xref: /dragonfly/sys/vm/vm_map.c (revision ef3ac1d1)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64 
65 /*
66  *	Virtual memory mapping module.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99 
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static __boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120 
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123 
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
129 #define MAPENTRYAP_CACHE	8
130 
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
134 
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
139 
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142     "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145 	   &vm_map_relock_enable, 0, "Randomize mmap offsets");
146 
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 		vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157 
158 /*
159  * Initialize the vm_map module.  Must be called before any other vm_map
160  * routines.
161  *
162  * Map and entry structures are allocated from the general purpose
163  * memory pool with some exceptions:
164  *
165  *	- The kernel map is allocated statically.
166  *	- Initial kernel map entries are allocated out of a static pool.
167  *	- We must set ZONE_SPECIAL here or the early boot code can get
168  *	  stuck if there are >63 cores.
169  *
170  *	These restrictions are necessary since malloc() uses the
171  *	maps and requires map entries.
172  *
173  * Called from the low level boot code only.
174  */
175 void
176 vm_map_startup(void)
177 {
178 	mapzone = &mapzone_store;
179 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180 		map_init, MAX_KMAP);
181 	mapentzone = &mapentzone_store;
182 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 		  map_entry_init, MAX_MAPENT);
184 	mapentzone_store.zflags |= ZONE_SPECIAL;
185 }
186 
187 /*
188  * Called prior to any vmspace allocations.
189  *
190  * Called from the low level boot code only.
191  */
192 void
193 vm_init2(void)
194 {
195 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 						sizeof(struct vmspace),
197 						0, ncpus * 4,
198 						vmspace_ctor, vmspace_dtor,
199 						NULL);
200 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
202 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
203 	pmap_init2();
204 	vm_object_init2();
205 }
206 
207 /*
208  * objcache support.  We leave the pmap root cached as long as possible
209  * for performance reasons.
210  */
211 static
212 __boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 {
215 	struct vmspace *vm = obj;
216 
217 	bzero(vm, sizeof(*vm));
218 	vm->vm_refcnt = (u_int)-1;
219 
220 	return 1;
221 }
222 
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
226 {
227 	struct vmspace *vm = obj;
228 
229 	KKASSERT(vm->vm_refcnt == (u_int)-1);
230 	pmap_puninit(vmspace_pmap(vm));
231 }
232 
233 /*
234  * Red black tree functions
235  *
236  * The caller must hold the related map lock.
237  */
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240 
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 {
245 	if (a->start < b->start)
246 		return(-1);
247 	else if (a->start > b->start)
248 		return(1);
249 	return(0);
250 }
251 
252 /*
253  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
254  * every refcnt.
255  */
256 void
257 vmspace_initrefs(struct vmspace *vm)
258 {
259 	vm->vm_refcnt = 1;
260 	vm->vm_holdcnt = 1;
261 }
262 
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap.
265  * Initialize numerous fields.  While the initial allocation is zerod,
266  * subsequence reuse from the objcache leaves elements of the structure
267  * intact (particularly the pmap), so portions must be zerod.
268  *
269  * Returns a referenced vmspace.
270  *
271  * No requirements.
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 {
276 	struct vmspace *vm;
277 
278 	vm = objcache_get(vmspace_cache, M_WAITOK);
279 
280 	bzero(&vm->vm_startcopy,
281 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
283 
284 	/*
285 	 * NOTE: hold to acquires token for safety.
286 	 *
287 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
288 	 * each refcnt also has a holdcnt.  There can be additional holds
289 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
290 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
291 	 */
292 	KKASSERT(vm->vm_holdcnt == 0);
293 	KKASSERT(vm->vm_refcnt == (u_int)-1);
294 	vmspace_initrefs(vm);
295 	vmspace_hold(vm);
296 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
297 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
298 	vm->vm_shm = NULL;
299 	vm->vm_flags = 0;
300 	cpu_vmspace_alloc(vm);
301 	vmspace_drop(vm);
302 
303 	return (vm);
304 }
305 
306 /*
307  * NOTE: Can return -1 if the vmspace is exiting.
308  */
309 int
310 vmspace_getrefs(struct vmspace *vm)
311 {
312 	return ((int)vm->vm_refcnt);
313 }
314 
315 /*
316  * A vmspace object must already have a non-zero hold to be able to gain
317  * further holds on it.
318  */
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
321 {
322 	KKASSERT(vm->vm_holdcnt != 0);
323 	refcount_acquire(&vm->vm_holdcnt);
324 }
325 
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
328 {
329 	if (refcount_release(&vm->vm_holdcnt)) {
330 		if (vm->vm_refcnt == (u_int)-1) {
331 			vmspace_terminate(vm, 1);
332 		}
333 	}
334 }
335 
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339 	vmspace_hold_notoken(vm);
340 	lwkt_gettoken(&vm->vm_map.token);
341 }
342 
343 void
344 vmspace_drop(struct vmspace *vm)
345 {
346 	lwkt_reltoken(&vm->vm_map.token);
347 	vmspace_drop_notoken(vm);
348 }
349 
350 /*
351  * A vmspace object must not be in a terminated state to be able to obtain
352  * additional refs on it.
353  *
354  * Ref'ing a vmspace object also increments its hold count.
355  */
356 void
357 vmspace_ref(struct vmspace *vm)
358 {
359 	KKASSERT((int)vm->vm_refcnt >= 0);
360 	vmspace_hold_notoken(vm);
361 	refcount_acquire(&vm->vm_refcnt);
362 }
363 
364 /*
365  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
366  * termination of the vmspace.  Then, on the final drop of the hold we
367  * will do stage-2 final termination.
368  */
369 void
370 vmspace_rel(struct vmspace *vm)
371 {
372 	if (refcount_release(&vm->vm_refcnt)) {
373 		vm->vm_refcnt = (u_int)-1;	/* no other refs possible */
374 		vmspace_terminate(vm, 0);
375 	}
376 	vmspace_drop_notoken(vm);
377 }
378 
379 /*
380  * This is called during exit indicating that the vmspace is no
381  * longer in used by an exiting process, but the process has not yet
382  * been reaped.
383  *
384  * We release the refcnt but not the associated holdcnt.
385  *
386  * No requirements.
387  */
388 void
389 vmspace_relexit(struct vmspace *vm)
390 {
391 	if (refcount_release(&vm->vm_refcnt)) {
392 		vm->vm_refcnt = (u_int)-1;	/* no other refs possible */
393 		vmspace_terminate(vm, 0);
394 	}
395 }
396 
397 /*
398  * Called during reap to disconnect the remainder of the vmspace from
399  * the process.  On the hold drop the vmspace termination is finalized.
400  *
401  * No requirements.
402  */
403 void
404 vmspace_exitfree(struct proc *p)
405 {
406 	struct vmspace *vm;
407 
408 	vm = p->p_vmspace;
409 	p->p_vmspace = NULL;
410 	vmspace_drop_notoken(vm);
411 }
412 
413 /*
414  * Called in two cases:
415  *
416  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
418  *     and holdcnt will still be non-zero.
419  *
420  * (2) When holdcnt becomes 0, called with final == 1.  There should no
421  *     longer be anyone with access to the vmspace.
422  *
423  * VMSPACE_EXIT1 flags the primary deactivation
424  * VMSPACE_EXIT2 flags the last reap
425  */
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
428 {
429 	int count;
430 
431 	lwkt_gettoken(&vm->vm_map.token);
432 	if (final == 0) {
433 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
434 
435 		/*
436 		 * Get rid of most of the resources.  Leave the kernel pmap
437 		 * intact.
438 		 */
439 		vm->vm_flags |= VMSPACE_EXIT1;
440 		shmexit(vm);
441 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
442 				  VM_MAX_USER_ADDRESS);
443 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
444 			      VM_MAX_USER_ADDRESS);
445 		lwkt_reltoken(&vm->vm_map.token);
446 	} else {
447 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
448 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
449 
450 		/*
451 		 * Get rid of remaining basic resources.
452 		 */
453 		vm->vm_flags |= VMSPACE_EXIT2;
454 		cpu_vmspace_free(vm);
455 		shmexit(vm);
456 
457 		/*
458 		 * Lock the map, to wait out all other references to it.
459 		 * Delete all of the mappings and pages they hold, then call
460 		 * the pmap module to reclaim anything left.
461 		 */
462 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
463 		vm_map_lock(&vm->vm_map);
464 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
465 			      vm->vm_map.max_offset, &count);
466 		vm_map_unlock(&vm->vm_map);
467 		vm_map_entry_release(count);
468 
469 		lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
470 		pmap_release(vmspace_pmap(vm));
471 		lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
472 		lwkt_reltoken(&vm->vm_map.token);
473 		objcache_put(vmspace_cache, vm);
474 	}
475 }
476 
477 /*
478  * Swap useage is determined by taking the proportional swap used by
479  * VM objects backing the VM map.  To make up for fractional losses,
480  * if the VM object has any swap use at all the associated map entries
481  * count for at least 1 swap page.
482  *
483  * No requirements.
484  */
485 int
486 vmspace_swap_count(struct vmspace *vm)
487 {
488 	vm_map_t map = &vm->vm_map;
489 	vm_map_entry_t cur;
490 	vm_object_t object;
491 	int count = 0;
492 	int n;
493 
494 	vmspace_hold(vm);
495 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
496 		switch(cur->maptype) {
497 		case VM_MAPTYPE_NORMAL:
498 		case VM_MAPTYPE_VPAGETABLE:
499 			if ((object = cur->object.vm_object) == NULL)
500 				break;
501 			if (object->swblock_count) {
502 				n = (cur->end - cur->start) / PAGE_SIZE;
503 				count += object->swblock_count *
504 				    SWAP_META_PAGES * n / object->size + 1;
505 			}
506 			break;
507 		default:
508 			break;
509 		}
510 	}
511 	vmspace_drop(vm);
512 
513 	return(count);
514 }
515 
516 /*
517  * Calculate the approximate number of anonymous pages in use by
518  * this vmspace.  To make up for fractional losses, we count each
519  * VM object as having at least 1 anonymous page.
520  *
521  * No requirements.
522  */
523 int
524 vmspace_anonymous_count(struct vmspace *vm)
525 {
526 	vm_map_t map = &vm->vm_map;
527 	vm_map_entry_t cur;
528 	vm_object_t object;
529 	int count = 0;
530 
531 	vmspace_hold(vm);
532 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
533 		switch(cur->maptype) {
534 		case VM_MAPTYPE_NORMAL:
535 		case VM_MAPTYPE_VPAGETABLE:
536 			if ((object = cur->object.vm_object) == NULL)
537 				break;
538 			if (object->type != OBJT_DEFAULT &&
539 			    object->type != OBJT_SWAP) {
540 				break;
541 			}
542 			count += object->resident_page_count;
543 			break;
544 		default:
545 			break;
546 		}
547 	}
548 	vmspace_drop(vm);
549 
550 	return(count);
551 }
552 
553 /*
554  * Creates and returns a new empty VM map with the given physical map
555  * structure, and having the given lower and upper address bounds.
556  *
557  * No requirements.
558  */
559 vm_map_t
560 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
561 {
562 	if (result == NULL)
563 		result = zalloc(mapzone);
564 	vm_map_init(result, min, max, pmap);
565 	return (result);
566 }
567 
568 /*
569  * Initialize an existing vm_map structure such as that in the vmspace
570  * structure.  The pmap is initialized elsewhere.
571  *
572  * No requirements.
573  */
574 void
575 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
576 {
577 	map->header.next = map->header.prev = &map->header;
578 	RB_INIT(&map->rb_root);
579 	map->nentries = 0;
580 	map->size = 0;
581 	map->system_map = 0;
582 	map->min_offset = min;
583 	map->max_offset = max;
584 	map->pmap = pmap;
585 	map->first_free = &map->header;
586 	map->hint = &map->header;
587 	map->timestamp = 0;
588 	map->flags = 0;
589 	lwkt_token_init(&map->token, "vm_map");
590 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
591 }
592 
593 /*
594  * Shadow the vm_map_entry's object.  This typically needs to be done when
595  * a write fault is taken on an entry which had previously been cloned by
596  * fork().  The shared object (which might be NULL) must become private so
597  * we add a shadow layer above it.
598  *
599  * Object allocation for anonymous mappings is defered as long as possible.
600  * When creating a shadow, however, the underlying object must be instantiated
601  * so it can be shared.
602  *
603  * If the map segment is governed by a virtual page table then it is
604  * possible to address offsets beyond the mapped area.  Just allocate
605  * a maximally sized object for this case.
606  *
607  * The vm_map must be exclusively locked.
608  * No other requirements.
609  */
610 static
611 void
612 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
613 {
614 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
615 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
616 				 0x7FFFFFFF, addref);	/* XXX */
617 	} else {
618 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
619 				 atop(entry->end - entry->start), addref);
620 	}
621 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
622 }
623 
624 /*
625  * Allocate an object for a vm_map_entry.
626  *
627  * Object allocation for anonymous mappings is defered as long as possible.
628  * This function is called when we can defer no longer, generally when a map
629  * entry might be split or forked or takes a page fault.
630  *
631  * If the map segment is governed by a virtual page table then it is
632  * possible to address offsets beyond the mapped area.  Just allocate
633  * a maximally sized object for this case.
634  *
635  * The vm_map must be exclusively locked.
636  * No other requirements.
637  */
638 void
639 vm_map_entry_allocate_object(vm_map_entry_t entry)
640 {
641 	vm_object_t obj;
642 
643 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
644 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
645 	} else {
646 		obj = vm_object_allocate(OBJT_DEFAULT,
647 					 atop(entry->end - entry->start));
648 	}
649 	entry->object.vm_object = obj;
650 	entry->offset = 0;
651 }
652 
653 /*
654  * Set an initial negative count so the first attempt to reserve
655  * space preloads a bunch of vm_map_entry's for this cpu.  Also
656  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
657  * map a new page for vm_map_entry structures.  SMP systems are
658  * particularly sensitive.
659  *
660  * This routine is called in early boot so we cannot just call
661  * vm_map_entry_reserve().
662  *
663  * Called from the low level boot code only (for each cpu)
664  *
665  * WARNING! Take care not to have too-big a static/BSS structure here
666  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
667  *	    can get blown out by the kernel plus the initrd image.
668  */
669 void
670 vm_map_entry_reserve_cpu_init(globaldata_t gd)
671 {
672 	vm_map_entry_t entry;
673 	int count;
674 	int i;
675 
676 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
677 	if (gd->gd_cpuid == 0) {
678 		entry = &cpu_map_entry_init_bsp[0];
679 		count = MAPENTRYBSP_CACHE;
680 	} else {
681 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
682 		count = MAPENTRYAP_CACHE;
683 	}
684 	for (i = 0; i < count; ++i, ++entry) {
685 		entry->next = gd->gd_vme_base;
686 		gd->gd_vme_base = entry;
687 	}
688 }
689 
690 /*
691  * Reserves vm_map_entry structures so code later on can manipulate
692  * map_entry structures within a locked map without blocking trying
693  * to allocate a new vm_map_entry.
694  *
695  * No requirements.
696  */
697 int
698 vm_map_entry_reserve(int count)
699 {
700 	struct globaldata *gd = mycpu;
701 	vm_map_entry_t entry;
702 
703 	/*
704 	 * Make sure we have enough structures in gd_vme_base to handle
705 	 * the reservation request.
706 	 *
707 	 * The critical section protects access to the per-cpu gd.
708 	 */
709 	crit_enter();
710 	while (gd->gd_vme_avail < count) {
711 		entry = zalloc(mapentzone);
712 		entry->next = gd->gd_vme_base;
713 		gd->gd_vme_base = entry;
714 		++gd->gd_vme_avail;
715 	}
716 	gd->gd_vme_avail -= count;
717 	crit_exit();
718 
719 	return(count);
720 }
721 
722 /*
723  * Releases previously reserved vm_map_entry structures that were not
724  * used.  If we have too much junk in our per-cpu cache clean some of
725  * it out.
726  *
727  * No requirements.
728  */
729 void
730 vm_map_entry_release(int count)
731 {
732 	struct globaldata *gd = mycpu;
733 	vm_map_entry_t entry;
734 
735 	crit_enter();
736 	gd->gd_vme_avail += count;
737 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
738 		entry = gd->gd_vme_base;
739 		KKASSERT(entry != NULL);
740 		gd->gd_vme_base = entry->next;
741 		--gd->gd_vme_avail;
742 		crit_exit();
743 		zfree(mapentzone, entry);
744 		crit_enter();
745 	}
746 	crit_exit();
747 }
748 
749 /*
750  * Reserve map entry structures for use in kernel_map itself.  These
751  * entries have *ALREADY* been reserved on a per-cpu basis when the map
752  * was inited.  This function is used by zalloc() to avoid a recursion
753  * when zalloc() itself needs to allocate additional kernel memory.
