xref: /dragonfly/sys/vm/vm_map.c (revision e8c03636)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64 
65 /*
66  *	Virtual memory mapping module.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 #include <sys/sysref2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99 
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static void vmspace_terminate(struct vmspace *vm);
118 static void vmspace_lock(struct vmspace *vm);
119 static void vmspace_unlock(struct vmspace *vm);
120 static void vmspace_dtor(void *obj, void *private);
121 
122 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
123 
124 struct sysref_class vmspace_sysref_class = {
125 	.name =		"vmspace",
126 	.mtype =	M_VMSPACE,
127 	.proto =	SYSREF_PROTO_VMSPACE,
128 	.offset =	offsetof(struct vmspace, vm_sysref),
129 	.objsize =	sizeof(struct vmspace),
130 	.nom_cache =	32,
131 	.flags = SRC_MANAGEDINIT,
132 	.dtor = vmspace_dtor,
133 	.ops = {
134 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
135 		.lock = (sysref_lock_func_t)vmspace_lock,
136 		.unlock = (sysref_lock_func_t)vmspace_unlock
137 	}
138 };
139 
140 /*
141  * per-cpu page table cross mappings are initialized in early boot
142  * and might require a considerable number of vm_map_entry structures.
143  */
144 #define VMEPERCPU	(MAXCPU+1)
145 
146 static struct vm_zone mapentzone_store, mapzone_store;
147 static vm_zone_t mapentzone, mapzone;
148 static struct vm_object mapentobj, mapobj;
149 
150 static struct vm_map_entry map_entry_init[MAX_MAPENT];
151 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
152 static struct vm_map map_init[MAX_KMAP];
153 
154 static int randomize_mmap;
155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
156     "Randomize mmap offsets");
157 static int vm_map_relock_enable = 1;
158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
159 	   &vm_map_relock_enable, 0, "Randomize mmap offsets");
160 
161 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
162 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
163 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
164 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
165 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
166 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
167 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
168 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
169 		vm_map_entry_t);
170 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
171 
172 /*
173  * Initialize the vm_map module.  Must be called before any other vm_map
174  * routines.
175  *
176  * Map and entry structures are allocated from the general purpose
177  * memory pool with some exceptions:
178  *
179  *	- The kernel map is allocated statically.
180  *	- Initial kernel map entries are allocated out of a static pool.
181  *
182  *	These restrictions are necessary since malloc() uses the
183  *	maps and requires map entries.
184  *
185  * Called from the low level boot code only.
186  */
187 void
188 vm_map_startup(void)
189 {
190 	mapzone = &mapzone_store;
191 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
192 		map_init, MAX_KMAP);
193 	mapentzone = &mapentzone_store;
194 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
195 		map_entry_init, MAX_MAPENT);
196 }
197 
198 /*
199  * Called prior to any vmspace allocations.
200  *
201  * Called from the low level boot code only.
202  */
203 void
204 vm_init2(void)
205 {
206 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
207 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
208 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
209 	pmap_init2();
210 	vm_object_init2();
211 }
212 
213 
214 /*
215  * Red black tree functions
216  *
217  * The caller must hold the related map lock.
218  */
219 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
220 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
221 
222 /* a->start is address, and the only field has to be initialized */
223 static int
224 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
225 {
226 	if (a->start < b->start)
227 		return(-1);
228 	else if (a->start > b->start)
229 		return(1);
230 	return(0);
231 }
232 
233 /*
234  * Allocate a vmspace structure, including a vm_map and pmap.
235  * Initialize numerous fields.  While the initial allocation is zerod,
236  * subsequence reuse from the objcache leaves elements of the structure
237  * intact (particularly the pmap), so portions must be zerod.
238  *
239  * The structure is not considered activated until we call sysref_activate().
240  *
241  * No requirements.
242  */
243 struct vmspace *
244 vmspace_alloc(vm_offset_t min, vm_offset_t max)
245 {
246 	struct vmspace *vm;
247 
248 	vm = sysref_alloc(&vmspace_sysref_class);
249 	bzero(&vm->vm_startcopy,
250 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
251 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
252 
253 	/*
254 	 * Use a hold to prevent any additional racing hold from terminating
255 	 * the vmspace before we manage to activate it.  This also acquires
256 	 * the token for safety.
257 	 */
258 	KKASSERT(vm->vm_holdcount == 0);
259 	KKASSERT(vm->vm_exitingcnt == 0);
260 	vmspace_hold(vm);
261 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
262 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
263 	vm->vm_shm = NULL;
264 	vm->vm_flags = 0;
265 	cpu_vmspace_alloc(vm);
266 	sysref_activate(&vm->vm_sysref);
267 	vmspace_drop(vm);
268 
269 	return (vm);
270 }
271 
272 /*
273  * Free a primary reference to a vmspace.  This can trigger a
274  * stage-1 termination.
275  */
276 void
277 vmspace_free(struct vmspace *vm)
278 {
279 	/*
280 	 * We want all finalization to occur via vmspace_drop() so we
281 	 * need to hold the vm around the put.
282 	 */
283 	vmspace_hold(vm);
284 	sysref_put(&vm->vm_sysref);
285 	vmspace_drop(vm);
286 }
287 
288 void
289 vmspace_ref(struct vmspace *vm)
290 {
291 	sysref_get(&vm->vm_sysref);
292 }
293 
294 void
295 vmspace_hold(struct vmspace *vm)
296 {
297 	refcount_acquire(&vm->vm_holdcount);
298 	lwkt_gettoken(&vm->vm_map.token);
299 }
300 
301 void
302 vmspace_drop(struct vmspace *vm)
303 {
304 	lwkt_reltoken(&vm->vm_map.token);
305 	if (refcount_release(&vm->vm_holdcount)) {
306 		if (vm->vm_exitingcnt == 0 &&
307 		    sysref_isinactive(&vm->vm_sysref)) {
308 			vmspace_terminate(vm);
309 		}
310 	}
311 }
312 
313 /*
314  * dtor function - Some elements of the pmap are retained in the
315  * free-cached vmspaces to improve performance.  We have to clean them up
316  * here before returning the vmspace to the memory pool.
317  *
318  * No requirements.
319  */
320 static void
321 vmspace_dtor(void *obj, void *private)
322 {
323 	struct vmspace *vm = obj;
324 
325 	pmap_puninit(vmspace_pmap(vm));
326 }
327 
328 /*
329  * Called in three cases:
330  *
331  * (1) When the last sysref is dropped and the vmspace becomes inactive.
332  *     (holdcount will not be 0 because the vmspace is held through the op)
333  *
334  * (2) When exitingcount becomes 0 on the last reap
335  *     (holdcount will not be 0 because the vmspace is held through the op)
336  *
337  * (3) When the holdcount becomes 0 in addition to the above two
338  *
339  * sysref will not scrap the object until we call sysref_put() once more
340  * after the last ref has been dropped.
341  *
342  * VMSPACE_EXIT1 flags the primary deactivation
343  * VMSPACE_EXIT2 flags the last reap
344  */
345 static void
346 vmspace_terminate(struct vmspace *vm)
347 {
348 	int count;
349 
350 	/*
351 	 *
352 	 */
353 	lwkt_gettoken(&vm->vm_map.token);
354 	if ((vm->vm_flags & VMSPACE_EXIT1) == 0) {
355 		vm->vm_flags |= VMSPACE_EXIT1;
356 		shmexit(vm);
357 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
358 				  VM_MAX_USER_ADDRESS);
359 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
360 			      VM_MAX_USER_ADDRESS);
361 	}
362 	if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) {
363 		vm->vm_flags |= VMSPACE_EXIT2;
364 		cpu_vmspace_free(vm);
365 		shmexit(vm);
366 
367 		/*
368 		 * Lock the map, to wait out all other references to it.
369 		 * Delete all of the mappings and pages they hold, then call
370 		 * the pmap module to reclaim anything left.
371 		 */
372 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
373 		vm_map_lock(&vm->vm_map);
374 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
375 			      vm->vm_map.max_offset, &count);
376 		vm_map_unlock(&vm->vm_map);
377 		vm_map_entry_release(count);
378 
379 		lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
380 		pmap_release(vmspace_pmap(vm));
381 		lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
382 	}
383 
384 	lwkt_reltoken(&vm->vm_map.token);
385 	if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) {
386 		KKASSERT(vm->vm_flags & VMSPACE_EXIT1);
387 		KKASSERT(vm->vm_flags & VMSPACE_EXIT2);
388 		sysref_put(&vm->vm_sysref);
389 	}
390 }
391 
392 /*
393  * vmspaces are not currently locked.
394  */
395 static void
396 vmspace_lock(struct vmspace *vm __unused)
397 {
398 }
399 
400 static void
401 vmspace_unlock(struct vmspace *vm __unused)
402 {
403 }
404 
405 /*
406  * This is called during exit indicating that the vmspace is no
407  * longer in used by an exiting process, but the process has not yet
408  * been reaped.
409  *
410  * No requirements.
411  */
412 void
413 vmspace_exitbump(struct vmspace *vm)
414 {
415 	vmspace_hold(vm);
416 	++vm->vm_exitingcnt;
417 	vmspace_drop(vm);	/* handles termination sequencing */
418 }
419 
420 /*
421  * Decrement the exitingcnt and issue the stage-2 termination if it becomes
422  * zero and the stage1 termination has already occured.
423  *
424  * No requirements.
425  */
426 void
427 vmspace_exitfree(struct proc *p)
428 {
429 	struct vmspace *vm;
430 
431 	vm = p->p_vmspace;
432 	p->p_vmspace = NULL;
433 	vmspace_hold(vm);
434 	KKASSERT(vm->vm_exitingcnt > 0);
435 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
436 		vmspace_terminate(vm);
437 	vmspace_drop(vm);	/* handles termination sequencing */
438 }
439 
440 /*
441  * Swap useage is determined by taking the proportional swap used by
442  * VM objects backing the VM map.  To make up for fractional losses,
443  * if the VM object has any swap use at all the associated map entries
444  * count for at least 1 swap page.
445  *
446  * No requirements.
447  */
448 int
449 vmspace_swap_count(struct vmspace *vm)
450 {
451 	vm_map_t map = &vm->vm_map;
452 	vm_map_entry_t cur;
453 	vm_object_t object;
454 	int count = 0;
455 	int n;
456 
457 	vmspace_hold(vm);
458 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
459 		switch(cur->maptype) {
460 		case VM_MAPTYPE_NORMAL:
461 		case VM_MAPTYPE_VPAGETABLE:
462 			if ((object = cur->object.vm_object) == NULL)
463 				break;
464 			if (object->swblock_count) {
465 				n = (cur->end - cur->start) / PAGE_SIZE;
466 				count += object->swblock_count *
467 				    SWAP_META_PAGES * n / object->size + 1;
468 			}
469 			break;
470 		default:
471 			break;
472 		}
473 	}
474 	vmspace_drop(vm);
475 
476 	return(count);
477 }
478 
479 /*
480  * Calculate the approximate number of anonymous pages in use by
481  * this vmspace.  To make up for fractional losses, we count each
482  * VM object as having at least 1 anonymous page.
483  *
484  * No requirements.
485  */
486 int
487 vmspace_anonymous_count(struct vmspace *vm)
488 {
489 	vm_map_t map = &vm->vm_map;
490 	vm_map_entry_t cur;
491 	vm_object_t object;
492 	int count = 0;
493 
494 	vmspace_hold(vm);
495 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
496 		switch(cur->maptype) {
497 		case VM_MAPTYPE_NORMAL:
498 		case VM_MAPTYPE_VPAGETABLE:
499 			if ((object = cur->object.vm_object) == NULL)
500 				break;
501 			if (object->type != OBJT_DEFAULT &&
502 			    object->type != OBJT_SWAP) {
503 				break;
504 			}
505 			count += object->resident_page_count;
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 	vmspace_drop(vm);
512 
513 	return(count);
514 }
515 
516 /*
517  * Creates and returns a new empty VM map with the given physical map
518  * structure, and having the given lower and upper address bounds.
519  *
520  * No requirements.
521  */
522 vm_map_t
523 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
524 {
525 	if (result == NULL)
526 		result = zalloc(mapzone);
527 	vm_map_init(result, min, max, pmap);
528 	return (result);
529 }
530 
531 /*
532  * Initialize an existing vm_map structure such as that in the vmspace
533  * structure.  The pmap is initialized elsewhere.
534  *
535  * No requirements.
536  */
537 void
538 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
539 {
540 	map->header.next = map->header.prev = &map->header;
541 	RB_INIT(&map->rb_root);
542 	map->nentries = 0;
543 	map->size = 0;
544 	map->system_map = 0;
545 	map->min_offset = min;
546 	map->max_offset = max;
547 	map->pmap = pmap;
548 	map->first_free = &map->header;
549 	map->hint = &map->header;
550 	map->timestamp = 0;
551 	map->flags = 0;
552 	lwkt_token_init(&map->token, "vm_map");
553 	lockinit(&map->lock, "thrd_sleep", (hz + 9) / 10, 0);
554 	TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
555 }
556 
557 /*
558  * Shadow the vm_map_entry's object.  This typically needs to be done when
559  * a write fault is taken on an entry which had previously been cloned by
560  * fork().  The shared object (which might be NULL) must become private so
561  * we add a shadow layer above it.
562  *
563  * Object allocation for anonymous mappings is defered as long as possible.
564  * When creating a shadow, however, the underlying object must be instantiated
565  * so it can be shared.
566  *
567  * If the map segment is governed by a virtual page table then it is
568  * possible to address offsets beyond the mapped area.  Just allocate
569  * a maximally sized object for this case.
570  *
571  * The vm_map must be exclusively locked.
572  * No other requirements.
573  */
574 static
575 void
576 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
577 {
578 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
579 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
580 				 0x7FFFFFFF, addref);	/* XXX */
581 	} else {
582 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
583 				 atop(entry->end - entry->start), addref);
584 	}
585 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
586 }
587 
588 /*
589  * Allocate an object for a vm_map_entry.
590  *
591  * Object allocation for anonymous mappings is defered as long as possible.
592  * This function is called when we can defer no longer, generally when a map
593  * entry might be split or forked or takes a page fault.
594  *
595  * If the map segment is governed by a virtual page table then it is
596  * possible to address offsets beyond the mapped area.  Just allocate
597  * a maximally sized object for this case.
598  *
599  * The vm_map must be exclusively locked.
600  * No other requirements.
601  */
602 void
603 vm_map_entry_allocate_object(vm_map_entry_t entry)
604 {
605 	vm_object_t obj;
606 
607 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
608 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
609 	} else {
610 		obj = vm_object_allocate(OBJT_DEFAULT,
611 					 atop(entry->end - entry->start));
612 	}
613 	entry->object.vm_object = obj;
614 	entry->offset = 0;
615 }
616 
617 /*
618  * Set an initial negative count so the first attempt to reserve
619  * space preloads a bunch of vm_map_entry's for this cpu.  Also
620  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
621  * map a new page for vm_map_entry structures.  SMP systems are
622  * particularly sensitive.
623  *
624  * This routine is called in early boot so we cannot just call
625  * vm_map_entry_reserve().
626  *
627  * Called from the low level boot code only (for each cpu)
628  */
629 void
630 vm_map_entry_reserve_cpu_init(globaldata_t gd)
631 {
632 	vm_map_entry_t entry;
633 	int i;
634 
635 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
636 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
637 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
638 		entry->next = gd->gd_vme_base;
639 		gd->gd_vme_base = entry;
640 	}
641 }
642 
643 /*
644  * Reserves vm_map_entry structures so code later on can manipulate
645  * map_entry structures within a locked map without blocking trying
646  * to allocate a new vm_map_entry.
647  *
648  * No requirements.
649  */
650 int
651 vm_map_entry_reserve(int count)
652 {
653 	struct globaldata *gd = mycpu;
654 	vm_map_entry_t entry;
655 
656 	/*
657 	 * Make sure we have enough structures in gd_vme_base to handle
658 	 * the reservation request.
659 	 *
660 	 * The critical section protects access to the per-cpu gd.
