm_map_entry_t entry;
2050 {
2051 	vm_map_entry_unlink(map, entry);
2052 	map->size -= entry->end - entry->start;
2053 
2054 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2055 		vm_object_deallocate(entry->object.vm_object);
2056 	}
2057 
2058 	vm_map_entry_dispose(map, entry);
2059 }
2060 
2061 /*
2062  *	vm_map_delete:	[ internal use only ]
2063  *
2064  *	Deallocates the given address range from the target
2065  *	map.
2066  */
2067 int
2068 vm_map_delete(map, start, end)
2069 	vm_map_t map;
2070 	vm_offset_t start;
2071 	vm_offset_t end;
2072 {
2073 	vm_object_t object;
2074 	vm_map_entry_t entry;
2075 	vm_map_entry_t first_entry;
2076 
2077 	/*
2078 	 * Find the start of the region, and clip it
2079 	 */
2080 
2081 again:
2082 	if (!vm_map_lookup_entry(map, start, &first_entry))
2083 		entry = first_entry->next;
2084 	else {
2085 		entry = first_entry;
2086 		vm_map_clip_start(map, entry, start);
2087 		/*
2088 		 * Fix the lookup hint now, rather than each time though the
2089 		 * loop.
2090 		 */
2091 		SAVE_HINT(map, entry->prev);
2092 	}
2093 
2094 	/*
2095 	 * Save the free space hint
2096 	 */
2097 
2098 	if (entry == &map->header) {
2099 		map->first_free = &map->header;
2100 	} else if (map->first_free->start >= start) {
2101 		map->first_free = entry->prev;
2102 	}
2103 
2104 	/*
2105 	 * Step through all entries in this region
2106 	 */
2107 
2108 	while ((entry != &map->header) && (entry->start < end)) {
2109 		vm_map_entry_t next;
2110 		vm_offset_t s, e;
2111 		vm_pindex_t offidxstart, offidxend, count;
2112 
2113 		/*
2114 		 * If we hit an in-transition entry we have to sleep and
2115 		 * retry.  It's easier (and not really slower) to just retry
2116 		 * since this case occurs so rarely and the hint is already
2117 		 * pointing at the right place.  We have to reset the
2118 		 * start offset so as not to accidently delete an entry
2119 		 * another process just created in vacated space.
2120 		 */
2121 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2122 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2123 			start = entry->start;
2124 			++cnt.v_intrans_coll;
2125 			++cnt.v_intrans_wait;
2126 			vm_map_transition_wait(map);
2127 			goto again;
2128 		}
2129 		vm_map_clip_end(map, entry, end);
2130 
2131 		s = entry->start;
2132 		e = entry->end;
2133 		next = entry->next;
2134 
2135 		offidxstart = OFF_TO_IDX(entry->offset);
2136 		count = OFF_TO_IDX(e - s);
2137 		object = entry->object.vm_object;
2138 
2139 		/*
2140 		 * Unwire before removing addresses from the pmap; otherwise,
2141 		 * unwiring will put the entries back in the pmap.
2142 		 */
2143 		if (entry->wired_count != 0) {
2144 			vm_map_entry_unwire(map, entry);
2145 		}
2146 
2147 		offidxend = offidxstart + count;
2148 
2149 		if ((object == kernel_object) || (object == kmem_object)) {
2150 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2151 		} else {
2152 			pmap_remove(map->pmap, s, e);
2153 			if (object != NULL &&
2154 			    object->ref_count != 1 &&
2155 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2156 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2157 				vm_object_collapse(object);
2158 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2159 				if (object->type == OBJT_SWAP) {
2160 					swap_pager_freespace(object, offidxstart, count);
2161 				}
2162 				if (offidxend >= object->size &&
2163 				    offidxstart < object->size) {
2164 					object->size = offidxstart;
2165 				}
2166 			}
2167 		}
2168 
2169 		/*
2170 		 * Delete the entry (which may delete the object) only after
2171 		 * removing all pmap entries pointing to its pages.
2172 		 * (Otherwise, its page frames may be reallocated, and any
2173 		 * modify bits will be set in the wrong object!)
2174 		 */
2175 		vm_map_entry_delete(map, entry);
2176 		entry = next;
2177 	}
2178 	return (KERN_SUCCESS);
2179 }
2180 
2181 /*
2182  *	vm_map_remove:
2183  *
2184  *	Remove the given address range from the target map.
2185  *	This is the exported form of vm_map_delete.
2186  */
2187 int
2188 vm_map_remove(map, start, end)
2189 	vm_map_t map;
2190 	vm_offset_t start;
2191 	vm_offset_t end;
2192 {
2193 	int result, s = 0;
2194 
2195 	if (map == kmem_map || map == mb_map)
2196 		s = splvm();
2197 
2198 	vm_map_lock(map);
2199 	VM_MAP_RANGE_CHECK(map, start, end);
2200 	result = vm_map_delete(map, start, end);
2201 	vm_map_unlock(map);
2202 
2203 	if (map == kmem_map || map == mb_map)
2204 		splx(s);
2205 
2206 	return (result);
2207 }
2208 
2209 /*
2210  *	vm_map_check_protection:
2211  *
2212  *	Assert that the target map allows the specified
2213  *	privilege on the entire address region given.
2214  *	The entire region must be allocated.
2215  */
2216 boolean_t
2217 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2218 			vm_prot_t protection)
2219 {
2220 	vm_map_entry_t entry;
2221 	vm_map_entry_t tmp_entry;
2222 
2223 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2224 		return (FALSE);
2225 	}
2226 	entry = tmp_entry;
2227 
2228 	while (start < end) {
2229 		if (entry == &map->header) {
2230 			return (FALSE);
2231 		}
2232 		/*
2233 		 * No holes allowed!