754  *
755  * This function works like the normal reserve but does not load the
756  * vm_map_entry cache (because that would result in an infinite
757  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
758  *
759  * Any caller of this function must be sure to renormalize after
760  * potentially eating entries to ensure that the reserve supply
761  * remains intact.
762  *
763  * No requirements.
764  */
765 int
766 vm_map_entry_kreserve(int count)
767 {
768 	struct globaldata *gd = mycpu;
769 
770 	crit_enter();
771 	gd->gd_vme_avail -= count;
772 	crit_exit();
773 	KASSERT(gd->gd_vme_base != NULL,
774 		("no reserved entries left, gd_vme_avail = %d",
775 		gd->gd_vme_avail));
776 	return(count);
777 }
778 
779 /*
780  * Release previously reserved map entries for kernel_map.  We do not
781  * attempt to clean up like the normal release function as this would
782  * cause an unnecessary (but probably not fatal) deep procedure call.
783  *
784  * No requirements.
785  */
786 void
787 vm_map_entry_krelease(int count)
788 {
789 	struct globaldata *gd = mycpu;
790 
791 	crit_enter();
792 	gd->gd_vme_avail += count;
793 	crit_exit();
794 }
795 
796 /*
797  * Allocates a VM map entry for insertion.  No entry fields are filled in.
798  *
799  * The entries should have previously been reserved.  The reservation count
800  * is tracked in (*countp).
801  *
802  * No requirements.
803  */
804 static vm_map_entry_t
805 vm_map_entry_create(vm_map_t map, int *countp)
806 {
807 	struct globaldata *gd = mycpu;
808 	vm_map_entry_t entry;
809 
810 	KKASSERT(*countp > 0);
811 	--*countp;
812 	crit_enter();
813 	entry = gd->gd_vme_base;
814 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
815 	gd->gd_vme_base = entry->next;
816 	crit_exit();
817 
818 	return(entry);
819 }
820 
821 /*
822  * Dispose of a vm_map_entry that is no longer being referenced.
823  *
824  * No requirements.
825  */
826 static void
827 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
828 {
829 	struct globaldata *gd = mycpu;
830 
831 	KKASSERT(map->hint != entry);
832 	KKASSERT(map->first_free != entry);
833 
834 	++*countp;
835 	crit_enter();
836 	entry->next = gd->gd_vme_base;
837 	gd->gd_vme_base = entry;
838 	crit_exit();
839 }
840 
841 
842 /*
843  * Insert/remove entries from maps.
844  *
845  * The related map must be exclusively locked.
846  * The caller must hold map->token
847  * No other requirements.
848  */
849 static __inline void
850 vm_map_entry_link(vm_map_t map,
851 		  vm_map_entry_t after_where,
852 		  vm_map_entry_t entry)
853 {
854 	ASSERT_VM_MAP_LOCKED(map);
855 
856 	map->nentries++;
857 	entry->prev = after_where;
858 	entry->next = after_where->next;
859 	entry->next->prev = entry;
860 	after_where->next = entry;
861 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
862 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
863 }
864 
865 static __inline void
866 vm_map_entry_unlink(vm_map_t map,
867 		    vm_map_entry_t entry)
868 {
869 	vm_map_entry_t prev;
870 	vm_map_entry_t next;
871 
872 	ASSERT_VM_MAP_LOCKED(map);
873 
874 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
875 		panic("vm_map_entry_unlink: attempt to mess with "
876 		      "locked entry! %p", entry);
877 	}
878 	prev = entry->prev;
879 	next = entry->next;
880 	next->prev = prev;
881 	prev->next = next;
882 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
883 	map->nentries--;
884 }
885 
886 /*
887  * Finds the map entry containing (or immediately preceding) the specified
888  * address in the given map.  The entry is returned in (*entry).
889  *
890  * The boolean result indicates whether the address is actually contained
891  * in the map.
892  *
893  * The related map must be locked.
894  * No other requirements.
895  */
896 boolean_t
897 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
898 {
899 	vm_map_entry_t tmp;
900 	vm_map_entry_t last;
901 
902 	ASSERT_VM_MAP_LOCKED(map);
903 #if 0
904 	/*
905 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
906 	 * the hint code with the red-black lookup meets with system crashes
907 	 * and lockups.  We do not yet know why.
908 	 *
909 	 * It is possible that the problem is related to the setting
910 	 * of the hint during map_entry deletion, in the code specified
911 	 * at the GGG comment later on in this file.
912 	 *
913 	 * YYY More likely it's because this function can be called with
914 	 * a shared lock on the map, resulting in map->hint updates possibly
915 	 * racing.  Fixed now but untested.
916 	 */
917 	/*
918 	 * Quickly check the cached hint, there's a good chance of a match.
919 	 */
920 	tmp = map->hint;
921 	cpu_ccfence();
922 	if (tmp != &map->header) {
923 		if (address >= tmp->start && address < tmp->end) {
924 			*entry = tmp;
925 			return(TRUE);
926 		}
927 	}
928 #endif
929 
930 	/*
931 	 * Locate the record from the top of the tree.  'last' tracks the
932 	 * closest prior record and is returned if no match is found, which
933 	 * in binary tree terms means tracking the most recent right-branch
934 	 * taken.  If there is no prior record, &map->header is returned.
935 	 */
936 	last = &map->header;
937 	tmp = RB_ROOT(&map->rb_root);
938 
939 	while (tmp) {
940 		if (address >= tmp->start) {
941 			if (address < tmp->end) {
942 				*entry = tmp;
943 				map->hint = tmp;
944 				return(TRUE);
945 			}
946 			last = tmp;
947 			tmp = RB_RIGHT(tmp, rb_entry);
948 		} else {
949 			tmp = RB_LEFT(tmp, rb_entry);
950 		}
951 	}
952 	*entry = last;
953 	return (FALSE);
954 }
955 
956 /*
957  * Inserts the given whole VM object into the target map at the specified
958  * address range.  The object's size should match that of the address range.
959  *
960  * The map must be exclusively locked.
961  * The object must be held.
962  * The caller must have reserved sufficient vm_map_entry structures.
963  *
964  * If object is non-NULL, ref count must be bumped by caller prior to
965  * making call to account for the new entry.
966  */
967 int
968 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
969 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
970 	      vm_maptype_t maptype,
971 	      vm_prot_t prot, vm_prot_t max, int cow)
972 {
973 	vm_map_entry_t new_entry;
974 	vm_map_entry_t prev_entry;
975 	vm_map_entry_t temp_entry;
976 	vm_eflags_t protoeflags;
977 	int must_drop = 0;
978 	vm_object_t object;
979 
980 	if (maptype == VM_MAPTYPE_UKSMAP)
981 		object = NULL;
982 	else
983 		object = map_object;
984 
985 	ASSERT_VM_MAP_LOCKED(map);
986 	if (object)
987 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
988 
989 	/*
990 	 * Check that the start and end points are not bogus.
991 	 */
992 	if ((start < map->min_offset) || (end > map->max_offset) ||
993 	    (start >= end))
994 		return (KERN_INVALID_ADDRESS);
995 
996 	/*
997 	 * Find the entry prior to the proposed starting address; if it's part
998 	 * of an existing entry, this range is bogus.
999 	 */
1000 	if (vm_map_lookup_entry(map, start, &temp_entry))
1001 		return (KERN_NO_SPACE);
1002 
1003 	prev_entry = temp_entry;
1004 
1005 	/*
1006 	 * Assert that the next entry doesn't overlap the end point.
1007 	 */
1008 
1009 	if ((prev_entry->next != &map->header) &&
1010 	    (prev_entry->next->start < end))
1011 		return (KERN_NO_SPACE);
1012 
1013 	protoeflags = 0;
1014 
1015 	if (cow & MAP_COPY_ON_WRITE)
1016 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1017 
1018 	if (cow & MAP_NOFAULT) {
1019 		protoeflags |= MAP_ENTRY_NOFAULT;
1020 
1021 		KASSERT(object == NULL,
1022 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1023 	}
1024 	if (cow & MAP_DISABLE_SYNCER)
1025 		protoeflags |= MAP_ENTRY_NOSYNC;
1026 	if (cow & MAP_DISABLE_COREDUMP)
1027 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1028 	if (cow & MAP_IS_STACK)
1029 		protoeflags |= MAP_ENTRY_STACK;
1030 	if (cow & MAP_IS_KSTACK)
1031 		protoeflags |= MAP_ENTRY_KSTACK;
1032 
1033 	lwkt_gettoken(&map->token);
1034 
1035 	if (object) {
1036 		/*
1037 		 * When object is non-NULL, it could be shared with another
1038 		 * process.  We have to set or clear OBJ_ONEMAPPING
1039 		 * appropriately.
1040 		 *
1041 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1042 		 *	 objects and will already be clear in other types
1043 		 *	 of objects, so a shared object lock is ok for
1044 		 *	 VNODE objects.
1045 		 */
1046 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1047 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1048 		}
1049 	}
1050 	else if ((prev_entry != &map->header) &&
1051 		 (prev_entry->eflags == protoeflags) &&
1052 		 (prev_entry->end == start) &&
1053 		 (prev_entry->wired_count == 0) &&
1054 		 prev_entry->maptype == maptype &&
1055 		 maptype == VM_MAPTYPE_NORMAL &&
1056 		 ((prev_entry->object.vm_object == NULL) ||
1057 		  vm_object_coalesce(prev_entry->object.vm_object,
1058 				     OFF_TO_IDX(prev_entry->offset),
1059 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1060 				     (vm_size_t)(end - prev_entry->end)))) {
1061 		/*
1062 		 * We were able to extend the object.  Determine if we
1063 		 * can extend the previous map entry to include the
1064 		 * new range as well.
1065 		 */
1066 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1067 		    (prev_entry->protection == prot) &&
1068 		    (prev_entry->max_protection == max)) {
1069 			map->size += (end - prev_entry->end);
1070 			prev_entry->end = end;
1071 			vm_map_simplify_entry(map, prev_entry, countp);
1072 			lwkt_reltoken(&map->token);
1073 			return (KERN_SUCCESS);
1074 		}
1075 
1076 		/*
1077 		 * If we can extend the object but cannot extend the
1078 		 * map entry, we have to create a new map entry.  We
1079 		 * must bump the ref count on the extended object to
1080 		 * account for it.  object may be NULL.
1081 		 */
1082 		object = prev_entry->object.vm_object;
1083 		offset = prev_entry->offset +
1084 			(prev_entry->end - prev_entry->start);
1085 		if (object) {
1086 			vm_object_hold(object);
1087 			vm_object_chain_wait(object, 0);
1088 			vm_object_reference_locked(object);
1089 			must_drop = 1;
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1095 	 * in things like the buffer map where we manage kva but do not manage
1096 	 * backing objects.
1097 	 */
1098 
1099 	/*
1100 	 * Create a new entry
1101 	 */
1102 
1103 	new_entry = vm_map_entry_create(map, countp);
1104 	new_entry->start = start;
1105 	new_entry->end = end;
1106 
1107 	new_entry->maptype = maptype;
1108 	new_entry->eflags = protoeflags;
1109 	new_entry->object.map_object = map_object;
1110 	new_entry->aux.master_pde = 0;		/* in case size is different */
1111 	new_entry->aux.map_aux = map_aux;
1112 	new_entry->offset = offset;
1113 
1114 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1115 	new_entry->protection = prot;
1116 	new_entry->max_protection = max;
1117 	new_entry->wired_count = 0;
1118 
1119 	/*
1120 	 * Insert the new entry into the list
1121 	 */
1122 
1123 	vm_map_entry_link(map, prev_entry, new_entry);
1124 	map->size += new_entry->end - new_entry->start;
1125 
1126 	/*
1127 	 * Update the free space hint.  Entries cannot overlap.
1128 	 * An exact comparison is needed to avoid matching
1129 	 * against the map->header.
1130 	 */
1131 	if ((map->first_free == prev_entry) &&
1132 	    (prev_entry->end == new_entry->start)) {
1133 		map->first_free = new_entry;
1134 	}
1135 
1136 #if 0
1137 	/*
1138 	 * Temporarily removed to avoid MAP_STACK panic, due to
1139 	 * MAP_STACK being a huge hack.  Will be added back in
1140 	 * when MAP_STACK (and the user stack mapping) is fixed.
1141 	 */
1142 	/*
1143 	 * It may be possible to simplify the entry
1144 	 */
1145 	vm_map_simplify_entry(map, new_entry, countp);
1146 #endif
1147 
1148 	/*
1149 	 * Try to pre-populate the page table.  Mappings governed by virtual
1150 	 * page tables cannot be prepopulated without a lot of work, so
1151 	 * don't try.
1152 	 */
1153 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1154 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1155 	    maptype != VM_MAPTYPE_UKSMAP) {
1156 		int dorelock = 0;
1157 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1158 			dorelock = 1;
1159 			vm_object_lock_swap();
1160 			vm_object_drop(object);
1161 		}
1162 		pmap_object_init_pt(map->pmap, start, prot,
1163 				    object, OFF_TO_IDX(offset), end - start,
1164 				    cow & MAP_PREFAULT_PARTIAL);
1165 		if (dorelock) {
1166 			vm_object_hold(object);
1167 			vm_object_lock_swap();
1168 		}
1169 	}
1170 	if (must_drop)
1171 		vm_object_drop(object);
1172 
1173 	lwkt_reltoken(&map->token);
1174 	return (KERN_SUCCESS);
1175 }
1176 
1177 /*
1178  * Find sufficient space for `length' bytes in the given map, starting at
1179  * `start'.  Returns 0 on success, 1 on no space.
1180  *
1181  * This function will returned an arbitrarily aligned pointer.  If no
1182  * particular alignment is required you should pass align as 1.  Note that
1183  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1184  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1185  * argument.
1186  *
1187  * 'align' should be a power of 2 but is not required to be.
1188  *
1189  * The map must be exclusively locked.
1190  * No other requirements.
1191  */
1192 int
1193 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1194 		 vm_size_t align, int flags, vm_offset_t *addr)
1195 {
1196 	vm_map_entry_t entry, next;
1197 	vm_offset_t end;
1198 	vm_offset_t align_mask;
1199 
1200 	if (start < map->min_offset)
1201 		start = map->min_offset;
1202 	if (start > map->max_offset)
1203 		return (1);
1204 
1205 	/*
1206 	 * If the alignment is not a power of 2 we will have to use
1207 	 * a mod/division, set align_mask to a special value.
1208 	 */
1209 	if ((align | (align - 1)) + 1 != (align << 1))
1210 		align_mask = (vm_offset_t)-1;
1211 	else
1212 		align_mask = align - 1;
1213 
1214 	/*
1215 	 * Look for the first possible address; if there's already something
1216 	 * at this address, we have to start after it.
1217 	 */
1218 	if (start == map->min_offset) {
1219 		if ((entry = map->first_free) != &map->header)
1220 			start = entry->end;
1221 	} else {
1222 		vm_map_entry_t tmp;
1223 
1224 		if (vm_map_lookup_entry(map, start, &tmp))
1225 			start = tmp->end;
1226 		entry = tmp;
1227 	}
1228 
1229 	/*
1230 	 * Look through the rest of the map, trying to fit a new region in the
1231 	 * gap between existing regions, or after the very last region.
1232 	 */
1233 	for (;; start = (entry = next)->end) {
1234 		/*
1235 		 * Adjust the proposed start by the requested alignment,
1236 		 * be sure that we didn't wrap the address.
1237 		 */
1238 		if (align_mask == (vm_offset_t)-1)
1239 			end = ((start + align - 1) / align) * align;
1240 		else
1241 			end = (start + align_mask) & ~align_mask;
1242 		if (end < start)
1243 			return (1);
1244 		start = end;
1245 		/*
1246 		 * Find the end of the proposed new region.  Be sure we didn't
1247 		 * go beyond the end of the map, or wrap around the address.
1248 		 * Then check to see if this is the last entry or if the
1249 		 * proposed end fits in the gap between this and the next
1250 		 * entry.
1251 		 */
1252 		end = start + length;
1253 		if (end > map->max_offset || end < start)
1254 			return (1);
1255 		next = entry->next;
1256 
1257 		/*
1258 		 * If the next entry's start address is beyond the desired
1259 		 * end address we may have found a good entry.
1260 		 *
1261 		 * If the next entry is a stack mapping we do not map into
1262 		 * the stack's reserved space.