661 	 */
662 	crit_enter();
663 	while (gd->gd_vme_avail < count) {
664 		entry = zalloc(mapentzone);
665 		entry->next = gd->gd_vme_base;
666 		gd->gd_vme_base = entry;
667 		++gd->gd_vme_avail;
668 	}
669 	gd->gd_vme_avail -= count;
670 	crit_exit();
671 
672 	return(count);
673 }
674 
675 /*
676  * Releases previously reserved vm_map_entry structures that were not
677  * used.  If we have too much junk in our per-cpu cache clean some of
678  * it out.
679  *
680  * No requirements.
681  */
682 void
683 vm_map_entry_release(int count)
684 {
685 	struct globaldata *gd = mycpu;
686 	vm_map_entry_t entry;
687 
688 	crit_enter();
689 	gd->gd_vme_avail += count;
690 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
691 		entry = gd->gd_vme_base;
692 		KKASSERT(entry != NULL);
693 		gd->gd_vme_base = entry->next;
694 		--gd->gd_vme_avail;
695 		crit_exit();
696 		zfree(mapentzone, entry);
697 		crit_enter();
698 	}
699 	crit_exit();
700 }
701 
702 /*
703  * Reserve map entry structures for use in kernel_map itself.  These
704  * entries have *ALREADY* been reserved on a per-cpu basis when the map
705  * was inited.  This function is used by zalloc() to avoid a recursion
706  * when zalloc() itself needs to allocate additional kernel memory.
707  *
708  * This function works like the normal reserve but does not load the
709  * vm_map_entry cache (because that would result in an infinite
710  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
711  *
712  * Any caller of this function must be sure to renormalize after
713  * potentially eating entries to ensure that the reserve supply
714  * remains intact.
715  *
716  * No requirements.
717  */
718 int
719 vm_map_entry_kreserve(int count)
720 {
721 	struct globaldata *gd = mycpu;
722 
723 	crit_enter();
724 	gd->gd_vme_avail -= count;
725 	crit_exit();
726 	KASSERT(gd->gd_vme_base != NULL,
727 		("no reserved entries left, gd_vme_avail = %d",
728 		gd->gd_vme_avail));
729 	return(count);
730 }
731 
732 /*
733  * Release previously reserved map entries for kernel_map.  We do not
734  * attempt to clean up like the normal release function as this would
735  * cause an unnecessary (but probably not fatal) deep procedure call.
736  *
737  * No requirements.
738  */
739 void
740 vm_map_entry_krelease(int count)
741 {
742 	struct globaldata *gd = mycpu;
743 
744 	crit_enter();
745 	gd->gd_vme_avail += count;
746 	crit_exit();
747 }
748 
749 /*
750  * Allocates a VM map entry for insertion.  No entry fields are filled in.
751  *
752  * The entries should have previously been reserved.  The reservation count
753  * is tracked in (*countp).
754  *
755  * No requirements.
756  */
757 static vm_map_entry_t
758 vm_map_entry_create(vm_map_t map, int *countp)
759 {
760 	struct globaldata *gd = mycpu;
761 	vm_map_entry_t entry;
762 
763 	KKASSERT(*countp > 0);
764 	--*countp;
765 	crit_enter();
766 	entry = gd->gd_vme_base;
767 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
768 	gd->gd_vme_base = entry->next;
769 	crit_exit();
770 
771 	return(entry);
772 }
773 
774 /*
775  * Dispose of a vm_map_entry that is no longer being referenced.
776  *
777  * No requirements.
778  */
779 static void
780 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
781 {
782 	struct globaldata *gd = mycpu;
783 
784 	KKASSERT(map->hint != entry);
785 	KKASSERT(map->first_free != entry);
786 
787 	++*countp;
788 	crit_enter();
789 	entry->next = gd->gd_vme_base;
790 	gd->gd_vme_base = entry;
791 	crit_exit();
792 }
793 
794 
795 /*
796  * Insert/remove entries from maps.
797  *
798  * The related map must be exclusively locked.
799  * The caller must hold map->token
800  * No other requirements.
801  */
802 static __inline void
803 vm_map_entry_link(vm_map_t map,
804 		  vm_map_entry_t after_where,
805 		  vm_map_entry_t entry)
806 {
807 	ASSERT_VM_MAP_LOCKED(map);
808 
809 	map->nentries++;
810 	entry->prev = after_where;
811 	entry->next = after_where->next;
812 	entry->next->prev = entry;
813 	after_where->next = entry;
814 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
815 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
816 }
817 
818 static __inline void
819 vm_map_entry_unlink(vm_map_t map,
820 		    vm_map_entry_t entry)
821 {
822 	vm_map_entry_t prev;
823 	vm_map_entry_t next;
824 
825 	ASSERT_VM_MAP_LOCKED(map);
826 
827 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
828 		panic("vm_map_entry_unlink: attempt to mess with "
829 		      "locked entry! %p", entry);
830 	}
831 	prev = entry->prev;
832 	next = entry->next;
833 	next->prev = prev;
834 	prev->next = next;
835 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
836 	map->nentries--;
837 }
838 
839 /*
840  * Finds the map entry containing (or immediately preceding) the specified
841  * address in the given map.  The entry is returned in (*entry).
842  *
843  * The boolean result indicates whether the address is actually contained
844  * in the map.
845  *
846  * The related map must be locked.
847  * No other requirements.
848  */
849 boolean_t
850 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
851 {
852 	vm_map_entry_t tmp;
853 	vm_map_entry_t last;
854 
855 	ASSERT_VM_MAP_LOCKED(map);
856 #if 0
857 	/*
858 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
859 	 * the hint code with the red-black lookup meets with system crashes
860 	 * and lockups.  We do not yet know why.
861 	 *
862 	 * It is possible that the problem is related to the setting
863 	 * of the hint during map_entry deletion, in the code specified
864 	 * at the GGG comment later on in this file.
865 	 *
866 	 * YYY More likely it's because this function can be called with
867 	 * a shared lock on the map, resulting in map->hint updates possibly
868 	 * racing.  Fixed now but untested.
869 	 */
870 	/*
871 	 * Quickly check the cached hint, there's a good chance of a match.
872 	 */
873 	tmp = map->hint;
874 	cpu_ccfence();
875 	if (tmp != &map->header) {
876 		if (address >= tmp->start && address < tmp->end) {
877 			*entry = tmp;
878 			return(TRUE);
879 		}
880 	}
881 #endif
882 
883 	/*
884 	 * Locate the record from the top of the tree.  'last' tracks the
885 	 * closest prior record and is returned if no match is found, which
886 	 * in binary tree terms means tracking the most recent right-branch
887 	 * taken.  If there is no prior record, &map->header is returned.
888 	 */
889 	last = &map->header;
890 	tmp = RB_ROOT(&map->rb_root);
891 
892 	while (tmp) {
893 		if (address >= tmp->start) {
894 			if (address < tmp->end) {
895 				*entry = tmp;
896 				map->hint = tmp;
897 				return(TRUE);
898 			}
899 			last = tmp;
900 			tmp = RB_RIGHT(tmp, rb_entry);
901 		} else {
902 			tmp = RB_LEFT(tmp, rb_entry);
903 		}
904 	}
905 	*entry = last;
906 	return (FALSE);
907 }
908 
909 /*
910  * Inserts the given whole VM object into the target map at the specified
911  * address range.  The object's size should match that of the address range.
912  *
913  * The map must be exclusively locked.
914  * The object must be held.
915  * The caller must have reserved sufficient vm_map_entry structures.
916  *
917  * If object is non-NULL, ref count must be bumped by caller prior to
918  * making call to account for the new entry.
919  */
920 int
921 vm_map_insert(vm_map_t map, int *countp,
922 	      vm_object_t object, vm_ooffset_t offset,
923 	      vm_offset_t start, vm_offset_t end,
924 	      vm_maptype_t maptype,
925 	      vm_prot_t prot, vm_prot_t max,
926 	      int cow)
927 {
928 	vm_map_entry_t new_entry;
929 	vm_map_entry_t prev_entry;
930 	vm_map_entry_t temp_entry;
931 	vm_eflags_t protoeflags;
932 	int must_drop = 0;
933 
934 	ASSERT_VM_MAP_LOCKED(map);
935 	if (object)
936 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
937 
938 	/*
939 	 * Check that the start and end points are not bogus.
940 	 */
941 	if ((start < map->min_offset) || (end > map->max_offset) ||
942 	    (start >= end))
943 		return (KERN_INVALID_ADDRESS);
944 
945 	/*
946 	 * Find the entry prior to the proposed starting address; if it's part
947 	 * of an existing entry, this range is bogus.
948 	 */
949 	if (vm_map_lookup_entry(map, start, &temp_entry))
950 		return (KERN_NO_SPACE);
951 
952 	prev_entry = temp_entry;
953 
954 	/*
955 	 * Assert that the next entry doesn't overlap the end point.
956 	 */
957 
958 	if ((prev_entry->next != &map->header) &&
959 	    (prev_entry->next->start < end))
960 		return (KERN_NO_SPACE);
961 
962 	protoeflags = 0;
963 
964 	if (cow & MAP_COPY_ON_WRITE)
965 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
966 
967 	if (cow & MAP_NOFAULT) {
968 		protoeflags |= MAP_ENTRY_NOFAULT;
969 
970 		KASSERT(object == NULL,
971 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
972 	}
973 	if (cow & MAP_DISABLE_SYNCER)
974 		protoeflags |= MAP_ENTRY_NOSYNC;
975 	if (cow & MAP_DISABLE_COREDUMP)
976 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
977 	if (cow & MAP_IS_STACK)
978 		protoeflags |= MAP_ENTRY_STACK;
979 	if (cow & MAP_IS_KSTACK)
980 		protoeflags |= MAP_ENTRY_KSTACK;
981 
982 	lwkt_gettoken(&map->token);
983 
984 	if (object) {
985 		/*
986 		 * When object is non-NULL, it could be shared with another
987 		 * process.  We have to set or clear OBJ_ONEMAPPING
988 		 * appropriately.
989 		 *
990 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
991 		 *	 objects and will already be clear in other types
992 		 *	 of objects, so a shared object lock is ok for
993 		 *	 VNODE objects.
994 		 */
995 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
996 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
997 		}
998 	}
999 	else if ((prev_entry != &map->header) &&
1000 		 (prev_entry->eflags == protoeflags) &&
1001 		 (prev_entry->end == start) &&
1002 		 (prev_entry->wired_count == 0) &&
1003 		 prev_entry->maptype == maptype &&
1004 		 ((prev_entry->object.vm_object == NULL) ||
1005 		  vm_object_coalesce(prev_entry->object.vm_object,
1006 				     OFF_TO_IDX(prev_entry->offset),
1007 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1008 				     (vm_size_t)(end - prev_entry->end)))) {
1009 		/*
1010 		 * We were able to extend the object.  Determine if we
1011 		 * can extend the previous map entry to include the
1012 		 * new range as well.
1013 		 */
1014 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1015 		    (prev_entry->protection == prot) &&
1016 		    (prev_entry->max_protection == max)) {
1017 			map->size += (end - prev_entry->end);
1018 			prev_entry->end = end;
1019 			vm_map_simplify_entry(map, prev_entry, countp);
1020 			lwkt_reltoken(&map->token);
1021 			return (KERN_SUCCESS);
1022 		}
1023 
1024 		/*
1025 		 * If we can extend the object but cannot extend the
1026 		 * map entry, we have to create a new map entry.  We
1027 		 * must bump the ref count on the extended object to
1028 		 * account for it.  object may be NULL.
1029 		 */
1030 		object = prev_entry->object.vm_object;
1031 		offset = prev_entry->offset +
1032 			(prev_entry->end - prev_entry->start);
1033 		if (object) {
1034 			vm_object_hold(object);
1035 			vm_object_chain_wait(object);
1036 			vm_object_reference_locked(object);
1037 			must_drop = 1;
1038 		}
1039 	}
1040 
1041 	/*
1042 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1043 	 * in things like the buffer map where we manage kva but do not manage
1044 	 * backing objects.
1045 	 */
1046 
1047 	/*
1048 	 * Create a new entry
1049 	 */
1050 
1051 	new_entry = vm_map_entry_create(map, countp);
1052 	new_entry->start = start;
1053 	new_entry->end = end;
1054 
1055 	new_entry->maptype = maptype;
1056 	new_entry->eflags = protoeflags;
1057 	new_entry->object.vm_object = object;
1058 	new_entry->offset = offset;
1059 	new_entry->aux.master_pde = 0;
1060 
1061 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1062 	new_entry->protection = prot;
1063 	new_entry->max_protection = max;
1064 	new_entry->wired_count = 0;
1065 
1066 	/*
1067 	 * Insert the new entry into the list
1068 	 */
1069 
1070 	vm_map_entry_link(map, prev_entry, new_entry);
1071 	map->size += new_entry->end - new_entry->start;
1072 
1073 	/*
1074 	 * Update the free space hint.  Entries cannot overlap.
1075 	 * An exact comparison is needed to avoid matching
1076 	 * against the map->header.
1077 	 */
1078 	if ((map->first_free == prev_entry) &&
1079 	    (prev_entry->end == new_entry->start)) {
1080 		map->first_free = new_entry;
1081 	}
1082 
1083 #if 0
1084 	/*
1085 	 * Temporarily removed to avoid MAP_STACK panic, due to
1086 	 * MAP_STACK being a huge hack.  Will be added back in
1087 	 * when MAP_STACK (and the user stack mapping) is fixed.
1088 	 */
1089 	/*
1090 	 * It may be possible to simplify the entry
1091 	 */
1092 	vm_map_simplify_entry(map, new_entry, countp);
1093 #endif
1094 
1095 	/*
1096 	 * Try to pre-populate the page table.  Mappings governed by virtual
1097 	 * page tables cannot be prepopulated without a lot of work, so
1098 	 * don't try.
1099 	 */
1100 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1101 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1102 		int dorelock = 0;
1103 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1104 			dorelock = 1;
1105 			vm_object_lock_swap();
1106 			vm_object_drop(object);
1107 		}
1108 		pmap_object_init_pt(map->pmap, start, prot,
1109 				    object, OFF_TO_IDX(offset), end - start,
1110 				    cow & MAP_PREFAULT_PARTIAL);
1111 		if (dorelock) {
1112 			vm_object_hold(object);
1113 			vm_object_lock_swap();
1114 		}
1115 	}
1116 	if (must_drop)
1117 		vm_object_drop(object);
1118 
1119 	lwkt_reltoken(&map->token);
1120 	return (KERN_SUCCESS);
1121 }
1122 
1123 /*
1124  * Find sufficient space for `length' bytes in the given map, starting at
1125  * `start'.  Returns 0 on success, 1 on no space.
1126  *
1127  * This function will returned an arbitrarily aligned pointer.  If no
1128  * particular alignment is required you should pass align as 1.  Note that
1129  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1130  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1131  * argument.
1132  *
1133  * 'align' should be a power of 2 but is not required to be.
1134  *
1135  * The map must be exclusively locked.
1136  * No other requirements.
1137  */
1138 int
1139 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1140 		 vm_size_t align, int flags, vm_offset_t *addr)
1141 {
1142 	vm_map_entry_t entry, next;
1143 	vm_offset_t end;
1144 	vm_offset_t align_mask;
1145 
1146 	if (start < map->min_offset)
1147 		start = map->min_offset;
1148 	if (start > map->max_offset)
1149 		return (1);
1150 
1151 	/*
1152 	 * If the alignment is not a power of 2 we will have to use
1153 	 * a mod/division, set align_mask to a special value.
1154 	 */
1155 	if ((align | (align - 1)) + 1 != (align << 1))
1156 		align_mask = (vm_offset_t)-1;
1157 	else
1158 		align_mask = align - 1;
1159 
1160 	/*
1161 	 * Look for the first possible address; if there's already something
1162 	 * at this address, we have to start after it.
1163 	 */
1164 	if (start == map->min_offset) {
1165 		if ((entry = map->first_free) != &map->header)
1166 			start = entry->end;
1167 	} else {
1168 		vm_map_entry_t tmp;
1169 
1170 		if (vm_map_lookup_entry(map, start, &tmp))
1171 			start = tmp->end;
1172 		entry = tmp;
1173 	}
1174 
1175 	/*
1176 	 * Look through the rest of the map, trying to fit a new region in the
1177 	 * gap between existing regions, or after the very last region.
