xref: /dragonfly/sys/vm/vm_map.c (revision 77b0c609)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory mapping module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/serialize.h>
78 #include <sys/lock.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/shm.h>
84 #include <sys/tree.h>
85 #include <sys/malloc.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/sysref2.h>
101 #include <sys/random.h>
102 #include <sys/sysctl.h>
103 
104 /*
105  * Virtual memory maps provide for the mapping, protection, and sharing
106  * of virtual memory objects.  In addition, this module provides for an
107  * efficient virtual copy of memory from one map to another.
108  *
109  * Synchronization is required prior to most operations.
110  *
111  * Maps consist of an ordered doubly-linked list of simple entries.
112  * A hint and a RB tree is used to speed-up lookups.
113  *
114  * Callers looking to modify maps specify start/end addresses which cause
115  * the related map entry to be clipped if necessary, and then later
116  * recombined if the pieces remained compatible.
117  *
118  * Virtual copy operations are performed by copying VM object references
119  * from one map to another, and then marking both regions as copy-on-write.
120  */
121 static void vmspace_terminate(struct vmspace *vm);
122 static void vmspace_lock(struct vmspace *vm);
123 static void vmspace_unlock(struct vmspace *vm);
124 static void vmspace_dtor(void *obj, void *private);
125 
126 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
127 
128 struct sysref_class vmspace_sysref_class = {
129 	.name =		"vmspace",
130 	.mtype =	M_VMSPACE,
131 	.proto =	SYSREF_PROTO_VMSPACE,
132 	.offset =	offsetof(struct vmspace, vm_sysref),
133 	.objsize =	sizeof(struct vmspace),
134 	.nom_cache =	32,
135 	.flags = SRC_MANAGEDINIT,
136 	.dtor = vmspace_dtor,
137 	.ops = {
138 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
139 		.lock = (sysref_lock_func_t)vmspace_lock,
140 		.unlock = (sysref_lock_func_t)vmspace_unlock
141 	}
142 };
143 
144 /*
145  * per-cpu page table cross mappings are initialized in early boot
146  * and might require a considerable number of vm_map_entry structures.
147  */
148 #define VMEPERCPU	(MAXCPU+1)
149 
150 static struct vm_zone mapentzone_store, mapzone_store;
151 static vm_zone_t mapentzone, mapzone;
152 static struct vm_object mapentobj, mapobj;
153 
154 static struct vm_map_entry map_entry_init[MAX_MAPENT];
155 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
156 static struct vm_map map_init[MAX_KMAP];
157 
158 static int randomize_mmap;
159 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
160     "Randomize mmap offsets");
161 
162 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
163 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
164 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
165 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
166 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
168 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
169 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
170 		vm_map_entry_t);
171 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
172 
173 /*
174  * Initialize the vm_map module.  Must be called before any other vm_map
175  * routines.
176  *
177  * Map and entry structures are allocated from the general purpose
178  * memory pool with some exceptions:
179  *
180  *	- The kernel map is allocated statically.
181  *	- Initial kernel map entries are allocated out of a static pool.
182  *
183  *	These restrictions are necessary since malloc() uses the
184  *	maps and requires map entries.
185  *
186  * Called from the low level boot code only.
187  */
188 void
189 vm_map_startup(void)
190 {
191 	mapzone = &mapzone_store;
192 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
193 		map_init, MAX_KMAP);
194 	mapentzone = &mapentzone_store;
195 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
196 		map_entry_init, MAX_MAPENT);
197 }
198 
199 /*
200  * Called prior to any vmspace allocations.
201  *
202  * Called from the low level boot code only.
203  */
204 void
205 vm_init2(void)
206 {
207 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
208 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
209 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
210 	pmap_init2();
211 	vm_object_init2();
212 }
213 
214 
215 /*
216  * Red black tree functions
217  *
218  * The caller must hold the related map lock.
219  */
220 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
221 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
222 
223 /* a->start is address, and the only field has to be initialized */
224 static int
225 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
226 {
227 	if (a->start < b->start)
228 		return(-1);
229 	else if (a->start > b->start)
230 		return(1);
231 	return(0);
232 }
233 
234 /*
235  * Allocate a vmspace structure, including a vm_map and pmap.
236  * Initialize numerous fields.  While the initial allocation is zerod,
237  * subsequence reuse from the objcache leaves elements of the structure
238  * intact (particularly the pmap), so portions must be zerod.
239  *
240  * The structure is not considered activated until we call sysref_activate().
241  *
242  * No requirements.
243  */
244 struct vmspace *
245 vmspace_alloc(vm_offset_t min, vm_offset_t max)
246 {
247 	struct vmspace *vm;
248 
249 	vm = sysref_alloc(&vmspace_sysref_class);
250 	bzero(&vm->vm_startcopy,
251 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
252 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
253 
254 	/*
255 	 * Use a hold to prevent any additional racing hold from terminating
256 	 * the vmspace before we manage to activate it.  This also acquires
257 	 * the token for safety.
258 	 */
259 	KKASSERT(vm->vm_holdcount == 0);
260 	KKASSERT(vm->vm_exitingcnt == 0);
261 	vmspace_hold(vm);
262 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
263 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
264 	vm->vm_shm = NULL;
265 	vm->vm_flags = 0;
266 	cpu_vmspace_alloc(vm);
267 	sysref_activate(&vm->vm_sysref);
268 	vmspace_drop(vm);
269 
270 	return (vm);
271 }
272 
273 /*
274  * Free a primary reference to a vmspace.  This can trigger a
275  * stage-1 termination.
276  */
277 void
278 vmspace_free(struct vmspace *vm)
279 {
280 	/*
281 	 * We want all finalization to occur via vmspace_drop() so we
282 	 * need to hold the vm around the put.
283 	 */
284 	vmspace_hold(vm);
285 	sysref_put(&vm->vm_sysref);
286 	vmspace_drop(vm);
287 }
288 
289 void
290 vmspace_ref(struct vmspace *vm)
291 {
292 	sysref_get(&vm->vm_sysref);
293 }
294 
295 void
296 vmspace_hold(struct vmspace *vm)
297 {
298 	refcount_acquire(&vm->vm_holdcount);
299 	lwkt_gettoken(&vm->vm_map.token);
300 }
301 
302 void
303 vmspace_drop(struct vmspace *vm)
304 {
305 	lwkt_reltoken(&vm->vm_map.token);
306 	if (refcount_release(&vm->vm_holdcount)) {
307 		if (vm->vm_exitingcnt == 0 &&
308 		    sysref_isinactive(&vm->vm_sysref)) {
309 			vmspace_terminate(vm);
310 		}
311 	}
312 }
313 
314 /*
315  * dtor function - Some elements of the pmap are retained in the
316  * free-cached vmspaces to improve performance.  We have to clean them up
317  * here before returning the vmspace to the memory pool.
318  *
319  * No requirements.
320  */
321 static void
322 vmspace_dtor(void *obj, void *private)
323 {
324 	struct vmspace *vm = obj;
325 
326 	pmap_puninit(vmspace_pmap(vm));
327 }
328 
329 /*
330  * Called in three cases:
331  *
332  * (1) When the last sysref is dropped and the vmspace becomes inactive.
333  *     (holdcount will not be 0 because the vmspace is held through the op)
334  *
335  * (2) When exitingcount becomes 0 on the last reap
336  *     (holdcount will not be 0 because the vmspace is held through the op)
337  *
338  * (3) When the holdcount becomes 0 in addition to the above two
339  *
340  * sysref will not scrap the object until we call sysref_put() once more
341  * after the last ref has been dropped.
342  *
343  * VMSPACE_EXIT1 flags the primary deactivation
344  * VMSPACE_EXIT2 flags the last reap
345  */
346 static void
347 vmspace_terminate(struct vmspace *vm)
348 {
349 	int count;
350 
351 	/*
352 	 *
353 	 */
354 	lwkt_gettoken(&vm->vm_map.token);
355 	if ((vm->vm_flags & VMSPACE_EXIT1) == 0) {
356 		vm->vm_flags |= VMSPACE_EXIT1;
357 		shmexit(vm);
358 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
359 				  VM_MAX_USER_ADDRESS);
360 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
361 			      VM_MAX_USER_ADDRESS);
362 	}
363 	if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) {
364 		vm->vm_flags |= VMSPACE_EXIT2;
365 		cpu_vmspace_free(vm);
366 		shmexit(vm);
367 		KKASSERT(vm->vm_upcalls == NULL);
368 
369 		/*
370 		 * Lock the map, to wait out all other references to it.
371 		 * Delete all of the mappings and pages they hold, then call
372 		 * the pmap module to reclaim anything left.
373 		 */
374 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
375 		vm_map_lock(&vm->vm_map);
376 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
377 			      vm->vm_map.max_offset, &count);
378 		vm_map_unlock(&vm->vm_map);
379 		vm_map_entry_release(count);
380 
381 		lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
382 		pmap_release(vmspace_pmap(vm));
383 		lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
384 	}
385 
386 	lwkt_reltoken(&vm->vm_map.token);
387 	if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) {
388 		KKASSERT(vm->vm_flags & VMSPACE_EXIT1);
389 		KKASSERT(vm->vm_flags & VMSPACE_EXIT2);
390 		sysref_put(&vm->vm_sysref);
391 	}
392 }
393 
394 /*
395  * vmspaces are not currently locked.
396  */
397 static void
398 vmspace_lock(struct vmspace *vm __unused)
399 {
400 }
401 
402 static void
403 vmspace_unlock(struct vmspace *vm __unused)
404 {
405 }
406 
407 /*
408  * This is called during exit indicating that the vmspace is no
409  * longer in used by an exiting process, but the process has not yet
410  * been reaped.
411  *
412  * No requirements.
413  */
414 void
415 vmspace_exitbump(struct vmspace *vm)
416 {
417 	vmspace_hold(vm);
418 	++vm->vm_exitingcnt;
419 	vmspace_drop(vm);	/* handles termination sequencing */
420 }
421 
422 /*
423  * Decrement the exitingcnt and issue the stage-2 termination if it becomes
424  * zero and the stage1 termination has already occured.
425  *
426  * No requirements.
427  */
428 void
429 vmspace_exitfree(struct proc *p)
430 {
431 	struct vmspace *vm;
432 
433 	vm = p->p_vmspace;
434 	p->p_vmspace = NULL;
435 	vmspace_hold(vm);
436 	KKASSERT(vm->vm_exitingcnt > 0);
437 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
438 		vmspace_terminate(vm);
439 	vmspace_drop(vm);	/* handles termination sequencing */
440 }
441 
442 /*
443  * Swap useage is determined by taking the proportional swap used by
444  * VM objects backing the VM map.  To make up for fractional losses,
445  * if the VM object has any swap use at all the associated map entries
446  * count for at least 1 swap page.
447  *
448  * No requirements.
449  */
450 int
451 vmspace_swap_count(struct vmspace *vm)
452 {
453 	vm_map_t map = &vm->vm_map;
454 	vm_map_entry_t cur;
455 	vm_object_t object;
456 	int count = 0;
457 	int n;
458 
459 	vmspace_hold(vm);
460 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
461 		switch(cur->maptype) {
462 		case VM_MAPTYPE_NORMAL:
463 		case VM_MAPTYPE_VPAGETABLE:
464 			if ((object = cur->object.vm_object) == NULL)
465 				break;
466 			if (object->swblock_count) {
467 				n = (cur->end - cur->start) / PAGE_SIZE;
468 				count += object->swblock_count *
469 				    SWAP_META_PAGES * n / object->size + 1;
470 			}
471 			break;
472 		default:
473 			break;
474 		}
475 	}
476 	vmspace_drop(vm);
477 
478 	return(count);
479 }
480 
481 /*
482  * Calculate the approximate number of anonymous pages in use by
483  * this vmspace.  To make up for fractional losses, we count each
484  * VM object as having at least 1 anonymous page.
485  *
486  * No requirements.
487  */
488 int
489 vmspace_anonymous_count(struct vmspace *vm)
490 {
491 	vm_map_t map = &vm->vm_map;
492 	vm_map_entry_t cur;
493 	vm_object_t object;
494 	int count = 0;
495 
496 	vmspace_hold(vm);
497 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
498 		switch(cur->maptype) {
499 		case VM_MAPTYPE_NORMAL:
500 		case VM_MAPTYPE_VPAGETABLE:
501 			if ((object = cur->object.vm_object) == NULL)
502 				break;
503 			if (object->type != OBJT_DEFAULT &&
504 			    object->type != OBJT_SWAP) {
505 				break;
506 			}
507 			count += object->resident_page_count;
508 			break;
509 		default:
510 			break;
511 		}
512 	}
513 	vmspace_drop(vm);
514 
515 	return(count);
516 }
517 
518 /*
519  * Creates and returns a new empty VM map with the given physical map
520  * structure, and having the given lower and upper address bounds.
521  *
522  * No requirements.
523  */
524 vm_map_t
525 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
526 {
527 	if (result == NULL)
528 		result = zalloc(mapzone);
529 	vm_map_init(result, min, max, pmap);
530 	return (result);
531 }
532 
533 /*
534  * Initialize an existing vm_map structure such as that in the vmspace
535  * structure.  The pmap is initialized elsewhere.
536  *
537  * No requirements.
538  */
539 void
540 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
541 {
542 	map->header.next = map->header.prev = &map->header;
543 	RB_INIT(&map->rb_root);
544 	map->nentries = 0;
545 	map->size = 0;
546 	map->system_map = 0;
547 	map->min_offset = min;
548 	map->max_offset = max;
549 	map->pmap = pmap;
550 	map->first_free = &map->header;
551 	map->hint = &map->header;
552 	map->timestamp = 0;
553 	map->flags = 0;
554 	lwkt_token_init(&map->token, "vm_map");
555 	lockinit(&map->lock, "thrd_sleep", (hz + 9) / 10, 0);
556 	TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
557 }
558 
559 /*
560  * Shadow the vm_map_entry's object.  This typically needs to be done when
561  * a write fault is taken on an entry which had previously been cloned by
562  * fork().  The shared object (which might be NULL) must become private so
563  * we add a shadow layer above it.
564  *
565  * Object allocation for anonymous mappings is defered as long as possible.
566  * When creating a shadow, however, the underlying object must be instantiated
567  * so it can be shared.
568  *
569  * If the map segment is governed by a virtual page table then it is
570  * possible to address offsets beyond the mapped area.  Just allocate
571  * a maximally sized object for this case.
572  *
573  * The vm_map must be exclusively locked.
574  * No other requirements.
575  */
576 static
577 void
578 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
579 {
580 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
581 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
582 				 0x7FFFFFFF, addref);	/* XXX */
583 	} else {
584 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
585 				 atop(entry->end - entry->start), addref);
586 	}
587 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
588 }
589 
590 /*
591  * Allocate an object for a vm_map_entry.
592  *
593  * Object allocation for anonymous mappings is defered as long as possible.
594  * This function is called when we can defer no longer, generally when a map
595  * entry might be split or forked or takes a page fault.
596  *
597  * If the map segment is governed by a virtual page table then it is
598  * possible to address offsets beyond the mapped area.  Just allocate
599  * a maximally sized object for this case.
600  *
601  * The vm_map must be exclusively locked.
602  * No other requirements.
603  */
604 void
605 vm_map_entry_allocate_object(vm_map_entry_t entry)
606 {
607 	vm_object_t obj;
608 
609 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
610 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
611 	} else {
612 		obj = vm_object_allocate(OBJT_DEFAULT,
613 					 atop(entry->end - entry->start));
614 	}
615 	entry->object.vm_object = obj;
616 	entry->offset = 0;
617 }
618 
619 /*
620  * Set an initial negative count so the first attempt to reserve
621  * space preloads a bunch of vm_map_entry's for this cpu.  Also
622  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
623  * map a new page for vm_map_entry structures.  SMP systems are
624  * particularly sensitive.
625  *
626  * This routine is called in early boot so we cannot just call
627  * vm_map_entry_reserve().
