xref: /dragonfly/sys/vm/vm_map.c (revision e0a1e7ab)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_zone.h>
97 
98 #include <sys/random.h>
99 #include <sys/sysctl.h>
100 #include <sys/spinlock.h>
101 
102 #include <sys/thread2.h>
103 #include <sys/spinlock2.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
123 static void vmspace_dtor(void *obj, void *privdata);
124 static void vmspace_terminate(struct vmspace *vm, int final);
125 
126 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
127 static struct objcache *vmspace_cache;
128 
129 /*
130  * per-cpu page table cross mappings are initialized in early boot
131  * and might require a considerable number of vm_map_entry structures.
132  */
133 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
134 #define MAPENTRYAP_CACHE	8
135 
136 /*
137  * Partioning threaded programs with large anonymous memory areas can
138  * improve concurrent fault performance.
139  */
140 #define MAP_ENTRY_PARTITION_SIZE	((vm_offset_t)(32 * 1024 * 1024))
141 #define MAP_ENTRY_PARTITION_MASK	(MAP_ENTRY_PARTITION_SIZE - 1)
142 
143 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)	\
144 	((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
145 
146 static struct vm_zone mapentzone_store;
147 static vm_zone_t mapentzone;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
151 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
152 
153 static int randomize_mmap;
154 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
155     "Randomize mmap offsets");
156 static int vm_map_relock_enable = 1;
157 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
158 	   &vm_map_relock_enable, 0, "insert pop pgtable optimization");
159 static int vm_map_partition_enable = 1;
160 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
161 	   &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
162 
163 static void vmspace_drop_notoken(struct vmspace *vm);
164 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
165 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
166 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
167 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
170 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
171 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
172 		vm_map_entry_t);
173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
174 		vm_offset_t start, vm_offset_t end, int *countp, int flags);
175 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
176 		vm_offset_t vaddr, int *countp);
177 
178 /*
179  * Initialize the vm_map module.  Must be called before any other vm_map
180  * routines.
181  *
182  * Map and entry structures are allocated from the general purpose
183  * memory pool with some exceptions:
184  *
185  *	- The kernel map is allocated statically.
186  *	- Initial kernel map entries are allocated out of a static pool.
187  *	- We must set ZONE_SPECIAL here or the early boot code can get
188  *	  stuck if there are >63 cores.
189  *
190  *	These restrictions are necessary since malloc() uses the
191  *	maps and requires map entries.
192  *
193  * Called from the low level boot code only.
194  */
195 void
196 vm_map_startup(void)
197 {
198 	mapentzone = &mapentzone_store;
199 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
200 		  map_entry_init, MAX_MAPENT);
201 	mapentzone_store.zflags |= ZONE_SPECIAL;
202 }
203 
204 /*
205  * Called prior to any vmspace allocations.
206  *
207  * Called from the low level boot code only.
208  */
209 void
210 vm_init2(void)
211 {
212 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
213 						sizeof(struct vmspace),
214 						0, ncpus * 4,
215 						vmspace_ctor, vmspace_dtor,
216 						NULL);
217 	zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
218 	pmap_init2();
219 	vm_object_init2();
220 }
221 
222 /*
223  * objcache support.  We leave the pmap root cached as long as possible
224  * for performance reasons.
225  */
226 static
227 boolean_t
228 vmspace_ctor(void *obj, void *privdata, int ocflags)
229 {
230 	struct vmspace *vm = obj;
231 
232 	bzero(vm, sizeof(*vm));
233 	vm->vm_refcnt = VM_REF_DELETED;
234 
235 	return 1;
236 }
237 
238 static
239 void
240 vmspace_dtor(void *obj, void *privdata)
241 {
242 	struct vmspace *vm = obj;
243 
244 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
245 	pmap_puninit(vmspace_pmap(vm));
246 }
247 
248 /*
249  * Red black tree functions
250  *
251  * The caller must hold the related map lock.
252  */
253 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
254 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
255 
256 /* a->start is address, and the only field has to be initialized */
257 static int
258 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
259 {
260 	if (a->start < b->start)
261 		return(-1);
262 	else if (a->start > b->start)
263 		return(1);
264 	return(0);
265 }
266 
267 /*
268  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
269  * every refcnt.
270  */
271 void
272 vmspace_initrefs(struct vmspace *vm)
273 {
274 	vm->vm_refcnt = 1;
275 	vm->vm_holdcnt = 1;
276 }
277 
278 /*
279  * Allocate a vmspace structure, including a vm_map and pmap.
280  * Initialize numerous fields.  While the initial allocation is zerod,
281  * subsequence reuse from the objcache leaves elements of the structure
282  * intact (particularly the pmap), so portions must be zerod.
283  *
284  * Returns a referenced vmspace.
285  *
286  * No requirements.
287  */
288 struct vmspace *
289 vmspace_alloc(vm_offset_t min, vm_offset_t max)
290 {
291 	struct vmspace *vm;
292 
293 	vm = objcache_get(vmspace_cache, M_WAITOK);
294 
295 	bzero(&vm->vm_startcopy,
296 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
297 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
298 
299 	/*
300 	 * NOTE: hold to acquires token for safety.
301 	 *
302 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
303 	 * each refcnt also has a holdcnt.  There can be additional holds
304 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
305 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
306 	 */
307 	KKASSERT(vm->vm_holdcnt == 0);
308 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
309 	vmspace_initrefs(vm);
310 	vmspace_hold(vm);
311 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
312 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
313 	vm->vm_shm = NULL;
314 	vm->vm_flags = 0;
315 	cpu_vmspace_alloc(vm);
316 	vmspace_drop(vm);
317 
318 	return (vm);
319 }
320 
321 /*
322  * NOTE: Can return 0 if the vmspace is exiting.
323  */
324 int
325 vmspace_getrefs(struct vmspace *vm)
326 {
327 	int32_t n;
328 
329 	n = vm->vm_refcnt;
330 	cpu_ccfence();
331 	if (n & VM_REF_DELETED)
332 		n = -1;
333 	return n;
334 }
335 
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339 	atomic_add_int(&vm->vm_holdcnt, 1);
340 	lwkt_gettoken(&vm->vm_map.token);
341 }
342 
343 /*
344  * Drop with final termination interlock.
345  */
346 void
347 vmspace_drop(struct vmspace *vm)
348 {
349 	lwkt_reltoken(&vm->vm_map.token);
350 	vmspace_drop_notoken(vm);
351 }
352 
353 static void
354 vmspace_drop_notoken(struct vmspace *vm)
355 {
356 	if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
357 		if (vm->vm_refcnt & VM_REF_DELETED)
358 			vmspace_terminate(vm, 1);
359 	}
360 }
361 
362 /*
363  * A vmspace object must not be in a terminated state to be able to obtain
364  * additional refs on it.
365  *
366  * These are official references to the vmspace, the count is used to check
367  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
368  *
369  * XXX we need to combine hold & ref together into one 64-bit field to allow
370  * holds to prevent stage-1 termination.
371  */
372 void
373 vmspace_ref(struct vmspace *vm)
374 {
375 	uint32_t n;
376 
377 	atomic_add_int(&vm->vm_holdcnt, 1);
378 	n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
379 	KKASSERT((n & VM_REF_DELETED) == 0);
380 }
381 
382 /*
383  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
384  * termination of the vmspace.  Then, on the final drop of the hold we
385  * will do stage-2 final termination.
386  */
387 void
388 vmspace_rel(struct vmspace *vm)
389 {
390 	uint32_t n;
391 
392 	/*
393 	 * Drop refs.  Each ref also has a hold which is also dropped.
394 	 *
395 	 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
396 	 * prevent finalization) to start termination processing.
397 	 * Finalization occurs when the last hold count drops to 0.
398 	 */
399 	n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
400 	while (n == 0) {
401 		if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
402 			vmspace_terminate(vm, 0);
403 			break;
404 		}
405 		n = vm->vm_refcnt;
406 		cpu_ccfence();
407 	}
408 	vmspace_drop_notoken(vm);
409 }
410 
411 /*
412  * This is called during exit indicating that the vmspace is no
413  * longer in used by an exiting process, but the process has not yet
414  * been reaped.
415  *
416  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
417  * to prevent stage-2 until the process is reaped.  Note hte order of
418  * operation, we must hold first.
419  *
420  * No requirements.
421  */
422 void
423 vmspace_relexit(struct vmspace *vm)
424 {
425 	atomic_add_int(&vm->vm_holdcnt, 1);
426 	vmspace_rel(vm);
427 }
428 
429 /*
430  * Called during reap to disconnect the remainder of the vmspace from
431  * the process.  On the hold drop the vmspace termination is finalized.
432  *
433  * No requirements.
434  */
435 void
436 vmspace_exitfree(struct proc *p)
437 {
438 	struct vmspace *vm;
439 
440 	vm = p->p_vmspace;
441 	p->p_vmspace = NULL;
442 	vmspace_drop_notoken(vm);
443 }
444 
445 /*
446  * Called in two cases:
447  *
448  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
449  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
450  *     and holdcnt will still be non-zero.
451  *
452  * (2) When holdcnt becomes 0, called with final == 1.  There should no
453  *     longer be anyone with access to the vmspace.
454  *
455  * VMSPACE_EXIT1 flags the primary deactivation
456  * VMSPACE_EXIT2 flags the last reap
457  */
458 static void
459 vmspace_terminate(struct vmspace *vm, int final)
460 {
461 	int count;
462 
463 	lwkt_gettoken(&vm->vm_map.token);
464 	if (final == 0) {
465 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
466 		vm->vm_flags |= VMSPACE_EXIT1;
467 
468 		/*
469 		 * Get rid of most of the resources.  Leave the kernel pmap
470 		 * intact.
471 		 *
472 		 * If the pmap does not contain wired pages we can bulk-delete
473 		 * the pmap as a performance optimization before removing the
474 		 * related mappings.
475 		 *
476 		 * If the pmap contains wired pages we cannot do this
477 		 * pre-optimization because currently vm_fault_unwire()
478 		 * expects the pmap pages to exist and will not decrement
479 		 * p->wire_count if they do not.
480 		 */
481 		shmexit(vm);
482 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
483 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
484 				      VM_MAX_USER_ADDRESS);
485 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
486 					  VM_MAX_USER_ADDRESS);
487 		} else {
488 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
489 					  VM_MAX_USER_ADDRESS);
490 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
491 				      VM_MAX_USER_ADDRESS);
492 		}
493 		lwkt_reltoken(&vm->vm_map.token);
494 	} else {
495 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
496 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
497 
498 		/*
499 		 * Get rid of remaining basic resources.
500 		 */
501 		vm->vm_flags |= VMSPACE_EXIT2;
502 		shmexit(vm);
503 
504 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
505 		vm_map_lock(&vm->vm_map);
506 		cpu_vmspace_free(vm);
507 
508 		/*
509 		 * Lock the map, to wait out all other references to it.
510 		 * Delete all of the mappings and pages they hold, then call
511 		 * the pmap module to reclaim anything left.
512 		 */
513 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
514 			      vm->vm_map.max_offset, &count);
515 		vm_map_unlock(&vm->vm_map);
516 		vm_map_entry_release(count);
517 
518 		pmap_release(vmspace_pmap(vm));
519 		lwkt_reltoken(&vm->vm_map.token);
520 		objcache_put(vmspace_cache, vm);
521 	}
522 }
523 
524 /*
525  * Swap useage is determined by taking the proportional swap used by
526  * VM objects backing the VM map.  To make up for fractional losses,
527  * if the VM object has any swap use at all the associated map entries
528  * count for at least 1 swap page.
529  *
530  * No requirements.
531  */
532 vm_offset_t
533 vmspace_swap_count(struct vmspace *vm)
534 {
535 	vm_map_t map = &vm->vm_map;
536 	vm_map_entry_t cur;
537 	vm_object_t object;
538 	vm_offset_t count = 0;
539 	vm_offset_t n;
540 
541 	vmspace_hold(vm);
542 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
543 		switch(cur->maptype) {
544 		case VM_MAPTYPE_NORMAL:
545 		case VM_MAPTYPE_VPAGETABLE:
546 			if ((object = cur->object.vm_object) == NULL)
547 				break;
548 			if (object->swblock_count) {
549 				n = (cur->end - cur->start) / PAGE_SIZE;
550 				count += object->swblock_count *
551 				    SWAP_META_PAGES * n / object->size + 1;
552 			}
553 			break;
554 		default:
555 			break;
556 		}
557 	}
558 	vmspace_drop(vm);
559 
560 	return(count);
561 }
562 
563 /*
564  * Calculate the approximate number of anonymous pages in use by
565  * this vmspace.  To make up for fractional losses, we count each
566  * VM object as having at least 1 anonymous page.
567  *
568  * No requirements.
569  */
570 vm_offset_t
571 vmspace_anonymous_count(struct vmspace *vm)
572 {
573 	vm_map_t map = &vm->vm_map;
574 	vm_map_entry_t cur;
575 	vm_object_t object;
576 	vm_offset_t count = 0;
577 
578 	vmspace_hold(vm);
579 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
580 		switch(cur->maptype) {
581 		case VM_MAPTYPE_NORMAL:
582 		case VM_MAPTYPE_VPAGETABLE:
583 			if ((object = cur->object.vm_object) == NULL)
584 				break;
585 			if (object->type != OBJT_DEFAULT &&
586 			    object->type != OBJT_SWAP) {
587 				break;
588 			}
589 			count += object->resident_page_count;
590 			break;
591 		default:
592 			break;
593 		}
594 	}
595 	vmspace_drop(vm);
596 
597 	return(count);
598 }
599 
600 /*
601  * Initialize an existing vm_map structure such as that in the vmspace
602  * structure.  The pmap is initialized elsewhere.
603  *
604  * No requirements.
605  */
606 void
607 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
608 {
609 	map->header.next = map->header.prev = &map->header;
610 	RB_INIT(&map->rb_root);
611 	spin_init(&map->ilock_spin, "ilock");
612 	map->ilock_base = NULL;
613 	map->nentries = 0;
614 	map->size = 0;
615 	map->system_map = 0;
616 	map->min_offset = min;
617 	map->max_offset = max;
618 	map->pmap = pmap;
619 	map->timestamp = 0;
620 	map->flags = 0;
621 	bzero(&map->freehint, sizeof(map->freehint));
622 	lwkt_token_init(&map->token, "vm_map");
623 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
624 }
625 
626 /*
627  * Find the first possible free address for the specified request length.
628  * Returns 0 if we don't have one cached.
629  */
630 static
631 vm_offset_t
632 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
633 {
634 	vm_map_freehint_t *scan;
635 
636 	scan = &map->freehint[0];
637 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
638 		if (scan->length == length && scan->align == align)
639 			return(scan->start);
640 		++scan;
641 	}
642 	return 0;
643 }
644 
645 /*
646  * Unconditionally set the freehint.  Called by vm_map_findspace() after
647  * it finds an address.  This will help us iterate optimally on the next
648  * similar findspace.
649  */
650 static
651 void
652 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
653 		       vm_size_t length, vm_size_t align)
654 {
655 	vm_map_freehint_t *scan;
656 
657 	scan = &map->freehint[0];
658 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
659 		if (scan->length == length && scan->align == align) {
660 			scan->start = start;
661 			return;
662 		}
663 		++scan;
664 	}
665 	scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
666 	scan->start = start;
667 	scan->align = align;
668 	scan->length = length;
669 	++map->freehint_newindex;
670 }
671 
672 /*
673  * Update any existing freehints (for any alignment), for the hole we just
674  * added.
675  */
676 static
677 void
678 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
679 {
680 	vm_map_freehint_t *scan;
681 
682 	scan = &map->freehint[0];
683 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
684 		if (scan->length <= length && scan->start > start)
685 			scan->start = start;
686 		++scan;
687 	}
688 }
689 
690 /*
691  * Shadow the vm_map_entry's object.  This typically needs to be done when
692  * a write fault is taken on an entry which had previously been cloned by
693  * fork().  The shared object (which might be NULL) must become private so
694  * we add a shadow layer above it.
695  *
696  * Object allocation for anonymous mappings is defered as long as possible.
697  * When creating a shadow, however, the underlying object must be instantiated
698  * so it can be shared.
699  *
700  * If the map segment is governed by a virtual page table then it is
701  * possible to address offsets beyond the mapped area.  Just allocate
702  * a maximally sized object for this case.
703  *
704  * If addref is non-zero an additional reference is added to the returned
705  * entry.  This mechanic exists because the additional reference might have
706  * to be added atomically and not after return to prevent a premature
707  * collapse.
708  *
709  * The vm_map must be exclusively locked.
710  * No other requirements.
711  */
712 static
713 void
714 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
715 {
716 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
717 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
718 				 0x7FFFFFFF, addref);	/* XXX */
719 	} else {
720 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
721 				 atop(entry->end - entry->start), addref);
722 	}
723 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
724 }
725 
726 /*
727  * Allocate an object for a vm_map_entry.
728  *
729  * Object allocation for anonymous mappings is defered as long as possible.
730  * This function is called when we can defer no longer, generally when a map
731  * entry might be split or forked or takes a page fault.
732  *
733  * If the map segment is governed by a virtual page table then it is
734  * possible to address offsets beyond the mapped area.  Just allocate
735  * a maximally sized object for this case.
736  *
737  * The vm_map must be exclusively locked.
738  * No other requirements.
739  */
740 void
741 vm_map_entry_allocate_object(vm_map_entry_t entry)
742 {
743 	vm_object_t obj;
744 
745 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
746 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
747 	} else {
748 		obj = vm_object_allocate(OBJT_DEFAULT,
749 					 atop(entry->end - entry->start));
750 	}
751 	entry->object.vm_object = obj;
752 	entry->offset = 0;
753 }
754 
755 /*
756  * Set an initial negative count so the first attempt to reserve
757  * space preloads a bunch of vm_map_entry's for this cpu.  Also
758  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
759  * map a new page for vm_map_entry structures.  SMP systems are
760  * particularly sensitive.
