xref: /dragonfly/sys/vm/vm_map.c (revision b3e108b2)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.36 2004/12/21 02:42:41 hsu Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 #define VMEPERCPU	2
137 
138 static struct vm_zone mapentzone_store, mapzone_store;
139 static vm_zone_t mapentzone, mapzone, vmspace_zone;
140 static struct vm_object mapentobj, mapobj;
141 
142 static struct vm_map_entry map_entry_init[MAX_MAPENT];
143 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
144 static struct vm_map map_init[MAX_KMAP];
145 
146 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
147 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
148 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
149 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
151 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
152 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
153 		vm_map_entry_t);
154 static void vm_map_split (vm_map_entry_t);
155 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
156 
157 void
158 vm_map_startup(void)
159 {
160 	mapzone = &mapzone_store;
161 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
162 		map_init, MAX_KMAP);
163 	mapentzone = &mapentzone_store;
164 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
165 		map_entry_init, MAX_MAPENT);
166 }
167 
168 /*
169  * Allocate a vmspace structure, including a vm_map and pmap,
170  * and initialize those structures.  The refcnt is set to 1.
171  * The remaining fields must be initialized by the caller.
172  */
173 struct vmspace *
174 vmspace_alloc(vm_offset_t min, vm_offset_t max)
175 {
176 	struct vmspace *vm;
177 
178 	vm = zalloc(vmspace_zone);
179 	vm_map_init(&vm->vm_map, min, max);
180 	pmap_pinit(vmspace_pmap(vm));
181 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
182 	vm->vm_refcnt = 1;
183 	vm->vm_shm = NULL;
184 	vm->vm_exitingcnt = 0;
185 	return (vm);
186 }
187 
188 void
189 vm_init2(void)
190 {
191 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
192 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
193 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
194 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
195 	pmap_init2();
196 	vm_object_init2();
197 }
198 
199 static __inline void
200 vmspace_dofree(struct vmspace *vm)
201 {
202 	int count;
203 
204 	/*
205 	 * Make sure any SysV shm is freed, it might not have in
206 	 * exit1()
207 	 */
208 	shmexit(vm);
209 
210 	KKASSERT(vm->vm_upcalls == NULL);
211 
212 	/*
213 	 * Lock the map, to wait out all other references to it.
214 	 * Delete all of the mappings and pages they hold, then call
215 	 * the pmap module to reclaim anything left.
216 	 */
217 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
218 	vm_map_lock(&vm->vm_map);
219 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
220 		vm->vm_map.max_offset, &count);
221 	vm_map_unlock(&vm->vm_map);
222 	vm_map_entry_release(count);
223 
224 	pmap_release(vmspace_pmap(vm));
225 	zfree(vmspace_zone, vm);
226 }
227 
228 void
229 vmspace_free(struct vmspace *vm)
230 {
231 	if (vm->vm_refcnt == 0)
232 		panic("vmspace_free: attempt to free already freed vmspace");
233 
234 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
235 		vmspace_dofree(vm);
236 }
237 
238 void
239 vmspace_exitfree(struct proc *p)
240 {
241 	struct vmspace *vm;
242 
243 	vm = p->p_vmspace;
244 	p->p_vmspace = NULL;
245 
246 	/*
247 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
248 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
249 	 * exitingcnt may increment above 0 and drop back down to zero
250 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
251 	 * may also increment above 0 and drop back down to zero several
252 	 * times while vm_exitingcnt is held non-zero.
253 	 *
254 	 * The last wait on the exiting child's vmspace will clean up
255 	 * the remainder of the vmspace.
256 	 */
257 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
258 		vmspace_dofree(vm);
259 }
260 
261 /*
262  * vmspace_swap_count() - count the approximate swap useage in pages for a
263  *			  vmspace.
264  *
265  *	Swap useage is determined by taking the proportional swap used by
266  *	VM objects backing the VM map.  To make up for fractional losses,
267  *	if the VM object has any swap use at all the associated map entries
268  *	count for at least 1 swap page.
269  */
270 int
271 vmspace_swap_count(struct vmspace *vmspace)
272 {
273 	vm_map_t map = &vmspace->vm_map;
274 	vm_map_entry_t cur;
275 	int count = 0;
276 
277 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
278 		vm_object_t object;
279 
280 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
281 		    (object = cur->object.vm_object) != NULL &&
282 		    object->type == OBJT_SWAP
283 		) {
284 			int n = (cur->end - cur->start) / PAGE_SIZE;
285 
286 			if (object->un_pager.swp.swp_bcount) {
287 				count += object->un_pager.swp.swp_bcount *
288 				    SWAP_META_PAGES * n / object->size + 1;
289 			}
290 		}
291 	}
292 	return(count);
293 }
294 
295 
296 /*
297  *	vm_map_create:
298  *
299  *	Creates and returns a new empty VM map with
300  *	the given physical map structure, and having
301  *	the given lower and upper address bounds.
302  */
303 vm_map_t
304 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
305 {
306 	vm_map_t result;
307 
308 	result = zalloc(mapzone);
309 	vm_map_init(result, min, max);
310 	result->pmap = pmap;
311 	return (result);
312 }
313 
314 /*
315  * Initialize an existing vm_map structure
316  * such as that in the vmspace structure.
317  * The pmap is set elsewhere.
318  */
319 void
320 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
321 {
322 	map->header.next = map->header.prev = &map->header;
323 	map->nentries = 0;
324 	map->size = 0;
325 	map->system_map = 0;
326 	map->infork = 0;
327 	map->min_offset = min;
328 	map->max_offset = max;
329 	map->first_free = &map->header;
330 	map->hint = &map->header;
331 	map->timestamp = 0;
332 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
333 }
334 
335 /*
336  *      vm_map_entry_reserve_cpu_init:
337  *
338  *	Set an initial negative count so the first attempt to reserve
339  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
340  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
341  *	map a new page for vm_map_entry structures.  SMP systems are
342  *	particularly sensitive.
343  *
344  *	This routine is called in early boot so we cannot just call
345  *	vm_map_entry_reserve().
346  *
347  *	May be called for a gd other then mycpu, but may only be called
348  *	during early boot.
349  */
350 void
351 vm_map_entry_reserve_cpu_init(globaldata_t gd)
352 {
353 	vm_map_entry_t entry;
354 	int i;
355 
356 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
357 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
358 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
359 		entry->next = gd->gd_vme_base;
360 		gd->gd_vme_base = entry;
361 	}
362 }
363 
364 /*
365  *	vm_map_entry_reserve:
366  *
367  *	Reserves vm_map_entry structures so code later on can manipulate
368  *	map_entry structures within a locked map without blocking trying
369  *	to allocate a new vm_map_entry.
370  */
371 int
372 vm_map_entry_reserve(int count)
373 {
374 	struct globaldata *gd = mycpu;
375 	vm_map_entry_t entry;
376 
377 	crit_enter();
378 
379 	/*
380 	 * Make sure we have enough structures in gd_vme_base to handle
381 	 * the reservation request.
382 	 */
383 	while (gd->gd_vme_avail < count) {
384 		entry = zalloc(mapentzone);
385 		entry->next = gd->gd_vme_base;
386 		gd->gd_vme_base = entry;
387 		++gd->gd_vme_avail;
388 	}
389 	gd->gd_vme_avail -= count;
390 	crit_exit();
391 	return(count);
392 }
393 
394 /*
395  *	vm_map_entry_release:
396  *
397  *	Releases previously reserved vm_map_entry structures that were not
398  *	used.  If we have too much junk in our per-cpu cache clean some of
399  *	it out.
400  */
401 void
402 vm_map_entry_release(int count)
403 {
404 	struct globaldata *gd = mycpu;
405 	vm_map_entry_t entry;
406 
407 	crit_enter();
408 	gd->gd_vme_avail += count;
409 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
410 		entry = gd->gd_vme_base;
411 		KKASSERT(entry != NULL);
412 		gd->gd_vme_base = entry->next;
413 		--gd->gd_vme_avail;
414 		crit_exit();
415 		zfree(mapentzone, entry);
416 		crit_enter();
417 	}
418 	crit_exit();
419 }
420 
421 /*
422  *	vm_map_entry_kreserve:
423  *
424  *	Reserve map entry structures for use in kernel_map itself.  These
425  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
426  *	was inited.  This function is used by zalloc() to avoid a recursion
427  *	when zalloc() itself needs to allocate additional kernel memory.
428  *
429  *	This function works like the normal reserve but does not load the
430  *	vm_map_entry cache (because that would result in an infinite
431  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
432  *
433  *	Any caller of this function must be sure to renormalize after
434  *	potentially eating entries to ensure that the reserve supply
435  *	remains intact.
436  */
437 int
438 vm_map_entry_kreserve(int count)
439 {
440 	struct globaldata *gd = mycpu;
441 
442 	crit_enter();
443 	gd->gd_vme_avail -= count;
444 	crit_exit();
445 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
446 	return(count);
447 }
448 
449 /*
450  *	vm_map_entry_krelease:
451  *
452  *	Release previously reserved map entries for kernel_map.  We do not
453  *	attempt to clean up like the normal release function as this would
454  *	cause an unnecessary (but probably not fatal) deep procedure call.
455  */
456 void
457 vm_map_entry_krelease(int count)
458 {
459 	struct globaldata *gd = mycpu;
460 
461 	crit_enter();
462 	gd->gd_vme_avail += count;
463 	crit_exit();
464 }
465 
466 /*
467  *	vm_map_entry_create:	[ internal use only ]
468  *
469  *	Allocates a VM map entry for insertion.  No entry fields are filled
470  *	in.
471  *
472  *	This routine may be called from an interrupt thread but not a FAST
473  *	interrupt.  This routine may recurse the map lock.
474  */
475 static vm_map_entry_t
476 vm_map_entry_create(vm_map_t map, int *countp)
477 {
478 	struct globaldata *gd = mycpu;
479 	vm_map_entry_t entry;
480 
481 	KKASSERT(*countp > 0);
482 	--*countp;
483 	crit_enter();
484 	entry = gd->gd_vme_base;
485 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
486 	gd->gd_vme_base = entry->next;
487 	crit_exit();
488 	return(entry);
489 }
490 
491 /*
492  *	vm_map_entry_dispose:	[ internal use only ]
493  *
494  *	Dispose of a vm_map_entry that is no longer being referenced.  This
495  *	function may be called from an interrupt.
496  */
497 static void
498 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
499 {
500 	struct globaldata *gd = mycpu;
501 
502 	++*countp;
503 	crit_enter();
504 	entry->next = gd->gd_vme_base;
505 	gd->gd_vme_base = entry;
506 	crit_exit();
507 }
508 
509 
510 /*
511  *	vm_map_entry_{un,}link:
512  *
513  *	Insert/remove entries from maps.
514  */
515 static __inline void
516 vm_map_entry_link(vm_map_t map,
517 		  vm_map_entry_t after_where,
518 		  vm_map_entry_t entry)
519 {
520 	map->nentries++;
521 	entry->prev = after_where;
522 	entry->next = after_where->next;
523 	entry->next->prev = entry;
524 	after_where->next = entry;
525 }
526 
527 static __inline void
528 vm_map_entry_unlink(vm_map_t map,
529 		    vm_map_entry_t entry)
530 {
531 	vm_map_entry_t prev;
532 	vm_map_entry_t next;
533 
534 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
535 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
536 	prev = entry->prev;
537 	next = entry->next;
538 	next->prev = prev;
539 	prev->next = next;
540 	map->nentries--;
541 }
542 
543 /*
544  *	SAVE_HINT:
545  *
546  *	Saves the specified entry as the hint for
547  *	future lookups.
548  */
549 #define	SAVE_HINT(map,value) \
550 		(map)->hint = (value);
551 
552 /*
553  *	vm_map_lookup_entry:	[ internal use only ]
554  *
555  *	Finds the map entry containing (or
556  *	immediately preceding) the specified address
557  *	in the given map; the entry is returned
558  *	in the "entry" parameter.  The boolean
559  *	result indicates whether the address is
560  *	actually contained in the map.
561  */
562 boolean_t
563 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
564     vm_map_entry_t *entry /* OUT */)
565 {
566 	vm_map_entry_t cur;
567 	vm_map_entry_t last;
568 
569 	/*
570 	 * Start looking either from the head of the list, or from the hint.
571 	 */
572 
573 	cur = map->hint;
574 
575 	if (cur == &map->header)
576 		cur = cur->next;
577 
578 	if (address >= cur->start) {
579 		/*
580 		 * Go from hint to end of list.
581 		 *
582 		 * But first, make a quick check to see if we are already looking
583 		 * at the entry we want (which is usually the case). Note also
584 		 * that we don't need to save the hint here... it is the same
585 		 * hint (unless we are at the header, in which case the hint
586 		 * didn't buy us anything anyway).