1263 		 *
1264 		 * XXX continue to allow mapping into the stack's reserved
1265 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1266 		 * mapping, for backwards compatibility.  But the caller
1267 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1268 		 * want to do that.
1269 		 */
1270 		if (next == &map->header)
1271 			break;
1272 		if (next->start >= end) {
1273 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1274 				break;
1275 			if (flags & MAP_STACK)
1276 				break;
1277 			if (next->start - next->aux.avail_ssize >= end)
1278 				break;
1279 		}
1280 	}
1281 	map->hint = entry;
1282 
1283 	/*
1284 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1285 	 * if it fails.  The kernel_map is locked and nothing can steal
1286 	 * our address space if pmap_growkernel() blocks.
1287 	 *
1288 	 * NOTE: This may be unconditionally called for kldload areas on
1289 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1290 	 *	 fill 128G worth of page tables!).  Therefore we must not
1291 	 *	 retry.
1292 	 */
1293 	if (map == &kernel_map) {
1294 		vm_offset_t kstop;
1295 
1296 		kstop = round_page(start + length);
1297 		if (kstop > kernel_vm_end)
1298 			pmap_growkernel(start, kstop);
1299 	}
1300 	*addr = start;
1301 	return (0);
1302 }
1303 
1304 /*
1305  * vm_map_find finds an unallocated region in the target address map with
1306  * the given length and allocates it.  The search is defined to be first-fit
1307  * from the specified address; the region found is returned in the same
1308  * parameter.
1309  *
1310  * If object is non-NULL, ref count must be bumped by caller
1311  * prior to making call to account for the new entry.
1312  *
1313  * No requirements.  This function will lock the map temporarily.
1314  */
1315 int
1316 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1317 	    vm_ooffset_t offset, vm_offset_t *addr,
1318 	    vm_size_t length, vm_size_t align,
1319 	    boolean_t fitit,
1320 	    vm_maptype_t maptype,
1321 	    vm_prot_t prot, vm_prot_t max,
1322 	    int cow)
1323 {
1324 	vm_offset_t start;
1325 	vm_object_t object;
1326 	int result;
1327 	int count;
1328 
1329 	if (maptype == VM_MAPTYPE_UKSMAP)
1330 		object = NULL;
1331 	else
1332 		object = map_object;
1333 
1334 	start = *addr;
1335 
1336 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1337 	vm_map_lock(map);
1338 	if (object)
1339 		vm_object_hold_shared(object);
1340 	if (fitit) {
1341 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1342 			if (object)
1343 				vm_object_drop(object);
1344 			vm_map_unlock(map);
1345 			vm_map_entry_release(count);
1346 			return (KERN_NO_SPACE);
1347 		}
1348 		start = *addr;
1349 	}
1350 	result = vm_map_insert(map, &count, map_object, map_aux,
1351 			       offset, start, start + length,
1352 			       maptype, prot, max, cow);
1353 	if (object)
1354 		vm_object_drop(object);
1355 	vm_map_unlock(map);
1356 	vm_map_entry_release(count);
1357 
1358 	return (result);
1359 }
1360 
1361 /*
1362  * Simplify the given map entry by merging with either neighbor.  This
1363  * routine also has the ability to merge with both neighbors.
1364  *
1365  * This routine guarentees that the passed entry remains valid (though
1366  * possibly extended).  When merging, this routine may delete one or
1367  * both neighbors.  No action is taken on entries which have their
1368  * in-transition flag set.
1369  *
1370  * The map must be exclusively locked.
1371  */
1372 void
1373 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1374 {
1375 	vm_map_entry_t next, prev;
1376 	vm_size_t prevsize, esize;
1377 
1378 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1379 		++mycpu->gd_cnt.v_intrans_coll;
1380 		return;
1381 	}
1382 
1383 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1384 		return;
1385 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1386 		return;
1387 
1388 	prev = entry->prev;
1389 	if (prev != &map->header) {
1390 		prevsize = prev->end - prev->start;
1391 		if ( (prev->end == entry->start) &&
1392 		     (prev->maptype == entry->maptype) &&
1393 		     (prev->object.vm_object == entry->object.vm_object) &&
1394 		     (!prev->object.vm_object ||
1395 			(prev->offset + prevsize == entry->offset)) &&
1396 		     (prev->eflags == entry->eflags) &&
1397 		     (prev->protection == entry->protection) &&
1398 		     (prev->max_protection == entry->max_protection) &&
1399 		     (prev->inheritance == entry->inheritance) &&
1400 		     (prev->wired_count == entry->wired_count)) {
1401 			if (map->first_free == prev)
1402 				map->first_free = entry;
1403 			if (map->hint == prev)
1404 				map->hint = entry;
1405 			vm_map_entry_unlink(map, prev);
1406 			entry->start = prev->start;
1407 			entry->offset = prev->offset;
1408 			if (prev->object.vm_object)
1409 				vm_object_deallocate(prev->object.vm_object);
1410 			vm_map_entry_dispose(map, prev, countp);
1411 		}
1412 	}
1413 
1414 	next = entry->next;
1415 	if (next != &map->header) {
1416 		esize = entry->end - entry->start;
1417 		if ((entry->end == next->start) &&
1418 		    (next->maptype == entry->maptype) &&
1419 		    (next->object.vm_object == entry->object.vm_object) &&
1420 		     (!entry->object.vm_object ||
1421 			(entry->offset + esize == next->offset)) &&
1422 		    (next->eflags == entry->eflags) &&
1423 		    (next->protection == entry->protection) &&
1424 		    (next->max_protection == entry->max_protection) &&
1425 		    (next->inheritance == entry->inheritance) &&
1426 		    (next->wired_count == entry->wired_count)) {
1427 			if (map->first_free == next)
1428 				map->first_free = entry;
1429 			if (map->hint == next)
1430 				map->hint = entry;
1431 			vm_map_entry_unlink(map, next);
1432 			entry->end = next->end;
1433 			if (next->object.vm_object)
1434 				vm_object_deallocate(next->object.vm_object);
1435 			vm_map_entry_dispose(map, next, countp);
1436 	        }
1437 	}
1438 }
1439 
1440 /*
1441  * Asserts that the given entry begins at or after the specified address.
1442  * If necessary, it splits the entry into two.
1443  */
1444 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1445 {									\
1446 	if (startaddr > entry->start)					\
1447 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1448 }
1449 
1450 /*
1451  * This routine is called only when it is known that the entry must be split.
1452  *
1453  * The map must be exclusively locked.
1454  */
1455 static void
1456 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1457 		   int *countp)
1458 {
1459 	vm_map_entry_t new_entry;
1460 
1461 	/*
1462 	 * Split off the front portion -- note that we must insert the new
1463 	 * entry BEFORE this one, so that this entry has the specified
1464 	 * starting address.
1465 	 */
1466 
1467 	vm_map_simplify_entry(map, entry, countp);
1468 
1469 	/*
1470 	 * If there is no object backing this entry, we might as well create
1471 	 * one now.  If we defer it, an object can get created after the map
1472 	 * is clipped, and individual objects will be created for the split-up
1473 	 * map.  This is a bit of a hack, but is also about the best place to
1474 	 * put this improvement.
1475 	 */
1476 	if (entry->object.vm_object == NULL && !map->system_map) {
1477 		vm_map_entry_allocate_object(entry);
1478 	}
1479 
1480 	new_entry = vm_map_entry_create(map, countp);
1481 	*new_entry = *entry;
1482 
1483 	new_entry->end = start;
1484 	entry->offset += (start - entry->start);
1485 	entry->start = start;
1486 
1487 	vm_map_entry_link(map, entry->prev, new_entry);
1488 
1489 	switch(entry->maptype) {
1490 	case VM_MAPTYPE_NORMAL:
1491 	case VM_MAPTYPE_VPAGETABLE:
1492 		if (new_entry->object.vm_object) {
1493 			vm_object_hold(new_entry->object.vm_object);
1494 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1495 			vm_object_reference_locked(new_entry->object.vm_object);
1496 			vm_object_drop(new_entry->object.vm_object);
1497 		}
1498 		break;
1499 	default:
1500 		break;
1501 	}
1502 }
1503 
1504 /*
1505  * Asserts that the given entry ends at or before the specified address.
1506  * If necessary, it splits the entry into two.
1507  *
1508  * The map must be exclusively locked.
1509  */
1510 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1511 {								\
1512 	if (endaddr < entry->end)				\
1513 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1514 }
1515 
1516 /*
1517  * This routine is called only when it is known that the entry must be split.
1518  *
1519  * The map must be exclusively locked.
1520  */
1521 static void
1522 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1523 		 int *countp)
1524 {
1525 	vm_map_entry_t new_entry;
1526 
1527 	/*
1528 	 * If there is no object backing this entry, we might as well create
1529 	 * one now.  If we defer it, an object can get created after the map
1530 	 * is clipped, and individual objects will be created for the split-up
1531 	 * map.  This is a bit of a hack, but is also about the best place to
1532 	 * put this improvement.
1533 	 */
1534 
1535 	if (entry->object.vm_object == NULL && !map->system_map) {
1536 		vm_map_entry_allocate_object(entry);
1537 	}
1538 
1539 	/*
1540 	 * Create a new entry and insert it AFTER the specified entry
1541 	 */
1542 
1543 	new_entry = vm_map_entry_create(map, countp);
1544 	*new_entry = *entry;
1545 
1546 	new_entry->start = entry->end = end;
1547 	new_entry->offset += (end - entry->start);
1548 
1549 	vm_map_entry_link(map, entry, new_entry);
1550 
1551 	switch(entry->maptype) {
1552 	case VM_MAPTYPE_NORMAL:
1553 	case VM_MAPTYPE_VPAGETABLE:
1554 		if (new_entry->object.vm_object) {
1555 			vm_object_hold(new_entry->object.vm_object);
1556 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1557 			vm_object_reference_locked(new_entry->object.vm_object);
1558 			vm_object_drop(new_entry->object.vm_object);
1559 		}
1560 		break;
1561 	default:
1562 		break;
1563 	}
1564 }
1565 
1566 /*
1567  * Asserts that the starting and ending region addresses fall within the
1568  * valid range for the map.
1569  */
1570 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1571 {						\
1572 	if (start < vm_map_min(map))		\
1573 		start = vm_map_min(map);	\
1574 	if (end > vm_map_max(map))		\
1575 		end = vm_map_max(map);		\
1576 	if (start > end)			\
1577 		start = end;			\
1578 }
1579 
1580 /*
1581  * Used to block when an in-transition collison occurs.  The map
1582  * is unlocked for the sleep and relocked before the return.
1583  */
1584 void
1585 vm_map_transition_wait(vm_map_t map)
1586 {
1587 	tsleep_interlock(map, 0);
1588 	vm_map_unlock(map);
1589 	tsleep(map, PINTERLOCKED, "vment", 0);
1590 	vm_map_lock(map);
1591 }
1592 
1593 /*
1594  * When we do blocking operations with the map lock held it is
1595  * possible that a clip might have occured on our in-transit entry,
1596  * requiring an adjustment to the entry in our loop.  These macros
1597  * help the pageable and clip_range code deal with the case.  The
1598  * conditional costs virtually nothing if no clipping has occured.
1599  */
1600 
1601 #define CLIP_CHECK_BACK(entry, save_start)		\
1602     do {						\
1603 	    while (entry->start != save_start) {	\
1604 		    entry = entry->prev;		\
1605 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1606 	    }						\
1607     } while(0)
1608 
1609 #define CLIP_CHECK_FWD(entry, save_end)			\
1610     do {						\
1611 	    while (entry->end != save_end) {		\
1612 		    entry = entry->next;		\
1613 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1614 	    }						\
1615     } while(0)
1616 
1617 
1618 /*
1619  * Clip the specified range and return the base entry.  The
1620  * range may cover several entries starting at the returned base
1621  * and the first and last entry in the covering sequence will be
1622  * properly clipped to the requested start and end address.
1623  *
1624  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1625  * flag.
1626  *
1627  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1628  * covered by the requested range.
1629  *
1630  * The map must be exclusively locked on entry and will remain locked
1631  * on return. If no range exists or the range contains holes and you
1632  * specified that no holes were allowed, NULL will be returned.  This
1633  * routine may temporarily unlock the map in order avoid a deadlock when
1634  * sleeping.
1635  */
1636 static
1637 vm_map_entry_t
1638 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1639 		  int *countp, int flags)
1640 {
1641 	vm_map_entry_t start_entry;
1642 	vm_map_entry_t entry;
1643 
1644 	/*
1645 	 * Locate the entry and effect initial clipping.  The in-transition
1646 	 * case does not occur very often so do not try to optimize it.
1647 	 */
1648 again:
1649 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1650 		return (NULL);
1651 	entry = start_entry;
1652 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1653 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1654 		++mycpu->gd_cnt.v_intrans_coll;
1655 		++mycpu->gd_cnt.v_intrans_wait;
1656 		vm_map_transition_wait(map);
1657 		/*
1658 		 * entry and/or start_entry may have been clipped while
1659 		 * we slept, or may have gone away entirely.  We have
1660 		 * to restart from the lookup.
1661 		 */
1662 		goto again;
1663 	}
1664 
1665 	/*
1666 	 * Since we hold an exclusive map lock we do not have to restart
1667 	 * after clipping, even though clipping may block in zalloc.
1668 	 */
1669 	vm_map_clip_start(map, entry, start, countp);
1670 	vm_map_clip_end(map, entry, end, countp);
1671 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1672 
1673 	/*
1674 	 * Scan entries covered by the range.  When working on the next
1675 	 * entry a restart need only re-loop on the current entry which
1676 	 * we have already locked, since 'next' may have changed.  Also,
1677 	 * even though entry is safe, it may have been clipped so we
1678 	 * have to iterate forwards through the clip after sleeping.
1679 	 */
1680 	while (entry->next != &map->header && entry->next->start < end) {
1681 		vm_map_entry_t next = entry->next;
1682 
1683 		if (flags & MAP_CLIP_NO_HOLES) {
1684 			if (next->start > entry->end) {
1685 				vm_map_unclip_range(map, start_entry,
1686 					start, entry->end, countp, flags);
1687 				return(NULL);
1688 			}
1689 		}
1690 
1691 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1692 			vm_offset_t save_end = entry->end;
1693 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1694 			++mycpu->gd_cnt.v_intrans_coll;
1695 			++mycpu->gd_cnt.v_intrans_wait;
1696 			vm_map_transition_wait(map);
1697 
1698 			/*
1699 			 * clips might have occured while we blocked.
1700 			 */
1701 			CLIP_CHECK_FWD(entry, save_end);
1702 			CLIP_CHECK_BACK(start_entry, start);
1703 			continue;
1704 		}
1705 		/*
1706 		 * No restart necessary even though clip_end may block, we
1707 		 * are holding the map lock.
1708 		 */
1709 		vm_map_clip_end(map, next, end, countp);
1710 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1711 		entry = next;
1712 	}
1713 	if (flags & MAP_CLIP_NO_HOLES) {
1714 		if (entry->end != end) {
1715 			vm_map_unclip_range(map, start_entry,
1716 				start, entry->end, countp, flags);
1717 			return(NULL);
1718 		}
1719 	}
1720 	return(start_entry);
1721 }
1722 
1723 /*
1724  * Undo the effect of vm_map_clip_range().  You should pass the same
1725  * flags and the same range that you passed to vm_map_clip_range().
1726  * This code will clear the in-transition flag on the entries and
1727  * wake up anyone waiting.  This code will also simplify the sequence
1728  * and attempt to merge it with entries before and after the sequence.
1729  *
1730  * The map must be locked on entry and will remain locked on return.
1731  *
1732  * Note that you should also pass the start_entry returned by
1733  * vm_map_clip_range().  However, if you block between the two calls
1734  * with the map unlocked please be aware that the start_entry may
1735  * have been clipped and you may need to scan it backwards to find
1736  * the entry corresponding with the original start address.  You are
1737  * responsible for this, vm_map_unclip_range() expects the correct
1738  * start_entry to be passed to it and will KASSERT otherwise.
1739  */
1740 static
1741 void
1742 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1743 		    vm_offset_t start, vm_offset_t end,
1744 		    int *countp, int flags)
1745 {
1746 	vm_map_entry_t entry;
1747 
1748 	entry = start_entry;
1749 
1750 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1751 	while (entry != &map->header && entry->start < end) {
1752 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1753 			("in-transition flag not set during unclip on: %p",
1754 			entry));
1755 		KASSERT(entry->end <= end,
1756 			("unclip_range: tail wasn't clipped"));
1757 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1758 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1759 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1760 			wakeup(map);
1761 		}
1762 		entry = entry->next;
1763 	}
1764 
1765 	/*
1766 	 * Simplification does not block so there is no restart case.