761  *
762  * This routine is called in early boot so we cannot just call
763  * vm_map_entry_reserve().
764  *
765  * Called from the low level boot code only (for each cpu)
766  *
767  * WARNING! Take care not to have too-big a static/BSS structure here
768  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
769  *	    can get blown out by the kernel plus the initrd image.
770  */
771 void
772 vm_map_entry_reserve_cpu_init(globaldata_t gd)
773 {
774 	vm_map_entry_t entry;
775 	int count;
776 	int i;
777 
778 	atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
779 	if (gd->gd_cpuid == 0) {
780 		entry = &cpu_map_entry_init_bsp[0];
781 		count = MAPENTRYBSP_CACHE;
782 	} else {
783 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
784 		count = MAPENTRYAP_CACHE;
785 	}
786 	for (i = 0; i < count; ++i, ++entry) {
787 		entry->next = gd->gd_vme_base;
788 		gd->gd_vme_base = entry;
789 	}
790 }
791 
792 /*
793  * Reserves vm_map_entry structures so code later-on can manipulate
794  * map_entry structures within a locked map without blocking trying
795  * to allocate a new vm_map_entry.
796  *
797  * No requirements.
798  *
799  * WARNING!  We must not decrement gd_vme_avail until after we have
800  *	     ensured that sufficient entries exist, otherwise we can
801  *	     get into an endless call recursion in the zalloc code
802  *	     itself.
803  */
804 int
805 vm_map_entry_reserve(int count)
806 {
807 	struct globaldata *gd = mycpu;
808 	vm_map_entry_t entry;
809 
810 	/*
811 	 * Make sure we have enough structures in gd_vme_base to handle
812 	 * the reservation request.
813 	 *
814 	 * Use a critical section to protect against VM faults.  It might
815 	 * not be needed, but we have to be careful here.
816 	 */
817 	if (gd->gd_vme_avail < count) {
818 		crit_enter();
819 		while (gd->gd_vme_avail < count) {
820 			entry = zalloc(mapentzone);
821 			entry->next = gd->gd_vme_base;
822 			gd->gd_vme_base = entry;
823 			atomic_add_int(&gd->gd_vme_avail, 1);
824 		}
825 		crit_exit();
826 	}
827 	atomic_add_int(&gd->gd_vme_avail, -count);
828 
829 	return(count);
830 }
831 
832 /*
833  * Releases previously reserved vm_map_entry structures that were not
834  * used.  If we have too much junk in our per-cpu cache clean some of
835  * it out.
836  *
837  * No requirements.
838  */
839 void
840 vm_map_entry_release(int count)
841 {
842 	struct globaldata *gd = mycpu;
843 	vm_map_entry_t entry;
844 	vm_map_entry_t efree;
845 
846 	count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
847 	if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
848 		efree = NULL;
849 		crit_enter();
850 		while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
851 			entry = gd->gd_vme_base;
852 			KKASSERT(entry != NULL);
853 			gd->gd_vme_base = entry->next;
854 			atomic_add_int(&gd->gd_vme_avail, -1);
855 			entry->next = efree;
856 			efree = entry;
857 		}
858 		crit_exit();
859 		while ((entry = efree) != NULL) {
860 			efree = efree->next;
861 			zfree(mapentzone, entry);
862 		}
863 	}
864 }
865 
866 /*
867  * Reserve map entry structures for use in kernel_map itself.  These
868  * entries have *ALREADY* been reserved on a per-cpu basis when the map
869  * was inited.  This function is used by zalloc() to avoid a recursion
870  * when zalloc() itself needs to allocate additional kernel memory.
871  *
872  * This function works like the normal reserve but does not load the
873  * vm_map_entry cache (because that would result in an infinite
874  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
875  *
876  * Any caller of this function must be sure to renormalize after
877  * potentially eating entries to ensure that the reserve supply
878  * remains intact.
879  *
880  * No requirements.
881  */
882 int
883 vm_map_entry_kreserve(int count)
884 {
885 	struct globaldata *gd = mycpu;
886 
887 	atomic_add_int(&gd->gd_vme_avail, -count);
888 	KASSERT(gd->gd_vme_base != NULL,
889 		("no reserved entries left, gd_vme_avail = %d",
890 		gd->gd_vme_avail));
891 	return(count);
892 }
893 
894 /*
895  * Release previously reserved map entries for kernel_map.  We do not
896  * attempt to clean up like the normal release function as this would
897  * cause an unnecessary (but probably not fatal) deep procedure call.
898  *
899  * No requirements.
900  */
901 void
902 vm_map_entry_krelease(int count)
903 {
904 	struct globaldata *gd = mycpu;
905 
906 	atomic_add_int(&gd->gd_vme_avail, count);
907 }
908 
909 /*
910  * Allocates a VM map entry for insertion.  No entry fields are filled in.
911  *
912  * The entries should have previously been reserved.  The reservation count
913  * is tracked in (*countp).
914  *
915  * No requirements.
916  */
917 static vm_map_entry_t
918 vm_map_entry_create(vm_map_t map, int *countp)
919 {
920 	struct globaldata *gd = mycpu;
921 	vm_map_entry_t entry;
922 
923 	KKASSERT(*countp > 0);
924 	--*countp;
925 	crit_enter();
926 	entry = gd->gd_vme_base;
927 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
928 	gd->gd_vme_base = entry->next;
929 	crit_exit();
930 
931 	return(entry);
932 }
933 
934 /*
935  * Dispose of a vm_map_entry that is no longer being referenced.
936  *
937  * No requirements.
938  */
939 static void
940 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
941 {
942 	struct globaldata *gd = mycpu;
943 
944 	++*countp;
945 	crit_enter();
946 	entry->next = gd->gd_vme_base;
947 	gd->gd_vme_base = entry;
948 	crit_exit();
949 }
950 
951 
952 /*
953  * Insert/remove entries from maps.
954  *
955  * The related map must be exclusively locked.
956  * The caller must hold map->token
957  * No other requirements.
958  */
959 static __inline void
960 vm_map_entry_link(vm_map_t map,
961 		  vm_map_entry_t after_where,
962 		  vm_map_entry_t entry)
963 {
964 	ASSERT_VM_MAP_LOCKED(map);
965 
966 	map->nentries++;
967 	entry->prev = after_where;
968 	entry->next = after_where->next;
969 	entry->next->prev = entry;
970 	after_where->next = entry;
971 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
972 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
973 }
974 
975 static __inline void
976 vm_map_entry_unlink(vm_map_t map,
977 		    vm_map_entry_t entry)
978 {
979 	vm_map_entry_t prev;
980 	vm_map_entry_t next;
981 
982 	ASSERT_VM_MAP_LOCKED(map);
983 
984 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
985 		panic("vm_map_entry_unlink: attempt to mess with "
986 		      "locked entry! %p", entry);
987 	}
988 	prev = entry->prev;
989 	next = entry->next;
990 	next->prev = prev;
991 	prev->next = next;
992 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
993 	map->nentries--;
994 }
995 
996 /*
997  * Finds the map entry containing (or immediately preceding) the specified
998  * address in the given map.  The entry is returned in (*entry).
999  *
1000  * The boolean result indicates whether the address is actually contained
1001  * in the map.
1002  *
1003  * The related map must be locked.
1004  * No other requirements.
1005  */
1006 boolean_t
1007 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
1008 {
1009 	vm_map_entry_t tmp;
1010 	vm_map_entry_t last;
1011 
1012 	ASSERT_VM_MAP_LOCKED(map);
1013 
1014 	/*
1015 	 * Locate the record from the top of the tree.  'last' tracks the
1016 	 * closest prior record and is returned if no match is found, which
1017 	 * in binary tree terms means tracking the most recent right-branch
1018 	 * taken.  If there is no prior record, &map->header is returned.
1019 	 */
1020 	last = &map->header;
1021 	tmp = RB_ROOT(&map->rb_root);
1022 
1023 	while (tmp) {
1024 		if (address >= tmp->start) {
1025 			if (address < tmp->end) {
1026 				*entry = tmp;
1027 				return(TRUE);
1028 			}
1029 			last = tmp;
1030 			tmp = RB_RIGHT(tmp, rb_entry);
1031 		} else {
1032 			tmp = RB_LEFT(tmp, rb_entry);
1033 		}
1034 	}
1035 	*entry = last;
1036 	return (FALSE);
1037 }
1038 
1039 /*
1040  * Inserts the given whole VM object into the target map at the specified
1041  * address range.  The object's size should match that of the address range.
1042  *
1043  * The map must be exclusively locked.
1044  * The object must be held.
1045  * The caller must have reserved sufficient vm_map_entry structures.
1046  *
1047  * If object is non-NULL, ref count must be bumped by caller prior to
1048  * making call to account for the new entry.
1049  */
1050 int
1051 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1052 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1053 	      vm_maptype_t maptype, vm_subsys_t id,
1054 	      vm_prot_t prot, vm_prot_t max, int cow)
1055 {
1056 	vm_map_entry_t new_entry;
1057 	vm_map_entry_t prev_entry;
1058 	vm_map_entry_t temp_entry;
1059 	vm_eflags_t protoeflags;
1060 	int must_drop = 0;
1061 	vm_object_t object;
1062 
1063 	if (maptype == VM_MAPTYPE_UKSMAP)
1064 		object = NULL;
1065 	else
1066 		object = map_object;
1067 
1068 	ASSERT_VM_MAP_LOCKED(map);
1069 	if (object)
1070 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1071 
1072 	/*
1073 	 * Check that the start and end points are not bogus.
1074 	 */
1075 	if ((start < map->min_offset) || (end > map->max_offset) ||
1076 	    (start >= end))
1077 		return (KERN_INVALID_ADDRESS);
1078 
1079 	/*
1080 	 * Find the entry prior to the proposed starting address; if it's part
1081 	 * of an existing entry, this range is bogus.
1082 	 */
1083 	if (vm_map_lookup_entry(map, start, &temp_entry))
1084 		return (KERN_NO_SPACE);
1085 
1086 	prev_entry = temp_entry;
1087 
1088 	/*
1089 	 * Assert that the next entry doesn't overlap the end point.
1090 	 */
1091 
1092 	if ((prev_entry->next != &map->header) &&
1093 	    (prev_entry->next->start < end))
1094 		return (KERN_NO_SPACE);
1095 
1096 	protoeflags = 0;
1097 
1098 	if (cow & MAP_COPY_ON_WRITE)
1099 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1100 
1101 	if (cow & MAP_NOFAULT) {
1102 		protoeflags |= MAP_ENTRY_NOFAULT;
1103 
1104 		KASSERT(object == NULL,
1105 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1106 	}
1107 	if (cow & MAP_DISABLE_SYNCER)
1108 		protoeflags |= MAP_ENTRY_NOSYNC;
1109 	if (cow & MAP_DISABLE_COREDUMP)
1110 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1111 	if (cow & MAP_IS_STACK)
1112 		protoeflags |= MAP_ENTRY_STACK;
1113 	if (cow & MAP_IS_KSTACK)
1114 		protoeflags |= MAP_ENTRY_KSTACK;
1115 
1116 	lwkt_gettoken(&map->token);
1117 
1118 	if (object) {
1119 		/*
1120 		 * When object is non-NULL, it could be shared with another
1121 		 * process.  We have to set or clear OBJ_ONEMAPPING
1122 		 * appropriately.
1123 		 *
1124 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1125 		 *	 objects and will already be clear in other types
1126 		 *	 of objects, so a shared object lock is ok for
1127 		 *	 VNODE objects.
1128 		 */
1129 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1130 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1131 		}
1132 	}
1133 	else if ((prev_entry != &map->header) &&
1134 		 (prev_entry->eflags == protoeflags) &&
1135 		 (prev_entry->end == start) &&
1136 		 (prev_entry->wired_count == 0) &&
1137 		 (prev_entry->id == id) &&
1138 		 prev_entry->maptype == maptype &&
1139 		 maptype == VM_MAPTYPE_NORMAL &&
1140 		 ((prev_entry->object.vm_object == NULL) ||
1141 		  vm_object_coalesce(prev_entry->object.vm_object,
1142 				     OFF_TO_IDX(prev_entry->offset),
1143 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1144 				     (vm_size_t)(end - prev_entry->end)))) {
1145 		/*
1146 		 * We were able to extend the object.  Determine if we
1147 		 * can extend the previous map entry to include the
1148 		 * new range as well.
1149 		 */
1150 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1151 		    (prev_entry->protection == prot) &&
1152 		    (prev_entry->max_protection == max)) {
1153 			map->size += (end - prev_entry->end);
1154 			prev_entry->end = end;
1155 			vm_map_simplify_entry(map, prev_entry, countp);
1156 			lwkt_reltoken(&map->token);
1157 			return (KERN_SUCCESS);
1158 		}
1159 
1160 		/*
1161 		 * If we can extend the object but cannot extend the
1162 		 * map entry, we have to create a new map entry.  We
1163 		 * must bump the ref count on the extended object to
1164 		 * account for it.  object may be NULL.
1165 		 *
1166 		 * XXX if object is NULL should we set offset to 0 here ?
1167 		 */
1168 		object = prev_entry->object.vm_object;
1169 		offset = prev_entry->offset +
1170 			(prev_entry->end - prev_entry->start);
1171 		if (object) {
1172 			vm_object_hold(object);
1173 			vm_object_chain_wait(object, 0);
1174 			vm_object_reference_locked(object);
1175 			must_drop = 1;
1176 			map_object = object;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1182 	 * in things like the buffer map where we manage kva but do not manage
1183 	 * backing objects.
1184 	 */
1185 
1186 	/*
1187 	 * Create a new entry
1188 	 */
1189 
1190 	new_entry = vm_map_entry_create(map, countp);
1191 	new_entry->start = start;
1192 	new_entry->end = end;
1193 	new_entry->id = id;
1194 
1195 	new_entry->maptype = maptype;
1196 	new_entry->eflags = protoeflags;
1197 	new_entry->object.map_object = map_object;
1198 	new_entry->aux.master_pde = 0;		/* in case size is different */
1199 	new_entry->aux.map_aux = map_aux;
1200 	new_entry->offset = offset;
1201 
1202 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1203 	new_entry->protection = prot;
1204 	new_entry->max_protection = max;
1205 	new_entry->wired_count = 0;
1206 
1207 	/*
1208 	 * Insert the new entry into the list
1209 	 */
1210 
1211 	vm_map_entry_link(map, prev_entry, new_entry);
1212 	map->size += new_entry->end - new_entry->start;
1213 
1214 	/*
1215 	 * Don't worry about updating freehint[] when inserting, allow
1216 	 * addresses to be lower than the actual first free spot.
1217 	 */
1218 #if 0
1219 	/*
1220 	 * Temporarily removed to avoid MAP_STACK panic, due to
1221 	 * MAP_STACK being a huge hack.  Will be added back in
1222 	 * when MAP_STACK (and the user stack mapping) is fixed.
1223 	 */
1224 	/*
1225 	 * It may be possible to simplify the entry
1226 	 */
1227 	vm_map_simplify_entry(map, new_entry, countp);
1228 #endif
1229 
1230 	/*
1231 	 * Try to pre-populate the page table.  Mappings governed by virtual
1232 	 * page tables cannot be prepopulated without a lot of work, so
1233 	 * don't try.
1234 	 */
1235 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1236 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1237 	    maptype != VM_MAPTYPE_UKSMAP) {
1238 		int dorelock = 0;
1239 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1240 			dorelock = 1;
1241 			vm_object_lock_swap();
1242 			vm_object_drop(object);
1243 		}
1244 		pmap_object_init_pt(map->pmap, start, prot,
1245 				    object, OFF_TO_IDX(offset), end - start,
1246 				    cow & MAP_PREFAULT_PARTIAL);
1247 		if (dorelock) {
1248 			vm_object_hold(object);
1249 			vm_object_lock_swap();
1250 		}
1251 	}
1252 	if (must_drop)
1253 		vm_object_drop(object);
1254 
1255 	lwkt_reltoken(&map->token);
1256 	return (KERN_SUCCESS);
1257 }
1258 
1259 /*
1260  * Find sufficient space for `length' bytes in the given map, starting at
1261  * `start'.  Returns 0 on success, 1 on no space.
1262  *
1263  * This function will returned an arbitrarily aligned pointer.  If no
1264  * particular alignment is required you should pass align as 1.  Note that
1265  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1266  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1267  * argument.
1268  *
1269  * 'align' should be a power of 2 but is not required to be.
1270  *
1271  * The map must be exclusively locked.
1272  * No other requirements.
1273  */
1274 int
1275 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1276 		 vm_size_t align, int flags, vm_offset_t *addr)
1277 {
1278 	vm_map_entry_t entry, next;
1279 	vm_map_entry_t tmp;
1280 	vm_offset_t hole_start;
1281 	vm_offset_t end;
1282 	vm_offset_t align_mask;
1283 
1284 	if (start < map->min_offset)
1285 		start = map->min_offset;
1286 	if (start > map->max_offset)
1287 		return (1);
1288 
1289 	/*
1290 	 * If the alignment is not a power of 2 we will have to use
1291 	 * a mod/division, set align_mask to a special value.
1292 	 */
1293 	if ((align | (align - 1)) + 1 != (align << 1))
1294 		align_mask = (vm_offset_t)-1;
1295 	else
1296 		align_mask = align - 1;
1297 
1298 	/*
1299 	 * Use freehint to adjust the start point, hopefully reducing
1300 	 * the iteration to O(1).
1301 	 */
1302 	hole_start = vm_map_freehint_find(map, length, align);
1303 	if (start < hole_start)
1304 		start = hole_start;
1305 	if (vm_map_lookup_entry(map, start, &tmp))
1306 		start = tmp->end;
1307 	entry = tmp;
1308 
1309 	/*
1310 	 * Look through the rest of the map, trying to fit a new region in the
1311 	 * gap between existing regions, or after the very last region.
