xref: /dragonfly/sys/vm/vm_map.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
99 
100 /*
101  *	Virtual memory maps provide for the mapping, protection,
102  *	and sharing of virtual memory objects.  In addition,
103  *	this module provides for an efficient virtual copy of
104  *	memory from one map to another.
105  *
106  *	Synchronization is required prior to most operations.
107  *
108  *	Maps consist of an ordered doubly-linked list of simple
109  *	entries; a single hint is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.mag_capacity =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate
140 	}
141 };
142 
143 #define VMEPERCPU	2
144 
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152 
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 		vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164 
165 /*
166  *	vm_map_startup:
167  *
168  *	Initialize the vm_map module.  Must be called before
169  *	any other vm_map routines.
170  *
171  *	Map and entry structures are allocated from the general
172  *	purpose memory pool with some exceptions:
173  *
174  *	- The kernel map and kmem submap are allocated statically.
175  *	- Kernel map entries are allocated out of a static pool.
176  *
177  *	These restrictions are necessary since malloc() uses the
178  *	maps and requires map entries.
179  */
180 void
181 vm_map_startup(void)
182 {
183 	mapzone = &mapzone_store;
184 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 		map_init, MAX_KMAP);
186 	mapentzone = &mapentzone_store;
187 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 		map_entry_init, MAX_MAPENT);
189 }
190 
191 /*
192  *	vm_init2 - called prior to any vmspace allocations
193  */
194 void
195 vm_init2(void)
196 {
197 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
198 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200 	pmap_init2();
201 	vm_object_init2();
202 }
203 
204 
205 /*
206  * Red black tree functions
207  */
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
210 
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
214 {
215 	if (a->start < b->start)
216 		return(-1);
217 	else if (a->start > b->start)
218 		return(1);
219 	return(0);
220 }
221 
222 /*
223  * Allocate a vmspace structure, including a vm_map and pmap.
224  * Initialize numerous fields.  While the initial allocation is zerod,
225  * subsequence reuse from the objcache leaves elements of the structure
226  * intact (particularly the pmap), so portions must be zerod.
227  *
228  * The structure is not considered activated until we call sysref_activate().
229  */
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
232 {
233 	struct vmspace *vm;
234 
235 	vm = sysref_alloc(&vmspace_sysref_class);
236 	bzero(&vm->vm_startcopy,
237 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238 	vm_map_init(&vm->vm_map, min, max, NULL);
239 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
240 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
241 	vm->vm_shm = NULL;
242 	vm->vm_exitingcnt = 0;
243 	cpu_vmspace_alloc(vm);
244 	sysref_activate(&vm->vm_sysref);
245 	return (vm);
246 }
247 
248 /*
249  * dtor function - Some elements of the pmap are retained in the
250  * free-cached vmspaces to improve performance.  We have to clean them up
251  * here before returning the vmspace to the memory pool.
252  */
253 static void
254 vmspace_dtor(void *obj, void *private)
255 {
256 	struct vmspace *vm = obj;
257 
258 	pmap_puninit(vmspace_pmap(vm));
259 }
260 
261 /*
262  * Called in two cases:
263  *
264  * (1) When the last sysref is dropped, but exitingcnt might still be
265  *     non-zero.
266  *
267  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268  *     exitingcnt becomes zero
269  *
270  * sysref will not scrap the object until we call sysref_put() once more
271  * after the last ref has been dropped.
272  */
273 static void
274 vmspace_terminate(struct vmspace *vm)
275 {
276 	int count;
277 
278 	/*
279 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
280 	 * yet, but we can scrap user memory.
281 	 */
282 	if (vm->vm_exitingcnt) {
283 		shmexit(vm);
284 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285 				  VM_MAX_USER_ADDRESS);
286 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287 			      VM_MAX_USER_ADDRESS);
288 
289 		return;
290 	}
291 	cpu_vmspace_free(vm);
292 
293 	/*
294 	 * Make sure any SysV shm is freed, it might not have in
295 	 * exit1()
296 	 */
297 	shmexit(vm);
298 
299 	KKASSERT(vm->vm_upcalls == NULL);
300 
301 	/*
302 	 * Lock the map, to wait out all other references to it.
303 	 * Delete all of the mappings and pages they hold, then call
304 	 * the pmap module to reclaim anything left.
305 	 */
306 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 	vm_map_lock(&vm->vm_map);
308 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309 		vm->vm_map.max_offset, &count);
310 	vm_map_unlock(&vm->vm_map);
311 	vm_map_entry_release(count);
312 
313 	pmap_release(vmspace_pmap(vm));
314 	sysref_put(&vm->vm_sysref);
315 }
316 
317 /*
318  * This is called in the wait*() handling code.  The vmspace can be terminated
319  * after the last wait is finished using it.
320  */
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324 	struct vmspace *vm;
325 
326 	vm = p->p_vmspace;
327 	p->p_vmspace = NULL;
328 
329 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330 		vmspace_terminate(vm);
331 }
332 
333 /*
334  * vmspace_swap_count()
335  *
336  *	Swap useage is determined by taking the proportional swap used by
337  *	VM objects backing the VM map.  To make up for fractional losses,
338  *	if the VM object has any swap use at all the associated map entries
339  *	count for at least 1 swap page.
340  */
341 int
342 vmspace_swap_count(struct vmspace *vmspace)
343 {
344 	vm_map_t map = &vmspace->vm_map;
345 	vm_map_entry_t cur;
346 	vm_object_t object;
347 	int count = 0;
348 	int n;
349 
350 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
351 		switch(cur->maptype) {
352 		case VM_MAPTYPE_NORMAL:
353 		case VM_MAPTYPE_VPAGETABLE:
354 			if ((object = cur->object.vm_object) == NULL)
355 				break;
356 			if (object->type != OBJT_SWAP)
357 				break;
358 			n = (cur->end - cur->start) / PAGE_SIZE;
359 			if (object->un_pager.swp.swp_bcount) {
360 				count += object->un_pager.swp.swp_bcount *
361 				    SWAP_META_PAGES * n / object->size + 1;
362 			}
363 			break;
364 		default:
365 			break;
366 		}
367 	}
368 	return(count);
369 }
370 
371 /*
372  * vmspace_anonymous_count()
373  *
374  *	Calculate the approximate number of anonymous pages in use by
375  *	this vmspace.  To make up for fractional losses, we count each
376  *	VM object as having at least 1 anonymous page.
377  */
378 int
379 vmspace_anonymous_count(struct vmspace *vmspace)
380 {
381 	vm_map_t map = &vmspace->vm_map;
382 	vm_map_entry_t cur;
383 	vm_object_t object;
384 	int count = 0;
385 
386 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
387 		switch(cur->maptype) {
388 		case VM_MAPTYPE_NORMAL:
389 		case VM_MAPTYPE_VPAGETABLE:
390 			if ((object = cur->object.vm_object) == NULL)
391 				break;
392 			if (object->type != OBJT_DEFAULT &&
393 			    object->type != OBJT_SWAP) {
394 				break;
395 			}
396 			count += object->resident_page_count;
397 			break;
398 		default:
399 			break;
400 		}
401 	}
402 	return(count);
403 }
404 
405 
406 
407 
408 /*
409  *	vm_map_create:
410  *
411  *	Creates and returns a new empty VM map with
412  *	the given physical map structure, and having
413  *	the given lower and upper address bounds.
414  */
415 vm_map_t
416 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
417 {
418 	if (result == NULL)
419 		result = zalloc(mapzone);
420 	vm_map_init(result, min, max, pmap);
421 	return (result);
422 }
423 
424 /*
425  * Initialize an existing vm_map structure
426  * such as that in the vmspace structure.
427  * The pmap is set elsewhere.
428  */
429 void
430 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
431 {
432 	map->header.next = map->header.prev = &map->header;
433 	RB_INIT(&map->rb_root);
434 	map->nentries = 0;
435 	map->size = 0;
436 	map->system_map = 0;
437 	map->infork = 0;
438 	map->min_offset = min;
439 	map->max_offset = max;
440 	map->pmap = pmap;
441 	map->first_free = &map->header;
442 	map->hint = &map->header;
443 	map->timestamp = 0;
444 	lockinit(&map->lock, "thrd_sleep", 0, 0);
445 }
446 
447 /*
448  * Shadow the vm_map_entry's object.  This typically needs to be done when
449  * a write fault is taken on an entry which had previously been cloned by
450  * fork().  The shared object (which might be NULL) must become private so
451  * we add a shadow layer above it.
452  *
453  * Object allocation for anonymous mappings is defered as long as possible.
454  * When creating a shadow, however, the underlying object must be instantiated
455  * so it can be shared.
456  *
457  * If the map segment is governed by a virtual page table then it is
458  * possible to address offsets beyond the mapped area.  Just allocate
459  * a maximally sized object for this case.
460  */
461 static
462 void
463 vm_map_entry_shadow(vm_map_entry_t entry)
464 {
465 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
466 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
467 				 0x7FFFFFFF);	/* XXX */
468 	} else {
469 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
470 				 atop(entry->end - entry->start));
471 	}
472 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
473 }
474 
475 /*
476  * Allocate an object for a vm_map_entry.
477  *
478  * Object allocation for anonymous mappings is defered as long as possible.
479  * This function is called when we can defer no longer, generally when a map
480  * entry might be split or forked or takes a page fault.
481  *
482  * If the map segment is governed by a virtual page table then it is
483  * possible to address offsets beyond the mapped area.  Just allocate
484  * a maximally sized object for this case.
485  */
486 void
487 vm_map_entry_allocate_object(vm_map_entry_t entry)
488 {
489 	vm_object_t obj;
490 
491 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
492 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
493 	} else {
494 		obj = vm_object_allocate(OBJT_DEFAULT,
495 					 atop(entry->end - entry->start));
496 	}
497 	entry->object.vm_object = obj;
498 	entry->offset = 0;
499 }
500 
501 /*
502  *      vm_map_entry_reserve_cpu_init:
503  *
504  *	Set an initial negative count so the first attempt to reserve
505  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
506  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
507  *	map a new page for vm_map_entry structures.  SMP systems are
508  *	particularly sensitive.
509  *
510  *	This routine is called in early boot so we cannot just call
511  *	vm_map_entry_reserve().
512  *
513  *	May be called for a gd other then mycpu, but may only be called
514  *	during early boot.
515  */
516 void
517 vm_map_entry_reserve_cpu_init(globaldata_t gd)
518 {
519 	vm_map_entry_t entry;
520 	int i;
521 
522 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
523 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
524 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
525 		entry->next = gd->gd_vme_base;
526 		gd->gd_vme_base = entry;
527 	}
528 }
529 
530 /*
531  *	vm_map_entry_reserve:
532  *
533  *	Reserves vm_map_entry structures so code later on can manipulate
534  *	map_entry structures within a locked map without blocking trying
535  *	to allocate a new vm_map_entry.
536  */
537 int
538 vm_map_entry_reserve(int count)
539 {
540 	struct globaldata *gd = mycpu;
541 	vm_map_entry_t entry;
542 
543 	crit_enter();
544 
545 	/*
546 	 * Make sure we have enough structures in gd_vme_base to handle
547 	 * the reservation request.
548 	 */
549 	while (gd->gd_vme_avail < count) {
550 		entry = zalloc(mapentzone);
551 		entry->next = gd->gd_vme_base;
552 		gd->gd_vme_base = entry;
553 		++gd->gd_vme_avail;
554 	}
555 	gd->gd_vme_avail -= count;
556 	crit_exit();
557 	return(count);
558 }
559 
560 /*
561  *	vm_map_entry_release:
562  *
563  *	Releases previously reserved vm_map_entry structures that were not
564  *	used.  If we have too much junk in our per-cpu cache clean some of
565  *	it out.
566  */
567 void
568 vm_map_entry_release(int count)
569 {
570 	struct globaldata *gd = mycpu;
571 	vm_map_entry_t entry;
572 
573 	crit_enter();
574 	gd->gd_vme_avail += count;
575 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
576 		entry = gd->gd_vme_base;
577 		KKASSERT(entry != NULL);
578 		gd->gd_vme_base = entry->next;
579 		--gd->gd_vme_avail;
580 		crit_exit();
581 		zfree(mapentzone, entry);
582 		crit_enter();
583 	}
584 	crit_exit();
585 }
586 
587 /*
588  *	vm_map_entry_kreserve:
589  *
590  *	Reserve map entry structures for use in kernel_map itself.  These
591  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
592  *	was inited.  This function is used by zalloc() to avoid a recursion
593  *	when zalloc() itself needs to allocate additional kernel memory.
594  *
595  *	This function works like the normal reserve but does not load the
596  *	vm_map_entry cache (because that would result in an infinite
597  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
598  *
599  *	Any caller of this function must be sure to renormalize after
600  *	potentially eating entries to ensure that the reserve supply
601  *	remains intact.
602  */
603 int
604 vm_map_entry_kreserve(int count)
605 {
606 	struct globaldata *gd = mycpu;
607 
608 	crit_enter();
609 	gd->gd_vme_avail -= count;
610 	crit_exit();
611 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
612 	return(count);
613 }
614 
615 /*
616  *	vm_map_entry_krelease:
617  *
618  *	Release previously reserved map entries for kernel_map.  We do not
619  *	attempt to clean up like the normal release function as this would
620  *	cause an unnecessary (but probably not fatal) deep procedure call.
621  */
622 void
623 vm_map_entry_krelease(int count)
624 {
625 	struct globaldata *gd = mycpu;
626 
627 	crit_enter();
628 	gd->gd_vme_avail += count;
629 	crit_exit();
630 }
631 
632 /*
633  *	vm_map_entry_create:	[ internal use only ]
634  *
635  *	Allocates a VM map entry for insertion.  No entry fields are filled
636  *	in.
637  *
638  *	This routine may be called from an interrupt thread but not a FAST
639  *	interrupt.  This routine may recurse the map lock.