1178 	 */
1179 	for (;; start = (entry = next)->end) {
1180 		/*
1181 		 * Adjust the proposed start by the requested alignment,
1182 		 * be sure that we didn't wrap the address.
1183 		 */
1184 		if (align_mask == (vm_offset_t)-1)
1185 			end = ((start + align - 1) / align) * align;
1186 		else
1187 			end = (start + align_mask) & ~align_mask;
1188 		if (end < start)
1189 			return (1);
1190 		start = end;
1191 		/*
1192 		 * Find the end of the proposed new region.  Be sure we didn't
1193 		 * go beyond the end of the map, or wrap around the address.
1194 		 * Then check to see if this is the last entry or if the
1195 		 * proposed end fits in the gap between this and the next
1196 		 * entry.
1197 		 */
1198 		end = start + length;
1199 		if (end > map->max_offset || end < start)
1200 			return (1);
1201 		next = entry->next;
1202 
1203 		/*
1204 		 * If the next entry's start address is beyond the desired
1205 		 * end address we may have found a good entry.
1206 		 *
1207 		 * If the next entry is a stack mapping we do not map into
1208 		 * the stack's reserved space.
1209 		 *
1210 		 * XXX continue to allow mapping into the stack's reserved
1211 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1212 		 * mapping, for backwards compatibility.  But the caller
1213 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1214 		 * want to do that.
1215 		 */
1216 		if (next == &map->header)
1217 			break;
1218 		if (next->start >= end) {
1219 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1220 				break;
1221 			if (flags & MAP_STACK)
1222 				break;
1223 			if (next->start - next->aux.avail_ssize >= end)
1224 				break;
1225 		}
1226 	}
1227 	map->hint = entry;
1228 
1229 	/*
1230 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1231 	 * if it fails.  The kernel_map is locked and nothing can steal
1232 	 * our address space if pmap_growkernel() blocks.
1233 	 *
1234 	 * NOTE: This may be unconditionally called for kldload areas on
1235 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1236 	 *	 fill 128G worth of page tables!).  Therefore we must not
1237 	 *	 retry.
1238 	 */
1239 	if (map == &kernel_map) {
1240 		vm_offset_t kstop;
1241 
1242 		kstop = round_page(start + length);
1243 		if (kstop > kernel_vm_end)
1244 			pmap_growkernel(start, kstop);
1245 	}
1246 	*addr = start;
1247 	return (0);
1248 }
1249 
1250 /*
1251  * vm_map_find finds an unallocated region in the target address map with
1252  * the given length and allocates it.  The search is defined to be first-fit
1253  * from the specified address; the region found is returned in the same
1254  * parameter.
1255  *
1256  * If object is non-NULL, ref count must be bumped by caller
1257  * prior to making call to account for the new entry.
1258  *
1259  * No requirements.  This function will lock the map temporarily.
1260  */
1261 int
1262 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1263 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1264 	    boolean_t fitit,
1265 	    vm_maptype_t maptype,
1266 	    vm_prot_t prot, vm_prot_t max,
1267 	    int cow)
1268 {
1269 	vm_offset_t start;
1270 	int result;
1271 	int count;
1272 
1273 	start = *addr;
1274 
1275 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1276 	vm_map_lock(map);
1277 	if (object)
1278 		vm_object_hold(object);
1279 	if (fitit) {
1280 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1281 			if (object)
1282 				vm_object_drop(object);
1283 			vm_map_unlock(map);
1284 			vm_map_entry_release(count);
1285 			return (KERN_NO_SPACE);
1286 		}
1287 		start = *addr;
1288 	}
1289 	result = vm_map_insert(map, &count, object, offset,
1290 			       start, start + length,
1291 			       maptype,
1292 			       prot, max,
1293 			       cow);
1294 	if (object)
1295 		vm_object_drop(object);
1296 	vm_map_unlock(map);
1297 	vm_map_entry_release(count);
1298 
1299 	return (result);
1300 }
1301 
1302 /*
1303  * Simplify the given map entry by merging with either neighbor.  This
1304  * routine also has the ability to merge with both neighbors.
1305  *
1306  * This routine guarentees that the passed entry remains valid (though
1307  * possibly extended).  When merging, this routine may delete one or
1308  * both neighbors.  No action is taken on entries which have their
1309  * in-transition flag set.
1310  *
1311  * The map must be exclusively locked.
1312  */
1313 void
1314 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1315 {
1316 	vm_map_entry_t next, prev;
1317 	vm_size_t prevsize, esize;
1318 
1319 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1320 		++mycpu->gd_cnt.v_intrans_coll;
1321 		return;
1322 	}
1323 
1324 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1325 		return;
1326 
1327 	prev = entry->prev;
1328 	if (prev != &map->header) {
1329 		prevsize = prev->end - prev->start;
1330 		if ( (prev->end == entry->start) &&
1331 		     (prev->maptype == entry->maptype) &&
1332 		     (prev->object.vm_object == entry->object.vm_object) &&
1333 		     (!prev->object.vm_object ||
1334 			(prev->offset + prevsize == entry->offset)) &&
1335 		     (prev->eflags == entry->eflags) &&
1336 		     (prev->protection == entry->protection) &&
1337 		     (prev->max_protection == entry->max_protection) &&
1338 		     (prev->inheritance == entry->inheritance) &&
1339 		     (prev->wired_count == entry->wired_count)) {
1340 			if (map->first_free == prev)
1341 				map->first_free = entry;
1342 			if (map->hint == prev)
1343 				map->hint = entry;
1344 			vm_map_entry_unlink(map, prev);
1345 			entry->start = prev->start;
1346 			entry->offset = prev->offset;
1347 			if (prev->object.vm_object)
1348 				vm_object_deallocate(prev->object.vm_object);
1349 			vm_map_entry_dispose(map, prev, countp);
1350 		}
1351 	}
1352 
1353 	next = entry->next;
1354 	if (next != &map->header) {
1355 		esize = entry->end - entry->start;
1356 		if ((entry->end == next->start) &&
1357 		    (next->maptype == entry->maptype) &&
1358 		    (next->object.vm_object == entry->object.vm_object) &&
1359 		     (!entry->object.vm_object ||
1360 			(entry->offset + esize == next->offset)) &&
1361 		    (next->eflags == entry->eflags) &&
1362 		    (next->protection == entry->protection) &&
1363 		    (next->max_protection == entry->max_protection) &&
1364 		    (next->inheritance == entry->inheritance) &&
1365 		    (next->wired_count == entry->wired_count)) {
1366 			if (map->first_free == next)
1367 				map->first_free = entry;
1368 			if (map->hint == next)
1369 				map->hint = entry;
1370 			vm_map_entry_unlink(map, next);
1371 			entry->end = next->end;
1372 			if (next->object.vm_object)
1373 				vm_object_deallocate(next->object.vm_object);
1374 			vm_map_entry_dispose(map, next, countp);
1375 	        }
1376 	}
1377 }
1378 
1379 /*
1380  * Asserts that the given entry begins at or after the specified address.
1381  * If necessary, it splits the entry into two.
1382  */
1383 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1384 {									\
1385 	if (startaddr > entry->start)					\
1386 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1387 }
1388 
1389 /*
1390  * This routine is called only when it is known that the entry must be split.
1391  *
1392  * The map must be exclusively locked.
1393  */
1394 static void
1395 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1396 		   int *countp)
1397 {
1398 	vm_map_entry_t new_entry;
1399 
1400 	/*
1401 	 * Split off the front portion -- note that we must insert the new
1402 	 * entry BEFORE this one, so that this entry has the specified
1403 	 * starting address.
1404 	 */
1405 
1406 	vm_map_simplify_entry(map, entry, countp);
1407 
1408 	/*
1409 	 * If there is no object backing this entry, we might as well create
1410 	 * one now.  If we defer it, an object can get created after the map
1411 	 * is clipped, and individual objects will be created for the split-up
1412 	 * map.  This is a bit of a hack, but is also about the best place to
1413 	 * put this improvement.
1414 	 */
1415 	if (entry->object.vm_object == NULL && !map->system_map) {
1416 		vm_map_entry_allocate_object(entry);
1417 	}
1418 
1419 	new_entry = vm_map_entry_create(map, countp);
1420 	*new_entry = *entry;
1421 
1422 	new_entry->end = start;
1423 	entry->offset += (start - entry->start);
1424 	entry->start = start;
1425 
1426 	vm_map_entry_link(map, entry->prev, new_entry);
1427 
1428 	switch(entry->maptype) {
1429 	case VM_MAPTYPE_NORMAL:
1430 	case VM_MAPTYPE_VPAGETABLE:
1431 		if (new_entry->object.vm_object) {
1432 			vm_object_hold(new_entry->object.vm_object);
1433 			vm_object_chain_wait(new_entry->object.vm_object);
1434 			vm_object_reference_locked(new_entry->object.vm_object);
1435 			vm_object_drop(new_entry->object.vm_object);
1436 		}
1437 		break;
1438 	default:
1439 		break;
1440 	}
1441 }
1442 
1443 /*
1444  * Asserts that the given entry ends at or before the specified address.
1445  * If necessary, it splits the entry into two.
1446  *
1447  * The map must be exclusively locked.
1448  */
1449 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1450 {								\
1451 	if (endaddr < entry->end)				\
1452 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1453 }
1454 
1455 /*
1456  * This routine is called only when it is known that the entry must be split.
1457  *
1458  * The map must be exclusively locked.
1459  */
1460 static void
1461 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1462 		 int *countp)
1463 {
1464 	vm_map_entry_t new_entry;
1465 
1466 	/*
1467 	 * If there is no object backing this entry, we might as well create
1468 	 * one now.  If we defer it, an object can get created after the map
1469 	 * is clipped, and individual objects will be created for the split-up
1470 	 * map.  This is a bit of a hack, but is also about the best place to
1471 	 * put this improvement.
1472 	 */
1473 
1474 	if (entry->object.vm_object == NULL && !map->system_map) {
1475 		vm_map_entry_allocate_object(entry);
1476 	}
1477 
1478 	/*
1479 	 * Create a new entry and insert it AFTER the specified entry
1480 	 */
1481 
1482 	new_entry = vm_map_entry_create(map, countp);
1483 	*new_entry = *entry;
1484 
1485 	new_entry->start = entry->end = end;
1486 	new_entry->offset += (end - entry->start);
1487 
1488 	vm_map_entry_link(map, entry, new_entry);
1489 
1490 	switch(entry->maptype) {
1491 	case VM_MAPTYPE_NORMAL:
1492 	case VM_MAPTYPE_VPAGETABLE:
1493 		if (new_entry->object.vm_object) {
1494 			vm_object_hold(new_entry->object.vm_object);
1495 			vm_object_chain_wait(new_entry->object.vm_object);
1496 			vm_object_reference_locked(new_entry->object.vm_object);
1497 			vm_object_drop(new_entry->object.vm_object);
1498 		}
1499 		break;
1500 	default:
1501 		break;
1502 	}
1503 }
1504 
1505 /*
1506  * Asserts that the starting and ending region addresses fall within the
1507  * valid range for the map.
1508  */
1509 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1510 {						\
1511 	if (start < vm_map_min(map))		\
1512 		start = vm_map_min(map);	\
1513 	if (end > vm_map_max(map))		\
1514 		end = vm_map_max(map);		\
1515 	if (start > end)			\
1516 		start = end;			\
1517 }
1518 
1519 /*
1520  * Used to block when an in-transition collison occurs.  The map
1521  * is unlocked for the sleep and relocked before the return.
1522  */
1523 void
1524 vm_map_transition_wait(vm_map_t map)
1525 {
1526 	tsleep_interlock(map, 0);
1527 	vm_map_unlock(map);
1528 	tsleep(map, PINTERLOCKED, "vment", 0);
1529 	vm_map_lock(map);
1530 }
1531 
1532 /*
1533  * When we do blocking operations with the map lock held it is
1534  * possible that a clip might have occured on our in-transit entry,
1535  * requiring an adjustment to the entry in our loop.  These macros
1536  * help the pageable and clip_range code deal with the case.  The
1537  * conditional costs virtually nothing if no clipping has occured.
1538  */
1539 
1540 #define CLIP_CHECK_BACK(entry, save_start)		\
1541     do {						\
1542 	    while (entry->start != save_start) {	\
1543 		    entry = entry->prev;		\
1544 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1545 	    }						\
1546     } while(0)
1547 
1548 #define CLIP_CHECK_FWD(entry, save_end)			\
1549     do {						\
1550 	    while (entry->end != save_end) {		\
1551 		    entry = entry->next;		\
1552 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1553 	    }						\
1554     } while(0)
1555 
1556 
1557 /*
1558  * Clip the specified range and return the base entry.  The
1559  * range may cover several entries starting at the returned base
1560  * and the first and last entry in the covering sequence will be
1561  * properly clipped to the requested start and end address.
1562  *
1563  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1564  * flag.
1565  *
1566  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1567  * covered by the requested range.
1568  *
1569  * The map must be exclusively locked on entry and will remain locked
1570  * on return. If no range exists or the range contains holes and you
1571  * specified that no holes were allowed, NULL will be returned.  This
1572  * routine may temporarily unlock the map in order avoid a deadlock when
1573  * sleeping.
1574  */
1575 static
1576 vm_map_entry_t
1577 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1578 		  int *countp, int flags)
1579 {
1580 	vm_map_entry_t start_entry;
1581 	vm_map_entry_t entry;
1582 
1583 	/*
1584 	 * Locate the entry and effect initial clipping.  The in-transition
1585 	 * case does not occur very often so do not try to optimize it.
1586 	 */
1587 again:
1588 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1589 		return (NULL);
1590 	entry = start_entry;
1591 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1592 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1593 		++mycpu->gd_cnt.v_intrans_coll;
1594 		++mycpu->gd_cnt.v_intrans_wait;
1595 		vm_map_transition_wait(map);
1596 		/*
1597 		 * entry and/or start_entry may have been clipped while
1598 		 * we slept, or may have gone away entirely.  We have
1599 		 * to restart from the lookup.
1600 		 */
1601 		goto again;
1602 	}
1603 
1604 	/*
1605 	 * Since we hold an exclusive map lock we do not have to restart
1606 	 * after clipping, even though clipping may block in zalloc.
1607 	 */
1608 	vm_map_clip_start(map, entry, start, countp);
1609 	vm_map_clip_end(map, entry, end, countp);
1610 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1611 
1612 	/*
1613 	 * Scan entries covered by the range.  When working on the next
1614 	 * entry a restart need only re-loop on the current entry which
1615 	 * we have already locked, since 'next' may have changed.  Also,
1616 	 * even though entry is safe, it may have been clipped so we
1617 	 * have to iterate forwards through the clip after sleeping.
1618 	 */
1619 	while (entry->next != &map->header && entry->next->start < end) {
1620 		vm_map_entry_t next = entry->next;
1621 
1622 		if (flags & MAP_CLIP_NO_HOLES) {
1623 			if (next->start > entry->end) {
1624 				vm_map_unclip_range(map, start_entry,
1625 					start, entry->end, countp, flags);
1626 				return(NULL);
1627 			}
1628 		}
1629 
1630 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1631 			vm_offset_t save_end = entry->end;
1632 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1633 			++mycpu->gd_cnt.v_intrans_coll;
1634 			++mycpu->gd_cnt.v_intrans_wait;
1635 			vm_map_transition_wait(map);
1636 
1637 			/*
1638 			 * clips might have occured while we blocked.
1639 			 */
1640 			CLIP_CHECK_FWD(entry, save_end);
1641 			CLIP_CHECK_BACK(start_entry, start);
1642 			continue;
1643 		}
1644 		/*
1645 		 * No restart necessary even though clip_end may block, we
1646 		 * are holding the map lock.
1647 		 */
1648 		vm_map_clip_end(map, next, end, countp);
1649 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1650 		entry = next;
1651 	}
1652 	if (flags & MAP_CLIP_NO_HOLES) {
1653 		if (entry->end != end) {
1654 			vm_map_unclip_range(map, start_entry,
1655 				start, entry->end, countp, flags);
1656 			return(NULL);
1657 		}
1658 	}
1659 	return(start_entry);
1660 }
1661 
1662 /*
1663  * Undo the effect of vm_map_clip_range().  You should pass the same
1664  * flags and the same range that you passed to vm_map_clip_range().