587 		 */
588 		last = &map->header;
589 		if ((cur != last) && (cur->end > address)) {
590 			*entry = cur;
591 			return (TRUE);
592 		}
593 	} else {
594 		/*
595 		 * Go from start to hint, *inclusively*
596 		 */
597 		last = cur->next;
598 		cur = map->header.next;
599 	}
600 
601 	/*
602 	 * Search linearly
603 	 */
604 
605 	while (cur != last) {
606 		if (cur->end > address) {
607 			if (address >= cur->start) {
608 				/*
609 				 * Save this lookup for future hints, and
610 				 * return
611 				 */
612 
613 				*entry = cur;
614 				SAVE_HINT(map, cur);
615 				return (TRUE);
616 			}
617 			break;
618 		}
619 		cur = cur->next;
620 	}
621 	*entry = cur->prev;
622 	SAVE_HINT(map, *entry);
623 	return (FALSE);
624 }
625 
626 /*
627  *	vm_map_insert:
628  *
629  *	Inserts the given whole VM object into the target
630  *	map at the specified address range.  The object's
631  *	size should match that of the address range.
632  *
633  *	Requires that the map be locked, and leaves it so.  Requires that
634  *	sufficient vm_map_entry structures have been reserved and tracks
635  *	the use via countp.
636  *
637  *	If object is non-NULL, ref count must be bumped by caller
638  *	prior to making call to account for the new entry.
639  */
640 int
641 vm_map_insert(vm_map_t map, int *countp,
642 	      vm_object_t object, vm_ooffset_t offset,
643 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
644 	      int cow)
645 {
646 	vm_map_entry_t new_entry;
647 	vm_map_entry_t prev_entry;
648 	vm_map_entry_t temp_entry;
649 	vm_eflags_t protoeflags;
650 
651 	/*
652 	 * Check that the start and end points are not bogus.
653 	 */
654 
655 	if ((start < map->min_offset) || (end > map->max_offset) ||
656 	    (start >= end))
657 		return (KERN_INVALID_ADDRESS);
658 
659 	/*
660 	 * Find the entry prior to the proposed starting address; if it's part
661 	 * of an existing entry, this range is bogus.
662 	 */
663 
664 	if (vm_map_lookup_entry(map, start, &temp_entry))
665 		return (KERN_NO_SPACE);
666 
667 	prev_entry = temp_entry;
668 
669 	/*
670 	 * Assert that the next entry doesn't overlap the end point.
671 	 */
672 
673 	if ((prev_entry->next != &map->header) &&
674 	    (prev_entry->next->start < end))
675 		return (KERN_NO_SPACE);
676 
677 	protoeflags = 0;
678 
679 	if (cow & MAP_COPY_ON_WRITE)
680 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
681 
682 	if (cow & MAP_NOFAULT) {
683 		protoeflags |= MAP_ENTRY_NOFAULT;
684 
685 		KASSERT(object == NULL,
686 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
687 	}
688 	if (cow & MAP_DISABLE_SYNCER)
689 		protoeflags |= MAP_ENTRY_NOSYNC;
690 	if (cow & MAP_DISABLE_COREDUMP)
691 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
692 
693 	if (object) {
694 		/*
695 		 * When object is non-NULL, it could be shared with another
696 		 * process.  We have to set or clear OBJ_ONEMAPPING
697 		 * appropriately.
698 		 */
699 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
700 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
701 		}
702 	}
703 	else if ((prev_entry != &map->header) &&
704 		 (prev_entry->eflags == protoeflags) &&
705 		 (prev_entry->end == start) &&
706 		 (prev_entry->wired_count == 0) &&
707 		 ((prev_entry->object.vm_object == NULL) ||
708 		  vm_object_coalesce(prev_entry->object.vm_object,
709 				     OFF_TO_IDX(prev_entry->offset),
710 				     (vm_size_t)(prev_entry->end - prev_entry->start),
711 				     (vm_size_t)(end - prev_entry->end)))) {
712 		/*
713 		 * We were able to extend the object.  Determine if we
714 		 * can extend the previous map entry to include the
715 		 * new range as well.
716 		 */
717 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
718 		    (prev_entry->protection == prot) &&
719 		    (prev_entry->max_protection == max)) {
720 			map->size += (end - prev_entry->end);
721 			prev_entry->end = end;
722 			vm_map_simplify_entry(map, prev_entry, countp);
723 			return (KERN_SUCCESS);
724 		}
725 
726 		/*
727 		 * If we can extend the object but cannot extend the
728 		 * map entry, we have to create a new map entry.  We
729 		 * must bump the ref count on the extended object to
730 		 * account for it.  object may be NULL.
731 		 */
732 		object = prev_entry->object.vm_object;
733 		offset = prev_entry->offset +
734 			(prev_entry->end - prev_entry->start);
735 		vm_object_reference(object);
736 	}
737 
738 	/*
739 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
740 	 * in things like the buffer map where we manage kva but do not manage
741 	 * backing objects.
742 	 */
743 
744 	/*
745 	 * Create a new entry
746 	 */
747 
748 	new_entry = vm_map_entry_create(map, countp);
749 	new_entry->start = start;
750 	new_entry->end = end;
751 
752 	new_entry->eflags = protoeflags;
753 	new_entry->object.vm_object = object;
754 	new_entry->offset = offset;
755 	new_entry->avail_ssize = 0;
756 
757 	new_entry->inheritance = VM_INHERIT_DEFAULT;
758 	new_entry->protection = prot;
759 	new_entry->max_protection = max;
760 	new_entry->wired_count = 0;
761 
762 	/*
763 	 * Insert the new entry into the list
764 	 */
765 
766 	vm_map_entry_link(map, prev_entry, new_entry);
767 	map->size += new_entry->end - new_entry->start;
768 
769 	/*
770 	 * Update the free space hint
771 	 */
772 	if ((map->first_free == prev_entry) &&
773 	    (prev_entry->end >= new_entry->start)) {
774 		map->first_free = new_entry;
775 	}
776 
777 #if 0
778 	/*
779 	 * Temporarily removed to avoid MAP_STACK panic, due to
780 	 * MAP_STACK being a huge hack.  Will be added back in
781 	 * when MAP_STACK (and the user stack mapping) is fixed.
782 	 */
783 	/*
784 	 * It may be possible to simplify the entry
785 	 */
786 	vm_map_simplify_entry(map, new_entry, countp);
787 #endif
788 
789 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
790 		pmap_object_init_pt(map->pmap, start, prot,
791 				    object, OFF_TO_IDX(offset), end - start,
792 				    cow & MAP_PREFAULT_PARTIAL);
793 	}
794 
795 	return (KERN_SUCCESS);
796 }
797 
798 /*
799  * Find sufficient space for `length' bytes in the given map, starting at
800  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
801  *
802  * This function will returned an arbitrarily aligned pointer.  If no
803  * particular alignment is required you should pass align as 1.  Note that
804  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
805  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
806  * argument.
807  *
808  * 'align' should be a power of 2 but is not required to be.
809  */
810 int
811 vm_map_findspace(
812 	vm_map_t map,
813 	vm_offset_t start,
814 	vm_size_t length,
815 	vm_offset_t align,
816 	vm_offset_t *addr)
817 {
818 	vm_map_entry_t entry, next;
819 	vm_offset_t end;
820 	vm_offset_t align_mask;
821 
822 	if (start < map->min_offset)
823 		start = map->min_offset;
824 	if (start > map->max_offset)
825 		return (1);
826 
827 	/*
828 	 * If the alignment is not a power of 2 we will have to use
829 	 * a mod/division, set align_mask to a special value.
830 	 */
831 	if ((align | (align - 1)) + 1 != (align << 1))
832 		align_mask = (vm_offset_t)-1;
833 	else
834 		align_mask = align - 1;
835 
836 retry:
837 	/*
838 	 * Look for the first possible address; if there's already something
839 	 * at this address, we have to start after it.
840 	 */
841 	if (start == map->min_offset) {
842 		if ((entry = map->first_free) != &map->header)
843 			start = entry->end;
844 	} else {
845 		vm_map_entry_t tmp;
846 
847 		if (vm_map_lookup_entry(map, start, &tmp))
848 			start = tmp->end;
849 		entry = tmp;
850 	}
851 
852 	/*
853 	 * Look through the rest of the map, trying to fit a new region in the
854 	 * gap between existing regions, or after the very last region.
855 	 */
856 	for (;; start = (entry = next)->end) {
857 		/*
858 		 * Adjust the proposed start by the requested alignment,
859 		 * be sure that we didn't wrap the address.
860 		 */
861 		if (align_mask == (vm_offset_t)-1)
862 			end = ((start + align - 1) / align) * align;
863 		else
864 			end = (start + align_mask) & ~align_mask;
865 		if (end < start)
866 			return (1);
867 		start = end;
868 		/*
869 		 * Find the end of the proposed new region.  Be sure we didn't
870 		 * go beyond the end of the map, or wrap around the address.
871 		 * Then check to see if this is the last entry or if the
872 		 * proposed end fits in the gap between this and the next
873 		 * entry.
874 		 */
875 		end = start + length;
876 		if (end > map->max_offset || end < start)
877 			return (1);
878 		next = entry->next;
879 		if (next == &map->header || next->start >= end)
880 			break;
881 	}
882 	SAVE_HINT(map, entry);
883 	if (map == kernel_map) {
884 		vm_offset_t ksize;
885 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
886 			pmap_growkernel(ksize);
887 			goto retry;
888 		}
889 	}
890 	*addr = start;
891 	return (0);
892 }
893 
894 /*
895  *	vm_map_find finds an unallocated region in the target address
896  *	map with the given length.  The search is defined to be
897  *	first-fit from the specified address; the region found is
898  *	returned in the same parameter.
899  *
900  *	If object is non-NULL, ref count must be bumped by caller
901  *	prior to making call to account for the new entry.
902  */
903 int
904 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
905 	    vm_offset_t *addr,	/* IN/OUT */
906 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
907 	    vm_prot_t max, int cow)
908 {
909 	vm_offset_t start;
910 	int result;
911 	int count;
912 
913 	start = *addr;
914 
915 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
916 	vm_map_lock(map);
917 	if (find_space) {
918 		if (vm_map_findspace(map, start, length, 1, addr)) {
919 			vm_map_unlock(map);
920 			vm_map_entry_release(count);
921 			return (KERN_NO_SPACE);
922 		}
923 		start = *addr;
924 	}
925 	result = vm_map_insert(map, &count, object, offset,
926 		start, start + length, prot, max, cow);
927 	vm_map_unlock(map);
928 	vm_map_entry_release(count);
929 
930 	return (result);
931 }
932 
933 /*
934  *	vm_map_simplify_entry:
935  *
936  *	Simplify the given map entry by merging with either neighbor.  This
937  *	routine also has the ability to merge with both neighbors.
938  *
939  *	The map must be locked.
940  *
941  *	This routine guarentees that the passed entry remains valid (though
942  *	possibly extended).  When merging, this routine may delete one or
943  *	both neighbors.  No action is taken on entries which have their
944  *	in-transition flag set.
945  */
946 void
947 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
948 {
949 	vm_map_entry_t next, prev;
950 	vm_size_t prevsize, esize;
951 
952 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
953 		++mycpu->gd_cnt.v_intrans_coll;
954 		return;
955 	}
956 
957 	prev = entry->prev;
958 	if (prev != &map->header) {
959 		prevsize = prev->end - prev->start;
960 		if ( (prev->end == entry->start) &&
961 		     (prev->object.vm_object == entry->object.vm_object) &&
962 		     (!prev->object.vm_object ||
963 			(prev->offset + prevsize == entry->offset)) &&
964 		     (prev->eflags == entry->eflags) &&
965 		     (prev->protection == entry->protection) &&
966 		     (prev->max_protection == entry->max_protection) &&
967 		     (prev->inheritance == entry->inheritance) &&
968 		     (prev->wired_count == entry->wired_count)) {
969 			if (map->first_free == prev)
970 				map->first_free = entry;
971 			if (map->hint == prev)
972 				map->hint = entry;
973 			vm_map_entry_unlink(map, prev);
974 			entry->start = prev->start;
975 			entry->offset = prev->offset;
976 			if (prev->object.vm_object)
977 				vm_object_deallocate(prev->object.vm_object);
978 			vm_map_entry_dispose(map, prev, countp);
979 		}
980 	}
981 
982 	next = entry->next;
983 	if (next != &map->header) {
984 		esize = entry->end - entry->start;
985 		if ((entry->end == next->start) &&
986 		    (next->object.vm_object == entry->object.vm_object) &&
987 		     (!entry->object.vm_object ||
988 			(entry->offset + esize == next->offset)) &&
989 		    (next->eflags == entry->eflags) &&
990 		    (next->protection == entry->protection) &&
991 		    (next->max_protection == entry->max_protection) &&
992 		    (next->inheritance == entry->inheritance) &&
993 		    (next->wired_count == entry->wired_count)) {
994 			if (map->first_free == next)
995 				map->first_free = entry;
996 			if (map->hint == next)
997 				map->hint = entry;
998 			vm_map_entry_unlink(map, next);
999 			entry->end = next->end;
1000 			if (next->object.vm_object)
1001 				vm_object_deallocate(next->object.vm_object);
1002 			vm_map_entry_dispose(map, next, countp);
1003 	        }
1004 	}
1005 }
1006 /*
1007  *	vm_map_clip_start:	[ internal use only ]
1008  *
1009  *	Asserts that the given entry begins at or after
1010  *	the specified address; if necessary,
1011  *	it splits the entry into two.