640  */
641 static vm_map_entry_t
642 vm_map_entry_create(vm_map_t map, int *countp)
643 {
644 	struct globaldata *gd = mycpu;
645 	vm_map_entry_t entry;
646 
647 	KKASSERT(*countp > 0);
648 	--*countp;
649 	crit_enter();
650 	entry = gd->gd_vme_base;
651 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
652 	gd->gd_vme_base = entry->next;
653 	crit_exit();
654 	return(entry);
655 }
656 
657 /*
658  *	vm_map_entry_dispose:	[ internal use only ]
659  *
660  *	Dispose of a vm_map_entry that is no longer being referenced.  This
661  *	function may be called from an interrupt.
662  */
663 static void
664 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
665 {
666 	struct globaldata *gd = mycpu;
667 
668 	KKASSERT(map->hint != entry);
669 	KKASSERT(map->first_free != entry);
670 
671 	++*countp;
672 	crit_enter();
673 	entry->next = gd->gd_vme_base;
674 	gd->gd_vme_base = entry;
675 	crit_exit();
676 }
677 
678 
679 /*
680  *	vm_map_entry_{un,}link:
681  *
682  *	Insert/remove entries from maps.
683  */
684 static __inline void
685 vm_map_entry_link(vm_map_t map,
686 		  vm_map_entry_t after_where,
687 		  vm_map_entry_t entry)
688 {
689 	map->nentries++;
690 	entry->prev = after_where;
691 	entry->next = after_where->next;
692 	entry->next->prev = entry;
693 	after_where->next = entry;
694 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
695 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
696 }
697 
698 static __inline void
699 vm_map_entry_unlink(vm_map_t map,
700 		    vm_map_entry_t entry)
701 {
702 	vm_map_entry_t prev;
703 	vm_map_entry_t next;
704 
705 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
706 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
707 	prev = entry->prev;
708 	next = entry->next;
709 	next->prev = prev;
710 	prev->next = next;
711 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
712 	map->nentries--;
713 }
714 
715 /*
716  *	vm_map_lookup_entry:	[ internal use only ]
717  *
718  *	Finds the map entry containing (or
719  *	immediately preceding) the specified address
720  *	in the given map; the entry is returned
721  *	in the "entry" parameter.  The boolean
722  *	result indicates whether the address is
723  *	actually contained in the map.
724  */
725 boolean_t
726 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
727     vm_map_entry_t *entry /* OUT */)
728 {
729 	vm_map_entry_t tmp;
730 	vm_map_entry_t last;
731 
732 #if 0
733 	/*
734 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
735 	 * the hint code with the red-black lookup meets with system crashes
736 	 * and lockups.  We do not yet know why.
737 	 *
738 	 * It is possible that the problem is related to the setting
739 	 * of the hint during map_entry deletion, in the code specified
740 	 * at the GGG comment later on in this file.
741 	 */
742 	/*
743 	 * Quickly check the cached hint, there's a good chance of a match.
744 	 */
745 	if (map->hint != &map->header) {
746 		tmp = map->hint;
747 		if (address >= tmp->start && address < tmp->end) {
748 			*entry = tmp;
749 			return(TRUE);
750 		}
751 	}
752 #endif
753 
754 	/*
755 	 * Locate the record from the top of the tree.  'last' tracks the
756 	 * closest prior record and is returned if no match is found, which
757 	 * in binary tree terms means tracking the most recent right-branch
758 	 * taken.  If there is no prior record, &map->header is returned.
759 	 */
760 	last = &map->header;
761 	tmp = RB_ROOT(&map->rb_root);
762 
763 	while (tmp) {
764 		if (address >= tmp->start) {
765 			if (address < tmp->end) {
766 				*entry = tmp;
767 				map->hint = tmp;
768 				return(TRUE);
769 			}
770 			last = tmp;
771 			tmp = RB_RIGHT(tmp, rb_entry);
772 		} else {
773 			tmp = RB_LEFT(tmp, rb_entry);
774 		}
775 	}
776 	*entry = last;
777 	return (FALSE);
778 }
779 
780 /*
781  *	vm_map_insert:
782  *
783  *	Inserts the given whole VM object into the target
784  *	map at the specified address range.  The object's
785  *	size should match that of the address range.
786  *
787  *	Requires that the map be locked, and leaves it so.  Requires that
788  *	sufficient vm_map_entry structures have been reserved and tracks
789  *	the use via countp.
790  *
791  *	If object is non-NULL, ref count must be bumped by caller
792  *	prior to making call to account for the new entry.
793  */
794 int
795 vm_map_insert(vm_map_t map, int *countp,
796 	      vm_object_t object, vm_ooffset_t offset,
797 	      vm_offset_t start, vm_offset_t end,
798 	      vm_maptype_t maptype,
799 	      vm_prot_t prot, vm_prot_t max,
800 	      int cow)
801 {
802 	vm_map_entry_t new_entry;
803 	vm_map_entry_t prev_entry;
804 	vm_map_entry_t temp_entry;
805 	vm_eflags_t protoeflags;
806 
807 	/*
808 	 * Check that the start and end points are not bogus.
809 	 */
810 
811 	if ((start < map->min_offset) || (end > map->max_offset) ||
812 	    (start >= end))
813 		return (KERN_INVALID_ADDRESS);
814 
815 	/*
816 	 * Find the entry prior to the proposed starting address; if it's part
817 	 * of an existing entry, this range is bogus.
818 	 */
819 
820 	if (vm_map_lookup_entry(map, start, &temp_entry))
821 		return (KERN_NO_SPACE);
822 
823 	prev_entry = temp_entry;
824 
825 	/*
826 	 * Assert that the next entry doesn't overlap the end point.
827 	 */
828 
829 	if ((prev_entry->next != &map->header) &&
830 	    (prev_entry->next->start < end))
831 		return (KERN_NO_SPACE);
832 
833 	protoeflags = 0;
834 
835 	if (cow & MAP_COPY_ON_WRITE)
836 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
837 
838 	if (cow & MAP_NOFAULT) {
839 		protoeflags |= MAP_ENTRY_NOFAULT;
840 
841 		KASSERT(object == NULL,
842 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
843 	}
844 	if (cow & MAP_DISABLE_SYNCER)
845 		protoeflags |= MAP_ENTRY_NOSYNC;
846 	if (cow & MAP_DISABLE_COREDUMP)
847 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
848 	if (cow & MAP_IS_STACK)
849 		protoeflags |= MAP_ENTRY_STACK;
850 
851 	if (object) {
852 		/*
853 		 * When object is non-NULL, it could be shared with another
854 		 * process.  We have to set or clear OBJ_ONEMAPPING
855 		 * appropriately.
856 		 */
857 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
858 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
859 		}
860 	}
861 	else if ((prev_entry != &map->header) &&
862 		 (prev_entry->eflags == protoeflags) &&
863 		 (prev_entry->end == start) &&
864 		 (prev_entry->wired_count == 0) &&
865 		 prev_entry->maptype == maptype &&
866 		 ((prev_entry->object.vm_object == NULL) ||
867 		  vm_object_coalesce(prev_entry->object.vm_object,
868 				     OFF_TO_IDX(prev_entry->offset),
869 				     (vm_size_t)(prev_entry->end - prev_entry->start),
870 				     (vm_size_t)(end - prev_entry->end)))) {
871 		/*
872 		 * We were able to extend the object.  Determine if we
873 		 * can extend the previous map entry to include the
874 		 * new range as well.
875 		 */
876 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
877 		    (prev_entry->protection == prot) &&
878 		    (prev_entry->max_protection == max)) {
879 			map->size += (end - prev_entry->end);
880 			prev_entry->end = end;
881 			vm_map_simplify_entry(map, prev_entry, countp);
882 			return (KERN_SUCCESS);
883 		}
884 
885 		/*
886 		 * If we can extend the object but cannot extend the
887 		 * map entry, we have to create a new map entry.  We
888 		 * must bump the ref count on the extended object to
889 		 * account for it.  object may be NULL.
890 		 */
891 		object = prev_entry->object.vm_object;
892 		offset = prev_entry->offset +
893 			(prev_entry->end - prev_entry->start);
894 		vm_object_reference(object);
895 	}
896 
897 	/*
898 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
899 	 * in things like the buffer map where we manage kva but do not manage
900 	 * backing objects.
901 	 */
902 
903 	/*
904 	 * Create a new entry
905 	 */
906 
907 	new_entry = vm_map_entry_create(map, countp);
908 	new_entry->start = start;
909 	new_entry->end = end;
910 
911 	new_entry->maptype = maptype;
912 	new_entry->eflags = protoeflags;
913 	new_entry->object.vm_object = object;
914 	new_entry->offset = offset;
915 	new_entry->aux.master_pde = 0;
916 
917 	new_entry->inheritance = VM_INHERIT_DEFAULT;
918 	new_entry->protection = prot;
919 	new_entry->max_protection = max;
920 	new_entry->wired_count = 0;
921 
922 	/*
923 	 * Insert the new entry into the list
924 	 */
925 
926 	vm_map_entry_link(map, prev_entry, new_entry);
927 	map->size += new_entry->end - new_entry->start;
928 
929 	/*
930 	 * Update the free space hint
931 	 */
932 	if ((map->first_free == prev_entry) &&
933 	    (prev_entry->end >= new_entry->start)) {
934 		map->first_free = new_entry;
935 	}
936 
937 #if 0
938 	/*
939 	 * Temporarily removed to avoid MAP_STACK panic, due to
940 	 * MAP_STACK being a huge hack.  Will be added back in
941 	 * when MAP_STACK (and the user stack mapping) is fixed.
942 	 */
943 	/*
944 	 * It may be possible to simplify the entry
945 	 */
946 	vm_map_simplify_entry(map, new_entry, countp);
947 #endif
948 
949 	/*
950 	 * Try to pre-populate the page table.  Mappings governed by virtual
951 	 * page tables cannot be prepopulated without a lot of work, so
952 	 * don't try.
953 	 */
954 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
955 	    maptype != VM_MAPTYPE_VPAGETABLE) {
956 		pmap_object_init_pt(map->pmap, start, prot,
957 				    object, OFF_TO_IDX(offset), end - start,
958 				    cow & MAP_PREFAULT_PARTIAL);
959 	}
960 
961 	return (KERN_SUCCESS);
962 }
963 
964 /*
965  * Find sufficient space for `length' bytes in the given map, starting at
966  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
967  *
968  * This function will returned an arbitrarily aligned pointer.  If no
969  * particular alignment is required you should pass align as 1.  Note that
970  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
971  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
972  * argument.
973  *
974  * 'align' should be a power of 2 but is not required to be.
975  */
976 int
977 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
978 		 vm_offset_t align, int flags, vm_offset_t *addr)
979 {
980 	vm_map_entry_t entry, next;
981 	vm_offset_t end;
982 	vm_offset_t align_mask;
983 
984 	if (start < map->min_offset)
985 		start = map->min_offset;
986 	if (start > map->max_offset)
987 		return (1);
988 
989 	/*
990 	 * If the alignment is not a power of 2 we will have to use
991 	 * a mod/division, set align_mask to a special value.
992 	 */
993 	if ((align | (align - 1)) + 1 != (align << 1))
994 		align_mask = (vm_offset_t)-1;
995 	else
996 		align_mask = align - 1;
997 
998 retry:
999 	/*
1000 	 * Look for the first possible address; if there's already something
1001 	 * at this address, we have to start after it.
1002 	 */
1003 	if (start == map->min_offset) {
1004 		if ((entry = map->first_free) != &map->header)
1005 			start = entry->end;
1006 	} else {
1007 		vm_map_entry_t tmp;
1008 
1009 		if (vm_map_lookup_entry(map, start, &tmp))
1010 			start = tmp->end;
1011 		entry = tmp;
1012 	}
1013 
1014 	/*
1015 	 * Look through the rest of the map, trying to fit a new region in the
1016 	 * gap between existing regions, or after the very last region.
1017 	 */
1018 	for (;; start = (entry = next)->end) {
1019 		/*
1020 		 * Adjust the proposed start by the requested alignment,
1021 		 * be sure that we didn't wrap the address.
1022 		 */
1023 		if (align_mask == (vm_offset_t)-1)
1024 			end = ((start + align - 1) / align) * align;
1025 		else
1026 			end = (start + align_mask) & ~align_mask;
1027 		if (end < start)
1028 			return (1);
1029 		start = end;
1030 		/*
1031 		 * Find the end of the proposed new region.  Be sure we didn't
1032 		 * go beyond the end of the map, or wrap around the address.
1033 		 * Then check to see if this is the last entry or if the
1034 		 * proposed end fits in the gap between this and the next
1035 		 * entry.
1036 		 */
1037 		end = start + length;
1038 		if (end > map->max_offset || end < start)
1039 			return (1);
1040 		next = entry->next;
1041 
1042 		/*
1043 		 * If the next entry's start address is beyond the desired
1044 		 * end address we may have found a good entry.
1045 		 *
1046 		 * If the next entry is a stack mapping we do not map into
1047 		 * the stack's reserved space.
1048 		 *
1049 		 * XXX continue to allow mapping into the stack's reserved
1050 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1051 		 * mapping, for backwards compatibility.  But the caller
1052 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1053 		 * want to do that.
1054 		 */
1055 		if (next == &map->header)
1056 			break;
1057 		if (next->start >= end) {
1058 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1059 				break;
1060 			if (flags & MAP_STACK)
1061 				break;
1062 			if (next->start - next->aux.avail_ssize >= end)
1063 				break;
1064 		}
1065 	}
1066 	map->hint = entry;
1067 	if (map == &kernel_map) {
1068 		vm_offset_t ksize;
1069 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
1070 			pmap_growkernel(ksize);
1071 			goto retry;
1072 		}
1073 	}
1074 	*addr = start;
1075 	return (0);
1076 }
1077 
1078 /*
1079  *	vm_map_find finds an unallocated region in the target address
1080  *	map with the given length.  The search is defined to be
1081  *	first-fit from the specified address; the region found is
1082  *	returned in the same parameter.