628  *
629  * Called from the low level boot code only (for each cpu)
630  */
631 void
632 vm_map_entry_reserve_cpu_init(globaldata_t gd)
633 {
634 	vm_map_entry_t entry;
635 	int i;
636 
637 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
638 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
639 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
640 		entry->next = gd->gd_vme_base;
641 		gd->gd_vme_base = entry;
642 	}
643 }
644 
645 /*
646  * Reserves vm_map_entry structures so code later on can manipulate
647  * map_entry structures within a locked map without blocking trying
648  * to allocate a new vm_map_entry.
649  *
650  * No requirements.
651  */
652 int
653 vm_map_entry_reserve(int count)
654 {
655 	struct globaldata *gd = mycpu;
656 	vm_map_entry_t entry;
657 
658 	/*
659 	 * Make sure we have enough structures in gd_vme_base to handle
660 	 * the reservation request.
661 	 *
662 	 * The critical section protects access to the per-cpu gd.
663 	 */
664 	crit_enter();
665 	while (gd->gd_vme_avail < count) {
666 		entry = zalloc(mapentzone);
667 		entry->next = gd->gd_vme_base;
668 		gd->gd_vme_base = entry;
669 		++gd->gd_vme_avail;
670 	}
671 	gd->gd_vme_avail -= count;
672 	crit_exit();
673 
674 	return(count);
675 }
676 
677 /*
678  * Releases previously reserved vm_map_entry structures that were not
679  * used.  If we have too much junk in our per-cpu cache clean some of
680  * it out.
681  *
682  * No requirements.
683  */
684 void
685 vm_map_entry_release(int count)
686 {
687 	struct globaldata *gd = mycpu;
688 	vm_map_entry_t entry;
689 
690 	crit_enter();
691 	gd->gd_vme_avail += count;
692 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
693 		entry = gd->gd_vme_base;
694 		KKASSERT(entry != NULL);
695 		gd->gd_vme_base = entry->next;
696 		--gd->gd_vme_avail;
697 		crit_exit();
698 		zfree(mapentzone, entry);
699 		crit_enter();
700 	}
701 	crit_exit();
702 }
703 
704 /*
705  * Reserve map entry structures for use in kernel_map itself.  These
706  * entries have *ALREADY* been reserved on a per-cpu basis when the map
707  * was inited.  This function is used by zalloc() to avoid a recursion
708  * when zalloc() itself needs to allocate additional kernel memory.
709  *
710  * This function works like the normal reserve but does not load the
711  * vm_map_entry cache (because that would result in an infinite
712  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
713  *
714  * Any caller of this function must be sure to renormalize after
715  * potentially eating entries to ensure that the reserve supply
716  * remains intact.
717  *
718  * No requirements.
719  */
720 int
721 vm_map_entry_kreserve(int count)
722 {
723 	struct globaldata *gd = mycpu;
724 
725 	crit_enter();
726 	gd->gd_vme_avail -= count;
727 	crit_exit();
728 	KASSERT(gd->gd_vme_base != NULL,
729 		("no reserved entries left, gd_vme_avail = %d",
730 		gd->gd_vme_avail));
731 	return(count);
732 }
733 
734 /*
735  * Release previously reserved map entries for kernel_map.  We do not
736  * attempt to clean up like the normal release function as this would
737  * cause an unnecessary (but probably not fatal) deep procedure call.
738  *
739  * No requirements.
740  */
741 void
742 vm_map_entry_krelease(int count)
743 {
744 	struct globaldata *gd = mycpu;
745 
746 	crit_enter();
747 	gd->gd_vme_avail += count;
748 	crit_exit();
749 }
750 
751 /*
752  * Allocates a VM map entry for insertion.  No entry fields are filled in.
753  *
754  * The entries should have previously been reserved.  The reservation count
755  * is tracked in (*countp).
756  *
757  * No requirements.
758  */
759 static vm_map_entry_t
760 vm_map_entry_create(vm_map_t map, int *countp)
761 {
762 	struct globaldata *gd = mycpu;
763 	vm_map_entry_t entry;
764 
765 	KKASSERT(*countp > 0);
766 	--*countp;
767 	crit_enter();
768 	entry = gd->gd_vme_base;
769 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
770 	gd->gd_vme_base = entry->next;
771 	crit_exit();
772 
773 	return(entry);
774 }
775 
776 /*
777  * Dispose of a vm_map_entry that is no longer being referenced.
778  *
779  * No requirements.
780  */
781 static void
782 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
783 {
784 	struct globaldata *gd = mycpu;
785 
786 	KKASSERT(map->hint != entry);
787 	KKASSERT(map->first_free != entry);
788 
789 	++*countp;
790 	crit_enter();
791 	entry->next = gd->gd_vme_base;
792 	gd->gd_vme_base = entry;
793 	crit_exit();
794 }
795 
796 
797 /*
798  * Insert/remove entries from maps.
799  *
800  * The related map must be exclusively locked.
801  * The caller must hold map->token
802  * No other requirements.
803  */
804 static __inline void
805 vm_map_entry_link(vm_map_t map,
806 		  vm_map_entry_t after_where,
807 		  vm_map_entry_t entry)
808 {
809 	ASSERT_VM_MAP_LOCKED(map);
810 
811 	map->nentries++;
812 	entry->prev = after_where;
813 	entry->next = after_where->next;
814 	entry->next->prev = entry;
815 	after_where->next = entry;
816 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
817 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
818 }
819 
820 static __inline void
821 vm_map_entry_unlink(vm_map_t map,
822 		    vm_map_entry_t entry)
823 {
824 	vm_map_entry_t prev;
825 	vm_map_entry_t next;
826 
827 	ASSERT_VM_MAP_LOCKED(map);
828 
829 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
830 		panic("vm_map_entry_unlink: attempt to mess with "
831 		      "locked entry! %p", entry);
832 	}
833 	prev = entry->prev;
834 	next = entry->next;
835 	next->prev = prev;
836 	prev->next = next;
837 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
838 	map->nentries--;
839 }
840 
841 /*
842  * Finds the map entry containing (or immediately preceding) the specified
843  * address in the given map.  The entry is returned in (*entry).
844  *
845  * The boolean result indicates whether the address is actually contained
846  * in the map.
847  *
848  * The related map must be locked.
849  * No other requirements.
850  */
851 boolean_t
852 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
853 {
854 	vm_map_entry_t tmp;
855 	vm_map_entry_t last;
856 
857 	ASSERT_VM_MAP_LOCKED(map);
858 #if 0
859 	/*
860 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
861 	 * the hint code with the red-black lookup meets with system crashes
862 	 * and lockups.  We do not yet know why.
863 	 *
864 	 * It is possible that the problem is related to the setting
865 	 * of the hint during map_entry deletion, in the code specified
866 	 * at the GGG comment later on in this file.
867 	 *
868 	 * YYY More likely it's because this function can be called with
869 	 * a shared lock on the map, resulting in map->hint updates possibly
870 	 * racing.  Fixed now but untested.
871 	 */
872 	/*
873 	 * Quickly check the cached hint, there's a good chance of a match.
874 	 */
875 	tmp = map->hint;
876 	cpu_ccfence();
877 	if (tmp != &map->header) {
878 		if (address >= tmp->start && address < tmp->end) {
879 			*entry = tmp;
880 			return(TRUE);
881 		}
882 	}
883 #endif
884 
885 	/*
886 	 * Locate the record from the top of the tree.  'last' tracks the
887 	 * closest prior record and is returned if no match is found, which
888 	 * in binary tree terms means tracking the most recent right-branch
889 	 * taken.  If there is no prior record, &map->header is returned.
890 	 */
891 	last = &map->header;
892 	tmp = RB_ROOT(&map->rb_root);
893 
894 	while (tmp) {
895 		if (address >= tmp->start) {
896 			if (address < tmp->end) {
897 				*entry = tmp;
898 				map->hint = tmp;
899 				return(TRUE);
900 			}
901 			last = tmp;
902 			tmp = RB_RIGHT(tmp, rb_entry);
903 		} else {
904 			tmp = RB_LEFT(tmp, rb_entry);
905 		}
906 	}
907 	*entry = last;
908 	return (FALSE);
909 }
910 
911 /*
912  * Inserts the given whole VM object into the target map at the specified
913  * address range.  The object's size should match that of the address range.
914  *
915  * The map must be exclusively locked.
916  * The object must be held.
917  * The caller must have reserved sufficient vm_map_entry structures.
918  *
919  * If object is non-NULL, ref count must be bumped by caller prior to
920  * making call to account for the new entry.
921  */
922 int
923 vm_map_insert(vm_map_t map, int *countp,
924 	      vm_object_t object, vm_ooffset_t offset,
925 	      vm_offset_t start, vm_offset_t end,
926 	      vm_maptype_t maptype,
927 	      vm_prot_t prot, vm_prot_t max,
928 	      int cow)
929 {
930 	vm_map_entry_t new_entry;
931 	vm_map_entry_t prev_entry;
932 	vm_map_entry_t temp_entry;
933 	vm_eflags_t protoeflags;
934 	int must_drop = 0;
935 
936 	ASSERT_VM_MAP_LOCKED(map);
937 	if (object)
938 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
939 
940 	/*
941 	 * Check that the start and end points are not bogus.
942 	 */
943 	if ((start < map->min_offset) || (end > map->max_offset) ||
944 	    (start >= end))
945 		return (KERN_INVALID_ADDRESS);
946 
947 	/*
948 	 * Find the entry prior to the proposed starting address; if it's part
949 	 * of an existing entry, this range is bogus.
950 	 */
951 	if (vm_map_lookup_entry(map, start, &temp_entry))
952 		return (KERN_NO_SPACE);
953 
954 	prev_entry = temp_entry;
955 
956 	/*
957 	 * Assert that the next entry doesn't overlap the end point.
958 	 */
959 
960 	if ((prev_entry->next != &map->header) &&
961 	    (prev_entry->next->start < end))
962 		return (KERN_NO_SPACE);
963 
964 	protoeflags = 0;
965 
966 	if (cow & MAP_COPY_ON_WRITE)
967 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
968 
969 	if (cow & MAP_NOFAULT) {
970 		protoeflags |= MAP_ENTRY_NOFAULT;
971 
972 		KASSERT(object == NULL,
973 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
974 	}
975 	if (cow & MAP_DISABLE_SYNCER)
976 		protoeflags |= MAP_ENTRY_NOSYNC;
977 	if (cow & MAP_DISABLE_COREDUMP)
978 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
979 	if (cow & MAP_IS_STACK)
980 		protoeflags |= MAP_ENTRY_STACK;
981 	if (cow & MAP_IS_KSTACK)
982 		protoeflags |= MAP_ENTRY_KSTACK;
983 
984 	lwkt_gettoken(&map->token);
985 
986 	if (object) {
987 		/*
988 		 * When object is non-NULL, it could be shared with another
989 		 * process.  We have to set or clear OBJ_ONEMAPPING
990 		 * appropriately.
991 		 */
992 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
993 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
994 		}
995 	}
996 	else if ((prev_entry != &map->header) &&
997 		 (prev_entry->eflags == protoeflags) &&
998 		 (prev_entry->end == start) &&
999 		 (prev_entry->wired_count == 0) &&
1000 		 prev_entry->maptype == maptype &&
1001 		 ((prev_entry->object.vm_object == NULL) ||
1002 		  vm_object_coalesce(prev_entry->object.vm_object,
1003 				     OFF_TO_IDX(prev_entry->offset),
1004 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1005 				     (vm_size_t)(end - prev_entry->end)))) {
1006 		/*
1007 		 * We were able to extend the object.  Determine if we
1008 		 * can extend the previous map entry to include the
1009 		 * new range as well.
1010 		 */
1011 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1012 		    (prev_entry->protection == prot) &&
1013 		    (prev_entry->max_protection == max)) {
1014 			map->size += (end - prev_entry->end);
1015 			prev_entry->end = end;
1016 			vm_map_simplify_entry(map, prev_entry, countp);
1017 			lwkt_reltoken(&map->token);
1018 			return (KERN_SUCCESS);
1019 		}
1020 
1021 		/*
1022 		 * If we can extend the object but cannot extend the
1023 		 * map entry, we have to create a new map entry.  We
1024 		 * must bump the ref count on the extended object to
1025 		 * account for it.  object may be NULL.
1026 		 */
1027 		object = prev_entry->object.vm_object;
1028 		offset = prev_entry->offset +
1029 			(prev_entry->end - prev_entry->start);
1030 		if (object) {
1031 			vm_object_hold(object);
1032 			vm_object_chain_wait(object);
1033 			vm_object_reference_locked(object);
1034 			must_drop = 1;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1040 	 * in things like the buffer map where we manage kva but do not manage
1041 	 * backing objects.
1042 	 */
1043 
1044 	/*
1045 	 * Create a new entry
1046 	 */
1047 
1048 	new_entry = vm_map_entry_create(map, countp);
1049 	new_entry->start = start;
1050 	new_entry->end = end;
1051 
1052 	new_entry->maptype = maptype;
1053 	new_entry->eflags = protoeflags;
1054 	new_entry->object.vm_object = object;
1055 	new_entry->offset = offset;
1056 	new_entry->aux.master_pde = 0;
1057 
1058 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1059 	new_entry->protection = prot;
1060 	new_entry->max_protection = max;
1061 	new_entry->wired_count = 0;
1062 
1063 	/*
1064 	 * Insert the new entry into the list
1065 	 */
1066 
1067 	vm_map_entry_link(map, prev_entry, new_entry);
1068 	map->size += new_entry->end - new_entry->start;
1069 
1070 	/*
1071 	 * Update the free space hint.  Entries cannot overlap.
1072 	 * An exact comparison is needed to avoid matching
1073 	 * against the map->header.
1074 	 */
1075 	if ((map->first_free == prev_entry) &&
1076 	    (prev_entry->end == new_entry->start)) {
1077 		map->first_free = new_entry;
1078 	}
1079 
1080 #if 0
1081 	/*
1082 	 * Temporarily removed to avoid MAP_STACK panic, due to
1083 	 * MAP_STACK being a huge hack.  Will be added back in
1084 	 * when MAP_STACK (and the user stack mapping) is fixed.
1085 	 */
1086 	/*
1087 	 * It may be possible to simplify the entry
1088 	 */
1089 	vm_map_simplify_entry(map, new_entry, countp);
1090 #endif
1091 
1092 	/*
1093 	 * Try to pre-populate the page table.  Mappings governed by virtual
1094 	 * page tables cannot be prepopulated without a lot of work, so
1095 	 * don't try.
1096 	 */
1097 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1098 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1099 		pmap_object_init_pt(map->pmap, start, prot,
1100 				    object, OFF_TO_IDX(offset), end - start,
1101 				    cow & MAP_PREFAULT_PARTIAL);
1102 	}
1103 	if (must_drop)
1104 		vm_object_drop(object);
1105 
1106 	lwkt_reltoken(&map->token);
1107 	return (KERN_SUCCESS);
1108 }
1109 
1110 /*
1111  * Find sufficient space for `length' bytes in the given map, starting at
1112  * `start'.  Returns 0 on success, 1 on no space.
1113  *
1114  * This function will returned an arbitrarily aligned pointer.  If no
1115  * particular alignment is required you should pass align as 1.  Note that
1116  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1117  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1118  * argument.
1119  *
1120  * 'align' should be a power of 2 but is not required to be.
1121  *
1122  * The map must be exclusively locked.
1123  * No other requirements.
1124  */
1125 int
1126 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1127 		 vm_size_t align, int flags, vm_offset_t *addr)
1128 {
1129 	vm_map_entry_t entry, next;
1130 	vm_offset_t end;
1131 	vm_offset_t align_mask;
1132 
1133 	if (start < map->min_offset)
1134 		start = map->min_offset;
1135 	if (start > map->max_offset)
1136 		return (1);
1137 
1138 	/*
1139 	 * If the alignment is not a power of 2 we will have to use
1140 	 * a mod/division, set align_mask to a special value.
1141 	 */
1142 	if ((align | (align - 1)) + 1 != (align << 1))
1143 		align_mask = (vm_offset_t)-1;
1144 	else
1145 		align_mask = align - 1;
1146 
1147 	/*
1148 	 * Look for the first possible address; if there's already something
1149 	 * at this address, we have to start after it.