1012  */
1013 #define vm_map_clip_start(map, entry, startaddr, countp) \
1014 { \
1015 	if (startaddr > entry->start) \
1016 		_vm_map_clip_start(map, entry, startaddr, countp); \
1017 }
1018 
1019 /*
1020  *	This routine is called only when it is known that
1021  *	the entry must be split.
1022  */
1023 static void
1024 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1025 {
1026 	vm_map_entry_t new_entry;
1027 
1028 	/*
1029 	 * Split off the front portion -- note that we must insert the new
1030 	 * entry BEFORE this one, so that this entry has the specified
1031 	 * starting address.
1032 	 */
1033 
1034 	vm_map_simplify_entry(map, entry, countp);
1035 
1036 	/*
1037 	 * If there is no object backing this entry, we might as well create
1038 	 * one now.  If we defer it, an object can get created after the map
1039 	 * is clipped, and individual objects will be created for the split-up
1040 	 * map.  This is a bit of a hack, but is also about the best place to
1041 	 * put this improvement.
1042 	 */
1043 
1044 	if (entry->object.vm_object == NULL && !map->system_map) {
1045 		vm_object_t object;
1046 		object = vm_object_allocate(OBJT_DEFAULT,
1047 				atop(entry->end - entry->start));
1048 		entry->object.vm_object = object;
1049 		entry->offset = 0;
1050 	}
1051 
1052 	new_entry = vm_map_entry_create(map, countp);
1053 	*new_entry = *entry;
1054 
1055 	new_entry->end = start;
1056 	entry->offset += (start - entry->start);
1057 	entry->start = start;
1058 
1059 	vm_map_entry_link(map, entry->prev, new_entry);
1060 
1061 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1062 		vm_object_reference(new_entry->object.vm_object);
1063 	}
1064 }
1065 
1066 /*
1067  *	vm_map_clip_end:	[ internal use only ]
1068  *
1069  *	Asserts that the given entry ends at or before
1070  *	the specified address; if necessary,
1071  *	it splits the entry into two.
1072  */
1073 
1074 #define vm_map_clip_end(map, entry, endaddr, countp) \
1075 { \
1076 	if (endaddr < entry->end) \
1077 		_vm_map_clip_end(map, entry, endaddr, countp); \
1078 }
1079 
1080 /*
1081  *	This routine is called only when it is known that
1082  *	the entry must be split.
1083  */
1084 static void
1085 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1086 {
1087 	vm_map_entry_t new_entry;
1088 
1089 	/*
1090 	 * If there is no object backing this entry, we might as well create
1091 	 * one now.  If we defer it, an object can get created after the map
1092 	 * is clipped, and individual objects will be created for the split-up
1093 	 * map.  This is a bit of a hack, but is also about the best place to
1094 	 * put this improvement.
1095 	 */
1096 
1097 	if (entry->object.vm_object == NULL && !map->system_map) {
1098 		vm_object_t object;
1099 		object = vm_object_allocate(OBJT_DEFAULT,
1100 				atop(entry->end - entry->start));
1101 		entry->object.vm_object = object;
1102 		entry->offset = 0;
1103 	}
1104 
1105 	/*
1106 	 * Create a new entry and insert it AFTER the specified entry
1107 	 */
1108 
1109 	new_entry = vm_map_entry_create(map, countp);
1110 	*new_entry = *entry;
1111 
1112 	new_entry->start = entry->end = end;
1113 	new_entry->offset += (end - entry->start);
1114 
1115 	vm_map_entry_link(map, entry, new_entry);
1116 
1117 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1118 		vm_object_reference(new_entry->object.vm_object);
1119 	}
1120 }
1121 
1122 /*
1123  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1124  *
1125  *	Asserts that the starting and ending region
1126  *	addresses fall within the valid range of the map.
1127  */
1128 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1129 		{					\
1130 		if (start < vm_map_min(map))		\
1131 			start = vm_map_min(map);	\
1132 		if (end > vm_map_max(map))		\
1133 			end = vm_map_max(map);		\
1134 		if (start > end)			\
1135 			start = end;			\
1136 		}
1137 
1138 /*
1139  *	vm_map_transition_wait:	[ kernel use only ]
1140  *
1141  *	Used to block when an in-transition collison occurs.  The map
1142  *	is unlocked for the sleep and relocked before the return.
1143  */
1144 static
1145 void
1146 vm_map_transition_wait(vm_map_t map)
1147 {
1148 	vm_map_unlock(map);
1149 	tsleep(map, 0, "vment", 0);
1150 	vm_map_lock(map);
1151 }
1152 
1153 /*
1154  * CLIP_CHECK_BACK
1155  * CLIP_CHECK_FWD
1156  *
1157  *	When we do blocking operations with the map lock held it is
1158  *	possible that a clip might have occured on our in-transit entry,
1159  *	requiring an adjustment to the entry in our loop.  These macros
1160  *	help the pageable and clip_range code deal with the case.  The
1161  *	conditional costs virtually nothing if no clipping has occured.
1162  */
1163 
1164 #define CLIP_CHECK_BACK(entry, save_start)		\
1165     do {						\
1166 	    while (entry->start != save_start) {	\
1167 		    entry = entry->prev;		\
1168 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1169 	    }						\
1170     } while(0)
1171 
1172 #define CLIP_CHECK_FWD(entry, save_end)			\
1173     do {						\
1174 	    while (entry->end != save_end) {		\
1175 		    entry = entry->next;		\
1176 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1177 	    }						\
1178     } while(0)
1179 
1180 
1181 /*
1182  *	vm_map_clip_range:	[ kernel use only ]
1183  *
1184  *	Clip the specified range and return the base entry.  The
1185  *	range may cover several entries starting at the returned base
1186  *	and the first and last entry in the covering sequence will be
1187  *	properly clipped to the requested start and end address.
1188  *
1189  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1190  *	flag.
1191  *
1192  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1193  *	covered by the requested range.
1194  *
1195  *	The map must be exclusively locked on entry and will remain locked
1196  *	on return. If no range exists or the range contains holes and you
1197  *	specified that no holes were allowed, NULL will be returned.  This
1198  *	routine may temporarily unlock the map in order avoid a deadlock when
1199  *	sleeping.
1200  */
1201 static
1202 vm_map_entry_t
1203 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1204 	int *countp, int flags)
1205 {
1206 	vm_map_entry_t start_entry;
1207 	vm_map_entry_t entry;
1208 
1209 	/*
1210 	 * Locate the entry and effect initial clipping.  The in-transition
1211 	 * case does not occur very often so do not try to optimize it.
1212 	 */
1213 again:
1214 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1215 		return (NULL);
1216 	entry = start_entry;
1217 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1218 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1219 		++mycpu->gd_cnt.v_intrans_coll;
1220 		++mycpu->gd_cnt.v_intrans_wait;
1221 		vm_map_transition_wait(map);
1222 		/*
1223 		 * entry and/or start_entry may have been clipped while
1224 		 * we slept, or may have gone away entirely.  We have
1225 		 * to restart from the lookup.
1226 		 */
1227 		goto again;
1228 	}
1229 	/*
1230 	 * Since we hold an exclusive map lock we do not have to restart
1231 	 * after clipping, even though clipping may block in zalloc.
1232 	 */
1233 	vm_map_clip_start(map, entry, start, countp);
1234 	vm_map_clip_end(map, entry, end, countp);
1235 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1236 
1237 	/*
1238 	 * Scan entries covered by the range.  When working on the next
1239 	 * entry a restart need only re-loop on the current entry which
1240 	 * we have already locked, since 'next' may have changed.  Also,
1241 	 * even though entry is safe, it may have been clipped so we
1242 	 * have to iterate forwards through the clip after sleeping.
1243 	 */
1244 	while (entry->next != &map->header && entry->next->start < end) {
1245 		vm_map_entry_t next = entry->next;
1246 
1247 		if (flags & MAP_CLIP_NO_HOLES) {
1248 			if (next->start > entry->end) {
1249 				vm_map_unclip_range(map, start_entry,
1250 					start, entry->end, countp, flags);
1251 				return(NULL);
1252 			}
1253 		}
1254 
1255 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1256 			vm_offset_t save_end = entry->end;
1257 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1258 			++mycpu->gd_cnt.v_intrans_coll;
1259 			++mycpu->gd_cnt.v_intrans_wait;
1260 			vm_map_transition_wait(map);
1261 
1262 			/*
1263 			 * clips might have occured while we blocked.
1264 			 */
1265 			CLIP_CHECK_FWD(entry, save_end);
1266 			CLIP_CHECK_BACK(start_entry, start);
1267 			continue;
1268 		}
1269 		/*
1270 		 * No restart necessary even though clip_end may block, we
1271 		 * are holding the map lock.
1272 		 */
1273 		vm_map_clip_end(map, next, end, countp);
1274 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1275 		entry = next;
1276 	}
1277 	if (flags & MAP_CLIP_NO_HOLES) {
1278 		if (entry->end != end) {
1279 			vm_map_unclip_range(map, start_entry,
1280 				start, entry->end, countp, flags);
1281 			return(NULL);
1282 		}
1283 	}
1284 	return(start_entry);
1285 }
1286 
1287 /*
1288  *	vm_map_unclip_range:	[ kernel use only ]
1289  *
1290  *	Undo the effect of vm_map_clip_range().  You should pass the same
1291  *	flags and the same range that you passed to vm_map_clip_range().
1292  *	This code will clear the in-transition flag on the entries and
1293  *	wake up anyone waiting.  This code will also simplify the sequence
1294  *	and attempt to merge it with entries before and after the sequence.
1295  *
1296  *	The map must be locked on entry and will remain locked on return.
1297  *
1298  *	Note that you should also pass the start_entry returned by
1299  *	vm_map_clip_range().  However, if you block between the two calls
1300  *	with the map unlocked please be aware that the start_entry may
1301  *	have been clipped and you may need to scan it backwards to find
1302  *	the entry corresponding with the original start address.  You are
1303  *	responsible for this, vm_map_unclip_range() expects the correct
1304  *	start_entry to be passed to it and will KASSERT otherwise.
1305  */
1306 static
1307 void
1308 vm_map_unclip_range(
1309 	vm_map_t map,
1310 	vm_map_entry_t start_entry,
1311 	vm_offset_t start,
1312 	vm_offset_t end,
1313 	int *countp,
1314 	int flags)
1315 {
1316 	vm_map_entry_t entry;
1317 
1318 	entry = start_entry;
1319 
1320 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1321 	while (entry != &map->header && entry->start < end) {
1322 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1323 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1324 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1325 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1326 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1327 			wakeup(map);
1328 		}
1329 		entry = entry->next;
1330 	}
1331 
1332 	/*
1333 	 * Simplification does not block so there is no restart case.
1334 	 */
1335 	entry = start_entry;
1336 	while (entry != &map->header && entry->start < end) {
1337 		vm_map_simplify_entry(map, entry, countp);
1338 		entry = entry->next;
1339 	}
1340 }
1341 
1342 /*
1343  *	vm_map_submap:		[ kernel use only ]
1344  *
1345  *	Mark the given range as handled by a subordinate map.
1346  *
1347  *	This range must have been created with vm_map_find,
1348  *	and no other operations may have been performed on this
1349  *	range prior to calling vm_map_submap.
1350  *
1351  *	Only a limited number of operations can be performed
1352  *	within this rage after calling vm_map_submap:
1353  *		vm_fault
1354  *	[Don't try vm_map_copy!]
1355  *
1356  *	To remove a submapping, one must first remove the
1357  *	range from the superior map, and then destroy the
1358  *	submap (if desired).  [Better yet, don't try it.]
1359  */
1360 int
1361 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1362 {
1363 	vm_map_entry_t entry;
1364 	int result = KERN_INVALID_ARGUMENT;
1365 	int count;
1366 
1367 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1368 	vm_map_lock(map);
1369 
1370 	VM_MAP_RANGE_CHECK(map, start, end);
1371 
1372 	if (vm_map_lookup_entry(map, start, &entry)) {
1373 		vm_map_clip_start(map, entry, start, &count);
1374 	} else {
1375 		entry = entry->next;
1376 	}
1377 
1378 	vm_map_clip_end(map, entry, end, &count);
1379 
1380 	if ((entry->start == start) && (entry->end == end) &&
1381 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1382 	    (entry->object.vm_object == NULL)) {
1383 		entry->object.sub_map = submap;
1384 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1385 		result = KERN_SUCCESS;
1386 	}
1387 	vm_map_unlock(map);
1388 	vm_map_entry_release(count);
1389 
1390 	return (result);
1391 }
1392 
1393 /*
1394  *	vm_map_protect:
1395  *
1396  *	Sets the protection of the specified address
1397  *	region in the target map.  If "set_max" is
1398  *	specified, the maximum protection is to be set;
1399  *	otherwise, only the current protection is affected.