1665  * This code will clear the in-transition flag on the entries and
1666  * wake up anyone waiting.  This code will also simplify the sequence
1667  * and attempt to merge it with entries before and after the sequence.
1668  *
1669  * The map must be locked on entry and will remain locked on return.
1670  *
1671  * Note that you should also pass the start_entry returned by
1672  * vm_map_clip_range().  However, if you block between the two calls
1673  * with the map unlocked please be aware that the start_entry may
1674  * have been clipped and you may need to scan it backwards to find
1675  * the entry corresponding with the original start address.  You are
1676  * responsible for this, vm_map_unclip_range() expects the correct
1677  * start_entry to be passed to it and will KASSERT otherwise.
1678  */
1679 static
1680 void
1681 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1682 		    vm_offset_t start, vm_offset_t end,
1683 		    int *countp, int flags)
1684 {
1685 	vm_map_entry_t entry;
1686 
1687 	entry = start_entry;
1688 
1689 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1690 	while (entry != &map->header && entry->start < end) {
1691 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1692 			("in-transition flag not set during unclip on: %p",
1693 			entry));
1694 		KASSERT(entry->end <= end,
1695 			("unclip_range: tail wasn't clipped"));
1696 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1697 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1698 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1699 			wakeup(map);
1700 		}
1701 		entry = entry->next;
1702 	}
1703 
1704 	/*
1705 	 * Simplification does not block so there is no restart case.
1706 	 */
1707 	entry = start_entry;
1708 	while (entry != &map->header && entry->start < end) {
1709 		vm_map_simplify_entry(map, entry, countp);
1710 		entry = entry->next;
1711 	}
1712 }
1713 
1714 /*
1715  * Mark the given range as handled by a subordinate map.
1716  *
1717  * This range must have been created with vm_map_find(), and no other
1718  * operations may have been performed on this range prior to calling
1719  * vm_map_submap().
1720  *
1721  * Submappings cannot be removed.
1722  *
1723  * No requirements.
1724  */
1725 int
1726 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1727 {
1728 	vm_map_entry_t entry;
1729 	int result = KERN_INVALID_ARGUMENT;
1730 	int count;
1731 
1732 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1733 	vm_map_lock(map);
1734 
1735 	VM_MAP_RANGE_CHECK(map, start, end);
1736 
1737 	if (vm_map_lookup_entry(map, start, &entry)) {
1738 		vm_map_clip_start(map, entry, start, &count);
1739 	} else {
1740 		entry = entry->next;
1741 	}
1742 
1743 	vm_map_clip_end(map, entry, end, &count);
1744 
1745 	if ((entry->start == start) && (entry->end == end) &&
1746 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1747 	    (entry->object.vm_object == NULL)) {
1748 		entry->object.sub_map = submap;
1749 		entry->maptype = VM_MAPTYPE_SUBMAP;
1750 		result = KERN_SUCCESS;
1751 	}
1752 	vm_map_unlock(map);
1753 	vm_map_entry_release(count);
1754 
1755 	return (result);
1756 }
1757 
1758 /*
1759  * Sets the protection of the specified address region in the target map.
1760  * If "set_max" is specified, the maximum protection is to be set;
1761  * otherwise, only the current protection is affected.
1762  *
1763  * The protection is not applicable to submaps, but is applicable to normal
1764  * maps and maps governed by virtual page tables.  For example, when operating
1765  * on a virtual page table our protection basically controls how COW occurs
1766  * on the backing object, whereas the virtual page table abstraction itself
1767  * is an abstraction for userland.
1768  *
1769  * No requirements.
1770  */
1771 int
1772 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1773 	       vm_prot_t new_prot, boolean_t set_max)
1774 {
1775 	vm_map_entry_t current;
1776 	vm_map_entry_t entry;
1777 	int count;
1778 
1779 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1780 	vm_map_lock(map);
1781 
1782 	VM_MAP_RANGE_CHECK(map, start, end);
1783 
1784 	if (vm_map_lookup_entry(map, start, &entry)) {
1785 		vm_map_clip_start(map, entry, start, &count);
1786 	} else {
1787 		entry = entry->next;
1788 	}
1789 
1790 	/*
1791 	 * Make a first pass to check for protection violations.
1792 	 */
1793 	current = entry;
1794 	while ((current != &map->header) && (current->start < end)) {
1795 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1796 			vm_map_unlock(map);
1797 			vm_map_entry_release(count);
1798 			return (KERN_INVALID_ARGUMENT);
1799 		}
1800 		if ((new_prot & current->max_protection) != new_prot) {
1801 			vm_map_unlock(map);
1802 			vm_map_entry_release(count);
1803 			return (KERN_PROTECTION_FAILURE);
1804 		}
1805 		current = current->next;
1806 	}
1807 
1808 	/*
1809 	 * Go back and fix up protections. [Note that clipping is not
1810 	 * necessary the second time.]
1811 	 */
1812 	current = entry;
1813 
1814 	while ((current != &map->header) && (current->start < end)) {
1815 		vm_prot_t old_prot;
1816 
1817 		vm_map_clip_end(map, current, end, &count);
1818 
1819 		old_prot = current->protection;
1820 		if (set_max) {
1821 			current->protection =
1822 			    (current->max_protection = new_prot) &
1823 			    old_prot;
1824 		} else {
1825 			current->protection = new_prot;
1826 		}
1827 
1828 		/*
1829 		 * Update physical map if necessary. Worry about copy-on-write
1830 		 * here -- CHECK THIS XXX
1831 		 */
1832 
1833 		if (current->protection != old_prot) {
1834 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1835 							VM_PROT_ALL)
1836 
1837 			pmap_protect(map->pmap, current->start,
1838 			    current->end,
1839 			    current->protection & MASK(current));
1840 #undef	MASK
1841 		}
1842 
1843 		vm_map_simplify_entry(map, current, &count);
1844 
1845 		current = current->next;
1846 	}
1847 
1848 	vm_map_unlock(map);
1849 	vm_map_entry_release(count);
1850 	return (KERN_SUCCESS);
1851 }
1852 
1853 /*
1854  * This routine traverses a processes map handling the madvise
1855  * system call.  Advisories are classified as either those effecting
1856  * the vm_map_entry structure, or those effecting the underlying
1857  * objects.
1858  *
1859  * The <value> argument is used for extended madvise calls.
1860  *
1861  * No requirements.
1862  */
1863 int
1864 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1865 	       int behav, off_t value)
1866 {
1867 	vm_map_entry_t current, entry;
1868 	int modify_map = 0;
1869 	int error = 0;
1870 	int count;
1871 
1872 	/*
1873 	 * Some madvise calls directly modify the vm_map_entry, in which case
1874 	 * we need to use an exclusive lock on the map and we need to perform
1875 	 * various clipping operations.  Otherwise we only need a read-lock
1876 	 * on the map.
1877 	 */
1878 
1879 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1880 
1881 	switch(behav) {
1882 	case MADV_NORMAL:
1883 	case MADV_SEQUENTIAL:
1884 	case MADV_RANDOM:
1885 	case MADV_NOSYNC:
1886 	case MADV_AUTOSYNC:
1887 	case MADV_NOCORE:
1888 	case MADV_CORE:
1889 	case MADV_SETMAP:
1890 	case MADV_INVAL:
1891 		modify_map = 1;
1892 		vm_map_lock(map);
1893 		break;
1894 	case MADV_WILLNEED:
1895 	case MADV_DONTNEED:
1896 	case MADV_FREE:
1897 		vm_map_lock_read(map);
1898 		break;
1899 	default:
1900 		vm_map_entry_release(count);
1901 		return (EINVAL);
1902 	}
1903 
1904 	/*
1905 	 * Locate starting entry and clip if necessary.
1906 	 */
1907 
1908 	VM_MAP_RANGE_CHECK(map, start, end);
1909 
1910 	if (vm_map_lookup_entry(map, start, &entry)) {
1911 		if (modify_map)
1912 			vm_map_clip_start(map, entry, start, &count);
1913 	} else {
1914 		entry = entry->next;
1915 	}
1916 
1917 	if (modify_map) {
1918 		/*
1919 		 * madvise behaviors that are implemented in the vm_map_entry.
1920 		 *
1921 		 * We clip the vm_map_entry so that behavioral changes are
1922 		 * limited to the specified address range.
1923 		 */
1924 		for (current = entry;
1925 		     (current != &map->header) && (current->start < end);
1926 		     current = current->next
1927 		) {
1928 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1929 				continue;
1930 
1931 			vm_map_clip_end(map, current, end, &count);
1932 
1933 			switch (behav) {
1934 			case MADV_NORMAL:
1935 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1936 				break;
1937 			case MADV_SEQUENTIAL:
1938 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1939 				break;
1940 			case MADV_RANDOM:
1941 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1942 				break;
1943 			case MADV_NOSYNC:
1944 				current->eflags |= MAP_ENTRY_NOSYNC;
1945 				break;
1946 			case MADV_AUTOSYNC:
1947 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1948 				break;
1949 			case MADV_NOCORE:
1950 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1951 				break;
1952 			case MADV_CORE:
1953 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1954 				break;
1955 			case MADV_INVAL:
1956 				/*
1957 				 * Invalidate the related pmap entries, used
1958 				 * to flush portions of the real kernel's
1959 				 * pmap when the caller has removed or
1960 				 * modified existing mappings in a virtual
1961 				 * page table.
1962 				 */
1963 				pmap_remove(map->pmap,
1964 					    current->start, current->end);
1965 				break;
1966 			case MADV_SETMAP:
1967 				/*
1968 				 * Set the page directory page for a map
1969 				 * governed by a virtual page table.  Mark
1970 				 * the entry as being governed by a virtual
1971 				 * page table if it is not.
1972 				 *
1973 				 * XXX the page directory page is stored
1974 				 * in the avail_ssize field if the map_entry.
1975 				 *
1976 				 * XXX the map simplification code does not
1977 				 * compare this field so weird things may
1978 				 * happen if you do not apply this function
1979 				 * to the entire mapping governed by the
1980 				 * virtual page table.
1981 				 */
1982 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1983 					error = EINVAL;
1984 					break;
1985 				}
1986 				current->aux.master_pde = value;
1987 				pmap_remove(map->pmap,
1988 					    current->start, current->end);
1989 				break;
1990 			default:
1991 				error = EINVAL;
1992 				break;
1993 			}
1994 			vm_map_simplify_entry(map, current, &count);
1995 		}
1996 		vm_map_unlock(map);
1997 	} else {
1998 		vm_pindex_t pindex;
1999 		int count;
2000 
2001 		/*
2002 		 * madvise behaviors that are implemented in the underlying
2003 		 * vm_object.
2004 		 *
2005 		 * Since we don't clip the vm_map_entry, we have to clip
2006 		 * the vm_object pindex and count.
2007 		 *
2008 		 * NOTE!  We currently do not support these functions on
2009 		 * virtual page tables.
2010 		 */
2011 		for (current = entry;
2012 		     (current != &map->header) && (current->start < end);
2013 		     current = current->next
2014 		) {
2015 			vm_offset_t useStart;
2016 
2017 			if (current->maptype != VM_MAPTYPE_NORMAL)
2018 				continue;
2019 
2020 			pindex = OFF_TO_IDX(current->offset);
2021 			count = atop(current->end - current->start);
2022 			useStart = current->start;
2023 
2024 			if (current->start < start) {
2025 				pindex += atop(start - current->start);
2026 				count -= atop(start - current->start);
2027 				useStart = start;
2028 			}
2029 			if (current->end > end)
2030 				count -= atop(current->end - end);
2031 
2032 			if (count <= 0)
2033 				continue;
2034 
2035 			vm_object_madvise(current->object.vm_object,
2036 					  pindex, count, behav);
2037 
2038 			/*
2039 			 * Try to populate the page table.  Mappings governed
2040 			 * by virtual page tables cannot be pre-populated
2041 			 * without a lot of work so don't try.
2042 			 */
2043 			if (behav == MADV_WILLNEED &&
2044 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2045 				pmap_object_init_pt(
2046 				    map->pmap,
2047 				    useStart,
2048 				    current->protection,
2049 				    current->object.vm_object,
2050 				    pindex,
2051 				    (count << PAGE_SHIFT),
2052 				    MAP_PREFAULT_MADVISE
2053 				);
2054 			}
2055 		}
2056 		vm_map_unlock_read(map);
2057 	}
2058 	vm_map_entry_release(count);
2059 	return(error);
2060 }
2061 
2062 
2063 /*
2064  * Sets the inheritance of the specified address range in the target map.
2065  * Inheritance affects how the map will be shared with child maps at the
2066  * time of vm_map_fork.
2067  */
2068 int
2069 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2070 	       vm_inherit_t new_inheritance)
2071 {
2072 	vm_map_entry_t entry;
2073 	vm_map_entry_t temp_entry;
2074 	int count;
2075 
2076 	switch (new_inheritance) {
2077 	case VM_INHERIT_NONE:
2078 	case VM_INHERIT_COPY:
2079 	case VM_INHERIT_SHARE:
2080 		break;
2081 	default:
2082 		return (KERN_INVALID_ARGUMENT);
2083 	}
2084 
2085 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2086 	vm_map_lock(map);
2087 
2088 	VM_MAP_RANGE_CHECK(map, start, end);
2089 
2090 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2091 		entry = temp_entry;
2092 		vm_map_clip_start(map, entry, start, &count);
2093 	} else
2094 		entry = temp_entry->next;
2095 
2096 	while ((entry != &map->header) && (entry->start < end)) {
2097 		vm_map_clip_end(map, entry, end, &count);
2098 
2099 		entry->inheritance = new_inheritance;
2100 
2101 		vm_map_simplify_entry(map, entry, &count);
2102 
2103 		entry = entry->next;
2104 	}
2105 	vm_map_unlock(map);
2106 	vm_map_entry_release(count);
2107 	return (KERN_SUCCESS);
2108 }
2109 
2110 /*
2111  * Implement the semantics of mlock
2112  */
2113 int
2114 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2115 	      boolean_t new_pageable)
2116 {
2117 	vm_map_entry_t entry;
2118 	vm_map_entry_t start_entry;
2119 	vm_offset_t end;
2120 	int rv = KERN_SUCCESS;
2121 	int count;
2122 
2123 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2124 	vm_map_lock(map);
2125 	VM_MAP_RANGE_CHECK(map, start, real_end);
2126 	end = real_end;
2127 
2128 	start_entry = vm_map_clip_range(map, start, end, &count,
2129 					MAP_CLIP_NO_HOLES);
2130 	if (start_entry == NULL) {
2131 		vm_map_unlock(map);
2132 		vm_map_entry_release(count);
2133 		return (KERN_INVALID_ADDRESS);
2134 	}
2135 
2136 	if (new_pageable == 0) {
2137 		entry = start_entry;
2138 		while ((entry != &map->header) && (entry->start < end)) {
2139 			vm_offset_t save_start;
2140 			vm_offset_t save_end;
2141 
2142 			/*
2143 			 * Already user wired or hard wired (trivial cases)
2144 			 */
2145 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2146 				entry = entry->next;
2147 				continue;
2148 			}
2149 			if (entry->wired_count != 0) {
2150 				entry->wired_count++;
2151 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2152 				entry = entry->next;
2153 				continue;
2154 			}
2155 
2156 			/*
2157 			 * A new wiring requires instantiation of appropriate
2158 			 * management structures and the faulting in of the
2159 			 * page.
2160 			 */
2161 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2162 				int copyflag = entry->eflags &
2163 					       MAP_ENTRY_NEEDS_COPY;
2164 				if (copyflag && ((entry->protection &
2165 						  VM_PROT_WRITE) != 0)) {
2166 					vm_map_entry_shadow(entry, 0);
2167 				} else if (entry->object.vm_object == NULL &&
2168 					   !map->system_map) {
2169 					vm_map_entry_allocate_object(entry);
2170 				}
2171 			}
2172 			entry->wired_count++;
2173 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2174 
2175 			/*
2176 			 * Now fault in the area.  Note that vm_fault_wire()
2177 			 * may release the map lock temporarily, it will be
2178 			 * relocked on return.  The in-transition
2179 			 * flag protects the entries.