1150 	 */
1151 	if (start == map->min_offset) {
1152 		if ((entry = map->first_free) != &map->header)
1153 			start = entry->end;
1154 	} else {
1155 		vm_map_entry_t tmp;
1156 
1157 		if (vm_map_lookup_entry(map, start, &tmp))
1158 			start = tmp->end;
1159 		entry = tmp;
1160 	}
1161 
1162 	/*
1163 	 * Look through the rest of the map, trying to fit a new region in the
1164 	 * gap between existing regions, or after the very last region.
1165 	 */
1166 	for (;; start = (entry = next)->end) {
1167 		/*
1168 		 * Adjust the proposed start by the requested alignment,
1169 		 * be sure that we didn't wrap the address.
1170 		 */
1171 		if (align_mask == (vm_offset_t)-1)
1172 			end = ((start + align - 1) / align) * align;
1173 		else
1174 			end = (start + align_mask) & ~align_mask;
1175 		if (end < start)
1176 			return (1);
1177 		start = end;
1178 		/*
1179 		 * Find the end of the proposed new region.  Be sure we didn't
1180 		 * go beyond the end of the map, or wrap around the address.
1181 		 * Then check to see if this is the last entry or if the
1182 		 * proposed end fits in the gap between this and the next
1183 		 * entry.
1184 		 */
1185 		end = start + length;
1186 		if (end > map->max_offset || end < start)
1187 			return (1);
1188 		next = entry->next;
1189 
1190 		/*
1191 		 * If the next entry's start address is beyond the desired
1192 		 * end address we may have found a good entry.
1193 		 *
1194 		 * If the next entry is a stack mapping we do not map into
1195 		 * the stack's reserved space.
1196 		 *
1197 		 * XXX continue to allow mapping into the stack's reserved
1198 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1199 		 * mapping, for backwards compatibility.  But the caller
1200 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1201 		 * want to do that.
1202 		 */
1203 		if (next == &map->header)
1204 			break;
1205 		if (next->start >= end) {
1206 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1207 				break;
1208 			if (flags & MAP_STACK)
1209 				break;
1210 			if (next->start - next->aux.avail_ssize >= end)
1211 				break;
1212 		}
1213 	}
1214 	map->hint = entry;
1215 
1216 	/*
1217 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1218 	 * if it fails.  The kernel_map is locked and nothing can steal
1219 	 * our address space if pmap_growkernel() blocks.
1220 	 *
1221 	 * NOTE: This may be unconditionally called for kldload areas on
1222 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1223 	 *	 fill 128G worth of page tables!).  Therefore we must not
1224 	 *	 retry.
1225 	 */
1226 	if (map == &kernel_map) {
1227 		vm_offset_t kstop;
1228 
1229 		kstop = round_page(start + length);
1230 		if (kstop > kernel_vm_end)
1231 			pmap_growkernel(start, kstop);
1232 	}
1233 	*addr = start;
1234 	return (0);
1235 }
1236 
1237 /*
1238  * vm_map_find finds an unallocated region in the target address map with
1239  * the given length and allocates it.  The search is defined to be first-fit
1240  * from the specified address; the region found is returned in the same
1241  * parameter.
1242  *
1243  * If object is non-NULL, ref count must be bumped by caller
1244  * prior to making call to account for the new entry.
1245  *
1246  * No requirements.  This function will lock the map temporarily.
1247  */
1248 int
1249 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1250 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1251 	    boolean_t fitit,
1252 	    vm_maptype_t maptype,
1253 	    vm_prot_t prot, vm_prot_t max,
1254 	    int cow)
1255 {
1256 	vm_offset_t start;
1257 	int result;
1258 	int count;
1259 
1260 	start = *addr;
1261 
1262 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1263 	vm_map_lock(map);
1264 	if (object)
1265 		vm_object_hold(object);
1266 	if (fitit) {
1267 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1268 			if (object)
1269 				vm_object_drop(object);
1270 			vm_map_unlock(map);
1271 			vm_map_entry_release(count);
1272 			return (KERN_NO_SPACE);
1273 		}
1274 		start = *addr;
1275 	}
1276 	result = vm_map_insert(map, &count, object, offset,
1277 			       start, start + length,
1278 			       maptype,
1279 			       prot, max,
1280 			       cow);
1281 	if (object)
1282 		vm_object_drop(object);
1283 	vm_map_unlock(map);
1284 	vm_map_entry_release(count);
1285 
1286 	return (result);
1287 }
1288 
1289 /*
1290  * Simplify the given map entry by merging with either neighbor.  This
1291  * routine also has the ability to merge with both neighbors.
1292  *
1293  * This routine guarentees that the passed entry remains valid (though
1294  * possibly extended).  When merging, this routine may delete one or
1295  * both neighbors.  No action is taken on entries which have their
1296  * in-transition flag set.
1297  *
1298  * The map must be exclusively locked.
1299  */
1300 void
1301 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1302 {
1303 	vm_map_entry_t next, prev;
1304 	vm_size_t prevsize, esize;
1305 
1306 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1307 		++mycpu->gd_cnt.v_intrans_coll;
1308 		return;
1309 	}
1310 
1311 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1312 		return;
1313 
1314 	prev = entry->prev;
1315 	if (prev != &map->header) {
1316 		prevsize = prev->end - prev->start;
1317 		if ( (prev->end == entry->start) &&
1318 		     (prev->maptype == entry->maptype) &&
1319 		     (prev->object.vm_object == entry->object.vm_object) &&
1320 		     (!prev->object.vm_object ||
1321 			(prev->offset + prevsize == entry->offset)) &&
1322 		     (prev->eflags == entry->eflags) &&
1323 		     (prev->protection == entry->protection) &&
1324 		     (prev->max_protection == entry->max_protection) &&
1325 		     (prev->inheritance == entry->inheritance) &&
1326 		     (prev->wired_count == entry->wired_count)) {
1327 			if (map->first_free == prev)
1328 				map->first_free = entry;
1329 			if (map->hint == prev)
1330 				map->hint = entry;
1331 			vm_map_entry_unlink(map, prev);
1332 			entry->start = prev->start;
1333 			entry->offset = prev->offset;
1334 			if (prev->object.vm_object)
1335 				vm_object_deallocate(prev->object.vm_object);
1336 			vm_map_entry_dispose(map, prev, countp);
1337 		}
1338 	}
1339 
1340 	next = entry->next;
1341 	if (next != &map->header) {
1342 		esize = entry->end - entry->start;
1343 		if ((entry->end == next->start) &&
1344 		    (next->maptype == entry->maptype) &&
1345 		    (next->object.vm_object == entry->object.vm_object) &&
1346 		     (!entry->object.vm_object ||
1347 			(entry->offset + esize == next->offset)) &&
1348 		    (next->eflags == entry->eflags) &&
1349 		    (next->protection == entry->protection) &&
1350 		    (next->max_protection == entry->max_protection) &&
1351 		    (next->inheritance == entry->inheritance) &&
1352 		    (next->wired_count == entry->wired_count)) {
1353 			if (map->first_free == next)
1354 				map->first_free = entry;
1355 			if (map->hint == next)
1356 				map->hint = entry;
1357 			vm_map_entry_unlink(map, next);
1358 			entry->end = next->end;
1359 			if (next->object.vm_object)
1360 				vm_object_deallocate(next->object.vm_object);
1361 			vm_map_entry_dispose(map, next, countp);
1362 	        }
1363 	}
1364 }
1365 
1366 /*
1367  * Asserts that the given entry begins at or after the specified address.
1368  * If necessary, it splits the entry into two.
1369  */
1370 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1371 {									\
1372 	if (startaddr > entry->start)					\
1373 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1374 }
1375 
1376 /*
1377  * This routine is called only when it is known that the entry must be split.
1378  *
1379  * The map must be exclusively locked.
1380  */
1381 static void
1382 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1383 		   int *countp)
1384 {
1385 	vm_map_entry_t new_entry;
1386 
1387 	/*
1388 	 * Split off the front portion -- note that we must insert the new
1389 	 * entry BEFORE this one, so that this entry has the specified
1390 	 * starting address.
1391 	 */
1392 
1393 	vm_map_simplify_entry(map, entry, countp);
1394 
1395 	/*
1396 	 * If there is no object backing this entry, we might as well create
1397 	 * one now.  If we defer it, an object can get created after the map
1398 	 * is clipped, and individual objects will be created for the split-up
1399 	 * map.  This is a bit of a hack, but is also about the best place to
1400 	 * put this improvement.
1401 	 */
1402 	if (entry->object.vm_object == NULL && !map->system_map) {
1403 		vm_map_entry_allocate_object(entry);
1404 	}
1405 
1406 	new_entry = vm_map_entry_create(map, countp);
1407 	*new_entry = *entry;
1408 
1409 	new_entry->end = start;
1410 	entry->offset += (start - entry->start);
1411 	entry->start = start;
1412 
1413 	vm_map_entry_link(map, entry->prev, new_entry);
1414 
1415 	switch(entry->maptype) {
1416 	case VM_MAPTYPE_NORMAL:
1417 	case VM_MAPTYPE_VPAGETABLE:
1418 		if (new_entry->object.vm_object) {
1419 			vm_object_hold(new_entry->object.vm_object);
1420 			vm_object_chain_wait(new_entry->object.vm_object);
1421 			vm_object_reference_locked(new_entry->object.vm_object);
1422 			vm_object_drop(new_entry->object.vm_object);
1423 		}
1424 		break;
1425 	default:
1426 		break;
1427 	}
1428 }
1429 
1430 /*
1431  * Asserts that the given entry ends at or before the specified address.
1432  * If necessary, it splits the entry into two.
1433  *
1434  * The map must be exclusively locked.
1435  */
1436 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1437 {								\
1438 	if (endaddr < entry->end)				\
1439 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1440 }
1441 
1442 /*
1443  * This routine is called only when it is known that the entry must be split.
1444  *
1445  * The map must be exclusively locked.
1446  */
1447 static void
1448 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1449 		 int *countp)
1450 {
1451 	vm_map_entry_t new_entry;
1452 
1453 	/*
1454 	 * If there is no object backing this entry, we might as well create
1455 	 * one now.  If we defer it, an object can get created after the map
1456 	 * is clipped, and individual objects will be created for the split-up
1457 	 * map.  This is a bit of a hack, but is also about the best place to
1458 	 * put this improvement.
1459 	 */
1460 
1461 	if (entry->object.vm_object == NULL && !map->system_map) {
1462 		vm_map_entry_allocate_object(entry);
1463 	}
1464 
1465 	/*
1466 	 * Create a new entry and insert it AFTER the specified entry
1467 	 */
1468 
1469 	new_entry = vm_map_entry_create(map, countp);
1470 	*new_entry = *entry;
1471 
1472 	new_entry->start = entry->end = end;
1473 	new_entry->offset += (end - entry->start);
1474 
1475 	vm_map_entry_link(map, entry, new_entry);
1476 
1477 	switch(entry->maptype) {
1478 	case VM_MAPTYPE_NORMAL:
1479 	case VM_MAPTYPE_VPAGETABLE:
1480 		if (new_entry->object.vm_object) {
1481 			vm_object_hold(new_entry->object.vm_object);
1482 			vm_object_chain_wait(new_entry->object.vm_object);
1483 			vm_object_reference_locked(new_entry->object.vm_object);
1484 			vm_object_drop(new_entry->object.vm_object);
1485 		}
1486 		break;
1487 	default:
1488 		break;
1489 	}
1490 }
1491 
1492 /*
1493  * Asserts that the starting and ending region addresses fall within the
1494  * valid range for the map.
1495  */
1496 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1497 {						\
1498 	if (start < vm_map_min(map))		\
1499 		start = vm_map_min(map);	\
1500 	if (end > vm_map_max(map))		\
1501 		end = vm_map_max(map);		\
1502 	if (start > end)			\
1503 		start = end;			\
1504 }
1505 
1506 /*
1507  * Used to block when an in-transition collison occurs.  The map
1508  * is unlocked for the sleep and relocked before the return.
1509  */
1510 void
1511 vm_map_transition_wait(vm_map_t map)
1512 {
1513 	tsleep_interlock(map, 0);
1514 	vm_map_unlock(map);
1515 	tsleep(map, PINTERLOCKED, "vment", 0);
1516 	vm_map_lock(map);
1517 }
1518 
1519 /*
1520  * When we do blocking operations with the map lock held it is
1521  * possible that a clip might have occured on our in-transit entry,
1522  * requiring an adjustment to the entry in our loop.  These macros
1523  * help the pageable and clip_range code deal with the case.  The
1524  * conditional costs virtually nothing if no clipping has occured.
1525  */
1526 
1527 #define CLIP_CHECK_BACK(entry, save_start)		\
1528     do {						\
1529 	    while (entry->start != save_start) {	\
1530 		    entry = entry->prev;		\
1531 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1532 	    }						\
1533     } while(0)
1534 
1535 #define CLIP_CHECK_FWD(entry, save_end)			\
1536     do {						\
1537 	    while (entry->end != save_end) {		\
1538 		    entry = entry->next;		\
1539 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1540 	    }						\
1541     } while(0)
1542 
1543 
1544 /*
1545  * Clip the specified range and return the base entry.  The
1546  * range may cover several entries starting at the returned base
1547  * and the first and last entry in the covering sequence will be
1548  * properly clipped to the requested start and end address.
1549  *
1550  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1551  * flag.
1552  *
1553  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1554  * covered by the requested range.
1555  *
1556  * The map must be exclusively locked on entry and will remain locked
1557  * on return. If no range exists or the range contains holes and you
1558  * specified that no holes were allowed, NULL will be returned.  This
1559  * routine may temporarily unlock the map in order avoid a deadlock when
1560  * sleeping.
1561  */
1562 static
1563 vm_map_entry_t
1564 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1565 		  int *countp, int flags)
1566 {
1567 	vm_map_entry_t start_entry;
1568 	vm_map_entry_t entry;
1569 
1570 	/*
1571 	 * Locate the entry and effect initial clipping.  The in-transition
1572 	 * case does not occur very often so do not try to optimize it.
1573 	 */
1574 again:
1575 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1576 		return (NULL);
1577 	entry = start_entry;
1578 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1579 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1580 		++mycpu->gd_cnt.v_intrans_coll;
1581 		++mycpu->gd_cnt.v_intrans_wait;
1582 		vm_map_transition_wait(map);
1583 		/*
1584 		 * entry and/or start_entry may have been clipped while
1585 		 * we slept, or may have gone away entirely.  We have
1586 		 * to restart from the lookup.
1587 		 */
1588 		goto again;
1589 	}
1590 
1591 	/*
1592 	 * Since we hold an exclusive map lock we do not have to restart
1593 	 * after clipping, even though clipping may block in zalloc.
1594 	 */
1595 	vm_map_clip_start(map, entry, start, countp);
1596 	vm_map_clip_end(map, entry, end, countp);
1597 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1598 
1599 	/*
1600 	 * Scan entries covered by the range.  When working on the next
1601 	 * entry a restart need only re-loop on the current entry which
1602 	 * we have already locked, since 'next' may have changed.  Also,
1603 	 * even though entry is safe, it may have been clipped so we
1604 	 * have to iterate forwards through the clip after sleeping.
1605 	 */
1606 	while (entry->next != &map->header && entry->next->start < end) {
1607 		vm_map_entry_t next = entry->next;
1608 
1609 		if (flags & MAP_CLIP_NO_HOLES) {
1610 			if (next->start > entry->end) {
1611 				vm_map_unclip_range(map, start_entry,
1612 					start, entry->end, countp, flags);
1613 				return(NULL);
1614 			}
1615 		}
1616 
1617 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1618 			vm_offset_t save_end = entry->end;
1619 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1620 			++mycpu->gd_cnt.v_intrans_coll;
1621 			++mycpu->gd_cnt.v_intrans_wait;
1622 			vm_map_transition_wait(map);
1623 
1624 			/*
1625 			 * clips might have occured while we blocked.
1626 			 */
1627 			CLIP_CHECK_FWD(entry, save_end);
1628 			CLIP_CHECK_BACK(start_entry, start);
1629 			continue;
1630 		}
1631 		/*
1632 		 * No restart necessary even though clip_end may block, we
1633 		 * are holding the map lock.