1400  */
1401 int
1402 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1403 	       vm_prot_t new_prot, boolean_t set_max)
1404 {
1405 	vm_map_entry_t current;
1406 	vm_map_entry_t entry;
1407 	int count;
1408 
1409 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1410 	vm_map_lock(map);
1411 
1412 	VM_MAP_RANGE_CHECK(map, start, end);
1413 
1414 	if (vm_map_lookup_entry(map, start, &entry)) {
1415 		vm_map_clip_start(map, entry, start, &count);
1416 	} else {
1417 		entry = entry->next;
1418 	}
1419 
1420 	/*
1421 	 * Make a first pass to check for protection violations.
1422 	 */
1423 
1424 	current = entry;
1425 	while ((current != &map->header) && (current->start < end)) {
1426 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1427 			vm_map_unlock(map);
1428 			vm_map_entry_release(count);
1429 			return (KERN_INVALID_ARGUMENT);
1430 		}
1431 		if ((new_prot & current->max_protection) != new_prot) {
1432 			vm_map_unlock(map);
1433 			vm_map_entry_release(count);
1434 			return (KERN_PROTECTION_FAILURE);
1435 		}
1436 		current = current->next;
1437 	}
1438 
1439 	/*
1440 	 * Go back and fix up protections. [Note that clipping is not
1441 	 * necessary the second time.]
1442 	 */
1443 	current = entry;
1444 
1445 	while ((current != &map->header) && (current->start < end)) {
1446 		vm_prot_t old_prot;
1447 
1448 		vm_map_clip_end(map, current, end, &count);
1449 
1450 		old_prot = current->protection;
1451 		if (set_max)
1452 			current->protection =
1453 			    (current->max_protection = new_prot) &
1454 			    old_prot;
1455 		else
1456 			current->protection = new_prot;
1457 
1458 		/*
1459 		 * Update physical map if necessary. Worry about copy-on-write
1460 		 * here -- CHECK THIS XXX
1461 		 */
1462 
1463 		if (current->protection != old_prot) {
1464 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1465 							VM_PROT_ALL)
1466 
1467 			pmap_protect(map->pmap, current->start,
1468 			    current->end,
1469 			    current->protection & MASK(current));
1470 #undef	MASK
1471 		}
1472 
1473 		vm_map_simplify_entry(map, current, &count);
1474 
1475 		current = current->next;
1476 	}
1477 
1478 	vm_map_unlock(map);
1479 	vm_map_entry_release(count);
1480 	return (KERN_SUCCESS);
1481 }
1482 
1483 /*
1484  *	vm_map_madvise:
1485  *
1486  * 	This routine traverses a processes map handling the madvise
1487  *	system call.  Advisories are classified as either those effecting
1488  *	the vm_map_entry structure, or those effecting the underlying
1489  *	objects.
1490  */
1491 
1492 int
1493 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1494 {
1495 	vm_map_entry_t current, entry;
1496 	int modify_map = 0;
1497 	int count;
1498 
1499 	/*
1500 	 * Some madvise calls directly modify the vm_map_entry, in which case
1501 	 * we need to use an exclusive lock on the map and we need to perform
1502 	 * various clipping operations.  Otherwise we only need a read-lock
1503 	 * on the map.
1504 	 */
1505 
1506 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1507 
1508 	switch(behav) {
1509 	case MADV_NORMAL:
1510 	case MADV_SEQUENTIAL:
1511 	case MADV_RANDOM:
1512 	case MADV_NOSYNC:
1513 	case MADV_AUTOSYNC:
1514 	case MADV_NOCORE:
1515 	case MADV_CORE:
1516 		modify_map = 1;
1517 		vm_map_lock(map);
1518 		break;
1519 	case MADV_WILLNEED:
1520 	case MADV_DONTNEED:
1521 	case MADV_FREE:
1522 		vm_map_lock_read(map);
1523 		break;
1524 	default:
1525 		vm_map_entry_release(count);
1526 		return (KERN_INVALID_ARGUMENT);
1527 	}
1528 
1529 	/*
1530 	 * Locate starting entry and clip if necessary.
1531 	 */
1532 
1533 	VM_MAP_RANGE_CHECK(map, start, end);
1534 
1535 	if (vm_map_lookup_entry(map, start, &entry)) {
1536 		if (modify_map)
1537 			vm_map_clip_start(map, entry, start, &count);
1538 	} else {
1539 		entry = entry->next;
1540 	}
1541 
1542 	if (modify_map) {
1543 		/*
1544 		 * madvise behaviors that are implemented in the vm_map_entry.
1545 		 *
1546 		 * We clip the vm_map_entry so that behavioral changes are
1547 		 * limited to the specified address range.
1548 		 */
1549 		for (current = entry;
1550 		     (current != &map->header) && (current->start < end);
1551 		     current = current->next
1552 		) {
1553 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1554 				continue;
1555 
1556 			vm_map_clip_end(map, current, end, &count);
1557 
1558 			switch (behav) {
1559 			case MADV_NORMAL:
1560 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1561 				break;
1562 			case MADV_SEQUENTIAL:
1563 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1564 				break;
1565 			case MADV_RANDOM:
1566 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1567 				break;
1568 			case MADV_NOSYNC:
1569 				current->eflags |= MAP_ENTRY_NOSYNC;
1570 				break;
1571 			case MADV_AUTOSYNC:
1572 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1573 				break;
1574 			case MADV_NOCORE:
1575 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1576 				break;
1577 			case MADV_CORE:
1578 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1579 				break;
1580 			default:
1581 				break;
1582 			}
1583 			vm_map_simplify_entry(map, current, &count);
1584 		}
1585 		vm_map_unlock(map);
1586 	} else {
1587 		vm_pindex_t pindex;
1588 		int count;
1589 
1590 		/*
1591 		 * madvise behaviors that are implemented in the underlying
1592 		 * vm_object.
1593 		 *
1594 		 * Since we don't clip the vm_map_entry, we have to clip
1595 		 * the vm_object pindex and count.
1596 		 */
1597 		for (current = entry;
1598 		     (current != &map->header) && (current->start < end);
1599 		     current = current->next
1600 		) {
1601 			vm_offset_t useStart;
1602 
1603 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1604 				continue;
1605 
1606 			pindex = OFF_TO_IDX(current->offset);
1607 			count = atop(current->end - current->start);
1608 			useStart = current->start;
1609 
1610 			if (current->start < start) {
1611 				pindex += atop(start - current->start);
1612 				count -= atop(start - current->start);
1613 				useStart = start;
1614 			}
1615 			if (current->end > end)
1616 				count -= atop(current->end - end);
1617 
1618 			if (count <= 0)
1619 				continue;
1620 
1621 			vm_object_madvise(current->object.vm_object,
1622 					  pindex, count, behav);
1623 			if (behav == MADV_WILLNEED) {
1624 				pmap_object_init_pt(
1625 				    map->pmap,
1626 				    useStart,
1627 				    current->protection,
1628 				    current->object.vm_object,
1629 				    pindex,
1630 				    (count << PAGE_SHIFT),
1631 				    MAP_PREFAULT_MADVISE
1632 				);
1633 			}
1634 		}
1635 		vm_map_unlock_read(map);
1636 	}
1637 	vm_map_entry_release(count);
1638 	return(0);
1639 }
1640 
1641 
1642 /*
1643  *	vm_map_inherit:
1644  *
1645  *	Sets the inheritance of the specified address
1646  *	range in the target map.  Inheritance
1647  *	affects how the map will be shared with
1648  *	child maps at the time of vm_map_fork.
1649  */
1650 int
1651 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1652 	       vm_inherit_t new_inheritance)
1653 {
1654 	vm_map_entry_t entry;
1655 	vm_map_entry_t temp_entry;
1656 	int count;
1657 
1658 	switch (new_inheritance) {
1659 	case VM_INHERIT_NONE:
1660 	case VM_INHERIT_COPY:
1661 	case VM_INHERIT_SHARE:
1662 		break;
1663 	default:
1664 		return (KERN_INVALID_ARGUMENT);
1665 	}
1666 
1667 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1668 	vm_map_lock(map);
1669 
1670 	VM_MAP_RANGE_CHECK(map, start, end);
1671 
1672 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1673 		entry = temp_entry;
1674 		vm_map_clip_start(map, entry, start, &count);
1675 	} else
1676 		entry = temp_entry->next;
1677 
1678 	while ((entry != &map->header) && (entry->start < end)) {
1679 		vm_map_clip_end(map, entry, end, &count);
1680 
1681 		entry->inheritance = new_inheritance;
1682 
1683 		vm_map_simplify_entry(map, entry, &count);
1684 
1685 		entry = entry->next;
1686 	}
1687 	vm_map_unlock(map);
1688 	vm_map_entry_release(count);
1689 	return (KERN_SUCCESS);
1690 }
1691 
1692 /*
1693  * Implement the semantics of mlock
1694  */
1695 int
1696 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1697     boolean_t new_pageable)
1698 {
1699 	vm_map_entry_t entry;
1700 	vm_map_entry_t start_entry;
1701 	vm_offset_t end;
1702 	int rv = KERN_SUCCESS;
1703 	int count;
1704 
1705 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1706 	vm_map_lock(map);
1707 	VM_MAP_RANGE_CHECK(map, start, real_end);
1708 	end = real_end;
1709 
1710 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1711 	if (start_entry == NULL) {
1712 		vm_map_unlock(map);
1713 		vm_map_entry_release(count);
1714 		return (KERN_INVALID_ADDRESS);
1715 	}
1716 
1717 	if (new_pageable == 0) {
1718 		entry = start_entry;
1719 		while ((entry != &map->header) && (entry->start < end)) {
1720 			vm_offset_t save_start;
1721 			vm_offset_t save_end;
1722 
1723 			/*
1724 			 * Already user wired or hard wired (trivial cases)
1725 			 */
1726 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1727 				entry = entry->next;
1728 				continue;
1729 			}
1730 			if (entry->wired_count != 0) {
1731 				entry->wired_count++;
1732 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1733 				entry = entry->next;
1734 				continue;
1735 			}
1736 
1737 			/*
1738 			 * A new wiring requires instantiation of appropriate
1739 			 * management structures and the faulting in of the
1740 			 * page.
1741 			 */
1742 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1743 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1744 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1745 
1746 					vm_object_shadow(&entry->object.vm_object,
1747 					    &entry->offset,
1748 					    atop(entry->end - entry->start));
1749 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1750 
1751 				} else if (entry->object.vm_object == NULL &&
1752 					   !map->system_map) {
1753 
1754 					entry->object.vm_object =
1755 					    vm_object_allocate(OBJT_DEFAULT,
1756 						atop(entry->end - entry->start));
1757 					entry->offset = (vm_offset_t) 0;
1758 
1759 				}
1760 			}
1761 			entry->wired_count++;
1762 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1763 
1764 			/*
1765 			 * Now fault in the area.  Note that vm_fault_wire()
1766 			 * may release the map lock temporarily, it will be
1767 			 * relocked on return.  The in-transition
1768 			 * flag protects the entries.
1769 			 */
1770 			save_start = entry->start;
1771 			save_end = entry->end;
1772 			rv = vm_fault_wire(map, entry, TRUE);
1773 			if (rv) {
1774 				CLIP_CHECK_BACK(entry, save_start);
1775 				for (;;) {
1776 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1777 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1778 					entry->wired_count = 0;
1779 					if (entry->end == save_end)
1780 						break;
1781 					entry = entry->next;
1782 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1783 				}
1784 				end = save_start;	/* unwire the rest */
1785 				break;
1786 			}
1787 			/*
1788 			 * note that even though the entry might have been
1789 			 * clipped, the USER_WIRED flag we set prevents
1790 			 * duplication so we do not have to do a
1791 			 * clip check.
1792 			 */
1793 			entry = entry->next;
1794 		}
1795 
1796 		/*
1797 		 * If we failed fall through to the unwiring section to
1798 		 * unwire what we had wired so far.  'end' has already
1799 		 * been adjusted.
1800 		 */
1801 		if (rv)
1802 			new_pageable = 1;
1803 
1804 		/*
1805 		 * start_entry might have been clipped if we unlocked the
1806 		 * map and blocked.  No matter how clipped it has gotten
1807 		 * there should be a fragment that is on our start boundary.
1808 		 */
1809 		CLIP_CHECK_BACK(start_entry, start);
1810 	}
1811 
1812 	/*
1813 	 * Deal with the unwiring case.
1814 	 */
1815 	if (new_pageable) {
1816 		/*
1817 		 * This is the unwiring case.  We must first ensure that the
1818 		 * range to be unwired is really wired down.  We know there
1819 		 * are no holes.
1820 		 */
1821 		entry = start_entry;
1822 		while ((entry != &map->header) && (entry->start < end)) {
1823 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1824 				rv = KERN_INVALID_ARGUMENT;
1825 				goto done;
1826 			}
1827 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1828 			entry = entry->next;
1829 		}
1830 
1831 		/*
1832 		 * Now decrement the wiring count for each region. If a region
1833 		 * becomes completely unwired, unwire its physical pages and
1834 		 * mappings.
