xref: /dragonfly/sys/vm/vm_map.c (revision d77a7c90)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.23 2004/03/12 23:09:37 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93 
94 #include <sys/thread2.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142 
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150 		vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153 
154 void
155 vm_map_startup()
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172 	vm_offset_t min, max;
173 {
174 	struct vmspace *vm;
175 
176 	vm = zalloc(vmspace_zone);
177 	vm_map_init(&vm->vm_map, min, max);
178 	pmap_pinit(vmspace_pmap(vm));
179 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
180 	vm->vm_refcnt = 1;
181 	vm->vm_shm = NULL;
182 	vm->vm_exitingcnt = 0;
183 	return (vm);
184 }
185 
186 void
187 vm_init2(void)
188 {
189 	zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192 	pmap_init2();
193 	vm_object_init2();
194 }
195 
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199 	int count;
200 
201 	/*
202 	 * Make sure any SysV shm is freed, it might not have in
203 	 * exit1()
204 	 */
205 	shmexit(vm);
206 
207 	KKASSERT(vm->vm_upcalls == NULL);
208 
209 	/*
210 	 * Lock the map, to wait out all other references to it.
211 	 * Delete all of the mappings and pages they hold, then call
212 	 * the pmap module to reclaim anything left.
213 	 */
214 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
215 	vm_map_lock(&vm->vm_map);
216 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217 		vm->vm_map.max_offset, &count);
218 	vm_map_unlock(&vm->vm_map);
219 	vm_map_entry_release(count);
220 
221 	pmap_release(vmspace_pmap(vm));
222 	zfree(vmspace_zone, vm);
223 }
224 
225 void
226 vmspace_free(struct vmspace *vm)
227 {
228 	if (vm->vm_refcnt == 0)
229 		panic("vmspace_free: attempt to free already freed vmspace");
230 
231 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232 		vmspace_dofree(vm);
233 }
234 
235 void
236 vmspace_exitfree(struct proc *p)
237 {
238 	struct vmspace *vm;
239 
240 	vm = p->p_vmspace;
241 	p->p_vmspace = NULL;
242 
243 	/*
244 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
245 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
246 	 * exitingcnt may increment above 0 and drop back down to zero
247 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
248 	 * may also increment above 0 and drop back down to zero several
249 	 * times while vm_exitingcnt is held non-zero.
250 	 *
251 	 * The last wait on the exiting child's vmspace will clean up
252 	 * the remainder of the vmspace.
253 	 */
254 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255 		vmspace_dofree(vm);
256 }
257 
258 /*
259  * vmspace_swap_count() - count the approximate swap useage in pages for a
260  *			  vmspace.
261  *
262  *	Swap useage is determined by taking the proportional swap used by
263  *	VM objects backing the VM map.  To make up for fractional losses,
264  *	if the VM object has any swap use at all the associated map entries
265  *	count for at least 1 swap page.
266  */
267 int
268 vmspace_swap_count(struct vmspace *vmspace)
269 {
270 	vm_map_t map = &vmspace->vm_map;
271 	vm_map_entry_t cur;
272 	int count = 0;
273 
274 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275 		vm_object_t object;
276 
277 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278 		    (object = cur->object.vm_object) != NULL &&
279 		    object->type == OBJT_SWAP
280 		) {
281 			int n = (cur->end - cur->start) / PAGE_SIZE;
282 
283 			if (object->un_pager.swp.swp_bcount) {
284 				count += object->un_pager.swp.swp_bcount *
285 				    SWAP_META_PAGES * n / object->size + 1;
286 			}
287 		}
288 	}
289 	return(count);
290 }
291 
292 
293 /*
294  *	vm_map_create:
295  *
296  *	Creates and returns a new empty VM map with
297  *	the given physical map structure, and having
298  *	the given lower and upper address bounds.
299  */
300 vm_map_t
301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
302 {
303 	vm_map_t result;
304 
305 	result = zalloc(mapzone);
306 	vm_map_init(result, min, max);
307 	result->pmap = pmap;
308 	return (result);
309 }
310 
311 /*
312  * Initialize an existing vm_map structure
313  * such as that in the vmspace structure.
314  * The pmap is set elsewhere.
315  */
316 void
317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
318 {
319 	map->header.next = map->header.prev = &map->header;
320 	map->nentries = 0;
321 	map->size = 0;
322 	map->system_map = 0;
323 	map->infork = 0;
324 	map->min_offset = min;
325 	map->max_offset = max;
326 	map->first_free = &map->header;
327 	map->hint = &map->header;
328 	map->timestamp = 0;
329 	lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
330 }
331 
332 /*
333  *      vm_map_entry_cpu_init:
334  *
335  *	Set an initial negative count so the first attempt to reserve
336  *	space preloads a bunch of vm_map_entry's for this cpu.  This
337  *	routine is called in early boot so we cannot just call
338  *	vm_map_entry_reserve().
339  *
340  *	May be called for a gd other then mycpu.
341  */
342 void
343 vm_map_entry_reserve_cpu_init(globaldata_t gd)
344 {
345 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
346 }
347 
348 /*
349  *	vm_map_entry_reserve:
350  *
351  *	Reserves vm_map_entry structures so code later on can manipulate
352  *	map_entry structures within a locked map without blocking trying
353  *	to allocate a new vm_map_entry.
354  */
355 int
356 vm_map_entry_reserve(int count)
357 {
358 	struct globaldata *gd = mycpu;
359 	vm_map_entry_t entry;
360 
361 	crit_enter();
362 	gd->gd_vme_avail -= count;
363 
364 	/*
365 	 * Make sure we have enough structures in gd_vme_base to handle
366 	 * the reservation request.
367 	 */
368 	while (gd->gd_vme_avail < 0) {
369 		entry = zalloc(mapentzone);
370 		entry->next = gd->gd_vme_base;
371 		gd->gd_vme_base = entry;
372 		++gd->gd_vme_avail;
373 	}
374 	crit_exit();
375 	return(count);
376 }
377 
378 /*
379  *	vm_map_entry_release:
380  *
381  *	Releases previously reserved vm_map_entry structures that were not
382  *	used.  If we have too much junk in our per-cpu cache clean some of
383  *	it out.
384  */
385 void
386 vm_map_entry_release(int count)
387 {
388 	struct globaldata *gd = mycpu;
389 	vm_map_entry_t entry;
390 
391 	crit_enter();
392 	gd->gd_vme_avail += count;
393 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
394 		entry = gd->gd_vme_base;
395 		KKASSERT(entry != NULL);
396 		gd->gd_vme_base = entry->next;
397 		--gd->gd_vme_avail;
398 		crit_exit();
399 		zfree(mapentzone, entry);
400 		crit_enter();
401 	}
402 	crit_exit();
403 }
404 
405 /*
406  *	vm_map_entry_kreserve:
407  *
408  *	Reserve map entry structures for use in kernel_map or (if it exists)
409  *	kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
410  *	basis when the map was inited.  This function is used by zalloc()
411  *	to avoid a recursion when zalloc() itself needs to allocate additional
412  *	kernel memory.
413  *
414  *	This function should only be used when the caller intends to later
415  *	call vm_map_entry_reserve() to 'normalize' the reserve cache.
416  */
417 int
418 vm_map_entry_kreserve(int count)
419 {
420 	struct globaldata *gd = mycpu;
421 
422 	crit_enter();
423 	gd->gd_vme_kdeficit += count;
424 	crit_exit();
425 	KKASSERT(gd->gd_vme_base != NULL);
426 	return(count);
427 }
428 
429 /*
430  *	vm_map_entry_krelease:
431  *
432  *	Release previously reserved map entries for kernel_map or kmem_map
433  *	use.  This routine determines how many entries were actually used and
434  *	replentishes the kernel reserve supply from vme_avail.
435  *
436  *	If there is insufficient supply vme_avail will go negative, which is
437  *	ok.  We cannot safely call zalloc in this function without getting
438  *	into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
439  *	to regenerate the lost entries.
440  */
441 void
442 vm_map_entry_krelease(int count)
443 {
444 	struct globaldata *gd = mycpu;
445 
446 	crit_enter();
447 	gd->gd_vme_kdeficit -= count;
448 	gd->gd_vme_avail -= gd->gd_vme_kdeficit;	/* can go negative */
449 	gd->gd_vme_kdeficit = 0;
450 	crit_exit();
451 }
452 
453 /*
454  *	vm_map_entry_create:	[ internal use only ]
455  *
456  *	Allocates a VM map entry for insertion.  No entry fields are filled
457  *	in.
458  *
459  *	This routine may be called from an interrupt thread but not a FAST
460  *	interrupt.  This routine may recurse the map lock.
461  */
462 static vm_map_entry_t
463 vm_map_entry_create(vm_map_t map, int *countp)
464 {
465 	struct globaldata *gd = mycpu;
466 	vm_map_entry_t entry;
467 
468 	KKASSERT(*countp > 0);
469 	--*countp;
470 	crit_enter();
471 	entry = gd->gd_vme_base;
472 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
473 	gd->gd_vme_base = entry->next;
474 	crit_exit();
475 	return(entry);
476 }
477 
478 /*
479  *	vm_map_entry_dispose:	[ internal use only ]
480  *
481  *	Dispose of a vm_map_entry that is no longer being referenced.  This
482  *	function may be called from an interrupt.
483  */
484 static void
485 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
486 {
487 	struct globaldata *gd = mycpu;
488 
489 	++*countp;
490 	crit_enter();
491 	entry->next = gd->gd_vme_base;
492 	gd->gd_vme_base = entry;
493 	crit_exit();
494 }
495 
496 
497 /*
498  *	vm_map_entry_{un,}link:
499  *
500  *	Insert/remove entries from maps.
501  */
502 static __inline void
503 vm_map_entry_link(vm_map_t map,
504 		  vm_map_entry_t after_where,
505 		  vm_map_entry_t entry)
506 {
507 	map->nentries++;
508 	entry->prev = after_where;
509 	entry->next = after_where->next;
510 	entry->next->prev = entry;
511 	after_where->next = entry;
512 }
513 
514 static __inline void
515 vm_map_entry_unlink(vm_map_t map,
516 		    vm_map_entry_t entry)
517 {
518 	vm_map_entry_t prev;
519 	vm_map_entry_t next;
520 
521 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
522 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
523 	prev = entry->prev;
524 	next = entry->next;
525 	next->prev = prev;
526 	prev->next = next;
527 	map->nentries--;
528 }
529 
530 /*
531  *	SAVE_HINT:
532  *
533  *	Saves the specified entry as the hint for
534  *	future lookups.
535  */
536 #define	SAVE_HINT(map,value) \
537 		(map)->hint = (value);
538 
539 /*
540  *	vm_map_lookup_entry:	[ internal use only ]
541  *
542  *	Finds the map entry containing (or
543  *	immediately preceding) the specified address
544  *	in the given map; the entry is returned
545  *	in the "entry" parameter.  The boolean
546  *	result indicates whether the address is
547  *	actually contained in the map.
548  */
549 boolean_t
550 vm_map_lookup_entry(map, address, entry)
551 	vm_map_t map;
552 	vm_offset_t address;
553 	vm_map_entry_t *entry;	/* OUT */
554 {
555 	vm_map_entry_t cur;
556 	vm_map_entry_t last;
557 
558 	/*
559 	 * Start looking either from the head of the list, or from the hint.
560 	 */
561 
562 	cur = map->hint;
563 
564 	if (cur == &map->header)
565 		cur = cur->next;
566 
567 	if (address >= cur->start) {
568 		/*
569 		 * Go from hint to end of list.
570 		 *
571 		 * But first, make a quick check to see if we are already looking
572 		 * at the entry we want (which is usually the case). Note also
573 		 * that we don't need to save the hint here... it is the same
574 		 * hint (unless we are at the header, in which case the hint
575 		 * didn't buy us anything anyway).
576 		 */
577 		last = &map->header;
578 		if ((cur != last) && (cur->end > address)) {
579 			*entry = cur;
580 			return (TRUE);
581 		}
582 	} else {
583 		/*
584 		 * Go from start to hint, *inclusively*
585 		 */
586 		last = cur->next;
587 		cur = map->header.next;
588 	}
589 
590 	/*
591 	 * Search linearly
592 	 */
593 
594 	while (cur != last) {
595 		if (cur->end > address) {
596 			if (address >= cur->start) {
597 				/*
598 				 * Save this lookup for future hints, and
599 				 * return
600 				 */
601 
602 				*entry = cur;
603 				SAVE_HINT(map, cur);
604 				return (TRUE);
605 			}
606 			break;
607 		}
608 		cur = cur->next;
609 	}
610 	*entry = cur->prev;
611 	SAVE_HINT(map, *entry);
612 	return (FALSE);
613 }
614 
615 /*
616  *	vm_map_insert:
617  *
618  *	Inserts the given whole VM object into the target
619  *	map at the specified address range.  The object's
620  *	size should match that of the address range.
621  *
622  *	Requires that the map be locked, and leaves it so.  Requires that
623  *	sufficient vm_map_entry structures have been reserved and tracks
624  *	the use via countp.
625  *
626  *	If object is non-NULL, ref count must be bumped by caller
627  *	prior to making call to account for the new entry.
628  */
629 int
630 vm_map_insert(vm_map_t map, int *countp,
631 	      vm_object_t object, vm_ooffset_t offset,
632 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
633 	      int cow)
634 {
635 	vm_map_entry_t new_entry;
636 	vm_map_entry_t prev_entry;
637 	vm_map_entry_t temp_entry;
638 	vm_eflags_t protoeflags;
639 
640 	/*
641 	 * Check that the start and end points are not bogus.
642 	 */
643 
644 	if ((start < map->min_offset) || (end > map->max_offset) ||
645 	    (start >= end))
646 		return (KERN_INVALID_ADDRESS);
647 
648 	/*
649 	 * Find the entry prior to the proposed starting address; if it's part
650 	 * of an existing entry, this range is bogus.