1083  *
1084  *	If object is non-NULL, ref count must be bumped by caller
1085  *	prior to making call to account for the new entry.
1086  */
1087 int
1088 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1089 	    vm_offset_t *addr,	vm_size_t length,
1090 	    boolean_t fitit,
1091 	    vm_maptype_t maptype,
1092 	    vm_prot_t prot, vm_prot_t max,
1093 	    int cow)
1094 {
1095 	vm_offset_t start;
1096 	int result;
1097 	int count;
1098 
1099 	start = *addr;
1100 
1101 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1102 	vm_map_lock(map);
1103 	if (fitit) {
1104 		if (vm_map_findspace(map, start, length, 1, 0, addr)) {
1105 			vm_map_unlock(map);
1106 			vm_map_entry_release(count);
1107 			return (KERN_NO_SPACE);
1108 		}
1109 		start = *addr;
1110 	}
1111 	result = vm_map_insert(map, &count, object, offset,
1112 			       start, start + length,
1113 			       maptype,
1114 			       prot, max,
1115 			       cow);
1116 	vm_map_unlock(map);
1117 	vm_map_entry_release(count);
1118 
1119 	return (result);
1120 }
1121 
1122 /*
1123  *	vm_map_simplify_entry:
1124  *
1125  *	Simplify the given map entry by merging with either neighbor.  This
1126  *	routine also has the ability to merge with both neighbors.
1127  *
1128  *	The map must be locked.
1129  *
1130  *	This routine guarentees that the passed entry remains valid (though
1131  *	possibly extended).  When merging, this routine may delete one or
1132  *	both neighbors.  No action is taken on entries which have their
1133  *	in-transition flag set.
1134  */
1135 void
1136 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1137 {
1138 	vm_map_entry_t next, prev;
1139 	vm_size_t prevsize, esize;
1140 
1141 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1142 		++mycpu->gd_cnt.v_intrans_coll;
1143 		return;
1144 	}
1145 
1146 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1147 		return;
1148 
1149 	prev = entry->prev;
1150 	if (prev != &map->header) {
1151 		prevsize = prev->end - prev->start;
1152 		if ( (prev->end == entry->start) &&
1153 		     (prev->maptype == entry->maptype) &&
1154 		     (prev->object.vm_object == entry->object.vm_object) &&
1155 		     (!prev->object.vm_object ||
1156 			(prev->offset + prevsize == entry->offset)) &&
1157 		     (prev->eflags == entry->eflags) &&
1158 		     (prev->protection == entry->protection) &&
1159 		     (prev->max_protection == entry->max_protection) &&
1160 		     (prev->inheritance == entry->inheritance) &&
1161 		     (prev->wired_count == entry->wired_count)) {
1162 			if (map->first_free == prev)
1163 				map->first_free = entry;
1164 			if (map->hint == prev)
1165 				map->hint = entry;
1166 			vm_map_entry_unlink(map, prev);
1167 			entry->start = prev->start;
1168 			entry->offset = prev->offset;
1169 			if (prev->object.vm_object)
1170 				vm_object_deallocate(prev->object.vm_object);
1171 			vm_map_entry_dispose(map, prev, countp);
1172 		}
1173 	}
1174 
1175 	next = entry->next;
1176 	if (next != &map->header) {
1177 		esize = entry->end - entry->start;
1178 		if ((entry->end == next->start) &&
1179 		    (next->maptype == entry->maptype) &&
1180 		    (next->object.vm_object == entry->object.vm_object) &&
1181 		     (!entry->object.vm_object ||
1182 			(entry->offset + esize == next->offset)) &&
1183 		    (next->eflags == entry->eflags) &&
1184 		    (next->protection == entry->protection) &&
1185 		    (next->max_protection == entry->max_protection) &&
1186 		    (next->inheritance == entry->inheritance) &&
1187 		    (next->wired_count == entry->wired_count)) {
1188 			if (map->first_free == next)
1189 				map->first_free = entry;
1190 			if (map->hint == next)
1191 				map->hint = entry;
1192 			vm_map_entry_unlink(map, next);
1193 			entry->end = next->end;
1194 			if (next->object.vm_object)
1195 				vm_object_deallocate(next->object.vm_object);
1196 			vm_map_entry_dispose(map, next, countp);
1197 	        }
1198 	}
1199 }
1200 /*
1201  *	vm_map_clip_start:	[ internal use only ]
1202  *
1203  *	Asserts that the given entry begins at or after
1204  *	the specified address; if necessary,
1205  *	it splits the entry into two.
1206  */
1207 #define vm_map_clip_start(map, entry, startaddr, countp) \
1208 { \
1209 	if (startaddr > entry->start) \
1210 		_vm_map_clip_start(map, entry, startaddr, countp); \
1211 }
1212 
1213 /*
1214  *	This routine is called only when it is known that
1215  *	the entry must be split.
1216  */
1217 static void
1218 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1219 {
1220 	vm_map_entry_t new_entry;
1221 
1222 	/*
1223 	 * Split off the front portion -- note that we must insert the new
1224 	 * entry BEFORE this one, so that this entry has the specified
1225 	 * starting address.
1226 	 */
1227 
1228 	vm_map_simplify_entry(map, entry, countp);
1229 
1230 	/*
1231 	 * If there is no object backing this entry, we might as well create
1232 	 * one now.  If we defer it, an object can get created after the map
1233 	 * is clipped, and individual objects will be created for the split-up
1234 	 * map.  This is a bit of a hack, but is also about the best place to
1235 	 * put this improvement.
1236 	 */
1237 	if (entry->object.vm_object == NULL && !map->system_map) {
1238 		vm_map_entry_allocate_object(entry);
1239 	}
1240 
1241 	new_entry = vm_map_entry_create(map, countp);
1242 	*new_entry = *entry;
1243 
1244 	new_entry->end = start;
1245 	entry->offset += (start - entry->start);
1246 	entry->start = start;
1247 
1248 	vm_map_entry_link(map, entry->prev, new_entry);
1249 
1250 	switch(entry->maptype) {
1251 	case VM_MAPTYPE_NORMAL:
1252 	case VM_MAPTYPE_VPAGETABLE:
1253 		vm_object_reference(new_entry->object.vm_object);
1254 		break;
1255 	default:
1256 		break;
1257 	}
1258 }
1259 
1260 /*
1261  *	vm_map_clip_end:	[ internal use only ]
1262  *
1263  *	Asserts that the given entry ends at or before
1264  *	the specified address; if necessary,
1265  *	it splits the entry into two.
1266  */
1267 
1268 #define vm_map_clip_end(map, entry, endaddr, countp) \
1269 { \
1270 	if (endaddr < entry->end) \
1271 		_vm_map_clip_end(map, entry, endaddr, countp); \
1272 }
1273 
1274 /*
1275  *	This routine is called only when it is known that
1276  *	the entry must be split.
1277  */
1278 static void
1279 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1280 {
1281 	vm_map_entry_t new_entry;
1282 
1283 	/*
1284 	 * If there is no object backing this entry, we might as well create
1285 	 * one now.  If we defer it, an object can get created after the map
1286 	 * is clipped, and individual objects will be created for the split-up
1287 	 * map.  This is a bit of a hack, but is also about the best place to
1288 	 * put this improvement.
1289 	 */
1290 
1291 	if (entry->object.vm_object == NULL && !map->system_map) {
1292 		vm_map_entry_allocate_object(entry);
1293 	}
1294 
1295 	/*
1296 	 * Create a new entry and insert it AFTER the specified entry
1297 	 */
1298 
1299 	new_entry = vm_map_entry_create(map, countp);
1300 	*new_entry = *entry;
1301 
1302 	new_entry->start = entry->end = end;
1303 	new_entry->offset += (end - entry->start);
1304 
1305 	vm_map_entry_link(map, entry, new_entry);
1306 
1307 	switch(entry->maptype) {
1308 	case VM_MAPTYPE_NORMAL:
1309 	case VM_MAPTYPE_VPAGETABLE:
1310 		vm_object_reference(new_entry->object.vm_object);
1311 		break;
1312 	default:
1313 		break;
1314 	}
1315 }
1316 
1317 /*
1318  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1319  *
1320  *	Asserts that the starting and ending region
1321  *	addresses fall within the valid range of the map.
1322  */
1323 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1324 		{					\
1325 		if (start < vm_map_min(map))		\
1326 			start = vm_map_min(map);	\
1327 		if (end > vm_map_max(map))		\
1328 			end = vm_map_max(map);		\
1329 		if (start > end)			\
1330 			start = end;			\
1331 		}
1332 
1333 /*
1334  *	vm_map_transition_wait:	[ kernel use only ]
1335  *
1336  *	Used to block when an in-transition collison occurs.  The map
1337  *	is unlocked for the sleep and relocked before the return.
1338  */
1339 static
1340 void
1341 vm_map_transition_wait(vm_map_t map)
1342 {
1343 	vm_map_unlock(map);
1344 	tsleep(map, 0, "vment", 0);
1345 	vm_map_lock(map);
1346 }
1347 
1348 /*
1349  * CLIP_CHECK_BACK
1350  * CLIP_CHECK_FWD
1351  *
1352  *	When we do blocking operations with the map lock held it is
1353  *	possible that a clip might have occured on our in-transit entry,
1354  *	requiring an adjustment to the entry in our loop.  These macros
1355  *	help the pageable and clip_range code deal with the case.  The
1356  *	conditional costs virtually nothing if no clipping has occured.
1357  */
1358 
1359 #define CLIP_CHECK_BACK(entry, save_start)		\
1360     do {						\
1361 	    while (entry->start != save_start) {	\
1362 		    entry = entry->prev;		\
1363 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1364 	    }						\
1365     } while(0)
1366 
1367 #define CLIP_CHECK_FWD(entry, save_end)			\
1368     do {						\
1369 	    while (entry->end != save_end) {		\
1370 		    entry = entry->next;		\
1371 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1372 	    }						\
1373     } while(0)
1374 
1375 
1376 /*
1377  *	vm_map_clip_range:	[ kernel use only ]
1378  *
1379  *	Clip the specified range and return the base entry.  The
1380  *	range may cover several entries starting at the returned base
1381  *	and the first and last entry in the covering sequence will be
1382  *	properly clipped to the requested start and end address.
1383  *
1384  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1385  *	flag.
1386  *
1387  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1388  *	covered by the requested range.
1389  *
1390  *	The map must be exclusively locked on entry and will remain locked
1391  *	on return. If no range exists or the range contains holes and you
1392  *	specified that no holes were allowed, NULL will be returned.  This
1393  *	routine may temporarily unlock the map in order avoid a deadlock when
1394  *	sleeping.
1395  */
1396 static
1397 vm_map_entry_t
1398 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1399 	int *countp, int flags)
1400 {
1401 	vm_map_entry_t start_entry;
1402 	vm_map_entry_t entry;
1403 
1404 	/*
1405 	 * Locate the entry and effect initial clipping.  The in-transition
1406 	 * case does not occur very often so do not try to optimize it.
1407 	 */
1408 again:
1409 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1410 		return (NULL);
1411 	entry = start_entry;
1412 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1413 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1414 		++mycpu->gd_cnt.v_intrans_coll;
1415 		++mycpu->gd_cnt.v_intrans_wait;
1416 		vm_map_transition_wait(map);
1417 		/*
1418 		 * entry and/or start_entry may have been clipped while
1419 		 * we slept, or may have gone away entirely.  We have
1420 		 * to restart from the lookup.
1421 		 */
1422 		goto again;
1423 	}
1424 	/*
1425 	 * Since we hold an exclusive map lock we do not have to restart
1426 	 * after clipping, even though clipping may block in zalloc.
1427 	 */
1428 	vm_map_clip_start(map, entry, start, countp);
1429 	vm_map_clip_end(map, entry, end, countp);
1430 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1431 
1432 	/*
1433 	 * Scan entries covered by the range.  When working on the next
1434 	 * entry a restart need only re-loop on the current entry which
1435 	 * we have already locked, since 'next' may have changed.  Also,
1436 	 * even though entry is safe, it may have been clipped so we
1437 	 * have to iterate forwards through the clip after sleeping.
1438 	 */
1439 	while (entry->next != &map->header && entry->next->start < end) {
1440 		vm_map_entry_t next = entry->next;
1441 
1442 		if (flags & MAP_CLIP_NO_HOLES) {
1443 			if (next->start > entry->end) {
1444 				vm_map_unclip_range(map, start_entry,
1445 					start, entry->end, countp, flags);
1446 				return(NULL);
1447 			}
1448 		}
1449 
1450 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1451 			vm_offset_t save_end = entry->end;
1452 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1453 			++mycpu->gd_cnt.v_intrans_coll;
1454 			++mycpu->gd_cnt.v_intrans_wait;
1455 			vm_map_transition_wait(map);
1456 
1457 			/*
1458 			 * clips might have occured while we blocked.
1459 			 */
1460 			CLIP_CHECK_FWD(entry, save_end);
1461 			CLIP_CHECK_BACK(start_entry, start);
1462 			continue;
1463 		}
1464 		/*
1465 		 * No restart necessary even though clip_end may block, we
1466 		 * are holding the map lock.
1467 		 */
1468 		vm_map_clip_end(map, next, end, countp);
1469 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1470 		entry = next;
1471 	}
1472 	if (flags & MAP_CLIP_NO_HOLES) {
1473 		if (entry->end != end) {
1474 			vm_map_unclip_range(map, start_entry,
1475 				start, entry->end, countp, flags);
1476 			return(NULL);
1477 		}
1478 	}
1479 	return(start_entry);
1480 }
1481 
1482 /*
1483  *	vm_map_unclip_range:	[ kernel use only ]
1484  *
1485  *	Undo the effect of vm_map_clip_range().  You should pass the same
1486  *	flags and the same range that you passed to vm_map_clip_range().