2234 		 */
2235 
2236 		if (start < entry->start) {
2237 			return (FALSE);
2238 		}
2239 		/*
2240 		 * Check protection associated with entry.
2241 		 */
2242 
2243 		if ((entry->protection & protection) != protection) {
2244 			return (FALSE);
2245 		}
2246 		/* go to next entry */
2247 
2248 		start = entry->end;
2249 		entry = entry->next;
2250 	}
2251 	return (TRUE);
2252 }
2253 
2254 /*
2255  * Split the pages in a map entry into a new object.  This affords
2256  * easier removal of unused pages, and keeps object inheritance from
2257  * being a negative impact on memory usage.
2258  */
2259 static void
2260 vm_map_split(entry)
2261 	vm_map_entry_t entry;
2262 {
2263 	vm_page_t m;
2264 	vm_object_t orig_object, new_object, source;
2265 	vm_offset_t s, e;
2266 	vm_pindex_t offidxstart, offidxend, idx;
2267 	vm_size_t size;
2268 	vm_ooffset_t offset;
2269 
2270 	orig_object = entry->object.vm_object;
2271 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2272 		return;
2273 	if (orig_object->ref_count <= 1)
2274 		return;
2275 
2276 	offset = entry->offset;
2277 	s = entry->start;
2278 	e = entry->end;
2279 
2280 	offidxstart = OFF_TO_IDX(offset);
2281 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2282 	size = offidxend - offidxstart;
2283 
2284 	new_object = vm_pager_allocate(orig_object->type,
2285 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2286 	if (new_object == NULL)
2287 		return;
2288 
2289 	source = orig_object->backing_object;
2290 	if (source != NULL) {
2291 		vm_object_reference(source);	/* Referenced by new_object */
2292 		LIST_INSERT_HEAD(&source->shadow_head,
2293 				  new_object, shadow_list);
2294 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2295 		new_object->backing_object_offset =
2296 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2297 		new_object->backing_object = source;
2298 		source->shadow_count++;
2299 		source->generation++;
2300 	}
2301 
2302 	for (idx = 0; idx < size; idx++) {
2303 		vm_page_t m;
2304 
2305 	retry:
2306 		m = vm_page_lookup(orig_object, offidxstart + idx);
2307 		if (m == NULL)
2308 			continue;
2309 
2310 		/*
2311 		 * We must wait for pending I/O to complete before we can
2312 		 * rename the page.
2313 		 *
2314 		 * We do not have to VM_PROT_NONE the page as mappings should
2315 		 * not be changed by this operation.
2316 		 */
2317 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2318 			goto retry;
2319 
2320 		vm_page_busy(m);
2321 		vm_page_rename(m, new_object, idx);
2322 		/* page automatically made dirty by rename and cache handled */
2323 		vm_page_busy(m);
2324 	}
2325 
2326 	if (orig_object->type == OBJT_SWAP) {
2327 		vm_object_pip_add(orig_object, 1);
2328 		/*
2329 		 * copy orig_object pages into new_object
2330 		 * and destroy unneeded pages in
2331 		 * shadow object.
2332 		 */
2333 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2334 		vm_object_pip_wakeup(orig_object);
2335 	}
2336 
2337 	for (idx = 0; idx < size; idx++) {
2338 		m = vm_page_lookup(new_object, idx);
2339 		if (m) {
2340 			vm_page_wakeup(m);
2341 		}
2342 	}
2343 
2344 	entry->object.vm_object = new_object;
2345 	entry->offset = 0LL;
2346 	vm_object_deallocate(orig_object);
2347 }
2348 
2349 /*
2350  *	vm_map_copy_entry:
2351  *
2352  *	Copies the contents of the source entry to the destination
2353  *	entry.  The entries *must* be aligned properly.
2354  */
2355 static void
2356 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
2357 	vm_map_t src_map, dst_map;
2358 	vm_map_entry_t src_entry, dst_entry;
2359 {
2360 	vm_object_t src_object;
2361 
2362 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2363 		return;
2364 
2365 	if (src_entry->wired_count == 0) {
2366 
2367 		/*
2368 		 * If the source entry is marked needs_copy, it is already
2369 		 * write-protected.
2370 		 */
2371 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2372 			pmap_protect(src_map->pmap,
2373 			    src_entry->start,
2374 			    src_entry->end,
2375 			    src_entry->protection & ~VM_PROT_WRITE);
2376 		}
2377 
2378 		/*
2379 		 * Make a copy of the object.
2380 		 */
2381 		if ((src_object = src_entry->object.vm_object) != NULL) {
2382 
2383 			if ((src_object->handle == NULL) &&
2384 				(src_object->type == OBJT_DEFAULT ||
2385 				 src_object->type == OBJT_SWAP)) {
2386 				vm_object_collapse(src_object);
2387 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2388 					vm_map_split(src_entry);
2389 					src_object = src_entry->object.vm_object;
2390 				}
2391 			}
2392 
2393 			vm_object_reference(src_object);
2394 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2395 			dst_entry->object.vm_object = src_object;
2396 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2397 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2398 			dst_entry->offset = src_entry->offset;
2399 		} else {
2400 			dst_entry->object.vm_object = NULL;
2401 			dst_entry->offset = 0;
2402 		}
2403 
2404 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2405 		    dst_entry->end - dst_entry->start, src_entry->start);
2406 	} else {
2407 		/*
2408 		 * Of course, wired down pages can't be set copy-on-write.