1835 		 */
1836 		/*
1837 		 * The map entries are processed in a loop, checking to
1838 		 * make sure the entry is wired and asserting it has a wired
1839 		 * count. However, another loop was inserted more-or-less in
1840 		 * the middle of the unwiring path. This loop picks up the
1841 		 * "entry" loop variable from the first loop without first
1842 		 * setting it to start_entry. Naturally, the secound loop
1843 		 * is never entered and the pages backing the entries are
1844 		 * never unwired. This can lead to a leak of wired pages.
1845 		 */
1846 		entry = start_entry;
1847 		while ((entry != &map->header) && (entry->start < end)) {
1848 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1849 				("expected USER_WIRED on entry %p", entry));
1850 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1851 			entry->wired_count--;
1852 			if (entry->wired_count == 0)
1853 				vm_fault_unwire(map, entry);
1854 			entry = entry->next;
1855 		}
1856 	}
1857 done:
1858 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1859 		MAP_CLIP_NO_HOLES);
1860 	map->timestamp++;
1861 	vm_map_unlock(map);
1862 	vm_map_entry_release(count);
1863 	return (rv);
1864 }
1865 
1866 /*
1867  *	vm_map_wire:
1868  *
1869  *	Sets the pageability of the specified address
1870  *	range in the target map.  Regions specified
1871  *	as not pageable require locked-down physical
1872  *	memory and physical page maps.
1873  *
1874  *	The map must not be locked, but a reference
1875  *	must remain to the map throughout the call.
1876  *
1877  *	This function may be called via the zalloc path and must properly
1878  *	reserve map entries for kernel_map.
1879  */
1880 int
1881 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1882 {
1883 	vm_map_entry_t entry;
1884 	vm_map_entry_t start_entry;
1885 	vm_offset_t end;
1886 	int rv = KERN_SUCCESS;
1887 	int count;
1888 
1889 	if (kmflags & KM_KRESERVE)
1890 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1891 	else
1892 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1893 	vm_map_lock(map);
1894 	VM_MAP_RANGE_CHECK(map, start, real_end);
1895 	end = real_end;
1896 
1897 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1898 	if (start_entry == NULL) {
1899 		vm_map_unlock(map);
1900 		rv = KERN_INVALID_ADDRESS;
1901 		goto failure;
1902 	}
1903 	if ((kmflags & KM_PAGEABLE) == 0) {
1904 		/*
1905 		 * Wiring.
1906 		 *
1907 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1908 		 * objects that need to be created. Then we clip each map
1909 		 * entry to the region to be wired and increment its wiring
1910 		 * count.  We create objects before clipping the map entries
1911 		 * to avoid object proliferation.
1912 		 *
1913 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1914 		 * fault in the pages for any newly wired area (wired_count is
1915 		 * 1).
1916 		 *
1917 		 * Downgrading to a read lock for vm_fault_wire avoids a
1918 		 * possible deadlock with another process that may have faulted
1919 		 * on one of the pages to be wired (it would mark the page busy,
1920 		 * blocking us, then in turn block on the map lock that we
1921 		 * hold).  Because of problems in the recursive lock package,
1922 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1923 		 * any actions that require the write lock must be done
1924 		 * beforehand.  Because we keep the read lock on the map, the
1925 		 * copy-on-write status of the entries we modify here cannot
1926 		 * change.
1927 		 */
1928 
1929 		entry = start_entry;
1930 		while ((entry != &map->header) && (entry->start < end)) {
1931 			/*
1932 			 * Trivial case if the entry is already wired
1933 			 */
1934 			if (entry->wired_count) {
1935 				entry->wired_count++;
1936 				entry = entry->next;
1937 				continue;
1938 			}
1939 
1940 			/*
1941 			 * The entry is being newly wired, we have to setup
1942 			 * appropriate management structures.  A shadow
1943 			 * object is required for a copy-on-write region,
1944 			 * or a normal object for a zero-fill region.  We
1945 			 * do not have to do this for entries that point to sub
1946 			 * maps because we won't hold the lock on the sub map.
1947 			 */
1948 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1949 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1950 				if (copyflag &&
1951 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1952 
1953 					vm_object_shadow(&entry->object.vm_object,
1954 					    &entry->offset,
1955 					    atop(entry->end - entry->start));
1956 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1957 				} else if (entry->object.vm_object == NULL &&
1958 					   !map->system_map) {
1959 					entry->object.vm_object =
1960 					    vm_object_allocate(OBJT_DEFAULT,
1961 						atop(entry->end - entry->start));
1962 					entry->offset = (vm_offset_t) 0;
1963 				}
1964 			}
1965 
1966 			entry->wired_count++;
1967 			entry = entry->next;
1968 		}
1969 
1970 		/*
1971 		 * Pass 2.
1972 		 */
1973 
1974 		/*
1975 		 * HACK HACK HACK HACK
1976 		 *
1977 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1978 		 * protects us from most changes but note that
1979 		 * clipping may still occur.  To prevent clipping from
1980 		 * occuring after the unlock, except for when we are
1981 		 * blocking in vm_fault_wire, we must run in a critical
1982 		 * section, otherwise our accesses to entry->start and
1983 		 * entry->end could be corrupted.  We have to enter the
1984 		 * critical section prior to unlocking so start_entry does
1985 		 * not change out from under us at the very beginning of the
1986 		 * loop.
1987 		 *
1988 		 * HACK HACK HACK HACK
1989 		 */
1990 
1991 		crit_enter();
1992 
1993 		entry = start_entry;
1994 		while (entry != &map->header && entry->start < end) {
1995 			/*
1996 			 * If vm_fault_wire fails for any page we need to undo
1997 			 * what has been done.  We decrement the wiring count
1998 			 * for those pages which have not yet been wired (now)
1999 			 * and unwire those that have (later).
2000 			 */
2001 			vm_offset_t save_start = entry->start;
2002 			vm_offset_t save_end = entry->end;
2003 
2004 			if (entry->wired_count == 1)
2005 				rv = vm_fault_wire(map, entry, FALSE);
2006 			if (rv) {
2007 				CLIP_CHECK_BACK(entry, save_start);
2008 				for (;;) {
2009 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2010 					entry->wired_count = 0;
2011 					if (entry->end == save_end)
2012 						break;
2013 					entry = entry->next;
2014 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2015 				}
2016 				end = save_start;
2017 				break;
2018 			}
2019 			CLIP_CHECK_FWD(entry, save_end);
2020 			entry = entry->next;
2021 		}
2022 		crit_exit();
2023 
2024 		/*
2025 		 * If a failure occured undo everything by falling through
2026 		 * to the unwiring code.  'end' has already been adjusted
2027 		 * appropriately.
2028 		 */
2029 		if (rv)
2030 			kmflags |= KM_PAGEABLE;
2031 
2032 		/*
2033 		 * start_entry is still IN_TRANSITION but may have been
2034 		 * clipped since vm_fault_wire() unlocks and relocks the
2035 		 * map.  No matter how clipped it has gotten there should
2036 		 * be a fragment that is on our start boundary.
2037 		 */
2038 		CLIP_CHECK_BACK(start_entry, start);
2039 	}
2040 
2041 	if (kmflags & KM_PAGEABLE) {
2042 		/*
2043 		 * This is the unwiring case.  We must first ensure that the
2044 		 * range to be unwired is really wired down.  We know there
2045 		 * are no holes.
2046 		 */
2047 		entry = start_entry;
2048 		while ((entry != &map->header) && (entry->start < end)) {
2049 			if (entry->wired_count == 0) {
2050 				rv = KERN_INVALID_ARGUMENT;
2051 				goto done;
2052 			}
2053 			entry = entry->next;
2054 		}
2055 
2056 		/*
2057 		 * Now decrement the wiring count for each region. If a region
2058 		 * becomes completely unwired, unwire its physical pages and
2059 		 * mappings.
2060 		 */
2061 		entry = start_entry;
2062 		while ((entry != &map->header) && (entry->start < end)) {
2063 			entry->wired_count--;
2064 			if (entry->wired_count == 0)
2065 				vm_fault_unwire(map, entry);
2066 			entry = entry->next;
2067 		}
2068 	}
2069 done:
2070 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2071 		MAP_CLIP_NO_HOLES);
2072 	map->timestamp++;
2073 	vm_map_unlock(map);
2074 failure:
2075 	if (kmflags & KM_KRESERVE)
2076 		vm_map_entry_krelease(count);
2077 	else
2078 		vm_map_entry_release(count);
2079 	return (rv);
2080 }
2081 
2082 /*
2083  * vm_map_set_wired_quick()
2084  *
2085  *	Mark a newly allocated address range as wired but do not fault in
2086  *	the pages.  The caller is expected to load the pages into the object.
2087  *
2088  *	The map must be locked on entry and will remain locked on return.
2089  */
2090 void
2091 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2092 {
2093 	vm_map_entry_t scan;
2094 	vm_map_entry_t entry;
2095 
2096 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2097 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2098 	    KKASSERT(entry->wired_count == 0);
2099 	    entry->wired_count = 1;
2100 	}
2101 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2102 }
2103 
2104 /*
2105  * vm_map_clean
2106  *
2107  * Push any dirty cached pages in the address range to their pager.
2108  * If syncio is TRUE, dirty pages are written synchronously.
2109  * If invalidate is TRUE, any cached pages are freed as well.
2110  *
2111  * Returns an error if any part of the specified range is not mapped.
2112  */
2113 int
2114 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2115     boolean_t invalidate)
2116 {
2117 	vm_map_entry_t current;
2118 	vm_map_entry_t entry;
2119 	vm_size_t size;
2120 	vm_object_t object;
2121 	vm_ooffset_t offset;
2122 
2123 	vm_map_lock_read(map);
2124 	VM_MAP_RANGE_CHECK(map, start, end);
2125 	if (!vm_map_lookup_entry(map, start, &entry)) {
2126 		vm_map_unlock_read(map);
2127 		return (KERN_INVALID_ADDRESS);
2128 	}
2129 	/*
2130 	 * Make a first pass to check for holes.
2131 	 */
2132 	for (current = entry; current->start < end; current = current->next) {
2133 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2134 			vm_map_unlock_read(map);
2135 			return (KERN_INVALID_ARGUMENT);
2136 		}
2137 		if (end > current->end &&
2138 		    (current->next == &map->header ||
2139 			current->end != current->next->start)) {
2140 			vm_map_unlock_read(map);
2141 			return (KERN_INVALID_ADDRESS);
2142 		}
2143 	}
2144 
2145 	if (invalidate)
2146 		pmap_remove(vm_map_pmap(map), start, end);
2147 	/*
2148 	 * Make a second pass, cleaning/uncaching pages from the indicated
2149 	 * objects as we go.
2150 	 */
2151 	for (current = entry; current->start < end; current = current->next) {
2152 		offset = current->offset + (start - current->start);
2153 		size = (end <= current->end ? end : current->end) - start;
2154 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2155 			vm_map_t smap;
2156 			vm_map_entry_t tentry;
2157 			vm_size_t tsize;
2158 
2159 			smap = current->object.sub_map;
2160 			vm_map_lock_read(smap);
2161 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2162 			tsize = tentry->end - offset;
2163 			if (tsize < size)
2164 				size = tsize;
2165 			object = tentry->object.vm_object;
2166 			offset = tentry->offset + (offset - tentry->start);
2167 			vm_map_unlock_read(smap);
2168 		} else {
2169 			object = current->object.vm_object;
2170 		}
2171 		/*
2172 		 * Note that there is absolutely no sense in writing out
2173 		 * anonymous objects, so we track down the vnode object
2174 		 * to write out.
2175 		 * We invalidate (remove) all pages from the address space
2176 		 * anyway, for semantic correctness.
2177 		 *
2178 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2179 		 * may start out with a NULL object.
2180 		 */
2181 		while (object && object->backing_object) {
2182 			offset += object->backing_object_offset;
2183 			object = object->backing_object;
2184 			if (object->size < OFF_TO_IDX( offset + size))
2185 				size = IDX_TO_OFF(object->size) - offset;
2186 		}
2187 		if (object && (object->type == OBJT_VNODE) &&
2188 		    (current->protection & VM_PROT_WRITE)) {
2189 			/*
2190 			 * Flush pages if writing is allowed, invalidate them
2191 			 * if invalidation requested.  Pages undergoing I/O
2192 			 * will be ignored by vm_object_page_remove().
2193 			 *
2194 			 * We cannot lock the vnode and then wait for paging
2195 			 * to complete without deadlocking against vm_fault.
2196 			 * Instead we simply call vm_object_page_remove() and
2197 			 * allow it to block internally on a page-by-page
2198 			 * basis when it encounters pages undergoing async
2199 			 * I/O.