651 	 */
652 
653 	if (vm_map_lookup_entry(map, start, &temp_entry))
654 		return (KERN_NO_SPACE);
655 
656 	prev_entry = temp_entry;
657 
658 	/*
659 	 * Assert that the next entry doesn't overlap the end point.
660 	 */
661 
662 	if ((prev_entry->next != &map->header) &&
663 	    (prev_entry->next->start < end))
664 		return (KERN_NO_SPACE);
665 
666 	protoeflags = 0;
667 
668 	if (cow & MAP_COPY_ON_WRITE)
669 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
670 
671 	if (cow & MAP_NOFAULT) {
672 		protoeflags |= MAP_ENTRY_NOFAULT;
673 
674 		KASSERT(object == NULL,
675 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
676 	}
677 	if (cow & MAP_DISABLE_SYNCER)
678 		protoeflags |= MAP_ENTRY_NOSYNC;
679 	if (cow & MAP_DISABLE_COREDUMP)
680 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
681 
682 	if (object) {
683 		/*
684 		 * When object is non-NULL, it could be shared with another
685 		 * process.  We have to set or clear OBJ_ONEMAPPING
686 		 * appropriately.
687 		 */
688 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
689 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
690 		}
691 	}
692 	else if ((prev_entry != &map->header) &&
693 		 (prev_entry->eflags == protoeflags) &&
694 		 (prev_entry->end == start) &&
695 		 (prev_entry->wired_count == 0) &&
696 		 ((prev_entry->object.vm_object == NULL) ||
697 		  vm_object_coalesce(prev_entry->object.vm_object,
698 				     OFF_TO_IDX(prev_entry->offset),
699 				     (vm_size_t)(prev_entry->end - prev_entry->start),
700 				     (vm_size_t)(end - prev_entry->end)))) {
701 		/*
702 		 * We were able to extend the object.  Determine if we
703 		 * can extend the previous map entry to include the
704 		 * new range as well.
705 		 */
706 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
707 		    (prev_entry->protection == prot) &&
708 		    (prev_entry->max_protection == max)) {
709 			map->size += (end - prev_entry->end);
710 			prev_entry->end = end;
711 			vm_map_simplify_entry(map, prev_entry, countp);
712 			return (KERN_SUCCESS);
713 		}
714 
715 		/*
716 		 * If we can extend the object but cannot extend the
717 		 * map entry, we have to create a new map entry.  We
718 		 * must bump the ref count on the extended object to
719 		 * account for it.  object may be NULL.
720 		 */
721 		object = prev_entry->object.vm_object;
722 		offset = prev_entry->offset +
723 			(prev_entry->end - prev_entry->start);
724 		vm_object_reference(object);
725 	}
726 
727 	/*
728 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
729 	 * in things like the buffer map where we manage kva but do not manage
730 	 * backing objects.
731 	 */
732 
733 	/*
734 	 * Create a new entry
735 	 */
736 
737 	new_entry = vm_map_entry_create(map, countp);
738 	new_entry->start = start;
739 	new_entry->end = end;
740 
741 	new_entry->eflags = protoeflags;
742 	new_entry->object.vm_object = object;
743 	new_entry->offset = offset;
744 	new_entry->avail_ssize = 0;
745 
746 	new_entry->inheritance = VM_INHERIT_DEFAULT;
747 	new_entry->protection = prot;
748 	new_entry->max_protection = max;
749 	new_entry->wired_count = 0;
750 
751 	/*
752 	 * Insert the new entry into the list
753 	 */
754 
755 	vm_map_entry_link(map, prev_entry, new_entry);
756 	map->size += new_entry->end - new_entry->start;
757 
758 	/*
759 	 * Update the free space hint
760 	 */
761 	if ((map->first_free == prev_entry) &&
762 	    (prev_entry->end >= new_entry->start)) {
763 		map->first_free = new_entry;
764 	}
765 
766 #if 0
767 	/*
768 	 * Temporarily removed to avoid MAP_STACK panic, due to
769 	 * MAP_STACK being a huge hack.  Will be added back in
770 	 * when MAP_STACK (and the user stack mapping) is fixed.
771 	 */
772 	/*
773 	 * It may be possible to simplify the entry
774 	 */
775 	vm_map_simplify_entry(map, new_entry, countp);
776 #endif
777 
778 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
779 		pmap_object_init_pt(map->pmap, start,
780 				    object, OFF_TO_IDX(offset), end - start,
781 				    cow & MAP_PREFAULT_PARTIAL);
782 	}
783 
784 	return (KERN_SUCCESS);
785 }
786 
787 /*
788  * Find sufficient space for `length' bytes in the given map, starting at
789  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
790  *
791  * This function will returned an arbitrarily aligned pointer.  If no
792  * particular alignment is required you should pass align as 1.  Note that
793  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
794  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
795  * argument.
796  *
797  * 'align' should be a power of 2 but is not required to be.
798  */
799 int
800 vm_map_findspace(
801 	vm_map_t map,
802 	vm_offset_t start,
803 	vm_size_t length,
804 	vm_offset_t align,
805 	vm_offset_t *addr)
806 {
807 	vm_map_entry_t entry, next;
808 	vm_offset_t end;
809 	vm_offset_t align_mask;
810 
811 	if (start < map->min_offset)
812 		start = map->min_offset;
813 	if (start > map->max_offset)
814 		return (1);
815 
816 	/*
817 	 * If the alignment is not a power of 2 we will have to use
818 	 * a mod/division, set align_mask to a special value.
819 	 */
820 	if ((align | (align - 1)) + 1 != (align << 1))
821 		align_mask = (vm_offset_t)-1;
822 	else
823 		align_mask = align - 1;
824 
825 retry:
826 	/*
827 	 * Look for the first possible address; if there's already something
828 	 * at this address, we have to start after it.
829 	 */
830 	if (start == map->min_offset) {
831 		if ((entry = map->first_free) != &map->header)
832 			start = entry->end;
833 	} else {
834 		vm_map_entry_t tmp;
835 
836 		if (vm_map_lookup_entry(map, start, &tmp))
837 			start = tmp->end;
838 		entry = tmp;
839 	}
840 
841 	/*
842 	 * Look through the rest of the map, trying to fit a new region in the
843 	 * gap between existing regions, or after the very last region.
844 	 */
845 	for (;; start = (entry = next)->end) {
846 		/*
847 		 * Adjust the proposed start by the requested alignment,
848 		 * be sure that we didn't wrap the address.
849 		 */
850 		if (align_mask == (vm_offset_t)-1)
851 			end = ((start + align - 1) / align) * align;
852 		else
853 			end = (start + align_mask) & ~align_mask;
854 		if (end < start)
855 			return (1);
856 		start = end;
857 		/*
858 		 * Find the end of the proposed new region.  Be sure we didn't
859 		 * go beyond the end of the map, or wrap around the address.
860 		 * Then check to see if this is the last entry or if the
861 		 * proposed end fits in the gap between this and the next
862 		 * entry.
863 		 */
864 		end = start + length;
865 		if (end > map->max_offset || end < start)
866 			return (1);
867 		next = entry->next;
868 		if (next == &map->header || next->start >= end)
869 			break;
870 	}
871 	SAVE_HINT(map, entry);
872 	if (map == kernel_map) {
873 		vm_offset_t ksize;
874 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
875 			pmap_growkernel(ksize);
876 			goto retry;
877 		}
878 	}
879 	*addr = start;
880 	return (0);
881 }
882 
883 /*
884  *	vm_map_find finds an unallocated region in the target address
885  *	map with the given length.  The search is defined to be
886  *	first-fit from the specified address; the region found is
887  *	returned in the same parameter.
888  *
889  *	If object is non-NULL, ref count must be bumped by caller
890  *	prior to making call to account for the new entry.
891  */
892 int
893 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
894 	    vm_offset_t *addr,	/* IN/OUT */
895 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
896 	    vm_prot_t max, int cow)
897 {
898 	vm_offset_t start;
899 	int result;
900 	int count;
901 
902 	start = *addr;
903 
904 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
905 	vm_map_lock(map);
906 	if (find_space) {
907 		if (vm_map_findspace(map, start, length, 1, addr)) {
908 			vm_map_unlock(map);
909 			vm_map_entry_release(count);
910 			return (KERN_NO_SPACE);
911 		}
912 		start = *addr;
913 	}
914 	result = vm_map_insert(map, &count, object, offset,
915 		start, start + length, prot, max, cow);
916 	vm_map_unlock(map);
917 	vm_map_entry_release(count);
918 
919 	return (result);
920 }
921 
922 /*
923  *	vm_map_simplify_entry:
924  *
925  *	Simplify the given map entry by merging with either neighbor.  This
926  *	routine also has the ability to merge with both neighbors.
927  *
928  *	The map must be locked.
929  *
930  *	This routine guarentees that the passed entry remains valid (though
931  *	possibly extended).  When merging, this routine may delete one or
932  *	both neighbors.  No action is taken on entries which have their
933  *	in-transition flag set.
934  */
935 void
936 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
937 {
938 	vm_map_entry_t next, prev;
939 	vm_size_t prevsize, esize;
940 
941 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
942 		++mycpu->gd_cnt.v_intrans_coll;
943 		return;
944 	}
945 
946 	prev = entry->prev;
947 	if (prev != &map->header) {
948 		prevsize = prev->end - prev->start;
949 		if ( (prev->end == entry->start) &&
950 		     (prev->object.vm_object == entry->object.vm_object) &&
951 		     (!prev->object.vm_object ||
952 			(prev->offset + prevsize == entry->offset)) &&
953 		     (prev->eflags == entry->eflags) &&
954 		     (prev->protection == entry->protection) &&
955 		     (prev->max_protection == entry->max_protection) &&
956 		     (prev->inheritance == entry->inheritance) &&
957 		     (prev->wired_count == entry->wired_count)) {
958 			if (map->first_free == prev)
959 				map->first_free = entry;
960 			if (map->hint == prev)
961 				map->hint = entry;
962 			vm_map_entry_unlink(map, prev);
963 			entry->start = prev->start;
964 			entry->offset = prev->offset;
965 			if (prev->object.vm_object)
966 				vm_object_deallocate(prev->object.vm_object);
967 			vm_map_entry_dispose(map, prev, countp);
968 		}
969 	}
970 
971 	next = entry->next;
972 	if (next != &map->header) {
973 		esize = entry->end - entry->start;
974 		if ((entry->end == next->start) &&
975 		    (next->object.vm_object == entry->object.vm_object) &&
976 		     (!entry->object.vm_object ||
977 			(entry->offset + esize == next->offset)) &&
978 		    (next->eflags == entry->eflags) &&
979 		    (next->protection == entry->protection) &&
980 		    (next->max_protection == entry->max_protection) &&
981 		    (next->inheritance == entry->inheritance) &&
982 		    (next->wired_count == entry->wired_count)) {
983 			if (map->first_free == next)
984 				map->first_free = entry;
985 			if (map->hint == next)
986 				map->hint = entry;
987 			vm_map_entry_unlink(map, next);
988 			entry->end = next->end;
989 			if (next->object.vm_object)
990 				vm_object_deallocate(next->object.vm_object);
991 			vm_map_entry_dispose(map, next, countp);
992 	        }
993 	}
994 }
995 /*
996  *	vm_map_clip_start:	[ internal use only ]
997  *
998  *	Asserts that the given entry begins at or after
999  *	the specified address; if necessary,
1000  *	it splits the entry into two.
1001  */
1002 #define vm_map_clip_start(map, entry, startaddr, countp) \
1003 { \
1004 	if (startaddr > entry->start) \
1005 		_vm_map_clip_start(map, entry, startaddr, countp); \
1006 }
1007 
1008 /*
1009  *	This routine is called only when it is known that
1010  *	the entry must be split.
1011  */
1012 static void
1013 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1014 {
1015 	vm_map_entry_t new_entry;
1016 
1017 	/*
1018 	 * Split off the front portion -- note that we must insert the new
1019 	 * entry BEFORE this one, so that this entry has the specified
1020 	 * starting address.
1021 	 */
1022 
1023 	vm_map_simplify_entry(map, entry, countp);
1024 
1025 	/*
1026 	 * If there is no object backing this entry, we might as well create
1027 	 * one now.  If we defer it, an object can get created after the map
1028 	 * is clipped, and individual objects will be created for the split-up
1029 	 * map.  This is a bit of a hack, but is also about the best place to
1030 	 * put this improvement.
1031 	 */
1032 
1033 	if (entry->object.vm_object == NULL && !map->system_map) {
1034 		vm_object_t object;
1035 		object = vm_object_allocate(OBJT_DEFAULT,
1036 				atop(entry->end - entry->start));
1037 		entry->object.vm_object = object;
1038 		entry->offset = 0;
1039 	}
1040 
1041 	new_entry = vm_map_entry_create(map, countp);
1042 	*new_entry = *entry;
1043 
1044 	new_entry->end = start;
1045 	entry->offset += (start - entry->start);
1046 	entry->start = start;
1047 
1048 	vm_map_entry_link(map, entry->prev, new_entry);
1049 
1050 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1051 		vm_object_reference(new_entry->object.vm_object);
1052 	}
1053 }
1054 
1055 /*
1056  *	vm_map_clip_end:	[ internal use only ]
1057  *
1058  *	Asserts that the given entry ends at or before
1059  *	the specified address; if necessary,
1060  *	it splits the entry into two.
1061  */
1062 
1063 #define vm_map_clip_end(map, entry, endaddr, countp) \
1064 { \
1065 	if (endaddr < entry->end) \
1066 		_vm_map_clip_end(map, entry, endaddr, countp); \
1067 }
1068 
1069 /*
1070  *	This routine is called only when it is known that
1071  *	the entry must be split.
1072  */
1073 static void
1074 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1075 {
1076 	vm_map_entry_t new_entry;
1077 
1078 	/*
1079 	 * If there is no object backing this entry, we might as well create
1080 	 * one now.  If we defer it, an object can get created after the map
1081 	 * is clipped, and individual objects will be created for the split-up
1082 	 * map.  This is a bit of a hack, but is also about the best place to
1083 	 * put this improvement.