1312 	 */
1313 	for (;; start = (entry = next)->end) {
1314 		/*
1315 		 * Adjust the proposed start by the requested alignment,
1316 		 * be sure that we didn't wrap the address.
1317 		 */
1318 		if (align_mask == (vm_offset_t)-1)
1319 			end = roundup(start, align);
1320 		else
1321 			end = (start + align_mask) & ~align_mask;
1322 		if (end < start)
1323 			return (1);
1324 		start = end;
1325 
1326 		/*
1327 		 * Find the end of the proposed new region.  Be sure we didn't
1328 		 * go beyond the end of the map, or wrap around the address.
1329 		 * Then check to see if this is the last entry or if the
1330 		 * proposed end fits in the gap between this and the next
1331 		 * entry.
1332 		 */
1333 		end = start + length;
1334 		if (end > map->max_offset || end < start)
1335 			return (1);
1336 		next = entry->next;
1337 
1338 		/*
1339 		 * If the next entry's start address is beyond the desired
1340 		 * end address we may have found a good entry.
1341 		 *
1342 		 * If the next entry is a stack mapping we do not map into
1343 		 * the stack's reserved space.
1344 		 *
1345 		 * XXX continue to allow mapping into the stack's reserved
1346 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1347 		 * mapping, for backwards compatibility.  But the caller
1348 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1349 		 * want to do that.
1350 		 */
1351 		if (next == &map->header)
1352 			break;
1353 		if (next->start >= end) {
1354 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1355 				break;
1356 			if (flags & MAP_STACK)
1357 				break;
1358 			if (next->start - next->aux.avail_ssize >= end)
1359 				break;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * Update the freehint
1365 	 */
1366 	vm_map_freehint_update(map, start, length, align);
1367 
1368 	/*
1369 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1370 	 * if it fails.  The kernel_map is locked and nothing can steal
1371 	 * our address space if pmap_growkernel() blocks.
1372 	 *
1373 	 * NOTE: This may be unconditionally called for kldload areas on
1374 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1375 	 *	 fill 128G worth of page tables!).  Therefore we must not
1376 	 *	 retry.
1377 	 */
1378 	if (map == &kernel_map) {
1379 		vm_offset_t kstop;
1380 
1381 		kstop = round_page(start + length);
1382 		if (kstop > kernel_vm_end)
1383 			pmap_growkernel(start, kstop);
1384 	}
1385 	*addr = start;
1386 	return (0);
1387 }
1388 
1389 /*
1390  * vm_map_find finds an unallocated region in the target address map with
1391  * the given length and allocates it.  The search is defined to be first-fit
1392  * from the specified address; the region found is returned in the same
1393  * parameter.
1394  *
1395  * If object is non-NULL, ref count must be bumped by caller
1396  * prior to making call to account for the new entry.
1397  *
1398  * No requirements.  This function will lock the map temporarily.
1399  */
1400 int
1401 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1402 	    vm_ooffset_t offset, vm_offset_t *addr,
1403 	    vm_size_t length, vm_size_t align, boolean_t fitit,
1404 	    vm_maptype_t maptype, vm_subsys_t id,
1405 	    vm_prot_t prot, vm_prot_t max, int cow)
1406 {
1407 	vm_offset_t start;
1408 	vm_object_t object;
1409 	int result;
1410 	int count;
1411 
1412 	if (maptype == VM_MAPTYPE_UKSMAP)
1413 		object = NULL;
1414 	else
1415 		object = map_object;
1416 
1417 	start = *addr;
1418 
1419 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1420 	vm_map_lock(map);
1421 	if (object)
1422 		vm_object_hold_shared(object);
1423 	if (fitit) {
1424 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1425 			if (object)
1426 				vm_object_drop(object);
1427 			vm_map_unlock(map);
1428 			vm_map_entry_release(count);
1429 			return (KERN_NO_SPACE);
1430 		}
1431 		start = *addr;
1432 	}
1433 	result = vm_map_insert(map, &count, map_object, map_aux,
1434 			       offset, start, start + length,
1435 			       maptype, id, prot, max, cow);
1436 	if (object)
1437 		vm_object_drop(object);
1438 	vm_map_unlock(map);
1439 	vm_map_entry_release(count);
1440 
1441 	return (result);
1442 }
1443 
1444 /*
1445  * Simplify the given map entry by merging with either neighbor.  This
1446  * routine also has the ability to merge with both neighbors.
1447  *
1448  * This routine guarentees that the passed entry remains valid (though
1449  * possibly extended).  When merging, this routine may delete one or
1450  * both neighbors.  No action is taken on entries which have their
1451  * in-transition flag set.
1452  *
1453  * The map must be exclusively locked.
1454  */
1455 void
1456 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1457 {
1458 	vm_map_entry_t next, prev;
1459 	vm_size_t prevsize, esize;
1460 
1461 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1462 		++mycpu->gd_cnt.v_intrans_coll;
1463 		return;
1464 	}
1465 
1466 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1467 		return;
1468 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1469 		return;
1470 
1471 	prev = entry->prev;
1472 	if (prev != &map->header) {
1473 		prevsize = prev->end - prev->start;
1474 		if ( (prev->end == entry->start) &&
1475 		     (prev->maptype == entry->maptype) &&
1476 		     (prev->object.vm_object == entry->object.vm_object) &&
1477 		     (!prev->object.vm_object ||
1478 			(prev->offset + prevsize == entry->offset)) &&
1479 		     (prev->eflags == entry->eflags) &&
1480 		     (prev->protection == entry->protection) &&
1481 		     (prev->max_protection == entry->max_protection) &&
1482 		     (prev->inheritance == entry->inheritance) &&
1483 		     (prev->id == entry->id) &&
1484 		     (prev->wired_count == entry->wired_count)) {
1485 			vm_map_entry_unlink(map, prev);
1486 			entry->start = prev->start;
1487 			entry->offset = prev->offset;
1488 			if (prev->object.vm_object)
1489 				vm_object_deallocate(prev->object.vm_object);
1490 			vm_map_entry_dispose(map, prev, countp);
1491 		}
1492 	}
1493 
1494 	next = entry->next;
1495 	if (next != &map->header) {
1496 		esize = entry->end - entry->start;
1497 		if ((entry->end == next->start) &&
1498 		    (next->maptype == entry->maptype) &&
1499 		    (next->object.vm_object == entry->object.vm_object) &&
1500 		     (!entry->object.vm_object ||
1501 			(entry->offset + esize == next->offset)) &&
1502 		    (next->eflags == entry->eflags) &&
1503 		    (next->protection == entry->protection) &&
1504 		    (next->max_protection == entry->max_protection) &&
1505 		    (next->inheritance == entry->inheritance) &&
1506 		    (next->id == entry->id) &&
1507 		    (next->wired_count == entry->wired_count)) {
1508 			vm_map_entry_unlink(map, next);
1509 			entry->end = next->end;
1510 			if (next->object.vm_object)
1511 				vm_object_deallocate(next->object.vm_object);
1512 			vm_map_entry_dispose(map, next, countp);
1513 	        }
1514 	}
1515 }
1516 
1517 /*
1518  * Asserts that the given entry begins at or after the specified address.
1519  * If necessary, it splits the entry into two.
1520  */
1521 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1522 {									\
1523 	if (startaddr > entry->start)					\
1524 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1525 }
1526 
1527 /*
1528  * This routine is called only when it is known that the entry must be split.
1529  *
1530  * The map must be exclusively locked.
1531  */
1532 static void
1533 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1534 		   int *countp)
1535 {
1536 	vm_map_entry_t new_entry;
1537 
1538 	/*
1539 	 * Split off the front portion -- note that we must insert the new
1540 	 * entry BEFORE this one, so that this entry has the specified
1541 	 * starting address.
1542 	 */
1543 
1544 	vm_map_simplify_entry(map, entry, countp);
1545 
1546 	/*
1547 	 * If there is no object backing this entry, we might as well create
1548 	 * one now.  If we defer it, an object can get created after the map
1549 	 * is clipped, and individual objects will be created for the split-up
1550 	 * map.  This is a bit of a hack, but is also about the best place to
1551 	 * put this improvement.
1552 	 */
1553 	if (entry->object.vm_object == NULL && !map->system_map &&
1554 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1555 		vm_map_entry_allocate_object(entry);
1556 	}
1557 
1558 	new_entry = vm_map_entry_create(map, countp);
1559 	*new_entry = *entry;
1560 
1561 	new_entry->end = start;
1562 	entry->offset += (start - entry->start);
1563 	entry->start = start;
1564 
1565 	vm_map_entry_link(map, entry->prev, new_entry);
1566 
1567 	switch(entry->maptype) {
1568 	case VM_MAPTYPE_NORMAL:
1569 	case VM_MAPTYPE_VPAGETABLE:
1570 		if (new_entry->object.vm_object) {
1571 			vm_object_hold(new_entry->object.vm_object);
1572 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1573 			vm_object_reference_locked(new_entry->object.vm_object);
1574 			vm_object_drop(new_entry->object.vm_object);
1575 		}
1576 		break;
1577 	default:
1578 		break;
1579 	}
1580 }
1581 
1582 /*
1583  * Asserts that the given entry ends at or before the specified address.
1584  * If necessary, it splits the entry into two.
1585  *
1586  * The map must be exclusively locked.
1587  */
1588 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1589 {								\
1590 	if (endaddr < entry->end)				\
1591 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1592 }
1593 
1594 /*
1595  * This routine is called only when it is known that the entry must be split.
1596  *
1597  * The map must be exclusively locked.
1598  */
1599 static void
1600 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1601 		 int *countp)
1602 {
1603 	vm_map_entry_t new_entry;
1604 
1605 	/*
1606 	 * If there is no object backing this entry, we might as well create
1607 	 * one now.  If we defer it, an object can get created after the map
1608 	 * is clipped, and individual objects will be created for the split-up
1609 	 * map.  This is a bit of a hack, but is also about the best place to
1610 	 * put this improvement.
1611 	 */
1612 
1613 	if (entry->object.vm_object == NULL && !map->system_map &&
1614 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1615 		vm_map_entry_allocate_object(entry);
1616 	}
1617 
1618 	/*
1619 	 * Create a new entry and insert it AFTER the specified entry
1620 	 */
1621 	new_entry = vm_map_entry_create(map, countp);
1622 	*new_entry = *entry;
1623 
1624 	new_entry->start = entry->end = end;
1625 	new_entry->offset += (end - entry->start);
1626 
1627 	vm_map_entry_link(map, entry, new_entry);
1628 
1629 	switch(entry->maptype) {
1630 	case VM_MAPTYPE_NORMAL:
1631 	case VM_MAPTYPE_VPAGETABLE:
1632 		if (new_entry->object.vm_object) {
1633 			vm_object_hold(new_entry->object.vm_object);
1634 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1635 			vm_object_reference_locked(new_entry->object.vm_object);
1636 			vm_object_drop(new_entry->object.vm_object);
1637 		}
1638 		break;
1639 	default:
1640 		break;
1641 	}
1642 }
1643 
1644 /*
1645  * Asserts that the starting and ending region addresses fall within the
1646  * valid range for the map.
1647  */
1648 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1649 {						\
1650 	if (start < vm_map_min(map))		\
1651 		start = vm_map_min(map);	\
1652 	if (end > vm_map_max(map))		\
1653 		end = vm_map_max(map);		\
1654 	if (start > end)			\
1655 		start = end;			\
1656 }
1657 
1658 /*
1659  * Used to block when an in-transition collison occurs.  The map
1660  * is unlocked for the sleep and relocked before the return.
1661  */
1662 void
1663 vm_map_transition_wait(vm_map_t map, int relock)
1664 {
1665 	tsleep_interlock(map, 0);
1666 	vm_map_unlock(map);
1667 	tsleep(map, PINTERLOCKED, "vment", 0);
1668 	if (relock)
1669 		vm_map_lock(map);
1670 }
1671 
1672 /*
1673  * When we do blocking operations with the map lock held it is
1674  * possible that a clip might have occured on our in-transit entry,
1675  * requiring an adjustment to the entry in our loop.  These macros
1676  * help the pageable and clip_range code deal with the case.  The
1677  * conditional costs virtually nothing if no clipping has occured.
1678  */
1679 
1680 #define CLIP_CHECK_BACK(entry, save_start)		\
1681     do {						\
1682 	    while (entry->start != save_start) {	\
1683 		    entry = entry->prev;		\
1684 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1685 	    }						\
1686     } while(0)
1687 
1688 #define CLIP_CHECK_FWD(entry, save_end)			\
1689     do {						\
1690 	    while (entry->end != save_end) {		\
1691 		    entry = entry->next;		\
1692 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1693 	    }						\
1694     } while(0)
1695 
1696 
1697 /*
1698  * Clip the specified range and return the base entry.  The
1699  * range may cover several entries starting at the returned base
1700  * and the first and last entry in the covering sequence will be
1701  * properly clipped to the requested start and end address.
1702  *
1703  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1704  * flag.
1705  *
1706  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1707  * covered by the requested range.
1708  *
1709  * The map must be exclusively locked on entry and will remain locked
1710  * on return. If no range exists or the range contains holes and you
1711  * specified that no holes were allowed, NULL will be returned.  This
1712  * routine may temporarily unlock the map in order avoid a deadlock when
1713  * sleeping.
1714  */
1715 static
1716 vm_map_entry_t
1717 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1718 		  int *countp, int flags)
1719 {
1720 	vm_map_entry_t start_entry;
1721 	vm_map_entry_t entry;
1722 
1723 	/*
1724 	 * Locate the entry and effect initial clipping.  The in-transition
1725 	 * case does not occur very often so do not try to optimize it.
1726 	 */
1727 again:
1728 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1729 		return (NULL);
1730 	entry = start_entry;
1731 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1732 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1733 		++mycpu->gd_cnt.v_intrans_coll;
1734 		++mycpu->gd_cnt.v_intrans_wait;
1735 		vm_map_transition_wait(map, 1);
1736 		/*
1737 		 * entry and/or start_entry may have been clipped while
1738 		 * we slept, or may have gone away entirely.  We have
1739 		 * to restart from the lookup.
1740 		 */
1741 		goto again;
1742 	}
1743 
1744 	/*
1745 	 * Since we hold an exclusive map lock we do not have to restart
1746 	 * after clipping, even though clipping may block in zalloc.
1747 	 */
1748 	vm_map_clip_start(map, entry, start, countp);
1749 	vm_map_clip_end(map, entry, end, countp);
1750 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1751 
1752 	/*
1753 	 * Scan entries covered by the range.  When working on the next
1754 	 * entry a restart need only re-loop on the current entry which
1755 	 * we have already locked, since 'next' may have changed.  Also,
1756 	 * even though entry is safe, it may have been clipped so we
1757 	 * have to iterate forwards through the clip after sleeping.
1758 	 */
1759 	while (entry->next != &map->header && entry->next->start < end) {
1760 		vm_map_entry_t next = entry->next;
1761 
1762 		if (flags & MAP_CLIP_NO_HOLES) {
1763 			if (next->start > entry->end) {
1764 				vm_map_unclip_range(map, start_entry,
1765 					start, entry->end, countp, flags);
1766 				return(NULL);
1767 			}
1768 		}
1769 
1770 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1771 			vm_offset_t save_end = entry->end;
1772 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1773 			++mycpu->gd_cnt.v_intrans_coll;
1774 			++mycpu->gd_cnt.v_intrans_wait;
1775 			vm_map_transition_wait(map, 1);
1776 
1777 			/*
1778 			 * clips might have occured while we blocked.
1779 			 */
1780 			CLIP_CHECK_FWD(entry, save_end);
1781 			CLIP_CHECK_BACK(start_entry, start);
1782 			continue;
1783 		}
1784 
1785 		/*
1786 		 * No restart necessary even though clip_end may block, we
1787 		 * are holding the map lock.
1788 		 */
1789 		vm_map_clip_end(map, next, end, countp);
1790 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1791 		entry = next;
1792 	}
1793 	if (flags & MAP_CLIP_NO_HOLES) {
1794 		if (entry->end != end) {
1795 			vm_map_unclip_range(map, start_entry,
1796 				start, entry->end, countp, flags);
1797 			return(NULL);
1798 		}
1799 	}
1800 	return(start_entry);
1801 }
1802 
1803 /*
1804  * Undo the effect of vm_map_clip_range().  You should pass the same
1805  * flags and the same range that you passed to vm_map_clip_range().
1806  * This code will clear the in-transition flag on the entries and
1807  * wake up anyone waiting.  This code will also simplify the sequence
1808  * and attempt to merge it with entries before and after the sequence.
1809  *
1810  * The map must be locked on entry and will remain locked on return.
1811  *
1812  * Note that you should also pass the start_entry returned by
1813  * vm_map_clip_range().  However, if you block between the two calls
1814  * with the map unlocked please be aware that the start_entry may
1815  * have been clipped and you may need to scan it backwards to find
1816  * the entry corresponding with the original start address.  You are
1817  * responsible for this, vm_map_unclip_range() expects the correct
1818  * start_entry to be passed to it and will KASSERT otherwise.
1819  */
1820 static
1821 void
1822 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1823 		    vm_offset_t start, vm_offset_t end,
1824 		    int *countp, int flags)
1825 {
1826 	vm_map_entry_t entry;
1827 
1828 	entry = start_entry;
1829 
1830 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1831 	while (entry != &map->header && entry->start < end) {
1832 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1833 			("in-transition flag not set during unclip on: %p",
1834 			entry));
1835 		KASSERT(entry->end <= end,
1836 			("unclip_range: tail wasn't clipped"));
1837 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1838 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1839 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1840 			wakeup(map);
1841 		}
1842 		entry = entry->next;
1843 	}
1844 
1845 	/*
1846 	 * Simplification does not block so there is no restart case.