2200 			 */
2201 			int flags;
2202 
2203 			vm_object_reference(object);
2204 			vn_lock(object->handle,
2205 				LK_EXCLUSIVE | LK_RETRY, curthread);
2206 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2207 			flags |= invalidate ? OBJPC_INVAL : 0;
2208 			vm_object_page_clean(object,
2209 			    OFF_TO_IDX(offset),
2210 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2211 			    flags);
2212 			VOP_UNLOCK(((struct vnode *)object->handle),
2213 				    0, curthread);
2214 			vm_object_deallocate(object);
2215 		}
2216 		if (object && invalidate &&
2217 		   ((object->type == OBJT_VNODE) ||
2218 		    (object->type == OBJT_DEVICE))) {
2219 			int clean_only =
2220 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2221 			vm_object_reference(object);
2222 			vm_object_page_remove(object,
2223 			    OFF_TO_IDX(offset),
2224 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2225 			    clean_only);
2226 			vm_object_deallocate(object);
2227 		}
2228 		start += size;
2229 	}
2230 
2231 	vm_map_unlock_read(map);
2232 	return (KERN_SUCCESS);
2233 }
2234 
2235 /*
2236  *	vm_map_entry_unwire:	[ internal use only ]
2237  *
2238  *	Make the region specified by this entry pageable.
2239  *
2240  *	The map in question should be locked.
2241  *	[This is the reason for this routine's existence.]
2242  */
2243 static void
2244 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2245 {
2246 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2247 	entry->wired_count = 0;
2248 	vm_fault_unwire(map, entry);
2249 }
2250 
2251 /*
2252  *	vm_map_entry_delete:	[ internal use only ]
2253  *
2254  *	Deallocate the given entry from the target map.
2255  */
2256 static void
2257 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2258 {
2259 	vm_map_entry_unlink(map, entry);
2260 	map->size -= entry->end - entry->start;
2261 
2262 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2263 		vm_object_deallocate(entry->object.vm_object);
2264 	}
2265 
2266 	vm_map_entry_dispose(map, entry, countp);
2267 }
2268 
2269 /*
2270  *	vm_map_delete:	[ internal use only ]
2271  *
2272  *	Deallocates the given address range from the target
2273  *	map.
2274  */
2275 int
2276 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2277 {
2278 	vm_object_t object;
2279 	vm_map_entry_t entry;
2280 	vm_map_entry_t first_entry;
2281 
2282 	/*
2283 	 * Find the start of the region, and clip it
2284 	 */
2285 
2286 again:
2287 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2288 		entry = first_entry->next;
2289 	} else {
2290 		entry = first_entry;
2291 		vm_map_clip_start(map, entry, start, countp);
2292 		/*
2293 		 * Fix the lookup hint now, rather than each time though the
2294 		 * loop.
2295 		 */
2296 		SAVE_HINT(map, entry->prev);
2297 	}
2298 
2299 	/*
2300 	 * Save the free space hint
2301 	 */
2302 
2303 	if (entry == &map->header) {
2304 		map->first_free = &map->header;
2305 	} else if (map->first_free->start >= start) {
2306 		map->first_free = entry->prev;
2307 	}
2308 
2309 	/*
2310 	 * Step through all entries in this region
2311 	 */
2312 
2313 	while ((entry != &map->header) && (entry->start < end)) {
2314 		vm_map_entry_t next;
2315 		vm_offset_t s, e;
2316 		vm_pindex_t offidxstart, offidxend, count;
2317 
2318 		/*
2319 		 * If we hit an in-transition entry we have to sleep and
2320 		 * retry.  It's easier (and not really slower) to just retry
2321 		 * since this case occurs so rarely and the hint is already
2322 		 * pointing at the right place.  We have to reset the
2323 		 * start offset so as not to accidently delete an entry
2324 		 * another process just created in vacated space.
2325 		 */
2326 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2327 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2328 			start = entry->start;
2329 			++mycpu->gd_cnt.v_intrans_coll;
2330 			++mycpu->gd_cnt.v_intrans_wait;
2331 			vm_map_transition_wait(map);
2332 			goto again;
2333 		}
2334 		vm_map_clip_end(map, entry, end, countp);
2335 
2336 		s = entry->start;
2337 		e = entry->end;
2338 		next = entry->next;
2339 
2340 		offidxstart = OFF_TO_IDX(entry->offset);
2341 		count = OFF_TO_IDX(e - s);
2342 		object = entry->object.vm_object;
2343 
2344 		/*
2345 		 * Unwire before removing addresses from the pmap; otherwise,
2346 		 * unwiring will put the entries back in the pmap.
2347 		 */
2348 		if (entry->wired_count != 0)
2349 			vm_map_entry_unwire(map, entry);
2350 
2351 		offidxend = offidxstart + count;
2352 
2353 		if ((object == kernel_object) || (object == kmem_object)) {
2354 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2355 		} else {
2356 			pmap_remove(map->pmap, s, e);
2357 			if (object != NULL &&
2358 			    object->ref_count != 1 &&
2359 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2360 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2361 				vm_object_collapse(object);
2362 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2363 				if (object->type == OBJT_SWAP) {
2364 					swap_pager_freespace(object, offidxstart, count);
2365 				}
2366 				if (offidxend >= object->size &&
2367 				    offidxstart < object->size) {
2368 					object->size = offidxstart;
2369 				}
2370 			}
2371 		}
2372 
2373 		/*
2374 		 * Delete the entry (which may delete the object) only after
2375 		 * removing all pmap entries pointing to its pages.
2376 		 * (Otherwise, its page frames may be reallocated, and any
2377 		 * modify bits will be set in the wrong object!)
2378 		 */
2379 		vm_map_entry_delete(map, entry, countp);
2380 		entry = next;
2381 	}
2382 	return (KERN_SUCCESS);
2383 }
2384 
2385 /*
2386  *	vm_map_remove:
2387  *
2388  *	Remove the given address range from the target map.
2389  *	This is the exported form of vm_map_delete.
2390  */
2391 int
2392 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2393 {
2394 	int result;
2395 	int count;
2396 
2397 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2398 	vm_map_lock(map);
2399 	VM_MAP_RANGE_CHECK(map, start, end);
2400 	result = vm_map_delete(map, start, end, &count);
2401 	vm_map_unlock(map);
2402 	vm_map_entry_release(count);
2403 
2404 	return (result);
2405 }
2406 
2407 /*
2408  *	vm_map_check_protection:
2409  *
2410  *	Assert that the target map allows the specified
2411  *	privilege on the entire address region given.
2412  *	The entire region must be allocated.
2413  */
2414 boolean_t
2415 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2416 			vm_prot_t protection)
2417 {
2418 	vm_map_entry_t entry;
2419 	vm_map_entry_t tmp_entry;
2420 
2421 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2422 		return (FALSE);
2423 	}
2424 	entry = tmp_entry;
2425 
2426 	while (start < end) {
2427 		if (entry == &map->header) {
2428 			return (FALSE);
2429 		}
2430 		/*
2431 		 * No holes allowed!
2432 		 */
2433 
2434 		if (start < entry->start) {
2435 			return (FALSE);
2436 		}
2437 		/*
2438 		 * Check protection associated with entry.
2439 		 */
2440 
2441 		if ((entry->protection & protection) != protection) {
2442 			return (FALSE);
2443 		}
2444 		/* go to next entry */
2445 
2446 		start = entry->end;
2447 		entry = entry->next;
2448 	}
2449 	return (TRUE);
2450 }
2451 
2452 /*
2453  * Split the pages in a map entry into a new object.  This affords
2454  * easier removal of unused pages, and keeps object inheritance from
2455  * being a negative impact on memory usage.
2456  */
2457 static void
2458 vm_map_split(vm_map_entry_t entry)
2459 {
2460 	vm_page_t m;
2461 	vm_object_t orig_object, new_object, source;
2462 	vm_offset_t s, e;
2463 	vm_pindex_t offidxstart, offidxend, idx;
2464 	vm_size_t size;
2465 	vm_ooffset_t offset;
2466 
2467 	orig_object = entry->object.vm_object;
2468 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2469 		return;
2470 	if (orig_object->ref_count <= 1)
2471 		return;
2472 
2473 	offset = entry->offset;
2474 	s = entry->start;
2475 	e = entry->end;
2476 
2477 	offidxstart = OFF_TO_IDX(offset);
2478 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2479 	size = offidxend - offidxstart;
2480 
2481 	new_object = vm_pager_allocate(orig_object->type,
2482 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2483 	if (new_object == NULL)
2484 		return;
2485 
2486 	source = orig_object->backing_object;
2487 	if (source != NULL) {
2488 		vm_object_reference(source);	/* Referenced by new_object */
2489 		LIST_INSERT_HEAD(&source->shadow_head,
2490 				  new_object, shadow_list);
2491 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2492 		new_object->backing_object_offset =
2493 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2494 		new_object->backing_object = source;
2495 		source->shadow_count++;
2496 		source->generation++;
2497 	}
2498 
2499 	for (idx = 0; idx < size; idx++) {
2500 		vm_page_t m;
2501 
2502 		/*
2503 		 * A critical section is required to avoid a race between
2504 		 * the lookup and an interrupt/unbusy/free and our busy
2505 		 * check.
2506 		 */
2507 		crit_enter();
2508 	retry:
2509 		m = vm_page_lookup(orig_object, offidxstart + idx);
2510 		if (m == NULL) {
2511 			crit_exit();
2512 			continue;
2513 		}
2514 
2515 		/*
2516 		 * We must wait for pending I/O to complete before we can
2517 		 * rename the page.
2518 		 *
2519 		 * We do not have to VM_PROT_NONE the page as mappings should
2520 		 * not be changed by this operation.
2521 		 */
2522 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2523 			goto retry;
2524 		vm_page_busy(m);
2525 		vm_page_rename(m, new_object, idx);
2526 		/* page automatically made dirty by rename and cache handled */
2527 		vm_page_busy(m);
2528 		crit_exit();
2529 	}
2530 
2531 	if (orig_object->type == OBJT_SWAP) {
2532 		vm_object_pip_add(orig_object, 1);
2533 		/*
2534 		 * copy orig_object pages into new_object
2535 		 * and destroy unneeded pages in
2536 		 * shadow object.
2537 		 */
2538 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2539 		vm_object_pip_wakeup(orig_object);
2540 	}
2541 
2542 	/*
2543 	 * Wakeup the pages we played with.  No spl protection is needed
2544 	 * for a simple wakeup.
2545 	 */
2546 	for (idx = 0; idx < size; idx++) {
2547 		m = vm_page_lookup(new_object, idx);
2548 		if (m)
2549 			vm_page_wakeup(m);
2550 	}
2551 
2552 	entry->object.vm_object = new_object;
2553 	entry->offset = 0LL;
2554 	vm_object_deallocate(orig_object);
2555 }
2556 
2557 /*
2558  *	vm_map_copy_entry:
2559  *
2560  *	Copies the contents of the source entry to the destination
2561  *	entry.  The entries *must* be aligned properly.
2562  */
2563 static void
2564 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2565 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2566 {
2567 	vm_object_t src_object;
2568 
2569 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2570 		return;
2571 
2572 	if (src_entry->wired_count == 0) {
2573 
2574 		/*
2575 		 * If the source entry is marked needs_copy, it is already
2576 		 * write-protected.
2577 		 */
2578 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2579 			pmap_protect(src_map->pmap,
2580 			    src_entry->start,
2581 			    src_entry->end,
2582 			    src_entry->protection & ~VM_PROT_WRITE);
2583 		}
2584 
2585 		/*
2586 		 * Make a copy of the object.
2587 		 */
2588 		if ((src_object = src_entry->object.vm_object) != NULL) {
2589 
2590 			if ((src_object->handle == NULL) &&
2591 				(src_object->type == OBJT_DEFAULT ||
2592 				 src_object->type == OBJT_SWAP)) {
2593 				vm_object_collapse(src_object);
2594 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2595 					vm_map_split(src_entry);
2596 					src_object = src_entry->object.vm_object;
2597 				}
2598 			}
2599 
2600 			vm_object_reference(src_object);
2601 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2602 			dst_entry->object.vm_object = src_object;
2603 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2604 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2605 			dst_entry->offset = src_entry->offset;
2606 		} else {
2607 			dst_entry->object.vm_object = NULL;
2608 			dst_entry->offset = 0;
2609 		}
2610 
2611 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2612 		    dst_entry->end - dst_entry->start, src_entry->start);
2613 	} else {
2614 		/*
2615 		 * Of course, wired down pages can't be set copy-on-write.
2616 		 * Cause wired pages to be copied into the new map by
2617 		 * simulating faults (the new pages are pageable)
2618 		 */
2619 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2620 	}
2621 }
2622 
2623 /*
2624  * vmspace_fork:
2625  * Create a new process vmspace structure and vm_map
2626  * based on those of an existing process.  The new map
2627  * is based on the old map, according to the inheritance
2628  * values on the regions in that map.
2629  *
2630  * The source map must not be locked.
2631  */
2632 struct vmspace *
2633 vmspace_fork(struct vmspace *vm1)
2634 {
2635 	struct vmspace *vm2;
2636 	vm_map_t old_map = &vm1->vm_map;
2637 	vm_map_t new_map;
2638 	vm_map_entry_t old_entry;
2639 	vm_map_entry_t new_entry;
2640 	vm_object_t object;
2641 	int count;
2642 
2643 	vm_map_lock(old_map);
2644 	old_map->infork = 1;
2645 
2646 	/*
2647 	 * XXX Note: upcalls are not copied.