1084 	 */
1085 
1086 	if (entry->object.vm_object == NULL && !map->system_map) {
1087 		vm_object_t object;
1088 		object = vm_object_allocate(OBJT_DEFAULT,
1089 				atop(entry->end - entry->start));
1090 		entry->object.vm_object = object;
1091 		entry->offset = 0;
1092 	}
1093 
1094 	/*
1095 	 * Create a new entry and insert it AFTER the specified entry
1096 	 */
1097 
1098 	new_entry = vm_map_entry_create(map, countp);
1099 	*new_entry = *entry;
1100 
1101 	new_entry->start = entry->end = end;
1102 	new_entry->offset += (end - entry->start);
1103 
1104 	vm_map_entry_link(map, entry, new_entry);
1105 
1106 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1107 		vm_object_reference(new_entry->object.vm_object);
1108 	}
1109 }
1110 
1111 /*
1112  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1113  *
1114  *	Asserts that the starting and ending region
1115  *	addresses fall within the valid range of the map.
1116  */
1117 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1118 		{					\
1119 		if (start < vm_map_min(map))		\
1120 			start = vm_map_min(map);	\
1121 		if (end > vm_map_max(map))		\
1122 			end = vm_map_max(map);		\
1123 		if (start > end)			\
1124 			start = end;			\
1125 		}
1126 
1127 /*
1128  *	vm_map_transition_wait:	[ kernel use only ]
1129  *
1130  *	Used to block when an in-transition collison occurs.  The map
1131  *	is unlocked for the sleep and relocked before the return.
1132  */
1133 static
1134 void
1135 vm_map_transition_wait(vm_map_t map)
1136 {
1137 	vm_map_unlock(map);
1138 	tsleep(map, 0, "vment", 0);
1139 	vm_map_lock(map);
1140 }
1141 
1142 /*
1143  * CLIP_CHECK_BACK
1144  * CLIP_CHECK_FWD
1145  *
1146  *	When we do blocking operations with the map lock held it is
1147  *	possible that a clip might have occured on our in-transit entry,
1148  *	requiring an adjustment to the entry in our loop.  These macros
1149  *	help the pageable and clip_range code deal with the case.  The
1150  *	conditional costs virtually nothing if no clipping has occured.
1151  */
1152 
1153 #define CLIP_CHECK_BACK(entry, save_start)		\
1154     do {						\
1155 	    while (entry->start != save_start) {	\
1156 		    entry = entry->prev;		\
1157 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1158 	    }						\
1159     } while(0)
1160 
1161 #define CLIP_CHECK_FWD(entry, save_end)			\
1162     do {						\
1163 	    while (entry->end != save_end) {		\
1164 		    entry = entry->next;		\
1165 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1166 	    }						\
1167     } while(0)
1168 
1169 
1170 /*
1171  *	vm_map_clip_range:	[ kernel use only ]
1172  *
1173  *	Clip the specified range and return the base entry.  The
1174  *	range may cover several entries starting at the returned base
1175  *	and the first and last entry in the covering sequence will be
1176  *	properly clipped to the requested start and end address.
1177  *
1178  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1179  *	flag.
1180  *
1181  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1182  *	covered by the requested range.
1183  *
1184  *	The map must be exclusively locked on entry and will remain locked
1185  *	on return. If no range exists or the range contains holes and you
1186  *	specified that no holes were allowed, NULL will be returned.  This
1187  *	routine may temporarily unlock the map in order avoid a deadlock when
1188  *	sleeping.
1189  */
1190 static
1191 vm_map_entry_t
1192 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1193 	int *countp, int flags)
1194 {
1195 	vm_map_entry_t start_entry;
1196 	vm_map_entry_t entry;
1197 
1198 	/*
1199 	 * Locate the entry and effect initial clipping.  The in-transition
1200 	 * case does not occur very often so do not try to optimize it.
1201 	 */
1202 again:
1203 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1204 		return (NULL);
1205 	entry = start_entry;
1206 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1207 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1208 		++mycpu->gd_cnt.v_intrans_coll;
1209 		++mycpu->gd_cnt.v_intrans_wait;
1210 		vm_map_transition_wait(map);
1211 		/*
1212 		 * entry and/or start_entry may have been clipped while
1213 		 * we slept, or may have gone away entirely.  We have
1214 		 * to restart from the lookup.
1215 		 */
1216 		goto again;
1217 	}
1218 	/*
1219 	 * Since we hold an exclusive map lock we do not have to restart
1220 	 * after clipping, even though clipping may block in zalloc.
1221 	 */
1222 	vm_map_clip_start(map, entry, start, countp);
1223 	vm_map_clip_end(map, entry, end, countp);
1224 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1225 
1226 	/*
1227 	 * Scan entries covered by the range.  When working on the next
1228 	 * entry a restart need only re-loop on the current entry which
1229 	 * we have already locked, since 'next' may have changed.  Also,
1230 	 * even though entry is safe, it may have been clipped so we
1231 	 * have to iterate forwards through the clip after sleeping.
1232 	 */
1233 	while (entry->next != &map->header && entry->next->start < end) {
1234 		vm_map_entry_t next = entry->next;
1235 
1236 		if (flags & MAP_CLIP_NO_HOLES) {
1237 			if (next->start > entry->end) {
1238 				vm_map_unclip_range(map, start_entry,
1239 					start, entry->end, countp, flags);
1240 				return(NULL);
1241 			}
1242 		}
1243 
1244 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1245 			vm_offset_t save_end = entry->end;
1246 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1247 			++mycpu->gd_cnt.v_intrans_coll;
1248 			++mycpu->gd_cnt.v_intrans_wait;
1249 			vm_map_transition_wait(map);
1250 
1251 			/*
1252 			 * clips might have occured while we blocked.
1253 			 */
1254 			CLIP_CHECK_FWD(entry, save_end);
1255 			CLIP_CHECK_BACK(start_entry, start);
1256 			continue;
1257 		}
1258 		/*
1259 		 * No restart necessary even though clip_end may block, we
1260 		 * are holding the map lock.
1261 		 */
1262 		vm_map_clip_end(map, next, end, countp);
1263 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1264 		entry = next;
1265 	}
1266 	if (flags & MAP_CLIP_NO_HOLES) {
1267 		if (entry->end != end) {
1268 			vm_map_unclip_range(map, start_entry,
1269 				start, entry->end, countp, flags);
1270 			return(NULL);
1271 		}
1272 	}
1273 	return(start_entry);
1274 }
1275 
1276 /*
1277  *	vm_map_unclip_range:	[ kernel use only ]
1278  *
1279  *	Undo the effect of vm_map_clip_range().  You should pass the same
1280  *	flags and the same range that you passed to vm_map_clip_range().
1281  *	This code will clear the in-transition flag on the entries and
1282  *	wake up anyone waiting.  This code will also simplify the sequence
1283  *	and attempt to merge it with entries before and after the sequence.
1284  *
1285  *	The map must be locked on entry and will remain locked on return.
1286  *
1287  *	Note that you should also pass the start_entry returned by
1288  *	vm_map_clip_range().  However, if you block between the two calls
1289  *	with the map unlocked please be aware that the start_entry may
1290  *	have been clipped and you may need to scan it backwards to find
1291  *	the entry corresponding with the original start address.  You are
1292  *	responsible for this, vm_map_unclip_range() expects the correct
1293  *	start_entry to be passed to it and will KASSERT otherwise.
1294  */
1295 static
1296 void
1297 vm_map_unclip_range(
1298 	vm_map_t map,
1299 	vm_map_entry_t start_entry,
1300 	vm_offset_t start,
1301 	vm_offset_t end,
1302 	int *countp,
1303 	int flags)
1304 {
1305 	vm_map_entry_t entry;
1306 
1307 	entry = start_entry;
1308 
1309 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1310 	while (entry != &map->header && entry->start < end) {
1311 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1312 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1313 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1314 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1315 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1316 			wakeup(map);
1317 		}
1318 		entry = entry->next;
1319 	}
1320 
1321 	/*
1322 	 * Simplification does not block so there is no restart case.
1323 	 */
1324 	entry = start_entry;
1325 	while (entry != &map->header && entry->start < end) {
1326 		vm_map_simplify_entry(map, entry, countp);
1327 		entry = entry->next;
1328 	}
1329 }
1330 
1331 /*
1332  *	vm_map_submap:		[ kernel use only ]
1333  *
1334  *	Mark the given range as handled by a subordinate map.
1335  *
1336  *	This range must have been created with vm_map_find,
1337  *	and no other operations may have been performed on this
1338  *	range prior to calling vm_map_submap.
1339  *
1340  *	Only a limited number of operations can be performed
1341  *	within this rage after calling vm_map_submap:
1342  *		vm_fault
1343  *	[Don't try vm_map_copy!]
1344  *
1345  *	To remove a submapping, one must first remove the
1346  *	range from the superior map, and then destroy the
1347  *	submap (if desired).  [Better yet, don't try it.]
1348  */
1349 int
1350 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1351 {
1352 	vm_map_entry_t entry;
1353 	int result = KERN_INVALID_ARGUMENT;
1354 	int count;
1355 
1356 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1357 	vm_map_lock(map);
1358 
1359 	VM_MAP_RANGE_CHECK(map, start, end);
1360 
1361 	if (vm_map_lookup_entry(map, start, &entry)) {
1362 		vm_map_clip_start(map, entry, start, &count);
1363 	} else {
1364 		entry = entry->next;
1365 	}
1366 
1367 	vm_map_clip_end(map, entry, end, &count);
1368 
1369 	if ((entry->start == start) && (entry->end == end) &&
1370 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1371 	    (entry->object.vm_object == NULL)) {
1372 		entry->object.sub_map = submap;
1373 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1374 		result = KERN_SUCCESS;
1375 	}
1376 	vm_map_unlock(map);
1377 	vm_map_entry_release(count);
1378 
1379 	return (result);
1380 }
1381 
1382 /*
1383  *	vm_map_protect:
1384  *
1385  *	Sets the protection of the specified address
1386  *	region in the target map.  If "set_max" is
1387  *	specified, the maximum protection is to be set;
1388  *	otherwise, only the current protection is affected.
1389  */
1390 int
1391 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1392 	       vm_prot_t new_prot, boolean_t set_max)
1393 {
1394 	vm_map_entry_t current;
1395 	vm_map_entry_t entry;
1396 	int count;
1397 
1398 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1399 	vm_map_lock(map);
1400 
1401 	VM_MAP_RANGE_CHECK(map, start, end);
1402 
1403 	if (vm_map_lookup_entry(map, start, &entry)) {
1404 		vm_map_clip_start(map, entry, start, &count);
1405 	} else {
1406 		entry = entry->next;
1407 	}
1408 
1409 	/*
1410 	 * Make a first pass to check for protection violations.
1411 	 */
1412 
1413 	current = entry;
1414 	while ((current != &map->header) && (current->start < end)) {
1415 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1416 			vm_map_unlock(map);
1417 			vm_map_entry_release(count);
1418 			return (KERN_INVALID_ARGUMENT);
1419 		}
1420 		if ((new_prot & current->max_protection) != new_prot) {
1421 			vm_map_unlock(map);
1422 			vm_map_entry_release(count);
1423 			return (KERN_PROTECTION_FAILURE);
1424 		}
1425 		current = current->next;
1426 	}
1427 
1428 	/*
1429 	 * Go back and fix up protections. [Note that clipping is not
1430 	 * necessary the second time.]
1431 	 */
1432 	current = entry;
1433 
1434 	while ((current != &map->header) && (current->start < end)) {
1435 		vm_prot_t old_prot;
1436 
1437 		vm_map_clip_end(map, current, end, &count);
1438 
1439 		old_prot = current->protection;
1440 		if (set_max)
1441 			current->protection =
1442 			    (current->max_protection = new_prot) &
1443 			    old_prot;
1444 		else
1445 			current->protection = new_prot;
1446 
1447 		/*
1448 		 * Update physical map if necessary. Worry about copy-on-write
1449 		 * here -- CHECK THIS XXX
1450 		 */
1451 
1452 		if (current->protection != old_prot) {
1453 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1454 							VM_PROT_ALL)
1455 
1456 			pmap_protect(map->pmap, current->start,
1457 			    current->end,
1458 			    current->protection & MASK(current));
1459 #undef	MASK
1460 		}
1461 
1462 		vm_map_simplify_entry(map, current, &count);
1463 
1464 		current = current->next;
1465 	}
1466 
1467 	vm_map_unlock(map);
1468 	vm_map_entry_release(count);
1469 	return (KERN_SUCCESS);
1470 }
1471 
1472 /*
1473  *	vm_map_madvise:
1474  *
1475  * 	This routine traverses a processes map handling the madvise
1476  *	system call.  Advisories are classified as either those effecting
1477  *	the vm_map_entry structure, or those effecting the underlying
1478  *	objects.
1479  */
1480 
1481 int
1482 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1483 {
1484 	vm_map_entry_t current, entry;
1485 	int modify_map = 0;
1486 	int count;
1487 
1488 	/*
1489 	 * Some madvise calls directly modify the vm_map_entry, in which case
1490 	 * we need to use an exclusive lock on the map and we need to perform
1491 	 * various clipping operations.  Otherwise we only need a read-lock
1492 	 * on the map.
1493 	 */
1494 
1495 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1496 
1497 	switch(behav) {
1498 	case MADV_NORMAL:
1499 	case MADV_SEQUENTIAL:
1500 	case MADV_RANDOM:
1501 	case MADV_NOSYNC:
1502 	case MADV_AUTOSYNC:
1503 	case MADV_NOCORE:
1504 	case MADV_CORE:
1505 		modify_map = 1;
1506 		vm_map_lock(map);
1507 		break;
1508 	case MADV_WILLNEED:
1509 	case MADV_DONTNEED:
1510 	case MADV_FREE:
1511 		vm_map_lock_read(map);
1512 		break;
1513 	default:
1514 		vm_map_entry_release(count);
1515 		return (KERN_INVALID_ARGUMENT);
1516 	}
1517 
1518 	/*
1519 	 * Locate starting entry and clip if necessary.