1847 	 */
1848 	entry = start_entry;
1849 	while (entry != &map->header && entry->start < end) {
1850 		vm_map_simplify_entry(map, entry, countp);
1851 		entry = entry->next;
1852 	}
1853 }
1854 
1855 /*
1856  * Mark the given range as handled by a subordinate map.
1857  *
1858  * This range must have been created with vm_map_find(), and no other
1859  * operations may have been performed on this range prior to calling
1860  * vm_map_submap().
1861  *
1862  * Submappings cannot be removed.
1863  *
1864  * No requirements.
1865  */
1866 int
1867 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1868 {
1869 	vm_map_entry_t entry;
1870 	int result = KERN_INVALID_ARGUMENT;
1871 	int count;
1872 
1873 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1874 	vm_map_lock(map);
1875 
1876 	VM_MAP_RANGE_CHECK(map, start, end);
1877 
1878 	if (vm_map_lookup_entry(map, start, &entry)) {
1879 		vm_map_clip_start(map, entry, start, &count);
1880 	} else {
1881 		entry = entry->next;
1882 	}
1883 
1884 	vm_map_clip_end(map, entry, end, &count);
1885 
1886 	if ((entry->start == start) && (entry->end == end) &&
1887 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1888 	    (entry->object.vm_object == NULL)) {
1889 		entry->object.sub_map = submap;
1890 		entry->maptype = VM_MAPTYPE_SUBMAP;
1891 		result = KERN_SUCCESS;
1892 	}
1893 	vm_map_unlock(map);
1894 	vm_map_entry_release(count);
1895 
1896 	return (result);
1897 }
1898 
1899 /*
1900  * Sets the protection of the specified address region in the target map.
1901  * If "set_max" is specified, the maximum protection is to be set;
1902  * otherwise, only the current protection is affected.
1903  *
1904  * The protection is not applicable to submaps, but is applicable to normal
1905  * maps and maps governed by virtual page tables.  For example, when operating
1906  * on a virtual page table our protection basically controls how COW occurs
1907  * on the backing object, whereas the virtual page table abstraction itself
1908  * is an abstraction for userland.
1909  *
1910  * No requirements.
1911  */
1912 int
1913 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1914 	       vm_prot_t new_prot, boolean_t set_max)
1915 {
1916 	vm_map_entry_t current;
1917 	vm_map_entry_t entry;
1918 	int count;
1919 
1920 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1921 	vm_map_lock(map);
1922 
1923 	VM_MAP_RANGE_CHECK(map, start, end);
1924 
1925 	if (vm_map_lookup_entry(map, start, &entry)) {
1926 		vm_map_clip_start(map, entry, start, &count);
1927 	} else {
1928 		entry = entry->next;
1929 	}
1930 
1931 	/*
1932 	 * Make a first pass to check for protection violations.
1933 	 */
1934 	current = entry;
1935 	while ((current != &map->header) && (current->start < end)) {
1936 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1937 			vm_map_unlock(map);
1938 			vm_map_entry_release(count);
1939 			return (KERN_INVALID_ARGUMENT);
1940 		}
1941 		if ((new_prot & current->max_protection) != new_prot) {
1942 			vm_map_unlock(map);
1943 			vm_map_entry_release(count);
1944 			return (KERN_PROTECTION_FAILURE);
1945 		}
1946 		current = current->next;
1947 	}
1948 
1949 	/*
1950 	 * Go back and fix up protections. [Note that clipping is not
1951 	 * necessary the second time.]
1952 	 */
1953 	current = entry;
1954 
1955 	while ((current != &map->header) && (current->start < end)) {
1956 		vm_prot_t old_prot;
1957 
1958 		vm_map_clip_end(map, current, end, &count);
1959 
1960 		old_prot = current->protection;
1961 		if (set_max) {
1962 			current->max_protection = new_prot;
1963 			current->protection = new_prot & old_prot;
1964 		} else {
1965 			current->protection = new_prot;
1966 		}
1967 
1968 		/*
1969 		 * Update physical map if necessary. Worry about copy-on-write
1970 		 * here -- CHECK THIS XXX
1971 		 */
1972 		if (current->protection != old_prot) {
1973 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1974 							VM_PROT_ALL)
1975 
1976 			pmap_protect(map->pmap, current->start,
1977 			    current->end,
1978 			    current->protection & MASK(current));
1979 #undef	MASK
1980 		}
1981 
1982 		vm_map_simplify_entry(map, current, &count);
1983 
1984 		current = current->next;
1985 	}
1986 	vm_map_unlock(map);
1987 	vm_map_entry_release(count);
1988 	return (KERN_SUCCESS);
1989 }
1990 
1991 /*
1992  * This routine traverses a processes map handling the madvise
1993  * system call.  Advisories are classified as either those effecting
1994  * the vm_map_entry structure, or those effecting the underlying
1995  * objects.
1996  *
1997  * The <value> argument is used for extended madvise calls.
1998  *
1999  * No requirements.
2000  */
2001 int
2002 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2003 	       int behav, off_t value)
2004 {
2005 	vm_map_entry_t current, entry;
2006 	int modify_map = 0;
2007 	int error = 0;
2008 	int count;
2009 
2010 	/*
2011 	 * Some madvise calls directly modify the vm_map_entry, in which case
2012 	 * we need to use an exclusive lock on the map and we need to perform
2013 	 * various clipping operations.  Otherwise we only need a read-lock
2014 	 * on the map.
2015 	 */
2016 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2017 
2018 	switch(behav) {
2019 	case MADV_NORMAL:
2020 	case MADV_SEQUENTIAL:
2021 	case MADV_RANDOM:
2022 	case MADV_NOSYNC:
2023 	case MADV_AUTOSYNC:
2024 	case MADV_NOCORE:
2025 	case MADV_CORE:
2026 	case MADV_SETMAP:
2027 		modify_map = 1;
2028 		vm_map_lock(map);
2029 		break;
2030 	case MADV_INVAL:
2031 	case MADV_WILLNEED:
2032 	case MADV_DONTNEED:
2033 	case MADV_FREE:
2034 		vm_map_lock_read(map);
2035 		break;
2036 	default:
2037 		vm_map_entry_release(count);
2038 		return (EINVAL);
2039 	}
2040 
2041 	/*
2042 	 * Locate starting entry and clip if necessary.
2043 	 */
2044 
2045 	VM_MAP_RANGE_CHECK(map, start, end);
2046 
2047 	if (vm_map_lookup_entry(map, start, &entry)) {
2048 		if (modify_map)
2049 			vm_map_clip_start(map, entry, start, &count);
2050 	} else {
2051 		entry = entry->next;
2052 	}
2053 
2054 	if (modify_map) {
2055 		/*
2056 		 * madvise behaviors that are implemented in the vm_map_entry.
2057 		 *
2058 		 * We clip the vm_map_entry so that behavioral changes are
2059 		 * limited to the specified address range.
2060 		 */
2061 		for (current = entry;
2062 		     (current != &map->header) && (current->start < end);
2063 		     current = current->next
2064 		) {
2065 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2066 				continue;
2067 
2068 			vm_map_clip_end(map, current, end, &count);
2069 
2070 			switch (behav) {
2071 			case MADV_NORMAL:
2072 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2073 				break;
2074 			case MADV_SEQUENTIAL:
2075 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2076 				break;
2077 			case MADV_RANDOM:
2078 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2079 				break;
2080 			case MADV_NOSYNC:
2081 				current->eflags |= MAP_ENTRY_NOSYNC;
2082 				break;
2083 			case MADV_AUTOSYNC:
2084 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2085 				break;
2086 			case MADV_NOCORE:
2087 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2088 				break;
2089 			case MADV_CORE:
2090 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2091 				break;
2092 			case MADV_SETMAP:
2093 				/*
2094 				 * Set the page directory page for a map
2095 				 * governed by a virtual page table.  Mark
2096 				 * the entry as being governed by a virtual
2097 				 * page table if it is not.
2098 				 *
2099 				 * XXX the page directory page is stored
2100 				 * in the avail_ssize field if the map_entry.
2101 				 *
2102 				 * XXX the map simplification code does not
2103 				 * compare this field so weird things may
2104 				 * happen if you do not apply this function
2105 				 * to the entire mapping governed by the
2106 				 * virtual page table.
2107 				 */
2108 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2109 					error = EINVAL;
2110 					break;
2111 				}
2112 				current->aux.master_pde = value;
2113 				pmap_remove(map->pmap,
2114 					    current->start, current->end);
2115 				break;
2116 			case MADV_INVAL:
2117 				/*
2118 				 * Invalidate the related pmap entries, used
2119 				 * to flush portions of the real kernel's
2120 				 * pmap when the caller has removed or
2121 				 * modified existing mappings in a virtual
2122 				 * page table.
2123 				 *
2124 				 * (exclusive locked map version does not
2125 				 * need the range interlock).
2126 				 */
2127 				pmap_remove(map->pmap,
2128 					    current->start, current->end);
2129 				break;
2130 			default:
2131 				error = EINVAL;
2132 				break;
2133 			}
2134 			vm_map_simplify_entry(map, current, &count);
2135 		}
2136 		vm_map_unlock(map);
2137 	} else {
2138 		vm_pindex_t pindex;
2139 		vm_pindex_t delta;
2140 
2141 		/*
2142 		 * madvise behaviors that are implemented in the underlying
2143 		 * vm_object.
2144 		 *
2145 		 * Since we don't clip the vm_map_entry, we have to clip
2146 		 * the vm_object pindex and count.
2147 		 *
2148 		 * NOTE!  These functions are only supported on normal maps,
2149 		 *	  except MADV_INVAL which is also supported on
2150 		 *	  virtual page tables.
2151 		 */
2152 		for (current = entry;
2153 		     (current != &map->header) && (current->start < end);
2154 		     current = current->next
2155 		) {
2156 			vm_offset_t useStart;
2157 
2158 			if (current->maptype != VM_MAPTYPE_NORMAL &&
2159 			    (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2160 			     behav != MADV_INVAL)) {
2161 				continue;
2162 			}
2163 
2164 			pindex = OFF_TO_IDX(current->offset);
2165 			delta = atop(current->end - current->start);
2166 			useStart = current->start;
2167 
2168 			if (current->start < start) {
2169 				pindex += atop(start - current->start);
2170 				delta -= atop(start - current->start);
2171 				useStart = start;
2172 			}
2173 			if (current->end > end)
2174 				delta -= atop(current->end - end);
2175 
2176 			if ((vm_spindex_t)delta <= 0)
2177 				continue;
2178 
2179 			if (behav == MADV_INVAL) {
2180 				/*
2181 				 * Invalidate the related pmap entries, used
2182 				 * to flush portions of the real kernel's
2183 				 * pmap when the caller has removed or
2184 				 * modified existing mappings in a virtual
2185 				 * page table.
2186 				 *
2187 				 * (shared locked map version needs the
2188 				 * interlock, see vm_fault()).
2189 				 */
2190 				struct vm_map_ilock ilock;
2191 
2192 				KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2193 					    useStart + ptoa(delta) <=
2194 					    VM_MAX_USER_ADDRESS,
2195 					 ("Bad range %016jx-%016jx (%016jx)",
2196 					 useStart, useStart + ptoa(delta),
2197 					 delta));
2198 				vm_map_interlock(map, &ilock,
2199 						 useStart,
2200 						 useStart + ptoa(delta));
2201 				pmap_remove(map->pmap,
2202 					    useStart,
2203 					    useStart + ptoa(delta));
2204 				vm_map_deinterlock(map, &ilock);
2205 			} else {
2206 				vm_object_madvise(current->object.vm_object,
2207 						  pindex, delta, behav);
2208 			}
2209 
2210 			/*
2211 			 * Try to populate the page table.  Mappings governed
2212 			 * by virtual page tables cannot be pre-populated
2213 			 * without a lot of work so don't try.
2214 			 */
2215 			if (behav == MADV_WILLNEED &&
2216 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2217 				pmap_object_init_pt(
2218 				    map->pmap,
2219 				    useStart,
2220 				    current->protection,
2221 				    current->object.vm_object,
2222 				    pindex,
2223 				    (count << PAGE_SHIFT),
2224 				    MAP_PREFAULT_MADVISE
2225 				);
2226 			}
2227 		}
2228 		vm_map_unlock_read(map);
2229 	}
2230 	vm_map_entry_release(count);
2231 	return(error);
2232 }
2233 
2234 
2235 /*
2236  * Sets the inheritance of the specified address range in the target map.
2237  * Inheritance affects how the map will be shared with child maps at the
2238  * time of vm_map_fork.
2239  */
2240 int
2241 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2242 	       vm_inherit_t new_inheritance)
2243 {
2244 	vm_map_entry_t entry;
2245 	vm_map_entry_t temp_entry;
2246 	int count;
2247 
2248 	switch (new_inheritance) {
2249 	case VM_INHERIT_NONE:
2250 	case VM_INHERIT_COPY:
2251 	case VM_INHERIT_SHARE:
2252 		break;
2253 	default:
2254 		return (KERN_INVALID_ARGUMENT);
2255 	}
2256 
2257 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2258 	vm_map_lock(map);
2259 
2260 	VM_MAP_RANGE_CHECK(map, start, end);
2261 
2262 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2263 		entry = temp_entry;
2264 		vm_map_clip_start(map, entry, start, &count);
2265 	} else
2266 		entry = temp_entry->next;
2267 
2268 	while ((entry != &map->header) && (entry->start < end)) {
2269 		vm_map_clip_end(map, entry, end, &count);
2270 
2271 		entry->inheritance = new_inheritance;
2272 
2273 		vm_map_simplify_entry(map, entry, &count);
2274 
2275 		entry = entry->next;
2276 	}
2277 	vm_map_unlock(map);
2278 	vm_map_entry_release(count);
2279 	return (KERN_SUCCESS);
2280 }
2281 
2282 /*
2283  * Implement the semantics of mlock
2284  */
2285 int
2286 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2287 	      boolean_t new_pageable)
2288 {
2289 	vm_map_entry_t entry;
2290 	vm_map_entry_t start_entry;
2291 	vm_offset_t end;
2292 	int rv = KERN_SUCCESS;
2293 	int count;
2294 
2295 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2296 	vm_map_lock(map);
2297 	VM_MAP_RANGE_CHECK(map, start, real_end);
2298 	end = real_end;
2299 
2300 	start_entry = vm_map_clip_range(map, start, end, &count,
2301 					MAP_CLIP_NO_HOLES);
2302 	if (start_entry == NULL) {
2303 		vm_map_unlock(map);
2304 		vm_map_entry_release(count);
2305 		return (KERN_INVALID_ADDRESS);
2306 	}
2307 
2308 	if (new_pageable == 0) {
2309 		entry = start_entry;
2310 		while ((entry != &map->header) && (entry->start < end)) {
2311 			vm_offset_t save_start;
2312 			vm_offset_t save_end;
2313 
2314 			/*
2315 			 * Already user wired or hard wired (trivial cases)
2316 			 */
2317 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2318 				entry = entry->next;
2319 				continue;
2320 			}
2321 			if (entry->wired_count != 0) {
2322 				entry->wired_count++;
2323 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2324 				entry = entry->next;
2325 				continue;
2326 			}
2327 
2328 			/*
2329 			 * A new wiring requires instantiation of appropriate
2330 			 * management structures and the faulting in of the
2331 			 * page.
2332 			 */
2333 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2334 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2335 				int copyflag = entry->eflags &
2336 					       MAP_ENTRY_NEEDS_COPY;
2337 				if (copyflag && ((entry->protection &
2338 						  VM_PROT_WRITE) != 0)) {
2339 					vm_map_entry_shadow(entry, 0);
2340 				} else if (entry->object.vm_object == NULL &&
2341 					   !map->system_map) {
2342 					vm_map_entry_allocate_object(entry);
2343 				}
2344 			}
2345 			entry->wired_count++;
2346 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2347 
2348 			/*
2349 			 * Now fault in the area.  Note that vm_fault_wire()
2350 			 * may release the map lock temporarily, it will be
2351 			 * relocked on return.  The in-transition
2352 			 * flag protects the entries.
2353 			 */
2354 			save_start = entry->start;
2355 			save_end = entry->end;
2356 			rv = vm_fault_wire(map, entry, TRUE, 0);
2357 			if (rv) {
2358 				CLIP_CHECK_BACK(entry, save_start);
2359 				for (;;) {
2360 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2361 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2362 					entry->wired_count = 0;
2363 					if (entry->end == save_end)
2364 						break;
2365 					entry = entry->next;
2366 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2367 				}
2368 				end = save_start;	/* unwire the rest */
2369 				break;
2370 			}
2371 			/*
2372 			 * note that even though the entry might have been
2373 			 * clipped, the USER_WIRED flag we set prevents
2374 			 * duplication so we do not have to do a
2375 			 * clip check.
2376 			 */
2377 			entry = entry->next;
2378 		}
2379 
2380 		/*
2381 		 * If we failed fall through to the unwiring section to
2382 		 * unwire what we had wired so far.  'end' has already
2383 		 * been adjusted.
2384 		 */
2385 		if (rv)
2386 			new_pageable = 1;
2387 
2388 		/*
2389 		 * start_entry might have been clipped if we unlocked the
2390 		 * map and blocked.  No matter how clipped it has gotten
2391 		 * there should be a fragment that is on our start boundary.
2392 		 */
2393 		CLIP_CHECK_BACK(start_entry, start);
2394 	}
2395 
2396 	/*
2397 	 * Deal with the unwiring case.
2398 	 */
2399 	if (new_pageable) {
2400 		/*
2401 		 * This is the unwiring case.  We must first ensure that the
2402 		 * range to be unwired is really wired down.  We know there
2403 		 * are no holes.
2404 		 */
2405 		entry = start_entry;
2406 		while ((entry != &map->header) && (entry->start < end)) {
2407 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2408 				rv = KERN_INVALID_ARGUMENT;
2409 				goto done;
2410 			}
2411 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2412 			entry = entry->next;
2413 		}
2414 
2415 		/*
2416 		 * Now decrement the wiring count for each region. If a region
2417 		 * becomes completely unwired, unwire its physical pages and
2418 		 * mappings.