2409 		 * Cause wired pages to be copied into the new map by
2410 		 * simulating faults (the new pages are pageable)
2411 		 */
2412 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2413 	}
2414 }
2415 
2416 /*
2417  * vmspace_fork:
2418  * Create a new process vmspace structure and vm_map
2419  * based on those of an existing process.  The new map
2420  * is based on the old map, according to the inheritance
2421  * values on the regions in that map.
2422  *
2423  * The source map must not be locked.
2424  */
2425 struct vmspace *
2426 vmspace_fork(vm1)
2427 	struct vmspace *vm1;
2428 {
2429 	struct vmspace *vm2;
2430 	vm_map_t old_map = &vm1->vm_map;
2431 	vm_map_t new_map;
2432 	vm_map_entry_t old_entry;
2433 	vm_map_entry_t new_entry;
2434 	vm_object_t object;
2435 
2436 	vm_map_lock(old_map);
2437 	old_map->infork = 1;
2438 
2439 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2440 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2441 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2442 	new_map = &vm2->vm_map;	/* XXX */
2443 	new_map->timestamp = 1;
2444 
2445 	old_entry = old_map->header.next;
2446 
2447 	while (old_entry != &old_map->header) {
2448 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2449 			panic("vm_map_fork: encountered a submap");
2450 
2451 		switch (old_entry->inheritance) {
2452 		case VM_INHERIT_NONE:
2453 			break;
2454 
2455 		case VM_INHERIT_SHARE:
2456 			/*
2457 			 * Clone the entry, creating the shared object if necessary.
2458 			 */
2459 			object = old_entry->object.vm_object;
2460 			if (object == NULL) {
2461 				object = vm_object_allocate(OBJT_DEFAULT,
2462 					atop(old_entry->end - old_entry->start));
2463 				old_entry->object.vm_object = object;
2464 				old_entry->offset = (vm_offset_t) 0;
2465 			}
2466 
2467 			/*
2468 			 * Add the reference before calling vm_object_shadow
2469 			 * to insure that a shadow object is created.
2470 			 */
2471 			vm_object_reference(object);
2472 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2473 				vm_object_shadow(&old_entry->object.vm_object,
2474 					&old_entry->offset,
2475 					atop(old_entry->end - old_entry->start));
2476 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2477 				/* Transfer the second reference too. */
2478 				vm_object_reference(
2479 				    old_entry->object.vm_object);
2480 				vm_object_deallocate(object);
2481 				object = old_entry->object.vm_object;
2482 			}
2483 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2484 
2485 			/*
2486 			 * Clone the entry, referencing the shared object.
2487 			 */
2488 			new_entry = vm_map_entry_create(new_map);
2489 			*new_entry = *old_entry;
2490 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2491 			new_entry->wired_count = 0;
2492 
2493 			/*
2494 			 * Insert the entry into the new map -- we know we're
2495 			 * inserting at the end of the new map.
2496 			 */
2497 
2498 			vm_map_entry_link(new_map, new_map->header.prev,
2499 			    new_entry);
2500 
2501 			/*
2502 			 * Update the physical map
2503 			 */
2504 
2505 			pmap_copy(new_map->pmap, old_map->pmap,
2506 			    new_entry->start,
2507 			    (old_entry->end - old_entry->start),
2508 			    old_entry->start);
2509 			break;
2510 
2511 		case VM_INHERIT_COPY:
2512 			/*
2513 			 * Clone the entry and link into the map.
2514 			 */
2515 			new_entry = vm_map_entry_create(new_map);
2516 			*new_entry = *old_entry;
2517 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2518 			new_entry->wired_count = 0;
2519 			new_entry->object.vm_object = NULL;
2520 			vm_map_entry_link(new_map, new_map->header.prev,
2521 			    new_entry);
2522 			vm_map_copy_entry(old_map, new_map, old_entry,
2523 			    new_entry);
2524 			break;
2525 		}
2526 		old_entry = old_entry->next;
2527 	}
2528 
2529 	new_map->size = old_map->size;
2530 	old_map->infork = 0;
2531 	vm_map_unlock(old_map);
2532 
2533 	return (vm2);
2534 }
2535 
2536 int
2537 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2538 	      vm_prot_t prot, vm_prot_t max, int cow)
2539 {
2540 	vm_map_entry_t prev_entry;
2541 	vm_map_entry_t new_stack_entry;
2542 	vm_size_t      init_ssize;
2543 	int            rv;
2544 
2545 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2546 		return (KERN_NO_SPACE);
2547 
2548 	if (max_ssize < sgrowsiz)
2549 		init_ssize = max_ssize;
2550 	else
2551 		init_ssize = sgrowsiz;
2552 
2553 	vm_map_lock(map);
2554 
2555 	/* If addr is already mapped, no go */
2556 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2557 		vm_map_unlock(map);
2558 		return (KERN_NO_SPACE);
2559 	}
2560 
2561 	/* If we would blow our VMEM resource limit, no go */
2562 	if (map->size + init_ssize >
2563 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2564 		vm_map_unlock(map);
2565 		return (KERN_NO_SPACE);
2566 	}
2567 
2568 	/* If we can't accomodate max_ssize in the current mapping,
2569 	 * no go.  However, we need to be aware that subsequent user
2570 	 * mappings might map into the space we have reserved for
2571 	 * stack, and currently this space is not protected.
2572 	 *
2573 	 * Hopefully we will at least detect this condition
2574 	 * when we try to grow the stack.