1520 	 */
1521 
1522 	VM_MAP_RANGE_CHECK(map, start, end);
1523 
1524 	if (vm_map_lookup_entry(map, start, &entry)) {
1525 		if (modify_map)
1526 			vm_map_clip_start(map, entry, start, &count);
1527 	} else {
1528 		entry = entry->next;
1529 	}
1530 
1531 	if (modify_map) {
1532 		/*
1533 		 * madvise behaviors that are implemented in the vm_map_entry.
1534 		 *
1535 		 * We clip the vm_map_entry so that behavioral changes are
1536 		 * limited to the specified address range.
1537 		 */
1538 		for (current = entry;
1539 		     (current != &map->header) && (current->start < end);
1540 		     current = current->next
1541 		) {
1542 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1543 				continue;
1544 
1545 			vm_map_clip_end(map, current, end, &count);
1546 
1547 			switch (behav) {
1548 			case MADV_NORMAL:
1549 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1550 				break;
1551 			case MADV_SEQUENTIAL:
1552 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1553 				break;
1554 			case MADV_RANDOM:
1555 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1556 				break;
1557 			case MADV_NOSYNC:
1558 				current->eflags |= MAP_ENTRY_NOSYNC;
1559 				break;
1560 			case MADV_AUTOSYNC:
1561 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1562 				break;
1563 			case MADV_NOCORE:
1564 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1565 				break;
1566 			case MADV_CORE:
1567 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1568 				break;
1569 			default:
1570 				break;
1571 			}
1572 			vm_map_simplify_entry(map, current, &count);
1573 		}
1574 		vm_map_unlock(map);
1575 	} else {
1576 		vm_pindex_t pindex;
1577 		int count;
1578 
1579 		/*
1580 		 * madvise behaviors that are implemented in the underlying
1581 		 * vm_object.
1582 		 *
1583 		 * Since we don't clip the vm_map_entry, we have to clip
1584 		 * the vm_object pindex and count.
1585 		 */
1586 		for (current = entry;
1587 		     (current != &map->header) && (current->start < end);
1588 		     current = current->next
1589 		) {
1590 			vm_offset_t useStart;
1591 
1592 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1593 				continue;
1594 
1595 			pindex = OFF_TO_IDX(current->offset);
1596 			count = atop(current->end - current->start);
1597 			useStart = current->start;
1598 
1599 			if (current->start < start) {
1600 				pindex += atop(start - current->start);
1601 				count -= atop(start - current->start);
1602 				useStart = start;
1603 			}
1604 			if (current->end > end)
1605 				count -= atop(current->end - end);
1606 
1607 			if (count <= 0)
1608 				continue;
1609 
1610 			vm_object_madvise(current->object.vm_object,
1611 					  pindex, count, behav);
1612 			if (behav == MADV_WILLNEED) {
1613 				pmap_object_init_pt(
1614 				    map->pmap,
1615 				    useStart,
1616 				    current->object.vm_object,
1617 				    pindex,
1618 				    (count << PAGE_SHIFT),
1619 				    MAP_PREFAULT_MADVISE
1620 				);
1621 			}
1622 		}
1623 		vm_map_unlock_read(map);
1624 	}
1625 	vm_map_entry_release(count);
1626 	return(0);
1627 }
1628 
1629 
1630 /*
1631  *	vm_map_inherit:
1632  *
1633  *	Sets the inheritance of the specified address
1634  *	range in the target map.  Inheritance
1635  *	affects how the map will be shared with
1636  *	child maps at the time of vm_map_fork.
1637  */
1638 int
1639 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1640 	       vm_inherit_t new_inheritance)
1641 {
1642 	vm_map_entry_t entry;
1643 	vm_map_entry_t temp_entry;
1644 	int count;
1645 
1646 	switch (new_inheritance) {
1647 	case VM_INHERIT_NONE:
1648 	case VM_INHERIT_COPY:
1649 	case VM_INHERIT_SHARE:
1650 		break;
1651 	default:
1652 		return (KERN_INVALID_ARGUMENT);
1653 	}
1654 
1655 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1656 	vm_map_lock(map);
1657 
1658 	VM_MAP_RANGE_CHECK(map, start, end);
1659 
1660 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1661 		entry = temp_entry;
1662 		vm_map_clip_start(map, entry, start, &count);
1663 	} else
1664 		entry = temp_entry->next;
1665 
1666 	while ((entry != &map->header) && (entry->start < end)) {
1667 		vm_map_clip_end(map, entry, end, &count);
1668 
1669 		entry->inheritance = new_inheritance;
1670 
1671 		vm_map_simplify_entry(map, entry, &count);
1672 
1673 		entry = entry->next;
1674 	}
1675 	vm_map_unlock(map);
1676 	vm_map_entry_release(count);
1677 	return (KERN_SUCCESS);
1678 }
1679 
1680 /*
1681  * Implement the semantics of mlock
1682  */
1683 int
1684 vm_map_unwire(map, start, real_end, new_pageable)
1685 	vm_map_t map;
1686 	vm_offset_t start;
1687 	vm_offset_t real_end;
1688 	boolean_t new_pageable;
1689 {
1690 	vm_map_entry_t entry;
1691 	vm_map_entry_t start_entry;
1692 	vm_offset_t end;
1693 	int rv = KERN_SUCCESS;
1694 	int count;
1695 
1696 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1697 	vm_map_lock(map);
1698 	VM_MAP_RANGE_CHECK(map, start, real_end);
1699 	end = real_end;
1700 
1701 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1702 	if (start_entry == NULL) {
1703 		vm_map_unlock(map);
1704 		vm_map_entry_release(count);
1705 		return (KERN_INVALID_ADDRESS);
1706 	}
1707 
1708 	if (new_pageable == 0) {
1709 		entry = start_entry;
1710 		while ((entry != &map->header) && (entry->start < end)) {
1711 			vm_offset_t save_start;
1712 			vm_offset_t save_end;
1713 
1714 			/*
1715 			 * Already user wired or hard wired (trivial cases)
1716 			 */
1717 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1718 				entry = entry->next;
1719 				continue;
1720 			}
1721 			if (entry->wired_count != 0) {
1722 				entry->wired_count++;
1723 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1724 				entry = entry->next;
1725 				continue;
1726 			}
1727 
1728 			/*
1729 			 * A new wiring requires instantiation of appropriate
1730 			 * management structures and the faulting in of the
1731 			 * page.
1732 			 */
1733 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1734 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1735 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1736 
1737 					vm_object_shadow(&entry->object.vm_object,
1738 					    &entry->offset,
1739 					    atop(entry->end - entry->start));
1740 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1741 
1742 				} else if (entry->object.vm_object == NULL &&
1743 					   !map->system_map) {
1744 
1745 					entry->object.vm_object =
1746 					    vm_object_allocate(OBJT_DEFAULT,
1747 						atop(entry->end - entry->start));
1748 					entry->offset = (vm_offset_t) 0;
1749 
1750 				}
1751 			}
1752 			entry->wired_count++;
1753 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1754 
1755 			/*
1756 			 * Now fault in the area.  The map lock needs to be
1757 			 * manipulated to avoid deadlocks.  The in-transition
1758 			 * flag protects the entries.
1759 			 */
1760 			save_start = entry->start;
1761 			save_end = entry->end;
1762 			vm_map_unlock(map);
1763 			map->timestamp++;
1764 			rv = vm_fault_user_wire(map, save_start, save_end);
1765 			vm_map_lock(map);
1766 			if (rv) {
1767 				CLIP_CHECK_BACK(entry, save_start);
1768 				for (;;) {
1769 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1770 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1771 					entry->wired_count = 0;
1772 					if (entry->end == save_end)
1773 						break;
1774 					entry = entry->next;
1775 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1776 				}
1777 				end = save_start;	/* unwire the rest */
1778 				break;
1779 			}
1780 			/*
1781 			 * note that even though the entry might have been
1782 			 * clipped, the USER_WIRED flag we set prevents
1783 			 * duplication so we do not have to do a
1784 			 * clip check.
1785 			 */
1786 			entry = entry->next;
1787 		}
1788 
1789 		/*
1790 		 * If we failed fall through to the unwiring section to
1791 		 * unwire what we had wired so far.  'end' has already
1792 		 * been adjusted.
1793 		 */
1794 		if (rv)
1795 			new_pageable = 1;
1796 
1797 		/*
1798 		 * start_entry might have been clipped if we unlocked the
1799 		 * map and blocked.  No matter how clipped it has gotten
1800 		 * there should be a fragment that is on our start boundary.
1801 		 */
1802 		CLIP_CHECK_BACK(start_entry, start);
1803 	}
1804 
1805 	/*
1806 	 * Deal with the unwiring case.
1807 	 */
1808 	if (new_pageable) {
1809 		/*
1810 		 * This is the unwiring case.  We must first ensure that the
1811 		 * range to be unwired is really wired down.  We know there
1812 		 * are no holes.
1813 		 */
1814 		entry = start_entry;
1815 		while ((entry != &map->header) && (entry->start < end)) {
1816 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1817 				rv = KERN_INVALID_ARGUMENT;
1818 				goto done;
1819 			}
1820 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1821 			entry = entry->next;
1822 		}
1823 
1824 		/*
1825 		 * Now decrement the wiring count for each region. If a region
1826 		 * becomes completely unwired, unwire its physical pages and
1827 		 * mappings.
1828 		 */
1829 		/*
1830 		 * The map entries are processed in a loop, checking to
1831 		 * make sure the entry is wired and asserting it has a wired
1832 		 * count. However, another loop was inserted more-or-less in
1833 		 * the middle of the unwiring path. This loop picks up the
1834 		 * "entry" loop variable from the first loop without first
1835 		 * setting it to start_entry. Naturally, the secound loop
1836 		 * is never entered and the pages backing the entries are
1837 		 * never unwired. This can lead to a leak of wired pages.
1838 		 */
1839 		entry = start_entry;
1840 		while ((entry != &map->header) && (entry->start < end)) {
1841 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1842 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1843 			entry->wired_count--;
1844 			if (entry->wired_count == 0)
1845 				vm_fault_unwire(map, entry->start, entry->end);
1846 			entry = entry->next;
1847 		}
1848 	}
1849 done:
1850 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
1851 		MAP_CLIP_NO_HOLES);
1852 	map->timestamp++;
1853 	vm_map_unlock(map);
1854 	vm_map_entry_release(count);
1855 	return (rv);
1856 }
1857 
1858 /*
1859  *	vm_map_wire:
1860  *
1861  *	Sets the pageability of the specified address
1862  *	range in the target map.  Regions specified
1863  *	as not pageable require locked-down physical
1864  *	memory and physical page maps.
1865  *
1866  *	The map must not be locked, but a reference
1867  *	must remain to the map throughout the call.
1868  *
1869  *	This function may be called via the zalloc path and must properly
1870  *	reserve map entries for kernel_map.
1871  */
1872 int
1873 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1874 {
1875 	vm_map_entry_t entry;
1876 	vm_map_entry_t start_entry;
1877 	vm_offset_t end;
1878 	int rv = KERN_SUCCESS;
1879 	int count;
1880 	int s;
1881 
1882 	if (kmflags & KM_KRESERVE)
1883 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1884 	else
1885 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1886 	vm_map_lock(map);
1887 	VM_MAP_RANGE_CHECK(map, start, real_end);
1888 	end = real_end;
1889 
1890 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1891 	if (start_entry == NULL) {
1892 		vm_map_unlock(map);
1893 		rv = KERN_INVALID_ADDRESS;
1894 		goto failure;
1895 	}
1896 	if ((kmflags & KM_PAGEABLE) == 0) {
1897 		/*
1898 		 * Wiring.
1899 		 *
1900 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1901 		 * objects that need to be created. Then we clip each map
1902 		 * entry to the region to be wired and increment its wiring
1903 		 * count.  We create objects before clipping the map entries
1904 		 * to avoid object proliferation.
1905 		 *
1906 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1907 		 * fault in the pages for any newly wired area (wired_count is
1908 		 * 1).
1909 		 *
1910 		 * Downgrading to a read lock for vm_fault_wire avoids a
1911 		 * possible deadlock with another process that may have faulted
1912 		 * on one of the pages to be wired (it would mark the page busy,
1913 		 * blocking us, then in turn block on the map lock that we
1914 		 * hold).  Because of problems in the recursive lock package,
1915 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1916 		 * any actions that require the write lock must be done
1917 		 * beforehand.  Because we keep the read lock on the map, the
1918 		 * copy-on-write status of the entries we modify here cannot
1919 		 * change.
1920 		 */
1921 
1922 		entry = start_entry;
1923 		while ((entry != &map->header) && (entry->start < end)) {
1924 			/*
1925 			 * Trivial case if the entry is already wired
1926 			 */
1927 			if (entry->wired_count) {
1928 				entry->wired_count++;
1929 				entry = entry->next;
1930 				continue;
1931 			}
1932 
1933 			/*
1934 			 * The entry is being newly wired, we have to setup
1935 			 * appropriate management structures.  A shadow
1936 			 * object is required for a copy-on-write region,
1937 			 * or a normal object for a zero-fill region.  We
1938 			 * do not have to do this for entries that point to sub
1939 			 * maps because we won't hold the lock on the sub map.
1940 			 */
1941 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1942 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1943 				if (copyflag &&
1944 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
1945 
1946 					vm_object_shadow(&entry->object.vm_object,
1947 					    &entry->offset,
1948 					    atop(entry->end - entry->start));
1949 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1950 				} else if (entry->object.vm_object == NULL &&
1951 					   !map->system_map) {
1952 					entry->object.vm_object =
1953 					    vm_object_allocate(OBJT_DEFAULT,
1954 						atop(entry->end - entry->start));
1955 					entry->offset = (vm_offset_t) 0;
1956 				}
1957 			}
1958 
1959 			entry->wired_count++;
1960 			entry = entry->next;
1961 		}
1962 
1963 		/*
1964 		 * Pass 2.