2648 	 */
2649 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2650 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2651 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2652 	new_map = &vm2->vm_map;	/* XXX */
2653 	new_map->timestamp = 1;
2654 
2655 	count = 0;
2656 	old_entry = old_map->header.next;
2657 	while (old_entry != &old_map->header) {
2658 		++count;
2659 		old_entry = old_entry->next;
2660 	}
2661 
2662 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2663 
2664 	old_entry = old_map->header.next;
2665 	while (old_entry != &old_map->header) {
2666 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2667 			panic("vm_map_fork: encountered a submap");
2668 
2669 		switch (old_entry->inheritance) {
2670 		case VM_INHERIT_NONE:
2671 			break;
2672 
2673 		case VM_INHERIT_SHARE:
2674 			/*
2675 			 * Clone the entry, creating the shared object if necessary.
2676 			 */
2677 			object = old_entry->object.vm_object;
2678 			if (object == NULL) {
2679 				object = vm_object_allocate(OBJT_DEFAULT,
2680 					atop(old_entry->end - old_entry->start));
2681 				old_entry->object.vm_object = object;
2682 				old_entry->offset = (vm_offset_t) 0;
2683 			}
2684 
2685 			/*
2686 			 * Add the reference before calling vm_object_shadow
2687 			 * to insure that a shadow object is created.
2688 			 */
2689 			vm_object_reference(object);
2690 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2691 				vm_object_shadow(&old_entry->object.vm_object,
2692 					&old_entry->offset,
2693 					atop(old_entry->end - old_entry->start));
2694 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2695 				/* Transfer the second reference too. */
2696 				vm_object_reference(
2697 				    old_entry->object.vm_object);
2698 				vm_object_deallocate(object);
2699 				object = old_entry->object.vm_object;
2700 			}
2701 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2702 
2703 			/*
2704 			 * Clone the entry, referencing the shared object.
2705 			 */
2706 			new_entry = vm_map_entry_create(new_map, &count);
2707 			*new_entry = *old_entry;
2708 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2709 			new_entry->wired_count = 0;
2710 
2711 			/*
2712 			 * Insert the entry into the new map -- we know we're
2713 			 * inserting at the end of the new map.
2714 			 */
2715 
2716 			vm_map_entry_link(new_map, new_map->header.prev,
2717 			    new_entry);
2718 
2719 			/*
2720 			 * Update the physical map
2721 			 */
2722 
2723 			pmap_copy(new_map->pmap, old_map->pmap,
2724 			    new_entry->start,
2725 			    (old_entry->end - old_entry->start),
2726 			    old_entry->start);
2727 			break;
2728 
2729 		case VM_INHERIT_COPY:
2730 			/*
2731 			 * Clone the entry and link into the map.
2732 			 */
2733 			new_entry = vm_map_entry_create(new_map, &count);
2734 			*new_entry = *old_entry;
2735 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2736 			new_entry->wired_count = 0;
2737 			new_entry->object.vm_object = NULL;
2738 			vm_map_entry_link(new_map, new_map->header.prev,
2739 			    new_entry);
2740 			vm_map_copy_entry(old_map, new_map, old_entry,
2741 			    new_entry);
2742 			break;
2743 		}
2744 		old_entry = old_entry->next;
2745 	}
2746 
2747 	new_map->size = old_map->size;
2748 	old_map->infork = 0;
2749 	vm_map_unlock(old_map);
2750 	vm_map_entry_release(count);
2751 
2752 	return (vm2);
2753 }
2754 
2755 int
2756 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2757 	      vm_prot_t prot, vm_prot_t max, int cow)
2758 {
2759 	vm_map_entry_t prev_entry;
2760 	vm_map_entry_t new_stack_entry;
2761 	vm_size_t      init_ssize;
2762 	int            rv;
2763 	int		count;
2764 
2765 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2766 		return (KERN_NO_SPACE);
2767 
2768 	if (max_ssize < sgrowsiz)
2769 		init_ssize = max_ssize;
2770 	else
2771 		init_ssize = sgrowsiz;
2772 
2773 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2774 	vm_map_lock(map);
2775 
2776 	/* If addr is already mapped, no go */
2777 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2778 		vm_map_unlock(map);
2779 		vm_map_entry_release(count);
2780 		return (KERN_NO_SPACE);
2781 	}
2782 
2783 	/* If we would blow our VMEM resource limit, no go */
2784 	if (map->size + init_ssize >
2785 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2786 		vm_map_unlock(map);
2787 		vm_map_entry_release(count);
2788 		return (KERN_NO_SPACE);
2789 	}
2790 
2791 	/* If we can't accomodate max_ssize in the current mapping,
2792 	 * no go.  However, we need to be aware that subsequent user
2793 	 * mappings might map into the space we have reserved for
2794 	 * stack, and currently this space is not protected.
2795 	 *
2796 	 * Hopefully we will at least detect this condition
2797 	 * when we try to grow the stack.
2798 	 */
2799 	if ((prev_entry->next != &map->header) &&
2800 	    (prev_entry->next->start < addrbos + max_ssize)) {
2801 		vm_map_unlock(map);
2802 		vm_map_entry_release(count);
2803 		return (KERN_NO_SPACE);
2804 	}
2805 
2806 	/* We initially map a stack of only init_ssize.  We will
2807 	 * grow as needed later.  Since this is to be a grow
2808 	 * down stack, we map at the top of the range.
2809 	 *
2810 	 * Note: we would normally expect prot and max to be
2811 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2812 	 * eliminate these as input parameters, and just
2813 	 * pass these values here in the insert call.
2814 	 */
2815 	rv = vm_map_insert(map, &count,
2816 			   NULL, 0, addrbos + max_ssize - init_ssize,
2817 	                   addrbos + max_ssize, prot, max, cow);
2818 
2819 	/* Now set the avail_ssize amount */
2820 	if (rv == KERN_SUCCESS) {
2821 		if (prev_entry != &map->header)
2822 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2823 		new_stack_entry = prev_entry->next;
2824 		if (new_stack_entry->end   != addrbos + max_ssize ||
2825 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2826 			panic ("Bad entry start/end for new stack entry");
2827 		else
2828 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2829 	}
2830 
2831 	vm_map_unlock(map);
2832 	vm_map_entry_release(count);
2833 	return (rv);
2834 }
2835 
2836 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2837  * desired address is already mapped, or if we successfully grow
2838  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2839  * stack range (this is strange, but preserves compatibility with
2840  * the grow function in vm_machdep.c).
2841  */
2842 int
2843 vm_map_growstack (struct proc *p, vm_offset_t addr)
2844 {
2845 	vm_map_entry_t prev_entry;
2846 	vm_map_entry_t stack_entry;
2847 	vm_map_entry_t new_stack_entry;
2848 	struct vmspace *vm = p->p_vmspace;
2849 	vm_map_t map = &vm->vm_map;
2850 	vm_offset_t    end;
2851 	int grow_amount;
2852 	int rv = KERN_SUCCESS;
2853 	int is_procstack;
2854 	int use_read_lock = 1;
2855 	int count;
2856 
2857 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2858 Retry:
2859 	if (use_read_lock)
2860 		vm_map_lock_read(map);
2861 	else
2862 		vm_map_lock(map);
2863 
2864 	/* If addr is already in the entry range, no need to grow.*/
2865 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2866 		goto done;
2867 
2868 	if ((stack_entry = prev_entry->next) == &map->header)
2869 		goto done;
2870 	if (prev_entry == &map->header)
2871 		end = stack_entry->start - stack_entry->avail_ssize;
2872 	else
2873 		end = prev_entry->end;
2874 
2875 	/* This next test mimics the old grow function in vm_machdep.c.
2876 	 * It really doesn't quite make sense, but we do it anyway
2877 	 * for compatibility.
2878 	 *
2879 	 * If not growable stack, return success.  This signals the
2880 	 * caller to proceed as he would normally with normal vm.
2881 	 */
2882 	if (stack_entry->avail_ssize < 1 ||
2883 	    addr >= stack_entry->start ||
2884 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2885 		goto done;
2886 	}
2887 
2888 	/* Find the minimum grow amount */
2889 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2890 	if (grow_amount > stack_entry->avail_ssize) {
2891 		rv = KERN_NO_SPACE;
2892 		goto done;
2893 	}
2894 
2895 	/* If there is no longer enough space between the entries
2896 	 * nogo, and adjust the available space.  Note: this
2897 	 * should only happen if the user has mapped into the
2898 	 * stack area after the stack was created, and is
2899 	 * probably an error.
2900 	 *
2901 	 * This also effectively destroys any guard page the user
2902 	 * might have intended by limiting the stack size.
2903 	 */
2904 	if (grow_amount > stack_entry->start - end) {
2905 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2906 			use_read_lock = 0;
2907 			goto Retry;
2908 		}
2909 		use_read_lock = 0;
2910 		stack_entry->avail_ssize = stack_entry->start - end;
2911 		rv = KERN_NO_SPACE;
2912 		goto done;
2913 	}
2914 
2915 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2916 
2917 	/* If this is the main process stack, see if we're over the
2918 	 * stack limit.
2919 	 */
2920 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2921 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2922 		rv = KERN_NO_SPACE;
2923 		goto done;
2924 	}
2925 
2926 	/* Round up the grow amount modulo SGROWSIZ */
2927 	grow_amount = roundup (grow_amount, sgrowsiz);
2928 	if (grow_amount > stack_entry->avail_ssize) {
2929 		grow_amount = stack_entry->avail_ssize;
2930 	}
2931 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2932 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2933 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2934 		              ctob(vm->vm_ssize);
2935 	}
2936 
2937 	/* If we would blow our VMEM resource limit, no go */
2938 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2939 		rv = KERN_NO_SPACE;
2940 		goto done;
2941 	}
2942 
2943 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2944 		use_read_lock = 0;
2945 		goto Retry;
2946 	}
2947 	use_read_lock = 0;
2948 
2949 	/* Get the preliminary new entry start value */
2950 	addr = stack_entry->start - grow_amount;
2951 
2952 	/* If this puts us into the previous entry, cut back our growth
2953 	 * to the available space.  Also, see the note above.
2954 	 */
2955 	if (addr < end) {
2956 		stack_entry->avail_ssize = stack_entry->start - end;
2957 		addr = end;
2958 	}
2959 
2960 	rv = vm_map_insert(map, &count,
2961 			   NULL, 0, addr, stack_entry->start,
2962 			   VM_PROT_ALL,
2963 			   VM_PROT_ALL,
2964 			   0);
2965 
2966 	/* Adjust the available stack space by the amount we grew. */
2967 	if (rv == KERN_SUCCESS) {
2968 		if (prev_entry != &map->header)
2969 			vm_map_clip_end(map, prev_entry, addr, &count);
2970 		new_stack_entry = prev_entry->next;
2971 		if (new_stack_entry->end   != stack_entry->start  ||
2972 		    new_stack_entry->start != addr)
2973 			panic ("Bad stack grow start/end in new stack entry");
2974 		else {
2975 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2976 							(new_stack_entry->end -
2977 							 new_stack_entry->start);
2978 			if (is_procstack)
2979 				vm->vm_ssize += btoc(new_stack_entry->end -
2980 						     new_stack_entry->start);
2981 		}
2982 	}
2983 
2984 done:
2985 	if (use_read_lock)
2986 		vm_map_unlock_read(map);
2987 	else
2988 		vm_map_unlock(map);
2989 	vm_map_entry_release(count);
2990 	return (rv);
2991 }
2992 
2993 /*
2994  * Unshare the specified VM space for exec.  If other processes are
2995  * mapped to it, then create a new one.  The new vmspace is null.
2996  */
2997 
2998 void
2999 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3000 {
3001 	struct vmspace *oldvmspace = p->p_vmspace;
3002 	struct vmspace *newvmspace;
3003 	vm_map_t map = &p->p_vmspace->vm_map;
3004 
3005 	/*
3006 	 * If we are execing a resident vmspace we fork it, otherwise
3007 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3008 	 * are not copied to the new vmspace.
3009 	 */
3010 	if (vmcopy)  {
3011 	    newvmspace = vmspace_fork(vmcopy);
3012 	} else {
3013 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3014 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3015 		(caddr_t)&oldvmspace->vm_endcopy -
3016 		    (caddr_t)&oldvmspace->vm_startcopy);
3017 	}
3018 
3019 	/*
3020 	 * This code is written like this for prototype purposes.  The
3021 	 * goal is to avoid running down the vmspace here, but let the
3022 	 * other process's that are still using the vmspace to finally
3023 	 * run it down.  Even though there is little or no chance of blocking
3024 	 * here, it is a good idea to keep this form for future mods.
3025 	 */
3026 	p->p_vmspace = newvmspace;
3027 	pmap_pinit2(vmspace_pmap(newvmspace));
3028 	if (p == curproc)
3029 		pmap_activate(p);
3030 	vmspace_free(oldvmspace);
3031 }
3032 
3033 /*
3034  * Unshare the specified VM space for forcing COW.  This
3035  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3036  *
3037  * The exitingcnt test is not strictly necessary but has been
3038  * included for code sanity (to make the code a bit more deterministic).