2575 	 */
2576 	if ((prev_entry->next != &map->header) &&
2577 	    (prev_entry->next->start < addrbos + max_ssize)) {
2578 		vm_map_unlock(map);
2579 		return (KERN_NO_SPACE);
2580 	}
2581 
2582 	/* We initially map a stack of only init_ssize.  We will
2583 	 * grow as needed later.  Since this is to be a grow
2584 	 * down stack, we map at the top of the range.
2585 	 *
2586 	 * Note: we would normally expect prot and max to be
2587 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2588 	 * eliminate these as input parameters, and just
2589 	 * pass these values here in the insert call.
2590 	 */
2591 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2592 	                   addrbos + max_ssize, prot, max, cow);
2593 
2594 	/* Now set the avail_ssize amount */
2595 	if (rv == KERN_SUCCESS){
2596 		if (prev_entry != &map->header)
2597 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2598 		new_stack_entry = prev_entry->next;
2599 		if (new_stack_entry->end   != addrbos + max_ssize ||
2600 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2601 			panic ("Bad entry start/end for new stack entry");
2602 		else
2603 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2604 	}
2605 
2606 	vm_map_unlock(map);
2607 	return (rv);
2608 }
2609 
2610 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2611  * desired address is already mapped, or if we successfully grow
2612  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2613  * stack range (this is strange, but preserves compatibility with
2614  * the grow function in vm_machdep.c).
2615  */
2616 int
2617 vm_map_growstack (struct proc *p, vm_offset_t addr)
2618 {
2619 	vm_map_entry_t prev_entry;
2620 	vm_map_entry_t stack_entry;
2621 	vm_map_entry_t new_stack_entry;
2622 	struct vmspace *vm = p->p_vmspace;
2623 	vm_map_t map = &vm->vm_map;
2624 	vm_offset_t    end;
2625 	int      grow_amount;
2626 	int      rv = KERN_SUCCESS;
2627 	int      is_procstack;
2628 	int	 use_read_lock = 1;
2629 
2630 Retry:
2631 	if (use_read_lock)
2632 		vm_map_lock_read(map);
2633 	else
2634 		vm_map_lock(map);
2635 
2636 	/* If addr is already in the entry range, no need to grow.*/
2637 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2638 		goto done;
2639 
2640 	if ((stack_entry = prev_entry->next) == &map->header)
2641 		goto done;
2642 	if (prev_entry == &map->header)
2643 		end = stack_entry->start - stack_entry->avail_ssize;
2644 	else
2645 		end = prev_entry->end;
2646 
2647 	/* This next test mimics the old grow function in vm_machdep.c.
2648 	 * It really doesn't quite make sense, but we do it anyway
2649 	 * for compatibility.
2650 	 *
2651 	 * If not growable stack, return success.  This signals the
2652 	 * caller to proceed as he would normally with normal vm.
2653 	 */
2654 	if (stack_entry->avail_ssize < 1 ||
2655 	    addr >= stack_entry->start ||
2656 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2657 		goto done;
2658 	}
2659 
2660 	/* Find the minimum grow amount */
2661 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2662 	if (grow_amount > stack_entry->avail_ssize) {
2663 		rv = KERN_NO_SPACE;
2664 		goto done;
2665 	}
2666 
2667 	/* If there is no longer enough space between the entries
2668 	 * nogo, and adjust the available space.  Note: this
2669 	 * should only happen if the user has mapped into the
2670 	 * stack area after the stack was created, and is
2671 	 * probably an error.
2672 	 *
2673 	 * This also effectively destroys any guard page the user
2674 	 * might have intended by limiting the stack size.
2675 	 */
2676 	if (grow_amount > stack_entry->start - end) {
2677 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2678 			use_read_lock = 0;
2679 			goto Retry;
2680 		}
2681 		use_read_lock = 0;
2682 		stack_entry->avail_ssize = stack_entry->start - end;
2683 		rv = KERN_NO_SPACE;
2684 		goto done;
2685 	}
2686 
2687 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2688 
2689 	/* If this is the main process stack, see if we're over the
2690 	 * stack limit.
2691 	 */
2692 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2693 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2694 		rv = KERN_NO_SPACE;
2695 		goto done;
2696 	}
2697 
2698 	/* Round up the grow amount modulo SGROWSIZ */
2699 	grow_amount = roundup (grow_amount, sgrowsiz);
2700 	if (grow_amount > stack_entry->avail_ssize) {
2701 		grow_amount = stack_entry->avail_ssize;
2702 	}
2703 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2704 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2705 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2706 		              ctob(vm->vm_ssize);
2707 	}
2708 
2709 	/* If we would blow our VMEM resource limit, no go */
2710 	if (map->size + grow_amount >
2711 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2712 		rv = KERN_NO_SPACE;
2713 		goto done;
2714 	}
2715 
2716 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2717 		use_read_lock = 0;
2718 		goto Retry;
2719 	}
2720 	use_read_lock = 0;
2721 
2722 	/* Get the preliminary new entry start value */
2723 	addr = stack_entry->start - grow_amount;
2724 
2725 	/* If this puts us into the previous entry, cut back our growth
2726 	 * to the available space.  Also, see the note above.