2180 			 */
2181 			save_start = entry->start;
2182 			save_end = entry->end;
2183 			rv = vm_fault_wire(map, entry, TRUE);
2184 			if (rv) {
2185 				CLIP_CHECK_BACK(entry, save_start);
2186 				for (;;) {
2187 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2188 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2189 					entry->wired_count = 0;
2190 					if (entry->end == save_end)
2191 						break;
2192 					entry = entry->next;
2193 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2194 				}
2195 				end = save_start;	/* unwire the rest */
2196 				break;
2197 			}
2198 			/*
2199 			 * note that even though the entry might have been
2200 			 * clipped, the USER_WIRED flag we set prevents
2201 			 * duplication so we do not have to do a
2202 			 * clip check.
2203 			 */
2204 			entry = entry->next;
2205 		}
2206 
2207 		/*
2208 		 * If we failed fall through to the unwiring section to
2209 		 * unwire what we had wired so far.  'end' has already
2210 		 * been adjusted.
2211 		 */
2212 		if (rv)
2213 			new_pageable = 1;
2214 
2215 		/*
2216 		 * start_entry might have been clipped if we unlocked the
2217 		 * map and blocked.  No matter how clipped it has gotten
2218 		 * there should be a fragment that is on our start boundary.
2219 		 */
2220 		CLIP_CHECK_BACK(start_entry, start);
2221 	}
2222 
2223 	/*
2224 	 * Deal with the unwiring case.
2225 	 */
2226 	if (new_pageable) {
2227 		/*
2228 		 * This is the unwiring case.  We must first ensure that the
2229 		 * range to be unwired is really wired down.  We know there
2230 		 * are no holes.
2231 		 */
2232 		entry = start_entry;
2233 		while ((entry != &map->header) && (entry->start < end)) {
2234 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2235 				rv = KERN_INVALID_ARGUMENT;
2236 				goto done;
2237 			}
2238 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2239 			entry = entry->next;
2240 		}
2241 
2242 		/*
2243 		 * Now decrement the wiring count for each region. If a region
2244 		 * becomes completely unwired, unwire its physical pages and
2245 		 * mappings.
2246 		 */
2247 		/*
2248 		 * The map entries are processed in a loop, checking to
2249 		 * make sure the entry is wired and asserting it has a wired
2250 		 * count. However, another loop was inserted more-or-less in
2251 		 * the middle of the unwiring path. This loop picks up the
2252 		 * "entry" loop variable from the first loop without first
2253 		 * setting it to start_entry. Naturally, the secound loop
2254 		 * is never entered and the pages backing the entries are
2255 		 * never unwired. This can lead to a leak of wired pages.
2256 		 */
2257 		entry = start_entry;
2258 		while ((entry != &map->header) && (entry->start < end)) {
2259 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2260 				("expected USER_WIRED on entry %p", entry));
2261 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2262 			entry->wired_count--;
2263 			if (entry->wired_count == 0)
2264 				vm_fault_unwire(map, entry);
2265 			entry = entry->next;
2266 		}
2267 	}
2268 done:
2269 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2270 		MAP_CLIP_NO_HOLES);
2271 	map->timestamp++;
2272 	vm_map_unlock(map);
2273 	vm_map_entry_release(count);
2274 	return (rv);
2275 }
2276 
2277 /*
2278  * Sets the pageability of the specified address range in the target map.
2279  * Regions specified as not pageable require locked-down physical
2280  * memory and physical page maps.
2281  *
2282  * The map must not be locked, but a reference must remain to the map
2283  * throughout the call.
2284  *
2285  * This function may be called via the zalloc path and must properly
2286  * reserve map entries for kernel_map.
2287  *
2288  * No requirements.
2289  */
2290 int
2291 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2292 {
2293 	vm_map_entry_t entry;
2294 	vm_map_entry_t start_entry;
2295 	vm_offset_t end;
2296 	int rv = KERN_SUCCESS;
2297 	int count;
2298 
2299 	if (kmflags & KM_KRESERVE)
2300 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2301 	else
2302 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2303 	vm_map_lock(map);
2304 	VM_MAP_RANGE_CHECK(map, start, real_end);
2305 	end = real_end;
2306 
2307 	start_entry = vm_map_clip_range(map, start, end, &count,
2308 					MAP_CLIP_NO_HOLES);
2309 	if (start_entry == NULL) {
2310 		vm_map_unlock(map);
2311 		rv = KERN_INVALID_ADDRESS;
2312 		goto failure;
2313 	}
2314 	if ((kmflags & KM_PAGEABLE) == 0) {
2315 		/*
2316 		 * Wiring.
2317 		 *
2318 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2319 		 * objects that need to be created. Then we clip each map
2320 		 * entry to the region to be wired and increment its wiring
2321 		 * count.  We create objects before clipping the map entries
2322 		 * to avoid object proliferation.
2323 		 *
2324 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2325 		 * fault in the pages for any newly wired area (wired_count is
2326 		 * 1).
2327 		 *
2328 		 * Downgrading to a read lock for vm_fault_wire avoids a
2329 		 * possible deadlock with another process that may have faulted
2330 		 * on one of the pages to be wired (it would mark the page busy,
2331 		 * blocking us, then in turn block on the map lock that we
2332 		 * hold).  Because of problems in the recursive lock package,
2333 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2334 		 * any actions that require the write lock must be done
2335 		 * beforehand.  Because we keep the read lock on the map, the
2336 		 * copy-on-write status of the entries we modify here cannot
2337 		 * change.
2338 		 */
2339 		entry = start_entry;
2340 		while ((entry != &map->header) && (entry->start < end)) {
2341 			/*
2342 			 * Trivial case if the entry is already wired
2343 			 */
2344 			if (entry->wired_count) {
2345 				entry->wired_count++;
2346 				entry = entry->next;
2347 				continue;
2348 			}
2349 
2350 			/*
2351 			 * The entry is being newly wired, we have to setup
2352 			 * appropriate management structures.  A shadow
2353 			 * object is required for a copy-on-write region,
2354 			 * or a normal object for a zero-fill region.  We
2355 			 * do not have to do this for entries that point to sub
2356 			 * maps because we won't hold the lock on the sub map.
2357 			 */
2358 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2359 				int copyflag = entry->eflags &
2360 					       MAP_ENTRY_NEEDS_COPY;
2361 				if (copyflag && ((entry->protection &
2362 						  VM_PROT_WRITE) != 0)) {
2363 					vm_map_entry_shadow(entry, 0);
2364 				} else if (entry->object.vm_object == NULL &&
2365 					   !map->system_map) {
2366 					vm_map_entry_allocate_object(entry);
2367 				}
2368 			}
2369 
2370 			entry->wired_count++;
2371 			entry = entry->next;
2372 		}
2373 
2374 		/*
2375 		 * Pass 2.
2376 		 */
2377 
2378 		/*
2379 		 * HACK HACK HACK HACK
2380 		 *
2381 		 * vm_fault_wire() temporarily unlocks the map to avoid
2382 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2383 		 * call should protect us from changes while the map is
2384 		 * unlocked.  T
2385 		 *
2386 		 * NOTE: Previously this comment stated that clipping might
2387 		 *	 still occur while the entry is unlocked, but from
2388 		 *	 what I can tell it actually cannot.
2389 		 *
2390 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2391 		 *	 are still needed but we keep them in anyway.
2392 		 *
2393 		 * HACK HACK HACK HACK
2394 		 */
2395 
2396 		entry = start_entry;
2397 		while (entry != &map->header && entry->start < end) {
2398 			/*
2399 			 * If vm_fault_wire fails for any page we need to undo
2400 			 * what has been done.  We decrement the wiring count
2401 			 * for those pages which have not yet been wired (now)
2402 			 * and unwire those that have (later).
2403 			 */
2404 			vm_offset_t save_start = entry->start;
2405 			vm_offset_t save_end = entry->end;
2406 
2407 			if (entry->wired_count == 1)
2408 				rv = vm_fault_wire(map, entry, FALSE);
2409 			if (rv) {
2410 				CLIP_CHECK_BACK(entry, save_start);
2411 				for (;;) {
2412 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2413 					entry->wired_count = 0;
2414 					if (entry->end == save_end)
2415 						break;
2416 					entry = entry->next;
2417 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2418 				}
2419 				end = save_start;
2420 				break;
2421 			}
2422 			CLIP_CHECK_FWD(entry, save_end);
2423 			entry = entry->next;
2424 		}
2425 
2426 		/*
2427 		 * If a failure occured undo everything by falling through
2428 		 * to the unwiring code.  'end' has already been adjusted
2429 		 * appropriately.
2430 		 */
2431 		if (rv)
2432 			kmflags |= KM_PAGEABLE;
2433 
2434 		/*
2435 		 * start_entry is still IN_TRANSITION but may have been
2436 		 * clipped since vm_fault_wire() unlocks and relocks the
2437 		 * map.  No matter how clipped it has gotten there should
2438 		 * be a fragment that is on our start boundary.
2439 		 */
2440 		CLIP_CHECK_BACK(start_entry, start);
2441 	}
2442 
2443 	if (kmflags & KM_PAGEABLE) {
2444 		/*
2445 		 * This is the unwiring case.  We must first ensure that the
2446 		 * range to be unwired is really wired down.  We know there
2447 		 * are no holes.
2448 		 */
2449 		entry = start_entry;
2450 		while ((entry != &map->header) && (entry->start < end)) {
2451 			if (entry->wired_count == 0) {
2452 				rv = KERN_INVALID_ARGUMENT;
2453 				goto done;
2454 			}
2455 			entry = entry->next;
2456 		}
2457 
2458 		/*
2459 		 * Now decrement the wiring count for each region. If a region
2460 		 * becomes completely unwired, unwire its physical pages and
2461 		 * mappings.
2462 		 */
2463 		entry = start_entry;
2464 		while ((entry != &map->header) && (entry->start < end)) {
2465 			entry->wired_count--;
2466 			if (entry->wired_count == 0)
2467 				vm_fault_unwire(map, entry);
2468 			entry = entry->next;
2469 		}
2470 	}
2471 done:
2472 	vm_map_unclip_range(map, start_entry, start, real_end,
2473 			    &count, MAP_CLIP_NO_HOLES);
2474 	map->timestamp++;
2475 	vm_map_unlock(map);
2476 failure:
2477 	if (kmflags & KM_KRESERVE)
2478 		vm_map_entry_krelease(count);
2479 	else
2480 		vm_map_entry_release(count);
2481 	return (rv);
2482 }
2483 
2484 /*
2485  * Mark a newly allocated address range as wired but do not fault in
2486  * the pages.  The caller is expected to load the pages into the object.
2487  *
2488  * The map must be locked on entry and will remain locked on return.
2489  * No other requirements.
2490  */
2491 void
2492 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2493 		       int *countp)
2494 {
2495 	vm_map_entry_t scan;
2496 	vm_map_entry_t entry;
2497 
2498 	entry = vm_map_clip_range(map, addr, addr + size,
2499 				  countp, MAP_CLIP_NO_HOLES);
2500 	for (scan = entry;
2501 	     scan != &map->header && scan->start < addr + size;
2502 	     scan = scan->next) {
2503 	    KKASSERT(scan->wired_count == 0);
2504 	    scan->wired_count = 1;
2505 	}
2506 	vm_map_unclip_range(map, entry, addr, addr + size,
2507 			    countp, MAP_CLIP_NO_HOLES);
2508 }
2509 
2510 /*
2511  * Push any dirty cached pages in the address range to their pager.
2512  * If syncio is TRUE, dirty pages are written synchronously.
2513  * If invalidate is TRUE, any cached pages are freed as well.
2514  *
2515  * This routine is called by sys_msync()
2516  *
2517  * Returns an error if any part of the specified range is not mapped.
2518  *
2519  * No requirements.
2520  */
2521 int
2522 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2523 	     boolean_t syncio, boolean_t invalidate)
2524 {
2525 	vm_map_entry_t current;
2526 	vm_map_entry_t entry;
2527 	vm_size_t size;
2528 	vm_object_t object;
2529 	vm_object_t tobj;
2530 	vm_ooffset_t offset;
2531 
2532 	vm_map_lock_read(map);
2533 	VM_MAP_RANGE_CHECK(map, start, end);
2534 	if (!vm_map_lookup_entry(map, start, &entry)) {
2535 		vm_map_unlock_read(map);
2536 		return (KERN_INVALID_ADDRESS);
2537 	}
2538 	lwkt_gettoken(&map->token);
2539 
2540 	/*
2541 	 * Make a first pass to check for holes.
2542 	 */
2543 	for (current = entry; current->start < end; current = current->next) {
2544 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2545 			lwkt_reltoken(&map->token);
2546 			vm_map_unlock_read(map);
2547 			return (KERN_INVALID_ARGUMENT);
2548 		}
2549 		if (end > current->end &&
2550 		    (current->next == &map->header ||
2551 			current->end != current->next->start)) {
2552 			lwkt_reltoken(&map->token);
2553 			vm_map_unlock_read(map);
2554 			return (KERN_INVALID_ADDRESS);
2555 		}
2556 	}
2557 
2558 	if (invalidate)
2559 		pmap_remove(vm_map_pmap(map), start, end);
2560 
2561 	/*
2562 	 * Make a second pass, cleaning/uncaching pages from the indicated
2563 	 * objects as we go.
2564 	 */
2565 	for (current = entry; current->start < end; current = current->next) {
2566 		offset = current->offset + (start - current->start);
2567 		size = (end <= current->end ? end : current->end) - start;
2568 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2569 			vm_map_t smap;
2570 			vm_map_entry_t tentry;
2571 			vm_size_t tsize;
2572 
2573 			smap = current->object.sub_map;
2574 			vm_map_lock_read(smap);
2575 			vm_map_lookup_entry(smap, offset, &tentry);
2576 			tsize = tentry->end - offset;
2577 			if (tsize < size)
2578 				size = tsize;
2579 			object = tentry->object.vm_object;
2580 			offset = tentry->offset + (offset - tentry->start);
2581 			vm_map_unlock_read(smap);
2582 		} else {
2583 			object = current->object.vm_object;
2584 		}
2585 
2586 		if (object)
2587 			vm_object_hold(object);
2588 
2589 		/*
2590 		 * Note that there is absolutely no sense in writing out
2591 		 * anonymous objects, so we track down the vnode object
2592 		 * to write out.
2593 		 * We invalidate (remove) all pages from the address space
2594 		 * anyway, for semantic correctness.
2595 		 *
2596 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2597 		 * may start out with a NULL object.
2598 		 */
2599 		while (object && (tobj = object->backing_object) != NULL) {
2600 			vm_object_hold(tobj);
2601 			if (tobj == object->backing_object) {
2602 				vm_object_lock_swap();
2603 				offset += object->backing_object_offset;
2604 				vm_object_drop(object);
2605 				object = tobj;
2606 				if (object->size < OFF_TO_IDX(offset + size))
2607 					size = IDX_TO_OFF(object->size) -
2608 					       offset;
2609 				break;
2610 			}
2611 			vm_object_drop(tobj);
2612 		}
2613 		if (object && (object->type == OBJT_VNODE) &&
2614 		    (current->protection & VM_PROT_WRITE) &&
2615 		    (object->flags & OBJ_NOMSYNC) == 0) {
2616 			/*
2617 			 * Flush pages if writing is allowed, invalidate them
2618 			 * if invalidation requested.  Pages undergoing I/O
2619 			 * will be ignored by vm_object_page_remove().
2620 			 *
2621 			 * We cannot lock the vnode and then wait for paging
2622 			 * to complete without deadlocking against vm_fault.
2623 			 * Instead we simply call vm_object_page_remove() and
2624 			 * allow it to block internally on a page-by-page
2625 			 * basis when it encounters pages undergoing async
2626 			 * I/O.