1634 		 */
1635 		vm_map_clip_end(map, next, end, countp);
1636 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1637 		entry = next;
1638 	}
1639 	if (flags & MAP_CLIP_NO_HOLES) {
1640 		if (entry->end != end) {
1641 			vm_map_unclip_range(map, start_entry,
1642 				start, entry->end, countp, flags);
1643 			return(NULL);
1644 		}
1645 	}
1646 	return(start_entry);
1647 }
1648 
1649 /*
1650  * Undo the effect of vm_map_clip_range().  You should pass the same
1651  * flags and the same range that you passed to vm_map_clip_range().
1652  * This code will clear the in-transition flag on the entries and
1653  * wake up anyone waiting.  This code will also simplify the sequence
1654  * and attempt to merge it with entries before and after the sequence.
1655  *
1656  * The map must be locked on entry and will remain locked on return.
1657  *
1658  * Note that you should also pass the start_entry returned by
1659  * vm_map_clip_range().  However, if you block between the two calls
1660  * with the map unlocked please be aware that the start_entry may
1661  * have been clipped and you may need to scan it backwards to find
1662  * the entry corresponding with the original start address.  You are
1663  * responsible for this, vm_map_unclip_range() expects the correct
1664  * start_entry to be passed to it and will KASSERT otherwise.
1665  */
1666 static
1667 void
1668 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1669 		    vm_offset_t start, vm_offset_t end,
1670 		    int *countp, int flags)
1671 {
1672 	vm_map_entry_t entry;
1673 
1674 	entry = start_entry;
1675 
1676 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1677 	while (entry != &map->header && entry->start < end) {
1678 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1679 			("in-transition flag not set during unclip on: %p",
1680 			entry));
1681 		KASSERT(entry->end <= end,
1682 			("unclip_range: tail wasn't clipped"));
1683 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1684 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1685 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1686 			wakeup(map);
1687 		}
1688 		entry = entry->next;
1689 	}
1690 
1691 	/*
1692 	 * Simplification does not block so there is no restart case.
1693 	 */
1694 	entry = start_entry;
1695 	while (entry != &map->header && entry->start < end) {
1696 		vm_map_simplify_entry(map, entry, countp);
1697 		entry = entry->next;
1698 	}
1699 }
1700 
1701 /*
1702  * Mark the given range as handled by a subordinate map.
1703  *
1704  * This range must have been created with vm_map_find(), and no other
1705  * operations may have been performed on this range prior to calling
1706  * vm_map_submap().
1707  *
1708  * Submappings cannot be removed.
1709  *
1710  * No requirements.
1711  */
1712 int
1713 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1714 {
1715 	vm_map_entry_t entry;
1716 	int result = KERN_INVALID_ARGUMENT;
1717 	int count;
1718 
1719 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1720 	vm_map_lock(map);
1721 
1722 	VM_MAP_RANGE_CHECK(map, start, end);
1723 
1724 	if (vm_map_lookup_entry(map, start, &entry)) {
1725 		vm_map_clip_start(map, entry, start, &count);
1726 	} else {
1727 		entry = entry->next;
1728 	}
1729 
1730 	vm_map_clip_end(map, entry, end, &count);
1731 
1732 	if ((entry->start == start) && (entry->end == end) &&
1733 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1734 	    (entry->object.vm_object == NULL)) {
1735 		entry->object.sub_map = submap;
1736 		entry->maptype = VM_MAPTYPE_SUBMAP;
1737 		result = KERN_SUCCESS;
1738 	}
1739 	vm_map_unlock(map);
1740 	vm_map_entry_release(count);
1741 
1742 	return (result);
1743 }
1744 
1745 /*
1746  * Sets the protection of the specified address region in the target map.
1747  * If "set_max" is specified, the maximum protection is to be set;
1748  * otherwise, only the current protection is affected.
1749  *
1750  * The protection is not applicable to submaps, but is applicable to normal
1751  * maps and maps governed by virtual page tables.  For example, when operating
1752  * on a virtual page table our protection basically controls how COW occurs
1753  * on the backing object, whereas the virtual page table abstraction itself
1754  * is an abstraction for userland.
1755  *
1756  * No requirements.
1757  */
1758 int
1759 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1760 	       vm_prot_t new_prot, boolean_t set_max)
1761 {
1762 	vm_map_entry_t current;
1763 	vm_map_entry_t entry;
1764 	int count;
1765 
1766 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1767 	vm_map_lock(map);
1768 
1769 	VM_MAP_RANGE_CHECK(map, start, end);
1770 
1771 	if (vm_map_lookup_entry(map, start, &entry)) {
1772 		vm_map_clip_start(map, entry, start, &count);
1773 	} else {
1774 		entry = entry->next;
1775 	}
1776 
1777 	/*
1778 	 * Make a first pass to check for protection violations.
1779 	 */
1780 	current = entry;
1781 	while ((current != &map->header) && (current->start < end)) {
1782 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1783 			vm_map_unlock(map);
1784 			vm_map_entry_release(count);
1785 			return (KERN_INVALID_ARGUMENT);
1786 		}
1787 		if ((new_prot & current->max_protection) != new_prot) {
1788 			vm_map_unlock(map);
1789 			vm_map_entry_release(count);
1790 			return (KERN_PROTECTION_FAILURE);
1791 		}
1792 		current = current->next;
1793 	}
1794 
1795 	/*
1796 	 * Go back and fix up protections. [Note that clipping is not
1797 	 * necessary the second time.]
1798 	 */
1799 	current = entry;
1800 
1801 	while ((current != &map->header) && (current->start < end)) {
1802 		vm_prot_t old_prot;
1803 
1804 		vm_map_clip_end(map, current, end, &count);
1805 
1806 		old_prot = current->protection;
1807 		if (set_max) {
1808 			current->protection =
1809 			    (current->max_protection = new_prot) &
1810 			    old_prot;
1811 		} else {
1812 			current->protection = new_prot;
1813 		}
1814 
1815 		/*
1816 		 * Update physical map if necessary. Worry about copy-on-write
1817 		 * here -- CHECK THIS XXX
1818 		 */
1819 
1820 		if (current->protection != old_prot) {
1821 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1822 							VM_PROT_ALL)
1823 
1824 			pmap_protect(map->pmap, current->start,
1825 			    current->end,
1826 			    current->protection & MASK(current));
1827 #undef	MASK
1828 		}
1829 
1830 		vm_map_simplify_entry(map, current, &count);
1831 
1832 		current = current->next;
1833 	}
1834 
1835 	vm_map_unlock(map);
1836 	vm_map_entry_release(count);
1837 	return (KERN_SUCCESS);
1838 }
1839 
1840 /*
1841  * This routine traverses a processes map handling the madvise
1842  * system call.  Advisories are classified as either those effecting
1843  * the vm_map_entry structure, or those effecting the underlying
1844  * objects.
1845  *
1846  * The <value> argument is used for extended madvise calls.
1847  *
1848  * No requirements.
1849  */
1850 int
1851 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1852 	       int behav, off_t value)
1853 {
1854 	vm_map_entry_t current, entry;
1855 	int modify_map = 0;
1856 	int error = 0;
1857 	int count;
1858 
1859 	/*
1860 	 * Some madvise calls directly modify the vm_map_entry, in which case
1861 	 * we need to use an exclusive lock on the map and we need to perform
1862 	 * various clipping operations.  Otherwise we only need a read-lock
1863 	 * on the map.
1864 	 */
1865 
1866 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1867 
1868 	switch(behav) {
1869 	case MADV_NORMAL:
1870 	case MADV_SEQUENTIAL:
1871 	case MADV_RANDOM:
1872 	case MADV_NOSYNC:
1873 	case MADV_AUTOSYNC:
1874 	case MADV_NOCORE:
1875 	case MADV_CORE:
1876 	case MADV_SETMAP:
1877 	case MADV_INVAL:
1878 		modify_map = 1;
1879 		vm_map_lock(map);
1880 		break;
1881 	case MADV_WILLNEED:
1882 	case MADV_DONTNEED:
1883 	case MADV_FREE:
1884 		vm_map_lock_read(map);
1885 		break;
1886 	default:
1887 		vm_map_entry_release(count);
1888 		return (EINVAL);
1889 	}
1890 
1891 	/*
1892 	 * Locate starting entry and clip if necessary.
1893 	 */
1894 
1895 	VM_MAP_RANGE_CHECK(map, start, end);
1896 
1897 	if (vm_map_lookup_entry(map, start, &entry)) {
1898 		if (modify_map)
1899 			vm_map_clip_start(map, entry, start, &count);
1900 	} else {
1901 		entry = entry->next;
1902 	}
1903 
1904 	if (modify_map) {
1905 		/*
1906 		 * madvise behaviors that are implemented in the vm_map_entry.
1907 		 *
1908 		 * We clip the vm_map_entry so that behavioral changes are
1909 		 * limited to the specified address range.
1910 		 */
1911 		for (current = entry;
1912 		     (current != &map->header) && (current->start < end);
1913 		     current = current->next
1914 		) {
1915 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1916 				continue;
1917 
1918 			vm_map_clip_end(map, current, end, &count);
1919 
1920 			switch (behav) {
1921 			case MADV_NORMAL:
1922 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1923 				break;
1924 			case MADV_SEQUENTIAL:
1925 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1926 				break;
1927 			case MADV_RANDOM:
1928 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1929 				break;
1930 			case MADV_NOSYNC:
1931 				current->eflags |= MAP_ENTRY_NOSYNC;
1932 				break;
1933 			case MADV_AUTOSYNC:
1934 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1935 				break;
1936 			case MADV_NOCORE:
1937 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1938 				break;
1939 			case MADV_CORE:
1940 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1941 				break;
1942 			case MADV_INVAL:
1943 				/*
1944 				 * Invalidate the related pmap entries, used
1945 				 * to flush portions of the real kernel's
1946 				 * pmap when the caller has removed or
1947 				 * modified existing mappings in a virtual
1948 				 * page table.
1949 				 */
1950 				pmap_remove(map->pmap,
1951 					    current->start, current->end);
1952 				break;
1953 			case MADV_SETMAP:
1954 				/*
1955 				 * Set the page directory page for a map
1956 				 * governed by a virtual page table.  Mark
1957 				 * the entry as being governed by a virtual
1958 				 * page table if it is not.
1959 				 *
1960 				 * XXX the page directory page is stored
1961 				 * in the avail_ssize field if the map_entry.
1962 				 *
1963 				 * XXX the map simplification code does not
1964 				 * compare this field so weird things may
1965 				 * happen if you do not apply this function
1966 				 * to the entire mapping governed by the
1967 				 * virtual page table.
1968 				 */
1969 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1970 					error = EINVAL;
1971 					break;
1972 				}
1973 				current->aux.master_pde = value;
1974 				pmap_remove(map->pmap,
1975 					    current->start, current->end);
1976 				break;
1977 			default:
1978 				error = EINVAL;
1979 				break;
1980 			}
1981 			vm_map_simplify_entry(map, current, &count);
1982 		}
1983 		vm_map_unlock(map);
1984 	} else {
1985 		vm_pindex_t pindex;
1986 		int count;
1987 
1988 		/*
1989 		 * madvise behaviors that are implemented in the underlying
1990 		 * vm_object.
1991 		 *
1992 		 * Since we don't clip the vm_map_entry, we have to clip
1993 		 * the vm_object pindex and count.
1994 		 *
1995 		 * NOTE!  We currently do not support these functions on
1996 		 * virtual page tables.
1997 		 */
1998 		for (current = entry;
1999 		     (current != &map->header) && (current->start < end);
2000 		     current = current->next
2001 		) {
2002 			vm_offset_t useStart;
2003 
2004 			if (current->maptype != VM_MAPTYPE_NORMAL)
2005 				continue;
2006 
2007 			pindex = OFF_TO_IDX(current->offset);
2008 			count = atop(current->end - current->start);
2009 			useStart = current->start;
2010 
2011 			if (current->start < start) {
2012 				pindex += atop(start - current->start);
2013 				count -= atop(start - current->start);
2014 				useStart = start;
2015 			}
2016 			if (current->end > end)
2017 				count -= atop(current->end - end);
2018 
2019 			if (count <= 0)
2020 				continue;
2021 
2022 			vm_object_madvise(current->object.vm_object,
2023 					  pindex, count, behav);
2024 
2025 			/*
2026 			 * Try to populate the page table.  Mappings governed
2027 			 * by virtual page tables cannot be pre-populated
2028 			 * without a lot of work so don't try.
2029 			 */
2030 			if (behav == MADV_WILLNEED &&
2031 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2032 				pmap_object_init_pt(
2033 				    map->pmap,
2034 				    useStart,
2035 				    current->protection,
2036 				    current->object.vm_object,
2037 				    pindex,
2038 				    (count << PAGE_SHIFT),
2039 				    MAP_PREFAULT_MADVISE
2040 				);
2041 			}
2042 		}
2043 		vm_map_unlock_read(map);
2044 	}
2045 	vm_map_entry_release(count);
2046 	return(error);
2047 }
2048 
2049 
2050 /*
2051  * Sets the inheritance of the specified address range in the target map.
2052  * Inheritance affects how the map will be shared with child maps at the
2053  * time of vm_map_fork.
2054  */
2055 int
2056 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2057 	       vm_inherit_t new_inheritance)
2058 {
2059 	vm_map_entry_t entry;
2060 	vm_map_entry_t temp_entry;
2061 	int count;
2062 
2063 	switch (new_inheritance) {
2064 	case VM_INHERIT_NONE:
2065 	case VM_INHERIT_COPY:
2066 	case VM_INHERIT_SHARE:
2067 		break;
2068 	default:
2069 		return (KERN_INVALID_ARGUMENT);
2070 	}
2071 
2072 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2073 	vm_map_lock(map);
2074 
2075 	VM_MAP_RANGE_CHECK(map, start, end);
2076 
2077 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2078 		entry = temp_entry;
2079 		vm_map_clip_start(map, entry, start, &count);
2080 	} else
2081 		entry = temp_entry->next;
2082 
2083 	while ((entry != &map->header) && (entry->start < end)) {
2084 		vm_map_clip_end(map, entry, end, &count);
2085 
2086 		entry->inheritance = new_inheritance;
2087 
2088 		vm_map_simplify_entry(map, entry, &count);
2089 
2090 		entry = entry->next;
2091 	}
2092 	vm_map_unlock(map);
2093 	vm_map_entry_release(count);
2094 	return (KERN_SUCCESS);
2095 }
2096 
2097 /*
2098  * Implement the semantics of mlock
2099  */
2100 int
2101 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2102 	      boolean_t new_pageable)
2103 {
2104 	vm_map_entry_t entry;
2105 	vm_map_entry_t start_entry;
2106 	vm_offset_t end;
2107 	int rv = KERN_SUCCESS;
2108 	int count;
2109 
2110 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2111 	vm_map_lock(map);
2112 	VM_MAP_RANGE_CHECK(map, start, real_end);
2113 	end = real_end;
2114 
2115 	start_entry = vm_map_clip_range(map, start, end, &count,
2116 					MAP_CLIP_NO_HOLES);
2117 	if (start_entry == NULL) {
2118 		vm_map_unlock(map);
2119 		vm_map_entry_release(count);
2120 		return (KERN_INVALID_ADDRESS);
2121 	}
2122 
2123 	if (new_pageable == 0) {
2124 		entry = start_entry;
2125 		while ((entry != &map->header) && (entry->start < end)) {
2126 			vm_offset_t save_start;
2127 			vm_offset_t save_end;
2128 
2129 			/*
2130 			 * Already user wired or hard wired (trivial cases)
2131 			 */
2132 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2133 				entry = entry->next;
2134 				continue;
2135 			}
2136 			if (entry->wired_count != 0) {
2137 				entry->wired_count++;
2138 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2139 				entry = entry->next;
2140 				continue;
2141 			}
2142 
2143 			/*
2144 			 * A new wiring requires instantiation of appropriate
2145 			 * management structures and the faulting in of the
2146 			 * page.