1965 		 */
1966 
1967 		/*
1968 		 * HACK HACK HACK HACK
1969 		 *
1970 		 * Unlock the map to avoid deadlocks.  The in-transit flag
1971 		 * protects us from most changes but note that
1972 		 * clipping may still occur.  To prevent clipping from
1973 		 * occuring after the unlock, except for when we are
1974 		 * blocking in vm_fault_wire, we must run at splvm().
1975 		 * Otherwise our accesses to entry->start and entry->end
1976 		 * could be corrupted.  We have to set splvm() prior to
1977 		 * unlocking so start_entry does not change out from
1978 		 * under us at the very beginning of the loop.
1979 		 *
1980 		 * HACK HACK HACK HACK
1981 		 */
1982 
1983 		s = splvm();
1984 		vm_map_unlock(map);
1985 
1986 		entry = start_entry;
1987 		while (entry != &map->header && entry->start < end) {
1988 			/*
1989 			 * If vm_fault_wire fails for any page we need to undo
1990 			 * what has been done.  We decrement the wiring count
1991 			 * for those pages which have not yet been wired (now)
1992 			 * and unwire those that have (later).
1993 			 */
1994 			vm_offset_t save_start = entry->start;
1995 			vm_offset_t save_end = entry->end;
1996 
1997 			if (entry->wired_count == 1)
1998 				rv = vm_fault_wire(map, entry->start, entry->end);
1999 			if (rv) {
2000 				CLIP_CHECK_BACK(entry, save_start);
2001 				for (;;) {
2002 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2003 					entry->wired_count = 0;
2004 					if (entry->end == save_end)
2005 						break;
2006 					entry = entry->next;
2007 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2008 				}
2009 				end = save_start;
2010 				break;
2011 			}
2012 			CLIP_CHECK_FWD(entry, save_end);
2013 			entry = entry->next;
2014 		}
2015 		splx(s);
2016 
2017 		/*
2018 		 * relock.  start_entry is still IN_TRANSITION and must
2019 		 * still exist, but may have been clipped (handled just
2020 		 * below).
2021 		 */
2022 		vm_map_lock(map);
2023 
2024 		/*
2025 		 * If a failure occured undo everything by falling through
2026 		 * to the unwiring code.  'end' has already been adjusted
2027 		 * appropriately.
2028 		 */
2029 		if (rv)
2030 			kmflags |= KM_PAGEABLE;
2031 
2032 		/*
2033 		 * start_entry might have been clipped if we unlocked the
2034 		 * map and blocked.  No matter how clipped it has gotten
2035 		 * there should be a fragment that is on our start boundary.
2036 		 */
2037 		CLIP_CHECK_BACK(start_entry, start);
2038 	}
2039 
2040 	if (kmflags & KM_PAGEABLE) {
2041 		/*
2042 		 * This is the unwiring case.  We must first ensure that the
2043 		 * range to be unwired is really wired down.  We know there
2044 		 * are no holes.
2045 		 */
2046 		entry = start_entry;
2047 		while ((entry != &map->header) && (entry->start < end)) {
2048 			if (entry->wired_count == 0) {
2049 				rv = KERN_INVALID_ARGUMENT;
2050 				goto done;
2051 			}
2052 			entry = entry->next;
2053 		}
2054 
2055 		/*
2056 		 * Now decrement the wiring count for each region. If a region
2057 		 * becomes completely unwired, unwire its physical pages and
2058 		 * mappings.
2059 		 */
2060 		entry = start_entry;
2061 		while ((entry != &map->header) && (entry->start < end)) {
2062 			entry->wired_count--;
2063 			if (entry->wired_count == 0)
2064 				vm_fault_unwire(map, entry->start, entry->end);
2065 			entry = entry->next;
2066 		}
2067 	}
2068 done:
2069 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2070 		MAP_CLIP_NO_HOLES);
2071 	map->timestamp++;
2072 	vm_map_unlock(map);
2073 failure:
2074 	if (kmflags & KM_KRESERVE)
2075 		vm_map_entry_krelease(count);
2076 	else
2077 		vm_map_entry_release(count);
2078 	return (rv);
2079 }
2080 
2081 /*
2082  * vm_map_set_wired_quick()
2083  *
2084  *	Mark a newly allocated address range as wired but do not fault in
2085  *	the pages.  The caller is expected to load the pages into the object.
2086  *
2087  *	The map must be locked on entry and will remain locked on return.
2088  */
2089 void
2090 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2091 {
2092 	vm_map_entry_t scan;
2093 	vm_map_entry_t entry;
2094 
2095 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2096 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2097 	    KKASSERT(entry->wired_count == 0);
2098 	    entry->wired_count = 1;
2099 	}
2100 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2101 }
2102 
2103 /*
2104  * vm_map_clean
2105  *
2106  * Push any dirty cached pages in the address range to their pager.
2107  * If syncio is TRUE, dirty pages are written synchronously.
2108  * If invalidate is TRUE, any cached pages are freed as well.
2109  *
2110  * Returns an error if any part of the specified range is not mapped.
2111  */
2112 int
2113 vm_map_clean(map, start, end, syncio, invalidate)
2114 	vm_map_t map;
2115 	vm_offset_t start;
2116 	vm_offset_t end;
2117 	boolean_t syncio;
2118 	boolean_t invalidate;
2119 {
2120 	vm_map_entry_t current;
2121 	vm_map_entry_t entry;
2122 	vm_size_t size;
2123 	vm_object_t object;
2124 	vm_ooffset_t offset;
2125 
2126 	vm_map_lock_read(map);
2127 	VM_MAP_RANGE_CHECK(map, start, end);
2128 	if (!vm_map_lookup_entry(map, start, &entry)) {
2129 		vm_map_unlock_read(map);
2130 		return (KERN_INVALID_ADDRESS);
2131 	}
2132 	/*
2133 	 * Make a first pass to check for holes.
2134 	 */
2135 	for (current = entry; current->start < end; current = current->next) {
2136 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2137 			vm_map_unlock_read(map);
2138 			return (KERN_INVALID_ARGUMENT);
2139 		}
2140 		if (end > current->end &&
2141 		    (current->next == &map->header ||
2142 			current->end != current->next->start)) {
2143 			vm_map_unlock_read(map);
2144 			return (KERN_INVALID_ADDRESS);
2145 		}
2146 	}
2147 
2148 	if (invalidate)
2149 		pmap_remove(vm_map_pmap(map), start, end);
2150 	/*
2151 	 * Make a second pass, cleaning/uncaching pages from the indicated
2152 	 * objects as we go.
2153 	 */
2154 	for (current = entry; current->start < end; current = current->next) {
2155 		offset = current->offset + (start - current->start);
2156 		size = (end <= current->end ? end : current->end) - start;
2157 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2158 			vm_map_t smap;
2159 			vm_map_entry_t tentry;
2160 			vm_size_t tsize;
2161 
2162 			smap = current->object.sub_map;
2163 			vm_map_lock_read(smap);
2164 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2165 			tsize = tentry->end - offset;
2166 			if (tsize < size)
2167 				size = tsize;
2168 			object = tentry->object.vm_object;
2169 			offset = tentry->offset + (offset - tentry->start);
2170 			vm_map_unlock_read(smap);
2171 		} else {
2172 			object = current->object.vm_object;
2173 		}
2174 		/*
2175 		 * Note that there is absolutely no sense in writing out
2176 		 * anonymous objects, so we track down the vnode object
2177 		 * to write out.
2178 		 * We invalidate (remove) all pages from the address space
2179 		 * anyway, for semantic correctness.
2180 		 *
2181 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2182 		 * may start out with a NULL object.
2183 		 */
2184 		while (object && object->backing_object) {
2185 			object = object->backing_object;
2186 			offset += object->backing_object_offset;
2187 			if (object->size < OFF_TO_IDX( offset + size))
2188 				size = IDX_TO_OFF(object->size) - offset;
2189 		}
2190 		if (object && (object->type == OBJT_VNODE) &&
2191 		    (current->protection & VM_PROT_WRITE)) {
2192 			/*
2193 			 * Flush pages if writing is allowed, invalidate them
2194 			 * if invalidation requested.  Pages undergoing I/O
2195 			 * will be ignored by vm_object_page_remove().
2196 			 *
2197 			 * We cannot lock the vnode and then wait for paging
2198 			 * to complete without deadlocking against vm_fault.
2199 			 * Instead we simply call vm_object_page_remove() and
2200 			 * allow it to block internally on a page-by-page
2201 			 * basis when it encounters pages undergoing async
2202 			 * I/O.
2203 			 */
2204 			int flags;
2205 
2206 			vm_object_reference(object);
2207 			vn_lock(object->handle, NULL,
2208 				LK_EXCLUSIVE | LK_RETRY, curthread);
2209 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2210 			flags |= invalidate ? OBJPC_INVAL : 0;
2211 			vm_object_page_clean(object,
2212 			    OFF_TO_IDX(offset),
2213 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2214 			    flags);
2215 			VOP_UNLOCK(object->handle, NULL, 0, curthread);
2216 			vm_object_deallocate(object);
2217 		}
2218 		if (object && invalidate &&
2219 		   ((object->type == OBJT_VNODE) ||
2220 		    (object->type == OBJT_DEVICE))) {
2221 			vm_object_reference(object);
2222 			vm_object_page_remove(object,
2223 			    OFF_TO_IDX(offset),
2224 			    OFF_TO_IDX(offset + size + PAGE_MASK),
2225 			    FALSE);
2226 			vm_object_deallocate(object);
2227 		}
2228 		start += size;
2229 	}
2230 
2231 	vm_map_unlock_read(map);
2232 	return (KERN_SUCCESS);
2233 }
2234 
2235 /*
2236  *	vm_map_entry_unwire:	[ internal use only ]
2237  *
2238  *	Make the region specified by this entry pageable.
2239  *
2240  *	The map in question should be locked.
2241  *	[This is the reason for this routine's existence.]
2242  */
2243 static void
2244 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2245 {
2246 	vm_fault_unwire(map, entry->start, entry->end);
2247 	entry->wired_count = 0;
2248 }
2249 
2250 /*
2251  *	vm_map_entry_delete:	[ internal use only ]
2252  *
2253  *	Deallocate the given entry from the target map.
2254  */
2255 static void
2256 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2257 {
2258 	vm_map_entry_unlink(map, entry);
2259 	map->size -= entry->end - entry->start;
2260 
2261 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2262 		vm_object_deallocate(entry->object.vm_object);
2263 	}
2264 
2265 	vm_map_entry_dispose(map, entry, countp);
2266 }
2267 
2268 /*
2269  *	vm_map_delete:	[ internal use only ]
2270  *
2271  *	Deallocates the given address range from the target
2272  *	map.
2273  */
2274 int
2275 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2276 {
2277 	vm_object_t object;
2278 	vm_map_entry_t entry;
2279 	vm_map_entry_t first_entry;
2280 
2281 	/*
2282 	 * Find the start of the region, and clip it
2283 	 */
2284 
2285 again:
2286 	if (!vm_map_lookup_entry(map, start, &first_entry))
2287 		entry = first_entry->next;
2288 	else {
2289 		entry = first_entry;
2290 		vm_map_clip_start(map, entry, start, countp);
2291 		/*
2292 		 * Fix the lookup hint now, rather than each time though the
2293 		 * loop.
2294 		 */
2295 		SAVE_HINT(map, entry->prev);
2296 	}
2297 
2298 	/*
2299 	 * Save the free space hint
2300 	 */
2301 
2302 	if (entry == &map->header) {
2303 		map->first_free = &map->header;
2304 	} else if (map->first_free->start >= start) {
2305 		map->first_free = entry->prev;
2306 	}
2307 
2308 	/*
2309 	 * Step through all entries in this region
2310 	 */
2311 
2312 	while ((entry != &map->header) && (entry->start < end)) {
2313 		vm_map_entry_t next;
2314 		vm_offset_t s, e;
2315 		vm_pindex_t offidxstart, offidxend, count;
2316 
2317 		/*
2318 		 * If we hit an in-transition entry we have to sleep and
2319 		 * retry.  It's easier (and not really slower) to just retry
2320 		 * since this case occurs so rarely and the hint is already
2321 		 * pointing at the right place.  We have to reset the
2322 		 * start offset so as not to accidently delete an entry
2323 		 * another process just created in vacated space.
2324 		 */
2325 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2326 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2327 			start = entry->start;
2328 			++mycpu->gd_cnt.v_intrans_coll;
2329 			++mycpu->gd_cnt.v_intrans_wait;
2330 			vm_map_transition_wait(map);
2331 			goto again;
2332 		}
2333 		vm_map_clip_end(map, entry, end, countp);
2334 
2335 		s = entry->start;
2336 		e = entry->end;
2337 		next = entry->next;
2338 
2339 		offidxstart = OFF_TO_IDX(entry->offset);
2340 		count = OFF_TO_IDX(e - s);
2341 		object = entry->object.vm_object;
2342 
2343 		/*
2344 		 * Unwire before removing addresses from the pmap; otherwise,
2345 		 * unwiring will put the entries back in the pmap.
2346 		 */
2347 		if (entry->wired_count != 0) {
2348 			vm_map_entry_unwire(map, entry);
2349 		}
2350 
2351 		offidxend = offidxstart + count;
2352 
2353 		if ((object == kernel_object) || (object == kmem_object)) {
2354 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2355 		} else {
2356 			pmap_remove(map->pmap, s, e);
2357 			if (object != NULL &&
2358 			    object->ref_count != 1 &&
2359 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2360 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2361 				vm_object_collapse(object);
2362 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2363 				if (object->type == OBJT_SWAP) {
2364 					swap_pager_freespace(object, offidxstart, count);
2365 				}
2366 				if (offidxend >= object->size &&
2367 				    offidxstart < object->size) {
2368 					object->size = offidxstart;
2369 				}
2370 			}
2371 		}
2372 
2373 		/*
2374 		 * Delete the entry (which may delete the object) only after
2375 		 * removing all pmap entries pointing to its pages.