1767 	 */
1768 	entry = start_entry;
1769 	while (entry != &map->header && entry->start < end) {
1770 		vm_map_simplify_entry(map, entry, countp);
1771 		entry = entry->next;
1772 	}
1773 }
1774 
1775 /*
1776  * Mark the given range as handled by a subordinate map.
1777  *
1778  * This range must have been created with vm_map_find(), and no other
1779  * operations may have been performed on this range prior to calling
1780  * vm_map_submap().
1781  *
1782  * Submappings cannot be removed.
1783  *
1784  * No requirements.
1785  */
1786 int
1787 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1788 {
1789 	vm_map_entry_t entry;
1790 	int result = KERN_INVALID_ARGUMENT;
1791 	int count;
1792 
1793 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1794 	vm_map_lock(map);
1795 
1796 	VM_MAP_RANGE_CHECK(map, start, end);
1797 
1798 	if (vm_map_lookup_entry(map, start, &entry)) {
1799 		vm_map_clip_start(map, entry, start, &count);
1800 	} else {
1801 		entry = entry->next;
1802 	}
1803 
1804 	vm_map_clip_end(map, entry, end, &count);
1805 
1806 	if ((entry->start == start) && (entry->end == end) &&
1807 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1808 	    (entry->object.vm_object == NULL)) {
1809 		entry->object.sub_map = submap;
1810 		entry->maptype = VM_MAPTYPE_SUBMAP;
1811 		result = KERN_SUCCESS;
1812 	}
1813 	vm_map_unlock(map);
1814 	vm_map_entry_release(count);
1815 
1816 	return (result);
1817 }
1818 
1819 /*
1820  * Sets the protection of the specified address region in the target map.
1821  * If "set_max" is specified, the maximum protection is to be set;
1822  * otherwise, only the current protection is affected.
1823  *
1824  * The protection is not applicable to submaps, but is applicable to normal
1825  * maps and maps governed by virtual page tables.  For example, when operating
1826  * on a virtual page table our protection basically controls how COW occurs
1827  * on the backing object, whereas the virtual page table abstraction itself
1828  * is an abstraction for userland.
1829  *
1830  * No requirements.
1831  */
1832 int
1833 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1834 	       vm_prot_t new_prot, boolean_t set_max)
1835 {
1836 	vm_map_entry_t current;
1837 	vm_map_entry_t entry;
1838 	int count;
1839 
1840 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1841 	vm_map_lock(map);
1842 
1843 	VM_MAP_RANGE_CHECK(map, start, end);
1844 
1845 	if (vm_map_lookup_entry(map, start, &entry)) {
1846 		vm_map_clip_start(map, entry, start, &count);
1847 	} else {
1848 		entry = entry->next;
1849 	}
1850 
1851 	/*
1852 	 * Make a first pass to check for protection violations.
1853 	 */
1854 	current = entry;
1855 	while ((current != &map->header) && (current->start < end)) {
1856 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1857 			vm_map_unlock(map);
1858 			vm_map_entry_release(count);
1859 			return (KERN_INVALID_ARGUMENT);
1860 		}
1861 		if ((new_prot & current->max_protection) != new_prot) {
1862 			vm_map_unlock(map);
1863 			vm_map_entry_release(count);
1864 			return (KERN_PROTECTION_FAILURE);
1865 		}
1866 		current = current->next;
1867 	}
1868 
1869 	/*
1870 	 * Go back and fix up protections. [Note that clipping is not
1871 	 * necessary the second time.]
1872 	 */
1873 	current = entry;
1874 
1875 	while ((current != &map->header) && (current->start < end)) {
1876 		vm_prot_t old_prot;
1877 
1878 		vm_map_clip_end(map, current, end, &count);
1879 
1880 		old_prot = current->protection;
1881 		if (set_max) {
1882 			current->protection =
1883 			    (current->max_protection = new_prot) &
1884 			    old_prot;
1885 		} else {
1886 			current->protection = new_prot;
1887 		}
1888 
1889 		/*
1890 		 * Update physical map if necessary. Worry about copy-on-write
1891 		 * here -- CHECK THIS XXX
1892 		 */
1893 
1894 		if (current->protection != old_prot) {
1895 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1896 							VM_PROT_ALL)
1897 
1898 			pmap_protect(map->pmap, current->start,
1899 			    current->end,
1900 			    current->protection & MASK(current));
1901 #undef	MASK
1902 		}
1903 
1904 		vm_map_simplify_entry(map, current, &count);
1905 
1906 		current = current->next;
1907 	}
1908 
1909 	vm_map_unlock(map);
1910 	vm_map_entry_release(count);
1911 	return (KERN_SUCCESS);
1912 }
1913 
1914 /*
1915  * This routine traverses a processes map handling the madvise
1916  * system call.  Advisories are classified as either those effecting
1917  * the vm_map_entry structure, or those effecting the underlying
1918  * objects.
1919  *
1920  * The <value> argument is used for extended madvise calls.
1921  *
1922  * No requirements.
1923  */
1924 int
1925 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1926 	       int behav, off_t value)
1927 {
1928 	vm_map_entry_t current, entry;
1929 	int modify_map = 0;
1930 	int error = 0;
1931 	int count;
1932 
1933 	/*
1934 	 * Some madvise calls directly modify the vm_map_entry, in which case
1935 	 * we need to use an exclusive lock on the map and we need to perform
1936 	 * various clipping operations.  Otherwise we only need a read-lock
1937 	 * on the map.
1938 	 */
1939 
1940 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1941 
1942 	switch(behav) {
1943 	case MADV_NORMAL:
1944 	case MADV_SEQUENTIAL:
1945 	case MADV_RANDOM:
1946 	case MADV_NOSYNC:
1947 	case MADV_AUTOSYNC:
1948 	case MADV_NOCORE:
1949 	case MADV_CORE:
1950 	case MADV_SETMAP:
1951 	case MADV_INVAL:
1952 		modify_map = 1;
1953 		vm_map_lock(map);
1954 		break;
1955 	case MADV_WILLNEED:
1956 	case MADV_DONTNEED:
1957 	case MADV_FREE:
1958 		vm_map_lock_read(map);
1959 		break;
1960 	default:
1961 		vm_map_entry_release(count);
1962 		return (EINVAL);
1963 	}
1964 
1965 	/*
1966 	 * Locate starting entry and clip if necessary.
1967 	 */
1968 
1969 	VM_MAP_RANGE_CHECK(map, start, end);
1970 
1971 	if (vm_map_lookup_entry(map, start, &entry)) {
1972 		if (modify_map)
1973 			vm_map_clip_start(map, entry, start, &count);
1974 	} else {
1975 		entry = entry->next;
1976 	}
1977 
1978 	if (modify_map) {
1979 		/*
1980 		 * madvise behaviors that are implemented in the vm_map_entry.
1981 		 *
1982 		 * We clip the vm_map_entry so that behavioral changes are
1983 		 * limited to the specified address range.
1984 		 */
1985 		for (current = entry;
1986 		     (current != &map->header) && (current->start < end);
1987 		     current = current->next
1988 		) {
1989 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1990 				continue;
1991 
1992 			vm_map_clip_end(map, current, end, &count);
1993 
1994 			switch (behav) {
1995 			case MADV_NORMAL:
1996 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1997 				break;
1998 			case MADV_SEQUENTIAL:
1999 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2000 				break;
2001 			case MADV_RANDOM:
2002 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2003 				break;
2004 			case MADV_NOSYNC:
2005 				current->eflags |= MAP_ENTRY_NOSYNC;
2006 				break;
2007 			case MADV_AUTOSYNC:
2008 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2009 				break;
2010 			case MADV_NOCORE:
2011 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2012 				break;
2013 			case MADV_CORE:
2014 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2015 				break;
2016 			case MADV_INVAL:
2017 				/*
2018 				 * Invalidate the related pmap entries, used
2019 				 * to flush portions of the real kernel's
2020 				 * pmap when the caller has removed or
2021 				 * modified existing mappings in a virtual
2022 				 * page table.
2023 				 */
2024 				pmap_remove(map->pmap,
2025 					    current->start, current->end);
2026 				break;
2027 			case MADV_SETMAP:
2028 				/*
2029 				 * Set the page directory page for a map
2030 				 * governed by a virtual page table.  Mark
2031 				 * the entry as being governed by a virtual
2032 				 * page table if it is not.
2033 				 *
2034 				 * XXX the page directory page is stored
2035 				 * in the avail_ssize field if the map_entry.
2036 				 *
2037 				 * XXX the map simplification code does not
2038 				 * compare this field so weird things may
2039 				 * happen if you do not apply this function
2040 				 * to the entire mapping governed by the
2041 				 * virtual page table.
2042 				 */
2043 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2044 					error = EINVAL;
2045 					break;
2046 				}
2047 				current->aux.master_pde = value;
2048 				pmap_remove(map->pmap,
2049 					    current->start, current->end);
2050 				break;
2051 			default:
2052 				error = EINVAL;
2053 				break;
2054 			}
2055 			vm_map_simplify_entry(map, current, &count);
2056 		}
2057 		vm_map_unlock(map);
2058 	} else {
2059 		vm_pindex_t pindex;
2060 		int count;
2061 
2062 		/*
2063 		 * madvise behaviors that are implemented in the underlying
2064 		 * vm_object.
2065 		 *
2066 		 * Since we don't clip the vm_map_entry, we have to clip
2067 		 * the vm_object pindex and count.
2068 		 *
2069 		 * NOTE!  We currently do not support these functions on
2070 		 * virtual page tables.
2071 		 */
2072 		for (current = entry;
2073 		     (current != &map->header) && (current->start < end);
2074 		     current = current->next
2075 		) {
2076 			vm_offset_t useStart;
2077 
2078 			if (current->maptype != VM_MAPTYPE_NORMAL)
2079 				continue;
2080 
2081 			pindex = OFF_TO_IDX(current->offset);
2082 			count = atop(current->end - current->start);
2083 			useStart = current->start;
2084 
2085 			if (current->start < start) {
2086 				pindex += atop(start - current->start);
2087 				count -= atop(start - current->start);
2088 				useStart = start;
2089 			}
2090 			if (current->end > end)
2091 				count -= atop(current->end - end);
2092 
2093 			if (count <= 0)
2094 				continue;
2095 
2096 			vm_object_madvise(current->object.vm_object,
2097 					  pindex, count, behav);
2098 
2099 			/*
2100 			 * Try to populate the page table.  Mappings governed
2101 			 * by virtual page tables cannot be pre-populated
2102 			 * without a lot of work so don't try.
2103 			 */
2104 			if (behav == MADV_WILLNEED &&
2105 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2106 				pmap_object_init_pt(
2107 				    map->pmap,
2108 				    useStart,
2109 				    current->protection,
2110 				    current->object.vm_object,
2111 				    pindex,
2112 				    (count << PAGE_SHIFT),
2113 				    MAP_PREFAULT_MADVISE
2114 				);
2115 			}
2116 		}
2117 		vm_map_unlock_read(map);
2118 	}
2119 	vm_map_entry_release(count);
2120 	return(error);
2121 }
2122 
2123 
2124 /*
2125  * Sets the inheritance of the specified address range in the target map.
2126  * Inheritance affects how the map will be shared with child maps at the
2127  * time of vm_map_fork.
2128  */
2129 int
2130 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2131 	       vm_inherit_t new_inheritance)
2132 {
2133 	vm_map_entry_t entry;
2134 	vm_map_entry_t temp_entry;
2135 	int count;
2136 
2137 	switch (new_inheritance) {
2138 	case VM_INHERIT_NONE:
2139 	case VM_INHERIT_COPY:
2140 	case VM_INHERIT_SHARE:
2141 		break;
2142 	default:
2143 		return (KERN_INVALID_ARGUMENT);
2144 	}
2145 
2146 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2147 	vm_map_lock(map);
2148 
2149 	VM_MAP_RANGE_CHECK(map, start, end);
2150 
2151 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2152 		entry = temp_entry;
2153 		vm_map_clip_start(map, entry, start, &count);
2154 	} else
2155 		entry = temp_entry->next;
2156 
2157 	while ((entry != &map->header) && (entry->start < end)) {
2158 		vm_map_clip_end(map, entry, end, &count);
2159 
2160 		entry->inheritance = new_inheritance;
2161 
2162 		vm_map_simplify_entry(map, entry, &count);
2163 
2164 		entry = entry->next;
2165 	}
2166 	vm_map_unlock(map);
2167 	vm_map_entry_release(count);
2168 	return (KERN_SUCCESS);
2169 }
2170 
2171 /*
2172  * Implement the semantics of mlock
2173  */
2174 int
2175 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2176 	      boolean_t new_pageable)
2177 {
2178 	vm_map_entry_t entry;
2179 	vm_map_entry_t start_entry;
2180 	vm_offset_t end;
2181 	int rv = KERN_SUCCESS;
2182 	int count;
2183 
2184 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2185 	vm_map_lock(map);
2186 	VM_MAP_RANGE_CHECK(map, start, real_end);
2187 	end = real_end;
2188 
2189 	start_entry = vm_map_clip_range(map, start, end, &count,
2190 					MAP_CLIP_NO_HOLES);
2191 	if (start_entry == NULL) {
2192 		vm_map_unlock(map);
2193 		vm_map_entry_release(count);
2194 		return (KERN_INVALID_ADDRESS);
2195 	}
2196 
2197 	if (new_pageable == 0) {
2198 		entry = start_entry;
2199 		while ((entry != &map->header) && (entry->start < end)) {
2200 			vm_offset_t save_start;
2201 			vm_offset_t save_end;
2202 
2203 			/*
2204 			 * Already user wired or hard wired (trivial cases)
2205 			 */
2206 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2207 				entry = entry->next;
2208 				continue;
2209 			}
2210 			if (entry->wired_count != 0) {
2211 				entry->wired_count++;
2212 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2213 				entry = entry->next;
2214 				continue;
2215 			}
2216 
2217 			/*
2218 			 * A new wiring requires instantiation of appropriate
2219 			 * management structures and the faulting in of the
2220 			 * page.
2221 			 */
2222 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2223 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2224 				int copyflag = entry->eflags &
2225 					       MAP_ENTRY_NEEDS_COPY;
2226 				if (copyflag && ((entry->protection &
2227 						  VM_PROT_WRITE) != 0)) {
2228 					vm_map_entry_shadow(entry, 0);
2229 				} else if (entry->object.vm_object == NULL &&
2230 					   !map->system_map) {
2231 					vm_map_entry_allocate_object(entry);
2232 				}
2233 			}
2234 			entry->wired_count++;
2235 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2236 
2237 			/*
2238 			 * Now fault in the area.  Note that vm_fault_wire()
2239 			 * may release the map lock temporarily, it will be
2240 			 * relocked on return.  The in-transition
2241 			 * flag protects the entries.
2242 			 */
2243 			save_start = entry->start;
2244 			save_end = entry->end;
2245 			rv = vm_fault_wire(map, entry, TRUE, 0);
2246 			if (rv) {
2247 				CLIP_CHECK_BACK(entry, save_start);
2248 				for (;;) {
2249 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2250 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2251 					entry->wired_count = 0;
2252 					if (entry->end == save_end)
2253 						break;
2254 					entry = entry->next;
2255 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2256 				}
2257 				end = save_start;	/* unwire the rest */
2258 				break;
2259 			}
2260 			/*
2261 			 * note that even though the entry might have been
2262 			 * clipped, the USER_WIRED flag we set prevents
2263 			 * duplication so we do not have to do a
2264 			 * clip check.
2265 			 */
2266 			entry = entry->next;
2267 		}
2268 
2269 		/*
2270 		 * If we failed fall through to the unwiring section to
2271 		 * unwire what we had wired so far.  'end' has already
2272 		 * been adjusted.
2273 		 */
2274 		if (rv)
2275 			new_pageable = 1;
2276 
2277 		/*
2278 		 * start_entry might have been clipped if we unlocked the
2279 		 * map and blocked.  No matter how clipped it has gotten
2280 		 * there should be a fragment that is on our start boundary.
2281 		 */
2282 		CLIP_CHECK_BACK(start_entry, start);
2283 	}
2284 
2285 	/*
2286 	 * Deal with the unwiring case.
2287 	 */
2288 	if (new_pageable) {
2289 		/*
2290 		 * This is the unwiring case.  We must first ensure that the
2291 		 * range to be unwired is really wired down.  We know there
2292 		 * are no holes.