2147 			 */
2148 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2149 				int copyflag = entry->eflags &
2150 					       MAP_ENTRY_NEEDS_COPY;
2151 				if (copyflag && ((entry->protection &
2152 						  VM_PROT_WRITE) != 0)) {
2153 					vm_map_entry_shadow(entry, 0);
2154 				} else if (entry->object.vm_object == NULL &&
2155 					   !map->system_map) {
2156 					vm_map_entry_allocate_object(entry);
2157 				}
2158 			}
2159 			entry->wired_count++;
2160 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2161 
2162 			/*
2163 			 * Now fault in the area.  Note that vm_fault_wire()
2164 			 * may release the map lock temporarily, it will be
2165 			 * relocked on return.  The in-transition
2166 			 * flag protects the entries.
2167 			 */
2168 			save_start = entry->start;
2169 			save_end = entry->end;
2170 			rv = vm_fault_wire(map, entry, TRUE);
2171 			if (rv) {
2172 				CLIP_CHECK_BACK(entry, save_start);
2173 				for (;;) {
2174 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2175 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2176 					entry->wired_count = 0;
2177 					if (entry->end == save_end)
2178 						break;
2179 					entry = entry->next;
2180 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2181 				}
2182 				end = save_start;	/* unwire the rest */
2183 				break;
2184 			}
2185 			/*
2186 			 * note that even though the entry might have been
2187 			 * clipped, the USER_WIRED flag we set prevents
2188 			 * duplication so we do not have to do a
2189 			 * clip check.
2190 			 */
2191 			entry = entry->next;
2192 		}
2193 
2194 		/*
2195 		 * If we failed fall through to the unwiring section to
2196 		 * unwire what we had wired so far.  'end' has already
2197 		 * been adjusted.
2198 		 */
2199 		if (rv)
2200 			new_pageable = 1;
2201 
2202 		/*
2203 		 * start_entry might have been clipped if we unlocked the
2204 		 * map and blocked.  No matter how clipped it has gotten
2205 		 * there should be a fragment that is on our start boundary.
2206 		 */
2207 		CLIP_CHECK_BACK(start_entry, start);
2208 	}
2209 
2210 	/*
2211 	 * Deal with the unwiring case.
2212 	 */
2213 	if (new_pageable) {
2214 		/*
2215 		 * This is the unwiring case.  We must first ensure that the
2216 		 * range to be unwired is really wired down.  We know there
2217 		 * are no holes.
2218 		 */
2219 		entry = start_entry;
2220 		while ((entry != &map->header) && (entry->start < end)) {
2221 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2222 				rv = KERN_INVALID_ARGUMENT;
2223 				goto done;
2224 			}
2225 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2226 			entry = entry->next;
2227 		}
2228 
2229 		/*
2230 		 * Now decrement the wiring count for each region. If a region
2231 		 * becomes completely unwired, unwire its physical pages and
2232 		 * mappings.
2233 		 */
2234 		/*
2235 		 * The map entries are processed in a loop, checking to
2236 		 * make sure the entry is wired and asserting it has a wired
2237 		 * count. However, another loop was inserted more-or-less in
2238 		 * the middle of the unwiring path. This loop picks up the
2239 		 * "entry" loop variable from the first loop without first
2240 		 * setting it to start_entry. Naturally, the secound loop
2241 		 * is never entered and the pages backing the entries are
2242 		 * never unwired. This can lead to a leak of wired pages.
2243 		 */
2244 		entry = start_entry;
2245 		while ((entry != &map->header) && (entry->start < end)) {
2246 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2247 				("expected USER_WIRED on entry %p", entry));
2248 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2249 			entry->wired_count--;
2250 			if (entry->wired_count == 0)
2251 				vm_fault_unwire(map, entry);
2252 			entry = entry->next;
2253 		}
2254 	}
2255 done:
2256 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2257 		MAP_CLIP_NO_HOLES);
2258 	map->timestamp++;
2259 	vm_map_unlock(map);
2260 	vm_map_entry_release(count);
2261 	return (rv);
2262 }
2263 
2264 /*
2265  * Sets the pageability of the specified address range in the target map.
2266  * Regions specified as not pageable require locked-down physical
2267  * memory and physical page maps.
2268  *
2269  * The map must not be locked, but a reference must remain to the map
2270  * throughout the call.
2271  *
2272  * This function may be called via the zalloc path and must properly
2273  * reserve map entries for kernel_map.
2274  *
2275  * No requirements.
2276  */
2277 int
2278 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2279 {
2280 	vm_map_entry_t entry;
2281 	vm_map_entry_t start_entry;
2282 	vm_offset_t end;
2283 	int rv = KERN_SUCCESS;
2284 	int count;
2285 
2286 	if (kmflags & KM_KRESERVE)
2287 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2288 	else
2289 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2290 	vm_map_lock(map);
2291 	VM_MAP_RANGE_CHECK(map, start, real_end);
2292 	end = real_end;
2293 
2294 	start_entry = vm_map_clip_range(map, start, end, &count,
2295 					MAP_CLIP_NO_HOLES);
2296 	if (start_entry == NULL) {
2297 		vm_map_unlock(map);
2298 		rv = KERN_INVALID_ADDRESS;
2299 		goto failure;
2300 	}
2301 	if ((kmflags & KM_PAGEABLE) == 0) {
2302 		/*
2303 		 * Wiring.
2304 		 *
2305 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2306 		 * objects that need to be created. Then we clip each map
2307 		 * entry to the region to be wired and increment its wiring
2308 		 * count.  We create objects before clipping the map entries
2309 		 * to avoid object proliferation.
2310 		 *
2311 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2312 		 * fault in the pages for any newly wired area (wired_count is
2313 		 * 1).
2314 		 *
2315 		 * Downgrading to a read lock for vm_fault_wire avoids a
2316 		 * possible deadlock with another process that may have faulted
2317 		 * on one of the pages to be wired (it would mark the page busy,
2318 		 * blocking us, then in turn block on the map lock that we
2319 		 * hold).  Because of problems in the recursive lock package,
2320 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2321 		 * any actions that require the write lock must be done
2322 		 * beforehand.  Because we keep the read lock on the map, the
2323 		 * copy-on-write status of the entries we modify here cannot
2324 		 * change.
2325 		 */
2326 		entry = start_entry;
2327 		while ((entry != &map->header) && (entry->start < end)) {
2328 			/*
2329 			 * Trivial case if the entry is already wired
2330 			 */
2331 			if (entry->wired_count) {
2332 				entry->wired_count++;
2333 				entry = entry->next;
2334 				continue;
2335 			}
2336 
2337 			/*
2338 			 * The entry is being newly wired, we have to setup
2339 			 * appropriate management structures.  A shadow
2340 			 * object is required for a copy-on-write region,
2341 			 * or a normal object for a zero-fill region.  We
2342 			 * do not have to do this for entries that point to sub
2343 			 * maps because we won't hold the lock on the sub map.
2344 			 */
2345 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2346 				int copyflag = entry->eflags &
2347 					       MAP_ENTRY_NEEDS_COPY;
2348 				if (copyflag && ((entry->protection &
2349 						  VM_PROT_WRITE) != 0)) {
2350 					vm_map_entry_shadow(entry, 0);
2351 				} else if (entry->object.vm_object == NULL &&
2352 					   !map->system_map) {
2353 					vm_map_entry_allocate_object(entry);
2354 				}
2355 			}
2356 
2357 			entry->wired_count++;
2358 			entry = entry->next;
2359 		}
2360 
2361 		/*
2362 		 * Pass 2.
2363 		 */
2364 
2365 		/*
2366 		 * HACK HACK HACK HACK
2367 		 *
2368 		 * vm_fault_wire() temporarily unlocks the map to avoid
2369 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2370 		 * call should protect us from changes while the map is
2371 		 * unlocked.  T
2372 		 *
2373 		 * NOTE: Previously this comment stated that clipping might
2374 		 *	 still occur while the entry is unlocked, but from
2375 		 *	 what I can tell it actually cannot.
2376 		 *
2377 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2378 		 *	 are still needed but we keep them in anyway.
2379 		 *
2380 		 * HACK HACK HACK HACK
2381 		 */
2382 
2383 		entry = start_entry;
2384 		while (entry != &map->header && entry->start < end) {
2385 			/*
2386 			 * If vm_fault_wire fails for any page we need to undo
2387 			 * what has been done.  We decrement the wiring count
2388 			 * for those pages which have not yet been wired (now)
2389 			 * and unwire those that have (later).
2390 			 */
2391 			vm_offset_t save_start = entry->start;
2392 			vm_offset_t save_end = entry->end;
2393 
2394 			if (entry->wired_count == 1)
2395 				rv = vm_fault_wire(map, entry, FALSE);
2396 			if (rv) {
2397 				CLIP_CHECK_BACK(entry, save_start);
2398 				for (;;) {
2399 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2400 					entry->wired_count = 0;
2401 					if (entry->end == save_end)
2402 						break;
2403 					entry = entry->next;
2404 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2405 				}
2406 				end = save_start;
2407 				break;
2408 			}
2409 			CLIP_CHECK_FWD(entry, save_end);
2410 			entry = entry->next;
2411 		}
2412 
2413 		/*
2414 		 * If a failure occured undo everything by falling through
2415 		 * to the unwiring code.  'end' has already been adjusted
2416 		 * appropriately.
2417 		 */
2418 		if (rv)
2419 			kmflags |= KM_PAGEABLE;
2420 
2421 		/*
2422 		 * start_entry is still IN_TRANSITION but may have been
2423 		 * clipped since vm_fault_wire() unlocks and relocks the
2424 		 * map.  No matter how clipped it has gotten there should
2425 		 * be a fragment that is on our start boundary.
2426 		 */
2427 		CLIP_CHECK_BACK(start_entry, start);
2428 	}
2429 
2430 	if (kmflags & KM_PAGEABLE) {
2431 		/*
2432 		 * This is the unwiring case.  We must first ensure that the
2433 		 * range to be unwired is really wired down.  We know there
2434 		 * are no holes.
2435 		 */
2436 		entry = start_entry;
2437 		while ((entry != &map->header) && (entry->start < end)) {
2438 			if (entry->wired_count == 0) {
2439 				rv = KERN_INVALID_ARGUMENT;
2440 				goto done;
2441 			}
2442 			entry = entry->next;
2443 		}
2444 
2445 		/*
2446 		 * Now decrement the wiring count for each region. If a region
2447 		 * becomes completely unwired, unwire its physical pages and
2448 		 * mappings.
2449 		 */
2450 		entry = start_entry;
2451 		while ((entry != &map->header) && (entry->start < end)) {
2452 			entry->wired_count--;
2453 			if (entry->wired_count == 0)
2454 				vm_fault_unwire(map, entry);
2455 			entry = entry->next;
2456 		}
2457 	}
2458 done:
2459 	vm_map_unclip_range(map, start_entry, start, real_end,
2460 			    &count, MAP_CLIP_NO_HOLES);
2461 	map->timestamp++;
2462 	vm_map_unlock(map);
2463 failure:
2464 	if (kmflags & KM_KRESERVE)
2465 		vm_map_entry_krelease(count);
2466 	else
2467 		vm_map_entry_release(count);
2468 	return (rv);
2469 }
2470 
2471 /*
2472  * Mark a newly allocated address range as wired but do not fault in
2473  * the pages.  The caller is expected to load the pages into the object.
2474  *
2475  * The map must be locked on entry and will remain locked on return.
2476  * No other requirements.
2477  */
2478 void
2479 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2480 		       int *countp)
2481 {
2482 	vm_map_entry_t scan;
2483 	vm_map_entry_t entry;
2484 
2485 	entry = vm_map_clip_range(map, addr, addr + size,
2486 				  countp, MAP_CLIP_NO_HOLES);
2487 	for (scan = entry;
2488 	     scan != &map->header && scan->start < addr + size;
2489 	     scan = scan->next) {
2490 	    KKASSERT(entry->wired_count == 0);
2491 	    entry->wired_count = 1;
2492 	}
2493 	vm_map_unclip_range(map, entry, addr, addr + size,
2494 			    countp, MAP_CLIP_NO_HOLES);
2495 }
2496 
2497 /*
2498  * Push any dirty cached pages in the address range to their pager.
2499  * If syncio is TRUE, dirty pages are written synchronously.
2500  * If invalidate is TRUE, any cached pages are freed as well.
2501  *
2502  * This routine is called by sys_msync()
2503  *
2504  * Returns an error if any part of the specified range is not mapped.
2505  *
2506  * No requirements.
2507  */
2508 int
2509 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2510 	     boolean_t syncio, boolean_t invalidate)
2511 {
2512 	vm_map_entry_t current;
2513 	vm_map_entry_t entry;
2514 	vm_size_t size;
2515 	vm_object_t object;
2516 	vm_object_t tobj;
2517 	vm_ooffset_t offset;
2518 
2519 	vm_map_lock_read(map);
2520 	VM_MAP_RANGE_CHECK(map, start, end);
2521 	if (!vm_map_lookup_entry(map, start, &entry)) {
2522 		vm_map_unlock_read(map);
2523 		return (KERN_INVALID_ADDRESS);
2524 	}
2525 	lwkt_gettoken(&map->token);
2526 
2527 	/*
2528 	 * Make a first pass to check for holes.
2529 	 */
2530 	for (current = entry; current->start < end; current = current->next) {
2531 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2532 			lwkt_reltoken(&map->token);
2533 			vm_map_unlock_read(map);
2534 			return (KERN_INVALID_ARGUMENT);
2535 		}
2536 		if (end > current->end &&
2537 		    (current->next == &map->header ||
2538 			current->end != current->next->start)) {
2539 			lwkt_reltoken(&map->token);
2540 			vm_map_unlock_read(map);
2541 			return (KERN_INVALID_ADDRESS);
2542 		}
2543 	}
2544 
2545 	if (invalidate)
2546 		pmap_remove(vm_map_pmap(map), start, end);
2547 
2548 	/*
2549 	 * Make a second pass, cleaning/uncaching pages from the indicated
2550 	 * objects as we go.
2551 	 */
2552 	for (current = entry; current->start < end; current = current->next) {
2553 		offset = current->offset + (start - current->start);
2554 		size = (end <= current->end ? end : current->end) - start;
2555 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2556 			vm_map_t smap;
2557 			vm_map_entry_t tentry;
2558 			vm_size_t tsize;
2559 
2560 			smap = current->object.sub_map;
2561 			vm_map_lock_read(smap);
2562 			vm_map_lookup_entry(smap, offset, &tentry);
2563 			tsize = tentry->end - offset;
2564 			if (tsize < size)
2565 				size = tsize;
2566 			object = tentry->object.vm_object;
2567 			offset = tentry->offset + (offset - tentry->start);
2568 			vm_map_unlock_read(smap);
2569 		} else {
2570 			object = current->object.vm_object;
2571 		}
2572 
2573 		if (object)
2574 			vm_object_hold(object);
2575 
2576 		/*
2577 		 * Note that there is absolutely no sense in writing out
2578 		 * anonymous objects, so we track down the vnode object
2579 		 * to write out.
2580 		 * We invalidate (remove) all pages from the address space
2581 		 * anyway, for semantic correctness.
2582 		 *
2583 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2584 		 * may start out with a NULL object.
2585 		 */
2586 		while (object && (tobj = object->backing_object) != NULL) {
2587 			vm_object_hold(tobj);
2588 			if (tobj == object->backing_object) {
2589 				vm_object_lock_swap();
2590 				offset += object->backing_object_offset;
2591 				vm_object_drop(object);
2592 				object = tobj;
2593 				if (object->size < OFF_TO_IDX(offset + size))
2594 					size = IDX_TO_OFF(object->size) -
2595 					       offset;
2596 				break;
2597 			}
2598 			vm_object_drop(tobj);
2599 		}
2600 		if (object && (object->type == OBJT_VNODE) &&
2601 		    (current->protection & VM_PROT_WRITE) &&
2602 		    (object->flags & OBJ_NOMSYNC) == 0) {
2603 			/*
2604 			 * Flush pages if writing is allowed, invalidate them
2605 			 * if invalidation requested.  Pages undergoing I/O
2606 			 * will be ignored by vm_object_page_remove().
2607 			 *
2608 			 * We cannot lock the vnode and then wait for paging
2609 			 * to complete without deadlocking against vm_fault.
2610 			 * Instead we simply call vm_object_page_remove() and
2611 			 * allow it to block internally on a page-by-page
2612 			 * basis when it encounters pages undergoing async
2613 			 * I/O.