3039  */
3040 
3041 void
3042 vmspace_unshare(struct proc *p)
3043 {
3044 	struct vmspace *oldvmspace = p->p_vmspace;
3045 	struct vmspace *newvmspace;
3046 
3047 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3048 		return;
3049 	newvmspace = vmspace_fork(oldvmspace);
3050 	p->p_vmspace = newvmspace;
3051 	pmap_pinit2(vmspace_pmap(newvmspace));
3052 	if (p == curproc)
3053 		pmap_activate(p);
3054 	vmspace_free(oldvmspace);
3055 }
3056 
3057 /*
3058  *	vm_map_lookup:
3059  *
3060  *	Finds the VM object, offset, and
3061  *	protection for a given virtual address in the
3062  *	specified map, assuming a page fault of the
3063  *	type specified.
3064  *
3065  *	Leaves the map in question locked for read; return
3066  *	values are guaranteed until a vm_map_lookup_done
3067  *	call is performed.  Note that the map argument
3068  *	is in/out; the returned map must be used in
3069  *	the call to vm_map_lookup_done.
3070  *
3071  *	A handle (out_entry) is returned for use in
3072  *	vm_map_lookup_done, to make that fast.
3073  *
3074  *	If a lookup is requested with "write protection"
3075  *	specified, the map may be changed to perform virtual
3076  *	copying operations, although the data referenced will
3077  *	remain the same.
3078  */
3079 int
3080 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3081 	      vm_offset_t vaddr,
3082 	      vm_prot_t fault_typea,
3083 	      vm_map_entry_t *out_entry,	/* OUT */
3084 	      vm_object_t *object,		/* OUT */
3085 	      vm_pindex_t *pindex,		/* OUT */
3086 	      vm_prot_t *out_prot,		/* OUT */
3087 	      boolean_t *wired)			/* OUT */
3088 {
3089 	vm_map_entry_t entry;
3090 	vm_map_t map = *var_map;
3091 	vm_prot_t prot;
3092 	vm_prot_t fault_type = fault_typea;
3093 	int use_read_lock = 1;
3094 	int rv = KERN_SUCCESS;
3095 
3096 RetryLookup:
3097 	if (use_read_lock)
3098 		vm_map_lock_read(map);
3099 	else
3100 		vm_map_lock(map);
3101 
3102 	/*
3103 	 * If the map has an interesting hint, try it before calling full
3104 	 * blown lookup routine.
3105 	 */
3106 	entry = map->hint;
3107 	*out_entry = entry;
3108 
3109 	if ((entry == &map->header) ||
3110 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3111 		vm_map_entry_t tmp_entry;
3112 
3113 		/*
3114 		 * Entry was either not a valid hint, or the vaddr was not
3115 		 * contained in the entry, so do a full lookup.
3116 		 */
3117 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3118 			rv = KERN_INVALID_ADDRESS;
3119 			goto done;
3120 		}
3121 
3122 		entry = tmp_entry;
3123 		*out_entry = entry;
3124 	}
3125 
3126 	/*
3127 	 * Handle submaps.
3128 	 */
3129 
3130 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3131 		vm_map_t old_map = map;
3132 
3133 		*var_map = map = entry->object.sub_map;
3134 		if (use_read_lock)
3135 			vm_map_unlock_read(old_map);
3136 		else
3137 			vm_map_unlock(old_map);
3138 		use_read_lock = 1;
3139 		goto RetryLookup;
3140 	}
3141 
3142 	/*
3143 	 * Check whether this task is allowed to have this page.
3144 	 * Note the special case for MAP_ENTRY_COW
3145 	 * pages with an override.  This is to implement a forced
3146 	 * COW for debuggers.
3147 	 */
3148 
3149 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3150 		prot = entry->max_protection;
3151 	else
3152 		prot = entry->protection;
3153 
3154 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3155 	if ((fault_type & prot) != fault_type) {
3156 		rv = KERN_PROTECTION_FAILURE;
3157 		goto done;
3158 	}
3159 
3160 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3161 	    (entry->eflags & MAP_ENTRY_COW) &&
3162 	    (fault_type & VM_PROT_WRITE) &&
3163 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3164 		rv = KERN_PROTECTION_FAILURE;
3165 		goto done;
3166 	}
3167 
3168 	/*
3169 	 * If this page is not pageable, we have to get it for all possible
3170 	 * accesses.
3171 	 */
3172 
3173 	*wired = (entry->wired_count != 0);
3174 	if (*wired)
3175 		prot = fault_type = entry->protection;
3176 
3177 	/*
3178 	 * If the entry was copy-on-write, we either ...
3179 	 */
3180 
3181 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3182 		/*
3183 		 * If we want to write the page, we may as well handle that
3184 		 * now since we've got the map locked.
3185 		 *
3186 		 * If we don't need to write the page, we just demote the
3187 		 * permissions allowed.
3188 		 */
3189 
3190 		if (fault_type & VM_PROT_WRITE) {
3191 			/*
3192 			 * Make a new object, and place it in the object
3193 			 * chain.  Note that no new references have appeared
3194 			 * -- one just moved from the map to the new
3195 			 * object.
3196 			 */
3197 
3198 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3199 				use_read_lock = 0;
3200 				goto RetryLookup;
3201 			}
3202 			use_read_lock = 0;
3203 
3204 			vm_object_shadow(
3205 			    &entry->object.vm_object,
3206 			    &entry->offset,
3207 			    atop(entry->end - entry->start));
3208 
3209 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3210 		} else {
3211 			/*
3212 			 * We're attempting to read a copy-on-write page --
3213 			 * don't allow writes.
3214 			 */
3215 
3216 			prot &= ~VM_PROT_WRITE;
3217 		}
3218 	}
3219 
3220 	/*
3221 	 * Create an object if necessary.
3222 	 */
3223 	if (entry->object.vm_object == NULL &&
3224 	    !map->system_map) {
3225 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3226 			use_read_lock = 0;
3227 			goto RetryLookup;
3228 		}
3229 		use_read_lock = 0;
3230 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3231 		    atop(entry->end - entry->start));
3232 		entry->offset = 0;
3233 	}
3234 
3235 	/*
3236 	 * Return the object/offset from this entry.  If the entry was
3237 	 * copy-on-write or empty, it has been fixed up.
3238 	 */
3239 
3240 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3241 	*object = entry->object.vm_object;
3242 
3243 	/*
3244 	 * Return whether this is the only map sharing this data.  On
3245 	 * success we return with a read lock held on the map.  On failure
3246 	 * we return with the map unlocked.
3247 	 */
3248 	*out_prot = prot;
3249 done:
3250 	if (rv == KERN_SUCCESS) {
3251 		if (use_read_lock == 0)
3252 			vm_map_lock_downgrade(map);
3253 	} else if (use_read_lock) {
3254 		vm_map_unlock_read(map);
3255 	} else {
3256 		vm_map_unlock(map);
3257 	}
3258 	return (rv);
3259 }
3260 
3261 /*
3262  *	vm_map_lookup_done:
3263  *
3264  *	Releases locks acquired by a vm_map_lookup
3265  *	(according to the handle returned by that lookup).
3266  */
3267 
3268 void
3269 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3270 {
3271 	/*
3272 	 * Unlock the main-level map
3273 	 */
3274 	vm_map_unlock_read(map);
3275 	if (count)
3276 		vm_map_entry_release(count);
3277 }
3278 
3279 /*
3280  * Performs the copy_on_write operations necessary to allow the virtual copies
3281  * into user space to work.  This has to be called for write(2) system calls
3282  * from other processes, file unlinking, and file size shrinkage.
3283  */
3284 void
3285 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3286 {
3287 	int rv;
3288 	vm_object_t robject;
3289 	vm_pindex_t idx;
3290 
3291 	if ((object == NULL) ||
3292 		((object->flags & OBJ_OPT) == 0))
3293 		return;
3294 
3295 	if (object->shadow_count > object->ref_count)
3296 		panic("vm_freeze_copyopts: sc > rc");
3297 
3298 	while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3299 		vm_pindex_t bo_pindex;
3300 		vm_page_t m_in, m_out;
3301 
3302 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3303 
3304 		vm_object_reference(robject);
3305 
3306 		vm_object_pip_wait(robject, "objfrz");
3307 
3308 		if (robject->ref_count == 1) {
3309 			vm_object_deallocate(robject);
3310 			continue;
3311 		}
3312 
3313 		vm_object_pip_add(robject, 1);
3314 
3315 		for (idx = 0; idx < robject->size; idx++) {
3316 
3317 			m_out = vm_page_grab(robject, idx,
3318 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3319 
3320 			if (m_out->valid == 0) {
3321 				m_in = vm_page_grab(object, bo_pindex + idx,
3322 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3323 				if (m_in->valid == 0) {
3324 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3325 					if (rv != VM_PAGER_OK) {
3326 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3327 						continue;
3328 					}
3329 					vm_page_deactivate(m_in);
3330 				}
3331 
3332 				vm_page_protect(m_in, VM_PROT_NONE);
3333 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3334 				m_out->valid = m_in->valid;
3335 				vm_page_dirty(m_out);
3336 				vm_page_activate(m_out);
3337 				vm_page_wakeup(m_in);
3338 			}
3339 			vm_page_wakeup(m_out);
3340 		}
3341 
3342 		object->shadow_count--;
3343 		object->ref_count--;
3344 		LIST_REMOVE(robject, shadow_list);
3345 		robject->backing_object = NULL;
3346 		robject->backing_object_offset = 0;
3347 
3348 		vm_object_pip_wakeup(robject);
3349 		vm_object_deallocate(robject);
3350 	}
3351 
3352 	vm_object_clear_flag(object, OBJ_OPT);
3353 }
3354 
3355 #include "opt_ddb.h"
3356 #ifdef DDB
3357 #include <sys/kernel.h>
3358 
3359 #include <ddb/ddb.h>
3360 
3361 /*
3362  *	vm_map_print:	[ debug ]
3363  */
3364 DB_SHOW_COMMAND(map, vm_map_print)
3365 {
3366 	static int nlines;
3367 	/* XXX convert args. */
3368 	vm_map_t map = (vm_map_t)addr;
3369 	boolean_t full = have_addr;
3370 
3371 	vm_map_entry_t entry;
3372 
3373 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3374 	    (void *)map,
3375 	    (void *)map->pmap, map->nentries, map->timestamp);
3376 	nlines++;
3377 
3378 	if (!full && db_indent)
3379 		return;
3380 
3381 	db_indent += 2;
3382 	for (entry = map->header.next; entry != &map->header;
3383 	    entry = entry->next) {
3384 		db_iprintf("map entry %p: start=%p, end=%p\n",
3385 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3386 		nlines++;
3387 		{
3388 			static char *inheritance_name[4] =
3389 			{"share", "copy", "none", "donate_copy"};
3390 
3391 			db_iprintf(" prot=%x/%x/%s",
3392 			    entry->protection,
3393 			    entry->max_protection,
3394 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3395 			if (entry->wired_count != 0)
3396 				db_printf(", wired");
3397 		}
3398 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3399 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3400 			db_printf(", share=%p, offset=0x%lx\n",
3401 			    (void *)entry->object.sub_map,
3402 			    (long)entry->offset);
3403 			nlines++;
3404 			if ((entry->prev == &map->header) ||
3405 			    (entry->prev->object.sub_map !=
3406 				entry->object.sub_map)) {
3407 				db_indent += 2;
3408 				vm_map_print((db_expr_t)(intptr_t)
3409 					     entry->object.sub_map,
3410 					     full, 0, (char *)0);
3411 				db_indent -= 2;
3412 			}
3413 		} else {
3414 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3415 			db_printf(", object=%p, offset=0x%lx",
3416 			    (void *)entry->object.vm_object,
3417 			    (long)entry->offset);
3418 			if (entry->eflags & MAP_ENTRY_COW)
3419 				db_printf(", copy (%s)",
3420 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3421 			db_printf("\n");
3422 			nlines++;
3423 
3424 			if ((entry->prev == &map->header) ||
3425 			    (entry->prev->object.vm_object !=
3426 				entry->object.vm_object)) {
3427 				db_indent += 2;
3428 				vm_object_print((db_expr_t)(intptr_t)
3429 						entry->object.vm_object,
3430 						full, 0, (char *)0);
3431 				nlines += 4;
3432 				db_indent -= 2;
3433 			}
3434 		}
3435 	}
3436 	db_indent -= 2;
3437 	if (db_indent == 0)
3438 		nlines = 0;
3439 }
3440 
3441 
3442 DB_SHOW_COMMAND(procvm, procvm)
3443 {
3444 	struct proc *p;
3445 
3446 	if (have_addr) {
3447 		p = (struct proc *) addr;
3448 	} else {
3449 		p = curproc;
3450 	}
3451 
3452 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3453 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3454 	    (void *)vmspace_pmap(p->p_vmspace));
3455 
3456 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3457 }
3458 
3459 #endif /* DDB */
3460