2376 		 * (Otherwise, its page frames may be reallocated, and any
2377 		 * modify bits will be set in the wrong object!)
2378 		 */
2379 		vm_map_entry_delete(map, entry, countp);
2380 		entry = next;
2381 	}
2382 	return (KERN_SUCCESS);
2383 }
2384 
2385 /*
2386  *	vm_map_remove:
2387  *
2388  *	Remove the given address range from the target map.
2389  *	This is the exported form of vm_map_delete.
2390  */
2391 int
2392 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2393 {
2394 	int result;
2395 	int count;
2396 
2397 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2398 	vm_map_lock(map);
2399 	VM_MAP_RANGE_CHECK(map, start, end);
2400 	result = vm_map_delete(map, start, end, &count);
2401 	vm_map_unlock(map);
2402 	vm_map_entry_release(count);
2403 
2404 	return (result);
2405 }
2406 
2407 /*
2408  *	vm_map_check_protection:
2409  *
2410  *	Assert that the target map allows the specified
2411  *	privilege on the entire address region given.
2412  *	The entire region must be allocated.
2413  */
2414 boolean_t
2415 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2416 			vm_prot_t protection)
2417 {
2418 	vm_map_entry_t entry;
2419 	vm_map_entry_t tmp_entry;
2420 
2421 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2422 		return (FALSE);
2423 	}
2424 	entry = tmp_entry;
2425 
2426 	while (start < end) {
2427 		if (entry == &map->header) {
2428 			return (FALSE);
2429 		}
2430 		/*
2431 		 * No holes allowed!
2432 		 */
2433 
2434 		if (start < entry->start) {
2435 			return (FALSE);
2436 		}
2437 		/*
2438 		 * Check protection associated with entry.
2439 		 */
2440 
2441 		if ((entry->protection & protection) != protection) {
2442 			return (FALSE);
2443 		}
2444 		/* go to next entry */
2445 
2446 		start = entry->end;
2447 		entry = entry->next;
2448 	}
2449 	return (TRUE);
2450 }
2451 
2452 /*
2453  * Split the pages in a map entry into a new object.  This affords
2454  * easier removal of unused pages, and keeps object inheritance from
2455  * being a negative impact on memory usage.
2456  */
2457 static void
2458 vm_map_split(vm_map_entry_t entry)
2459 {
2460 	vm_page_t m;
2461 	vm_object_t orig_object, new_object, source;
2462 	vm_offset_t s, e;
2463 	vm_pindex_t offidxstart, offidxend, idx;
2464 	vm_size_t size;
2465 	vm_ooffset_t offset;
2466 
2467 	orig_object = entry->object.vm_object;
2468 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2469 		return;
2470 	if (orig_object->ref_count <= 1)
2471 		return;
2472 
2473 	offset = entry->offset;
2474 	s = entry->start;
2475 	e = entry->end;
2476 
2477 	offidxstart = OFF_TO_IDX(offset);
2478 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2479 	size = offidxend - offidxstart;
2480 
2481 	new_object = vm_pager_allocate(orig_object->type,
2482 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2483 	if (new_object == NULL)
2484 		return;
2485 
2486 	source = orig_object->backing_object;
2487 	if (source != NULL) {
2488 		vm_object_reference(source);	/* Referenced by new_object */
2489 		LIST_INSERT_HEAD(&source->shadow_head,
2490 				  new_object, shadow_list);
2491 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2492 		new_object->backing_object_offset =
2493 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2494 		new_object->backing_object = source;
2495 		source->shadow_count++;
2496 		source->generation++;
2497 	}
2498 
2499 	for (idx = 0; idx < size; idx++) {
2500 		vm_page_t m;
2501 
2502 	retry:
2503 		m = vm_page_lookup(orig_object, offidxstart + idx);
2504 		if (m == NULL)
2505 			continue;
2506 
2507 		/*
2508 		 * We must wait for pending I/O to complete before we can
2509 		 * rename the page.
2510 		 *
2511 		 * We do not have to VM_PROT_NONE the page as mappings should
2512 		 * not be changed by this operation.
2513 		 */
2514 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2515 			goto retry;
2516 
2517 		vm_page_busy(m);
2518 		vm_page_rename(m, new_object, idx);
2519 		/* page automatically made dirty by rename and cache handled */
2520 		vm_page_busy(m);
2521 	}
2522 
2523 	if (orig_object->type == OBJT_SWAP) {
2524 		vm_object_pip_add(orig_object, 1);
2525 		/*
2526 		 * copy orig_object pages into new_object
2527 		 * and destroy unneeded pages in
2528 		 * shadow object.
2529 		 */
2530 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2531 		vm_object_pip_wakeup(orig_object);
2532 	}
2533 
2534 	for (idx = 0; idx < size; idx++) {
2535 		m = vm_page_lookup(new_object, idx);
2536 		if (m) {
2537 			vm_page_wakeup(m);
2538 		}
2539 	}
2540 
2541 	entry->object.vm_object = new_object;
2542 	entry->offset = 0LL;
2543 	vm_object_deallocate(orig_object);
2544 }
2545 
2546 /*
2547  *	vm_map_copy_entry:
2548  *
2549  *	Copies the contents of the source entry to the destination
2550  *	entry.  The entries *must* be aligned properly.
2551  */
2552 static void
2553 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2554 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2555 {
2556 	vm_object_t src_object;
2557 
2558 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2559 		return;
2560 
2561 	if (src_entry->wired_count == 0) {
2562 
2563 		/*
2564 		 * If the source entry is marked needs_copy, it is already
2565 		 * write-protected.
2566 		 */
2567 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2568 			pmap_protect(src_map->pmap,
2569 			    src_entry->start,
2570 			    src_entry->end,
2571 			    src_entry->protection & ~VM_PROT_WRITE);
2572 		}
2573 
2574 		/*
2575 		 * Make a copy of the object.
2576 		 */
2577 		if ((src_object = src_entry->object.vm_object) != NULL) {
2578 
2579 			if ((src_object->handle == NULL) &&
2580 				(src_object->type == OBJT_DEFAULT ||
2581 				 src_object->type == OBJT_SWAP)) {
2582 				vm_object_collapse(src_object);
2583 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2584 					vm_map_split(src_entry);
2585 					src_object = src_entry->object.vm_object;
2586 				}
2587 			}
2588 
2589 			vm_object_reference(src_object);
2590 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2591 			dst_entry->object.vm_object = src_object;
2592 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2593 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2594 			dst_entry->offset = src_entry->offset;
2595 		} else {
2596 			dst_entry->object.vm_object = NULL;
2597 			dst_entry->offset = 0;
2598 		}
2599 
2600 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2601 		    dst_entry->end - dst_entry->start, src_entry->start);
2602 	} else {
2603 		/*
2604 		 * Of course, wired down pages can't be set copy-on-write.
2605 		 * Cause wired pages to be copied into the new map by
2606 		 * simulating faults (the new pages are pageable)
2607 		 */
2608 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2609 	}
2610 }
2611 
2612 /*
2613  * vmspace_fork:
2614  * Create a new process vmspace structure and vm_map
2615  * based on those of an existing process.  The new map
2616  * is based on the old map, according to the inheritance
2617  * values on the regions in that map.
2618  *
2619  * The source map must not be locked.
2620  */
2621 struct vmspace *
2622 vmspace_fork(struct vmspace *vm1)
2623 {
2624 	struct vmspace *vm2;
2625 	vm_map_t old_map = &vm1->vm_map;
2626 	vm_map_t new_map;
2627 	vm_map_entry_t old_entry;
2628 	vm_map_entry_t new_entry;
2629 	vm_object_t object;
2630 	int count;
2631 
2632 	vm_map_lock(old_map);
2633 	old_map->infork = 1;
2634 
2635 	/*
2636 	 * XXX Note: upcalls are not copied.
2637 	 */
2638 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2639 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2640 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2641 	new_map = &vm2->vm_map;	/* XXX */
2642 	new_map->timestamp = 1;
2643 
2644 	count = 0;
2645 	old_entry = old_map->header.next;
2646 	while (old_entry != &old_map->header) {
2647 		++count;
2648 		old_entry = old_entry->next;
2649 	}
2650 
2651 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2652 
2653 	old_entry = old_map->header.next;
2654 	while (old_entry != &old_map->header) {
2655 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2656 			panic("vm_map_fork: encountered a submap");
2657 
2658 		switch (old_entry->inheritance) {
2659 		case VM_INHERIT_NONE:
2660 			break;
2661 
2662 		case VM_INHERIT_SHARE:
2663 			/*
2664 			 * Clone the entry, creating the shared object if necessary.
2665 			 */
2666 			object = old_entry->object.vm_object;
2667 			if (object == NULL) {
2668 				object = vm_object_allocate(OBJT_DEFAULT,
2669 					atop(old_entry->end - old_entry->start));
2670 				old_entry->object.vm_object = object;
2671 				old_entry->offset = (vm_offset_t) 0;
2672 			}
2673 
2674 			/*
2675 			 * Add the reference before calling vm_object_shadow
2676 			 * to insure that a shadow object is created.
2677 			 */
2678 			vm_object_reference(object);
2679 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2680 				vm_object_shadow(&old_entry->object.vm_object,
2681 					&old_entry->offset,
2682 					atop(old_entry->end - old_entry->start));
2683 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2684 				/* Transfer the second reference too. */
2685 				vm_object_reference(
2686 				    old_entry->object.vm_object);
2687 				vm_object_deallocate(object);
2688 				object = old_entry->object.vm_object;
2689 			}
2690 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2691 
2692 			/*
2693 			 * Clone the entry, referencing the shared object.
2694 			 */
2695 			new_entry = vm_map_entry_create(new_map, &count);
2696 			*new_entry = *old_entry;
2697 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2698 			new_entry->wired_count = 0;
2699 
2700 			/*
2701 			 * Insert the entry into the new map -- we know we're
2702 			 * inserting at the end of the new map.
2703 			 */
2704 
2705 			vm_map_entry_link(new_map, new_map->header.prev,
2706 			    new_entry);
2707 
2708 			/*
2709 			 * Update the physical map
2710 			 */
2711 
2712 			pmap_copy(new_map->pmap, old_map->pmap,
2713 			    new_entry->start,
2714 			    (old_entry->end - old_entry->start),
2715 			    old_entry->start);
2716 			break;
2717 
2718 		case VM_INHERIT_COPY:
2719 			/*
2720 			 * Clone the entry and link into the map.
2721 			 */
2722 			new_entry = vm_map_entry_create(new_map, &count);
2723 			*new_entry = *old_entry;
2724 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2725 			new_entry->wired_count = 0;
2726 			new_entry->object.vm_object = NULL;
2727 			vm_map_entry_link(new_map, new_map->header.prev,
2728 			    new_entry);
2729 			vm_map_copy_entry(old_map, new_map, old_entry,
2730 			    new_entry);
2731 			break;
2732 		}
2733 		old_entry = old_entry->next;
2734 	}
2735 
2736 	new_map->size = old_map->size;
2737 	old_map->infork = 0;
2738 	vm_map_unlock(old_map);
2739 	vm_map_entry_release(count);
2740 
2741 	return (vm2);
2742 }
2743 
2744 int
2745 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2746 	      vm_prot_t prot, vm_prot_t max, int cow)
2747 {
2748 	vm_map_entry_t prev_entry;
2749 	vm_map_entry_t new_stack_entry;
2750 	vm_size_t      init_ssize;
2751 	int            rv;
2752 	int		count;
2753 
2754 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2755 		return (KERN_NO_SPACE);
2756 
2757 	if (max_ssize < sgrowsiz)
2758 		init_ssize = max_ssize;
2759 	else
2760 		init_ssize = sgrowsiz;
2761 
2762 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2763 	vm_map_lock(map);
2764 
2765 	/* If addr is already mapped, no go */
2766 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2767 		vm_map_unlock(map);
2768 		vm_map_entry_release(count);
2769 		return (KERN_NO_SPACE);
2770 	}
2771 
2772 	/* If we would blow our VMEM resource limit, no go */
2773 	if (map->size + init_ssize >
2774 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2775 		vm_map_unlock(map);
2776 		vm_map_entry_release(count);
2777 		return (KERN_NO_SPACE);
2778 	}
2779 
2780 	/* If we can't accomodate max_ssize in the current mapping,
2781 	 * no go.  However, we need to be aware that subsequent user
2782 	 * mappings might map into the space we have reserved for
2783 	 * stack, and currently this space is not protected.
2784 	 *
2785 	 * Hopefully we will at least detect this condition
2786 	 * when we try to grow the stack.
2787 	 */
2788 	if ((prev_entry->next != &map->header) &&
2789 	    (prev_entry->next->start < addrbos + max_ssize)) {
2790 		vm_map_unlock(map);
2791 		vm_map_entry_release(count);
2792 		return (KERN_NO_SPACE);
2793 	}
2794 
2795 	/* We initially map a stack of only init_ssize.  We will
2796 	 * grow as needed later.  Since this is to be a grow
2797 	 * down stack, we map at the top of the range.
2798 	 *
2799 	 * Note: we would normally expect prot and max to be
2800 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2801 	 * eliminate these as input parameters, and just
2802 	 * pass these values here in the insert call.