2614 			 */
2615 			int flags;
2616 
2617 			/* no chain wait needed for vnode objects */
2618 			vm_object_reference_locked(object);
2619 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2620 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2621 			flags |= invalidate ? OBJPC_INVAL : 0;
2622 
2623 			/*
2624 			 * When operating on a virtual page table just
2625 			 * flush the whole object.  XXX we probably ought
2626 			 * to
2627 			 */
2628 			switch(current->maptype) {
2629 			case VM_MAPTYPE_NORMAL:
2630 				vm_object_page_clean(object,
2631 				    OFF_TO_IDX(offset),
2632 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2633 				    flags);
2634 				break;
2635 			case VM_MAPTYPE_VPAGETABLE:
2636 				vm_object_page_clean(object, 0, 0, flags);
2637 				break;
2638 			}
2639 			vn_unlock(((struct vnode *)object->handle));
2640 			vm_object_deallocate_locked(object);
2641 		}
2642 		if (object && invalidate &&
2643 		   ((object->type == OBJT_VNODE) ||
2644 		    (object->type == OBJT_DEVICE))) {
2645 			int clean_only =
2646 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2647 			/* no chain wait needed for vnode/device objects */
2648 			vm_object_reference_locked(object);
2649 			switch(current->maptype) {
2650 			case VM_MAPTYPE_NORMAL:
2651 				vm_object_page_remove(object,
2652 				    OFF_TO_IDX(offset),
2653 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2654 				    clean_only);
2655 				break;
2656 			case VM_MAPTYPE_VPAGETABLE:
2657 				vm_object_page_remove(object, 0, 0, clean_only);
2658 				break;
2659 			}
2660 			vm_object_deallocate_locked(object);
2661 		}
2662 		start += size;
2663 		if (object)
2664 			vm_object_drop(object);
2665 	}
2666 
2667 	lwkt_reltoken(&map->token);
2668 	vm_map_unlock_read(map);
2669 
2670 	return (KERN_SUCCESS);
2671 }
2672 
2673 /*
2674  * Make the region specified by this entry pageable.
2675  *
2676  * The vm_map must be exclusively locked.
2677  */
2678 static void
2679 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2680 {
2681 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2682 	entry->wired_count = 0;
2683 	vm_fault_unwire(map, entry);
2684 }
2685 
2686 /*
2687  * Deallocate the given entry from the target map.
2688  *
2689  * The vm_map must be exclusively locked.
2690  */
2691 static void
2692 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2693 {
2694 	vm_map_entry_unlink(map, entry);
2695 	map->size -= entry->end - entry->start;
2696 
2697 	switch(entry->maptype) {
2698 	case VM_MAPTYPE_NORMAL:
2699 	case VM_MAPTYPE_VPAGETABLE:
2700 		vm_object_deallocate(entry->object.vm_object);
2701 		break;
2702 	default:
2703 		break;
2704 	}
2705 
2706 	vm_map_entry_dispose(map, entry, countp);
2707 }
2708 
2709 /*
2710  * Deallocates the given address range from the target map.
2711  *
2712  * The vm_map must be exclusively locked.
2713  */
2714 int
2715 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2716 {
2717 	vm_object_t object;
2718 	vm_map_entry_t entry;
2719 	vm_map_entry_t first_entry;
2720 
2721 	ASSERT_VM_MAP_LOCKED(map);
2722 	lwkt_gettoken(&map->token);
2723 again:
2724 	/*
2725 	 * Find the start of the region, and clip it.  Set entry to point
2726 	 * at the first record containing the requested address or, if no
2727 	 * such record exists, the next record with a greater address.  The
2728 	 * loop will run from this point until a record beyond the termination
2729 	 * address is encountered.
2730 	 *
2731 	 * map->hint must be adjusted to not point to anything we delete,
2732 	 * so set it to the entry prior to the one being deleted.
2733 	 *
2734 	 * GGG see other GGG comment.
2735 	 */
2736 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2737 		entry = first_entry;
2738 		vm_map_clip_start(map, entry, start, countp);
2739 		map->hint = entry->prev;	/* possible problem XXX */
2740 	} else {
2741 		map->hint = first_entry;	/* possible problem XXX */
2742 		entry = first_entry->next;
2743 	}
2744 
2745 	/*
2746 	 * If a hole opens up prior to the current first_free then
2747 	 * adjust first_free.  As with map->hint, map->first_free
2748 	 * cannot be left set to anything we might delete.
2749 	 */
2750 	if (entry == &map->header) {
2751 		map->first_free = &map->header;
2752 	} else if (map->first_free->start >= start) {
2753 		map->first_free = entry->prev;
2754 	}
2755 
2756 	/*
2757 	 * Step through all entries in this region
2758 	 */
2759 	while ((entry != &map->header) && (entry->start < end)) {
2760 		vm_map_entry_t next;
2761 		vm_offset_t s, e;
2762 		vm_pindex_t offidxstart, offidxend, count;
2763 
2764 		/*
2765 		 * If we hit an in-transition entry we have to sleep and
2766 		 * retry.  It's easier (and not really slower) to just retry
2767 		 * since this case occurs so rarely and the hint is already
2768 		 * pointing at the right place.  We have to reset the
2769 		 * start offset so as not to accidently delete an entry
2770 		 * another process just created in vacated space.
2771 		 */
2772 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2773 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2774 			start = entry->start;
2775 			++mycpu->gd_cnt.v_intrans_coll;
2776 			++mycpu->gd_cnt.v_intrans_wait;
2777 			vm_map_transition_wait(map);
2778 			goto again;
2779 		}
2780 		vm_map_clip_end(map, entry, end, countp);
2781 
2782 		s = entry->start;
2783 		e = entry->end;
2784 		next = entry->next;
2785 
2786 		offidxstart = OFF_TO_IDX(entry->offset);
2787 		count = OFF_TO_IDX(e - s);
2788 		object = entry->object.vm_object;
2789 
2790 		/*
2791 		 * Unwire before removing addresses from the pmap; otherwise,
2792 		 * unwiring will put the entries back in the pmap.
2793 		 */
2794 		if (entry->wired_count != 0)
2795 			vm_map_entry_unwire(map, entry);
2796 
2797 		offidxend = offidxstart + count;
2798 
2799 		if (object == &kernel_object) {
2800 			vm_object_hold(object);
2801 			vm_object_page_remove(object, offidxstart,
2802 					      offidxend, FALSE);
2803 			vm_object_drop(object);
2804 		} else if (object && object->type != OBJT_DEFAULT &&
2805 			   object->type != OBJT_SWAP) {
2806 			/*
2807 			 * vnode object routines cannot be chain-locked
2808 			 */
2809 			vm_object_hold(object);
2810 			pmap_remove(map->pmap, s, e);
2811 			vm_object_drop(object);
2812 		} else if (object) {
2813 			vm_object_hold(object);
2814 			vm_object_chain_acquire(object);
2815 			pmap_remove(map->pmap, s, e);
2816 
2817 			if (object != NULL &&
2818 			    object->ref_count != 1 &&
2819 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2820 			     OBJ_ONEMAPPING &&
2821 			    (object->type == OBJT_DEFAULT ||
2822 			     object->type == OBJT_SWAP)) {
2823 				vm_object_collapse(object, NULL);
2824 				vm_object_page_remove(object, offidxstart,
2825 						      offidxend, FALSE);
2826 				if (object->type == OBJT_SWAP) {
2827 					swap_pager_freespace(object,
2828 							     offidxstart,
2829 							     count);
2830 				}
2831 				if (offidxend >= object->size &&
2832 				    offidxstart < object->size) {
2833 					object->size = offidxstart;
2834 				}
2835 			}
2836 			vm_object_chain_release(object);
2837 			vm_object_drop(object);
2838 		}
2839 
2840 		/*
2841 		 * Delete the entry (which may delete the object) only after
2842 		 * removing all pmap entries pointing to its pages.
2843 		 * (Otherwise, its page frames may be reallocated, and any
2844 		 * modify bits will be set in the wrong object!)
2845 		 */
2846 		vm_map_entry_delete(map, entry, countp);
2847 		entry = next;
2848 	}
2849 	lwkt_reltoken(&map->token);
2850 	return (KERN_SUCCESS);
2851 }
2852 
2853 /*
2854  * Remove the given address range from the target map.
2855  * This is the exported form of vm_map_delete.
2856  *
2857  * No requirements.
2858  */
2859 int
2860 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2861 {
2862 	int result;
2863 	int count;
2864 
2865 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2866 	vm_map_lock(map);
2867 	VM_MAP_RANGE_CHECK(map, start, end);
2868 	result = vm_map_delete(map, start, end, &count);
2869 	vm_map_unlock(map);
2870 	vm_map_entry_release(count);
2871 
2872 	return (result);
2873 }
2874 
2875 /*
2876  * Assert that the target map allows the specified privilege on the
2877  * entire address region given.  The entire region must be allocated.
2878  *
2879  * The caller must specify whether the vm_map is already locked or not.
2880  */
2881 boolean_t
2882 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2883 			vm_prot_t protection, boolean_t have_lock)
2884 {
2885 	vm_map_entry_t entry;
2886 	vm_map_entry_t tmp_entry;
2887 	boolean_t result;
2888 
2889 	if (have_lock == FALSE)
2890 		vm_map_lock_read(map);
2891 
2892 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2893 		if (have_lock == FALSE)
2894 			vm_map_unlock_read(map);
2895 		return (FALSE);
2896 	}
2897 	entry = tmp_entry;
2898 
2899 	result = TRUE;
2900 	while (start < end) {
2901 		if (entry == &map->header) {
2902 			result = FALSE;
2903 			break;
2904 		}
2905 		/*
2906 		 * No holes allowed!
2907 		 */
2908 
2909 		if (start < entry->start) {
2910 			result = FALSE;
2911 			break;
2912 		}
2913 		/*
2914 		 * Check protection associated with entry.
2915 		 */
2916 
2917 		if ((entry->protection & protection) != protection) {
2918 			result = FALSE;
2919 			break;
2920 		}
2921 		/* go to next entry */
2922 
2923 		start = entry->end;
2924 		entry = entry->next;
2925 	}
2926 	if (have_lock == FALSE)
2927 		vm_map_unlock_read(map);
2928 	return (result);
2929 }
2930 
2931 /*
2932  * If appropriate this function shadows the original object with a new object
2933  * and moves the VM pages from the original object to the new object.
2934  * The original object will also be collapsed, if possible.
2935  *
2936  * We can only do this for normal memory objects with a single mapping, and
2937  * it only makes sense to do it if there are 2 or more refs on the original
2938  * object.  i.e. typically a memory object that has been extended into
2939  * multiple vm_map_entry's with non-overlapping ranges.
2940  *
2941  * This makes it easier to remove unused pages and keeps object inheritance
2942  * from being a negative impact on memory usage.
2943  *
2944  * On return the (possibly new) entry->object.vm_object will have an
2945  * additional ref on it for the caller to dispose of (usually by cloning
2946  * the vm_map_entry).  The additional ref had to be done in this routine
2947  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2948  * cleared.
2949  *
2950  * The vm_map must be locked and its token held.
2951  */
2952 static void
2953 vm_map_split(vm_map_entry_t entry)
2954 {
2955 #if 0
2956 	/* UNOPTIMIZED */
2957 	vm_object_t oobject;
2958 
2959 	oobject = entry->object.vm_object;
2960 	vm_object_hold(oobject);
2961 	vm_object_chain_wait(oobject);
2962 	vm_object_reference_locked(oobject);
2963 	vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2964 	vm_object_drop(oobject);
2965 #else
2966 	/* OPTIMIZED */
2967 	vm_object_t oobject, nobject, bobject;
2968 	vm_offset_t s, e;
2969 	vm_page_t m;
2970 	vm_pindex_t offidxstart, offidxend, idx;
2971 	vm_size_t size;
2972 	vm_ooffset_t offset;
2973 
2974 	/*
2975 	 * Setup.  Chain lock the original object throughout the entire
2976 	 * routine to prevent new page faults from occuring.
2977 	 *
2978 	 * XXX can madvise WILLNEED interfere with us too?
2979 	 */
2980 	oobject = entry->object.vm_object;
2981 	vm_object_hold(oobject);
2982 	vm_object_chain_acquire(oobject);
2983 
2984 	/*
2985 	 * Original object cannot be split?
2986 	 */
2987 	if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
2988 					oobject->type != OBJT_SWAP)) {
2989 		vm_object_chain_release(oobject);
2990 		vm_object_reference_locked(oobject);
2991 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2992 		vm_object_drop(oobject);
2993 		return;
2994 	}
2995 
2996 	/*
2997 	 * Collapse original object with its backing store as an
2998 	 * optimization to reduce chain lengths when possible.
2999 	 *
3000 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3001 	 * for oobject, so there's no point collapsing it.
3002 	 *
3003 	 * Then re-check whether the object can be split.
3004 	 */
3005 	vm_object_collapse(oobject, NULL);
3006 
3007 	if (oobject->ref_count <= 1 ||
3008 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3009 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3010 		vm_object_chain_release(oobject);
3011 		vm_object_reference_locked(oobject);
3012 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3013 		vm_object_drop(oobject);
3014 		return;
3015 	}
3016 
3017 	/*
3018 	 * Acquire the chain lock on the backing object.
3019 	 *
3020 	 * Give bobject an additional ref count for when it will be shadowed
3021 	 * by nobject.
3022 	 */
3023 	if ((bobject = oobject->backing_object) != NULL) {
3024 		vm_object_hold(bobject);
3025 		vm_object_chain_wait(bobject);
3026 		vm_object_reference_locked(bobject);
3027 		vm_object_chain_acquire(bobject);
3028 		KKASSERT(bobject->backing_object == bobject);
3029 		KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3030 	}
3031 
3032 	/*
3033 	 * Calculate the object page range and allocate the new object.
3034 	 */
3035 	offset = entry->offset;
3036 	s = entry->start;
3037 	e = entry->end;
3038 
3039 	offidxstart = OFF_TO_IDX(offset);
3040 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3041 	size = offidxend - offidxstart;
3042 
3043 	switch(oobject->type) {
3044 	case OBJT_DEFAULT:
3045 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3046 					      VM_PROT_ALL, 0);
3047 		break;
3048 	case OBJT_SWAP:
3049 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3050 					   VM_PROT_ALL, 0);
3051 		break;
3052 	default:
3053 		/* not reached */
3054 		nobject = NULL;
3055 		KKASSERT(0);
3056 	}
3057 
3058 	if (nobject == NULL) {
3059 		if (bobject) {
3060 			vm_object_chain_release(bobject);
3061 			vm_object_deallocate(bobject);
3062 			vm_object_drop(bobject);
3063 		}
3064 		vm_object_chain_release(oobject);
3065 		vm_object_reference_locked(oobject);
3066 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3067 		vm_object_drop(oobject);
3068 		return;
3069 	}
3070 
3071 	/*
3072 	 * The new object will replace entry->object.vm_object so it needs
3073 	 * a second reference (the caller expects an additional ref).
3074 	 */
3075 	vm_object_hold(nobject);
3076 	vm_object_reference_locked(nobject);
3077 	vm_object_chain_acquire(nobject);
3078 
3079 	/*
3080 	 * nobject shadows bobject (oobject already shadows bobject).
3081 	 */
3082 	if (bobject) {
3083 		nobject->backing_object_offset =
3084 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3085 		nobject->backing_object = bobject;
3086 		bobject->shadow_count++;
3087 		bobject->generation++;
3088 		LIST_INSERT_HEAD(&bobject->shadow_head, nobject, shadow_list);
3089 		vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /* XXX? */
3090 		vm_object_chain_release(bobject);
3091 		vm_object_drop(bobject);
3092 	}
3093 
3094 	/*
3095 	 * Move the VM pages from oobject to nobject
3096 	 */
3097 	for (idx = 0; idx < size; idx++) {
3098 		vm_page_t m;
3099 
3100 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3101 					     TRUE, "vmpg");
3102 		if (m == NULL)
3103 			continue;
3104 
3105 		/*
3106 		 * We must wait for pending I/O to complete before we can
3107 		 * rename the page.