2727 	 */
2728 	if (addr < end) {
2729 		stack_entry->avail_ssize = stack_entry->start - end;
2730 		addr = end;
2731 	}
2732 
2733 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2734 			   VM_PROT_ALL,
2735 			   VM_PROT_ALL,
2736 			   0);
2737 
2738 	/* Adjust the available stack space by the amount we grew. */
2739 	if (rv == KERN_SUCCESS) {
2740 		if (prev_entry != &map->header)
2741 			vm_map_clip_end(map, prev_entry, addr);
2742 		new_stack_entry = prev_entry->next;
2743 		if (new_stack_entry->end   != stack_entry->start  ||
2744 		    new_stack_entry->start != addr)
2745 			panic ("Bad stack grow start/end in new stack entry");
2746 		else {
2747 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2748 							(new_stack_entry->end -
2749 							 new_stack_entry->start);
2750 			if (is_procstack)
2751 				vm->vm_ssize += btoc(new_stack_entry->end -
2752 						     new_stack_entry->start);
2753 		}
2754 	}
2755 
2756 done:
2757 	if (use_read_lock)
2758 		vm_map_unlock_read(map);
2759 	else
2760 		vm_map_unlock(map);
2761 	return (rv);
2762 }
2763 
2764 /*
2765  * Unshare the specified VM space for exec.  If other processes are
2766  * mapped to it, then create a new one.  The new vmspace is null.
2767  */
2768 
2769 void
2770 vmspace_exec(struct proc *p) {
2771 	struct vmspace *oldvmspace = p->p_vmspace;
2772 	struct vmspace *newvmspace;
2773 	vm_map_t map = &p->p_vmspace->vm_map;
2774 
2775 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2776 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2777 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2778 	/*
2779 	 * This code is written like this for prototype purposes.  The
2780 	 * goal is to avoid running down the vmspace here, but let the
2781 	 * other process's that are still using the vmspace to finally
2782 	 * run it down.  Even though there is little or no chance of blocking
2783 	 * here, it is a good idea to keep this form for future mods.
2784 	 */
2785 	vmspace_free(oldvmspace);
2786 	p->p_vmspace = newvmspace;
2787 	pmap_pinit2(vmspace_pmap(newvmspace));
2788 	if (p == curproc)
2789 		pmap_activate(p);
2790 }
2791 
2792 /*
2793  * Unshare the specified VM space for forcing COW.  This
2794  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2795  */
2796 
2797 void
2798 vmspace_unshare(struct proc *p) {
2799 	struct vmspace *oldvmspace = p->p_vmspace;
2800 	struct vmspace *newvmspace;
2801 
2802 	if (oldvmspace->vm_refcnt == 1)
2803 		return;
2804 	newvmspace = vmspace_fork(oldvmspace);
2805 	vmspace_free(oldvmspace);
2806 	p->p_vmspace = newvmspace;
2807 	pmap_pinit2(vmspace_pmap(newvmspace));
2808 	if (p == curproc)
2809 		pmap_activate(p);
2810 }
2811 
2812 
2813 /*
2814  *	vm_map_lookup:
2815  *
2816  *	Finds the VM object, offset, and
2817  *	protection for a given virtual address in the
2818  *	specified map, assuming a page fault of the
2819  *	type specified.
2820  *
2821  *	Leaves the map in question locked for read; return
2822  *	values are guaranteed until a vm_map_lookup_done
2823  *	call is performed.  Note that the map argument
2824  *	is in/out; the returned map must be used in
2825  *	the call to vm_map_lookup_done.
2826  *
2827  *	A handle (out_entry) is returned for use in
2828  *	vm_map_lookup_done, to make that fast.
2829  *
2830  *	If a lookup is requested with "write protection"
2831  *	specified, the map may be changed to perform virtual
2832  *	copying operations, although the data referenced will
2833  *	remain the same.
2834  */
2835 int
2836 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2837 	      vm_offset_t vaddr,
2838 	      vm_prot_t fault_typea,
2839 	      vm_map_entry_t *out_entry,	/* OUT */
2840 	      vm_object_t *object,		/* OUT */
2841 	      vm_pindex_t *pindex,		/* OUT */
2842 	      vm_prot_t *out_prot,		/* OUT */
2843 	      boolean_t *wired)			/* OUT */
2844 {
2845 	vm_map_entry_t entry;
2846 	vm_map_t map = *var_map;
2847 	vm_prot_t prot;
2848 	vm_prot_t fault_type = fault_typea;
2849 	int use_read_lock = 1;
2850 	int rv = KERN_SUCCESS;
2851 
2852 RetryLookup:
2853 	if (use_read_lock)
2854 		vm_map_lock_read(map);
2855 	else
2856 		vm_map_lock(map);
2857 
2858 	/*
2859 	 * If the map has an interesting hint, try it before calling full
2860 	 * blown lookup routine.
2861 	 */
2862 	entry = map->hint;
2863 	*out_entry = entry;
2864 
2865 	if ((entry == &map->header) ||
2866 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2867 		vm_map_entry_t tmp_entry;
2868 
2869 		/*
2870 		 * Entry was either not a valid hint, or the vaddr was not
2871 		 * contained in the entry, so do a full lookup.
2872 		 */
2873 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
2874 			rv = KERN_INVALID_ADDRESS;
2875 			goto done;
2876 		}
2877 
2878 		entry = tmp_entry;
2879 		*out_entry = entry;
2880 	}
2881 
2882 	/*
2883 	 * Handle submaps.
2884 	 */
2885 
2886 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2887 		vm_map_t old_map = map;
2888 
2889 		*var_map = map = entry->object.sub_map;
2890 		if (use_read_lock)
2891 			vm_map_unlock_read(old_map);
2892 		else
2893 			vm_map_unlock(old_map);
2894 		use_read_lock = 1;
2895 		goto RetryLookup;
2896 	}
2897 
2898 	/*
2899 	 * Check whether this task is allowed to have this page.
2900 	 * Note the special case for MAP_ENTRY_COW
2901 	 * pages with an override.  This is to implement a forced
2902 	 * COW for debuggers.