2293 		 */
2294 		entry = start_entry;
2295 		while ((entry != &map->header) && (entry->start < end)) {
2296 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2297 				rv = KERN_INVALID_ARGUMENT;
2298 				goto done;
2299 			}
2300 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2301 			entry = entry->next;
2302 		}
2303 
2304 		/*
2305 		 * Now decrement the wiring count for each region. If a region
2306 		 * becomes completely unwired, unwire its physical pages and
2307 		 * mappings.
2308 		 */
2309 		/*
2310 		 * The map entries are processed in a loop, checking to
2311 		 * make sure the entry is wired and asserting it has a wired
2312 		 * count. However, another loop was inserted more-or-less in
2313 		 * the middle of the unwiring path. This loop picks up the
2314 		 * "entry" loop variable from the first loop without first
2315 		 * setting it to start_entry. Naturally, the secound loop
2316 		 * is never entered and the pages backing the entries are
2317 		 * never unwired. This can lead to a leak of wired pages.
2318 		 */
2319 		entry = start_entry;
2320 		while ((entry != &map->header) && (entry->start < end)) {
2321 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2322 				("expected USER_WIRED on entry %p", entry));
2323 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2324 			entry->wired_count--;
2325 			if (entry->wired_count == 0)
2326 				vm_fault_unwire(map, entry);
2327 			entry = entry->next;
2328 		}
2329 	}
2330 done:
2331 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2332 		MAP_CLIP_NO_HOLES);
2333 	map->timestamp++;
2334 	vm_map_unlock(map);
2335 	vm_map_entry_release(count);
2336 	return (rv);
2337 }
2338 
2339 /*
2340  * Sets the pageability of the specified address range in the target map.
2341  * Regions specified as not pageable require locked-down physical
2342  * memory and physical page maps.
2343  *
2344  * The map must not be locked, but a reference must remain to the map
2345  * throughout the call.
2346  *
2347  * This function may be called via the zalloc path and must properly
2348  * reserve map entries for kernel_map.
2349  *
2350  * No requirements.
2351  */
2352 int
2353 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2354 {
2355 	vm_map_entry_t entry;
2356 	vm_map_entry_t start_entry;
2357 	vm_offset_t end;
2358 	int rv = KERN_SUCCESS;
2359 	int count;
2360 
2361 	if (kmflags & KM_KRESERVE)
2362 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2363 	else
2364 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2365 	vm_map_lock(map);
2366 	VM_MAP_RANGE_CHECK(map, start, real_end);
2367 	end = real_end;
2368 
2369 	start_entry = vm_map_clip_range(map, start, end, &count,
2370 					MAP_CLIP_NO_HOLES);
2371 	if (start_entry == NULL) {
2372 		vm_map_unlock(map);
2373 		rv = KERN_INVALID_ADDRESS;
2374 		goto failure;
2375 	}
2376 	if ((kmflags & KM_PAGEABLE) == 0) {
2377 		/*
2378 		 * Wiring.
2379 		 *
2380 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2381 		 * objects that need to be created. Then we clip each map
2382 		 * entry to the region to be wired and increment its wiring
2383 		 * count.  We create objects before clipping the map entries
2384 		 * to avoid object proliferation.
2385 		 *
2386 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2387 		 * fault in the pages for any newly wired area (wired_count is
2388 		 * 1).
2389 		 *
2390 		 * Downgrading to a read lock for vm_fault_wire avoids a
2391 		 * possible deadlock with another process that may have faulted
2392 		 * on one of the pages to be wired (it would mark the page busy,
2393 		 * blocking us, then in turn block on the map lock that we
2394 		 * hold).  Because of problems in the recursive lock package,
2395 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2396 		 * any actions that require the write lock must be done
2397 		 * beforehand.  Because we keep the read lock on the map, the
2398 		 * copy-on-write status of the entries we modify here cannot
2399 		 * change.
2400 		 */
2401 		entry = start_entry;
2402 		while ((entry != &map->header) && (entry->start < end)) {
2403 			/*
2404 			 * Trivial case if the entry is already wired
2405 			 */
2406 			if (entry->wired_count) {
2407 				entry->wired_count++;
2408 				entry = entry->next;
2409 				continue;
2410 			}
2411 
2412 			/*
2413 			 * The entry is being newly wired, we have to setup
2414 			 * appropriate management structures.  A shadow
2415 			 * object is required for a copy-on-write region,
2416 			 * or a normal object for a zero-fill region.  We
2417 			 * do not have to do this for entries that point to sub
2418 			 * maps because we won't hold the lock on the sub map.
2419 			 */
2420 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2421 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2422 				int copyflag = entry->eflags &
2423 					       MAP_ENTRY_NEEDS_COPY;
2424 				if (copyflag && ((entry->protection &
2425 						  VM_PROT_WRITE) != 0)) {
2426 					vm_map_entry_shadow(entry, 0);
2427 				} else if (entry->object.vm_object == NULL &&
2428 					   !map->system_map) {
2429 					vm_map_entry_allocate_object(entry);
2430 				}
2431 			}
2432 
2433 			entry->wired_count++;
2434 			entry = entry->next;
2435 		}
2436 
2437 		/*
2438 		 * Pass 2.
2439 		 */
2440 
2441 		/*
2442 		 * HACK HACK HACK HACK
2443 		 *
2444 		 * vm_fault_wire() temporarily unlocks the map to avoid
2445 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2446 		 * call should protect us from changes while the map is
2447 		 * unlocked.  T
2448 		 *
2449 		 * NOTE: Previously this comment stated that clipping might
2450 		 *	 still occur while the entry is unlocked, but from
2451 		 *	 what I can tell it actually cannot.
2452 		 *
2453 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2454 		 *	 are still needed but we keep them in anyway.
2455 		 *
2456 		 * HACK HACK HACK HACK
2457 		 */
2458 
2459 		entry = start_entry;
2460 		while (entry != &map->header && entry->start < end) {
2461 			/*
2462 			 * If vm_fault_wire fails for any page we need to undo
2463 			 * what has been done.  We decrement the wiring count
2464 			 * for those pages which have not yet been wired (now)
2465 			 * and unwire those that have (later).
2466 			 */
2467 			vm_offset_t save_start = entry->start;
2468 			vm_offset_t save_end = entry->end;
2469 
2470 			if (entry->wired_count == 1)
2471 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2472 			if (rv) {
2473 				CLIP_CHECK_BACK(entry, save_start);
2474 				for (;;) {
2475 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2476 					entry->wired_count = 0;
2477 					if (entry->end == save_end)
2478 						break;
2479 					entry = entry->next;
2480 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2481 				}
2482 				end = save_start;
2483 				break;
2484 			}
2485 			CLIP_CHECK_FWD(entry, save_end);
2486 			entry = entry->next;
2487 		}
2488 
2489 		/*
2490 		 * If a failure occured undo everything by falling through
2491 		 * to the unwiring code.  'end' has already been adjusted
2492 		 * appropriately.
2493 		 */
2494 		if (rv)
2495 			kmflags |= KM_PAGEABLE;
2496 
2497 		/*
2498 		 * start_entry is still IN_TRANSITION but may have been
2499 		 * clipped since vm_fault_wire() unlocks and relocks the
2500 		 * map.  No matter how clipped it has gotten there should
2501 		 * be a fragment that is on our start boundary.
2502 		 */
2503 		CLIP_CHECK_BACK(start_entry, start);
2504 	}
2505 
2506 	if (kmflags & KM_PAGEABLE) {
2507 		/*
2508 		 * This is the unwiring case.  We must first ensure that the
2509 		 * range to be unwired is really wired down.  We know there
2510 		 * are no holes.
2511 		 */
2512 		entry = start_entry;
2513 		while ((entry != &map->header) && (entry->start < end)) {
2514 			if (entry->wired_count == 0) {
2515 				rv = KERN_INVALID_ARGUMENT;
2516 				goto done;
2517 			}
2518 			entry = entry->next;
2519 		}
2520 
2521 		/*
2522 		 * Now decrement the wiring count for each region. If a region
2523 		 * becomes completely unwired, unwire its physical pages and
2524 		 * mappings.
2525 		 */
2526 		entry = start_entry;
2527 		while ((entry != &map->header) && (entry->start < end)) {
2528 			entry->wired_count--;
2529 			if (entry->wired_count == 0)
2530 				vm_fault_unwire(map, entry);
2531 			entry = entry->next;
2532 		}
2533 	}
2534 done:
2535 	vm_map_unclip_range(map, start_entry, start, real_end,
2536 			    &count, MAP_CLIP_NO_HOLES);
2537 	map->timestamp++;
2538 	vm_map_unlock(map);
2539 failure:
2540 	if (kmflags & KM_KRESERVE)
2541 		vm_map_entry_krelease(count);
2542 	else
2543 		vm_map_entry_release(count);
2544 	return (rv);
2545 }
2546 
2547 /*
2548  * Mark a newly allocated address range as wired but do not fault in
2549  * the pages.  The caller is expected to load the pages into the object.
2550  *
2551  * The map must be locked on entry and will remain locked on return.
2552  * No other requirements.
2553  */
2554 void
2555 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2556 		       int *countp)
2557 {
2558 	vm_map_entry_t scan;
2559 	vm_map_entry_t entry;
2560 
2561 	entry = vm_map_clip_range(map, addr, addr + size,
2562 				  countp, MAP_CLIP_NO_HOLES);
2563 	for (scan = entry;
2564 	     scan != &map->header && scan->start < addr + size;
2565 	     scan = scan->next) {
2566 	    KKASSERT(scan->wired_count == 0);
2567 	    scan->wired_count = 1;
2568 	}
2569 	vm_map_unclip_range(map, entry, addr, addr + size,
2570 			    countp, MAP_CLIP_NO_HOLES);
2571 }
2572 
2573 /*
2574  * Push any dirty cached pages in the address range to their pager.
2575  * If syncio is TRUE, dirty pages are written synchronously.
2576  * If invalidate is TRUE, any cached pages are freed as well.
2577  *
2578  * This routine is called by sys_msync()
2579  *
2580  * Returns an error if any part of the specified range is not mapped.
2581  *
2582  * No requirements.
2583  */
2584 int
2585 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2586 	     boolean_t syncio, boolean_t invalidate)
2587 {
2588 	vm_map_entry_t current;
2589 	vm_map_entry_t entry;
2590 	vm_size_t size;
2591 	vm_object_t object;
2592 	vm_object_t tobj;
2593 	vm_ooffset_t offset;
2594 
2595 	vm_map_lock_read(map);
2596 	VM_MAP_RANGE_CHECK(map, start, end);
2597 	if (!vm_map_lookup_entry(map, start, &entry)) {
2598 		vm_map_unlock_read(map);
2599 		return (KERN_INVALID_ADDRESS);
2600 	}
2601 	lwkt_gettoken(&map->token);
2602 
2603 	/*
2604 	 * Make a first pass to check for holes.
2605 	 */
2606 	for (current = entry; current->start < end; current = current->next) {
2607 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2608 			lwkt_reltoken(&map->token);
2609 			vm_map_unlock_read(map);
2610 			return (KERN_INVALID_ARGUMENT);
2611 		}
2612 		if (end > current->end &&
2613 		    (current->next == &map->header ||
2614 			current->end != current->next->start)) {
2615 			lwkt_reltoken(&map->token);
2616 			vm_map_unlock_read(map);
2617 			return (KERN_INVALID_ADDRESS);
2618 		}
2619 	}
2620 
2621 	if (invalidate)
2622 		pmap_remove(vm_map_pmap(map), start, end);
2623 
2624 	/*
2625 	 * Make a second pass, cleaning/uncaching pages from the indicated
2626 	 * objects as we go.
2627 	 */
2628 	for (current = entry; current->start < end; current = current->next) {
2629 		offset = current->offset + (start - current->start);
2630 		size = (end <= current->end ? end : current->end) - start;
2631 
2632 		switch(current->maptype) {
2633 		case VM_MAPTYPE_SUBMAP:
2634 		{
2635 			vm_map_t smap;
2636 			vm_map_entry_t tentry;
2637 			vm_size_t tsize;
2638 
2639 			smap = current->object.sub_map;
2640 			vm_map_lock_read(smap);
2641 			vm_map_lookup_entry(smap, offset, &tentry);
2642 			tsize = tentry->end - offset;
2643 			if (tsize < size)
2644 				size = tsize;
2645 			object = tentry->object.vm_object;
2646 			offset = tentry->offset + (offset - tentry->start);
2647 			vm_map_unlock_read(smap);
2648 			break;
2649 		}
2650 		case VM_MAPTYPE_NORMAL:
2651 		case VM_MAPTYPE_VPAGETABLE:
2652 			object = current->object.vm_object;
2653 			break;
2654 		default:
2655 			object = NULL;
2656 			break;
2657 		}
2658 
2659 		if (object)
2660 			vm_object_hold(object);
2661 
2662 		/*
2663 		 * Note that there is absolutely no sense in writing out
2664 		 * anonymous objects, so we track down the vnode object
2665 		 * to write out.
2666 		 * We invalidate (remove) all pages from the address space
2667 		 * anyway, for semantic correctness.
2668 		 *
2669 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2670 		 * may start out with a NULL object.
2671 		 */
2672 		while (object && (tobj = object->backing_object) != NULL) {
2673 			vm_object_hold(tobj);
2674 			if (tobj == object->backing_object) {
2675 				vm_object_lock_swap();
2676 				offset += object->backing_object_offset;
2677 				vm_object_drop(object);
2678 				object = tobj;
2679 				if (object->size < OFF_TO_IDX(offset + size))
2680 					size = IDX_TO_OFF(object->size) -
2681 					       offset;
2682 				break;
2683 			}
2684 			vm_object_drop(tobj);
2685 		}
2686 		if (object && (object->type == OBJT_VNODE) &&
2687 		    (current->protection & VM_PROT_WRITE) &&
2688 		    (object->flags & OBJ_NOMSYNC) == 0) {
2689 			/*
2690 			 * Flush pages if writing is allowed, invalidate them
2691 			 * if invalidation requested.  Pages undergoing I/O
2692 			 * will be ignored by vm_object_page_remove().
2693 			 *
2694 			 * We cannot lock the vnode and then wait for paging
2695 			 * to complete without deadlocking against vm_fault.
2696 			 * Instead we simply call vm_object_page_remove() and
2697 			 * allow it to block internally on a page-by-page
2698 			 * basis when it encounters pages undergoing async
2699 			 * I/O.
2700 			 */
2701 			int flags;
2702 
2703 			/* no chain wait needed for vnode objects */
2704 			vm_object_reference_locked(object);
2705 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2706 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2707 			flags |= invalidate ? OBJPC_INVAL : 0;
2708 
2709 			/*
2710 			 * When operating on a virtual page table just
2711 			 * flush the whole object.  XXX we probably ought
2712 			 * to
2713 			 */
2714 			switch(current->maptype) {
2715 			case VM_MAPTYPE_NORMAL:
2716 				vm_object_page_clean(object,
2717 				    OFF_TO_IDX(offset),
2718 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2719 				    flags);
2720 				break;
2721 			case VM_MAPTYPE_VPAGETABLE:
2722 				vm_object_page_clean(object, 0, 0, flags);
2723 				break;
2724 			}
2725 			vn_unlock(((struct vnode *)object->handle));
2726 			vm_object_deallocate_locked(object);
2727 		}
2728 		if (object && invalidate &&
2729 		   ((object->type == OBJT_VNODE) ||
2730 		    (object->type == OBJT_DEVICE) ||
2731 		    (object->type == OBJT_MGTDEVICE))) {
2732 			int clean_only =
2733 				((object->type == OBJT_DEVICE) ||
2734 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2735 			/* no chain wait needed for vnode/device objects */
2736 			vm_object_reference_locked(object);
2737 			switch(current->maptype) {
2738 			case VM_MAPTYPE_NORMAL:
2739 				vm_object_page_remove(object,
2740 				    OFF_TO_IDX(offset),
2741 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2742 				    clean_only);
2743 				break;
2744 			case VM_MAPTYPE_VPAGETABLE:
2745 				vm_object_page_remove(object, 0, 0, clean_only);
2746 				break;
2747 			}
2748 			vm_object_deallocate_locked(object);
2749 		}
2750 		start += size;
2751 		if (object)
2752 			vm_object_drop(object);
2753 	}
2754 
2755 	lwkt_reltoken(&map->token);
2756 	vm_map_unlock_read(map);
2757 
2758 	return (KERN_SUCCESS);
2759 }
2760 
2761 /*
2762  * Make the region specified by this entry pageable.
2763  *
2764  * The vm_map must be exclusively locked.
2765  */
2766 static void
2767 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2768 {
2769 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2770 	entry->wired_count = 0;
2771 	vm_fault_unwire(map, entry);
2772 }
2773 
2774 /*
2775  * Deallocate the given entry from the target map.
2776  *
2777  * The vm_map must be exclusively locked.