1487  *	This code will clear the in-transition flag on the entries and
1488  *	wake up anyone waiting.  This code will also simplify the sequence
1489  *	and attempt to merge it with entries before and after the sequence.
1490  *
1491  *	The map must be locked on entry and will remain locked on return.
1492  *
1493  *	Note that you should also pass the start_entry returned by
1494  *	vm_map_clip_range().  However, if you block between the two calls
1495  *	with the map unlocked please be aware that the start_entry may
1496  *	have been clipped and you may need to scan it backwards to find
1497  *	the entry corresponding with the original start address.  You are
1498  *	responsible for this, vm_map_unclip_range() expects the correct
1499  *	start_entry to be passed to it and will KASSERT otherwise.
1500  */
1501 static
1502 void
1503 vm_map_unclip_range(
1504 	vm_map_t map,
1505 	vm_map_entry_t start_entry,
1506 	vm_offset_t start,
1507 	vm_offset_t end,
1508 	int *countp,
1509 	int flags)
1510 {
1511 	vm_map_entry_t entry;
1512 
1513 	entry = start_entry;
1514 
1515 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1516 	while (entry != &map->header && entry->start < end) {
1517 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1518 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1519 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1520 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1521 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1522 			wakeup(map);
1523 		}
1524 		entry = entry->next;
1525 	}
1526 
1527 	/*
1528 	 * Simplification does not block so there is no restart case.
1529 	 */
1530 	entry = start_entry;
1531 	while (entry != &map->header && entry->start < end) {
1532 		vm_map_simplify_entry(map, entry, countp);
1533 		entry = entry->next;
1534 	}
1535 }
1536 
1537 /*
1538  *	vm_map_submap:		[ kernel use only ]
1539  *
1540  *	Mark the given range as handled by a subordinate map.
1541  *
1542  *	This range must have been created with vm_map_find,
1543  *	and no other operations may have been performed on this
1544  *	range prior to calling vm_map_submap.
1545  *
1546  *	Only a limited number of operations can be performed
1547  *	within this rage after calling vm_map_submap:
1548  *		vm_fault
1549  *	[Don't try vm_map_copy!]
1550  *
1551  *	To remove a submapping, one must first remove the
1552  *	range from the superior map, and then destroy the
1553  *	submap (if desired).  [Better yet, don't try it.]
1554  */
1555 int
1556 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1557 {
1558 	vm_map_entry_t entry;
1559 	int result = KERN_INVALID_ARGUMENT;
1560 	int count;
1561 
1562 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1563 	vm_map_lock(map);
1564 
1565 	VM_MAP_RANGE_CHECK(map, start, end);
1566 
1567 	if (vm_map_lookup_entry(map, start, &entry)) {
1568 		vm_map_clip_start(map, entry, start, &count);
1569 	} else {
1570 		entry = entry->next;
1571 	}
1572 
1573 	vm_map_clip_end(map, entry, end, &count);
1574 
1575 	if ((entry->start == start) && (entry->end == end) &&
1576 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1577 	    (entry->object.vm_object == NULL)) {
1578 		entry->object.sub_map = submap;
1579 		entry->maptype = VM_MAPTYPE_SUBMAP;
1580 		result = KERN_SUCCESS;
1581 	}
1582 	vm_map_unlock(map);
1583 	vm_map_entry_release(count);
1584 
1585 	return (result);
1586 }
1587 
1588 /*
1589  * vm_map_protect:
1590  *
1591  * Sets the protection of the specified address region in the target map.
1592  * If "set_max" is specified, the maximum protection is to be set;
1593  * otherwise, only the current protection is affected.
1594  *
1595  * The protection is not applicable to submaps, but is applicable to normal
1596  * maps and maps governed by virtual page tables.  For example, when operating
1597  * on a virtual page table our protection basically controls how COW occurs
1598  * on the backing object, whereas the virtual page table abstraction itself
1599  * is an abstraction for userland.
1600  */
1601 int
1602 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1603 	       vm_prot_t new_prot, boolean_t set_max)
1604 {
1605 	vm_map_entry_t current;
1606 	vm_map_entry_t entry;
1607 	int count;
1608 
1609 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1610 	vm_map_lock(map);
1611 
1612 	VM_MAP_RANGE_CHECK(map, start, end);
1613 
1614 	if (vm_map_lookup_entry(map, start, &entry)) {
1615 		vm_map_clip_start(map, entry, start, &count);
1616 	} else {
1617 		entry = entry->next;
1618 	}
1619 
1620 	/*
1621 	 * Make a first pass to check for protection violations.
1622 	 */
1623 	current = entry;
1624 	while ((current != &map->header) && (current->start < end)) {
1625 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1626 			vm_map_unlock(map);
1627 			vm_map_entry_release(count);
1628 			return (KERN_INVALID_ARGUMENT);
1629 		}
1630 		if ((new_prot & current->max_protection) != new_prot) {
1631 			vm_map_unlock(map);
1632 			vm_map_entry_release(count);
1633 			return (KERN_PROTECTION_FAILURE);
1634 		}
1635 		current = current->next;
1636 	}
1637 
1638 	/*
1639 	 * Go back and fix up protections. [Note that clipping is not
1640 	 * necessary the second time.]
1641 	 */
1642 	current = entry;
1643 
1644 	while ((current != &map->header) && (current->start < end)) {
1645 		vm_prot_t old_prot;
1646 
1647 		vm_map_clip_end(map, current, end, &count);
1648 
1649 		old_prot = current->protection;
1650 		if (set_max) {
1651 			current->protection =
1652 			    (current->max_protection = new_prot) &
1653 			    old_prot;
1654 		} else {
1655 			current->protection = new_prot;
1656 		}
1657 
1658 		/*
1659 		 * Update physical map if necessary. Worry about copy-on-write
1660 		 * here -- CHECK THIS XXX
1661 		 */
1662 
1663 		if (current->protection != old_prot) {
1664 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1665 							VM_PROT_ALL)
1666 
1667 			pmap_protect(map->pmap, current->start,
1668 			    current->end,
1669 			    current->protection & MASK(current));
1670 #undef	MASK
1671 		}
1672 
1673 		vm_map_simplify_entry(map, current, &count);
1674 
1675 		current = current->next;
1676 	}
1677 
1678 	vm_map_unlock(map);
1679 	vm_map_entry_release(count);
1680 	return (KERN_SUCCESS);
1681 }
1682 
1683 /*
1684  *	vm_map_madvise:
1685  *
1686  * 	This routine traverses a processes map handling the madvise
1687  *	system call.  Advisories are classified as either those effecting
1688  *	the vm_map_entry structure, or those effecting the underlying
1689  *	objects.
1690  *
1691  *	The <value> argument is used for extended madvise calls.
1692  */
1693 int
1694 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1695 	       int behav, off_t value)
1696 {
1697 	vm_map_entry_t current, entry;
1698 	int modify_map = 0;
1699 	int error = 0;
1700 	int count;
1701 
1702 	/*
1703 	 * Some madvise calls directly modify the vm_map_entry, in which case
1704 	 * we need to use an exclusive lock on the map and we need to perform
1705 	 * various clipping operations.  Otherwise we only need a read-lock
1706 	 * on the map.
1707 	 */
1708 
1709 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1710 
1711 	switch(behav) {
1712 	case MADV_NORMAL:
1713 	case MADV_SEQUENTIAL:
1714 	case MADV_RANDOM:
1715 	case MADV_NOSYNC:
1716 	case MADV_AUTOSYNC:
1717 	case MADV_NOCORE:
1718 	case MADV_CORE:
1719 	case MADV_SETMAP:
1720 	case MADV_INVAL:
1721 		modify_map = 1;
1722 		vm_map_lock(map);
1723 		break;
1724 	case MADV_WILLNEED:
1725 	case MADV_DONTNEED:
1726 	case MADV_FREE:
1727 		vm_map_lock_read(map);
1728 		break;
1729 	default:
1730 		vm_map_entry_release(count);
1731 		return (EINVAL);
1732 	}
1733 
1734 	/*
1735 	 * Locate starting entry and clip if necessary.
1736 	 */
1737 
1738 	VM_MAP_RANGE_CHECK(map, start, end);
1739 
1740 	if (vm_map_lookup_entry(map, start, &entry)) {
1741 		if (modify_map)
1742 			vm_map_clip_start(map, entry, start, &count);
1743 	} else {
1744 		entry = entry->next;
1745 	}
1746 
1747 	if (modify_map) {
1748 		/*
1749 		 * madvise behaviors that are implemented in the vm_map_entry.
1750 		 *
1751 		 * We clip the vm_map_entry so that behavioral changes are
1752 		 * limited to the specified address range.
1753 		 */
1754 		for (current = entry;
1755 		     (current != &map->header) && (current->start < end);
1756 		     current = current->next
1757 		) {
1758 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1759 				continue;
1760 
1761 			vm_map_clip_end(map, current, end, &count);
1762 
1763 			switch (behav) {
1764 			case MADV_NORMAL:
1765 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1766 				break;
1767 			case MADV_SEQUENTIAL:
1768 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1769 				break;
1770 			case MADV_RANDOM:
1771 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1772 				break;
1773 			case MADV_NOSYNC:
1774 				current->eflags |= MAP_ENTRY_NOSYNC;
1775 				break;
1776 			case MADV_AUTOSYNC:
1777 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1778 				break;
1779 			case MADV_NOCORE:
1780 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1781 				break;
1782 			case MADV_CORE:
1783 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1784 				break;
1785 			case MADV_INVAL:
1786 				/*
1787 				 * Invalidate the related pmap entries, used
1788 				 * to flush portions of the real kernel's
1789 				 * pmap when the caller has removed or
1790 				 * modified existing mappings in a virtual
1791 				 * page table.
1792 				 */
1793 				pmap_remove(map->pmap,
1794 					    current->start, current->end);
1795 				break;
1796 			case MADV_SETMAP:
1797 				/*
1798 				 * Set the page directory page for a map
1799 				 * governed by a virtual page table.  Mark
1800 				 * the entry as being governed by a virtual
1801 				 * page table if it is not.
1802 				 *
1803 				 * XXX the page directory page is stored
1804 				 * in the avail_ssize field if the map_entry.
1805 				 *
1806 				 * XXX the map simplification code does not
1807 				 * compare this field so weird things may
1808 				 * happen if you do not apply this function
1809 				 * to the entire mapping governed by the
1810 				 * virtual page table.
1811 				 */
1812 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1813 					error = EINVAL;
1814 					break;
1815 				}
1816 				current->aux.master_pde = value;
1817 				pmap_remove(map->pmap,
1818 					    current->start, current->end);
1819 				break;
1820 			default:
1821 				error = EINVAL;
1822 				break;
1823 			}
1824 			vm_map_simplify_entry(map, current, &count);
1825 		}
1826 		vm_map_unlock(map);
1827 	} else {
1828 		vm_pindex_t pindex;
1829 		int count;
1830 
1831 		/*
1832 		 * madvise behaviors that are implemented in the underlying
1833 		 * vm_object.
1834 		 *
1835 		 * Since we don't clip the vm_map_entry, we have to clip
1836 		 * the vm_object pindex and count.
1837 		 *
1838 		 * NOTE!  We currently do not support these functions on
1839 		 * virtual page tables.
1840 		 */
1841 		for (current = entry;
1842 		     (current != &map->header) && (current->start < end);
1843 		     current = current->next
1844 		) {
1845 			vm_offset_t useStart;
1846 
1847 			if (current->maptype != VM_MAPTYPE_NORMAL)
1848 				continue;
1849 
1850 			pindex = OFF_TO_IDX(current->offset);
1851 			count = atop(current->end - current->start);
1852 			useStart = current->start;
1853 
1854 			if (current->start < start) {
1855 				pindex += atop(start - current->start);
1856 				count -= atop(start - current->start);
1857 				useStart = start;
1858 			}
1859 			if (current->end > end)
1860 				count -= atop(current->end - end);
1861 
1862 			if (count <= 0)
1863 				continue;
1864 
1865 			vm_object_madvise(current->object.vm_object,
1866 					  pindex, count, behav);
1867 
1868 			/*
1869 			 * Try to populate the page table.  Mappings governed
1870 			 * by virtual page tables cannot be pre-populated
1871 			 * without a lot of work so don't try.
1872 			 */
1873 			if (behav == MADV_WILLNEED &&
1874 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1875 				pmap_object_init_pt(
1876 				    map->pmap,
1877 				    useStart,
1878 				    current->protection,
1879 				    current->object.vm_object,
1880 				    pindex,
1881 				    (count << PAGE_SHIFT),
1882 				    MAP_PREFAULT_MADVISE
1883 				);
1884 			}
1885 		}
1886 		vm_map_unlock_read(map);
1887 	}
1888 	vm_map_entry_release(count);
1889 	return(error);
1890 }
1891 
1892 
1893 /*
1894  *	vm_map_inherit:
1895  *
1896  *	Sets the inheritance of the specified address
1897  *	range in the target map.  Inheritance
1898  *	affects how the map will be shared with
1899  *	child maps at the time of vm_map_fork.