2903 	 */
2904 
2905 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2906 		prot = entry->max_protection;
2907 	else
2908 		prot = entry->protection;
2909 
2910 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2911 	if ((fault_type & prot) != fault_type) {
2912 		rv = KERN_PROTECTION_FAILURE;
2913 		goto done;
2914 	}
2915 
2916 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2917 	    (entry->eflags & MAP_ENTRY_COW) &&
2918 	    (fault_type & VM_PROT_WRITE) &&
2919 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2920 		rv = KERN_PROTECTION_FAILURE;
2921 		goto done;
2922 	}
2923 
2924 	/*
2925 	 * If this page is not pageable, we have to get it for all possible
2926 	 * accesses.
2927 	 */
2928 
2929 	*wired = (entry->wired_count != 0);
2930 	if (*wired)
2931 		prot = fault_type = entry->protection;
2932 
2933 	/*
2934 	 * If the entry was copy-on-write, we either ...
2935 	 */
2936 
2937 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2938 		/*
2939 		 * If we want to write the page, we may as well handle that
2940 		 * now since we've got the map locked.
2941 		 *
2942 		 * If we don't need to write the page, we just demote the
2943 		 * permissions allowed.
2944 		 */
2945 
2946 		if (fault_type & VM_PROT_WRITE) {
2947 			/*
2948 			 * Make a new object, and place it in the object
2949 			 * chain.  Note that no new references have appeared
2950 			 * -- one just moved from the map to the new
2951 			 * object.
2952 			 */
2953 
2954 			if (use_read_lock && vm_map_lock_upgrade(map)) {
2955 				use_read_lock = 0;
2956 				goto RetryLookup;
2957 			}
2958 			use_read_lock = 0;
2959 
2960 			vm_object_shadow(
2961 			    &entry->object.vm_object,
2962 			    &entry->offset,
2963 			    atop(entry->end - entry->start));
2964 
2965 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2966 		} else {
2967 			/*
2968 			 * We're attempting to read a copy-on-write page --
2969 			 * don't allow writes.
2970 			 */
2971 
2972 			prot &= ~VM_PROT_WRITE;
2973 		}
2974 	}
2975 
2976 	/*
2977 	 * Create an object if necessary.
2978 	 */
2979 	if (entry->object.vm_object == NULL &&
2980 	    !map->system_map) {
2981 		if (use_read_lock && vm_map_lock_upgrade(map))  {
2982 			use_read_lock = 0;
2983 			goto RetryLookup;
2984 		}
2985 		use_read_lock = 0;
2986 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2987 		    atop(entry->end - entry->start));
2988 		entry->offset = 0;
2989 	}
2990 
2991 	/*
2992 	 * Return the object/offset from this entry.  If the entry was
2993 	 * copy-on-write or empty, it has been fixed up.
2994 	 */
2995 
2996 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2997 	*object = entry->object.vm_object;
2998 
2999 	/*
3000 	 * Return whether this is the only map sharing this data.  On
3001 	 * success we return with a read lock held on the map.  On failure
3002 	 * we return with the map unlocked.
3003 	 */
3004 	*out_prot = prot;
3005 done:
3006 	if (rv == KERN_SUCCESS) {
3007 		if (use_read_lock == 0)
3008 			vm_map_lock_downgrade(map);
3009 	} else if (use_read_lock) {
3010 		vm_map_unlock_read(map);
3011 	} else {
3012 		vm_map_unlock(map);
3013 	}
3014 	return (rv);
3015 }
3016 
3017 /*
3018  *	vm_map_lookup_done:
3019  *
3020  *	Releases locks acquired by a vm_map_lookup
3021  *	(according to the handle returned by that lookup).
3022  */
3023 
3024 void
3025 vm_map_lookup_done(map, entry)
3026 	vm_map_t map;
3027 	vm_map_entry_t entry;
3028 {
3029 	/*
3030 	 * Unlock the main-level map
3031 	 */
3032 
3033 	vm_map_unlock_read(map);
3034 }
3035 
3036 /*
3037  * Implement uiomove with VM operations.  This handles (and collateral changes)
3038  * support every combination of source object modification, and COW type
3039  * operations.
3040  */
3041 int
3042 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3043 	vm_map_t mapa;
3044 	vm_object_t srcobject;
3045 	off_t cp;
3046 	int cnta;
3047 	vm_offset_t uaddra;
3048 	int *npages;
3049 {
3050 	vm_map_t map;
3051 	vm_object_t first_object, oldobject, object;
3052 	vm_map_entry_t entry;
3053 	vm_prot_t prot;
3054 	boolean_t wired;
3055 	int tcnt, rv;
3056 	vm_offset_t uaddr, start, end, tend;
3057 	vm_pindex_t first_pindex, osize, oindex;
3058 	off_t ooffset;
3059 	int cnt;
3060 
3061 	if (npages)
3062 		*npages = 0;
3063 
3064 	cnt = cnta;
3065 	uaddr = uaddra;
3066 
3067 	while (cnt > 0) {
3068 		map = mapa;
3069 
3070 		if ((vm_map_lookup(&map, uaddr,
3071 			VM_PROT_READ, &entry, &first_object,
3072 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3073 			return EFAULT;
3074 		}
3075 
3076 		vm_map_clip_start(map, entry, uaddr);
3077 
3078 		tcnt = cnt;
3079 		tend = uaddr + tcnt;
3080 		if (tend > entry->end) {
3081 			tcnt = entry->end - uaddr;
3082 			tend = entry->end;
3083 		}
3084 
3085 		vm_map_clip_end(map, entry, tend);
3086 
3087 		start = entry->start;
3088 		end = entry->end;
3089 
3090 		osize = atop(tcnt);
3091 
3092 		oindex = OFF_TO_IDX(cp);
3093 		if (npages) {
3094 			vm_pindex_t idx;
3095 			for (idx = 0; idx < osize; idx++) {
3096 				vm_page_t m;
3097 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3098 					vm_map_lookup_done(map, entry);
3099 					return 0;
3100 				}
3101 				/*
3102 				 * disallow busy or invalid pages, but allow
3103 				 * m->busy pages if they are entirely valid.