2627 			 */
2628 			int flags;
2629 
2630 			/* no chain wait needed for vnode objects */
2631 			vm_object_reference_locked(object);
2632 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2633 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2634 			flags |= invalidate ? OBJPC_INVAL : 0;
2635 
2636 			/*
2637 			 * When operating on a virtual page table just
2638 			 * flush the whole object.  XXX we probably ought
2639 			 * to
2640 			 */
2641 			switch(current->maptype) {
2642 			case VM_MAPTYPE_NORMAL:
2643 				vm_object_page_clean(object,
2644 				    OFF_TO_IDX(offset),
2645 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2646 				    flags);
2647 				break;
2648 			case VM_MAPTYPE_VPAGETABLE:
2649 				vm_object_page_clean(object, 0, 0, flags);
2650 				break;
2651 			}
2652 			vn_unlock(((struct vnode *)object->handle));
2653 			vm_object_deallocate_locked(object);
2654 		}
2655 		if (object && invalidate &&
2656 		   ((object->type == OBJT_VNODE) ||
2657 		    (object->type == OBJT_DEVICE))) {
2658 			int clean_only =
2659 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2660 			/* no chain wait needed for vnode/device objects */
2661 			vm_object_reference_locked(object);
2662 			switch(current->maptype) {
2663 			case VM_MAPTYPE_NORMAL:
2664 				vm_object_page_remove(object,
2665 				    OFF_TO_IDX(offset),
2666 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2667 				    clean_only);
2668 				break;
2669 			case VM_MAPTYPE_VPAGETABLE:
2670 				vm_object_page_remove(object, 0, 0, clean_only);
2671 				break;
2672 			}
2673 			vm_object_deallocate_locked(object);
2674 		}
2675 		start += size;
2676 		if (object)
2677 			vm_object_drop(object);
2678 	}
2679 
2680 	lwkt_reltoken(&map->token);
2681 	vm_map_unlock_read(map);
2682 
2683 	return (KERN_SUCCESS);
2684 }
2685 
2686 /*
2687  * Make the region specified by this entry pageable.
2688  *
2689  * The vm_map must be exclusively locked.
2690  */
2691 static void
2692 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2693 {
2694 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2695 	entry->wired_count = 0;
2696 	vm_fault_unwire(map, entry);
2697 }
2698 
2699 /*
2700  * Deallocate the given entry from the target map.
2701  *
2702  * The vm_map must be exclusively locked.
2703  */
2704 static void
2705 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2706 {
2707 	vm_map_entry_unlink(map, entry);
2708 	map->size -= entry->end - entry->start;
2709 
2710 	switch(entry->maptype) {
2711 	case VM_MAPTYPE_NORMAL:
2712 	case VM_MAPTYPE_VPAGETABLE:
2713 		vm_object_deallocate(entry->object.vm_object);
2714 		break;
2715 	default:
2716 		break;
2717 	}
2718 
2719 	vm_map_entry_dispose(map, entry, countp);
2720 }
2721 
2722 /*
2723  * Deallocates the given address range from the target map.
2724  *
2725  * The vm_map must be exclusively locked.
2726  */
2727 int
2728 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2729 {
2730 	vm_object_t object;
2731 	vm_map_entry_t entry;
2732 	vm_map_entry_t first_entry;
2733 
2734 	ASSERT_VM_MAP_LOCKED(map);
2735 	lwkt_gettoken(&map->token);
2736 again:
2737 	/*
2738 	 * Find the start of the region, and clip it.  Set entry to point
2739 	 * at the first record containing the requested address or, if no
2740 	 * such record exists, the next record with a greater address.  The
2741 	 * loop will run from this point until a record beyond the termination
2742 	 * address is encountered.
2743 	 *
2744 	 * map->hint must be adjusted to not point to anything we delete,
2745 	 * so set it to the entry prior to the one being deleted.
2746 	 *
2747 	 * GGG see other GGG comment.
2748 	 */
2749 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2750 		entry = first_entry;
2751 		vm_map_clip_start(map, entry, start, countp);
2752 		map->hint = entry->prev;	/* possible problem XXX */
2753 	} else {
2754 		map->hint = first_entry;	/* possible problem XXX */
2755 		entry = first_entry->next;
2756 	}
2757 
2758 	/*
2759 	 * If a hole opens up prior to the current first_free then
2760 	 * adjust first_free.  As with map->hint, map->first_free
2761 	 * cannot be left set to anything we might delete.
2762 	 */
2763 	if (entry == &map->header) {
2764 		map->first_free = &map->header;
2765 	} else if (map->first_free->start >= start) {
2766 		map->first_free = entry->prev;
2767 	}
2768 
2769 	/*
2770 	 * Step through all entries in this region
2771 	 */
2772 	while ((entry != &map->header) && (entry->start < end)) {
2773 		vm_map_entry_t next;
2774 		vm_offset_t s, e;
2775 		vm_pindex_t offidxstart, offidxend, count;
2776 
2777 		/*
2778 		 * If we hit an in-transition entry we have to sleep and
2779 		 * retry.  It's easier (and not really slower) to just retry
2780 		 * since this case occurs so rarely and the hint is already
2781 		 * pointing at the right place.  We have to reset the
2782 		 * start offset so as not to accidently delete an entry
2783 		 * another process just created in vacated space.
2784 		 */
2785 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2786 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2787 			start = entry->start;
2788 			++mycpu->gd_cnt.v_intrans_coll;
2789 			++mycpu->gd_cnt.v_intrans_wait;
2790 			vm_map_transition_wait(map);
2791 			goto again;
2792 		}
2793 		vm_map_clip_end(map, entry, end, countp);
2794 
2795 		s = entry->start;
2796 		e = entry->end;
2797 		next = entry->next;
2798 
2799 		offidxstart = OFF_TO_IDX(entry->offset);
2800 		count = OFF_TO_IDX(e - s);
2801 		object = entry->object.vm_object;
2802 
2803 		/*
2804 		 * Unwire before removing addresses from the pmap; otherwise,
2805 		 * unwiring will put the entries back in the pmap.
2806 		 */
2807 		if (entry->wired_count != 0)
2808 			vm_map_entry_unwire(map, entry);
2809 
2810 		offidxend = offidxstart + count;
2811 
2812 		if (object == &kernel_object) {
2813 			vm_object_hold(object);
2814 			vm_object_page_remove(object, offidxstart,
2815 					      offidxend, FALSE);
2816 			vm_object_drop(object);
2817 		} else if (object && object->type != OBJT_DEFAULT &&
2818 			   object->type != OBJT_SWAP) {
2819 			/*
2820 			 * vnode object routines cannot be chain-locked,
2821 			 * but since we aren't removing pages from the
2822 			 * object here we can use a shared hold.
2823 			 */
2824 			vm_object_hold_shared(object);
2825 			pmap_remove(map->pmap, s, e);
2826 			vm_object_drop(object);
2827 		} else if (object) {
2828 			vm_object_hold(object);
2829 			vm_object_chain_acquire(object);
2830 			pmap_remove(map->pmap, s, e);
2831 
2832 			if (object != NULL &&
2833 			    object->ref_count != 1 &&
2834 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2835 			     OBJ_ONEMAPPING &&
2836 			    (object->type == OBJT_DEFAULT ||
2837 			     object->type == OBJT_SWAP)) {
2838 				vm_object_collapse(object, NULL);
2839 				vm_object_page_remove(object, offidxstart,
2840 						      offidxend, FALSE);
2841 				if (object->type == OBJT_SWAP) {
2842 					swap_pager_freespace(object,
2843 							     offidxstart,
2844 							     count);
2845 				}
2846 				if (offidxend >= object->size &&
2847 				    offidxstart < object->size) {
2848 					object->size = offidxstart;
2849 				}
2850 			}
2851 			vm_object_chain_release(object);
2852 			vm_object_drop(object);
2853 		}
2854 
2855 		/*
2856 		 * Delete the entry (which may delete the object) only after
2857 		 * removing all pmap entries pointing to its pages.
2858 		 * (Otherwise, its page frames may be reallocated, and any
2859 		 * modify bits will be set in the wrong object!)
2860 		 */
2861 		vm_map_entry_delete(map, entry, countp);
2862 		entry = next;
2863 	}
2864 	lwkt_reltoken(&map->token);
2865 	return (KERN_SUCCESS);
2866 }
2867 
2868 /*
2869  * Remove the given address range from the target map.
2870  * This is the exported form of vm_map_delete.
2871  *
2872  * No requirements.
2873  */
2874 int
2875 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2876 {
2877 	int result;
2878 	int count;
2879 
2880 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2881 	vm_map_lock(map);
2882 	VM_MAP_RANGE_CHECK(map, start, end);
2883 	result = vm_map_delete(map, start, end, &count);
2884 	vm_map_unlock(map);
2885 	vm_map_entry_release(count);
2886 
2887 	return (result);
2888 }
2889 
2890 /*
2891  * Assert that the target map allows the specified privilege on the
2892  * entire address region given.  The entire region must be allocated.
2893  *
2894  * The caller must specify whether the vm_map is already locked or not.
2895  */
2896 boolean_t
2897 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2898 			vm_prot_t protection, boolean_t have_lock)
2899 {
2900 	vm_map_entry_t entry;
2901 	vm_map_entry_t tmp_entry;
2902 	boolean_t result;
2903 
2904 	if (have_lock == FALSE)
2905 		vm_map_lock_read(map);
2906 
2907 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2908 		if (have_lock == FALSE)
2909 			vm_map_unlock_read(map);
2910 		return (FALSE);
2911 	}
2912 	entry = tmp_entry;
2913 
2914 	result = TRUE;
2915 	while (start < end) {
2916 		if (entry == &map->header) {
2917 			result = FALSE;
2918 			break;
2919 		}
2920 		/*
2921 		 * No holes allowed!
2922 		 */
2923 
2924 		if (start < entry->start) {
2925 			result = FALSE;
2926 			break;
2927 		}
2928 		/*
2929 		 * Check protection associated with entry.
2930 		 */
2931 
2932 		if ((entry->protection & protection) != protection) {
2933 			result = FALSE;
2934 			break;
2935 		}
2936 		/* go to next entry */
2937 
2938 		start = entry->end;
2939 		entry = entry->next;
2940 	}
2941 	if (have_lock == FALSE)
2942 		vm_map_unlock_read(map);
2943 	return (result);
2944 }
2945 
2946 /*
2947  * If appropriate this function shadows the original object with a new object
2948  * and moves the VM pages from the original object to the new object.
2949  * The original object will also be collapsed, if possible.
2950  *
2951  * We can only do this for normal memory objects with a single mapping, and
2952  * it only makes sense to do it if there are 2 or more refs on the original
2953  * object.  i.e. typically a memory object that has been extended into
2954  * multiple vm_map_entry's with non-overlapping ranges.
2955  *
2956  * This makes it easier to remove unused pages and keeps object inheritance
2957  * from being a negative impact on memory usage.
2958  *
2959  * On return the (possibly new) entry->object.vm_object will have an
2960  * additional ref on it for the caller to dispose of (usually by cloning
2961  * the vm_map_entry).  The additional ref had to be done in this routine
2962  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2963  * cleared.
2964  *
2965  * The vm_map must be locked and its token held.
2966  */
2967 static void
2968 vm_map_split(vm_map_entry_t entry)
2969 {
2970 #if 0
2971 	/* UNOPTIMIZED */
2972 	vm_object_t oobject;
2973 
2974 	oobject = entry->object.vm_object;
2975 	vm_object_hold(oobject);
2976 	vm_object_chain_wait(oobject);
2977 	vm_object_reference_locked(oobject);
2978 	vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2979 	vm_object_drop(oobject);
2980 #else
2981 	/* OPTIMIZED */
2982 	vm_object_t oobject, nobject, bobject;
2983 	vm_offset_t s, e;
2984 	vm_page_t m;
2985 	vm_pindex_t offidxstart, offidxend, idx;
2986 	vm_size_t size;
2987 	vm_ooffset_t offset;
2988 
2989 	/*
2990 	 * Setup.  Chain lock the original object throughout the entire
2991 	 * routine to prevent new page faults from occuring.
2992 	 *
2993 	 * XXX can madvise WILLNEED interfere with us too?
2994 	 */
2995 	oobject = entry->object.vm_object;
2996 	vm_object_hold(oobject);
2997 	vm_object_chain_acquire(oobject);
2998 
2999 	/*
3000 	 * Original object cannot be split?
3001 	 */
3002 	if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3003 					oobject->type != OBJT_SWAP)) {
3004 		vm_object_chain_release(oobject);
3005 		vm_object_reference_locked(oobject);
3006 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3007 		vm_object_drop(oobject);
3008 		return;
3009 	}
3010 
3011 	/*
3012 	 * Collapse original object with its backing store as an
3013 	 * optimization to reduce chain lengths when possible.
3014 	 *
3015 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3016 	 * for oobject, so there's no point collapsing it.
3017 	 *
3018 	 * Then re-check whether the object can be split.
3019 	 */
3020 	vm_object_collapse(oobject, NULL);
3021 
3022 	if (oobject->ref_count <= 1 ||
3023 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3024 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3025 		vm_object_chain_release(oobject);
3026 		vm_object_reference_locked(oobject);
3027 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3028 		vm_object_drop(oobject);
3029 		return;
3030 	}
3031 
3032 	/*
3033 	 * Acquire the chain lock on the backing object.
3034 	 *
3035 	 * Give bobject an additional ref count for when it will be shadowed
3036 	 * by nobject.
3037 	 */
3038 	if ((bobject = oobject->backing_object) != NULL) {
3039 		vm_object_hold(bobject);
3040 		vm_object_chain_wait(bobject);
3041 		vm_object_reference_locked(bobject);
3042 		vm_object_chain_acquire(bobject);
3043 		KKASSERT(bobject->backing_object == bobject);
3044 		KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3045 	}
3046 
3047 	/*
3048 	 * Calculate the object page range and allocate the new object.
3049 	 */
3050 	offset = entry->offset;
3051 	s = entry->start;
3052 	e = entry->end;
3053 
3054 	offidxstart = OFF_TO_IDX(offset);
3055 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3056 	size = offidxend - offidxstart;
3057 
3058 	switch(oobject->type) {
3059 	case OBJT_DEFAULT:
3060 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3061 					      VM_PROT_ALL, 0);
3062 		break;
3063 	case OBJT_SWAP:
3064 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3065 					   VM_PROT_ALL, 0);
3066 		break;
3067 	default:
3068 		/* not reached */
3069 		nobject = NULL;
3070 		KKASSERT(0);
3071 	}
3072 
3073 	if (nobject == NULL) {
3074 		if (bobject) {
3075 			vm_object_chain_release(bobject);
3076 			vm_object_deallocate(bobject);
3077 			vm_object_drop(bobject);
3078 		}
3079 		vm_object_chain_release(oobject);
3080 		vm_object_reference_locked(oobject);
3081 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3082 		vm_object_drop(oobject);
3083 		return;
3084 	}
3085 
3086 	/*
3087 	 * The new object will replace entry->object.vm_object so it needs
3088 	 * a second reference (the caller expects an additional ref).
3089 	 */
3090 	vm_object_hold(nobject);
3091 	vm_object_reference_locked(nobject);
3092 	vm_object_chain_acquire(nobject);
3093 
3094 	/*
3095 	 * nobject shadows bobject (oobject already shadows bobject).
3096 	 */
3097 	if (bobject) {
3098 		nobject->backing_object_offset =
3099 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3100 		nobject->backing_object = bobject;
3101 		bobject->shadow_count++;
3102 		bobject->generation++;
3103 		LIST_INSERT_HEAD(&bobject->shadow_head, nobject, shadow_list);
3104 		vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /* XXX? */
3105 		vm_object_chain_release(bobject);
3106 		vm_object_drop(bobject);
3107 	}
3108 
3109 	/*
3110 	 * Move the VM pages from oobject to nobject
3111 	 */
3112 	for (idx = 0; idx < size; idx++) {
3113 		vm_page_t m;
3114 
3115 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3116 					     TRUE, "vmpg");
3117 		if (m == NULL)
3118 			continue;
3119 
3120 		/*
3121 		 * We must wait for pending I/O to complete before we can
3122 		 * rename the page.
3123 		 *
3124 		 * We do not have to VM_PROT_NONE the page as mappings should
3125 		 * not be changed by this operation.