2803 	 */
2804 	rv = vm_map_insert(map, &count,
2805 			   NULL, 0, addrbos + max_ssize - init_ssize,
2806 	                   addrbos + max_ssize, prot, max, cow);
2807 
2808 	/* Now set the avail_ssize amount */
2809 	if (rv == KERN_SUCCESS){
2810 		if (prev_entry != &map->header)
2811 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2812 		new_stack_entry = prev_entry->next;
2813 		if (new_stack_entry->end   != addrbos + max_ssize ||
2814 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2815 			panic ("Bad entry start/end for new stack entry");
2816 		else
2817 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2818 	}
2819 
2820 	vm_map_unlock(map);
2821 	vm_map_entry_release(count);
2822 	return (rv);
2823 }
2824 
2825 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2826  * desired address is already mapped, or if we successfully grow
2827  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2828  * stack range (this is strange, but preserves compatibility with
2829  * the grow function in vm_machdep.c).
2830  */
2831 int
2832 vm_map_growstack (struct proc *p, vm_offset_t addr)
2833 {
2834 	vm_map_entry_t prev_entry;
2835 	vm_map_entry_t stack_entry;
2836 	vm_map_entry_t new_stack_entry;
2837 	struct vmspace *vm = p->p_vmspace;
2838 	vm_map_t map = &vm->vm_map;
2839 	vm_offset_t    end;
2840 	int grow_amount;
2841 	int rv = KERN_SUCCESS;
2842 	int is_procstack;
2843 	int use_read_lock = 1;
2844 	int count;
2845 
2846 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2847 Retry:
2848 	if (use_read_lock)
2849 		vm_map_lock_read(map);
2850 	else
2851 		vm_map_lock(map);
2852 
2853 	/* If addr is already in the entry range, no need to grow.*/
2854 	if (vm_map_lookup_entry(map, addr, &prev_entry))
2855 		goto done;
2856 
2857 	if ((stack_entry = prev_entry->next) == &map->header)
2858 		goto done;
2859 	if (prev_entry == &map->header)
2860 		end = stack_entry->start - stack_entry->avail_ssize;
2861 	else
2862 		end = prev_entry->end;
2863 
2864 	/* This next test mimics the old grow function in vm_machdep.c.
2865 	 * It really doesn't quite make sense, but we do it anyway
2866 	 * for compatibility.
2867 	 *
2868 	 * If not growable stack, return success.  This signals the
2869 	 * caller to proceed as he would normally with normal vm.
2870 	 */
2871 	if (stack_entry->avail_ssize < 1 ||
2872 	    addr >= stack_entry->start ||
2873 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2874 		goto done;
2875 	}
2876 
2877 	/* Find the minimum grow amount */
2878 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2879 	if (grow_amount > stack_entry->avail_ssize) {
2880 		rv = KERN_NO_SPACE;
2881 		goto done;
2882 	}
2883 
2884 	/* If there is no longer enough space between the entries
2885 	 * nogo, and adjust the available space.  Note: this
2886 	 * should only happen if the user has mapped into the
2887 	 * stack area after the stack was created, and is
2888 	 * probably an error.
2889 	 *
2890 	 * This also effectively destroys any guard page the user
2891 	 * might have intended by limiting the stack size.
2892 	 */
2893 	if (grow_amount > stack_entry->start - end) {
2894 		if (use_read_lock && vm_map_lock_upgrade(map)) {
2895 			use_read_lock = 0;
2896 			goto Retry;
2897 		}
2898 		use_read_lock = 0;
2899 		stack_entry->avail_ssize = stack_entry->start - end;
2900 		rv = KERN_NO_SPACE;
2901 		goto done;
2902 	}
2903 
2904 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2905 
2906 	/* If this is the main process stack, see if we're over the
2907 	 * stack limit.
2908 	 */
2909 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2910 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2911 		rv = KERN_NO_SPACE;
2912 		goto done;
2913 	}
2914 
2915 	/* Round up the grow amount modulo SGROWSIZ */
2916 	grow_amount = roundup (grow_amount, sgrowsiz);
2917 	if (grow_amount > stack_entry->avail_ssize) {
2918 		grow_amount = stack_entry->avail_ssize;
2919 	}
2920 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2921 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2922 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2923 		              ctob(vm->vm_ssize);
2924 	}
2925 
2926 	/* If we would blow our VMEM resource limit, no go */
2927 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2928 		rv = KERN_NO_SPACE;
2929 		goto done;
2930 	}
2931 
2932 	if (use_read_lock && vm_map_lock_upgrade(map)) {
2933 		use_read_lock = 0;
2934 		goto Retry;
2935 	}
2936 	use_read_lock = 0;
2937 
2938 	/* Get the preliminary new entry start value */
2939 	addr = stack_entry->start - grow_amount;
2940 
2941 	/* If this puts us into the previous entry, cut back our growth
2942 	 * to the available space.  Also, see the note above.
2943 	 */
2944 	if (addr < end) {
2945 		stack_entry->avail_ssize = stack_entry->start - end;
2946 		addr = end;
2947 	}
2948 
2949 	rv = vm_map_insert(map, &count,
2950 			   NULL, 0, addr, stack_entry->start,
2951 			   VM_PROT_ALL,
2952 			   VM_PROT_ALL,
2953 			   0);
2954 
2955 	/* Adjust the available stack space by the amount we grew. */
2956 	if (rv == KERN_SUCCESS) {
2957 		if (prev_entry != &map->header)
2958 			vm_map_clip_end(map, prev_entry, addr, &count);
2959 		new_stack_entry = prev_entry->next;
2960 		if (new_stack_entry->end   != stack_entry->start  ||
2961 		    new_stack_entry->start != addr)
2962 			panic ("Bad stack grow start/end in new stack entry");
2963 		else {
2964 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2965 							(new_stack_entry->end -
2966 							 new_stack_entry->start);
2967 			if (is_procstack)
2968 				vm->vm_ssize += btoc(new_stack_entry->end -
2969 						     new_stack_entry->start);
2970 		}
2971 	}
2972 
2973 done:
2974 	if (use_read_lock)
2975 		vm_map_unlock_read(map);
2976 	else
2977 		vm_map_unlock(map);
2978 	vm_map_entry_release(count);
2979 	return (rv);
2980 }
2981 
2982 /*
2983  * Unshare the specified VM space for exec.  If other processes are
2984  * mapped to it, then create a new one.  The new vmspace is null.
2985  */
2986 
2987 void
2988 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
2989 {
2990 	struct vmspace *oldvmspace = p->p_vmspace;
2991 	struct vmspace *newvmspace;
2992 	vm_map_t map = &p->p_vmspace->vm_map;
2993 
2994 	/*
2995 	 * If we are execing a resident vmspace we fork it, otherwise
2996 	 * we create a new vmspace.  Note that exitingcnt and upcalls
2997 	 * are not copied to the new vmspace.
2998 	 */
2999 	if (vmcopy)  {
3000 	    newvmspace = vmspace_fork(vmcopy);
3001 	} else {
3002 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3003 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3004 		(caddr_t)&oldvmspace->vm_endcopy -
3005 		    (caddr_t)&oldvmspace->vm_startcopy);
3006 	}
3007 
3008 	/*
3009 	 * This code is written like this for prototype purposes.  The
3010 	 * goal is to avoid running down the vmspace here, but let the
3011 	 * other process's that are still using the vmspace to finally
3012 	 * run it down.  Even though there is little or no chance of blocking
3013 	 * here, it is a good idea to keep this form for future mods.
3014 	 */
3015 	p->p_vmspace = newvmspace;
3016 	pmap_pinit2(vmspace_pmap(newvmspace));
3017 	if (p == curproc)
3018 		pmap_activate(p);
3019 	vmspace_free(oldvmspace);
3020 }
3021 
3022 /*
3023  * Unshare the specified VM space for forcing COW.  This
3024  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3025  *
3026  * The exitingcnt test is not strictly necessary but has been
3027  * included for code sanity (to make the code a bit more deterministic).
3028  */
3029 
3030 void
3031 vmspace_unshare(struct proc *p)
3032 {
3033 	struct vmspace *oldvmspace = p->p_vmspace;
3034 	struct vmspace *newvmspace;
3035 
3036 	if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3037 		return;
3038 	newvmspace = vmspace_fork(oldvmspace);
3039 	p->p_vmspace = newvmspace;
3040 	pmap_pinit2(vmspace_pmap(newvmspace));
3041 	if (p == curproc)
3042 		pmap_activate(p);
3043 	vmspace_free(oldvmspace);
3044 }
3045 
3046 /*
3047  *	vm_map_lookup:
3048  *
3049  *	Finds the VM object, offset, and
3050  *	protection for a given virtual address in the
3051  *	specified map, assuming a page fault of the
3052  *	type specified.
3053  *
3054  *	Leaves the map in question locked for read; return
3055  *	values are guaranteed until a vm_map_lookup_done
3056  *	call is performed.  Note that the map argument
3057  *	is in/out; the returned map must be used in
3058  *	the call to vm_map_lookup_done.
3059  *
3060  *	A handle (out_entry) is returned for use in
3061  *	vm_map_lookup_done, to make that fast.
3062  *
3063  *	If a lookup is requested with "write protection"
3064  *	specified, the map may be changed to perform virtual
3065  *	copying operations, although the data referenced will
3066  *	remain the same.
3067  */
3068 int
3069 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3070 	      vm_offset_t vaddr,
3071 	      vm_prot_t fault_typea,
3072 	      vm_map_entry_t *out_entry,	/* OUT */
3073 	      vm_object_t *object,		/* OUT */
3074 	      vm_pindex_t *pindex,		/* OUT */
3075 	      vm_prot_t *out_prot,		/* OUT */
3076 	      boolean_t *wired)			/* OUT */
3077 {
3078 	vm_map_entry_t entry;
3079 	vm_map_t map = *var_map;
3080 	vm_prot_t prot;
3081 	vm_prot_t fault_type = fault_typea;
3082 	int use_read_lock = 1;
3083 	int rv = KERN_SUCCESS;
3084 
3085 RetryLookup:
3086 	if (use_read_lock)
3087 		vm_map_lock_read(map);
3088 	else
3089 		vm_map_lock(map);
3090 
3091 	/*
3092 	 * If the map has an interesting hint, try it before calling full
3093 	 * blown lookup routine.
3094 	 */
3095 	entry = map->hint;
3096 	*out_entry = entry;
3097 
3098 	if ((entry == &map->header) ||
3099 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3100 		vm_map_entry_t tmp_entry;
3101 
3102 		/*
3103 		 * Entry was either not a valid hint, or the vaddr was not
3104 		 * contained in the entry, so do a full lookup.
3105 		 */
3106 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3107 			rv = KERN_INVALID_ADDRESS;
3108 			goto done;
3109 		}
3110 
3111 		entry = tmp_entry;
3112 		*out_entry = entry;
3113 	}
3114 
3115 	/*
3116 	 * Handle submaps.
3117 	 */
3118 
3119 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3120 		vm_map_t old_map = map;
3121 
3122 		*var_map = map = entry->object.sub_map;
3123 		if (use_read_lock)
3124 			vm_map_unlock_read(old_map);
3125 		else
3126 			vm_map_unlock(old_map);
3127 		use_read_lock = 1;
3128 		goto RetryLookup;
3129 	}
3130 
3131 	/*
3132 	 * Check whether this task is allowed to have this page.
3133 	 * Note the special case for MAP_ENTRY_COW
3134 	 * pages with an override.  This is to implement a forced
3135 	 * COW for debuggers.
3136 	 */
3137 
3138 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3139 		prot = entry->max_protection;
3140 	else
3141 		prot = entry->protection;
3142 
3143 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3144 	if ((fault_type & prot) != fault_type) {
3145 		rv = KERN_PROTECTION_FAILURE;
3146 		goto done;
3147 	}
3148 
3149 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3150 	    (entry->eflags & MAP_ENTRY_COW) &&
3151 	    (fault_type & VM_PROT_WRITE) &&
3152 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3153 		rv = KERN_PROTECTION_FAILURE;
3154 		goto done;
3155 	}
3156 
3157 	/*
3158 	 * If this page is not pageable, we have to get it for all possible
3159 	 * accesses.
3160 	 */
3161 
3162 	*wired = (entry->wired_count != 0);
3163 	if (*wired)
3164 		prot = fault_type = entry->protection;
3165 
3166 	/*
3167 	 * If the entry was copy-on-write, we either ...
3168 	 */
3169 
3170 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3171 		/*
3172 		 * If we want to write the page, we may as well handle that
3173 		 * now since we've got the map locked.
3174 		 *
3175 		 * If we don't need to write the page, we just demote the
3176 		 * permissions allowed.
3177 		 */
3178 
3179 		if (fault_type & VM_PROT_WRITE) {
3180 			/*
3181 			 * Make a new object, and place it in the object
3182 			 * chain.  Note that no new references have appeared
3183 			 * -- one just moved from the map to the new
3184 			 * object.
3185 			 */
3186 
3187 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3188 				use_read_lock = 0;
3189 				goto RetryLookup;
3190 			}
3191 			use_read_lock = 0;
3192 
3193 			vm_object_shadow(
3194 			    &entry->object.vm_object,
3195 			    &entry->offset,
3196 			    atop(entry->end - entry->start));
3197 
3198 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3199 		} else {
3200 			/*
3201 			 * We're attempting to read a copy-on-write page --
3202 			 * don't allow writes.
3203 			 */
3204 
3205 			prot &= ~VM_PROT_WRITE;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Create an object if necessary.
3211 	 */
3212 	if (entry->object.vm_object == NULL &&
3213 	    !map->system_map) {
3214 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3215 			use_read_lock = 0;
3216 			goto RetryLookup;
3217 		}
3218 		use_read_lock = 0;
3219 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3220 		    atop(entry->end - entry->start));
3221 		entry->offset = 0;
3222 	}
3223 
3224 	/*
3225 	 * Return the object/offset from this entry.  If the entry was
3226 	 * copy-on-write or empty, it has been fixed up.
3227 	 */
3228 
3229 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3230 	*object = entry->object.vm_object;
3231 
3232 	/*
3233 	 * Return whether this is the only map sharing this data.  On
3234 	 * success we return with a read lock held on the map.  On failure
3235 	 * we return with the map unlocked.