3104 				 */
3105 				if ((m->flags & PG_BUSY) ||
3106 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3107 					vm_map_lookup_done(map, entry);
3108 					return 0;
3109 				}
3110 			}
3111 		}
3112 
3113 /*
3114  * If we are changing an existing map entry, just redirect
3115  * the object, and change mappings.
3116  */
3117 		if ((first_object->type == OBJT_VNODE) &&
3118 			((oldobject = entry->object.vm_object) == first_object)) {
3119 
3120 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3121 				/*
3122    				* Remove old window into the file
3123    				*/
3124 				pmap_remove (map->pmap, uaddr, tend);
3125 
3126 				/*
3127    				* Force copy on write for mmaped regions
3128    				*/
3129 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3130 
3131 				/*
3132    				* Point the object appropriately
3133    				*/
3134 				if (oldobject != srcobject) {
3135 
3136 				/*
3137    				* Set the object optimization hint flag
3138    				*/
3139 					vm_object_set_flag(srcobject, OBJ_OPT);
3140 					vm_object_reference(srcobject);
3141 					entry->object.vm_object = srcobject;
3142 
3143 					if (oldobject) {
3144 						vm_object_deallocate(oldobject);
3145 					}
3146 				}
3147 
3148 				entry->offset = cp;
3149 				map->timestamp++;
3150 			} else {
3151 				pmap_remove (map->pmap, uaddr, tend);
3152 			}
3153 
3154 		} else if ((first_object->ref_count == 1) &&
3155 			(first_object->size == osize) &&
3156 			((first_object->type == OBJT_DEFAULT) ||
3157 				(first_object->type == OBJT_SWAP)) ) {
3158 
3159 			oldobject = first_object->backing_object;
3160 
3161 			if ((first_object->backing_object_offset != cp) ||
3162 				(oldobject != srcobject)) {
3163 				/*
3164    				* Remove old window into the file
3165    				*/
3166 				pmap_remove (map->pmap, uaddr, tend);
3167 
3168 				/*
3169 				 * Remove unneeded old pages
3170 				 */
3171 				vm_object_page_remove(first_object, 0, 0, 0);
3172 
3173 				/*
3174 				 * Invalidate swap space
3175 				 */
3176 				if (first_object->type == OBJT_SWAP) {
3177 					swap_pager_freespace(first_object,
3178 						0,
3179 						first_object->size);
3180 				}
3181 
3182 				/*
3183    				* Force copy on write for mmaped regions
3184    				*/
3185 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3186 
3187 				/*
3188    				* Point the object appropriately
3189    				*/
3190 				if (oldobject != srcobject) {
3191 
3192 				/*
3193    				* Set the object optimization hint flag
3194    				*/
3195 					vm_object_set_flag(srcobject, OBJ_OPT);
3196 					vm_object_reference(srcobject);
3197 
3198 					if (oldobject) {
3199 						LIST_REMOVE(
3200 							first_object, shadow_list);
3201 						oldobject->shadow_count--;
3202 						/* XXX bump generation? */
3203 						vm_object_deallocate(oldobject);
3204 					}
3205 
3206 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3207 						first_object, shadow_list);
3208 					srcobject->shadow_count++;
3209 					/* XXX bump generation? */
3210 
3211 					first_object->backing_object = srcobject;
3212 				}
3213 				first_object->backing_object_offset = cp;
3214 				map->timestamp++;
3215 			} else {
3216 				pmap_remove (map->pmap, uaddr, tend);
3217 			}
3218 /*
3219  * Otherwise, we have to do a logical mmap.
3220  */
3221 		} else {
3222 
3223 			vm_object_set_flag(srcobject, OBJ_OPT);
3224 			vm_object_reference(srcobject);
3225 
3226 			pmap_remove (map->pmap, uaddr, tend);
3227 
3228 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3229 			vm_map_lock_upgrade(map);
3230 
3231 			if (entry == &map->header) {
3232 				map->first_free = &map->header;
3233 			} else if (map->first_free->start >= start) {
3234 				map->first_free = entry->prev;
3235 			}
3236 
3237 			SAVE_HINT(map, entry->prev);
3238 			vm_map_entry_delete(map, entry);
3239 
3240 			object = srcobject;
3241 			ooffset = cp;
3242 
3243 			rv = vm_map_insert(map, object, ooffset, start, tend,
3244 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3245 
3246 			if (rv != KERN_SUCCESS)
3247 				panic("vm_uiomove: could not insert new entry: %d", rv);
3248 		}
3249 
3250 /*
3251  * Map the window directly, if it is already in memory
3252  */
3253 		pmap_object_init_pt(map->pmap, uaddr,
3254 			srcobject, oindex, tcnt, 0);
3255 
3256 		map->timestamp++;
3257 		vm_map_unlock(map);
3258 
3259 		cnt -= tcnt;
3260 		uaddr += tcnt;
3261 		cp += tcnt;
3262 		if (npages)
3263 			*npages += osize;
3264 	}
3265 	return 0;
3266 }
3267 
3268 /*
3269  * Performs the copy_on_write operations necessary to allow the virtual copies
3270  * into user space to work.  This has to be called for write(2) system calls
3271  * from other processes, file unlinking, and file size shrinkage.