3126 		 *
3127 		 * NOTE: The act of renaming a page updates chaingen for both
3128 		 *	 objects.
3129 		 */
3130 		vm_page_rename(m, nobject, idx);
3131 		/* page automatically made dirty by rename and cache handled */
3132 		/* page remains busy */
3133 	}
3134 
3135 	if (oobject->type == OBJT_SWAP) {
3136 		vm_object_pip_add(oobject, 1);
3137 		/*
3138 		 * copy oobject pages into nobject and destroy unneeded
3139 		 * pages in shadow object.
3140 		 */
3141 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3142 		vm_object_pip_wakeup(oobject);
3143 	}
3144 
3145 	/*
3146 	 * Wakeup the pages we played with.  No spl protection is needed
3147 	 * for a simple wakeup.
3148 	 */
3149 	for (idx = 0; idx < size; idx++) {
3150 		m = vm_page_lookup(nobject, idx);
3151 		if (m) {
3152 			KKASSERT(m->flags & PG_BUSY);
3153 			vm_page_wakeup(m);
3154 		}
3155 	}
3156 	entry->object.vm_object = nobject;
3157 	entry->offset = 0LL;
3158 
3159 	/*
3160 	 * Cleanup
3161 	 *
3162 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3163 	 *	 related pages were moved and are no longer applicable to the
3164 	 *	 original object.
3165 	 *
3166 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3167 	 *	 replaced by nobject).
3168 	 */
3169 	vm_object_chain_release(nobject);
3170 	vm_object_drop(nobject);
3171 	if (bobject) {
3172 		vm_object_chain_release(bobject);
3173 		vm_object_drop(bobject);
3174 	}
3175 	vm_object_chain_release(oobject);
3176 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3177 	vm_object_deallocate_locked(oobject);
3178 	vm_object_drop(oobject);
3179 #endif
3180 }
3181 
3182 /*
3183  * Copies the contents of the source entry to the destination
3184  * entry.  The entries *must* be aligned properly.
3185  *
3186  * The vm_maps must be exclusively locked.
3187  * The vm_map's token must be held.
3188  *
3189  * Because the maps are locked no faults can be in progress during the
3190  * operation.
3191  */
3192 static void
3193 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3194 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3195 {
3196 	vm_object_t src_object;
3197 
3198 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3199 		return;
3200 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3201 		return;
3202 
3203 	if (src_entry->wired_count == 0) {
3204 		/*
3205 		 * If the source entry is marked needs_copy, it is already
3206 		 * write-protected.
3207 		 */
3208 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3209 			pmap_protect(src_map->pmap,
3210 			    src_entry->start,
3211 			    src_entry->end,
3212 			    src_entry->protection & ~VM_PROT_WRITE);
3213 		}
3214 
3215 		/*
3216 		 * Make a copy of the object.
3217 		 *
3218 		 * The object must be locked prior to checking the object type
3219 		 * and for the call to vm_object_collapse() and vm_map_split().
3220 		 * We cannot use *_hold() here because the split code will
3221 		 * probably try to destroy the object.  The lock is a pool
3222 		 * token and doesn't care.
3223 		 *
3224 		 * We must bump src_map->timestamp when setting
3225 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3226 		 * to retry, otherwise the concurrent fault might improperly
3227 		 * install a RW pte when its supposed to be a RO(COW) pte.
3228 		 * This race can occur because a vnode-backed fault may have
3229 		 * to temporarily release the map lock.
3230 		 */
3231 		if (src_entry->object.vm_object != NULL) {
3232 			vm_map_split(src_entry);
3233 			src_object = src_entry->object.vm_object;
3234 			dst_entry->object.vm_object = src_object;
3235 			src_entry->eflags |= (MAP_ENTRY_COW |
3236 					      MAP_ENTRY_NEEDS_COPY);
3237 			dst_entry->eflags |= (MAP_ENTRY_COW |
3238 					      MAP_ENTRY_NEEDS_COPY);
3239 			dst_entry->offset = src_entry->offset;
3240 			++src_map->timestamp;
3241 		} else {
3242 			dst_entry->object.vm_object = NULL;
3243 			dst_entry->offset = 0;
3244 		}
3245 
3246 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3247 		    dst_entry->end - dst_entry->start, src_entry->start);
3248 	} else {
3249 		/*
3250 		 * Of course, wired down pages can't be set copy-on-write.
3251 		 * Cause wired pages to be copied into the new map by
3252 		 * simulating faults (the new pages are pageable)
3253 		 */
3254 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3255 	}
3256 }
3257 
3258 /*
3259  * vmspace_fork:
3260  * Create a new process vmspace structure and vm_map
3261  * based on those of an existing process.  The new map
3262  * is based on the old map, according to the inheritance
3263  * values on the regions in that map.
3264  *
3265  * The source map must not be locked.
3266  * No requirements.
3267  */
3268 struct vmspace *
3269 vmspace_fork(struct vmspace *vm1)
3270 {
3271 	struct vmspace *vm2;
3272 	vm_map_t old_map = &vm1->vm_map;
3273 	vm_map_t new_map;
3274 	vm_map_entry_t old_entry;
3275 	vm_map_entry_t new_entry;
3276 	vm_object_t object;
3277 	int count;
3278 
3279 	lwkt_gettoken(&vm1->vm_map.token);
3280 	vm_map_lock(old_map);
3281 
3282 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3283 	lwkt_gettoken(&vm2->vm_map.token);
3284 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3285 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3286 	new_map = &vm2->vm_map;	/* XXX */
3287 	new_map->timestamp = 1;
3288 
3289 	vm_map_lock(new_map);
3290 
3291 	count = 0;
3292 	old_entry = old_map->header.next;
3293 	while (old_entry != &old_map->header) {
3294 		++count;
3295 		old_entry = old_entry->next;
3296 	}
3297 
3298 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3299 
3300 	old_entry = old_map->header.next;
3301 	while (old_entry != &old_map->header) {
3302 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3303 			panic("vm_map_fork: encountered a submap");
3304 
3305 		switch (old_entry->inheritance) {
3306 		case VM_INHERIT_NONE:
3307 			break;
3308 		case VM_INHERIT_SHARE:
3309 			/*
3310 			 * Clone the entry, creating the shared object if
3311 			 * necessary.
3312 			 */
3313 			if (old_entry->object.vm_object == NULL)
3314 				vm_map_entry_allocate_object(old_entry);
3315 
3316 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3317 				/*
3318 				 * Shadow a map_entry which needs a copy,
3319 				 * replacing its object with a new object
3320 				 * that points to the old one.  Ask the
3321 				 * shadow code to automatically add an
3322 				 * additional ref.  We can't do it afterwords
3323 				 * because we might race a collapse.  The call
3324 				 * to vm_map_entry_shadow() will also clear
3325 				 * OBJ_ONEMAPPING.
3326 				 */
3327 				vm_map_entry_shadow(old_entry, 1);
3328 			} else {
3329 				/*
3330 				 * We will make a shared copy of the object,
3331 				 * and must clear OBJ_ONEMAPPING.
3332 				 *
3333 				 * XXX assert that object.vm_object != NULL
3334 				 *     since we allocate it above.
3335 				 */
3336 				if (old_entry->object.vm_object) {
3337 					object = old_entry->object.vm_object;
3338 					vm_object_hold(object);
3339 					vm_object_chain_wait(object);
3340 					vm_object_reference_locked(object);
3341 					vm_object_clear_flag(object,
3342 							     OBJ_ONEMAPPING);
3343 					vm_object_drop(object);
3344 				}
3345 			}
3346 
3347 			/*
3348 			 * Clone the entry.  We've already bumped the ref on
3349 			 * any vm_object.
3350 			 */
3351 			new_entry = vm_map_entry_create(new_map, &count);
3352 			*new_entry = *old_entry;
3353 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3354 			new_entry->wired_count = 0;
3355 
3356 			/*
3357 			 * Insert the entry into the new map -- we know we're
3358 			 * inserting at the end of the new map.
3359 			 */
3360 
3361 			vm_map_entry_link(new_map, new_map->header.prev,
3362 					  new_entry);
3363 
3364 			/*
3365 			 * Update the physical map
3366 			 */
3367 			pmap_copy(new_map->pmap, old_map->pmap,
3368 			    new_entry->start,
3369 			    (old_entry->end - old_entry->start),
3370 			    old_entry->start);
3371 			break;
3372 		case VM_INHERIT_COPY:
3373 			/*
3374 			 * Clone the entry and link into the map.
3375 			 */
3376 			new_entry = vm_map_entry_create(new_map, &count);
3377 			*new_entry = *old_entry;
3378 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3379 			new_entry->wired_count = 0;
3380 			new_entry->object.vm_object = NULL;
3381 			vm_map_entry_link(new_map, new_map->header.prev,
3382 					  new_entry);
3383 			vm_map_copy_entry(old_map, new_map, old_entry,
3384 					  new_entry);
3385 			break;
3386 		}
3387 		old_entry = old_entry->next;
3388 	}
3389 
3390 	new_map->size = old_map->size;
3391 	vm_map_unlock(old_map);
3392 	vm_map_unlock(new_map);
3393 	vm_map_entry_release(count);
3394 
3395 	lwkt_reltoken(&vm2->vm_map.token);
3396 	lwkt_reltoken(&vm1->vm_map.token);
3397 
3398 	return (vm2);
3399 }
3400 
3401 /*
3402  * Create an auto-grow stack entry
3403  *
3404  * No requirements.
3405  */
3406 int
3407 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3408 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3409 {
3410 	vm_map_entry_t	prev_entry;
3411 	vm_map_entry_t	new_stack_entry;
3412 	vm_size_t	init_ssize;
3413 	int		rv;
3414 	int		count;
3415 	vm_offset_t	tmpaddr;
3416 
3417 	cow |= MAP_IS_STACK;
3418 
3419 	if (max_ssize < sgrowsiz)
3420 		init_ssize = max_ssize;
3421 	else
3422 		init_ssize = sgrowsiz;
3423 
3424 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3425 	vm_map_lock(map);
3426 
3427 	/*
3428 	 * Find space for the mapping
3429 	 */
3430 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3431 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3432 				     flags, &tmpaddr)) {
3433 			vm_map_unlock(map);
3434 			vm_map_entry_release(count);
3435 			return (KERN_NO_SPACE);
3436 		}
3437 		addrbos = tmpaddr;
3438 	}
3439 
3440 	/* If addr is already mapped, no go */
3441 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3442 		vm_map_unlock(map);
3443 		vm_map_entry_release(count);
3444 		return (KERN_NO_SPACE);
3445 	}
3446 
3447 #if 0
3448 	/* XXX already handled by kern_mmap() */
3449 	/* If we would blow our VMEM resource limit, no go */
3450 	if (map->size + init_ssize >
3451 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3452 		vm_map_unlock(map);
3453 		vm_map_entry_release(count);
3454 		return (KERN_NO_SPACE);
3455 	}
3456 #endif
3457 
3458 	/*
3459 	 * If we can't accomodate max_ssize in the current mapping,
3460 	 * no go.  However, we need to be aware that subsequent user
3461 	 * mappings might map into the space we have reserved for
3462 	 * stack, and currently this space is not protected.
3463 	 *
3464 	 * Hopefully we will at least detect this condition
3465 	 * when we try to grow the stack.
3466 	 */
3467 	if ((prev_entry->next != &map->header) &&
3468 	    (prev_entry->next->start < addrbos + max_ssize)) {
3469 		vm_map_unlock(map);
3470 		vm_map_entry_release(count);
3471 		return (KERN_NO_SPACE);
3472 	}
3473 
3474 	/*
3475 	 * We initially map a stack of only init_ssize.  We will
3476 	 * grow as needed later.  Since this is to be a grow
3477 	 * down stack, we map at the top of the range.
3478 	 *
3479 	 * Note: we would normally expect prot and max to be
3480 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3481 	 * eliminate these as input parameters, and just
3482 	 * pass these values here in the insert call.
3483 	 */
3484 	rv = vm_map_insert(map, &count,
3485 			   NULL, 0, addrbos + max_ssize - init_ssize,
3486 	                   addrbos + max_ssize,
3487 			   VM_MAPTYPE_NORMAL,
3488 			   prot, max,
3489 			   cow);
3490 
3491 	/* Now set the avail_ssize amount */
3492 	if (rv == KERN_SUCCESS) {
3493 		if (prev_entry != &map->header)
3494 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3495 		new_stack_entry = prev_entry->next;
3496 		if (new_stack_entry->end   != addrbos + max_ssize ||
3497 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3498 			panic ("Bad entry start/end for new stack entry");
3499 		else
3500 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3501 	}
3502 
3503 	vm_map_unlock(map);
3504 	vm_map_entry_release(count);
3505 	return (rv);
3506 }
3507 
3508 /*
3509  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3510  * desired address is already mapped, or if we successfully grow
3511  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3512  * stack range (this is strange, but preserves compatibility with
3513  * the grow function in vm_machdep.c).
3514  *
3515  * No requirements.
3516  */
3517 int
3518 vm_map_growstack (struct proc *p, vm_offset_t addr)
3519 {
3520 	vm_map_entry_t prev_entry;
3521 	vm_map_entry_t stack_entry;
3522 	vm_map_entry_t new_stack_entry;
3523 	struct vmspace *vm = p->p_vmspace;
3524 	vm_map_t map = &vm->vm_map;
3525 	vm_offset_t    end;
3526 	int grow_amount;
3527 	int rv = KERN_SUCCESS;
3528 	int is_procstack;
3529 	int use_read_lock = 1;
3530 	int count;
3531 
3532 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3533 Retry:
3534 	if (use_read_lock)
3535 		vm_map_lock_read(map);
3536 	else
3537 		vm_map_lock(map);
3538 
3539 	/* If addr is already in the entry range, no need to grow.*/
3540 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3541 		goto done;
3542 
3543 	if ((stack_entry = prev_entry->next) == &map->header)
3544 		goto done;
3545 	if (prev_entry == &map->header)
3546 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3547 	else
3548 		end = prev_entry->end;
3549 
3550 	/*
3551 	 * This next test mimics the old grow function in vm_machdep.c.
3552 	 * It really doesn't quite make sense, but we do it anyway
3553 	 * for compatibility.
3554 	 *
3555 	 * If not growable stack, return success.  This signals the
3556 	 * caller to proceed as he would normally with normal vm.
3557 	 */
3558 	if (stack_entry->aux.avail_ssize < 1 ||
3559 	    addr >= stack_entry->start ||
3560 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3561 		goto done;
3562 	}
3563 
3564 	/* Find the minimum grow amount */
3565 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3566 	if (grow_amount > stack_entry->aux.avail_ssize) {
3567 		rv = KERN_NO_SPACE;
3568 		goto done;
3569 	}
3570 
3571 	/*
3572 	 * If there is no longer enough space between the entries
3573 	 * nogo, and adjust the available space.  Note: this
3574 	 * should only happen if the user has mapped into the
3575 	 * stack area after the stack was created, and is
3576 	 * probably an error.
3577 	 *
3578 	 * This also effectively destroys any guard page the user
3579 	 * might have intended by limiting the stack size.
3580 	 */
3581 	if (grow_amount > stack_entry->start - end) {
3582 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3583 			/* lost lock */
3584 			use_read_lock = 0;
3585 			goto Retry;
3586 		}
3587 		use_read_lock = 0;
3588 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3589 		rv = KERN_NO_SPACE;
3590 		goto done;
3591 	}
3592 
3593 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3594 
3595 	/* If this is the main process stack, see if we're over the
3596 	 * stack limit.
3597 	 */
3598 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3599 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3600 		rv = KERN_NO_SPACE;
3601 		goto done;
3602 	}
3603 
3604 	/* Round up the grow amount modulo SGROWSIZ */
3605 	grow_amount = roundup (grow_amount, sgrowsiz);
3606 	if (grow_amount > stack_entry->aux.avail_ssize) {
3607 		grow_amount = stack_entry->aux.avail_ssize;
3608 	}
3609 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3610 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3611 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3612 		              ctob(vm->vm_ssize);
3613 	}
3614 
3615 	/* If we would blow our VMEM resource limit, no go */
3616 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3617 		rv = KERN_NO_SPACE;
3618 		goto done;
3619 	}
3620 
3621 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3622 		/* lost lock */
3623 		use_read_lock = 0;
3624 		goto Retry;
3625 	}
3626 	use_read_lock = 0;
3627 
3628 	/* Get the preliminary new entry start value */
3629 	addr = stack_entry->start - grow_amount;
3630 
3631 	/* If this puts us into the previous entry, cut back our growth
3632 	 * to the available space.  Also, see the note above.