1900  */
1901 int
1902 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1903 	       vm_inherit_t new_inheritance)
1904 {
1905 	vm_map_entry_t entry;
1906 	vm_map_entry_t temp_entry;
1907 	int count;
1908 
1909 	switch (new_inheritance) {
1910 	case VM_INHERIT_NONE:
1911 	case VM_INHERIT_COPY:
1912 	case VM_INHERIT_SHARE:
1913 		break;
1914 	default:
1915 		return (KERN_INVALID_ARGUMENT);
1916 	}
1917 
1918 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1919 	vm_map_lock(map);
1920 
1921 	VM_MAP_RANGE_CHECK(map, start, end);
1922 
1923 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1924 		entry = temp_entry;
1925 		vm_map_clip_start(map, entry, start, &count);
1926 	} else
1927 		entry = temp_entry->next;
1928 
1929 	while ((entry != &map->header) && (entry->start < end)) {
1930 		vm_map_clip_end(map, entry, end, &count);
1931 
1932 		entry->inheritance = new_inheritance;
1933 
1934 		vm_map_simplify_entry(map, entry, &count);
1935 
1936 		entry = entry->next;
1937 	}
1938 	vm_map_unlock(map);
1939 	vm_map_entry_release(count);
1940 	return (KERN_SUCCESS);
1941 }
1942 
1943 /*
1944  * Implement the semantics of mlock
1945  */
1946 int
1947 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1948     boolean_t new_pageable)
1949 {
1950 	vm_map_entry_t entry;
1951 	vm_map_entry_t start_entry;
1952 	vm_offset_t end;
1953 	int rv = KERN_SUCCESS;
1954 	int count;
1955 
1956 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1957 	vm_map_lock(map);
1958 	VM_MAP_RANGE_CHECK(map, start, real_end);
1959 	end = real_end;
1960 
1961 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1962 	if (start_entry == NULL) {
1963 		vm_map_unlock(map);
1964 		vm_map_entry_release(count);
1965 		return (KERN_INVALID_ADDRESS);
1966 	}
1967 
1968 	if (new_pageable == 0) {
1969 		entry = start_entry;
1970 		while ((entry != &map->header) && (entry->start < end)) {
1971 			vm_offset_t save_start;
1972 			vm_offset_t save_end;
1973 
1974 			/*
1975 			 * Already user wired or hard wired (trivial cases)
1976 			 */
1977 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1978 				entry = entry->next;
1979 				continue;
1980 			}
1981 			if (entry->wired_count != 0) {
1982 				entry->wired_count++;
1983 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1984 				entry = entry->next;
1985 				continue;
1986 			}
1987 
1988 			/*
1989 			 * A new wiring requires instantiation of appropriate
1990 			 * management structures and the faulting in of the
1991 			 * page.
1992 			 */
1993 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1994 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1995 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1996 					vm_map_entry_shadow(entry);
1997 				} else if (entry->object.vm_object == NULL &&
1998 					   !map->system_map) {
1999 					vm_map_entry_allocate_object(entry);
2000 				}
2001 			}
2002 			entry->wired_count++;
2003 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2004 
2005 			/*
2006 			 * Now fault in the area.  Note that vm_fault_wire()
2007 			 * may release the map lock temporarily, it will be
2008 			 * relocked on return.  The in-transition
2009 			 * flag protects the entries.
2010 			 */
2011 			save_start = entry->start;
2012 			save_end = entry->end;
2013 			rv = vm_fault_wire(map, entry, TRUE);
2014 			if (rv) {
2015 				CLIP_CHECK_BACK(entry, save_start);
2016 				for (;;) {
2017 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2018 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2019 					entry->wired_count = 0;
2020 					if (entry->end == save_end)
2021 						break;
2022 					entry = entry->next;
2023 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2024 				}
2025 				end = save_start;	/* unwire the rest */
2026 				break;
2027 			}
2028 			/*
2029 			 * note that even though the entry might have been
2030 			 * clipped, the USER_WIRED flag we set prevents
2031 			 * duplication so we do not have to do a
2032 			 * clip check.
2033 			 */
2034 			entry = entry->next;
2035 		}
2036 
2037 		/*
2038 		 * If we failed fall through to the unwiring section to
2039 		 * unwire what we had wired so far.  'end' has already
2040 		 * been adjusted.
2041 		 */
2042 		if (rv)
2043 			new_pageable = 1;
2044 
2045 		/*
2046 		 * start_entry might have been clipped if we unlocked the
2047 		 * map and blocked.  No matter how clipped it has gotten
2048 		 * there should be a fragment that is on our start boundary.
2049 		 */
2050 		CLIP_CHECK_BACK(start_entry, start);
2051 	}
2052 
2053 	/*
2054 	 * Deal with the unwiring case.
2055 	 */
2056 	if (new_pageable) {
2057 		/*
2058 		 * This is the unwiring case.  We must first ensure that the
2059 		 * range to be unwired is really wired down.  We know there
2060 		 * are no holes.
2061 		 */
2062 		entry = start_entry;
2063 		while ((entry != &map->header) && (entry->start < end)) {
2064 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2065 				rv = KERN_INVALID_ARGUMENT;
2066 				goto done;
2067 			}
2068 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2069 			entry = entry->next;
2070 		}
2071 
2072 		/*
2073 		 * Now decrement the wiring count for each region. If a region
2074 		 * becomes completely unwired, unwire its physical pages and
2075 		 * mappings.
2076 		 */
2077 		/*
2078 		 * The map entries are processed in a loop, checking to
2079 		 * make sure the entry is wired and asserting it has a wired
2080 		 * count. However, another loop was inserted more-or-less in
2081 		 * the middle of the unwiring path. This loop picks up the
2082 		 * "entry" loop variable from the first loop without first
2083 		 * setting it to start_entry. Naturally, the secound loop
2084 		 * is never entered and the pages backing the entries are
2085 		 * never unwired. This can lead to a leak of wired pages.
2086 		 */
2087 		entry = start_entry;
2088 		while ((entry != &map->header) && (entry->start < end)) {
2089 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2090 				("expected USER_WIRED on entry %p", entry));
2091 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2092 			entry->wired_count--;
2093 			if (entry->wired_count == 0)
2094 				vm_fault_unwire(map, entry);
2095 			entry = entry->next;
2096 		}
2097 	}
2098 done:
2099 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2100 		MAP_CLIP_NO_HOLES);
2101 	map->timestamp++;
2102 	vm_map_unlock(map);
2103 	vm_map_entry_release(count);
2104 	return (rv);
2105 }
2106 
2107 /*
2108  *	vm_map_wire:
2109  *
2110  *	Sets the pageability of the specified address
2111  *	range in the target map.  Regions specified
2112  *	as not pageable require locked-down physical
2113  *	memory and physical page maps.
2114  *
2115  *	The map must not be locked, but a reference
2116  *	must remain to the map throughout the call.
2117  *
2118  *	This function may be called via the zalloc path and must properly
2119  *	reserve map entries for kernel_map.
2120  */
2121 int
2122 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2123 {
2124 	vm_map_entry_t entry;
2125 	vm_map_entry_t start_entry;
2126 	vm_offset_t end;
2127 	int rv = KERN_SUCCESS;
2128 	int count;
2129 
2130 	if (kmflags & KM_KRESERVE)
2131 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2132 	else
2133 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2134 	vm_map_lock(map);
2135 	VM_MAP_RANGE_CHECK(map, start, real_end);
2136 	end = real_end;
2137 
2138 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2139 	if (start_entry == NULL) {
2140 		vm_map_unlock(map);
2141 		rv = KERN_INVALID_ADDRESS;
2142 		goto failure;
2143 	}
2144 	if ((kmflags & KM_PAGEABLE) == 0) {
2145 		/*
2146 		 * Wiring.
2147 		 *
2148 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2149 		 * objects that need to be created. Then we clip each map
2150 		 * entry to the region to be wired and increment its wiring
2151 		 * count.  We create objects before clipping the map entries
2152 		 * to avoid object proliferation.
2153 		 *
2154 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2155 		 * fault in the pages for any newly wired area (wired_count is
2156 		 * 1).
2157 		 *
2158 		 * Downgrading to a read lock for vm_fault_wire avoids a
2159 		 * possible deadlock with another process that may have faulted
2160 		 * on one of the pages to be wired (it would mark the page busy,
2161 		 * blocking us, then in turn block on the map lock that we
2162 		 * hold).  Because of problems in the recursive lock package,
2163 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2164 		 * any actions that require the write lock must be done
2165 		 * beforehand.  Because we keep the read lock on the map, the
2166 		 * copy-on-write status of the entries we modify here cannot
2167 		 * change.
2168 		 */
2169 
2170 		entry = start_entry;
2171 		while ((entry != &map->header) && (entry->start < end)) {
2172 			/*
2173 			 * Trivial case if the entry is already wired
2174 			 */
2175 			if (entry->wired_count) {
2176 				entry->wired_count++;
2177 				entry = entry->next;
2178 				continue;
2179 			}
2180 
2181 			/*
2182 			 * The entry is being newly wired, we have to setup
2183 			 * appropriate management structures.  A shadow
2184 			 * object is required for a copy-on-write region,
2185 			 * or a normal object for a zero-fill region.  We
2186 			 * do not have to do this for entries that point to sub
2187 			 * maps because we won't hold the lock on the sub map.
2188 			 */
2189 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2190 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2191 				if (copyflag &&
2192 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2193 					vm_map_entry_shadow(entry);
2194 				} else if (entry->object.vm_object == NULL &&
2195 					   !map->system_map) {
2196 					vm_map_entry_allocate_object(entry);
2197 				}
2198 			}
2199 
2200 			entry->wired_count++;
2201 			entry = entry->next;
2202 		}
2203 
2204 		/*
2205 		 * Pass 2.
2206 		 */
2207 
2208 		/*
2209 		 * HACK HACK HACK HACK
2210 		 *
2211 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2212 		 * protects us from most changes but note that
2213 		 * clipping may still occur.  To prevent clipping from
2214 		 * occuring after the unlock, except for when we are
2215 		 * blocking in vm_fault_wire, we must run in a critical
2216 		 * section, otherwise our accesses to entry->start and
2217 		 * entry->end could be corrupted.  We have to enter the
2218 		 * critical section prior to unlocking so start_entry does
2219 		 * not change out from under us at the very beginning of the
2220 		 * loop.
2221 		 *
2222 		 * HACK HACK HACK HACK
2223 		 */
2224 
2225 		crit_enter();
2226 
2227 		entry = start_entry;
2228 		while (entry != &map->header && entry->start < end) {
2229 			/*
2230 			 * If vm_fault_wire fails for any page we need to undo
2231 			 * what has been done.  We decrement the wiring count
2232 			 * for those pages which have not yet been wired (now)
2233 			 * and unwire those that have (later).
2234 			 */
2235 			vm_offset_t save_start = entry->start;
2236 			vm_offset_t save_end = entry->end;
2237 
2238 			if (entry->wired_count == 1)
2239 				rv = vm_fault_wire(map, entry, FALSE);
2240 			if (rv) {
2241 				CLIP_CHECK_BACK(entry, save_start);
2242 				for (;;) {
2243 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2244 					entry->wired_count = 0;
2245 					if (entry->end == save_end)
2246 						break;
2247 					entry = entry->next;
2248 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2249 				}
2250 				end = save_start;
2251 				break;
2252 			}
2253 			CLIP_CHECK_FWD(entry, save_end);
2254 			entry = entry->next;
2255 		}
2256 		crit_exit();
2257 
2258 		/*
2259 		 * If a failure occured undo everything by falling through
2260 		 * to the unwiring code.  'end' has already been adjusted
2261 		 * appropriately.
2262 		 */
2263 		if (rv)
2264 			kmflags |= KM_PAGEABLE;
2265 
2266 		/*
2267 		 * start_entry is still IN_TRANSITION but may have been
2268 		 * clipped since vm_fault_wire() unlocks and relocks the
2269 		 * map.  No matter how clipped it has gotten there should
2270 		 * be a fragment that is on our start boundary.
2271 		 */
2272 		CLIP_CHECK_BACK(start_entry, start);
2273 	}
2274 
2275 	if (kmflags & KM_PAGEABLE) {
2276 		/*
2277 		 * This is the unwiring case.  We must first ensure that the
2278 		 * range to be unwired is really wired down.  We know there
2279 		 * are no holes.
2280 		 */
2281 		entry = start_entry;
2282 		while ((entry != &map->header) && (entry->start < end)) {
2283 			if (entry->wired_count == 0) {
2284 				rv = KERN_INVALID_ARGUMENT;
2285 				goto done;
2286 			}
2287 			entry = entry->next;
2288 		}
2289 
2290 		/*
2291 		 * Now decrement the wiring count for each region. If a region
2292 		 * becomes completely unwired, unwire its physical pages and
2293 		 * mappings.
2294 		 */
2295 		entry = start_entry;
2296 		while ((entry != &map->header) && (entry->start < end)) {
2297 			entry->wired_count--;
2298 			if (entry->wired_count == 0)
2299 				vm_fault_unwire(map, entry);
2300 			entry = entry->next;
2301 		}
2302 	}
2303 done:
2304 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2305 		MAP_CLIP_NO_HOLES);
2306 	map->timestamp++;
2307 	vm_map_unlock(map);
2308 failure:
2309 	if (kmflags & KM_KRESERVE)
2310 		vm_map_entry_krelease(count);
2311 	else
2312 		vm_map_entry_release(count);
2313 	return (rv);
2314 }
2315 
2316 /*
2317  * vm_map_set_wired_quick()
2318  *
2319  *	Mark a newly allocated address range as wired but do not fault in
2320  *	the pages.  The caller is expected to load the pages into the object.
2321  *
2322  *	The map must be locked on entry and will remain locked on return.
2323  */
2324 void
2325 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2326 {
2327 	vm_map_entry_t scan;
2328 	vm_map_entry_t entry;
2329 
2330 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2331 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2332 	    KKASSERT(entry->wired_count == 0);
2333 	    entry->wired_count = 1;
2334 	}
2335 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2336 }
2337 
2338 /*
2339  * vm_map_clean
2340  *
2341  * Push any dirty cached pages in the address range to their pager.
2342  * If syncio is TRUE, dirty pages are written synchronously.
2343  * If invalidate is TRUE, any cached pages are freed as well.
2344  *
2345  * Returns an error if any part of the specified range is not mapped.
2346  */
2347 int
2348 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2349     boolean_t invalidate)
2350 {
2351 	vm_map_entry_t current;
2352 	vm_map_entry_t entry;
2353 	vm_size_t size;
2354 	vm_object_t object;
2355 	vm_ooffset_t offset;
2356 
2357 	vm_map_lock_read(map);
2358 	VM_MAP_RANGE_CHECK(map, start, end);
2359 	if (!vm_map_lookup_entry(map, start, &entry)) {
2360 		vm_map_unlock_read(map);
2361 		return (KERN_INVALID_ADDRESS);
2362 	}
2363 	/*
2364 	 * Make a first pass to check for holes.