2419 		 */
2420 		/*
2421 		 * The map entries are processed in a loop, checking to
2422 		 * make sure the entry is wired and asserting it has a wired
2423 		 * count. However, another loop was inserted more-or-less in
2424 		 * the middle of the unwiring path. This loop picks up the
2425 		 * "entry" loop variable from the first loop without first
2426 		 * setting it to start_entry. Naturally, the secound loop
2427 		 * is never entered and the pages backing the entries are
2428 		 * never unwired. This can lead to a leak of wired pages.
2429 		 */
2430 		entry = start_entry;
2431 		while ((entry != &map->header) && (entry->start < end)) {
2432 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2433 				("expected USER_WIRED on entry %p", entry));
2434 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2435 			entry->wired_count--;
2436 			if (entry->wired_count == 0)
2437 				vm_fault_unwire(map, entry);
2438 			entry = entry->next;
2439 		}
2440 	}
2441 done:
2442 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2443 		MAP_CLIP_NO_HOLES);
2444 	vm_map_unlock(map);
2445 	vm_map_entry_release(count);
2446 
2447 	return (rv);
2448 }
2449 
2450 /*
2451  * Sets the pageability of the specified address range in the target map.
2452  * Regions specified as not pageable require locked-down physical
2453  * memory and physical page maps.
2454  *
2455  * The map must not be locked, but a reference must remain to the map
2456  * throughout the call.
2457  *
2458  * This function may be called via the zalloc path and must properly
2459  * reserve map entries for kernel_map.
2460  *
2461  * No requirements.
2462  */
2463 int
2464 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2465 {
2466 	vm_map_entry_t entry;
2467 	vm_map_entry_t start_entry;
2468 	vm_offset_t end;
2469 	int rv = KERN_SUCCESS;
2470 	int count;
2471 
2472 	if (kmflags & KM_KRESERVE)
2473 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2474 	else
2475 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2476 	vm_map_lock(map);
2477 	VM_MAP_RANGE_CHECK(map, start, real_end);
2478 	end = real_end;
2479 
2480 	start_entry = vm_map_clip_range(map, start, end, &count,
2481 					MAP_CLIP_NO_HOLES);
2482 	if (start_entry == NULL) {
2483 		vm_map_unlock(map);
2484 		rv = KERN_INVALID_ADDRESS;
2485 		goto failure;
2486 	}
2487 	if ((kmflags & KM_PAGEABLE) == 0) {
2488 		/*
2489 		 * Wiring.
2490 		 *
2491 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2492 		 * objects that need to be created. Then we clip each map
2493 		 * entry to the region to be wired and increment its wiring
2494 		 * count.  We create objects before clipping the map entries
2495 		 * to avoid object proliferation.
2496 		 *
2497 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2498 		 * fault in the pages for any newly wired area (wired_count is
2499 		 * 1).
2500 		 *
2501 		 * Downgrading to a read lock for vm_fault_wire avoids a
2502 		 * possible deadlock with another process that may have faulted
2503 		 * on one of the pages to be wired (it would mark the page busy,
2504 		 * blocking us, then in turn block on the map lock that we
2505 		 * hold).  Because of problems in the recursive lock package,
2506 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2507 		 * any actions that require the write lock must be done
2508 		 * beforehand.  Because we keep the read lock on the map, the
2509 		 * copy-on-write status of the entries we modify here cannot
2510 		 * change.
2511 		 */
2512 		entry = start_entry;
2513 		while ((entry != &map->header) && (entry->start < end)) {
2514 			/*
2515 			 * Trivial case if the entry is already wired
2516 			 */
2517 			if (entry->wired_count) {
2518 				entry->wired_count++;
2519 				entry = entry->next;
2520 				continue;
2521 			}
2522 
2523 			/*
2524 			 * The entry is being newly wired, we have to setup
2525 			 * appropriate management structures.  A shadow
2526 			 * object is required for a copy-on-write region,
2527 			 * or a normal object for a zero-fill region.  We
2528 			 * do not have to do this for entries that point to sub
2529 			 * maps because we won't hold the lock on the sub map.
2530 			 */
2531 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2532 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2533 				int copyflag = entry->eflags &
2534 					       MAP_ENTRY_NEEDS_COPY;
2535 				if (copyflag && ((entry->protection &
2536 						  VM_PROT_WRITE) != 0)) {
2537 					vm_map_entry_shadow(entry, 0);
2538 				} else if (entry->object.vm_object == NULL &&
2539 					   !map->system_map) {
2540 					vm_map_entry_allocate_object(entry);
2541 				}
2542 			}
2543 
2544 			entry->wired_count++;
2545 			entry = entry->next;
2546 		}
2547 
2548 		/*
2549 		 * Pass 2.
2550 		 */
2551 
2552 		/*
2553 		 * HACK HACK HACK HACK
2554 		 *
2555 		 * vm_fault_wire() temporarily unlocks the map to avoid
2556 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2557 		 * call should protect us from changes while the map is
2558 		 * unlocked.  T
2559 		 *
2560 		 * NOTE: Previously this comment stated that clipping might
2561 		 *	 still occur while the entry is unlocked, but from
2562 		 *	 what I can tell it actually cannot.
2563 		 *
2564 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2565 		 *	 are still needed but we keep them in anyway.
2566 		 *
2567 		 * HACK HACK HACK HACK
2568 		 */
2569 
2570 		entry = start_entry;
2571 		while (entry != &map->header && entry->start < end) {
2572 			/*
2573 			 * If vm_fault_wire fails for any page we need to undo
2574 			 * what has been done.  We decrement the wiring count
2575 			 * for those pages which have not yet been wired (now)
2576 			 * and unwire those that have (later).
2577 			 */
2578 			vm_offset_t save_start = entry->start;
2579 			vm_offset_t save_end = entry->end;
2580 
2581 			if (entry->wired_count == 1)
2582 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2583 			if (rv) {
2584 				CLIP_CHECK_BACK(entry, save_start);
2585 				for (;;) {
2586 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2587 					entry->wired_count = 0;
2588 					if (entry->end == save_end)
2589 						break;
2590 					entry = entry->next;
2591 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2592 				}
2593 				end = save_start;
2594 				break;
2595 			}
2596 			CLIP_CHECK_FWD(entry, save_end);
2597 			entry = entry->next;
2598 		}
2599 
2600 		/*
2601 		 * If a failure occured undo everything by falling through
2602 		 * to the unwiring code.  'end' has already been adjusted
2603 		 * appropriately.
2604 		 */
2605 		if (rv)
2606 			kmflags |= KM_PAGEABLE;
2607 
2608 		/*
2609 		 * start_entry is still IN_TRANSITION but may have been
2610 		 * clipped since vm_fault_wire() unlocks and relocks the
2611 		 * map.  No matter how clipped it has gotten there should
2612 		 * be a fragment that is on our start boundary.
2613 		 */
2614 		CLIP_CHECK_BACK(start_entry, start);
2615 	}
2616 
2617 	if (kmflags & KM_PAGEABLE) {
2618 		/*
2619 		 * This is the unwiring case.  We must first ensure that the
2620 		 * range to be unwired is really wired down.  We know there
2621 		 * are no holes.
2622 		 */
2623 		entry = start_entry;
2624 		while ((entry != &map->header) && (entry->start < end)) {
2625 			if (entry->wired_count == 0) {
2626 				rv = KERN_INVALID_ARGUMENT;
2627 				goto done;
2628 			}
2629 			entry = entry->next;
2630 		}
2631 
2632 		/*
2633 		 * Now decrement the wiring count for each region. If a region
2634 		 * becomes completely unwired, unwire its physical pages and
2635 		 * mappings.
2636 		 */
2637 		entry = start_entry;
2638 		while ((entry != &map->header) && (entry->start < end)) {
2639 			entry->wired_count--;
2640 			if (entry->wired_count == 0)
2641 				vm_fault_unwire(map, entry);
2642 			entry = entry->next;
2643 		}
2644 	}
2645 done:
2646 	vm_map_unclip_range(map, start_entry, start, real_end,
2647 			    &count, MAP_CLIP_NO_HOLES);
2648 	vm_map_unlock(map);
2649 failure:
2650 	if (kmflags & KM_KRESERVE)
2651 		vm_map_entry_krelease(count);
2652 	else
2653 		vm_map_entry_release(count);
2654 	return (rv);
2655 }
2656 
2657 /*
2658  * Mark a newly allocated address range as wired but do not fault in
2659  * the pages.  The caller is expected to load the pages into the object.
2660  *
2661  * The map must be locked on entry and will remain locked on return.
2662  * No other requirements.
2663  */
2664 void
2665 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2666 		       int *countp)
2667 {
2668 	vm_map_entry_t scan;
2669 	vm_map_entry_t entry;
2670 
2671 	entry = vm_map_clip_range(map, addr, addr + size,
2672 				  countp, MAP_CLIP_NO_HOLES);
2673 	for (scan = entry;
2674 	     scan != &map->header && scan->start < addr + size;
2675 	     scan = scan->next) {
2676 	    KKASSERT(scan->wired_count == 0);
2677 	    scan->wired_count = 1;
2678 	}
2679 	vm_map_unclip_range(map, entry, addr, addr + size,
2680 			    countp, MAP_CLIP_NO_HOLES);
2681 }
2682 
2683 /*
2684  * Push any dirty cached pages in the address range to their pager.
2685  * If syncio is TRUE, dirty pages are written synchronously.
2686  * If invalidate is TRUE, any cached pages are freed as well.
2687  *
2688  * This routine is called by sys_msync()
2689  *
2690  * Returns an error if any part of the specified range is not mapped.
2691  *
2692  * No requirements.
2693  */
2694 int
2695 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2696 	     boolean_t syncio, boolean_t invalidate)
2697 {
2698 	vm_map_entry_t current;
2699 	vm_map_entry_t entry;
2700 	vm_size_t size;
2701 	vm_object_t object;
2702 	vm_object_t tobj;
2703 	vm_ooffset_t offset;
2704 
2705 	vm_map_lock_read(map);
2706 	VM_MAP_RANGE_CHECK(map, start, end);
2707 	if (!vm_map_lookup_entry(map, start, &entry)) {
2708 		vm_map_unlock_read(map);
2709 		return (KERN_INVALID_ADDRESS);
2710 	}
2711 	lwkt_gettoken(&map->token);
2712 
2713 	/*
2714 	 * Make a first pass to check for holes.
2715 	 */
2716 	for (current = entry; current->start < end; current = current->next) {
2717 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2718 			lwkt_reltoken(&map->token);
2719 			vm_map_unlock_read(map);
2720 			return (KERN_INVALID_ARGUMENT);
2721 		}
2722 		if (end > current->end &&
2723 		    (current->next == &map->header ||
2724 			current->end != current->next->start)) {
2725 			lwkt_reltoken(&map->token);
2726 			vm_map_unlock_read(map);
2727 			return (KERN_INVALID_ADDRESS);
2728 		}
2729 	}
2730 
2731 	if (invalidate)
2732 		pmap_remove(vm_map_pmap(map), start, end);
2733 
2734 	/*
2735 	 * Make a second pass, cleaning/uncaching pages from the indicated
2736 	 * objects as we go.
2737 	 */
2738 	for (current = entry; current->start < end; current = current->next) {
2739 		offset = current->offset + (start - current->start);
2740 		size = (end <= current->end ? end : current->end) - start;
2741 
2742 		switch(current->maptype) {
2743 		case VM_MAPTYPE_SUBMAP:
2744 		{
2745 			vm_map_t smap;
2746 			vm_map_entry_t tentry;
2747 			vm_size_t tsize;
2748 
2749 			smap = current->object.sub_map;
2750 			vm_map_lock_read(smap);
2751 			vm_map_lookup_entry(smap, offset, &tentry);
2752 			tsize = tentry->end - offset;
2753 			if (tsize < size)
2754 				size = tsize;
2755 			object = tentry->object.vm_object;
2756 			offset = tentry->offset + (offset - tentry->start);
2757 			vm_map_unlock_read(smap);
2758 			break;
2759 		}
2760 		case VM_MAPTYPE_NORMAL:
2761 		case VM_MAPTYPE_VPAGETABLE:
2762 			object = current->object.vm_object;
2763 			break;
2764 		default:
2765 			object = NULL;
2766 			break;
2767 		}
2768 
2769 		if (object)
2770 			vm_object_hold(object);
2771 
2772 		/*
2773 		 * Note that there is absolutely no sense in writing out
2774 		 * anonymous objects, so we track down the vnode object
2775 		 * to write out.
2776 		 * We invalidate (remove) all pages from the address space
2777 		 * anyway, for semantic correctness.
2778 		 *
2779 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2780 		 * may start out with a NULL object.
2781 		 */
2782 		while (object && (tobj = object->backing_object) != NULL) {
2783 			vm_object_hold(tobj);
2784 			if (tobj == object->backing_object) {
2785 				vm_object_lock_swap();
2786 				offset += object->backing_object_offset;
2787 				vm_object_drop(object);
2788 				object = tobj;
2789 				if (object->size < OFF_TO_IDX(offset + size))
2790 					size = IDX_TO_OFF(object->size) -
2791 					       offset;
2792 				break;
2793 			}
2794 			vm_object_drop(tobj);
2795 		}
2796 		if (object && (object->type == OBJT_VNODE) &&
2797 		    (current->protection & VM_PROT_WRITE) &&
2798 		    (object->flags & OBJ_NOMSYNC) == 0) {
2799 			/*
2800 			 * Flush pages if writing is allowed, invalidate them
2801 			 * if invalidation requested.  Pages undergoing I/O
2802 			 * will be ignored by vm_object_page_remove().
2803 			 *
2804 			 * We cannot lock the vnode and then wait for paging
2805 			 * to complete without deadlocking against vm_fault.
2806 			 * Instead we simply call vm_object_page_remove() and
2807 			 * allow it to block internally on a page-by-page
2808 			 * basis when it encounters pages undergoing async
2809 			 * I/O.
2810 			 */
2811 			int flags;
2812 
2813 			/* no chain wait needed for vnode objects */
2814 			vm_object_reference_locked(object);
2815 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2816 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2817 			flags |= invalidate ? OBJPC_INVAL : 0;
2818 
2819 			/*
2820 			 * When operating on a virtual page table just
2821 			 * flush the whole object.  XXX we probably ought
2822 			 * to
2823 			 */
2824 			switch(current->maptype) {
2825 			case VM_MAPTYPE_NORMAL:
2826 				vm_object_page_clean(object,
2827 				    OFF_TO_IDX(offset),
2828 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2829 				    flags);
2830 				break;
2831 			case VM_MAPTYPE_VPAGETABLE:
2832 				vm_object_page_clean(object, 0, 0, flags);
2833 				break;
2834 			}
2835 			vn_unlock(((struct vnode *)object->handle));
2836 			vm_object_deallocate_locked(object);
2837 		}
2838 		if (object && invalidate &&
2839 		   ((object->type == OBJT_VNODE) ||
2840 		    (object->type == OBJT_DEVICE) ||
2841 		    (object->type == OBJT_MGTDEVICE))) {
2842 			int clean_only =
2843 				((object->type == OBJT_DEVICE) ||
2844 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2845 			/* no chain wait needed for vnode/device objects */
2846 			vm_object_reference_locked(object);
2847 			switch(current->maptype) {
2848 			case VM_MAPTYPE_NORMAL:
2849 				vm_object_page_remove(object,
2850 				    OFF_TO_IDX(offset),
2851 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2852 				    clean_only);
2853 				break;
2854 			case VM_MAPTYPE_VPAGETABLE:
2855 				vm_object_page_remove(object, 0, 0, clean_only);
2856 				break;
2857 			}
2858 			vm_object_deallocate_locked(object);
2859 		}
2860 		start += size;
2861 		if (object)
2862 			vm_object_drop(object);
2863 	}
2864 
2865 	lwkt_reltoken(&map->token);
2866 	vm_map_unlock_read(map);
2867 
2868 	return (KERN_SUCCESS);
2869 }
2870 
2871 /*
2872  * Make the region specified by this entry pageable.
2873  *
2874  * The vm_map must be exclusively locked.
2875  */
2876 static void
2877 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2878 {
2879 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2880 	entry->wired_count = 0;
2881 	vm_fault_unwire(map, entry);
2882 }
2883 
2884 /*
2885  * Deallocate the given entry from the target map.
2886  *
2887  * The vm_map must be exclusively locked.
2888  */
2889 static void
2890 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2891 {
2892 	vm_map_entry_unlink(map, entry);
2893 	map->size -= entry->end - entry->start;
2894 
2895 	switch(entry->maptype) {
2896 	case VM_MAPTYPE_NORMAL:
2897 	case VM_MAPTYPE_VPAGETABLE:
2898 	case VM_MAPTYPE_SUBMAP:
2899 		vm_object_deallocate(entry->object.vm_object);
2900 		break;
2901 	case VM_MAPTYPE_UKSMAP:
2902 		/* XXX TODO */
2903 		break;
2904 	default:
2905 		break;
2906 	}
2907 
2908 	vm_map_entry_dispose(map, entry, countp);
2909 }
2910 
2911 /*
2912  * Deallocates the given address range from the target map.
2913  *
2914  * The vm_map must be exclusively locked.
2915  */
2916 int
2917 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2918 {
2919 	vm_object_t object;
2920 	vm_map_entry_t entry;
2921 	vm_map_entry_t first_entry;
2922 	vm_offset_t hole_start;
2923 
2924 	ASSERT_VM_MAP_LOCKED(map);
2925 	lwkt_gettoken(&map->token);
2926 again:
2927 	/*
2928 	 * Find the start of the region, and clip it.  Set entry to point
2929 	 * at the first record containing the requested address or, if no
2930 	 * such record exists, the next record with a greater address.  The
2931 	 * loop will run from this point until a record beyond the termination
2932 	 * address is encountered.