3633 	 */
3634 	if (addr < end) {
3635 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3636 		addr = end;
3637 	}
3638 
3639 	rv = vm_map_insert(map, &count,
3640 			   NULL, 0, addr, stack_entry->start,
3641 			   VM_MAPTYPE_NORMAL,
3642 			   VM_PROT_ALL, VM_PROT_ALL,
3643 			   0);
3644 
3645 	/* Adjust the available stack space by the amount we grew. */
3646 	if (rv == KERN_SUCCESS) {
3647 		if (prev_entry != &map->header)
3648 			vm_map_clip_end(map, prev_entry, addr, &count);
3649 		new_stack_entry = prev_entry->next;
3650 		if (new_stack_entry->end   != stack_entry->start  ||
3651 		    new_stack_entry->start != addr)
3652 			panic ("Bad stack grow start/end in new stack entry");
3653 		else {
3654 			new_stack_entry->aux.avail_ssize =
3655 				stack_entry->aux.avail_ssize -
3656 				(new_stack_entry->end - new_stack_entry->start);
3657 			if (is_procstack)
3658 				vm->vm_ssize += btoc(new_stack_entry->end -
3659 						     new_stack_entry->start);
3660 		}
3661 
3662 		if (map->flags & MAP_WIREFUTURE)
3663 			vm_map_unwire(map, new_stack_entry->start,
3664 				      new_stack_entry->end, FALSE);
3665 	}
3666 
3667 done:
3668 	if (use_read_lock)
3669 		vm_map_unlock_read(map);
3670 	else
3671 		vm_map_unlock(map);
3672 	vm_map_entry_release(count);
3673 	return (rv);
3674 }
3675 
3676 /*
3677  * Unshare the specified VM space for exec.  If other processes are
3678  * mapped to it, then create a new one.  The new vmspace is null.
3679  *
3680  * No requirements.
3681  */
3682 void
3683 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3684 {
3685 	struct vmspace *oldvmspace = p->p_vmspace;
3686 	struct vmspace *newvmspace;
3687 	vm_map_t map = &p->p_vmspace->vm_map;
3688 
3689 	/*
3690 	 * If we are execing a resident vmspace we fork it, otherwise
3691 	 * we create a new vmspace.  Note that exitingcnt is not
3692 	 * copied to the new vmspace.
3693 	 */
3694 	lwkt_gettoken(&oldvmspace->vm_map.token);
3695 	if (vmcopy)  {
3696 		newvmspace = vmspace_fork(vmcopy);
3697 		lwkt_gettoken(&newvmspace->vm_map.token);
3698 	} else {
3699 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3700 		lwkt_gettoken(&newvmspace->vm_map.token);
3701 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3702 		      (caddr_t)&oldvmspace->vm_endcopy -
3703 		       (caddr_t)&oldvmspace->vm_startcopy);
3704 	}
3705 
3706 	/*
3707 	 * Finish initializing the vmspace before assigning it
3708 	 * to the process.  The vmspace will become the current vmspace
3709 	 * if p == curproc.
3710 	 */
3711 	pmap_pinit2(vmspace_pmap(newvmspace));
3712 	pmap_replacevm(p, newvmspace, 0);
3713 	lwkt_reltoken(&newvmspace->vm_map.token);
3714 	lwkt_reltoken(&oldvmspace->vm_map.token);
3715 	vmspace_free(oldvmspace);
3716 }
3717 
3718 /*
3719  * Unshare the specified VM space for forcing COW.  This
3720  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3721  */
3722 void
3723 vmspace_unshare(struct proc *p)
3724 {
3725 	struct vmspace *oldvmspace = p->p_vmspace;
3726 	struct vmspace *newvmspace;
3727 
3728 	lwkt_gettoken(&oldvmspace->vm_map.token);
3729 	if (oldvmspace->vm_sysref.refcnt == 1) {
3730 		lwkt_reltoken(&oldvmspace->vm_map.token);
3731 		return;
3732 	}
3733 	newvmspace = vmspace_fork(oldvmspace);
3734 	lwkt_gettoken(&newvmspace->vm_map.token);
3735 	pmap_pinit2(vmspace_pmap(newvmspace));
3736 	pmap_replacevm(p, newvmspace, 0);
3737 	lwkt_reltoken(&newvmspace->vm_map.token);
3738 	lwkt_reltoken(&oldvmspace->vm_map.token);
3739 	vmspace_free(oldvmspace);
3740 }
3741 
3742 /*
3743  * vm_map_hint: return the beginning of the best area suitable for
3744  * creating a new mapping with "prot" protection.
3745  *
3746  * No requirements.
3747  */
3748 vm_offset_t
3749 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3750 {
3751 	struct vmspace *vms = p->p_vmspace;
3752 
3753 	if (!randomize_mmap) {
3754 		/*
3755 		 * Set a reasonable start point for the hint if it was
3756 		 * not specified or if it falls within the heap space.
3757 		 * Hinted mmap()s do not allocate out of the heap space.
3758 		 */
3759 		if (addr == 0 ||
3760 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3761 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3762 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3763 		}
3764 
3765 		return addr;
3766 	}
3767 
3768 	if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3769 		return addr;
3770 
3771 #ifdef notyet
3772 #ifdef __i386__
3773 	/*
3774 	 * If executable skip first two pages, otherwise start
3775 	 * after data + heap region.
3776 	 */
3777 	if ((prot & VM_PROT_EXECUTE) &&
3778 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3779 		addr = (PAGE_SIZE * 2) +
3780 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3781 		return (round_page(addr));
3782 	}
3783 #endif /* __i386__ */
3784 #endif /* notyet */
3785 
3786 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3787 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3788 
3789 	return (round_page(addr));
3790 }
3791 
3792 /*
3793  * Finds the VM object, offset, and protection for a given virtual address
3794  * in the specified map, assuming a page fault of the type specified.
3795  *
3796  * Leaves the map in question locked for read; return values are guaranteed
3797  * until a vm_map_lookup_done call is performed.  Note that the map argument
3798  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3799  *
3800  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3801  * that fast.
3802  *
3803  * If a lookup is requested with "write protection" specified, the map may
3804  * be changed to perform virtual copying operations, although the data
3805  * referenced will remain the same.
3806  *
3807  * No requirements.
3808  */
3809 int
3810 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3811 	      vm_offset_t vaddr,
3812 	      vm_prot_t fault_typea,
3813 	      vm_map_entry_t *out_entry,	/* OUT */
3814 	      vm_object_t *object,		/* OUT */
3815 	      vm_pindex_t *pindex,		/* OUT */
3816 	      vm_prot_t *out_prot,		/* OUT */
3817 	      boolean_t *wired)			/* OUT */
3818 {
3819 	vm_map_entry_t entry;
3820 	vm_map_t map = *var_map;
3821 	vm_prot_t prot;
3822 	vm_prot_t fault_type = fault_typea;
3823 	int use_read_lock = 1;
3824 	int rv = KERN_SUCCESS;
3825 
3826 RetryLookup:
3827 	if (use_read_lock)
3828 		vm_map_lock_read(map);
3829 	else
3830 		vm_map_lock(map);
3831 
3832 	/*
3833 	 * If the map has an interesting hint, try it before calling full
3834 	 * blown lookup routine.
3835 	 */
3836 	entry = map->hint;
3837 	cpu_ccfence();
3838 	*out_entry = entry;
3839 	*object = NULL;
3840 
3841 	if ((entry == &map->header) ||
3842 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3843 		vm_map_entry_t tmp_entry;
3844 
3845 		/*
3846 		 * Entry was either not a valid hint, or the vaddr was not
3847 		 * contained in the entry, so do a full lookup.
3848 		 */
3849 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3850 			rv = KERN_INVALID_ADDRESS;
3851 			goto done;
3852 		}
3853 
3854 		entry = tmp_entry;
3855 		*out_entry = entry;
3856 	}
3857 
3858 	/*
3859 	 * Handle submaps.
3860 	 */
3861 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3862 		vm_map_t old_map = map;
3863 
3864 		*var_map = map = entry->object.sub_map;
3865 		if (use_read_lock)
3866 			vm_map_unlock_read(old_map);
3867 		else
3868 			vm_map_unlock(old_map);
3869 		use_read_lock = 1;
3870 		goto RetryLookup;
3871 	}
3872 
3873 	/*
3874 	 * Check whether this task is allowed to have this page.
3875 	 * Note the special case for MAP_ENTRY_COW
3876 	 * pages with an override.  This is to implement a forced
3877 	 * COW for debuggers.
3878 	 */
3879 
3880 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3881 		prot = entry->max_protection;
3882 	else
3883 		prot = entry->protection;
3884 
3885 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3886 	if ((fault_type & prot) != fault_type) {
3887 		rv = KERN_PROTECTION_FAILURE;
3888 		goto done;
3889 	}
3890 
3891 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3892 	    (entry->eflags & MAP_ENTRY_COW) &&
3893 	    (fault_type & VM_PROT_WRITE) &&
3894 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3895 		rv = KERN_PROTECTION_FAILURE;
3896 		goto done;
3897 	}
3898 
3899 	/*
3900 	 * If this page is not pageable, we have to get it for all possible
3901 	 * accesses.
3902 	 */
3903 	*wired = (entry->wired_count != 0);
3904 	if (*wired)
3905 		prot = fault_type = entry->protection;
3906 
3907 	/*
3908 	 * Virtual page tables may need to update the accessed (A) bit
3909 	 * in a page table entry.  Upgrade the fault to a write fault for
3910 	 * that case if the map will support it.  If the map does not support
3911 	 * it the page table entry simply will not be updated.
3912 	 */
3913 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3914 		if (prot & VM_PROT_WRITE)
3915 			fault_type |= VM_PROT_WRITE;
3916 	}
3917 
3918 	/*
3919 	 * If the entry was copy-on-write, we either ...
3920 	 */
3921 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3922 		/*
3923 		 * If we want to write the page, we may as well handle that
3924 		 * now since we've got the map locked.
3925 		 *
3926 		 * If we don't need to write the page, we just demote the
3927 		 * permissions allowed.
3928 		 */
3929 
3930 		if (fault_type & VM_PROT_WRITE) {
3931 			/*
3932 			 * Make a new object, and place it in the object
3933 			 * chain.  Note that no new references have appeared
3934 			 * -- one just moved from the map to the new
3935 			 * object.
3936 			 */
3937 
3938 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3939 				/* lost lock */
3940 				use_read_lock = 0;
3941 				goto RetryLookup;
3942 			}
3943 			use_read_lock = 0;
3944 
3945 			vm_map_entry_shadow(entry, 0);
3946 		} else {
3947 			/*
3948 			 * We're attempting to read a copy-on-write page --
3949 			 * don't allow writes.
3950 			 */
3951 
3952 			prot &= ~VM_PROT_WRITE;
3953 		}
3954 	}
3955 
3956 	/*
3957 	 * Create an object if necessary.
3958 	 */
3959 	if (entry->object.vm_object == NULL && !map->system_map) {
3960 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3961 			/* lost lock */
3962 			use_read_lock = 0;
3963 			goto RetryLookup;
3964 		}
3965 		use_read_lock = 0;
3966 		vm_map_entry_allocate_object(entry);
3967 	}
3968 
3969 	/*
3970 	 * Return the object/offset from this entry.  If the entry was
3971 	 * copy-on-write or empty, it has been fixed up.
3972 	 */
3973 
3974 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3975 	*object = entry->object.vm_object;
3976 
3977 	/*
3978 	 * Return whether this is the only map sharing this data.  On
3979 	 * success we return with a read lock held on the map.  On failure
3980 	 * we return with the map unlocked.
3981 	 */
3982 	*out_prot = prot;
3983 done:
3984 	if (rv == KERN_SUCCESS) {
3985 		if (use_read_lock == 0)
3986 			vm_map_lock_downgrade(map);
3987 	} else if (use_read_lock) {
3988 		vm_map_unlock_read(map);
3989 	} else {
3990 		vm_map_unlock(map);
3991 	}
3992 	return (rv);
3993 }
3994 
3995 /*
3996  * Releases locks acquired by a vm_map_lookup()
3997  * (according to the handle returned by that lookup).
3998  *
3999  * No other requirements.
4000  */
4001 void
4002 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4003 {
4004 	/*
4005 	 * Unlock the main-level map
4006 	 */
4007 	vm_map_unlock_read(map);
4008 	if (count)
4009 		vm_map_entry_release(count);
4010 }
4011 
4012 #include "opt_ddb.h"
4013 #ifdef DDB
4014 #include <sys/kernel.h>
4015 
4016 #include <ddb/ddb.h>
4017 
4018 /*
4019  * Debugging only
4020  */
4021 DB_SHOW_COMMAND(map, vm_map_print)
4022 {
4023 	static int nlines;
4024 	/* XXX convert args. */
4025 	vm_map_t map = (vm_map_t)addr;
4026 	boolean_t full = have_addr;
4027 
4028 	vm_map_entry_t entry;
4029 
4030 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4031 	    (void *)map,
4032 	    (void *)map->pmap, map->nentries, map->timestamp);
4033 	nlines++;
4034 
4035 	if (!full && db_indent)
4036 		return;
4037 
4038 	db_indent += 2;
4039 	for (entry = map->header.next; entry != &map->header;
4040 	    entry = entry->next) {
4041 		db_iprintf("map entry %p: start=%p, end=%p\n",
4042 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4043 		nlines++;
4044 		{
4045 			static char *inheritance_name[4] =
4046 			{"share", "copy", "none", "donate_copy"};
4047 
4048 			db_iprintf(" prot=%x/%x/%s",
4049 			    entry->protection,
4050 			    entry->max_protection,
4051 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4052 			if (entry->wired_count != 0)
4053 				db_printf(", wired");
4054 		}
4055 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4056 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4057 			db_printf(", share=%p, offset=0x%lx\n",
4058 			    (void *)entry->object.sub_map,
4059 			    (long)entry->offset);
4060 			nlines++;
4061 			if ((entry->prev == &map->header) ||
4062 			    (entry->prev->object.sub_map !=
4063 				entry->object.sub_map)) {
4064 				db_indent += 2;
4065 				vm_map_print((db_expr_t)(intptr_t)
4066 					     entry->object.sub_map,
4067 					     full, 0, NULL);
4068 				db_indent -= 2;
4069 			}
4070 		} else {
4071 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4072 			db_printf(", object=%p, offset=0x%lx",
4073 			    (void *)entry->object.vm_object,
4074 			    (long)entry->offset);
4075 			if (entry->eflags & MAP_ENTRY_COW)
4076 				db_printf(", copy (%s)",
4077 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4078 			db_printf("\n");
4079 			nlines++;
4080 
4081 			if ((entry->prev == &map->header) ||
4082 			    (entry->prev->object.vm_object !=
4083 				entry->object.vm_object)) {
4084 				db_indent += 2;
4085 				vm_object_print((db_expr_t)(intptr_t)
4086 						entry->object.vm_object,
4087 						full, 0, NULL);
4088 				nlines += 4;
4089 				db_indent -= 2;
4090 			}
4091 		}
4092 	}
4093 	db_indent -= 2;
4094 	if (db_indent == 0)
4095 		nlines = 0;
4096 }
4097 
4098 /*
4099  * Debugging only
4100  */
4101 DB_SHOW_COMMAND(procvm, procvm)
4102 {
4103 	struct proc *p;
4104 
4105 	if (have_addr) {
4106 		p = (struct proc *) addr;
4107 	} else {
4108 		p = curproc;
4109 	}
4110 
4111 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4112 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4113 	    (void *)vmspace_pmap(p->p_vmspace));
4114 
4115 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4116 }
4117 
4118 #endif /* DDB */
4119