2365 	 */
2366 	for (current = entry; current->start < end; current = current->next) {
2367 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2368 			vm_map_unlock_read(map);
2369 			return (KERN_INVALID_ARGUMENT);
2370 		}
2371 		if (end > current->end &&
2372 		    (current->next == &map->header ||
2373 			current->end != current->next->start)) {
2374 			vm_map_unlock_read(map);
2375 			return (KERN_INVALID_ADDRESS);
2376 		}
2377 	}
2378 
2379 	if (invalidate)
2380 		pmap_remove(vm_map_pmap(map), start, end);
2381 	/*
2382 	 * Make a second pass, cleaning/uncaching pages from the indicated
2383 	 * objects as we go.
2384 	 */
2385 	for (current = entry; current->start < end; current = current->next) {
2386 		offset = current->offset + (start - current->start);
2387 		size = (end <= current->end ? end : current->end) - start;
2388 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2389 			vm_map_t smap;
2390 			vm_map_entry_t tentry;
2391 			vm_size_t tsize;
2392 
2393 			smap = current->object.sub_map;
2394 			vm_map_lock_read(smap);
2395 			vm_map_lookup_entry(smap, offset, &tentry);
2396 			tsize = tentry->end - offset;
2397 			if (tsize < size)
2398 				size = tsize;
2399 			object = tentry->object.vm_object;
2400 			offset = tentry->offset + (offset - tentry->start);
2401 			vm_map_unlock_read(smap);
2402 		} else {
2403 			object = current->object.vm_object;
2404 		}
2405 		/*
2406 		 * Note that there is absolutely no sense in writing out
2407 		 * anonymous objects, so we track down the vnode object
2408 		 * to write out.
2409 		 * We invalidate (remove) all pages from the address space
2410 		 * anyway, for semantic correctness.
2411 		 *
2412 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2413 		 * may start out with a NULL object.
2414 		 */
2415 		while (object && object->backing_object) {
2416 			offset += object->backing_object_offset;
2417 			object = object->backing_object;
2418 			if (object->size < OFF_TO_IDX( offset + size))
2419 				size = IDX_TO_OFF(object->size) - offset;
2420 		}
2421 		if (object && (object->type == OBJT_VNODE) &&
2422 		    (current->protection & VM_PROT_WRITE)) {
2423 			/*
2424 			 * Flush pages if writing is allowed, invalidate them
2425 			 * if invalidation requested.  Pages undergoing I/O
2426 			 * will be ignored by vm_object_page_remove().
2427 			 *
2428 			 * We cannot lock the vnode and then wait for paging
2429 			 * to complete without deadlocking against vm_fault.
2430 			 * Instead we simply call vm_object_page_remove() and
2431 			 * allow it to block internally on a page-by-page
2432 			 * basis when it encounters pages undergoing async
2433 			 * I/O.
2434 			 */
2435 			int flags;
2436 
2437 			vm_object_reference(object);
2438 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2439 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2440 			flags |= invalidate ? OBJPC_INVAL : 0;
2441 
2442 			/*
2443 			 * When operating on a virtual page table just
2444 			 * flush the whole object.  XXX we probably ought
2445 			 * to
2446 			 */
2447 			switch(current->maptype) {
2448 			case VM_MAPTYPE_NORMAL:
2449 				vm_object_page_clean(object,
2450 				    OFF_TO_IDX(offset),
2451 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2452 				    flags);
2453 				break;
2454 			case VM_MAPTYPE_VPAGETABLE:
2455 				vm_object_page_clean(object, 0, 0, flags);
2456 				break;
2457 			}
2458 			vn_unlock(((struct vnode *)object->handle));
2459 			vm_object_deallocate(object);
2460 		}
2461 		if (object && invalidate &&
2462 		   ((object->type == OBJT_VNODE) ||
2463 		    (object->type == OBJT_DEVICE))) {
2464 			int clean_only =
2465 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2466 			vm_object_reference(object);
2467 			switch(current->maptype) {
2468 			case VM_MAPTYPE_NORMAL:
2469 				vm_object_page_remove(object,
2470 				    OFF_TO_IDX(offset),
2471 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2472 				    clean_only);
2473 				break;
2474 			case VM_MAPTYPE_VPAGETABLE:
2475 				vm_object_page_remove(object, 0, 0, clean_only);
2476 				break;
2477 			}
2478 			vm_object_deallocate(object);
2479 		}
2480 		start += size;
2481 	}
2482 
2483 	vm_map_unlock_read(map);
2484 	return (KERN_SUCCESS);
2485 }
2486 
2487 /*
2488  *	vm_map_entry_unwire:	[ internal use only ]
2489  *
2490  *	Make the region specified by this entry pageable.
2491  *
2492  *	The map in question should be locked.
2493  *	[This is the reason for this routine's existence.]
2494  */
2495 static void
2496 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2497 {
2498 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2499 	entry->wired_count = 0;
2500 	vm_fault_unwire(map, entry);
2501 }
2502 
2503 /*
2504  *	vm_map_entry_delete:	[ internal use only ]
2505  *
2506  *	Deallocate the given entry from the target map.
2507  */
2508 static void
2509 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2510 {
2511 	vm_map_entry_unlink(map, entry);
2512 	map->size -= entry->end - entry->start;
2513 
2514 	switch(entry->maptype) {
2515 	case VM_MAPTYPE_NORMAL:
2516 	case VM_MAPTYPE_VPAGETABLE:
2517 		vm_object_deallocate(entry->object.vm_object);
2518 		break;
2519 	default:
2520 		break;
2521 	}
2522 
2523 	vm_map_entry_dispose(map, entry, countp);
2524 }
2525 
2526 /*
2527  *	vm_map_delete:	[ internal use only ]
2528  *
2529  *	Deallocates the given address range from the target
2530  *	map.
2531  */
2532 int
2533 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2534 {
2535 	vm_object_t object;
2536 	vm_map_entry_t entry;
2537 	vm_map_entry_t first_entry;
2538 
2539 again:
2540 	/*
2541 	 * Find the start of the region, and clip it.  Set entry to point
2542 	 * at the first record containing the requested address or, if no
2543 	 * such record exists, the next record with a greater address.  The
2544 	 * loop will run from this point until a record beyond the termination
2545 	 * address is encountered.
2546 	 *
2547 	 * map->hint must be adjusted to not point to anything we delete,
2548 	 * so set it to the entry prior to the one being deleted.
2549 	 *
2550 	 * GGG see other GGG comment.
2551 	 */
2552 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2553 		entry = first_entry;
2554 		vm_map_clip_start(map, entry, start, countp);
2555 		map->hint = entry->prev;	/* possible problem XXX */
2556 	} else {
2557 		map->hint = first_entry;	/* possible problem XXX */
2558 		entry = first_entry->next;
2559 	}
2560 
2561 	/*
2562 	 * If a hole opens up prior to the current first_free then
2563 	 * adjust first_free.  As with map->hint, map->first_free
2564 	 * cannot be left set to anything we might delete.
2565 	 */
2566 	if (entry == &map->header) {
2567 		map->first_free = &map->header;
2568 	} else if (map->first_free->start >= start) {
2569 		map->first_free = entry->prev;
2570 	}
2571 
2572 	/*
2573 	 * Step through all entries in this region
2574 	 */
2575 
2576 	while ((entry != &map->header) && (entry->start < end)) {
2577 		vm_map_entry_t next;
2578 		vm_offset_t s, e;
2579 		vm_pindex_t offidxstart, offidxend, count;
2580 
2581 		/*
2582 		 * If we hit an in-transition entry we have to sleep and
2583 		 * retry.  It's easier (and not really slower) to just retry
2584 		 * since this case occurs so rarely and the hint is already
2585 		 * pointing at the right place.  We have to reset the
2586 		 * start offset so as not to accidently delete an entry
2587 		 * another process just created in vacated space.
2588 		 */
2589 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2590 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2591 			start = entry->start;
2592 			++mycpu->gd_cnt.v_intrans_coll;
2593 			++mycpu->gd_cnt.v_intrans_wait;
2594 			vm_map_transition_wait(map);
2595 			goto again;
2596 		}
2597 		vm_map_clip_end(map, entry, end, countp);
2598 
2599 		s = entry->start;
2600 		e = entry->end;
2601 		next = entry->next;
2602 
2603 		offidxstart = OFF_TO_IDX(entry->offset);
2604 		count = OFF_TO_IDX(e - s);
2605 		object = entry->object.vm_object;
2606 
2607 		/*
2608 		 * Unwire before removing addresses from the pmap; otherwise,
2609 		 * unwiring will put the entries back in the pmap.
2610 		 */
2611 		if (entry->wired_count != 0)
2612 			vm_map_entry_unwire(map, entry);
2613 
2614 		offidxend = offidxstart + count;
2615 
2616 		if (object == &kernel_object) {
2617 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2618 		} else {
2619 			pmap_remove(map->pmap, s, e);
2620 			if (object != NULL &&
2621 			    object->ref_count != 1 &&
2622 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2623 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2624 				vm_object_collapse(object);
2625 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2626 				if (object->type == OBJT_SWAP) {
2627 					swap_pager_freespace(object, offidxstart, count);
2628 				}
2629 				if (offidxend >= object->size &&
2630 				    offidxstart < object->size) {
2631 					object->size = offidxstart;
2632 				}
2633 			}
2634 		}
2635 
2636 		/*
2637 		 * Delete the entry (which may delete the object) only after
2638 		 * removing all pmap entries pointing to its pages.
2639 		 * (Otherwise, its page frames may be reallocated, and any
2640 		 * modify bits will be set in the wrong object!)
2641 		 */
2642 		vm_map_entry_delete(map, entry, countp);
2643 		entry = next;
2644 	}
2645 	return (KERN_SUCCESS);
2646 }
2647 
2648 /*
2649  *	vm_map_remove:
2650  *
2651  *	Remove the given address range from the target map.
2652  *	This is the exported form of vm_map_delete.
2653  */
2654 int
2655 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2656 {
2657 	int result;
2658 	int count;
2659 
2660 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2661 	vm_map_lock(map);
2662 	VM_MAP_RANGE_CHECK(map, start, end);
2663 	result = vm_map_delete(map, start, end, &count);
2664 	vm_map_unlock(map);
2665 	vm_map_entry_release(count);
2666 
2667 	return (result);
2668 }
2669 
2670 /*
2671  *	vm_map_check_protection:
2672  *
2673  *	Assert that the target map allows the specified
2674  *	privilege on the entire address region given.
2675  *	The entire region must be allocated.
2676  */
2677 boolean_t
2678 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2679 			vm_prot_t protection)
2680 {
2681 	vm_map_entry_t entry;
2682 	vm_map_entry_t tmp_entry;
2683 
2684 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2685 		return (FALSE);
2686 	}
2687 	entry = tmp_entry;
2688 
2689 	while (start < end) {
2690 		if (entry == &map->header) {
2691 			return (FALSE);
2692 		}
2693 		/*
2694 		 * No holes allowed!
2695 		 */
2696 
2697 		if (start < entry->start) {
2698 			return (FALSE);
2699 		}
2700 		/*
2701 		 * Check protection associated with entry.
2702 		 */
2703 
2704 		if ((entry->protection & protection) != protection) {
2705 			return (FALSE);
2706 		}
2707 		/* go to next entry */
2708 
2709 		start = entry->end;
2710 		entry = entry->next;
2711 	}
2712 	return (TRUE);
2713 }
2714 
2715 /*
2716  * Split the pages in a map entry into a new object.  This affords
2717  * easier removal of unused pages, and keeps object inheritance from
2718  * being a negative impact on memory usage.
2719  */
2720 static void
2721 vm_map_split(vm_map_entry_t entry)
2722 {
2723 	vm_page_t m;
2724 	vm_object_t orig_object, new_object, source;
2725 	vm_offset_t s, e;
2726 	vm_pindex_t offidxstart, offidxend, idx;
2727 	vm_size_t size;
2728 	vm_ooffset_t offset;
2729 
2730 	orig_object = entry->object.vm_object;
2731 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2732 		return;
2733 	if (orig_object->ref_count <= 1)
2734 		return;
2735 
2736 	offset = entry->offset;
2737 	s = entry->start;
2738 	e = entry->end;
2739 
2740 	offidxstart = OFF_TO_IDX(offset);
2741 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2742 	size = offidxend - offidxstart;
2743 
2744 	new_object = vm_pager_allocate(orig_object->type, NULL,
2745 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2746 	if (new_object == NULL)
2747 		return;
2748 
2749 	source = orig_object->backing_object;
2750 	if (source != NULL) {
2751 		vm_object_reference(source);	/* Referenced by new_object */
2752 		LIST_INSERT_HEAD(&source->shadow_head,
2753 				  new_object, shadow_list);
2754 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2755 		new_object->backing_object_offset =
2756 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2757 		new_object->backing_object = source;
2758 		source->shadow_count++;
2759 		source->generation++;
2760 	}
2761 
2762 	for (idx = 0; idx < size; idx++) {
2763 		vm_page_t m;
2764 
2765 		/*
2766 		 * A critical section is required to avoid a race between
2767 		 * the lookup and an interrupt/unbusy/free and our busy
2768 		 * check.
2769 		 */
2770 		crit_enter();
2771 	retry:
2772 		m = vm_page_lookup(orig_object, offidxstart + idx);
2773 		if (m == NULL) {
2774 			crit_exit();
2775 			continue;
2776 		}
2777 
2778 		/*
2779 		 * We must wait for pending I/O to complete before we can
2780 		 * rename the page.
2781 		 *
2782 		 * We do not have to VM_PROT_NONE the page as mappings should
2783 		 * not be changed by this operation.