2933 	 *
2934 	 * Adjust freehint[] for either the clip case or the extension case.
2935 	 *
2936 	 * GGG see other GGG comment.
2937 	 */
2938 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2939 		entry = first_entry;
2940 		vm_map_clip_start(map, entry, start, countp);
2941 		hole_start = start;
2942 	} else {
2943 		entry = first_entry->next;
2944 		if (entry == &map->header)
2945 			hole_start = first_entry->start;
2946 		else
2947 			hole_start = first_entry->end;
2948 	}
2949 
2950 	/*
2951 	 * Step through all entries in this region
2952 	 */
2953 	while ((entry != &map->header) && (entry->start < end)) {
2954 		vm_map_entry_t next;
2955 		vm_offset_t s, e;
2956 		vm_pindex_t offidxstart, offidxend, count;
2957 
2958 		/*
2959 		 * If we hit an in-transition entry we have to sleep and
2960 		 * retry.  It's easier (and not really slower) to just retry
2961 		 * since this case occurs so rarely and the hint is already
2962 		 * pointing at the right place.  We have to reset the
2963 		 * start offset so as not to accidently delete an entry
2964 		 * another process just created in vacated space.
2965 		 */
2966 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2967 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2968 			start = entry->start;
2969 			++mycpu->gd_cnt.v_intrans_coll;
2970 			++mycpu->gd_cnt.v_intrans_wait;
2971 			vm_map_transition_wait(map, 1);
2972 			goto again;
2973 		}
2974 		vm_map_clip_end(map, entry, end, countp);
2975 
2976 		s = entry->start;
2977 		e = entry->end;
2978 		next = entry->next;
2979 
2980 		offidxstart = OFF_TO_IDX(entry->offset);
2981 		count = OFF_TO_IDX(e - s);
2982 
2983 		switch(entry->maptype) {
2984 		case VM_MAPTYPE_NORMAL:
2985 		case VM_MAPTYPE_VPAGETABLE:
2986 		case VM_MAPTYPE_SUBMAP:
2987 			object = entry->object.vm_object;
2988 			break;
2989 		default:
2990 			object = NULL;
2991 			break;
2992 		}
2993 
2994 		/*
2995 		 * Unwire before removing addresses from the pmap; otherwise,
2996 		 * unwiring will put the entries back in the pmap.
2997 		 *
2998 		 * Generally speaking, doing a bulk pmap_remove() before
2999 		 * removing the pages from the VM object is better at
3000 		 * reducing unnecessary IPIs.  The pmap code is now optimized
3001 		 * to not blindly iterate the range when pt and pd pages
3002 		 * are missing.
3003 		 */
3004 		if (entry->wired_count != 0)
3005 			vm_map_entry_unwire(map, entry);
3006 
3007 		offidxend = offidxstart + count;
3008 
3009 		if (object == &kernel_object) {
3010 			pmap_remove(map->pmap, s, e);
3011 			vm_object_hold(object);
3012 			vm_object_page_remove(object, offidxstart,
3013 					      offidxend, FALSE);
3014 			vm_object_drop(object);
3015 		} else if (object && object->type != OBJT_DEFAULT &&
3016 			   object->type != OBJT_SWAP) {
3017 			/*
3018 			 * vnode object routines cannot be chain-locked,
3019 			 * but since we aren't removing pages from the
3020 			 * object here we can use a shared hold.
3021 			 */
3022 			vm_object_hold_shared(object);
3023 			pmap_remove(map->pmap, s, e);
3024 			vm_object_drop(object);
3025 		} else if (object) {
3026 			vm_object_hold(object);
3027 			vm_object_chain_acquire(object, 0);
3028 			pmap_remove(map->pmap, s, e);
3029 
3030 			if (object != NULL &&
3031 			    object->ref_count != 1 &&
3032 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3033 			     OBJ_ONEMAPPING &&
3034 			    (object->type == OBJT_DEFAULT ||
3035 			     object->type == OBJT_SWAP)) {
3036 				/*
3037 				 * When ONEMAPPING is set we can destroy the
3038 				 * pages underlying the entry's range.
3039 				 */
3040 				vm_object_collapse(object, NULL);
3041 				vm_object_page_remove(object, offidxstart,
3042 						      offidxend, FALSE);
3043 				if (object->type == OBJT_SWAP) {
3044 					swap_pager_freespace(object,
3045 							     offidxstart,
3046 							     count);
3047 				}
3048 				if (offidxend >= object->size &&
3049 				    offidxstart < object->size) {
3050 					object->size = offidxstart;
3051 				}
3052 			}
3053 			vm_object_chain_release(object);
3054 			vm_object_drop(object);
3055 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3056 			pmap_remove(map->pmap, s, e);
3057 		}
3058 
3059 		/*
3060 		 * Delete the entry (which may delete the object) only after
3061 		 * removing all pmap entries pointing to its pages.
3062 		 * (Otherwise, its page frames may be reallocated, and any
3063 		 * modify bits will be set in the wrong object!)
3064 		 */
3065 		vm_map_entry_delete(map, entry, countp);
3066 		entry = next;
3067 	}
3068 	if (entry == &map->header)
3069 		vm_map_freehint_hole(map, hole_start, entry->end - hole_start);
3070 	else
3071 		vm_map_freehint_hole(map, hole_start,
3072 				     entry->start - hole_start);
3073 
3074 	lwkt_reltoken(&map->token);
3075 
3076 	return (KERN_SUCCESS);
3077 }
3078 
3079 /*
3080  * Remove the given address range from the target map.
3081  * This is the exported form of vm_map_delete.
3082  *
3083  * No requirements.
3084  */
3085 int
3086 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3087 {
3088 	int result;
3089 	int count;
3090 
3091 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3092 	vm_map_lock(map);
3093 	VM_MAP_RANGE_CHECK(map, start, end);
3094 	result = vm_map_delete(map, start, end, &count);
3095 	vm_map_unlock(map);
3096 	vm_map_entry_release(count);
3097 
3098 	return (result);
3099 }
3100 
3101 /*
3102  * Assert that the target map allows the specified privilege on the
3103  * entire address region given.  The entire region must be allocated.
3104  *
3105  * The caller must specify whether the vm_map is already locked or not.
3106  */
3107 boolean_t
3108 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3109 			vm_prot_t protection, boolean_t have_lock)
3110 {
3111 	vm_map_entry_t entry;
3112 	vm_map_entry_t tmp_entry;
3113 	boolean_t result;
3114 
3115 	if (have_lock == FALSE)
3116 		vm_map_lock_read(map);
3117 
3118 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3119 		if (have_lock == FALSE)
3120 			vm_map_unlock_read(map);
3121 		return (FALSE);
3122 	}
3123 	entry = tmp_entry;
3124 
3125 	result = TRUE;
3126 	while (start < end) {
3127 		if (entry == &map->header) {
3128 			result = FALSE;
3129 			break;
3130 		}
3131 		/*
3132 		 * No holes allowed!
3133 		 */
3134 
3135 		if (start < entry->start) {
3136 			result = FALSE;
3137 			break;
3138 		}
3139 		/*
3140 		 * Check protection associated with entry.
3141 		 */
3142 
3143 		if ((entry->protection & protection) != protection) {
3144 			result = FALSE;
3145 			break;
3146 		}
3147 		/* go to next entry */
3148 
3149 		start = entry->end;
3150 		entry = entry->next;
3151 	}
3152 	if (have_lock == FALSE)
3153 		vm_map_unlock_read(map);
3154 	return (result);
3155 }
3156 
3157 /*
3158  * If appropriate this function shadows the original object with a new object
3159  * and moves the VM pages from the original object to the new object.
3160  * The original object will also be collapsed, if possible.
3161  *
3162  * Caller must supply entry->object.vm_object held and chain_acquired, and
3163  * should chain_release and drop the object upon return.
3164  *
3165  * We can only do this for normal memory objects with a single mapping, and
3166  * it only makes sense to do it if there are 2 or more refs on the original
3167  * object.  i.e. typically a memory object that has been extended into
3168  * multiple vm_map_entry's with non-overlapping ranges.
3169  *
3170  * This makes it easier to remove unused pages and keeps object inheritance
3171  * from being a negative impact on memory usage.
3172  *
3173  * On return the (possibly new) entry->object.vm_object will have an
3174  * additional ref on it for the caller to dispose of (usually by cloning
3175  * the vm_map_entry).  The additional ref had to be done in this routine
3176  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3177  * cleared.
3178  *
3179  * The vm_map must be locked and its token held.
3180  */
3181 static void
3182 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3183 {
3184 	/* OPTIMIZED */
3185 	vm_object_t nobject, bobject;
3186 	vm_offset_t s, e;
3187 	vm_page_t m;
3188 	vm_pindex_t offidxstart, offidxend, idx;
3189 	vm_size_t size;
3190 	vm_ooffset_t offset;
3191 	int useshadowlist;
3192 
3193 	/*
3194 	 * Optimize away object locks for vnode objects.  Important exit/exec
3195 	 * critical path.
3196 	 *
3197 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3198 	 * anyway.
3199 	 */
3200 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3201 		vm_object_reference_quick(oobject);
3202 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3203 		return;
3204 	}
3205 
3206 #if 0
3207 	/*
3208 	 * Original object cannot be split?
3209 	 */
3210 	if (oobject->handle == NULL) {
3211 		vm_object_reference_locked_chain_held(oobject);
3212 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3213 		return;
3214 	}
3215 #endif
3216 
3217 	/*
3218 	 * Collapse original object with its backing store as an
3219 	 * optimization to reduce chain lengths when possible.
3220 	 *
3221 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3222 	 * for oobject, so there's no point collapsing it.
3223 	 *
3224 	 * Then re-check whether the object can be split.
3225 	 */
3226 	vm_object_collapse(oobject, NULL);
3227 
3228 	if (oobject->ref_count <= 1 ||
3229 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3230 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3231 		vm_object_reference_locked_chain_held(oobject);
3232 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3233 		return;
3234 	}
3235 
3236 	/*
3237 	 * Acquire the chain lock on the backing object.
3238 	 *
3239 	 * Give bobject an additional ref count for when it will be shadowed
3240 	 * by nobject.
3241 	 */
3242 	useshadowlist = 0;
3243 	if ((bobject = oobject->backing_object) != NULL) {
3244 		if (bobject->type != OBJT_VNODE) {
3245 			useshadowlist = 1;
3246 			vm_object_hold(bobject);
3247 			vm_object_chain_wait(bobject, 0);
3248 			/* ref for shadowing below */
3249 			vm_object_reference_locked(bobject);
3250 			vm_object_chain_acquire(bobject, 0);
3251 			KKASSERT(oobject->backing_object == bobject);
3252 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3253 		} else {
3254 			/*
3255 			 * vnodes are not placed on the shadow list but
3256 			 * they still get another ref for the backing_object
3257 			 * reference.
3258 			 */
3259 			vm_object_reference_quick(bobject);
3260 		}
3261 	}
3262 
3263 	/*
3264 	 * Calculate the object page range and allocate the new object.
3265 	 */
3266 	offset = entry->offset;
3267 	s = entry->start;
3268 	e = entry->end;
3269 
3270 	offidxstart = OFF_TO_IDX(offset);
3271 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3272 	size = offidxend - offidxstart;
3273 
3274 	switch(oobject->type) {
3275 	case OBJT_DEFAULT:
3276 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3277 					      VM_PROT_ALL, 0);
3278 		break;
3279 	case OBJT_SWAP:
3280 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3281 					   VM_PROT_ALL, 0);
3282 		break;
3283 	default:
3284 		/* not reached */
3285 		nobject = NULL;
3286 		KKASSERT(0);
3287 	}
3288 
3289 	/*
3290 	 * If we could not allocate nobject just clear ONEMAPPING on
3291 	 * oobject and return.
3292 	 */
3293 	if (nobject == NULL) {
3294 		if (bobject) {
3295 			if (useshadowlist) {
3296 				vm_object_chain_release(bobject);
3297 				vm_object_deallocate(bobject);
3298 				vm_object_drop(bobject);
3299 			} else {
3300 				vm_object_deallocate(bobject);
3301 			}
3302 		}
3303 		vm_object_reference_locked_chain_held(oobject);
3304 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3305 		return;
3306 	}
3307 
3308 	/*
3309 	 * The new object will replace entry->object.vm_object so it needs
3310 	 * a second reference (the caller expects an additional ref).
3311 	 */
3312 	vm_object_hold(nobject);
3313 	vm_object_reference_locked(nobject);
3314 	vm_object_chain_acquire(nobject, 0);
3315 
3316 	/*
3317 	 * nobject shadows bobject (oobject already shadows bobject).
3318 	 *
3319 	 * Adding an object to bobject's shadow list requires refing bobject
3320 	 * which we did above in the useshadowlist case.
3321 	 *
3322 	 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3323 	 *     or not.
3324 	 */
3325 	if (bobject) {
3326 		nobject->backing_object_offset =
3327 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3328 		nobject->backing_object = bobject;
3329 		if (useshadowlist) {
3330 			bobject->shadow_count++;
3331 			atomic_add_int(&bobject->generation, 1);
3332 			LIST_INSERT_HEAD(&bobject->shadow_head,
3333 					 nobject, shadow_list);
3334 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3335 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3336 		}
3337 	}
3338 
3339 	/*
3340 	 * Move the VM pages from oobject to nobject
3341 	 */
3342 	for (idx = 0; idx < size; idx++) {
3343 		vm_page_t m;
3344 
3345 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3346 					     TRUE, "vmpg");
3347 		if (m == NULL)
3348 			continue;
3349 
3350 		/*
3351 		 * We must wait for pending I/O to complete before we can
3352 		 * rename the page.
3353 		 *
3354 		 * We do not have to VM_PROT_NONE the page as mappings should
3355 		 * not be changed by this operation.
3356 		 *
3357 		 * NOTE: The act of renaming a page updates chaingen for both
3358 		 *	 objects.
3359 		 */
3360 		vm_page_rename(m, nobject, idx);
3361 		/* page automatically made dirty by rename and cache handled */
3362 		/* page remains busy */
3363 	}
3364 
3365 	if (oobject->type == OBJT_SWAP) {
3366 		vm_object_pip_add(oobject, 1);
3367 		/*
3368 		 * copy oobject pages into nobject and destroy unneeded
3369 		 * pages in shadow object.
3370 		 */
3371 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3372 		vm_object_pip_wakeup(oobject);
3373 	}
3374 
3375 	/*
3376 	 * Wakeup the pages we played with.  No spl protection is needed
3377 	 * for a simple wakeup.
3378 	 */
3379 	for (idx = 0; idx < size; idx++) {
3380 		m = vm_page_lookup(nobject, idx);
3381 		if (m) {
3382 			KKASSERT(m->busy_count & PBUSY_LOCKED);
3383 			vm_page_wakeup(m);
3384 		}
3385 	}
3386 	entry->object.vm_object = nobject;
3387 	entry->offset = 0LL;
3388 
3389 	/*
3390 	 * The map is being split and nobject is going to wind up on both
3391 	 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3392 	 * nobject.
3393 	 */
3394 	vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3395 
3396 	/*
3397 	 * Cleanup
3398 	 *
3399 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3400 	 *	 related pages were moved and are no longer applicable to the
3401 	 *	 original object.
3402 	 *
3403 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3404 	 *	 replaced by nobject).
3405 	 */
3406 	vm_object_chain_release(nobject);
3407 	vm_object_drop(nobject);
3408 	if (bobject && useshadowlist) {
3409 		vm_object_chain_release(bobject);
3410 		vm_object_drop(bobject);
3411 	}
3412 
3413 #if 0
3414 	if (oobject->resident_page_count) {
3415 		kprintf("oobject %p still contains %jd pages!\n",
3416 			oobject, (intmax_t)oobject->resident_page_count);
3417 		for (idx = 0; idx < size; idx++) {
3418 			vm_page_t m;
3419 
3420 			m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3421 						     TRUE, "vmpg");
3422 			if (m) {
3423 				kprintf("oobject %p idx %jd\n",
3424 					oobject,
3425 					offidxstart + idx);
3426 				vm_page_wakeup(m);
3427 			}
3428 		}
3429 	}
3430 #endif
3431 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3432 	vm_object_deallocate_locked(oobject);
3433 }
3434 
3435 /*
3436  * Copies the contents of the source entry to the destination
3437  * entry.  The entries *must* be aligned properly.
3438  *
3439  * The vm_maps must be exclusively locked.
3440  * The vm_map's token must be held.
3441  *
3442  * Because the maps are locked no faults can be in progress during the
3443  * operation.
3444  */
3445 static void
3446 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3447 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3448 {
3449 	vm_object_t src_object;
3450 	vm_object_t oobject;
3451 
3452 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3453 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3454 		return;
3455 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3456 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3457 		return;
3458 
3459 	if (src_entry->wired_count == 0) {
3460 		/*
3461 		 * If the source entry is marked needs_copy, it is already
3462 		 * write-protected.
3463 		 *
3464 		 * To avoid interacting with a vm_fault that might have
3465 		 * released its vm_map, we must acquire the fronting
3466 		 * object.
3467 		 */
3468 		oobject = src_entry->object.vm_object;
3469 		if (oobject) {
3470 			vm_object_hold(oobject);
3471 			vm_object_chain_acquire(oobject, 0);
3472 		}
3473 
3474 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3475 			pmap_protect(src_map->pmap,
3476 			    src_entry->start,
3477 			    src_entry->end,
3478 			    src_entry->protection & ~VM_PROT_WRITE);
3479 		}
3480 
3481 		/*
3482 		 * Make a copy of the object.
3483 		 *
3484 		 * The object must be locked prior to checking the object type
3485 		 * and for the call to vm_object_collapse() and vm_map_split().
3486 		 * We cannot use *_hold() here because the split code will
3487 		 * probably try to destroy the object.  The lock is a pool
3488 		 * token and doesn't care.