3108 		 *
3109 		 * We do not have to VM_PROT_NONE the page as mappings should
3110 		 * not be changed by this operation.
3111 		 *
3112 		 * NOTE: The act of renaming a page updates chaingen for both
3113 		 *	 objects.
3114 		 */
3115 		vm_page_rename(m, nobject, idx);
3116 		/* page automatically made dirty by rename and cache handled */
3117 		/* page remains busy */
3118 	}
3119 
3120 	if (oobject->type == OBJT_SWAP) {
3121 		vm_object_pip_add(oobject, 1);
3122 		/*
3123 		 * copy oobject pages into nobject and destroy unneeded
3124 		 * pages in shadow object.
3125 		 */
3126 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3127 		vm_object_pip_wakeup(oobject);
3128 	}
3129 
3130 	/*
3131 	 * Wakeup the pages we played with.  No spl protection is needed
3132 	 * for a simple wakeup.
3133 	 */
3134 	for (idx = 0; idx < size; idx++) {
3135 		m = vm_page_lookup(nobject, idx);
3136 		if (m) {
3137 			KKASSERT(m->flags & PG_BUSY);
3138 			vm_page_wakeup(m);
3139 		}
3140 	}
3141 	entry->object.vm_object = nobject;
3142 	entry->offset = 0LL;
3143 
3144 	/*
3145 	 * Cleanup
3146 	 *
3147 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3148 	 *	 related pages were moved and are no longer applicable to the
3149 	 *	 original object.
3150 	 *
3151 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3152 	 *	 replaced by nobject).
3153 	 */
3154 	vm_object_chain_release(nobject);
3155 	vm_object_drop(nobject);
3156 	if (bobject) {
3157 		vm_object_chain_release(bobject);
3158 		vm_object_drop(bobject);
3159 	}
3160 	vm_object_chain_release(oobject);
3161 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3162 	vm_object_deallocate_locked(oobject);
3163 	vm_object_drop(oobject);
3164 #endif
3165 }
3166 
3167 /*
3168  * Copies the contents of the source entry to the destination
3169  * entry.  The entries *must* be aligned properly.
3170  *
3171  * The vm_maps must be exclusively locked.
3172  * The vm_map's token must be held.
3173  *
3174  * Because the maps are locked no faults can be in progress during the
3175  * operation.
3176  */
3177 static void
3178 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3179 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3180 {
3181 	vm_object_t src_object;
3182 
3183 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3184 		return;
3185 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3186 		return;
3187 
3188 	if (src_entry->wired_count == 0) {
3189 		/*
3190 		 * If the source entry is marked needs_copy, it is already
3191 		 * write-protected.
3192 		 */
3193 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3194 			pmap_protect(src_map->pmap,
3195 			    src_entry->start,
3196 			    src_entry->end,
3197 			    src_entry->protection & ~VM_PROT_WRITE);
3198 		}
3199 
3200 		/*
3201 		 * Make a copy of the object.
3202 		 *
3203 		 * The object must be locked prior to checking the object type
3204 		 * and for the call to vm_object_collapse() and vm_map_split().
3205 		 * We cannot use *_hold() here because the split code will
3206 		 * probably try to destroy the object.  The lock is a pool
3207 		 * token and doesn't care.
3208 		 *
3209 		 * We must bump src_map->timestamp when setting
3210 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3211 		 * to retry, otherwise the concurrent fault might improperly
3212 		 * install a RW pte when its supposed to be a RO(COW) pte.
3213 		 * This race can occur because a vnode-backed fault may have
3214 		 * to temporarily release the map lock.
3215 		 */
3216 		if (src_entry->object.vm_object != NULL) {
3217 			vm_map_split(src_entry);
3218 			src_object = src_entry->object.vm_object;
3219 			dst_entry->object.vm_object = src_object;
3220 			src_entry->eflags |= (MAP_ENTRY_COW |
3221 					      MAP_ENTRY_NEEDS_COPY);
3222 			dst_entry->eflags |= (MAP_ENTRY_COW |
3223 					      MAP_ENTRY_NEEDS_COPY);
3224 			dst_entry->offset = src_entry->offset;
3225 			++src_map->timestamp;
3226 		} else {
3227 			dst_entry->object.vm_object = NULL;
3228 			dst_entry->offset = 0;
3229 		}
3230 
3231 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3232 		    dst_entry->end - dst_entry->start, src_entry->start);
3233 	} else {
3234 		/*
3235 		 * Of course, wired down pages can't be set copy-on-write.
3236 		 * Cause wired pages to be copied into the new map by
3237 		 * simulating faults (the new pages are pageable)
3238 		 */
3239 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3240 	}
3241 }
3242 
3243 /*
3244  * vmspace_fork:
3245  * Create a new process vmspace structure and vm_map
3246  * based on those of an existing process.  The new map
3247  * is based on the old map, according to the inheritance
3248  * values on the regions in that map.
3249  *
3250  * The source map must not be locked.
3251  * No requirements.
3252  */
3253 struct vmspace *
3254 vmspace_fork(struct vmspace *vm1)
3255 {
3256 	struct vmspace *vm2;
3257 	vm_map_t old_map = &vm1->vm_map;
3258 	vm_map_t new_map;
3259 	vm_map_entry_t old_entry;
3260 	vm_map_entry_t new_entry;
3261 	vm_object_t object;
3262 	int count;
3263 
3264 	lwkt_gettoken(&vm1->vm_map.token);
3265 	vm_map_lock(old_map);
3266 
3267 	/*
3268 	 * XXX Note: upcalls are not copied.
3269 	 */
3270 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3271 	lwkt_gettoken(&vm2->vm_map.token);
3272 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3273 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3274 	new_map = &vm2->vm_map;	/* XXX */
3275 	new_map->timestamp = 1;
3276 
3277 	vm_map_lock(new_map);
3278 
3279 	count = 0;
3280 	old_entry = old_map->header.next;
3281 	while (old_entry != &old_map->header) {
3282 		++count;
3283 		old_entry = old_entry->next;
3284 	}
3285 
3286 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3287 
3288 	old_entry = old_map->header.next;
3289 	while (old_entry != &old_map->header) {
3290 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3291 			panic("vm_map_fork: encountered a submap");
3292 
3293 		switch (old_entry->inheritance) {
3294 		case VM_INHERIT_NONE:
3295 			break;
3296 		case VM_INHERIT_SHARE:
3297 			/*
3298 			 * Clone the entry, creating the shared object if
3299 			 * necessary.
3300 			 */
3301 			if (old_entry->object.vm_object == NULL)
3302 				vm_map_entry_allocate_object(old_entry);
3303 
3304 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3305 				/*
3306 				 * Shadow a map_entry which needs a copy,
3307 				 * replacing its object with a new object
3308 				 * that points to the old one.  Ask the
3309 				 * shadow code to automatically add an
3310 				 * additional ref.  We can't do it afterwords
3311 				 * because we might race a collapse.  The call
3312 				 * to vm_map_entry_shadow() will also clear
3313 				 * OBJ_ONEMAPPING.
3314 				 */
3315 				vm_map_entry_shadow(old_entry, 1);
3316 			} else {
3317 				/*
3318 				 * We will make a shared copy of the object,
3319 				 * and must clear OBJ_ONEMAPPING.
3320 				 *
3321 				 * XXX assert that object.vm_object != NULL
3322 				 *     since we allocate it above.
3323 				 */
3324 				if (old_entry->object.vm_object) {
3325 					object = old_entry->object.vm_object;
3326 					vm_object_hold(object);
3327 					vm_object_chain_wait(object);
3328 					vm_object_reference_locked(object);
3329 					vm_object_clear_flag(object,
3330 							     OBJ_ONEMAPPING);
3331 					vm_object_drop(object);
3332 				}
3333 			}
3334 
3335 			/*
3336 			 * Clone the entry.  We've already bumped the ref on
3337 			 * any vm_object.
3338 			 */
3339 			new_entry = vm_map_entry_create(new_map, &count);
3340 			*new_entry = *old_entry;
3341 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3342 			new_entry->wired_count = 0;
3343 
3344 			/*
3345 			 * Insert the entry into the new map -- we know we're
3346 			 * inserting at the end of the new map.
3347 			 */
3348 
3349 			vm_map_entry_link(new_map, new_map->header.prev,
3350 					  new_entry);
3351 
3352 			/*
3353 			 * Update the physical map
3354 			 */
3355 			pmap_copy(new_map->pmap, old_map->pmap,
3356 			    new_entry->start,
3357 			    (old_entry->end - old_entry->start),
3358 			    old_entry->start);
3359 			break;
3360 		case VM_INHERIT_COPY:
3361 			/*
3362 			 * Clone the entry and link into the map.
3363 			 */
3364 			new_entry = vm_map_entry_create(new_map, &count);
3365 			*new_entry = *old_entry;
3366 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3367 			new_entry->wired_count = 0;
3368 			new_entry->object.vm_object = NULL;
3369 			vm_map_entry_link(new_map, new_map->header.prev,
3370 					  new_entry);
3371 			vm_map_copy_entry(old_map, new_map, old_entry,
3372 					  new_entry);
3373 			break;
3374 		}
3375 		old_entry = old_entry->next;
3376 	}
3377 
3378 	new_map->size = old_map->size;
3379 	vm_map_unlock(old_map);
3380 	vm_map_unlock(new_map);
3381 	vm_map_entry_release(count);
3382 
3383 	lwkt_reltoken(&vm2->vm_map.token);
3384 	lwkt_reltoken(&vm1->vm_map.token);
3385 
3386 	return (vm2);
3387 }
3388 
3389 /*
3390  * Create an auto-grow stack entry
3391  *
3392  * No requirements.
3393  */
3394 int
3395 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3396 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3397 {
3398 	vm_map_entry_t	prev_entry;
3399 	vm_map_entry_t	new_stack_entry;
3400 	vm_size_t	init_ssize;
3401 	int		rv;
3402 	int		count;
3403 	vm_offset_t	tmpaddr;
3404 
3405 	cow |= MAP_IS_STACK;
3406 
3407 	if (max_ssize < sgrowsiz)
3408 		init_ssize = max_ssize;
3409 	else
3410 		init_ssize = sgrowsiz;
3411 
3412 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3413 	vm_map_lock(map);
3414 
3415 	/*
3416 	 * Find space for the mapping
3417 	 */
3418 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3419 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3420 				     flags, &tmpaddr)) {
3421 			vm_map_unlock(map);
3422 			vm_map_entry_release(count);
3423 			return (KERN_NO_SPACE);
3424 		}
3425 		addrbos = tmpaddr;
3426 	}
3427 
3428 	/* If addr is already mapped, no go */
3429 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3430 		vm_map_unlock(map);
3431 		vm_map_entry_release(count);
3432 		return (KERN_NO_SPACE);
3433 	}
3434 
3435 #if 0
3436 	/* XXX already handled by kern_mmap() */
3437 	/* If we would blow our VMEM resource limit, no go */
3438 	if (map->size + init_ssize >
3439 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3440 		vm_map_unlock(map);
3441 		vm_map_entry_release(count);
3442 		return (KERN_NO_SPACE);
3443 	}
3444 #endif
3445 
3446 	/*
3447 	 * If we can't accomodate max_ssize in the current mapping,
3448 	 * no go.  However, we need to be aware that subsequent user
3449 	 * mappings might map into the space we have reserved for
3450 	 * stack, and currently this space is not protected.
3451 	 *
3452 	 * Hopefully we will at least detect this condition
3453 	 * when we try to grow the stack.
3454 	 */
3455 	if ((prev_entry->next != &map->header) &&
3456 	    (prev_entry->next->start < addrbos + max_ssize)) {
3457 		vm_map_unlock(map);
3458 		vm_map_entry_release(count);
3459 		return (KERN_NO_SPACE);
3460 	}
3461 
3462 	/*
3463 	 * We initially map a stack of only init_ssize.  We will
3464 	 * grow as needed later.  Since this is to be a grow
3465 	 * down stack, we map at the top of the range.
3466 	 *
3467 	 * Note: we would normally expect prot and max to be
3468 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3469 	 * eliminate these as input parameters, and just
3470 	 * pass these values here in the insert call.
3471 	 */
3472 	rv = vm_map_insert(map, &count,
3473 			   NULL, 0, addrbos + max_ssize - init_ssize,
3474 	                   addrbos + max_ssize,
3475 			   VM_MAPTYPE_NORMAL,
3476 			   prot, max,
3477 			   cow);
3478 
3479 	/* Now set the avail_ssize amount */
3480 	if (rv == KERN_SUCCESS) {
3481 		if (prev_entry != &map->header)
3482 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3483 		new_stack_entry = prev_entry->next;
3484 		if (new_stack_entry->end   != addrbos + max_ssize ||
3485 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3486 			panic ("Bad entry start/end for new stack entry");
3487 		else
3488 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3489 	}
3490 
3491 	vm_map_unlock(map);
3492 	vm_map_entry_release(count);
3493 	return (rv);
3494 }
3495 
3496 /*
3497  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3498  * desired address is already mapped, or if we successfully grow
3499  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3500  * stack range (this is strange, but preserves compatibility with
3501  * the grow function in vm_machdep.c).
3502  *
3503  * No requirements.
3504  */
3505 int
3506 vm_map_growstack (struct proc *p, vm_offset_t addr)
3507 {
3508 	vm_map_entry_t prev_entry;
3509 	vm_map_entry_t stack_entry;
3510 	vm_map_entry_t new_stack_entry;
3511 	struct vmspace *vm = p->p_vmspace;
3512 	vm_map_t map = &vm->vm_map;
3513 	vm_offset_t    end;
3514 	int grow_amount;
3515 	int rv = KERN_SUCCESS;
3516 	int is_procstack;
3517 	int use_read_lock = 1;
3518 	int count;
3519 
3520 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3521 Retry:
3522 	if (use_read_lock)
3523 		vm_map_lock_read(map);
3524 	else
3525 		vm_map_lock(map);
3526 
3527 	/* If addr is already in the entry range, no need to grow.*/
3528 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3529 		goto done;
3530 
3531 	if ((stack_entry = prev_entry->next) == &map->header)
3532 		goto done;
3533 	if (prev_entry == &map->header)
3534 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3535 	else
3536 		end = prev_entry->end;
3537 
3538 	/*
3539 	 * This next test mimics the old grow function in vm_machdep.c.
3540 	 * It really doesn't quite make sense, but we do it anyway
3541 	 * for compatibility.
3542 	 *
3543 	 * If not growable stack, return success.  This signals the
3544 	 * caller to proceed as he would normally with normal vm.
3545 	 */
3546 	if (stack_entry->aux.avail_ssize < 1 ||
3547 	    addr >= stack_entry->start ||
3548 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3549 		goto done;
3550 	}
3551 
3552 	/* Find the minimum grow amount */
3553 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3554 	if (grow_amount > stack_entry->aux.avail_ssize) {
3555 		rv = KERN_NO_SPACE;
3556 		goto done;
3557 	}
3558 
3559 	/*
3560 	 * If there is no longer enough space between the entries
3561 	 * nogo, and adjust the available space.  Note: this
3562 	 * should only happen if the user has mapped into the
3563 	 * stack area after the stack was created, and is
3564 	 * probably an error.
3565 	 *
3566 	 * This also effectively destroys any guard page the user
3567 	 * might have intended by limiting the stack size.
3568 	 */
3569 	if (grow_amount > stack_entry->start - end) {
3570 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3571 			/* lost lock */
3572 			use_read_lock = 0;
3573 			goto Retry;
3574 		}
3575 		use_read_lock = 0;
3576 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3577 		rv = KERN_NO_SPACE;
3578 		goto done;
3579 	}
3580 
3581 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3582 
3583 	/* If this is the main process stack, see if we're over the
3584 	 * stack limit.