2784 		 */
2785 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2786 			goto retry;
2787 		vm_page_busy(m);
2788 		vm_page_rename(m, new_object, idx);
2789 		/* page automatically made dirty by rename and cache handled */
2790 		vm_page_busy(m);
2791 		crit_exit();
2792 	}
2793 
2794 	if (orig_object->type == OBJT_SWAP) {
2795 		vm_object_pip_add(orig_object, 1);
2796 		/*
2797 		 * copy orig_object pages into new_object
2798 		 * and destroy unneeded pages in
2799 		 * shadow object.
2800 		 */
2801 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2802 		vm_object_pip_wakeup(orig_object);
2803 	}
2804 
2805 	/*
2806 	 * Wakeup the pages we played with.  No spl protection is needed
2807 	 * for a simple wakeup.
2808 	 */
2809 	for (idx = 0; idx < size; idx++) {
2810 		m = vm_page_lookup(new_object, idx);
2811 		if (m)
2812 			vm_page_wakeup(m);
2813 	}
2814 
2815 	entry->object.vm_object = new_object;
2816 	entry->offset = 0LL;
2817 	vm_object_deallocate(orig_object);
2818 }
2819 
2820 /*
2821  *	vm_map_copy_entry:
2822  *
2823  *	Copies the contents of the source entry to the destination
2824  *	entry.  The entries *must* be aligned properly.
2825  */
2826 static void
2827 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2828 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2829 {
2830 	vm_object_t src_object;
2831 
2832 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2833 		return;
2834 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2835 		return;
2836 
2837 	if (src_entry->wired_count == 0) {
2838 		/*
2839 		 * If the source entry is marked needs_copy, it is already
2840 		 * write-protected.
2841 		 */
2842 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2843 			pmap_protect(src_map->pmap,
2844 			    src_entry->start,
2845 			    src_entry->end,
2846 			    src_entry->protection & ~VM_PROT_WRITE);
2847 		}
2848 
2849 		/*
2850 		 * Make a copy of the object.
2851 		 */
2852 		if ((src_object = src_entry->object.vm_object) != NULL) {
2853 			if ((src_object->handle == NULL) &&
2854 				(src_object->type == OBJT_DEFAULT ||
2855 				 src_object->type == OBJT_SWAP)) {
2856 				vm_object_collapse(src_object);
2857 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2858 					vm_map_split(src_entry);
2859 					src_object = src_entry->object.vm_object;
2860 				}
2861 			}
2862 
2863 			vm_object_reference(src_object);
2864 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2865 			dst_entry->object.vm_object = src_object;
2866 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2867 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2868 			dst_entry->offset = src_entry->offset;
2869 		} else {
2870 			dst_entry->object.vm_object = NULL;
2871 			dst_entry->offset = 0;
2872 		}
2873 
2874 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2875 		    dst_entry->end - dst_entry->start, src_entry->start);
2876 	} else {
2877 		/*
2878 		 * Of course, wired down pages can't be set copy-on-write.
2879 		 * Cause wired pages to be copied into the new map by
2880 		 * simulating faults (the new pages are pageable)
2881 		 */
2882 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2883 	}
2884 }
2885 
2886 /*
2887  * vmspace_fork:
2888  * Create a new process vmspace structure and vm_map
2889  * based on those of an existing process.  The new map
2890  * is based on the old map, according to the inheritance
2891  * values on the regions in that map.
2892  *
2893  * The source map must not be locked.
2894  */
2895 struct vmspace *
2896 vmspace_fork(struct vmspace *vm1)
2897 {
2898 	struct vmspace *vm2;
2899 	vm_map_t old_map = &vm1->vm_map;
2900 	vm_map_t new_map;
2901 	vm_map_entry_t old_entry;
2902 	vm_map_entry_t new_entry;
2903 	vm_object_t object;
2904 	int count;
2905 
2906 	vm_map_lock(old_map);
2907 	old_map->infork = 1;
2908 
2909 	/*
2910 	 * XXX Note: upcalls are not copied.
2911 	 */
2912 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2913 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2914 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2915 	new_map = &vm2->vm_map;	/* XXX */
2916 	new_map->timestamp = 1;
2917 
2918 	count = 0;
2919 	old_entry = old_map->header.next;
2920 	while (old_entry != &old_map->header) {
2921 		++count;
2922 		old_entry = old_entry->next;
2923 	}
2924 
2925 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2926 
2927 	old_entry = old_map->header.next;
2928 	while (old_entry != &old_map->header) {
2929 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2930 			panic("vm_map_fork: encountered a submap");
2931 
2932 		switch (old_entry->inheritance) {
2933 		case VM_INHERIT_NONE:
2934 			break;
2935 
2936 		case VM_INHERIT_SHARE:
2937 			/*
2938 			 * Clone the entry, creating the shared object if
2939 			 * necessary.
2940 			 */
2941 			object = old_entry->object.vm_object;
2942 			if (object == NULL) {
2943 				vm_map_entry_allocate_object(old_entry);
2944 				object = old_entry->object.vm_object;
2945 			}
2946 
2947 			/*
2948 			 * Add the reference before calling vm_map_entry_shadow
2949 			 * to insure that a shadow object is created.
2950 			 */
2951 			vm_object_reference(object);
2952 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2953 				vm_map_entry_shadow(old_entry);
2954 				/* Transfer the second reference too. */
2955 				vm_object_reference(
2956 				    old_entry->object.vm_object);
2957 				vm_object_deallocate(object);
2958 				object = old_entry->object.vm_object;
2959 			}
2960 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2961 
2962 			/*
2963 			 * Clone the entry, referencing the shared object.
2964 			 */
2965 			new_entry = vm_map_entry_create(new_map, &count);
2966 			*new_entry = *old_entry;
2967 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2968 			new_entry->wired_count = 0;
2969 
2970 			/*
2971 			 * Insert the entry into the new map -- we know we're
2972 			 * inserting at the end of the new map.
2973 			 */
2974 
2975 			vm_map_entry_link(new_map, new_map->header.prev,
2976 			    new_entry);
2977 
2978 			/*
2979 			 * Update the physical map
2980 			 */
2981 
2982 			pmap_copy(new_map->pmap, old_map->pmap,
2983 			    new_entry->start,
2984 			    (old_entry->end - old_entry->start),
2985 			    old_entry->start);
2986 			break;
2987 
2988 		case VM_INHERIT_COPY:
2989 			/*
2990 			 * Clone the entry and link into the map.
2991 			 */
2992 			new_entry = vm_map_entry_create(new_map, &count);
2993 			*new_entry = *old_entry;
2994 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2995 			new_entry->wired_count = 0;
2996 			new_entry->object.vm_object = NULL;
2997 			vm_map_entry_link(new_map, new_map->header.prev,
2998 			    new_entry);
2999 			vm_map_copy_entry(old_map, new_map, old_entry,
3000 			    new_entry);
3001 			break;
3002 		}
3003 		old_entry = old_entry->next;
3004 	}
3005 
3006 	new_map->size = old_map->size;
3007 	old_map->infork = 0;
3008 	vm_map_unlock(old_map);
3009 	vm_map_entry_release(count);
3010 
3011 	return (vm2);
3012 }
3013 
3014 int
3015 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3016 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3017 {
3018 	vm_map_entry_t	prev_entry;
3019 	vm_map_entry_t	new_stack_entry;
3020 	vm_size_t	init_ssize;
3021 	int		rv;
3022 	int		count;
3023 	vm_offset_t	tmpaddr;
3024 
3025 	cow |= MAP_IS_STACK;
3026 
3027 	if (max_ssize < sgrowsiz)
3028 		init_ssize = max_ssize;
3029 	else
3030 		init_ssize = sgrowsiz;
3031 
3032 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3033 	vm_map_lock(map);
3034 
3035 	/*
3036 	 * Find space for the mapping
3037 	 */
3038 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3039 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3040 				     flags, &tmpaddr)) {
3041 			vm_map_unlock(map);
3042 			vm_map_entry_release(count);
3043 			return (KERN_NO_SPACE);
3044 		}
3045 		addrbos = tmpaddr;
3046 	}
3047 
3048 	/* If addr is already mapped, no go */
3049 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3050 		vm_map_unlock(map);
3051 		vm_map_entry_release(count);
3052 		return (KERN_NO_SPACE);
3053 	}
3054 
3055 #if 0
3056 	/* XXX already handled by kern_mmap() */
3057 	/* If we would blow our VMEM resource limit, no go */
3058 	if (map->size + init_ssize >
3059 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3060 		vm_map_unlock(map);
3061 		vm_map_entry_release(count);
3062 		return (KERN_NO_SPACE);
3063 	}
3064 #endif
3065 
3066 	/*
3067 	 * If we can't accomodate max_ssize in the current mapping,
3068 	 * no go.  However, we need to be aware that subsequent user
3069 	 * mappings might map into the space we have reserved for
3070 	 * stack, and currently this space is not protected.
3071 	 *
3072 	 * Hopefully we will at least detect this condition
3073 	 * when we try to grow the stack.
3074 	 */
3075 	if ((prev_entry->next != &map->header) &&
3076 	    (prev_entry->next->start < addrbos + max_ssize)) {
3077 		vm_map_unlock(map);
3078 		vm_map_entry_release(count);
3079 		return (KERN_NO_SPACE);
3080 	}
3081 
3082 	/*
3083 	 * We initially map a stack of only init_ssize.  We will
3084 	 * grow as needed later.  Since this is to be a grow
3085 	 * down stack, we map at the top of the range.
3086 	 *
3087 	 * Note: we would normally expect prot and max to be
3088 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3089 	 * eliminate these as input parameters, and just
3090 	 * pass these values here in the insert call.
3091 	 */
3092 	rv = vm_map_insert(map, &count,
3093 			   NULL, 0, addrbos + max_ssize - init_ssize,
3094 	                   addrbos + max_ssize,
3095 			   VM_MAPTYPE_NORMAL,
3096 			   prot, max,
3097 			   cow);
3098 
3099 	/* Now set the avail_ssize amount */
3100 	if (rv == KERN_SUCCESS) {
3101 		if (prev_entry != &map->header)
3102 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3103 		new_stack_entry = prev_entry->next;
3104 		if (new_stack_entry->end   != addrbos + max_ssize ||
3105 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3106 			panic ("Bad entry start/end for new stack entry");
3107 		else
3108 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3109 	}
3110 
3111 	vm_map_unlock(map);
3112 	vm_map_entry_release(count);
3113 	return (rv);
3114 }
3115 
3116 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3117  * desired address is already mapped, or if we successfully grow
3118  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3119  * stack range (this is strange, but preserves compatibility with
3120  * the grow function in vm_machdep.c).
3121  */
3122 int
3123 vm_map_growstack (struct proc *p, vm_offset_t addr)
3124 {
3125 	vm_map_entry_t prev_entry;
3126 	vm_map_entry_t stack_entry;
3127 	vm_map_entry_t new_stack_entry;
3128 	struct vmspace *vm = p->p_vmspace;
3129 	vm_map_t map = &vm->vm_map;
3130 	vm_offset_t    end;
3131 	int grow_amount;
3132 	int rv = KERN_SUCCESS;
3133 	int is_procstack;
3134 	int use_read_lock = 1;
3135 	int count;
3136 
3137 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3138 Retry:
3139 	if (use_read_lock)
3140 		vm_map_lock_read(map);
3141 	else
3142 		vm_map_lock(map);
3143 
3144 	/* If addr is already in the entry range, no need to grow.*/
3145 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3146 		goto done;
3147 
3148 	if ((stack_entry = prev_entry->next) == &map->header)
3149 		goto done;
3150 	if (prev_entry == &map->header)
3151 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3152 	else
3153 		end = prev_entry->end;
3154 
3155 	/*
3156 	 * This next test mimics the old grow function in vm_machdep.c.
3157 	 * It really doesn't quite make sense, but we do it anyway
3158 	 * for compatibility.
3159 	 *
3160 	 * If not growable stack, return success.  This signals the
3161 	 * caller to proceed as he would normally with normal vm.
3162 	 */
3163 	if (stack_entry->aux.avail_ssize < 1 ||
3164 	    addr >= stack_entry->start ||
3165 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3166 		goto done;
3167 	}
3168 
3169 	/* Find the minimum grow amount */
3170 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3171 	if (grow_amount > stack_entry->aux.avail_ssize) {
3172 		rv = KERN_NO_SPACE;
3173 		goto done;
3174 	}
3175 
3176 	/*
3177 	 * If there is no longer enough space between the entries
3178 	 * nogo, and adjust the available space.  Note: this
3179 	 * should only happen if the user has mapped into the
3180 	 * stack area after the stack was created, and is
3181 	 * probably an error.
3182 	 *
3183 	 * This also effectively destroys any guard page the user
3184 	 * might have intended by limiting the stack size.
3185 	 */
3186 	if (grow_amount > stack_entry->start - end) {
3187 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3188 			use_read_lock = 0;
3189 			goto Retry;
3190 		}
3191 		use_read_lock = 0;
3192 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3193 		rv = KERN_NO_SPACE;
3194 		goto done;
3195 	}
3196 
3197 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3198 
3199 	/* If this is the main process stack, see if we're over the
3200 	 * stack limit.
3201 	 */
3202 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3203 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3204 		rv = KERN_NO_SPACE;
3205 		goto done;
3206 	}
3207 
3208 	/* Round up the grow amount modulo SGROWSIZ */
3209 	grow_amount = roundup (grow_amount, sgrowsiz);
3210 	if (grow_amount > stack_entry->aux.avail_ssize) {
3211 		grow_amount = stack_entry->aux.avail_ssize;
3212 	}
3213 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3214 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3215 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3216 		              ctob(vm->vm_ssize);
3217 	}
3218 
3219 	/* If we would blow our VMEM resource limit, no go */
3220 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3221 		rv = KERN_NO_SPACE;
3222 		goto done;
3223 	}
3224 
3225 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3226 		use_read_lock = 0;
3227 		goto Retry;
3228 	}
3229 	use_read_lock = 0;
3230 
3231 	/* Get the preliminary new entry start value */
3232 	addr = stack_entry->start - grow_amount;
3233 
3234 	/* If this puts us into the previous entry, cut back our growth
3235 	 * to the available space.  Also, see the note above.