2778  */
2779 static void
2780 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2781 {
2782 	vm_map_entry_unlink(map, entry);
2783 	map->size -= entry->end - entry->start;
2784 
2785 	switch(entry->maptype) {
2786 	case VM_MAPTYPE_NORMAL:
2787 	case VM_MAPTYPE_VPAGETABLE:
2788 	case VM_MAPTYPE_SUBMAP:
2789 		vm_object_deallocate(entry->object.vm_object);
2790 		break;
2791 	case VM_MAPTYPE_UKSMAP:
2792 		/* XXX TODO */
2793 		break;
2794 	default:
2795 		break;
2796 	}
2797 
2798 	vm_map_entry_dispose(map, entry, countp);
2799 }
2800 
2801 /*
2802  * Deallocates the given address range from the target map.
2803  *
2804  * The vm_map must be exclusively locked.
2805  */
2806 int
2807 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2808 {
2809 	vm_object_t object;
2810 	vm_map_entry_t entry;
2811 	vm_map_entry_t first_entry;
2812 
2813 	ASSERT_VM_MAP_LOCKED(map);
2814 	lwkt_gettoken(&map->token);
2815 again:
2816 	/*
2817 	 * Find the start of the region, and clip it.  Set entry to point
2818 	 * at the first record containing the requested address or, if no
2819 	 * such record exists, the next record with a greater address.  The
2820 	 * loop will run from this point until a record beyond the termination
2821 	 * address is encountered.
2822 	 *
2823 	 * map->hint must be adjusted to not point to anything we delete,
2824 	 * so set it to the entry prior to the one being deleted.
2825 	 *
2826 	 * GGG see other GGG comment.
2827 	 */
2828 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2829 		entry = first_entry;
2830 		vm_map_clip_start(map, entry, start, countp);
2831 		map->hint = entry->prev;	/* possible problem XXX */
2832 	} else {
2833 		map->hint = first_entry;	/* possible problem XXX */
2834 		entry = first_entry->next;
2835 	}
2836 
2837 	/*
2838 	 * If a hole opens up prior to the current first_free then
2839 	 * adjust first_free.  As with map->hint, map->first_free
2840 	 * cannot be left set to anything we might delete.
2841 	 */
2842 	if (entry == &map->header) {
2843 		map->first_free = &map->header;
2844 	} else if (map->first_free->start >= start) {
2845 		map->first_free = entry->prev;
2846 	}
2847 
2848 	/*
2849 	 * Step through all entries in this region
2850 	 */
2851 	while ((entry != &map->header) && (entry->start < end)) {
2852 		vm_map_entry_t next;
2853 		vm_offset_t s, e;
2854 		vm_pindex_t offidxstart, offidxend, count;
2855 
2856 		/*
2857 		 * If we hit an in-transition entry we have to sleep and
2858 		 * retry.  It's easier (and not really slower) to just retry
2859 		 * since this case occurs so rarely and the hint is already
2860 		 * pointing at the right place.  We have to reset the
2861 		 * start offset so as not to accidently delete an entry
2862 		 * another process just created in vacated space.
2863 		 */
2864 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2865 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2866 			start = entry->start;
2867 			++mycpu->gd_cnt.v_intrans_coll;
2868 			++mycpu->gd_cnt.v_intrans_wait;
2869 			vm_map_transition_wait(map);
2870 			goto again;
2871 		}
2872 		vm_map_clip_end(map, entry, end, countp);
2873 
2874 		s = entry->start;
2875 		e = entry->end;
2876 		next = entry->next;
2877 
2878 		offidxstart = OFF_TO_IDX(entry->offset);
2879 		count = OFF_TO_IDX(e - s);
2880 
2881 		switch(entry->maptype) {
2882 		case VM_MAPTYPE_NORMAL:
2883 		case VM_MAPTYPE_VPAGETABLE:
2884 		case VM_MAPTYPE_SUBMAP:
2885 			object = entry->object.vm_object;
2886 			break;
2887 		default:
2888 			object = NULL;
2889 			break;
2890 		}
2891 
2892 		/*
2893 		 * Unwire before removing addresses from the pmap; otherwise,
2894 		 * unwiring will put the entries back in the pmap.
2895 		 */
2896 		if (entry->wired_count != 0)
2897 			vm_map_entry_unwire(map, entry);
2898 
2899 		offidxend = offidxstart + count;
2900 
2901 		if (object == &kernel_object) {
2902 			vm_object_hold(object);
2903 			vm_object_page_remove(object, offidxstart,
2904 					      offidxend, FALSE);
2905 			vm_object_drop(object);
2906 		} else if (object && object->type != OBJT_DEFAULT &&
2907 			   object->type != OBJT_SWAP) {
2908 			/*
2909 			 * vnode object routines cannot be chain-locked,
2910 			 * but since we aren't removing pages from the
2911 			 * object here we can use a shared hold.
2912 			 */
2913 			vm_object_hold_shared(object);
2914 			pmap_remove(map->pmap, s, e);
2915 			vm_object_drop(object);
2916 		} else if (object) {
2917 			vm_object_hold(object);
2918 			vm_object_chain_acquire(object, 0);
2919 			pmap_remove(map->pmap, s, e);
2920 
2921 			if (object != NULL &&
2922 			    object->ref_count != 1 &&
2923 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2924 			     OBJ_ONEMAPPING &&
2925 			    (object->type == OBJT_DEFAULT ||
2926 			     object->type == OBJT_SWAP)) {
2927 				vm_object_collapse(object, NULL);
2928 				vm_object_page_remove(object, offidxstart,
2929 						      offidxend, FALSE);
2930 				if (object->type == OBJT_SWAP) {
2931 					swap_pager_freespace(object,
2932 							     offidxstart,
2933 							     count);
2934 				}
2935 				if (offidxend >= object->size &&
2936 				    offidxstart < object->size) {
2937 					object->size = offidxstart;
2938 				}
2939 			}
2940 			vm_object_chain_release(object);
2941 			vm_object_drop(object);
2942 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2943 			pmap_remove(map->pmap, s, e);
2944 		}
2945 
2946 		/*
2947 		 * Delete the entry (which may delete the object) only after
2948 		 * removing all pmap entries pointing to its pages.
2949 		 * (Otherwise, its page frames may be reallocated, and any
2950 		 * modify bits will be set in the wrong object!)
2951 		 */
2952 		vm_map_entry_delete(map, entry, countp);
2953 		entry = next;
2954 	}
2955 	lwkt_reltoken(&map->token);
2956 	return (KERN_SUCCESS);
2957 }
2958 
2959 /*
2960  * Remove the given address range from the target map.
2961  * This is the exported form of vm_map_delete.
2962  *
2963  * No requirements.
2964  */
2965 int
2966 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2967 {
2968 	int result;
2969 	int count;
2970 
2971 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2972 	vm_map_lock(map);
2973 	VM_MAP_RANGE_CHECK(map, start, end);
2974 	result = vm_map_delete(map, start, end, &count);
2975 	vm_map_unlock(map);
2976 	vm_map_entry_release(count);
2977 
2978 	return (result);
2979 }
2980 
2981 /*
2982  * Assert that the target map allows the specified privilege on the
2983  * entire address region given.  The entire region must be allocated.
2984  *
2985  * The caller must specify whether the vm_map is already locked or not.
2986  */
2987 boolean_t
2988 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2989 			vm_prot_t protection, boolean_t have_lock)
2990 {
2991 	vm_map_entry_t entry;
2992 	vm_map_entry_t tmp_entry;
2993 	boolean_t result;
2994 
2995 	if (have_lock == FALSE)
2996 		vm_map_lock_read(map);
2997 
2998 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2999 		if (have_lock == FALSE)
3000 			vm_map_unlock_read(map);
3001 		return (FALSE);
3002 	}
3003 	entry = tmp_entry;
3004 
3005 	result = TRUE;
3006 	while (start < end) {
3007 		if (entry == &map->header) {
3008 			result = FALSE;
3009 			break;
3010 		}
3011 		/*
3012 		 * No holes allowed!
3013 		 */
3014 
3015 		if (start < entry->start) {
3016 			result = FALSE;
3017 			break;
3018 		}
3019 		/*
3020 		 * Check protection associated with entry.
3021 		 */
3022 
3023 		if ((entry->protection & protection) != protection) {
3024 			result = FALSE;
3025 			break;
3026 		}
3027 		/* go to next entry */
3028 
3029 		start = entry->end;
3030 		entry = entry->next;
3031 	}
3032 	if (have_lock == FALSE)
3033 		vm_map_unlock_read(map);
3034 	return (result);
3035 }
3036 
3037 /*
3038  * If appropriate this function shadows the original object with a new object
3039  * and moves the VM pages from the original object to the new object.
3040  * The original object will also be collapsed, if possible.
3041  *
3042  * We can only do this for normal memory objects with a single mapping, and
3043  * it only makes sense to do it if there are 2 or more refs on the original
3044  * object.  i.e. typically a memory object that has been extended into
3045  * multiple vm_map_entry's with non-overlapping ranges.
3046  *
3047  * This makes it easier to remove unused pages and keeps object inheritance
3048  * from being a negative impact on memory usage.
3049  *
3050  * On return the (possibly new) entry->object.vm_object will have an
3051  * additional ref on it for the caller to dispose of (usually by cloning
3052  * the vm_map_entry).  The additional ref had to be done in this routine
3053  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3054  * cleared.
3055  *
3056  * The vm_map must be locked and its token held.
3057  */
3058 static void
3059 vm_map_split(vm_map_entry_t entry)
3060 {
3061 	/* OPTIMIZED */
3062 	vm_object_t oobject, nobject, bobject;
3063 	vm_offset_t s, e;
3064 	vm_page_t m;
3065 	vm_pindex_t offidxstart, offidxend, idx;
3066 	vm_size_t size;
3067 	vm_ooffset_t offset;
3068 	int useshadowlist;
3069 
3070 	/*
3071 	 * Optimize away object locks for vnode objects.  Important exit/exec
3072 	 * critical path.
3073 	 *
3074 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3075 	 * anyway.
3076 	 */
3077 	oobject = entry->object.vm_object;
3078 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3079 		vm_object_reference_quick(oobject);
3080 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3081 		return;
3082 	}
3083 
3084 	/*
3085 	 * Setup.  Chain lock the original object throughout the entire
3086 	 * routine to prevent new page faults from occuring.
3087 	 *
3088 	 * XXX can madvise WILLNEED interfere with us too?
3089 	 */
3090 	vm_object_hold(oobject);
3091 	vm_object_chain_acquire(oobject, 0);
3092 
3093 	/*
3094 	 * Original object cannot be split?  Might have also changed state.
3095 	 */
3096 	if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3097 					oobject->type != OBJT_SWAP)) {
3098 		vm_object_chain_release(oobject);
3099 		vm_object_reference_locked(oobject);
3100 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3101 		vm_object_drop(oobject);
3102 		return;
3103 	}
3104 
3105 	/*
3106 	 * Collapse original object with its backing store as an
3107 	 * optimization to reduce chain lengths when possible.
3108 	 *
3109 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3110 	 * for oobject, so there's no point collapsing it.
3111 	 *
3112 	 * Then re-check whether the object can be split.
3113 	 */
3114 	vm_object_collapse(oobject, NULL);
3115 
3116 	if (oobject->ref_count <= 1 ||
3117 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3118 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3119 		vm_object_chain_release(oobject);
3120 		vm_object_reference_locked(oobject);
3121 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3122 		vm_object_drop(oobject);
3123 		return;
3124 	}
3125 
3126 	/*
3127 	 * Acquire the chain lock on the backing object.
3128 	 *
3129 	 * Give bobject an additional ref count for when it will be shadowed
3130 	 * by nobject.
3131 	 */
3132 	useshadowlist = 0;
3133 	if ((bobject = oobject->backing_object) != NULL) {
3134 		if (bobject->type != OBJT_VNODE) {
3135 			useshadowlist = 1;
3136 			vm_object_hold(bobject);
3137 			vm_object_chain_wait(bobject, 0);
3138 			vm_object_reference_locked(bobject);
3139 			vm_object_chain_acquire(bobject, 0);
3140 			KKASSERT(bobject->backing_object == bobject);
3141 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3142 		} else {
3143 			vm_object_reference_quick(bobject);
3144 		}
3145 	}
3146 
3147 	/*
3148 	 * Calculate the object page range and allocate the new object.
3149 	 */
3150 	offset = entry->offset;
3151 	s = entry->start;
3152 	e = entry->end;
3153 
3154 	offidxstart = OFF_TO_IDX(offset);
3155 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3156 	size = offidxend - offidxstart;
3157 
3158 	switch(oobject->type) {
3159 	case OBJT_DEFAULT:
3160 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3161 					      VM_PROT_ALL, 0);
3162 		break;
3163 	case OBJT_SWAP:
3164 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3165 					   VM_PROT_ALL, 0);
3166 		break;
3167 	default:
3168 		/* not reached */
3169 		nobject = NULL;
3170 		KKASSERT(0);
3171 	}
3172 
3173 	if (nobject == NULL) {
3174 		if (bobject) {
3175 			if (useshadowlist) {
3176 				vm_object_chain_release(bobject);
3177 				vm_object_deallocate(bobject);
3178 				vm_object_drop(bobject);
3179 			} else {
3180 				vm_object_deallocate(bobject);
3181 			}
3182 		}
3183 		vm_object_chain_release(oobject);
3184 		vm_object_reference_locked(oobject);
3185 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3186 		vm_object_drop(oobject);
3187 		return;
3188 	}
3189 
3190 	/*
3191 	 * The new object will replace entry->object.vm_object so it needs
3192 	 * a second reference (the caller expects an additional ref).
3193 	 */
3194 	vm_object_hold(nobject);
3195 	vm_object_reference_locked(nobject);
3196 	vm_object_chain_acquire(nobject, 0);
3197 
3198 	/*
3199 	 * nobject shadows bobject (oobject already shadows bobject).
3200 	 */
3201 	if (bobject) {
3202 		nobject->backing_object_offset =
3203 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3204 		nobject->backing_object = bobject;
3205 		if (useshadowlist) {
3206 			bobject->shadow_count++;
3207 			bobject->generation++;
3208 			LIST_INSERT_HEAD(&bobject->shadow_head,
3209 					 nobject, shadow_list);
3210 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3211 			vm_object_chain_release(bobject);
3212 			vm_object_drop(bobject);
3213 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * Move the VM pages from oobject to nobject
3219 	 */
3220 	for (idx = 0; idx < size; idx++) {
3221 		vm_page_t m;
3222 
3223 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3224 					     TRUE, "vmpg");
3225 		if (m == NULL)
3226 			continue;
3227 
3228 		/*
3229 		 * We must wait for pending I/O to complete before we can
3230 		 * rename the page.
3231 		 *
3232 		 * We do not have to VM_PROT_NONE the page as mappings should
3233 		 * not be changed by this operation.
3234 		 *
3235 		 * NOTE: The act of renaming a page updates chaingen for both
3236 		 *	 objects.
3237 		 */
3238 		vm_page_rename(m, nobject, idx);
3239 		/* page automatically made dirty by rename and cache handled */
3240 		/* page remains busy */
3241 	}
3242 
3243 	if (oobject->type == OBJT_SWAP) {
3244 		vm_object_pip_add(oobject, 1);
3245 		/*
3246 		 * copy oobject pages into nobject and destroy unneeded
3247 		 * pages in shadow object.
3248 		 */
3249 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3250 		vm_object_pip_wakeup(oobject);
3251 	}
3252 
3253 	/*
3254 	 * Wakeup the pages we played with.  No spl protection is needed
3255 	 * for a simple wakeup.
3256 	 */
3257 	for (idx = 0; idx < size; idx++) {
3258 		m = vm_page_lookup(nobject, idx);
3259 		if (m) {
3260 			KKASSERT(m->flags & PG_BUSY);
3261 			vm_page_wakeup(m);
3262 		}
3263 	}
3264 	entry->object.vm_object = nobject;
3265 	entry->offset = 0LL;
3266 
3267 	/*
3268 	 * Cleanup
3269 	 *
3270 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3271 	 *	 related pages were moved and are no longer applicable to the
3272 	 *	 original object.
3273 	 *
3274 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3275 	 *	 replaced by nobject).
3276 	 */
3277 	vm_object_chain_release(nobject);
3278 	vm_object_drop(nobject);
3279 	if (bobject && useshadowlist) {
3280 		vm_object_chain_release(bobject);
3281 		vm_object_drop(bobject);
3282 	}
3283 	vm_object_chain_release(oobject);
3284 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3285 	vm_object_deallocate_locked(oobject);
3286 	vm_object_drop(oobject);
3287 }
3288 
3289 /*
3290  * Copies the contents of the source entry to the destination
3291  * entry.  The entries *must* be aligned properly.