3489 		 *
3490 		 * We must bump src_map->timestamp when setting
3491 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3492 		 * to retry, otherwise the concurrent fault might improperly
3493 		 * install a RW pte when its supposed to be a RO(COW) pte.
3494 		 * This race can occur because a vnode-backed fault may have
3495 		 * to temporarily release the map lock.  This was handled
3496 		 * when the caller locked the map exclusively.
3497 		 */
3498 		if (oobject) {
3499 			vm_map_split(src_entry, oobject);
3500 
3501 			src_object = src_entry->object.vm_object;
3502 			dst_entry->object.vm_object = src_object;
3503 			src_entry->eflags |= (MAP_ENTRY_COW |
3504 					      MAP_ENTRY_NEEDS_COPY);
3505 			dst_entry->eflags |= (MAP_ENTRY_COW |
3506 					      MAP_ENTRY_NEEDS_COPY);
3507 			dst_entry->offset = src_entry->offset;
3508 		} else {
3509 			dst_entry->object.vm_object = NULL;
3510 			dst_entry->offset = 0;
3511 		}
3512 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3513 			  dst_entry->end - dst_entry->start,
3514 			  src_entry->start);
3515 		if (oobject) {
3516 			vm_object_chain_release(oobject);
3517 			vm_object_drop(oobject);
3518 		}
3519 	} else {
3520 		/*
3521 		 * Of course, wired down pages can't be set copy-on-write.
3522 		 * Cause wired pages to be copied into the new map by
3523 		 * simulating faults (the new pages are pageable)
3524 		 */
3525 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3526 	}
3527 }
3528 
3529 /*
3530  * vmspace_fork:
3531  * Create a new process vmspace structure and vm_map
3532  * based on those of an existing process.  The new map
3533  * is based on the old map, according to the inheritance
3534  * values on the regions in that map.
3535  *
3536  * The source map must not be locked.
3537  * No requirements.
3538  */
3539 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3540 			  vm_map_entry_t old_entry, int *countp);
3541 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3542 			  vm_map_entry_t old_entry, int *countp);
3543 
3544 struct vmspace *
3545 vmspace_fork(struct vmspace *vm1)
3546 {
3547 	struct vmspace *vm2;
3548 	vm_map_t old_map = &vm1->vm_map;
3549 	vm_map_t new_map;
3550 	vm_map_entry_t old_entry;
3551 	int count;
3552 
3553 	lwkt_gettoken(&vm1->vm_map.token);
3554 	vm_map_lock(old_map);
3555 
3556 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3557 	lwkt_gettoken(&vm2->vm_map.token);
3558 
3559 	/*
3560 	 * We must bump the timestamp to force any concurrent fault
3561 	 * to retry.
3562 	 */
3563 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3564 	      (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3565 	new_map = &vm2->vm_map;	/* XXX */
3566 	new_map->timestamp = 1;
3567 
3568 	vm_map_lock(new_map);
3569 
3570 	count = 0;
3571 	old_entry = old_map->header.next;
3572 	while (old_entry != &old_map->header) {
3573 		++count;
3574 		old_entry = old_entry->next;
3575 	}
3576 
3577 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3578 
3579 	old_entry = old_map->header.next;
3580 	while (old_entry != &old_map->header) {
3581 		switch(old_entry->maptype) {
3582 		case VM_MAPTYPE_SUBMAP:
3583 			panic("vm_map_fork: encountered a submap");
3584 			break;
3585 		case VM_MAPTYPE_UKSMAP:
3586 			vmspace_fork_uksmap_entry(old_map, new_map,
3587 						  old_entry, &count);
3588 			break;
3589 		case VM_MAPTYPE_NORMAL:
3590 		case VM_MAPTYPE_VPAGETABLE:
3591 			vmspace_fork_normal_entry(old_map, new_map,
3592 						  old_entry, &count);
3593 			break;
3594 		}
3595 		old_entry = old_entry->next;
3596 	}
3597 
3598 	new_map->size = old_map->size;
3599 	vm_map_unlock(old_map);
3600 	vm_map_unlock(new_map);
3601 	vm_map_entry_release(count);
3602 
3603 	lwkt_reltoken(&vm2->vm_map.token);
3604 	lwkt_reltoken(&vm1->vm_map.token);
3605 
3606 	return (vm2);
3607 }
3608 
3609 static
3610 void
3611 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3612 			  vm_map_entry_t old_entry, int *countp)
3613 {
3614 	vm_map_entry_t new_entry;
3615 	vm_object_t object;
3616 
3617 	switch (old_entry->inheritance) {
3618 	case VM_INHERIT_NONE:
3619 		break;
3620 	case VM_INHERIT_SHARE:
3621 		/*
3622 		 * Clone the entry, creating the shared object if
3623 		 * necessary.
3624 		 */
3625 		if (old_entry->object.vm_object == NULL)
3626 			vm_map_entry_allocate_object(old_entry);
3627 
3628 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3629 			/*
3630 			 * Shadow a map_entry which needs a copy,
3631 			 * replacing its object with a new object
3632 			 * that points to the old one.  Ask the
3633 			 * shadow code to automatically add an
3634 			 * additional ref.  We can't do it afterwords
3635 			 * because we might race a collapse.  The call
3636 			 * to vm_map_entry_shadow() will also clear
3637 			 * OBJ_ONEMAPPING.
3638 			 */
3639 			vm_map_entry_shadow(old_entry, 1);
3640 		} else if (old_entry->object.vm_object) {
3641 			/*
3642 			 * We will make a shared copy of the object,
3643 			 * and must clear OBJ_ONEMAPPING.
3644 			 *
3645 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3646 			 * is non-applicable but clear it anyway,
3647 			 * and its terminal so we don't have to deal
3648 			 * with chains.  Reduces SMP conflicts.
3649 			 *
3650 			 * XXX assert that object.vm_object != NULL
3651 			 *     since we allocate it above.
3652 			 */
3653 			object = old_entry->object.vm_object;
3654 			if (object->type == OBJT_VNODE) {
3655 				vm_object_reference_quick(object);
3656 				vm_object_clear_flag(object,
3657 						     OBJ_ONEMAPPING);
3658 			} else {
3659 				vm_object_hold(object);
3660 				vm_object_chain_wait(object, 0);
3661 				vm_object_reference_locked(object);
3662 				vm_object_clear_flag(object,
3663 						     OBJ_ONEMAPPING);
3664 				vm_object_drop(object);
3665 			}
3666 		}
3667 
3668 		/*
3669 		 * Clone the entry.  We've already bumped the ref on
3670 		 * any vm_object.
3671 		 */
3672 		new_entry = vm_map_entry_create(new_map, countp);
3673 		*new_entry = *old_entry;
3674 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3675 		new_entry->wired_count = 0;
3676 
3677 		/*
3678 		 * Insert the entry into the new map -- we know we're
3679 		 * inserting at the end of the new map.
3680 		 */
3681 		vm_map_entry_link(new_map, new_map->header.prev,
3682 				  new_entry);
3683 
3684 		/*
3685 		 * Update the physical map
3686 		 */
3687 		pmap_copy(new_map->pmap, old_map->pmap,
3688 			  new_entry->start,
3689 			  (old_entry->end - old_entry->start),
3690 			  old_entry->start);
3691 		break;
3692 	case VM_INHERIT_COPY:
3693 		/*
3694 		 * Clone the entry and link into the map.
3695 		 */
3696 		new_entry = vm_map_entry_create(new_map, countp);
3697 		*new_entry = *old_entry;
3698 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3699 		new_entry->wired_count = 0;
3700 		new_entry->object.vm_object = NULL;
3701 		vm_map_entry_link(new_map, new_map->header.prev,
3702 				  new_entry);
3703 		vm_map_copy_entry(old_map, new_map, old_entry,
3704 				  new_entry);
3705 		break;
3706 	}
3707 }
3708 
3709 /*
3710  * When forking user-kernel shared maps, the map might change in the
3711  * child so do not try to copy the underlying pmap entries.
3712  */
3713 static
3714 void
3715 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3716 			  vm_map_entry_t old_entry, int *countp)
3717 {
3718 	vm_map_entry_t new_entry;
3719 
3720 	new_entry = vm_map_entry_create(new_map, countp);
3721 	*new_entry = *old_entry;
3722 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3723 	new_entry->wired_count = 0;
3724 	vm_map_entry_link(new_map, new_map->header.prev,
3725 			  new_entry);
3726 }
3727 
3728 /*
3729  * Create an auto-grow stack entry
3730  *
3731  * No requirements.
3732  */
3733 int
3734 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3735 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3736 {
3737 	vm_map_entry_t	prev_entry;
3738 	vm_map_entry_t	new_stack_entry;
3739 	vm_size_t	init_ssize;
3740 	int		rv;
3741 	int		count;
3742 	vm_offset_t	tmpaddr;
3743 
3744 	cow |= MAP_IS_STACK;
3745 
3746 	if (max_ssize < sgrowsiz)
3747 		init_ssize = max_ssize;
3748 	else
3749 		init_ssize = sgrowsiz;
3750 
3751 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3752 	vm_map_lock(map);
3753 
3754 	/*
3755 	 * Find space for the mapping
3756 	 */
3757 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3758 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3759 				     flags, &tmpaddr)) {
3760 			vm_map_unlock(map);
3761 			vm_map_entry_release(count);
3762 			return (KERN_NO_SPACE);
3763 		}
3764 		addrbos = tmpaddr;
3765 	}
3766 
3767 	/* If addr is already mapped, no go */
3768 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3769 		vm_map_unlock(map);
3770 		vm_map_entry_release(count);
3771 		return (KERN_NO_SPACE);
3772 	}
3773 
3774 #if 0
3775 	/* XXX already handled by kern_mmap() */
3776 	/* If we would blow our VMEM resource limit, no go */
3777 	if (map->size + init_ssize >
3778 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3779 		vm_map_unlock(map);
3780 		vm_map_entry_release(count);
3781 		return (KERN_NO_SPACE);
3782 	}
3783 #endif
3784 
3785 	/*
3786 	 * If we can't accomodate max_ssize in the current mapping,
3787 	 * no go.  However, we need to be aware that subsequent user
3788 	 * mappings might map into the space we have reserved for
3789 	 * stack, and currently this space is not protected.
3790 	 *
3791 	 * Hopefully we will at least detect this condition
3792 	 * when we try to grow the stack.
3793 	 */
3794 	if ((prev_entry->next != &map->header) &&
3795 	    (prev_entry->next->start < addrbos + max_ssize)) {
3796 		vm_map_unlock(map);
3797 		vm_map_entry_release(count);
3798 		return (KERN_NO_SPACE);
3799 	}
3800 
3801 	/*
3802 	 * We initially map a stack of only init_ssize.  We will
3803 	 * grow as needed later.  Since this is to be a grow
3804 	 * down stack, we map at the top of the range.
3805 	 *
3806 	 * Note: we would normally expect prot and max to be
3807 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3808 	 * eliminate these as input parameters, and just
3809 	 * pass these values here in the insert call.
3810 	 */
3811 	rv = vm_map_insert(map, &count, NULL, NULL,
3812 			   0, addrbos + max_ssize - init_ssize,
3813 	                   addrbos + max_ssize,
3814 			   VM_MAPTYPE_NORMAL,
3815 			   VM_SUBSYS_STACK, prot, max, cow);
3816 
3817 	/* Now set the avail_ssize amount */
3818 	if (rv == KERN_SUCCESS) {
3819 		if (prev_entry != &map->header)
3820 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3821 		new_stack_entry = prev_entry->next;
3822 		if (new_stack_entry->end   != addrbos + max_ssize ||
3823 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3824 			panic ("Bad entry start/end for new stack entry");
3825 		else
3826 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3827 	}
3828 
3829 	vm_map_unlock(map);
3830 	vm_map_entry_release(count);
3831 	return (rv);
3832 }
3833 
3834 /*
3835  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3836  * desired address is already mapped, or if we successfully grow
3837  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3838  * stack range (this is strange, but preserves compatibility with
3839  * the grow function in vm_machdep.c).
3840  *
3841  * No requirements.
3842  */
3843 int
3844 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3845 {
3846 	vm_map_entry_t prev_entry;
3847 	vm_map_entry_t stack_entry;
3848 	vm_map_entry_t new_stack_entry;
3849 	struct vmspace *vm;
3850 	struct lwp *lp;
3851 	struct proc *p;
3852 	vm_offset_t    end;
3853 	int grow_amount;
3854 	int rv = KERN_SUCCESS;
3855 	int is_procstack;
3856 	int use_read_lock = 1;
3857 	int count;
3858 
3859 	/*
3860 	 * Find the vm
3861 	 */
3862 	lp = curthread->td_lwp;
3863 	p = curthread->td_proc;
3864 	KKASSERT(lp != NULL);
3865 	vm = lp->lwp_vmspace;
3866 
3867 	/*
3868 	 * Growstack is only allowed on the current process.  We disallow
3869 	 * other use cases, e.g. trying to access memory via procfs that
3870 	 * the stack hasn't grown into.
3871 	 */
3872 	if (map != &vm->vm_map) {
3873 		return KERN_FAILURE;
3874 	}
3875 
3876 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3877 Retry:
3878 	if (use_read_lock)
3879 		vm_map_lock_read(map);
3880 	else
3881 		vm_map_lock(map);
3882 
3883 	/* If addr is already in the entry range, no need to grow.*/
3884 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3885 		goto done;
3886 
3887 	if ((stack_entry = prev_entry->next) == &map->header)
3888 		goto done;
3889 	if (prev_entry == &map->header)
3890 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3891 	else
3892 		end = prev_entry->end;
3893 
3894 	/*
3895 	 * This next test mimics the old grow function in vm_machdep.c.
3896 	 * It really doesn't quite make sense, but we do it anyway
3897 	 * for compatibility.
3898 	 *
3899 	 * If not growable stack, return success.  This signals the
3900 	 * caller to proceed as he would normally with normal vm.
3901 	 */
3902 	if (stack_entry->aux.avail_ssize < 1 ||
3903 	    addr >= stack_entry->start ||
3904 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3905 		goto done;
3906 	}
3907 
3908 	/* Find the minimum grow amount */
3909 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3910 	if (grow_amount > stack_entry->aux.avail_ssize) {
3911 		rv = KERN_NO_SPACE;
3912 		goto done;
3913 	}
3914 
3915 	/*
3916 	 * If there is no longer enough space between the entries
3917 	 * nogo, and adjust the available space.  Note: this
3918 	 * should only happen if the user has mapped into the
3919 	 * stack area after the stack was created, and is
3920 	 * probably an error.
3921 	 *
3922 	 * This also effectively destroys any guard page the user
3923 	 * might have intended by limiting the stack size.
3924 	 */
3925 	if (grow_amount > stack_entry->start - end) {
3926 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3927 			/* lost lock */
3928 			use_read_lock = 0;
3929 			goto Retry;
3930 		}
3931 		use_read_lock = 0;
3932 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3933 		rv = KERN_NO_SPACE;
3934 		goto done;
3935 	}
3936 
3937 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3938 
3939 	/* If this is the main process stack, see if we're over the
3940 	 * stack limit.
3941 	 */
3942 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3943 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3944 		rv = KERN_NO_SPACE;
3945 		goto done;
3946 	}
3947 
3948 	/* Round up the grow amount modulo SGROWSIZ */
3949 	grow_amount = roundup (grow_amount, sgrowsiz);
3950 	if (grow_amount > stack_entry->aux.avail_ssize) {
3951 		grow_amount = stack_entry->aux.avail_ssize;
3952 	}
3953 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3954 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3955 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3956 		              ctob(vm->vm_ssize);
3957 	}
3958 
3959 	/* If we would blow our VMEM resource limit, no go */
3960 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3961 		rv = KERN_NO_SPACE;
3962 		goto done;
3963 	}
3964 
3965 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3966 		/* lost lock */
3967 		use_read_lock = 0;
3968 		goto Retry;
3969 	}
3970 	use_read_lock = 0;
3971 
3972 	/* Get the preliminary new entry start value */
3973 	addr = stack_entry->start - grow_amount;
3974 
3975 	/* If this puts us into the previous entry, cut back our growth
3976 	 * to the available space.  Also, see the note above.
3977 	 */
3978 	if (addr < end) {
3979 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3980 		addr = end;
3981 	}
3982 
3983 	rv = vm_map_insert(map, &count, NULL, NULL,
3984 			   0, addr, stack_entry->start,
3985 			   VM_MAPTYPE_NORMAL,
3986 			   VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3987 
3988 	/* Adjust the available stack space by the amount we grew. */
3989 	if (rv == KERN_SUCCESS) {
3990 		if (prev_entry != &map->header)
3991 			vm_map_clip_end(map, prev_entry, addr, &count);
3992 		new_stack_entry = prev_entry->next;
3993 		if (new_stack_entry->end   != stack_entry->start  ||
3994 		    new_stack_entry->start != addr)
3995 			panic ("Bad stack grow start/end in new stack entry");
3996 		else {
3997 			new_stack_entry->aux.avail_ssize =
3998 				stack_entry->aux.avail_ssize -
3999 				(new_stack_entry->end - new_stack_entry->start);
4000 			if (is_procstack)
4001 				vm->vm_ssize += btoc(new_stack_entry->end -
4002 						     new_stack_entry->start);
4003 		}
4004 
4005 		if (map->flags & MAP_WIREFUTURE)
4006 			vm_map_unwire(map, new_stack_entry->start,
4007 				      new_stack_entry->end, FALSE);
4008 	}
4009 
4010 done:
4011 	if (use_read_lock)
4012 		vm_map_unlock_read(map);
4013 	else
4014 		vm_map_unlock(map);
4015 	vm_map_entry_release(count);
4016 	return (rv);
4017 }
4018 
4019 /*
4020  * Unshare the specified VM space for exec.  If other processes are
4021  * mapped to it, then create a new one.  The new vmspace is null.