3236 	 */
3237 	if (addr < end) {
3238 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3239 		addr = end;
3240 	}
3241 
3242 	rv = vm_map_insert(map, &count,
3243 			   NULL, 0, addr, stack_entry->start,
3244 			   VM_MAPTYPE_NORMAL,
3245 			   VM_PROT_ALL, VM_PROT_ALL,
3246 			   0);
3247 
3248 	/* Adjust the available stack space by the amount we grew. */
3249 	if (rv == KERN_SUCCESS) {
3250 		if (prev_entry != &map->header)
3251 			vm_map_clip_end(map, prev_entry, addr, &count);
3252 		new_stack_entry = prev_entry->next;
3253 		if (new_stack_entry->end   != stack_entry->start  ||
3254 		    new_stack_entry->start != addr)
3255 			panic ("Bad stack grow start/end in new stack entry");
3256 		else {
3257 			new_stack_entry->aux.avail_ssize =
3258 				stack_entry->aux.avail_ssize -
3259 				(new_stack_entry->end - new_stack_entry->start);
3260 			if (is_procstack)
3261 				vm->vm_ssize += btoc(new_stack_entry->end -
3262 						     new_stack_entry->start);
3263 		}
3264 	}
3265 
3266 done:
3267 	if (use_read_lock)
3268 		vm_map_unlock_read(map);
3269 	else
3270 		vm_map_unlock(map);
3271 	vm_map_entry_release(count);
3272 	return (rv);
3273 }
3274 
3275 /*
3276  * Unshare the specified VM space for exec.  If other processes are
3277  * mapped to it, then create a new one.  The new vmspace is null.
3278  */
3279 void
3280 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3281 {
3282 	struct vmspace *oldvmspace = p->p_vmspace;
3283 	struct vmspace *newvmspace;
3284 	vm_map_t map = &p->p_vmspace->vm_map;
3285 
3286 	/*
3287 	 * If we are execing a resident vmspace we fork it, otherwise
3288 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3289 	 * are not copied to the new vmspace.
3290 	 */
3291 	if (vmcopy)  {
3292 	    newvmspace = vmspace_fork(vmcopy);
3293 	} else {
3294 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3295 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3296 		(caddr_t)&oldvmspace->vm_endcopy -
3297 		    (caddr_t)&oldvmspace->vm_startcopy);
3298 	}
3299 
3300 	/*
3301 	 * Finish initializing the vmspace before assigning it
3302 	 * to the process.  The vmspace will become the current vmspace
3303 	 * if p == curproc.
3304 	 */
3305 	pmap_pinit2(vmspace_pmap(newvmspace));
3306 	pmap_replacevm(p, newvmspace, 0);
3307 	sysref_put(&oldvmspace->vm_sysref);
3308 }
3309 
3310 /*
3311  * Unshare the specified VM space for forcing COW.  This
3312  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3313  *
3314  * The exitingcnt test is not strictly necessary but has been
3315  * included for code sanity (to make the code a bit more deterministic).
3316  */
3317 
3318 void
3319 vmspace_unshare(struct proc *p)
3320 {
3321 	struct vmspace *oldvmspace = p->p_vmspace;
3322 	struct vmspace *newvmspace;
3323 
3324 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3325 		return;
3326 	newvmspace = vmspace_fork(oldvmspace);
3327 	pmap_pinit2(vmspace_pmap(newvmspace));
3328 	pmap_replacevm(p, newvmspace, 0);
3329 	sysref_put(&oldvmspace->vm_sysref);
3330 }
3331 
3332 /*
3333  *	vm_map_lookup:
3334  *
3335  *	Finds the VM object, offset, and
3336  *	protection for a given virtual address in the
3337  *	specified map, assuming a page fault of the
3338  *	type specified.
3339  *
3340  *	Leaves the map in question locked for read; return
3341  *	values are guaranteed until a vm_map_lookup_done
3342  *	call is performed.  Note that the map argument
3343  *	is in/out; the returned map must be used in
3344  *	the call to vm_map_lookup_done.
3345  *
3346  *	A handle (out_entry) is returned for use in
3347  *	vm_map_lookup_done, to make that fast.
3348  *
3349  *	If a lookup is requested with "write protection"
3350  *	specified, the map may be changed to perform virtual
3351  *	copying operations, although the data referenced will
3352  *	remain the same.
3353  */
3354 int
3355 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3356 	      vm_offset_t vaddr,
3357 	      vm_prot_t fault_typea,
3358 	      vm_map_entry_t *out_entry,	/* OUT */
3359 	      vm_object_t *object,		/* OUT */
3360 	      vm_pindex_t *pindex,		/* OUT */
3361 	      vm_prot_t *out_prot,		/* OUT */
3362 	      boolean_t *wired)			/* OUT */
3363 {
3364 	vm_map_entry_t entry;
3365 	vm_map_t map = *var_map;
3366 	vm_prot_t prot;
3367 	vm_prot_t fault_type = fault_typea;
3368 	int use_read_lock = 1;
3369 	int rv = KERN_SUCCESS;
3370 
3371 RetryLookup:
3372 	if (use_read_lock)
3373 		vm_map_lock_read(map);
3374 	else
3375 		vm_map_lock(map);
3376 
3377 	/*
3378 	 * If the map has an interesting hint, try it before calling full
3379 	 * blown lookup routine.
3380 	 */
3381 	entry = map->hint;
3382 	*out_entry = entry;
3383 
3384 	if ((entry == &map->header) ||
3385 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3386 		vm_map_entry_t tmp_entry;
3387 
3388 		/*
3389 		 * Entry was either not a valid hint, or the vaddr was not
3390 		 * contained in the entry, so do a full lookup.
3391 		 */
3392 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3393 			rv = KERN_INVALID_ADDRESS;
3394 			goto done;
3395 		}
3396 
3397 		entry = tmp_entry;
3398 		*out_entry = entry;
3399 	}
3400 
3401 	/*
3402 	 * Handle submaps.
3403 	 */
3404 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3405 		vm_map_t old_map = map;
3406 
3407 		*var_map = map = entry->object.sub_map;
3408 		if (use_read_lock)
3409 			vm_map_unlock_read(old_map);
3410 		else
3411 			vm_map_unlock(old_map);
3412 		use_read_lock = 1;
3413 		goto RetryLookup;
3414 	}
3415 
3416 	/*
3417 	 * Check whether this task is allowed to have this page.
3418 	 * Note the special case for MAP_ENTRY_COW
3419 	 * pages with an override.  This is to implement a forced
3420 	 * COW for debuggers.
3421 	 */
3422 
3423 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3424 		prot = entry->max_protection;
3425 	else
3426 		prot = entry->protection;
3427 
3428 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3429 	if ((fault_type & prot) != fault_type) {
3430 		rv = KERN_PROTECTION_FAILURE;
3431 		goto done;
3432 	}
3433 
3434 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3435 	    (entry->eflags & MAP_ENTRY_COW) &&
3436 	    (fault_type & VM_PROT_WRITE) &&
3437 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3438 		rv = KERN_PROTECTION_FAILURE;
3439 		goto done;
3440 	}
3441 
3442 	/*
3443 	 * If this page is not pageable, we have to get it for all possible
3444 	 * accesses.
3445 	 */
3446 	*wired = (entry->wired_count != 0);
3447 	if (*wired)
3448 		prot = fault_type = entry->protection;
3449 
3450 	/*
3451 	 * Virtual page tables may need to update the accessed (A) bit
3452 	 * in a page table entry.  Upgrade the fault to a write fault for
3453 	 * that case if the map will support it.  If the map does not support
3454 	 * it the page table entry simply will not be updated.
3455 	 */
3456 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3457 		if (prot & VM_PROT_WRITE)
3458 			fault_type |= VM_PROT_WRITE;
3459 	}
3460 
3461 	/*
3462 	 * If the entry was copy-on-write, we either ...
3463 	 */
3464 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3465 		/*
3466 		 * If we want to write the page, we may as well handle that
3467 		 * now since we've got the map locked.
3468 		 *
3469 		 * If we don't need to write the page, we just demote the
3470 		 * permissions allowed.
3471 		 */
3472 
3473 		if (fault_type & VM_PROT_WRITE) {
3474 			/*
3475 			 * Make a new object, and place it in the object
3476 			 * chain.  Note that no new references have appeared
3477 			 * -- one just moved from the map to the new
3478 			 * object.
3479 			 */
3480 
3481 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3482 				use_read_lock = 0;
3483 				goto RetryLookup;
3484 			}
3485 			use_read_lock = 0;
3486 
3487 			vm_map_entry_shadow(entry);
3488 		} else {
3489 			/*
3490 			 * We're attempting to read a copy-on-write page --
3491 			 * don't allow writes.
3492 			 */
3493 
3494 			prot &= ~VM_PROT_WRITE;
3495 		}
3496 	}
3497 
3498 	/*
3499 	 * Create an object if necessary.
3500 	 */
3501 	if (entry->object.vm_object == NULL &&
3502 	    !map->system_map) {
3503 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3504 			use_read_lock = 0;
3505 			goto RetryLookup;
3506 		}
3507 		use_read_lock = 0;
3508 		vm_map_entry_allocate_object(entry);
3509 	}
3510 
3511 	/*
3512 	 * Return the object/offset from this entry.  If the entry was
3513 	 * copy-on-write or empty, it has been fixed up.
3514 	 */
3515 
3516 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3517 	*object = entry->object.vm_object;
3518 
3519 	/*
3520 	 * Return whether this is the only map sharing this data.  On
3521 	 * success we return with a read lock held on the map.  On failure
3522 	 * we return with the map unlocked.
3523 	 */
3524 	*out_prot = prot;
3525 done:
3526 	if (rv == KERN_SUCCESS) {
3527 		if (use_read_lock == 0)
3528 			vm_map_lock_downgrade(map);
3529 	} else if (use_read_lock) {
3530 		vm_map_unlock_read(map);
3531 	} else {
3532 		vm_map_unlock(map);
3533 	}
3534 	return (rv);
3535 }
3536 
3537 /*
3538  *	vm_map_lookup_done:
3539  *
3540  *	Releases locks acquired by a vm_map_lookup
3541  *	(according to the handle returned by that lookup).
3542  */
3543 
3544 void
3545 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3546 {
3547 	/*
3548 	 * Unlock the main-level map
3549 	 */
3550 	vm_map_unlock_read(map);
3551 	if (count)
3552 		vm_map_entry_release(count);
3553 }
3554 
3555 #include "opt_ddb.h"
3556 #ifdef DDB
3557 #include <sys/kernel.h>
3558 
3559 #include <ddb/ddb.h>
3560 
3561 /*
3562  *	vm_map_print:	[ debug ]
3563  */
3564 DB_SHOW_COMMAND(map, vm_map_print)
3565 {
3566 	static int nlines;
3567 	/* XXX convert args. */
3568 	vm_map_t map = (vm_map_t)addr;
3569 	boolean_t full = have_addr;
3570 
3571 	vm_map_entry_t entry;
3572 
3573 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3574 	    (void *)map,
3575 	    (void *)map->pmap, map->nentries, map->timestamp);
3576 	nlines++;
3577 
3578 	if (!full && db_indent)
3579 		return;
3580 
3581 	db_indent += 2;
3582 	for (entry = map->header.next; entry != &map->header;
3583 	    entry = entry->next) {
3584 		db_iprintf("map entry %p: start=%p, end=%p\n",
3585 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3586 		nlines++;
3587 		{
3588 			static char *inheritance_name[4] =
3589 			{"share", "copy", "none", "donate_copy"};
3590 
3591 			db_iprintf(" prot=%x/%x/%s",
3592 			    entry->protection,
3593 			    entry->max_protection,
3594 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3595 			if (entry->wired_count != 0)
3596 				db_printf(", wired");
3597 		}
3598 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3599 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3600 			db_printf(", share=%p, offset=0x%lx\n",
3601 			    (void *)entry->object.sub_map,
3602 			    (long)entry->offset);
3603 			nlines++;
3604 			if ((entry->prev == &map->header) ||
3605 			    (entry->prev->object.sub_map !=
3606 				entry->object.sub_map)) {
3607 				db_indent += 2;
3608 				vm_map_print((db_expr_t)(intptr_t)
3609 					     entry->object.sub_map,
3610 					     full, 0, NULL);
3611 				db_indent -= 2;
3612 			}
3613 		} else {
3614 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3615 			db_printf(", object=%p, offset=0x%lx",
3616 			    (void *)entry->object.vm_object,
3617 			    (long)entry->offset);
3618 			if (entry->eflags & MAP_ENTRY_COW)
3619 				db_printf(", copy (%s)",
3620 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3621 			db_printf("\n");
3622 			nlines++;
3623 
3624 			if ((entry->prev == &map->header) ||
3625 			    (entry->prev->object.vm_object !=
3626 				entry->object.vm_object)) {
3627 				db_indent += 2;
3628 				vm_object_print((db_expr_t)(intptr_t)
3629 						entry->object.vm_object,
3630 						full, 0, NULL);
3631 				nlines += 4;
3632 				db_indent -= 2;
3633 			}
3634 		}
3635 	}
3636 	db_indent -= 2;
3637 	if (db_indent == 0)
3638 		nlines = 0;
3639 }
3640 
3641 
3642 DB_SHOW_COMMAND(procvm, procvm)
3643 {
3644 	struct proc *p;
3645 
3646 	if (have_addr) {
3647 		p = (struct proc *) addr;
3648 	} else {
3649 		p = curproc;
3650 	}
3651 
3652 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3653 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3654 	    (void *)vmspace_pmap(p->p_vmspace));
3655 
3656 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3657 }
3658 
3659 #endif /* DDB */
3660