3292  *
3293  * The vm_maps must be exclusively locked.
3294  * The vm_map's token must be held.
3295  *
3296  * Because the maps are locked no faults can be in progress during the
3297  * operation.
3298  */
3299 static void
3300 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3301 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3302 {
3303 	vm_object_t src_object;
3304 
3305 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3306 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3307 		return;
3308 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3309 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3310 		return;
3311 
3312 	if (src_entry->wired_count == 0) {
3313 		/*
3314 		 * If the source entry is marked needs_copy, it is already
3315 		 * write-protected.
3316 		 */
3317 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3318 			pmap_protect(src_map->pmap,
3319 			    src_entry->start,
3320 			    src_entry->end,
3321 			    src_entry->protection & ~VM_PROT_WRITE);
3322 		}
3323 
3324 		/*
3325 		 * Make a copy of the object.
3326 		 *
3327 		 * The object must be locked prior to checking the object type
3328 		 * and for the call to vm_object_collapse() and vm_map_split().
3329 		 * We cannot use *_hold() here because the split code will
3330 		 * probably try to destroy the object.  The lock is a pool
3331 		 * token and doesn't care.
3332 		 *
3333 		 * We must bump src_map->timestamp when setting
3334 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3335 		 * to retry, otherwise the concurrent fault might improperly
3336 		 * install a RW pte when its supposed to be a RO(COW) pte.
3337 		 * This race can occur because a vnode-backed fault may have
3338 		 * to temporarily release the map lock.
3339 		 */
3340 		if (src_entry->object.vm_object != NULL) {
3341 			vm_map_split(src_entry);
3342 			src_object = src_entry->object.vm_object;
3343 			dst_entry->object.vm_object = src_object;
3344 			src_entry->eflags |= (MAP_ENTRY_COW |
3345 					      MAP_ENTRY_NEEDS_COPY);
3346 			dst_entry->eflags |= (MAP_ENTRY_COW |
3347 					      MAP_ENTRY_NEEDS_COPY);
3348 			dst_entry->offset = src_entry->offset;
3349 			++src_map->timestamp;
3350 		} else {
3351 			dst_entry->object.vm_object = NULL;
3352 			dst_entry->offset = 0;
3353 		}
3354 
3355 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3356 		    dst_entry->end - dst_entry->start, src_entry->start);
3357 	} else {
3358 		/*
3359 		 * Of course, wired down pages can't be set copy-on-write.
3360 		 * Cause wired pages to be copied into the new map by
3361 		 * simulating faults (the new pages are pageable)
3362 		 */
3363 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3364 	}
3365 }
3366 
3367 /*
3368  * vmspace_fork:
3369  * Create a new process vmspace structure and vm_map
3370  * based on those of an existing process.  The new map
3371  * is based on the old map, according to the inheritance
3372  * values on the regions in that map.
3373  *
3374  * The source map must not be locked.
3375  * No requirements.
3376  */
3377 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3378 			  vm_map_entry_t old_entry, int *countp);
3379 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3380 			  vm_map_entry_t old_entry, int *countp);
3381 
3382 struct vmspace *
3383 vmspace_fork(struct vmspace *vm1)
3384 {
3385 	struct vmspace *vm2;
3386 	vm_map_t old_map = &vm1->vm_map;
3387 	vm_map_t new_map;
3388 	vm_map_entry_t old_entry;
3389 	int count;
3390 
3391 	lwkt_gettoken(&vm1->vm_map.token);
3392 	vm_map_lock(old_map);
3393 
3394 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3395 	lwkt_gettoken(&vm2->vm_map.token);
3396 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3397 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3398 	new_map = &vm2->vm_map;	/* XXX */
3399 	new_map->timestamp = 1;
3400 
3401 	vm_map_lock(new_map);
3402 
3403 	count = 0;
3404 	old_entry = old_map->header.next;
3405 	while (old_entry != &old_map->header) {
3406 		++count;
3407 		old_entry = old_entry->next;
3408 	}
3409 
3410 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3411 
3412 	old_entry = old_map->header.next;
3413 	while (old_entry != &old_map->header) {
3414 		switch(old_entry->maptype) {
3415 		case VM_MAPTYPE_SUBMAP:
3416 			panic("vm_map_fork: encountered a submap");
3417 			break;
3418 		case VM_MAPTYPE_UKSMAP:
3419 			vmspace_fork_uksmap_entry(old_map, new_map,
3420 						  old_entry, &count);
3421 			break;
3422 		case VM_MAPTYPE_NORMAL:
3423 		case VM_MAPTYPE_VPAGETABLE:
3424 			vmspace_fork_normal_entry(old_map, new_map,
3425 						  old_entry, &count);
3426 			break;
3427 		}
3428 		old_entry = old_entry->next;
3429 	}
3430 
3431 	new_map->size = old_map->size;
3432 	vm_map_unlock(old_map);
3433 	vm_map_unlock(new_map);
3434 	vm_map_entry_release(count);
3435 
3436 	lwkt_reltoken(&vm2->vm_map.token);
3437 	lwkt_reltoken(&vm1->vm_map.token);
3438 
3439 	return (vm2);
3440 }
3441 
3442 static
3443 void
3444 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3445 			  vm_map_entry_t old_entry, int *countp)
3446 {
3447 	vm_map_entry_t new_entry;
3448 	vm_object_t object;
3449 
3450 	switch (old_entry->inheritance) {
3451 	case VM_INHERIT_NONE:
3452 		break;
3453 	case VM_INHERIT_SHARE:
3454 		/*
3455 		 * Clone the entry, creating the shared object if
3456 		 * necessary.
3457 		 */
3458 		if (old_entry->object.vm_object == NULL)
3459 			vm_map_entry_allocate_object(old_entry);
3460 
3461 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3462 			/*
3463 			 * Shadow a map_entry which needs a copy,
3464 			 * replacing its object with a new object
3465 			 * that points to the old one.  Ask the
3466 			 * shadow code to automatically add an
3467 			 * additional ref.  We can't do it afterwords
3468 			 * because we might race a collapse.  The call
3469 			 * to vm_map_entry_shadow() will also clear
3470 			 * OBJ_ONEMAPPING.
3471 			 */
3472 			vm_map_entry_shadow(old_entry, 1);
3473 		} else if (old_entry->object.vm_object) {
3474 			/*
3475 			 * We will make a shared copy of the object,
3476 			 * and must clear OBJ_ONEMAPPING.
3477 			 *
3478 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3479 			 * is non-applicable but clear it anyway,
3480 			 * and its terminal so we don'th ave to deal
3481 			 * with chains.  Reduces SMP conflicts.
3482 			 *
3483 			 * XXX assert that object.vm_object != NULL
3484 			 *     since we allocate it above.
3485 			 */
3486 			object = old_entry->object.vm_object;
3487 			if (object->type == OBJT_VNODE) {
3488 				vm_object_reference_quick(object);
3489 				vm_object_clear_flag(object,
3490 						     OBJ_ONEMAPPING);
3491 			} else {
3492 				vm_object_hold(object);
3493 				vm_object_chain_wait(object, 0);
3494 				vm_object_reference_locked(object);
3495 				vm_object_clear_flag(object,
3496 						     OBJ_ONEMAPPING);
3497 				vm_object_drop(object);
3498 			}
3499 		}
3500 
3501 		/*
3502 		 * Clone the entry.  We've already bumped the ref on
3503 		 * any vm_object.
3504 		 */
3505 		new_entry = vm_map_entry_create(new_map, countp);
3506 		*new_entry = *old_entry;
3507 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3508 		new_entry->wired_count = 0;
3509 
3510 		/*
3511 		 * Insert the entry into the new map -- we know we're
3512 		 * inserting at the end of the new map.
3513 		 */
3514 
3515 		vm_map_entry_link(new_map, new_map->header.prev,
3516 				  new_entry);
3517 
3518 		/*
3519 		 * Update the physical map
3520 		 */
3521 		pmap_copy(new_map->pmap, old_map->pmap,
3522 			  new_entry->start,
3523 			  (old_entry->end - old_entry->start),
3524 			  old_entry->start);
3525 		break;
3526 	case VM_INHERIT_COPY:
3527 		/*
3528 		 * Clone the entry and link into the map.
3529 		 */
3530 		new_entry = vm_map_entry_create(new_map, countp);
3531 		*new_entry = *old_entry;
3532 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3533 		new_entry->wired_count = 0;
3534 		new_entry->object.vm_object = NULL;
3535 		vm_map_entry_link(new_map, new_map->header.prev,
3536 				  new_entry);
3537 		vm_map_copy_entry(old_map, new_map, old_entry,
3538 				  new_entry);
3539 		break;
3540 	}
3541 }
3542 
3543 /*
3544  * When forking user-kernel shared maps, the map might change in the
3545  * child so do not try to copy the underlying pmap entries.
3546  */
3547 static
3548 void
3549 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3550 			  vm_map_entry_t old_entry, int *countp)
3551 {
3552 	vm_map_entry_t new_entry;
3553 
3554 	new_entry = vm_map_entry_create(new_map, countp);
3555 	*new_entry = *old_entry;
3556 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3557 	new_entry->wired_count = 0;
3558 	vm_map_entry_link(new_map, new_map->header.prev,
3559 			  new_entry);
3560 }
3561 
3562 /*
3563  * Create an auto-grow stack entry
3564  *
3565  * No requirements.
3566  */
3567 int
3568 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3569 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3570 {
3571 	vm_map_entry_t	prev_entry;
3572 	vm_map_entry_t	new_stack_entry;
3573 	vm_size_t	init_ssize;
3574 	int		rv;
3575 	int		count;
3576 	vm_offset_t	tmpaddr;
3577 
3578 	cow |= MAP_IS_STACK;
3579 
3580 	if (max_ssize < sgrowsiz)
3581 		init_ssize = max_ssize;
3582 	else
3583 		init_ssize = sgrowsiz;
3584 
3585 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3586 	vm_map_lock(map);
3587 
3588 	/*
3589 	 * Find space for the mapping
3590 	 */
3591 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3592 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3593 				     flags, &tmpaddr)) {
3594 			vm_map_unlock(map);
3595 			vm_map_entry_release(count);
3596 			return (KERN_NO_SPACE);
3597 		}
3598 		addrbos = tmpaddr;
3599 	}
3600 
3601 	/* If addr is already mapped, no go */
3602 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3603 		vm_map_unlock(map);
3604 		vm_map_entry_release(count);
3605 		return (KERN_NO_SPACE);
3606 	}
3607 
3608 #if 0
3609 	/* XXX already handled by kern_mmap() */
3610 	/* If we would blow our VMEM resource limit, no go */
3611 	if (map->size + init_ssize >
3612 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3613 		vm_map_unlock(map);
3614 		vm_map_entry_release(count);
3615 		return (KERN_NO_SPACE);
3616 	}
3617 #endif
3618 
3619 	/*
3620 	 * If we can't accomodate max_ssize in the current mapping,
3621 	 * no go.  However, we need to be aware that subsequent user
3622 	 * mappings might map into the space we have reserved for
3623 	 * stack, and currently this space is not protected.
3624 	 *
3625 	 * Hopefully we will at least detect this condition
3626 	 * when we try to grow the stack.
3627 	 */
3628 	if ((prev_entry->next != &map->header) &&
3629 	    (prev_entry->next->start < addrbos + max_ssize)) {
3630 		vm_map_unlock(map);
3631 		vm_map_entry_release(count);
3632 		return (KERN_NO_SPACE);
3633 	}
3634 
3635 	/*
3636 	 * We initially map a stack of only init_ssize.  We will
3637 	 * grow as needed later.  Since this is to be a grow
3638 	 * down stack, we map at the top of the range.
3639 	 *
3640 	 * Note: we would normally expect prot and max to be
3641 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3642 	 * eliminate these as input parameters, and just
3643 	 * pass these values here in the insert call.
3644 	 */
3645 	rv = vm_map_insert(map, &count, NULL, NULL,
3646 			   0, addrbos + max_ssize - init_ssize,
3647 	                   addrbos + max_ssize,
3648 			   VM_MAPTYPE_NORMAL,
3649 			   prot, max, cow);
3650 
3651 	/* Now set the avail_ssize amount */
3652 	if (rv == KERN_SUCCESS) {
3653 		if (prev_entry != &map->header)
3654 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3655 		new_stack_entry = prev_entry->next;
3656 		if (new_stack_entry->end   != addrbos + max_ssize ||
3657 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3658 			panic ("Bad entry start/end for new stack entry");
3659 		else
3660 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3661 	}
3662 
3663 	vm_map_unlock(map);
3664 	vm_map_entry_release(count);
3665 	return (rv);
3666 }
3667 
3668 /*
3669  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3670  * desired address is already mapped, or if we successfully grow
3671  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3672  * stack range (this is strange, but preserves compatibility with
3673  * the grow function in vm_machdep.c).
3674  *
3675  * No requirements.
3676  */
3677 int
3678 vm_map_growstack (struct proc *p, vm_offset_t addr)
3679 {
3680 	vm_map_entry_t prev_entry;
3681 	vm_map_entry_t stack_entry;
3682 	vm_map_entry_t new_stack_entry;
3683 	struct vmspace *vm = p->p_vmspace;
3684 	vm_map_t map = &vm->vm_map;
3685 	vm_offset_t    end;
3686 	int grow_amount;
3687 	int rv = KERN_SUCCESS;
3688 	int is_procstack;
3689 	int use_read_lock = 1;
3690 	int count;
3691 
3692 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3693 Retry:
3694 	if (use_read_lock)
3695 		vm_map_lock_read(map);
3696 	else
3697 		vm_map_lock(map);
3698 
3699 	/* If addr is already in the entry range, no need to grow.*/
3700 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3701 		goto done;
3702 
3703 	if ((stack_entry = prev_entry->next) == &map->header)
3704 		goto done;
3705 	if (prev_entry == &map->header)
3706 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3707 	else
3708 		end = prev_entry->end;
3709 
3710 	/*
3711 	 * This next test mimics the old grow function in vm_machdep.c.
3712 	 * It really doesn't quite make sense, but we do it anyway
3713 	 * for compatibility.
3714 	 *
3715 	 * If not growable stack, return success.  This signals the
3716 	 * caller to proceed as he would normally with normal vm.
3717 	 */
3718 	if (stack_entry->aux.avail_ssize < 1 ||
3719 	    addr >= stack_entry->start ||
3720 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3721 		goto done;
3722 	}
3723 
3724 	/* Find the minimum grow amount */
3725 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3726 	if (grow_amount > stack_entry->aux.avail_ssize) {
3727 		rv = KERN_NO_SPACE;
3728 		goto done;
3729 	}
3730 
3731 	/*
3732 	 * If there is no longer enough space between the entries
3733 	 * nogo, and adjust the available space.  Note: this
3734 	 * should only happen if the user has mapped into the
3735 	 * stack area after the stack was created, and is
3736 	 * probably an error.
3737 	 *
3738 	 * This also effectively destroys any guard page the user
3739 	 * might have intended by limiting the stack size.
3740 	 */
3741 	if (grow_amount > stack_entry->start - end) {
3742 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3743 			/* lost lock */
3744 			use_read_lock = 0;
3745 			goto Retry;
3746 		}
3747 		use_read_lock = 0;
3748 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3749 		rv = KERN_NO_SPACE;
3750 		goto done;
3751 	}
3752 
3753 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3754 
3755 	/* If this is the main process stack, see if we're over the
3756 	 * stack limit.
3757 	 */
3758 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3759 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3760 		rv = KERN_NO_SPACE;
3761 		goto done;
3762 	}
3763 
3764 	/* Round up the grow amount modulo SGROWSIZ */
3765 	grow_amount = roundup (grow_amount, sgrowsiz);
3766 	if (grow_amount > stack_entry->aux.avail_ssize) {
3767 		grow_amount = stack_entry->aux.avail_ssize;
3768 	}
3769 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3770 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3771 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3772 		              ctob(vm->vm_ssize);
3773 	}
3774 
3775 	/* If we would blow our VMEM resource limit, no go */
3776 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3777 		rv = KERN_NO_SPACE;
3778 		goto done;
3779 	}
3780 
3781 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3782 		/* lost lock */
3783 		use_read_lock = 0;
3784 		goto Retry;
3785 	}
3786 	use_read_lock = 0;
3787 
3788 	/* Get the preliminary new entry start value */
3789 	addr = stack_entry->start - grow_amount;
3790 
3791 	/* If this puts us into the previous entry, cut back our growth
3792 	 * to the available space.  Also, see the note above.