3585 	 */
3586 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3587 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3588 		rv = KERN_NO_SPACE;
3589 		goto done;
3590 	}
3591 
3592 	/* Round up the grow amount modulo SGROWSIZ */
3593 	grow_amount = roundup (grow_amount, sgrowsiz);
3594 	if (grow_amount > stack_entry->aux.avail_ssize) {
3595 		grow_amount = stack_entry->aux.avail_ssize;
3596 	}
3597 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3598 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3599 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3600 		              ctob(vm->vm_ssize);
3601 	}
3602 
3603 	/* If we would blow our VMEM resource limit, no go */
3604 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3605 		rv = KERN_NO_SPACE;
3606 		goto done;
3607 	}
3608 
3609 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3610 		/* lost lock */
3611 		use_read_lock = 0;
3612 		goto Retry;
3613 	}
3614 	use_read_lock = 0;
3615 
3616 	/* Get the preliminary new entry start value */
3617 	addr = stack_entry->start - grow_amount;
3618 
3619 	/* If this puts us into the previous entry, cut back our growth
3620 	 * to the available space.  Also, see the note above.
3621 	 */
3622 	if (addr < end) {
3623 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3624 		addr = end;
3625 	}
3626 
3627 	rv = vm_map_insert(map, &count,
3628 			   NULL, 0, addr, stack_entry->start,
3629 			   VM_MAPTYPE_NORMAL,
3630 			   VM_PROT_ALL, VM_PROT_ALL,
3631 			   0);
3632 
3633 	/* Adjust the available stack space by the amount we grew. */
3634 	if (rv == KERN_SUCCESS) {
3635 		if (prev_entry != &map->header)
3636 			vm_map_clip_end(map, prev_entry, addr, &count);
3637 		new_stack_entry = prev_entry->next;
3638 		if (new_stack_entry->end   != stack_entry->start  ||
3639 		    new_stack_entry->start != addr)
3640 			panic ("Bad stack grow start/end in new stack entry");
3641 		else {
3642 			new_stack_entry->aux.avail_ssize =
3643 				stack_entry->aux.avail_ssize -
3644 				(new_stack_entry->end - new_stack_entry->start);
3645 			if (is_procstack)
3646 				vm->vm_ssize += btoc(new_stack_entry->end -
3647 						     new_stack_entry->start);
3648 		}
3649 
3650 		if (map->flags & MAP_WIREFUTURE)
3651 			vm_map_unwire(map, new_stack_entry->start,
3652 				      new_stack_entry->end, FALSE);
3653 	}
3654 
3655 done:
3656 	if (use_read_lock)
3657 		vm_map_unlock_read(map);
3658 	else
3659 		vm_map_unlock(map);
3660 	vm_map_entry_release(count);
3661 	return (rv);
3662 }
3663 
3664 /*
3665  * Unshare the specified VM space for exec.  If other processes are
3666  * mapped to it, then create a new one.  The new vmspace is null.
3667  *
3668  * No requirements.
3669  */
3670 void
3671 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3672 {
3673 	struct vmspace *oldvmspace = p->p_vmspace;
3674 	struct vmspace *newvmspace;
3675 	vm_map_t map = &p->p_vmspace->vm_map;
3676 
3677 	/*
3678 	 * If we are execing a resident vmspace we fork it, otherwise
3679 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3680 	 * are not copied to the new vmspace.
3681 	 */
3682 	lwkt_gettoken(&oldvmspace->vm_map.token);
3683 	if (vmcopy)  {
3684 		newvmspace = vmspace_fork(vmcopy);
3685 		lwkt_gettoken(&newvmspace->vm_map.token);
3686 	} else {
3687 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3688 		lwkt_gettoken(&newvmspace->vm_map.token);
3689 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3690 		      (caddr_t)&oldvmspace->vm_endcopy -
3691 		       (caddr_t)&oldvmspace->vm_startcopy);
3692 	}
3693 
3694 	/*
3695 	 * Finish initializing the vmspace before assigning it
3696 	 * to the process.  The vmspace will become the current vmspace
3697 	 * if p == curproc.
3698 	 */
3699 	pmap_pinit2(vmspace_pmap(newvmspace));
3700 	pmap_replacevm(p, newvmspace, 0);
3701 	lwkt_reltoken(&newvmspace->vm_map.token);
3702 	lwkt_reltoken(&oldvmspace->vm_map.token);
3703 	vmspace_free(oldvmspace);
3704 }
3705 
3706 /*
3707  * Unshare the specified VM space for forcing COW.  This
3708  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3709  */
3710 void
3711 vmspace_unshare(struct proc *p)
3712 {
3713 	struct vmspace *oldvmspace = p->p_vmspace;
3714 	struct vmspace *newvmspace;
3715 
3716 	lwkt_gettoken(&oldvmspace->vm_map.token);
3717 	if (oldvmspace->vm_sysref.refcnt == 1) {
3718 		lwkt_reltoken(&oldvmspace->vm_map.token);
3719 		return;
3720 	}
3721 	newvmspace = vmspace_fork(oldvmspace);
3722 	lwkt_gettoken(&newvmspace->vm_map.token);
3723 	pmap_pinit2(vmspace_pmap(newvmspace));
3724 	pmap_replacevm(p, newvmspace, 0);
3725 	lwkt_reltoken(&newvmspace->vm_map.token);
3726 	lwkt_reltoken(&oldvmspace->vm_map.token);
3727 	vmspace_free(oldvmspace);
3728 }
3729 
3730 /*
3731  * vm_map_hint: return the beginning of the best area suitable for
3732  * creating a new mapping with "prot" protection.
3733  *
3734  * No requirements.
3735  */
3736 vm_offset_t
3737 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3738 {
3739 	struct vmspace *vms = p->p_vmspace;
3740 
3741 	if (!randomize_mmap) {
3742 		/*
3743 		 * Set a reasonable start point for the hint if it was
3744 		 * not specified or if it falls within the heap space.
3745 		 * Hinted mmap()s do not allocate out of the heap space.
3746 		 */
3747 		if (addr == 0 ||
3748 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3749 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3750 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3751 		}
3752 
3753 		return addr;
3754 	}
3755 
3756 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3757 		return addr;
3758 
3759 #ifdef notyet
3760 #ifdef __i386__
3761 	/*
3762 	 * If executable skip first two pages, otherwise start
3763 	 * after data + heap region.
3764 	 */
3765 	if ((prot & VM_PROT_EXECUTE) &&
3766 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3767 		addr = (PAGE_SIZE * 2) +
3768 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3769 		return (round_page(addr));
3770 	}
3771 #endif /* __i386__ */
3772 #endif /* notyet */
3773 
3774 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3775 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3776 
3777 	return (round_page(addr));
3778 }
3779 
3780 /*
3781  * Finds the VM object, offset, and protection for a given virtual address
3782  * in the specified map, assuming a page fault of the type specified.
3783  *
3784  * Leaves the map in question locked for read; return values are guaranteed
3785  * until a vm_map_lookup_done call is performed.  Note that the map argument
3786  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3787  *
3788  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3789  * that fast.
3790  *
3791  * If a lookup is requested with "write protection" specified, the map may
3792  * be changed to perform virtual copying operations, although the data
3793  * referenced will remain the same.
3794  *
3795  * No requirements.
3796  */
3797 int
3798 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3799 	      vm_offset_t vaddr,
3800 	      vm_prot_t fault_typea,
3801 	      vm_map_entry_t *out_entry,	/* OUT */
3802 	      vm_object_t *object,		/* OUT */
3803 	      vm_pindex_t *pindex,		/* OUT */
3804 	      vm_prot_t *out_prot,		/* OUT */
3805 	      boolean_t *wired)			/* OUT */
3806 {
3807 	vm_map_entry_t entry;
3808 	vm_map_t map = *var_map;
3809 	vm_prot_t prot;
3810 	vm_prot_t fault_type = fault_typea;
3811 	int use_read_lock = 1;
3812 	int rv = KERN_SUCCESS;
3813 
3814 RetryLookup:
3815 	if (use_read_lock)
3816 		vm_map_lock_read(map);
3817 	else
3818 		vm_map_lock(map);
3819 
3820 	/*
3821 	 * If the map has an interesting hint, try it before calling full
3822 	 * blown lookup routine.
3823 	 */
3824 	entry = map->hint;
3825 	cpu_ccfence();
3826 	*out_entry = entry;
3827 	*object = NULL;
3828 
3829 	if ((entry == &map->header) ||
3830 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3831 		vm_map_entry_t tmp_entry;
3832 
3833 		/*
3834 		 * Entry was either not a valid hint, or the vaddr was not
3835 		 * contained in the entry, so do a full lookup.
3836 		 */
3837 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3838 			rv = KERN_INVALID_ADDRESS;
3839 			goto done;
3840 		}
3841 
3842 		entry = tmp_entry;
3843 		*out_entry = entry;
3844 	}
3845 
3846 	/*
3847 	 * Handle submaps.
3848 	 */
3849 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3850 		vm_map_t old_map = map;
3851 
3852 		*var_map = map = entry->object.sub_map;
3853 		if (use_read_lock)
3854 			vm_map_unlock_read(old_map);
3855 		else
3856 			vm_map_unlock(old_map);
3857 		use_read_lock = 1;
3858 		goto RetryLookup;
3859 	}
3860 
3861 	/*
3862 	 * Check whether this task is allowed to have this page.
3863 	 * Note the special case for MAP_ENTRY_COW
3864 	 * pages with an override.  This is to implement a forced
3865 	 * COW for debuggers.
3866 	 */
3867 
3868 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3869 		prot = entry->max_protection;
3870 	else
3871 		prot = entry->protection;
3872 
3873 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3874 	if ((fault_type & prot) != fault_type) {
3875 		rv = KERN_PROTECTION_FAILURE;
3876 		goto done;
3877 	}
3878 
3879 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3880 	    (entry->eflags & MAP_ENTRY_COW) &&
3881 	    (fault_type & VM_PROT_WRITE) &&
3882 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3883 		rv = KERN_PROTECTION_FAILURE;
3884 		goto done;
3885 	}
3886 
3887 	/*
3888 	 * If this page is not pageable, we have to get it for all possible
3889 	 * accesses.
3890 	 */
3891 	*wired = (entry->wired_count != 0);
3892 	if (*wired)
3893 		prot = fault_type = entry->protection;
3894 
3895 	/*
3896 	 * Virtual page tables may need to update the accessed (A) bit
3897 	 * in a page table entry.  Upgrade the fault to a write fault for
3898 	 * that case if the map will support it.  If the map does not support
3899 	 * it the page table entry simply will not be updated.
3900 	 */
3901 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3902 		if (prot & VM_PROT_WRITE)
3903 			fault_type |= VM_PROT_WRITE;
3904 	}
3905 
3906 	/*
3907 	 * If the entry was copy-on-write, we either ...
3908 	 */
3909 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3910 		/*
3911 		 * If we want to write the page, we may as well handle that
3912 		 * now since we've got the map locked.
3913 		 *
3914 		 * If we don't need to write the page, we just demote the
3915 		 * permissions allowed.
3916 		 */
3917 
3918 		if (fault_type & VM_PROT_WRITE) {
3919 			/*
3920 			 * Make a new object, and place it in the object
3921 			 * chain.  Note that no new references have appeared
3922 			 * -- one just moved from the map to the new
3923 			 * object.
3924 			 */
3925 
3926 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3927 				/* lost lock */
3928 				use_read_lock = 0;
3929 				goto RetryLookup;
3930 			}
3931 			use_read_lock = 0;
3932 
3933 			vm_map_entry_shadow(entry, 0);
3934 		} else {
3935 			/*
3936 			 * We're attempting to read a copy-on-write page --
3937 			 * don't allow writes.
3938 			 */
3939 
3940 			prot &= ~VM_PROT_WRITE;
3941 		}
3942 	}
3943 
3944 	/*
3945 	 * Create an object if necessary.
3946 	 */
3947 	if (entry->object.vm_object == NULL && !map->system_map) {
3948 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3949 			/* lost lock */
3950 			use_read_lock = 0;
3951 			goto RetryLookup;
3952 		}
3953 		use_read_lock = 0;
3954 		vm_map_entry_allocate_object(entry);
3955 	}
3956 
3957 	/*
3958 	 * Return the object/offset from this entry.  If the entry was
3959 	 * copy-on-write or empty, it has been fixed up.
3960 	 */
3961 
3962 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3963 	*object = entry->object.vm_object;
3964 
3965 	/*
3966 	 * Return whether this is the only map sharing this data.  On
3967 	 * success we return with a read lock held on the map.  On failure
3968 	 * we return with the map unlocked.
3969 	 */
3970 	*out_prot = prot;
3971 done:
3972 	if (rv == KERN_SUCCESS) {
3973 		if (use_read_lock == 0)
3974 			vm_map_lock_downgrade(map);
3975 	} else if (use_read_lock) {
3976 		vm_map_unlock_read(map);
3977 	} else {
3978 		vm_map_unlock(map);
3979 	}
3980 	return (rv);
3981 }
3982 
3983 /*
3984  * Releases locks acquired by a vm_map_lookup()
3985  * (according to the handle returned by that lookup).
3986  *
3987  * No other requirements.
3988  */
3989 void
3990 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3991 {
3992 	/*
3993 	 * Unlock the main-level map
3994 	 */
3995 	vm_map_unlock_read(map);
3996 	if (count)
3997 		vm_map_entry_release(count);
3998 }
3999 
4000 #include "opt_ddb.h"
4001 #ifdef DDB
4002 #include <sys/kernel.h>
4003 
4004 #include <ddb/ddb.h>
4005 
4006 /*
4007  * Debugging only
4008  */
4009 DB_SHOW_COMMAND(map, vm_map_print)
4010 {
4011 	static int nlines;
4012 	/* XXX convert args. */
4013 	vm_map_t map = (vm_map_t)addr;
4014 	boolean_t full = have_addr;
4015 
4016 	vm_map_entry_t entry;
4017 
4018 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4019 	    (void *)map,
4020 	    (void *)map->pmap, map->nentries, map->timestamp);
4021 	nlines++;
4022 
4023 	if (!full && db_indent)
4024 		return;
4025 
4026 	db_indent += 2;
4027 	for (entry = map->header.next; entry != &map->header;
4028 	    entry = entry->next) {
4029 		db_iprintf("map entry %p: start=%p, end=%p\n",
4030 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4031 		nlines++;
4032 		{
4033 			static char *inheritance_name[4] =
4034 			{"share", "copy", "none", "donate_copy"};
4035 
4036 			db_iprintf(" prot=%x/%x/%s",
4037 			    entry->protection,
4038 			    entry->max_protection,
4039 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4040 			if (entry->wired_count != 0)
4041 				db_printf(", wired");
4042 		}
4043 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4044 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4045 			db_printf(", share=%p, offset=0x%lx\n",
4046 			    (void *)entry->object.sub_map,
4047 			    (long)entry->offset);
4048 			nlines++;
4049 			if ((entry->prev == &map->header) ||
4050 			    (entry->prev->object.sub_map !=
4051 				entry->object.sub_map)) {
4052 				db_indent += 2;
4053 				vm_map_print((db_expr_t)(intptr_t)
4054 					     entry->object.sub_map,
4055 					     full, 0, NULL);
4056 				db_indent -= 2;
4057 			}
4058 		} else {
4059 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4060 			db_printf(", object=%p, offset=0x%lx",
4061 			    (void *)entry->object.vm_object,
4062 			    (long)entry->offset);
4063 			if (entry->eflags & MAP_ENTRY_COW)
4064 				db_printf(", copy (%s)",
4065 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4066 			db_printf("\n");
4067 			nlines++;
4068 
4069 			if ((entry->prev == &map->header) ||
4070 			    (entry->prev->object.vm_object !=
4071 				entry->object.vm_object)) {
4072 				db_indent += 2;
4073 				vm_object_print((db_expr_t)(intptr_t)
4074 						entry->object.vm_object,
4075 						full, 0, NULL);
4076 				nlines += 4;
4077 				db_indent -= 2;
4078 			}
4079 		}
4080 	}
4081 	db_indent -= 2;
4082 	if (db_indent == 0)
4083 		nlines = 0;
4084 }
4085 
4086 /*
4087  * Debugging only
4088  */
4089 DB_SHOW_COMMAND(procvm, procvm)
4090 {
4091 	struct proc *p;
4092 
4093 	if (have_addr) {
4094 		p = (struct proc *) addr;
4095 	} else {
4096 		p = curproc;
4097 	}
4098 
4099 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4100 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4101 	    (void *)vmspace_pmap(p->p_vmspace));
4102 
4103 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4104 }
4105 
4106 #endif /* DDB */
4107