3236 	 */
3237 	*out_prot = prot;
3238 done:
3239 	if (rv == KERN_SUCCESS) {
3240 		if (use_read_lock == 0)
3241 			vm_map_lock_downgrade(map);
3242 	} else if (use_read_lock) {
3243 		vm_map_unlock_read(map);
3244 	} else {
3245 		vm_map_unlock(map);
3246 	}
3247 	return (rv);
3248 }
3249 
3250 /*
3251  *	vm_map_lookup_done:
3252  *
3253  *	Releases locks acquired by a vm_map_lookup
3254  *	(according to the handle returned by that lookup).
3255  */
3256 
3257 void
3258 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3259 {
3260 	/*
3261 	 * Unlock the main-level map
3262 	 */
3263 	vm_map_unlock_read(map);
3264 	if (count)
3265 		vm_map_entry_release(count);
3266 }
3267 
3268 #ifdef ENABLE_VFS_IOOPT
3269 
3270 /*
3271  * Implement uiomove with VM operations.  This handles (and collateral changes)
3272  * support every combination of source object modification, and COW type
3273  * operations.
3274  */
3275 int
3276 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3277 	vm_map_t mapa;
3278 	vm_object_t srcobject;
3279 	off_t cp;
3280 	int cnta;
3281 	vm_offset_t uaddra;
3282 	int *npages;
3283 {
3284 	vm_map_t map;
3285 	vm_object_t first_object, oldobject, object;
3286 	vm_map_entry_t entry;
3287 	vm_prot_t prot;
3288 	boolean_t wired;
3289 	int tcnt, rv;
3290 	vm_offset_t uaddr, start, end, tend;
3291 	vm_pindex_t first_pindex, osize, oindex;
3292 	off_t ooffset;
3293 	int cnt;
3294 	int count;
3295 
3296 	if (npages)
3297 		*npages = 0;
3298 
3299 	cnt = cnta;
3300 	uaddr = uaddra;
3301 
3302 	while (cnt > 0) {
3303 		map = mapa;
3304 
3305 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3306 
3307 		if ((vm_map_lookup(&map, uaddr,
3308 			VM_PROT_READ, &entry, &first_object,
3309 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3310 			return EFAULT;
3311 		}
3312 
3313 		vm_map_clip_start(map, entry, uaddr, &count);
3314 
3315 		tcnt = cnt;
3316 		tend = uaddr + tcnt;
3317 		if (tend > entry->end) {
3318 			tcnt = entry->end - uaddr;
3319 			tend = entry->end;
3320 		}
3321 
3322 		vm_map_clip_end(map, entry, tend, &count);
3323 
3324 		start = entry->start;
3325 		end = entry->end;
3326 
3327 		osize = atop(tcnt);
3328 
3329 		oindex = OFF_TO_IDX(cp);
3330 		if (npages) {
3331 			vm_pindex_t idx;
3332 			for (idx = 0; idx < osize; idx++) {
3333 				vm_page_t m;
3334 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3335 					vm_map_lookup_done(map, entry, count);
3336 					return 0;
3337 				}
3338 				/*
3339 				 * disallow busy or invalid pages, but allow
3340 				 * m->busy pages if they are entirely valid.
3341 				 */
3342 				if ((m->flags & PG_BUSY) ||
3343 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3344 					vm_map_lookup_done(map, entry, count);
3345 					return 0;
3346 				}
3347 			}
3348 		}
3349 
3350 /*
3351  * If we are changing an existing map entry, just redirect
3352  * the object, and change mappings.
3353  */
3354 		if ((first_object->type == OBJT_VNODE) &&
3355 			((oldobject = entry->object.vm_object) == first_object)) {
3356 
3357 			if ((entry->offset != cp) || (oldobject != srcobject)) {
3358 				/*
3359    				* Remove old window into the file
3360    				*/
3361 				pmap_remove (map->pmap, uaddr, tend);
3362 
3363 				/*
3364    				* Force copy on write for mmaped regions
3365    				*/
3366 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3367 
3368 				/*
3369    				* Point the object appropriately
3370    				*/
3371 				if (oldobject != srcobject) {
3372 
3373 				/*
3374    				* Set the object optimization hint flag
3375    				*/
3376 					vm_object_set_flag(srcobject, OBJ_OPT);
3377 					vm_object_reference(srcobject);
3378 					entry->object.vm_object = srcobject;
3379 
3380 					if (oldobject) {
3381 						vm_object_deallocate(oldobject);
3382 					}
3383 				}
3384 
3385 				entry->offset = cp;
3386 				map->timestamp++;
3387 			} else {
3388 				pmap_remove (map->pmap, uaddr, tend);
3389 			}
3390 
3391 		} else if ((first_object->ref_count == 1) &&
3392 			(first_object->size == osize) &&
3393 			((first_object->type == OBJT_DEFAULT) ||
3394 				(first_object->type == OBJT_SWAP)) ) {
3395 
3396 			oldobject = first_object->backing_object;
3397 
3398 			if ((first_object->backing_object_offset != cp) ||
3399 				(oldobject != srcobject)) {
3400 				/*
3401    				* Remove old window into the file
3402    				*/
3403 				pmap_remove (map->pmap, uaddr, tend);
3404 
3405 				/*
3406 				 * Remove unneeded old pages
3407 				 */
3408 				vm_object_page_remove(first_object, 0, 0, 0);
3409 
3410 				/*
3411 				 * Invalidate swap space
3412 				 */
3413 				if (first_object->type == OBJT_SWAP) {
3414 					swap_pager_freespace(first_object,
3415 						0,
3416 						first_object->size);
3417 				}
3418 
3419 				/*
3420    				* Force copy on write for mmaped regions
3421    				*/
3422 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3423 
3424 				/*
3425    				* Point the object appropriately
3426    				*/
3427 				if (oldobject != srcobject) {
3428 
3429 				/*
3430    				* Set the object optimization hint flag
3431    				*/
3432 					vm_object_set_flag(srcobject, OBJ_OPT);
3433 					vm_object_reference(srcobject);
3434 
3435 					if (oldobject) {
3436 						LIST_REMOVE(
3437 							first_object, shadow_list);
3438 						oldobject->shadow_count--;
3439 						/* XXX bump generation? */
3440 						vm_object_deallocate(oldobject);
3441 					}
3442 
3443 					LIST_INSERT_HEAD(&srcobject->shadow_head,
3444 						first_object, shadow_list);
3445 					srcobject->shadow_count++;
3446 					/* XXX bump generation? */
3447 
3448 					first_object->backing_object = srcobject;
3449 				}
3450 				first_object->backing_object_offset = cp;
3451 				map->timestamp++;
3452 			} else {
3453 				pmap_remove (map->pmap, uaddr, tend);
3454 			}
3455 /*
3456  * Otherwise, we have to do a logical mmap.
3457  */
3458 		} else {
3459 
3460 			vm_object_set_flag(srcobject, OBJ_OPT);
3461 			vm_object_reference(srcobject);
3462 
3463 			pmap_remove (map->pmap, uaddr, tend);
3464 
3465 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3466 			vm_map_lock_upgrade(map);
3467 
3468 			if (entry == &map->header) {
3469 				map->first_free = &map->header;
3470 			} else if (map->first_free->start >= start) {
3471 				map->first_free = entry->prev;
3472 			}
3473 
3474 			SAVE_HINT(map, entry->prev);
3475 			vm_map_entry_delete(map, entry, &count);
3476 
3477 			object = srcobject;
3478 			ooffset = cp;
3479 
3480 			rv = vm_map_insert(map, &count,
3481 				object, ooffset, start, tend,
3482 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3483 
3484 			if (rv != KERN_SUCCESS)
3485 				panic("vm_uiomove: could not insert new entry: %d", rv);
3486 		}
3487 
3488 /*
3489  * Map the window directly, if it is already in memory
3490  */
3491 		pmap_object_init_pt(map->pmap, uaddr,
3492 			srcobject, oindex, tcnt, 0);
3493 
3494 		map->timestamp++;
3495 		vm_map_unlock(map);
3496 		vm_map_entry_release(count);
3497 
3498 		cnt -= tcnt;
3499 		uaddr += tcnt;
3500 		cp += tcnt;
3501 		if (npages)
3502 			*npages += osize;
3503 	}
3504 	return 0;
3505 }
3506 
3507 #endif
3508 
3509 /*
3510  * Performs the copy_on_write operations necessary to allow the virtual copies
3511  * into user space to work.  This has to be called for write(2) system calls
3512  * from other processes, file unlinking, and file size shrinkage.
3513  */
3514 void
3515 vm_freeze_copyopts(object, froma, toa)
3516 	vm_object_t object;
3517 	vm_pindex_t froma, toa;
3518 {
3519 	int rv;
3520 	vm_object_t robject;
3521 	vm_pindex_t idx;
3522 
3523 	if ((object == NULL) ||
3524 		((object->flags & OBJ_OPT) == 0))
3525 		return;
3526 
3527 	if (object->shadow_count > object->ref_count)
3528 		panic("vm_freeze_copyopts: sc > rc");
3529 
3530 	while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3531 		vm_pindex_t bo_pindex;
3532 		vm_page_t m_in, m_out;
3533 
3534 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3535 
3536 		vm_object_reference(robject);
3537 
3538 		vm_object_pip_wait(robject, "objfrz");
3539 
3540 		if (robject->ref_count == 1) {
3541 			vm_object_deallocate(robject);
3542 			continue;
3543 		}
3544 
3545 		vm_object_pip_add(robject, 1);
3546 
3547 		for (idx = 0; idx < robject->size; idx++) {
3548 
3549 			m_out = vm_page_grab(robject, idx,
3550 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3551 
3552 			if (m_out->valid == 0) {
3553 				m_in = vm_page_grab(object, bo_pindex + idx,
3554 					    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3555 				if (m_in->valid == 0) {
3556 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3557 					if (rv != VM_PAGER_OK) {
3558 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3559 						continue;
3560 					}
3561 					vm_page_deactivate(m_in);
3562 				}
3563 
3564 				vm_page_protect(m_in, VM_PROT_NONE);
3565 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3566 				m_out->valid = m_in->valid;
3567 				vm_page_dirty(m_out);
3568 				vm_page_activate(m_out);
3569 				vm_page_wakeup(m_in);
3570 			}
3571 			vm_page_wakeup(m_out);
3572 		}
3573 
3574 		object->shadow_count--;
3575 		object->ref_count--;
3576 		LIST_REMOVE(robject, shadow_list);
3577 		robject->backing_object = NULL;
3578 		robject->backing_object_offset = 0;
3579 
3580 		vm_object_pip_wakeup(robject);
3581 		vm_object_deallocate(robject);
3582 	}
3583 
3584 	vm_object_clear_flag(object, OBJ_OPT);
3585 }
3586 
3587 #include "opt_ddb.h"
3588 #ifdef DDB
3589 #include <sys/kernel.h>
3590 
3591 #include <ddb/ddb.h>
3592 
3593 /*
3594  *	vm_map_print:	[ debug ]
3595  */
3596 DB_SHOW_COMMAND(map, vm_map_print)
3597 {
3598 	static int nlines;
3599 	/* XXX convert args. */
3600 	vm_map_t map = (vm_map_t)addr;
3601 	boolean_t full = have_addr;
3602 
3603 	vm_map_entry_t entry;
3604 
3605 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3606 	    (void *)map,
3607 	    (void *)map->pmap, map->nentries, map->timestamp);
3608 	nlines++;
3609 
3610 	if (!full && db_indent)
3611 		return;
3612 
3613 	db_indent += 2;
3614 	for (entry = map->header.next; entry != &map->header;
3615 	    entry = entry->next) {
3616 		db_iprintf("map entry %p: start=%p, end=%p\n",
3617 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3618 		nlines++;
3619 		{
3620 			static char *inheritance_name[4] =
3621 			{"share", "copy", "none", "donate_copy"};
3622 
3623 			db_iprintf(" prot=%x/%x/%s",
3624 			    entry->protection,
3625 			    entry->max_protection,
3626 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3627 			if (entry->wired_count != 0)
3628 				db_printf(", wired");
3629 		}
3630 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3631 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3632 			db_printf(", share=%p, offset=0x%lx\n",
3633 			    (void *)entry->object.sub_map,
3634 			    (long)entry->offset);
3635 			nlines++;
3636 			if ((entry->prev == &map->header) ||
3637 			    (entry->prev->object.sub_map !=
3638 				entry->object.sub_map)) {
3639 				db_indent += 2;
3640 				vm_map_print((db_expr_t)(intptr_t)
3641 					     entry->object.sub_map,
3642 					     full, 0, (char *)0);
3643 				db_indent -= 2;
3644 			}
3645 		} else {
3646 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3647 			db_printf(", object=%p, offset=0x%lx",
3648 			    (void *)entry->object.vm_object,
3649 			    (long)entry->offset);
3650 			if (entry->eflags & MAP_ENTRY_COW)
3651 				db_printf(", copy (%s)",
3652 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3653 			db_printf("\n");
3654 			nlines++;
3655 
3656 			if ((entry->prev == &map->header) ||
3657 			    (entry->prev->object.vm_object !=
3658 				entry->object.vm_object)) {
3659 				db_indent += 2;
3660 				vm_object_print((db_expr_t)(intptr_t)
3661 						entry->object.vm_object,
3662 						full, 0, (char *)0);
3663 				nlines += 4;
3664 				db_indent -= 2;
3665 			}
3666 		}
3667 	}
3668 	db_indent -= 2;
3669 	if (db_indent == 0)
3670 		nlines = 0;
3671 }
3672 
3673 
3674 DB_SHOW_COMMAND(procvm, procvm)
3675 {
3676 	struct proc *p;
3677 
3678 	if (have_addr) {
3679 		p = (struct proc *) addr;
3680 	} else {
3681 		p = curproc;
3682 	}
3683 
3684 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3685 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3686 	    (void *)vmspace_pmap(p->p_vmspace));
3687 
3688 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3689 }
3690 
3691 #endif /* DDB */
3692