3272  */
3273 void
3274 vm_freeze_copyopts(object, froma, toa)
3275 	vm_object_t object;
3276 	vm_pindex_t froma, toa;
3277 {
3278 	int rv;
3279 	vm_object_t robject;
3280 	vm_pindex_t idx;
3281 
3282 	if ((object == NULL) ||
3283 		((object->flags & OBJ_OPT) == 0))
3284 		return;
3285 
3286 	if (object->shadow_count > object->ref_count)
3287 		panic("vm_freeze_copyopts: sc > rc");
3288 
3289 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3290 		vm_pindex_t bo_pindex;
3291 		vm_page_t m_in, m_out;
3292 
3293 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3294 
3295 		vm_object_reference(robject);
3296 
3297 		vm_object_pip_wait(robject, "objfrz");
3298 
3299 		if (robject->ref_count == 1) {
3300 			vm_object_deallocate(robject);
3301 			continue;
3302 		}
3303 
3304 		vm_object_pip_add(robject, 1);
3305 
3306 		for (idx = 0; idx < robject->size; idx++) {
3307 
3308 			m_out = vm_page_grab(robject, idx,
3309 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3310 
3311 			if (m_out->valid == 0) {
3312 				m_in = vm_page_grab(object, bo_pindex + idx,
3313 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3314 				if (m_in->valid == 0) {
3315 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3316 					if (rv != VM_PAGER_OK) {
3317 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3318 						continue;
3319 					}
3320 					vm_page_deactivate(m_in);
3321 				}
3322 
3323 				vm_page_protect(m_in, VM_PROT_NONE);
3324 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3325 				m_out->valid = m_in->valid;
3326 				vm_page_dirty(m_out);
3327 				vm_page_activate(m_out);
3328 				vm_page_wakeup(m_in);
3329 			}
3330 			vm_page_wakeup(m_out);
3331 		}
3332 
3333 		object->shadow_count--;
3334 		object->ref_count--;
3335 		LIST_REMOVE(robject, shadow_list);
3336 		robject->backing_object = NULL;
3337 		robject->backing_object_offset = 0;
3338 
3339 		vm_object_pip_wakeup(robject);
3340 		vm_object_deallocate(robject);
3341 	}
3342 
3343 	vm_object_clear_flag(object, OBJ_OPT);
3344 }
3345 
3346 #include "opt_ddb.h"
3347 #ifdef DDB
3348 #include <sys/kernel.h>
3349 
3350 #include <ddb/ddb.h>
3351 
3352 /*
3353  *	vm_map_print:	[ debug ]
3354  */
3355 DB_SHOW_COMMAND(map, vm_map_print)
3356 {
3357 	static int nlines;
3358 	/* XXX convert args. */
3359 	vm_map_t map = (vm_map_t)addr;
3360 	boolean_t full = have_addr;
3361 
3362 	vm_map_entry_t entry;
3363 
3364 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3365 	    (void *)map,
3366 	    (void *)map->pmap, map->nentries, map->timestamp);
3367 	nlines++;
3368 
3369 	if (!full && db_indent)
3370 		return;
3371 
3372 	db_indent += 2;
3373 	for (entry = map->header.next; entry != &map->header;
3374 	    entry = entry->next) {
3375 		db_iprintf("map entry %p: start=%p, end=%p\n",
3376 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3377 		nlines++;
3378 		{
3379 			static char *inheritance_name[4] =
3380 			{"share", "copy", "none", "donate_copy"};
3381 
3382 			db_iprintf(" prot=%x/%x/%s",
3383 			    entry->protection,
3384 			    entry->max_protection,
3385 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3386 			if (entry->wired_count != 0)
3387 				db_printf(", wired");
3388 		}
3389 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3390 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3391 			db_printf(", share=%p, offset=0x%lx\n",
3392 			    (void *)entry->object.sub_map,
3393 			    (long)entry->offset);
3394 			nlines++;
3395 			if ((entry->prev == &map->header) ||
3396 			    (entry->prev->object.sub_map !=
3397 				entry->object.sub_map)) {
3398 				db_indent += 2;
3399 				vm_map_print((db_expr_t)(intptr_t)
3400 					     entry->object.sub_map,
3401 					     full, 0, (char *)0);
3402 				db_indent -= 2;
3403 			}
3404 		} else {
3405 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3406 			db_printf(", object=%p, offset=0x%lx",
3407 			    (void *)entry->object.vm_object,
3408 			    (long)entry->offset);
3409 			if (entry->eflags & MAP_ENTRY_COW)
3410 				db_printf(", copy (%s)",
3411 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3412 			db_printf("\n");
3413 			nlines++;
3414 
3415 			if ((entry->prev == &map->header) ||
3416 			    (entry->prev->object.vm_object !=
3417 				entry->object.vm_object)) {
3418 				db_indent += 2;
3419 				vm_object_print((db_expr_t)(intptr_t)
3420 						entry->object.vm_object,
3421 						full, 0, (char *)0);
3422 				nlines += 4;
3423 				db_indent -= 2;
3424 			}
3425 		}
3426 	}
3427 	db_indent -= 2;
3428 	if (db_indent == 0)
3429 		nlines = 0;
3430 }
3431 
3432 
3433 DB_SHOW_COMMAND(procvm, procvm)
3434 {
3435 	struct proc *p;
3436 
3437 	if (have_addr) {
3438 		p = (struct proc *) addr;
3439 	} else {
3440 		p = curproc;
3441 	}
3442 
3443 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3444 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3445 	    (void *)vmspace_pmap(p->p_vmspace));
3446 
3447 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3448 }
3449 
3450 #endif /* DDB */
3451