4022  *
4023  * No requirements.
4024  */
4025 void
4026 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4027 {
4028 	struct vmspace *oldvmspace = p->p_vmspace;
4029 	struct vmspace *newvmspace;
4030 	vm_map_t map = &p->p_vmspace->vm_map;
4031 
4032 	/*
4033 	 * If we are execing a resident vmspace we fork it, otherwise
4034 	 * we create a new vmspace.  Note that exitingcnt is not
4035 	 * copied to the new vmspace.
4036 	 */
4037 	lwkt_gettoken(&oldvmspace->vm_map.token);
4038 	if (vmcopy)  {
4039 		newvmspace = vmspace_fork(vmcopy);
4040 		lwkt_gettoken(&newvmspace->vm_map.token);
4041 	} else {
4042 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
4043 		lwkt_gettoken(&newvmspace->vm_map.token);
4044 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4045 		      (caddr_t)&oldvmspace->vm_endcopy -
4046 		       (caddr_t)&oldvmspace->vm_startcopy);
4047 	}
4048 
4049 	/*
4050 	 * Finish initializing the vmspace before assigning it
4051 	 * to the process.  The vmspace will become the current vmspace
4052 	 * if p == curproc.
4053 	 */
4054 	pmap_pinit2(vmspace_pmap(newvmspace));
4055 	pmap_replacevm(p, newvmspace, 0);
4056 	lwkt_reltoken(&newvmspace->vm_map.token);
4057 	lwkt_reltoken(&oldvmspace->vm_map.token);
4058 	vmspace_rel(oldvmspace);
4059 }
4060 
4061 /*
4062  * Unshare the specified VM space for forcing COW.  This
4063  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4064  */
4065 void
4066 vmspace_unshare(struct proc *p)
4067 {
4068 	struct vmspace *oldvmspace = p->p_vmspace;
4069 	struct vmspace *newvmspace;
4070 
4071 	lwkt_gettoken(&oldvmspace->vm_map.token);
4072 	if (vmspace_getrefs(oldvmspace) == 1) {
4073 		lwkt_reltoken(&oldvmspace->vm_map.token);
4074 		return;
4075 	}
4076 	newvmspace = vmspace_fork(oldvmspace);
4077 	lwkt_gettoken(&newvmspace->vm_map.token);
4078 	pmap_pinit2(vmspace_pmap(newvmspace));
4079 	pmap_replacevm(p, newvmspace, 0);
4080 	lwkt_reltoken(&newvmspace->vm_map.token);
4081 	lwkt_reltoken(&oldvmspace->vm_map.token);
4082 	vmspace_rel(oldvmspace);
4083 }
4084 
4085 /*
4086  * vm_map_hint: return the beginning of the best area suitable for
4087  * creating a new mapping with "prot" protection.
4088  *
4089  * No requirements.
4090  */
4091 vm_offset_t
4092 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4093 {
4094 	struct vmspace *vms = p->p_vmspace;
4095 
4096 	if (!randomize_mmap || addr != 0) {
4097 		/*
4098 		 * Set a reasonable start point for the hint if it was
4099 		 * not specified or if it falls within the heap space.
4100 		 * Hinted mmap()s do not allocate out of the heap space.
4101 		 */
4102 		if (addr == 0 ||
4103 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4104 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
4105 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
4106 		}
4107 
4108 		return addr;
4109 	}
4110 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
4111 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
4112 
4113 	return (round_page(addr));
4114 }
4115 
4116 /*
4117  * Finds the VM object, offset, and protection for a given virtual address
4118  * in the specified map, assuming a page fault of the type specified.
4119  *
4120  * Leaves the map in question locked for read; return values are guaranteed
4121  * until a vm_map_lookup_done call is performed.  Note that the map argument
4122  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4123  *
4124  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4125  * that fast.
4126  *
4127  * If a lookup is requested with "write protection" specified, the map may
4128  * be changed to perform virtual copying operations, although the data
4129  * referenced will remain the same.
4130  *
4131  * No requirements.
4132  */
4133 int
4134 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4135 	      vm_offset_t vaddr,
4136 	      vm_prot_t fault_typea,
4137 	      vm_map_entry_t *out_entry,	/* OUT */
4138 	      vm_object_t *object,		/* OUT */
4139 	      vm_pindex_t *pindex,		/* OUT */
4140 	      vm_prot_t *out_prot,		/* OUT */
4141 	      int *wflags)			/* OUT */
4142 {
4143 	vm_map_entry_t entry;
4144 	vm_map_t map = *var_map;
4145 	vm_prot_t prot;
4146 	vm_prot_t fault_type = fault_typea;
4147 	int use_read_lock = 1;
4148 	int rv = KERN_SUCCESS;
4149 	int count;
4150 	thread_t td = curthread;
4151 
4152 	/*
4153 	 * vm_map_entry_reserve() implements an important mitigation
4154 	 * against mmap() span running the kernel out of vm_map_entry
4155 	 * structures, but it can also cause an infinite call recursion.
4156 	 * Use td_nest_count to prevent an infinite recursion (allows
4157 	 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4158 	 */
4159 	count = 0;
4160 	if (td->td_nest_count == 0) {
4161 		++td->td_nest_count;
4162 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4163 		--td->td_nest_count;
4164 	}
4165 RetryLookup:
4166 	if (use_read_lock)
4167 		vm_map_lock_read(map);
4168 	else
4169 		vm_map_lock(map);
4170 
4171 	/*
4172 	 * Always do a full lookup.  The hint doesn't get us much anymore
4173 	 * now that the map is RB'd.
4174 	 */
4175 	cpu_ccfence();
4176 	*out_entry = &map->header;
4177 	*object = NULL;
4178 
4179 	{
4180 		vm_map_entry_t tmp_entry;
4181 
4182 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4183 			rv = KERN_INVALID_ADDRESS;
4184 			goto done;
4185 		}
4186 		entry = tmp_entry;
4187 		*out_entry = entry;
4188 	}
4189 
4190 	/*
4191 	 * Handle submaps.
4192 	 */
4193 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4194 		vm_map_t old_map = map;
4195 
4196 		*var_map = map = entry->object.sub_map;
4197 		if (use_read_lock)
4198 			vm_map_unlock_read(old_map);
4199 		else
4200 			vm_map_unlock(old_map);
4201 		use_read_lock = 1;
4202 		goto RetryLookup;
4203 	}
4204 
4205 	/*
4206 	 * Check whether this task is allowed to have this page.
4207 	 * Note the special case for MAP_ENTRY_COW pages with an override.
4208 	 * This is to implement a forced COW for debuggers.
4209 	 */
4210 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4211 		prot = entry->max_protection;
4212 	else
4213 		prot = entry->protection;
4214 
4215 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4216 	if ((fault_type & prot) != fault_type) {
4217 		rv = KERN_PROTECTION_FAILURE;
4218 		goto done;
4219 	}
4220 
4221 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4222 	    (entry->eflags & MAP_ENTRY_COW) &&
4223 	    (fault_type & VM_PROT_WRITE) &&
4224 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4225 		rv = KERN_PROTECTION_FAILURE;
4226 		goto done;
4227 	}
4228 
4229 	/*
4230 	 * If this page is not pageable, we have to get it for all possible
4231 	 * accesses.
4232 	 */
4233 	*wflags = 0;
4234 	if (entry->wired_count) {
4235 		*wflags |= FW_WIRED;
4236 		prot = fault_type = entry->protection;
4237 	}
4238 
4239 	/*
4240 	 * Virtual page tables may need to update the accessed (A) bit
4241 	 * in a page table entry.  Upgrade the fault to a write fault for
4242 	 * that case if the map will support it.  If the map does not support
4243 	 * it the page table entry simply will not be updated.
4244 	 */
4245 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4246 		if (prot & VM_PROT_WRITE)
4247 			fault_type |= VM_PROT_WRITE;
4248 	}
4249 
4250 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4251 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4252 		if ((prot & VM_PROT_WRITE) == 0)
4253 			fault_type |= VM_PROT_WRITE;
4254 	}
4255 
4256 	/*
4257 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4258 	 */
4259 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4260 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4261 		*object = NULL;
4262 		goto skip;
4263 	}
4264 
4265 	/*
4266 	 * If the entry was copy-on-write, we either ...
4267 	 */
4268 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4269 		/*
4270 		 * If we want to write the page, we may as well handle that
4271 		 * now since we've got the map locked.
4272 		 *
4273 		 * If we don't need to write the page, we just demote the
4274 		 * permissions allowed.
4275 		 */
4276 		if (fault_type & VM_PROT_WRITE) {
4277 			/*
4278 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4279 			 * operation can deadlock against the faulting
4280 			 * function due to the copy-on-write.
4281 			 */
4282 			if (curthread->td_flags & TDF_NOFAULT) {
4283 				rv = KERN_FAILURE_NOFAULT;
4284 				goto done;
4285 			}
4286 
4287 			/*
4288 			 * Make a new object, and place it in the object
4289 			 * chain.  Note that no new references have appeared
4290 			 * -- one just moved from the map to the new
4291 			 * object.
4292 			 */
4293 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4294 				/* lost lock */
4295 				use_read_lock = 0;
4296 				goto RetryLookup;
4297 			}
4298 			use_read_lock = 0;
4299 			vm_map_entry_shadow(entry, 0);
4300 			*wflags |= FW_DIDCOW;
4301 		} else {
4302 			/*
4303 			 * We're attempting to read a copy-on-write page --
4304 			 * don't allow writes.
4305 			 */
4306 			prot &= ~VM_PROT_WRITE;
4307 		}
4308 	}
4309 
4310 	/*
4311 	 * Create an object if necessary.  This code also handles
4312 	 * partitioning large entries to improve vm_fault performance.
4313 	 */
4314 	if (entry->object.vm_object == NULL && !map->system_map) {
4315 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4316 			/* lost lock */
4317 			use_read_lock = 0;
4318 			goto RetryLookup;
4319 		}
4320 		use_read_lock = 0;
4321 
4322 		/*
4323 		 * Partition large entries, giving each its own VM object,
4324 		 * to improve concurrent fault performance.  This is only
4325 		 * applicable to userspace.
4326 		 */
4327 		if (map != &kernel_map &&
4328 		    entry->maptype == VM_MAPTYPE_NORMAL &&
4329 		    ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4330 		    vm_map_partition_enable) {
4331 			if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4332 				entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4333 				++mycpu->gd_cnt.v_intrans_coll;
4334 				++mycpu->gd_cnt.v_intrans_wait;
4335 				vm_map_transition_wait(map, 0);
4336 				goto RetryLookup;
4337 			}
4338 			vm_map_entry_partition(map, entry, vaddr, &count);
4339 		}
4340 		vm_map_entry_allocate_object(entry);
4341 	}
4342 
4343 	/*
4344 	 * Return the object/offset from this entry.  If the entry was
4345 	 * copy-on-write or empty, it has been fixed up.
4346 	 */
4347 	*object = entry->object.vm_object;
4348 
4349 skip:
4350 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4351 
4352 	/*
4353 	 * Return whether this is the only map sharing this data.  On
4354 	 * success we return with a read lock held on the map.  On failure
4355 	 * we return with the map unlocked.
4356 	 */
4357 	*out_prot = prot;
4358 done:
4359 	if (rv == KERN_SUCCESS) {
4360 		if (use_read_lock == 0)
4361 			vm_map_lock_downgrade(map);
4362 	} else if (use_read_lock) {
4363 		vm_map_unlock_read(map);
4364 	} else {
4365 		vm_map_unlock(map);
4366 	}
4367 	if (count > 0)
4368 		vm_map_entry_release(count);
4369 
4370 	return (rv);
4371 }
4372 
4373 /*
4374  * Releases locks acquired by a vm_map_lookup()
4375  * (according to the handle returned by that lookup).
4376  *
4377  * No other requirements.
4378  */
4379 void
4380 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4381 {
4382 	/*
4383 	 * Unlock the main-level map
4384 	 */
4385 	vm_map_unlock_read(map);
4386 	if (count)
4387 		vm_map_entry_release(count);
4388 }
4389 
4390 static void
4391 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4392 		       vm_offset_t vaddr, int *countp)
4393 {
4394 	vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4395 	vm_map_clip_start(map, entry, vaddr, countp);
4396 	vaddr += MAP_ENTRY_PARTITION_SIZE;
4397 	vm_map_clip_end(map, entry, vaddr, countp);
4398 }
4399 
4400 /*
4401  * Quick hack, needs some help to make it more SMP friendly.
4402  */
4403 void
4404 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4405 		 vm_offset_t ran_beg, vm_offset_t ran_end)
4406 {
4407 	struct vm_map_ilock *scan;
4408 
4409 	ilock->ran_beg = ran_beg;
4410 	ilock->ran_end = ran_end;
4411 	ilock->flags = 0;
4412 
4413 	spin_lock(&map->ilock_spin);
4414 restart:
4415 	for (scan = map->ilock_base; scan; scan = scan->next) {
4416 		if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4417 			scan->flags |= ILOCK_WAITING;
4418 			ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4419 			goto restart;
4420 		}
4421 	}
4422 	ilock->next = map->ilock_base;
4423 	map->ilock_base = ilock;
4424 	spin_unlock(&map->ilock_spin);
4425 }
4426 
4427 void
4428 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4429 {
4430 	struct vm_map_ilock *scan;
4431 	struct vm_map_ilock **scanp;
4432 
4433 	spin_lock(&map->ilock_spin);
4434 	scanp = &map->ilock_base;
4435 	while ((scan = *scanp) != NULL) {
4436 		if (scan == ilock) {
4437 			*scanp = ilock->next;
4438 			spin_unlock(&map->ilock_spin);
4439 			if (ilock->flags & ILOCK_WAITING)
4440 				wakeup(ilock);
4441 			return;
4442 		}
4443 		scanp = &scan->next;
4444 	}
4445 	spin_unlock(&map->ilock_spin);
4446 	panic("vm_map_deinterlock: missing ilock!");
4447 }
4448 
4449 #include "opt_ddb.h"
4450 #ifdef DDB
4451 #include <ddb/ddb.h>
4452 
4453 /*
4454  * Debugging only
4455  */
4456 DB_SHOW_COMMAND(map, vm_map_print)
4457 {
4458 	static int nlines;
4459 	/* XXX convert args. */
4460 	vm_map_t map = (vm_map_t)addr;
4461 	boolean_t full = have_addr;
4462 
4463 	vm_map_entry_t entry;
4464 
4465 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4466 	    (void *)map,
4467 	    (void *)map->pmap, map->nentries, map->timestamp);
4468 	nlines++;
4469 
4470 	if (!full && db_indent)
4471 		return;
4472 
4473 	db_indent += 2;
4474 	for (entry = map->header.next; entry != &map->header;
4475 	    entry = entry->next) {
4476 		db_iprintf("map entry %p: start=%p, end=%p\n",
4477 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4478 		nlines++;
4479 		{
4480 			static char *inheritance_name[4] =
4481 			{"share", "copy", "none", "donate_copy"};
4482 
4483 			db_iprintf(" prot=%x/%x/%s",
4484 			    entry->protection,
4485 			    entry->max_protection,
4486 			    inheritance_name[(int)(unsigned char)
4487 						entry->inheritance]);
4488 			if (entry->wired_count != 0)
4489 				db_printf(", wired");
4490 		}
4491 		switch(entry->maptype) {
4492 		case VM_MAPTYPE_SUBMAP:
4493 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4494 			db_printf(", share=%p, offset=0x%lx\n",
4495 			    (void *)entry->object.sub_map,
4496 			    (long)entry->offset);
4497 			nlines++;
4498 			if ((entry->prev == &map->header) ||
4499 			    (entry->prev->object.sub_map !=
4500 				entry->object.sub_map)) {
4501 				db_indent += 2;
4502 				vm_map_print((db_expr_t)(intptr_t)
4503 					     entry->object.sub_map,
4504 					     full, 0, NULL);
4505 				db_indent -= 2;
4506 			}
4507 			break;
4508 		case VM_MAPTYPE_NORMAL:
4509 		case VM_MAPTYPE_VPAGETABLE:
4510 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4511 			db_printf(", object=%p, offset=0x%lx",
4512 			    (void *)entry->object.vm_object,
4513 			    (long)entry->offset);
4514 			if (entry->eflags & MAP_ENTRY_COW)
4515 				db_printf(", copy (%s)",
4516 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4517 			db_printf("\n");
4518 			nlines++;
4519 
4520 			if ((entry->prev == &map->header) ||
4521 			    (entry->prev->object.vm_object !=
4522 				entry->object.vm_object)) {
4523 				db_indent += 2;
4524 				vm_object_print((db_expr_t)(intptr_t)
4525 						entry->object.vm_object,
4526 						full, 0, NULL);
4527 				nlines += 4;
4528 				db_indent -= 2;
4529 			}
4530 			break;
4531 		case VM_MAPTYPE_UKSMAP:
4532 			db_printf(", uksmap=%p, offset=0x%lx",
4533 			    (void *)entry->object.uksmap,
4534 			    (long)entry->offset);
4535 			if (entry->eflags & MAP_ENTRY_COW)
4536 				db_printf(", copy (%s)",
4537 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4538 			db_printf("\n");
4539 			nlines++;
4540 			break;
4541 		default:
4542 			break;
4543 		}
4544 	}
4545 	db_indent -= 2;
4546 	if (db_indent == 0)
4547 		nlines = 0;
4548 }
4549 
4550 /*
4551  * Debugging only
4552  */
4553 DB_SHOW_COMMAND(procvm, procvm)
4554 {
4555 	struct proc *p;
4556 
4557 	if (have_addr) {
4558 		p = (struct proc *) addr;
4559 	} else {
4560 		p = curproc;
4561 	}
4562 
4563 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4564 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4565 	    (void *)vmspace_pmap(p->p_vmspace));
4566 
4567 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4568 }
4569 
4570 #endif /* DDB */
4571