3793 	 */
3794 	if (addr < end) {
3795 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3796 		addr = end;
3797 	}
3798 
3799 	rv = vm_map_insert(map, &count, NULL, NULL,
3800 			   0, addr, stack_entry->start,
3801 			   VM_MAPTYPE_NORMAL,
3802 			   VM_PROT_ALL, VM_PROT_ALL, 0);
3803 
3804 	/* Adjust the available stack space by the amount we grew. */
3805 	if (rv == KERN_SUCCESS) {
3806 		if (prev_entry != &map->header)
3807 			vm_map_clip_end(map, prev_entry, addr, &count);
3808 		new_stack_entry = prev_entry->next;
3809 		if (new_stack_entry->end   != stack_entry->start  ||
3810 		    new_stack_entry->start != addr)
3811 			panic ("Bad stack grow start/end in new stack entry");
3812 		else {
3813 			new_stack_entry->aux.avail_ssize =
3814 				stack_entry->aux.avail_ssize -
3815 				(new_stack_entry->end - new_stack_entry->start);
3816 			if (is_procstack)
3817 				vm->vm_ssize += btoc(new_stack_entry->end -
3818 						     new_stack_entry->start);
3819 		}
3820 
3821 		if (map->flags & MAP_WIREFUTURE)
3822 			vm_map_unwire(map, new_stack_entry->start,
3823 				      new_stack_entry->end, FALSE);
3824 	}
3825 
3826 done:
3827 	if (use_read_lock)
3828 		vm_map_unlock_read(map);
3829 	else
3830 		vm_map_unlock(map);
3831 	vm_map_entry_release(count);
3832 	return (rv);
3833 }
3834 
3835 /*
3836  * Unshare the specified VM space for exec.  If other processes are
3837  * mapped to it, then create a new one.  The new vmspace is null.
3838  *
3839  * No requirements.
3840  */
3841 void
3842 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3843 {
3844 	struct vmspace *oldvmspace = p->p_vmspace;
3845 	struct vmspace *newvmspace;
3846 	vm_map_t map = &p->p_vmspace->vm_map;
3847 
3848 	/*
3849 	 * If we are execing a resident vmspace we fork it, otherwise
3850 	 * we create a new vmspace.  Note that exitingcnt is not
3851 	 * copied to the new vmspace.
3852 	 */
3853 	lwkt_gettoken(&oldvmspace->vm_map.token);
3854 	if (vmcopy)  {
3855 		newvmspace = vmspace_fork(vmcopy);
3856 		lwkt_gettoken(&newvmspace->vm_map.token);
3857 	} else {
3858 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3859 		lwkt_gettoken(&newvmspace->vm_map.token);
3860 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3861 		      (caddr_t)&oldvmspace->vm_endcopy -
3862 		       (caddr_t)&oldvmspace->vm_startcopy);
3863 	}
3864 
3865 	/*
3866 	 * Finish initializing the vmspace before assigning it
3867 	 * to the process.  The vmspace will become the current vmspace
3868 	 * if p == curproc.
3869 	 */
3870 	pmap_pinit2(vmspace_pmap(newvmspace));
3871 	pmap_replacevm(p, newvmspace, 0);
3872 	lwkt_reltoken(&newvmspace->vm_map.token);
3873 	lwkt_reltoken(&oldvmspace->vm_map.token);
3874 	vmspace_rel(oldvmspace);
3875 }
3876 
3877 /*
3878  * Unshare the specified VM space for forcing COW.  This
3879  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3880  */
3881 void
3882 vmspace_unshare(struct proc *p)
3883 {
3884 	struct vmspace *oldvmspace = p->p_vmspace;
3885 	struct vmspace *newvmspace;
3886 
3887 	lwkt_gettoken(&oldvmspace->vm_map.token);
3888 	if (vmspace_getrefs(oldvmspace) == 1) {
3889 		lwkt_reltoken(&oldvmspace->vm_map.token);
3890 		return;
3891 	}
3892 	newvmspace = vmspace_fork(oldvmspace);
3893 	lwkt_gettoken(&newvmspace->vm_map.token);
3894 	pmap_pinit2(vmspace_pmap(newvmspace));
3895 	pmap_replacevm(p, newvmspace, 0);
3896 	lwkt_reltoken(&newvmspace->vm_map.token);
3897 	lwkt_reltoken(&oldvmspace->vm_map.token);
3898 	vmspace_rel(oldvmspace);
3899 }
3900 
3901 /*
3902  * vm_map_hint: return the beginning of the best area suitable for
3903  * creating a new mapping with "prot" protection.
3904  *
3905  * No requirements.
3906  */
3907 vm_offset_t
3908 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3909 {
3910 	struct vmspace *vms = p->p_vmspace;
3911 
3912 	if (!randomize_mmap || addr != 0) {
3913 		/*
3914 		 * Set a reasonable start point for the hint if it was
3915 		 * not specified or if it falls within the heap space.
3916 		 * Hinted mmap()s do not allocate out of the heap space.
3917 		 */
3918 		if (addr == 0 ||
3919 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3920 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3921 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3922 		}
3923 
3924 		return addr;
3925 	}
3926 
3927 #ifdef notyet
3928 #ifdef __i386__
3929 	/*
3930 	 * If executable skip first two pages, otherwise start
3931 	 * after data + heap region.
3932 	 */
3933 	if ((prot & VM_PROT_EXECUTE) &&
3934 	    ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3935 		addr = (PAGE_SIZE * 2) +
3936 		    (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3937 		return (round_page(addr));
3938 	}
3939 #endif /* __i386__ */
3940 #endif /* notyet */
3941 
3942 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3943 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3944 
3945 	return (round_page(addr));
3946 }
3947 
3948 /*
3949  * Finds the VM object, offset, and protection for a given virtual address
3950  * in the specified map, assuming a page fault of the type specified.
3951  *
3952  * Leaves the map in question locked for read; return values are guaranteed
3953  * until a vm_map_lookup_done call is performed.  Note that the map argument
3954  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3955  *
3956  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3957  * that fast.
3958  *
3959  * If a lookup is requested with "write protection" specified, the map may
3960  * be changed to perform virtual copying operations, although the data
3961  * referenced will remain the same.
3962  *
3963  * No requirements.
3964  */
3965 int
3966 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3967 	      vm_offset_t vaddr,
3968 	      vm_prot_t fault_typea,
3969 	      vm_map_entry_t *out_entry,	/* OUT */
3970 	      vm_object_t *object,		/* OUT */
3971 	      vm_pindex_t *pindex,		/* OUT */
3972 	      vm_prot_t *out_prot,		/* OUT */
3973 	      boolean_t *wired)			/* OUT */
3974 {
3975 	vm_map_entry_t entry;
3976 	vm_map_t map = *var_map;
3977 	vm_prot_t prot;
3978 	vm_prot_t fault_type = fault_typea;
3979 	int use_read_lock = 1;
3980 	int rv = KERN_SUCCESS;
3981 
3982 RetryLookup:
3983 	if (use_read_lock)
3984 		vm_map_lock_read(map);
3985 	else
3986 		vm_map_lock(map);
3987 
3988 	/*
3989 	 * If the map has an interesting hint, try it before calling full
3990 	 * blown lookup routine.
3991 	 */
3992 	entry = map->hint;
3993 	cpu_ccfence();
3994 	*out_entry = entry;
3995 	*object = NULL;
3996 
3997 	if ((entry == &map->header) ||
3998 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3999 		vm_map_entry_t tmp_entry;
4000 
4001 		/*
4002 		 * Entry was either not a valid hint, or the vaddr was not
4003 		 * contained in the entry, so do a full lookup.
4004 		 */
4005 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4006 			rv = KERN_INVALID_ADDRESS;
4007 			goto done;
4008 		}
4009 
4010 		entry = tmp_entry;
4011 		*out_entry = entry;
4012 	}
4013 
4014 	/*
4015 	 * Handle submaps.
4016 	 */
4017 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4018 		vm_map_t old_map = map;
4019 
4020 		*var_map = map = entry->object.sub_map;
4021 		if (use_read_lock)
4022 			vm_map_unlock_read(old_map);
4023 		else
4024 			vm_map_unlock(old_map);
4025 		use_read_lock = 1;
4026 		goto RetryLookup;
4027 	}
4028 
4029 	/*
4030 	 * Check whether this task is allowed to have this page.
4031 	 * Note the special case for MAP_ENTRY_COW
4032 	 * pages with an override.  This is to implement a forced
4033 	 * COW for debuggers.
4034 	 */
4035 
4036 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4037 		prot = entry->max_protection;
4038 	else
4039 		prot = entry->protection;
4040 
4041 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4042 	if ((fault_type & prot) != fault_type) {
4043 		rv = KERN_PROTECTION_FAILURE;
4044 		goto done;
4045 	}
4046 
4047 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4048 	    (entry->eflags & MAP_ENTRY_COW) &&
4049 	    (fault_type & VM_PROT_WRITE) &&
4050 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4051 		rv = KERN_PROTECTION_FAILURE;
4052 		goto done;
4053 	}
4054 
4055 	/*
4056 	 * If this page is not pageable, we have to get it for all possible
4057 	 * accesses.
4058 	 */
4059 	*wired = (entry->wired_count != 0);
4060 	if (*wired)
4061 		prot = fault_type = entry->protection;
4062 
4063 	/*
4064 	 * Virtual page tables may need to update the accessed (A) bit
4065 	 * in a page table entry.  Upgrade the fault to a write fault for
4066 	 * that case if the map will support it.  If the map does not support
4067 	 * it the page table entry simply will not be updated.
4068 	 */
4069 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4070 		if (prot & VM_PROT_WRITE)
4071 			fault_type |= VM_PROT_WRITE;
4072 	}
4073 
4074 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4075 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4076 		if ((prot & VM_PROT_WRITE) == 0)
4077 			fault_type |= VM_PROT_WRITE;
4078 	}
4079 
4080 	/*
4081 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4082 	 */
4083 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4084 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4085 		*object = NULL;
4086 		goto skip;
4087 	}
4088 
4089 	/*
4090 	 * If the entry was copy-on-write, we either ...
4091 	 */
4092 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4093 		/*
4094 		 * If we want to write the page, we may as well handle that
4095 		 * now since we've got the map locked.
4096 		 *
4097 		 * If we don't need to write the page, we just demote the
4098 		 * permissions allowed.
4099 		 */
4100 
4101 		if (fault_type & VM_PROT_WRITE) {
4102 			/*
4103 			 * Make a new object, and place it in the object
4104 			 * chain.  Note that no new references have appeared
4105 			 * -- one just moved from the map to the new
4106 			 * object.
4107 			 */
4108 
4109 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4110 				/* lost lock */
4111 				use_read_lock = 0;
4112 				goto RetryLookup;
4113 			}
4114 			use_read_lock = 0;
4115 
4116 			vm_map_entry_shadow(entry, 0);
4117 		} else {
4118 			/*
4119 			 * We're attempting to read a copy-on-write page --
4120 			 * don't allow writes.
4121 			 */
4122 
4123 			prot &= ~VM_PROT_WRITE;
4124 		}
4125 	}
4126 
4127 	/*
4128 	 * Create an object if necessary.
4129 	 */
4130 	if (entry->object.vm_object == NULL && !map->system_map) {
4131 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4132 			/* lost lock */
4133 			use_read_lock = 0;
4134 			goto RetryLookup;
4135 		}
4136 		use_read_lock = 0;
4137 		vm_map_entry_allocate_object(entry);
4138 	}
4139 
4140 	/*
4141 	 * Return the object/offset from this entry.  If the entry was
4142 	 * copy-on-write or empty, it has been fixed up.
4143 	 */
4144 	*object = entry->object.vm_object;
4145 
4146 skip:
4147 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4148 
4149 	/*
4150 	 * Return whether this is the only map sharing this data.  On
4151 	 * success we return with a read lock held on the map.  On failure
4152 	 * we return with the map unlocked.
4153 	 */
4154 	*out_prot = prot;
4155 done:
4156 	if (rv == KERN_SUCCESS) {
4157 		if (use_read_lock == 0)
4158 			vm_map_lock_downgrade(map);
4159 	} else if (use_read_lock) {
4160 		vm_map_unlock_read(map);
4161 	} else {
4162 		vm_map_unlock(map);
4163 	}
4164 	return (rv);
4165 }
4166 
4167 /*
4168  * Releases locks acquired by a vm_map_lookup()
4169  * (according to the handle returned by that lookup).
4170  *
4171  * No other requirements.
4172  */
4173 void
4174 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4175 {
4176 	/*
4177 	 * Unlock the main-level map
4178 	 */
4179 	vm_map_unlock_read(map);
4180 	if (count)
4181 		vm_map_entry_release(count);
4182 }
4183 
4184 #include "opt_ddb.h"
4185 #ifdef DDB
4186 #include <sys/kernel.h>
4187 
4188 #include <ddb/ddb.h>
4189 
4190 /*
4191  * Debugging only
4192  */
4193 DB_SHOW_COMMAND(map, vm_map_print)
4194 {
4195 	static int nlines;
4196 	/* XXX convert args. */
4197 	vm_map_t map = (vm_map_t)addr;
4198 	boolean_t full = have_addr;
4199 
4200 	vm_map_entry_t entry;
4201 
4202 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4203 	    (void *)map,
4204 	    (void *)map->pmap, map->nentries, map->timestamp);
4205 	nlines++;
4206 
4207 	if (!full && db_indent)
4208 		return;
4209 
4210 	db_indent += 2;
4211 	for (entry = map->header.next; entry != &map->header;
4212 	    entry = entry->next) {
4213 		db_iprintf("map entry %p: start=%p, end=%p\n",
4214 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4215 		nlines++;
4216 		{
4217 			static char *inheritance_name[4] =
4218 			{"share", "copy", "none", "donate_copy"};
4219 
4220 			db_iprintf(" prot=%x/%x/%s",
4221 			    entry->protection,
4222 			    entry->max_protection,
4223 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4224 			if (entry->wired_count != 0)
4225 				db_printf(", wired");
4226 		}
4227 		switch(entry->maptype) {
4228 		case VM_MAPTYPE_SUBMAP:
4229 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4230 			db_printf(", share=%p, offset=0x%lx\n",
4231 			    (void *)entry->object.sub_map,
4232 			    (long)entry->offset);
4233 			nlines++;
4234 			if ((entry->prev == &map->header) ||
4235 			    (entry->prev->object.sub_map !=
4236 				entry->object.sub_map)) {
4237 				db_indent += 2;
4238 				vm_map_print((db_expr_t)(intptr_t)
4239 					     entry->object.sub_map,
4240 					     full, 0, NULL);
4241 				db_indent -= 2;
4242 			}
4243 			break;
4244 		case VM_MAPTYPE_NORMAL:
4245 		case VM_MAPTYPE_VPAGETABLE:
4246 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4247 			db_printf(", object=%p, offset=0x%lx",
4248 			    (void *)entry->object.vm_object,
4249 			    (long)entry->offset);
4250 			if (entry->eflags & MAP_ENTRY_COW)
4251 				db_printf(", copy (%s)",
4252 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4253 			db_printf("\n");
4254 			nlines++;
4255 
4256 			if ((entry->prev == &map->header) ||
4257 			    (entry->prev->object.vm_object !=
4258 				entry->object.vm_object)) {
4259 				db_indent += 2;
4260 				vm_object_print((db_expr_t)(intptr_t)
4261 						entry->object.vm_object,
4262 						full, 0, NULL);
4263 				nlines += 4;
4264 				db_indent -= 2;
4265 			}
4266 			break;
4267 		case VM_MAPTYPE_UKSMAP:
4268 			db_printf(", uksmap=%p, offset=0x%lx",
4269 			    (void *)entry->object.uksmap,
4270 			    (long)entry->offset);
4271 			if (entry->eflags & MAP_ENTRY_COW)
4272 				db_printf(", copy (%s)",
4273 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4274 			db_printf("\n");
4275 			nlines++;
4276 			break;
4277 		default:
4278 			break;
4279 		}
4280 	}
4281 	db_indent -= 2;
4282 	if (db_indent == 0)
4283 		nlines = 0;
4284 }
4285 
4286 /*
4287  * Debugging only
4288  */
4289 DB_SHOW_COMMAND(procvm, procvm)
4290 {
4291 	struct proc *p;
4292 
4293 	if (have_addr) {
4294 		p = (struct proc *) addr;
4295 	} else {
4296 		p = curproc;
4297 	}
4298 
4299 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4300 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4301 	    (void *)vmspace_pmap(p->p_vmspace));
4302 
4303 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4304 }
4305 
4306 #endif /* DDB */
4307