xref: /dragonfly/sys/vm/vm_mmap.c (revision fcce2b94)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1991, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$
39  *
40  *	@(#)vm_mmap.c	8.4 (Berkeley) 1/12/94
41  * $FreeBSD: src/sys/vm/vm_mmap.c,v 1.108.2.6 2002/07/02 20:06:19 dillon Exp $
42  * $DragonFly: src/sys/vm/vm_mmap.c,v 1.30 2006/06/05 07:26:11 dillon Exp $
43  */
44 
45 /*
46  * Mapped file (mmap) interface to VM
47  */
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/systm.h>
52 #include <sys/sysproto.h>
53 #include <sys/filedesc.h>
54 #include <sys/kern_syscall.h>
55 #include <sys/proc.h>
56 #include <sys/resource.h>
57 #include <sys/resourcevar.h>
58 #include <sys/vnode.h>
59 #include <sys/fcntl.h>
60 #include <sys/file.h>
61 #include <sys/mman.h>
62 #include <sys/conf.h>
63 #include <sys/stat.h>
64 #include <sys/vmmeter.h>
65 #include <sys/sysctl.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vm_pageout.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_kern.h>
79 
80 #include <sys/file2.h>
81 #include <sys/thread2.h>
82 
83 static int max_proc_mmap;
84 SYSCTL_INT(_vm, OID_AUTO, max_proc_mmap, CTLFLAG_RW, &max_proc_mmap, 0, "");
85 
86 /*
87  * Set the maximum number of vm_map_entry structures per process.  Roughly
88  * speaking vm_map_entry structures are tiny, so allowing them to eat 1/100
89  * of our KVM malloc space still results in generous limits.  We want a
90  * default that is good enough to prevent the kernel running out of resources
91  * if attacked from compromised user account but generous enough such that
92  * multi-threaded processes are not unduly inconvenienced.
93  */
94 
95 static void vmmapentry_rsrc_init (void *);
96 SYSINIT(vmmersrc, SI_SUB_KVM_RSRC, SI_ORDER_FIRST, vmmapentry_rsrc_init, NULL)
97 
98 static void
99 vmmapentry_rsrc_init(void *dummy)
100 {
101     max_proc_mmap = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
102 			sizeof(struct vm_map_entry);
103     max_proc_mmap /= 100;
104 }
105 
106 /* ARGSUSED */
107 int
108 sys_sbrk(struct sbrk_args *uap)
109 {
110 	/* Not yet implemented */
111 	return (EOPNOTSUPP);
112 }
113 
114 /*
115  * sstk_args(int incr)
116  */
117 /* ARGSUSED */
118 int
119 sys_sstk(struct sstk_args *uap)
120 {
121 	/* Not yet implemented */
122 	return (EOPNOTSUPP);
123 }
124 
125 /*
126  * mmap_args(void *addr, size_t len, int prot, int flags, int fd,
127  *		long pad, off_t pos)
128  *
129  * Memory Map (mmap) system call.  Note that the file offset
130  * and address are allowed to be NOT page aligned, though if
131  * the MAP_FIXED flag it set, both must have the same remainder
132  * modulo the PAGE_SIZE (POSIX 1003.1b).  If the address is not
133  * page-aligned, the actual mapping starts at trunc_page(addr)
134  * and the return value is adjusted up by the page offset.
135  *
136  * Generally speaking, only character devices which are themselves
137  * memory-based, such as a video framebuffer, can be mmap'd.  Otherwise
138  * there would be no cache coherency between a descriptor and a VM mapping
139  * both to the same character device.
140  *
141  * Block devices can be mmap'd no matter what they represent.  Cache coherency
142  * is maintained as long as you do not write directly to the underlying
143  * character device.
144  */
145 
146 int
147 kern_mmap(caddr_t uaddr, size_t ulen, int uprot, int uflags, int fd,
148     off_t upos, void **res)
149 {
150 	struct thread *td = curthread;
151  	struct proc *p = td->td_proc;
152 	struct file *fp = NULL;
153 	struct vnode *vp;
154 	vm_offset_t addr;
155 	vm_size_t size, pageoff;
156 	vm_prot_t prot, maxprot;
157 	void *handle;
158 	int flags, error;
159 	int disablexworkaround;
160 	off_t pos;
161 	struct vmspace *vms = p->p_vmspace;
162 	vm_object_t obj;
163 
164 	KKASSERT(p);
165 
166 	addr = (vm_offset_t) uaddr;
167 	size = ulen;
168 	prot = uprot & VM_PROT_ALL;
169 	flags = uflags;
170 	pos = upos;
171 
172 	/* make sure mapping fits into numeric range etc */
173 	if ((ssize_t) ulen < 0 ||
174 	    ((flags & MAP_ANON) && fd != -1))
175 		return (EINVAL);
176 
177 	if (flags & MAP_STACK) {
178 		if ((fd != -1) ||
179 		    ((prot & (PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE)))
180 			return (EINVAL);
181 		flags |= MAP_ANON;
182 		pos = 0;
183 	}
184 
185 	/*
186 	 * Align the file position to a page boundary,
187 	 * and save its page offset component.
188 	 */
189 	pageoff = (pos & PAGE_MASK);
190 	pos -= pageoff;
191 
192 	/* Adjust size for rounding (on both ends). */
193 	size += pageoff;			/* low end... */
194 	size = (vm_size_t) round_page(size);	/* hi end */
195 
196 	/*
197 	 * Check for illegal addresses.  Watch out for address wrap... Note
198 	 * that VM_*_ADDRESS are not constants due to casts (argh).
199 	 */
200 	if (flags & MAP_FIXED) {
201 		/*
202 		 * The specified address must have the same remainder
203 		 * as the file offset taken modulo PAGE_SIZE, so it
204 		 * should be aligned after adjustment by pageoff.
205 		 */
206 		addr -= pageoff;
207 		if (addr & PAGE_MASK)
208 			return (EINVAL);
209 		/* Address range must be all in user VM space. */
210 		if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
211 			return (EINVAL);
212 #ifndef i386
213 		if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
214 			return (EINVAL);
215 #endif
216 		if (addr + size < addr)
217 			return (EINVAL);
218 	}
219 	/*
220 	 * XXX for non-fixed mappings where no hint is provided or
221 	 * the hint would fall in the potential heap space,
222 	 * place it after the end of the largest possible heap.
223 	 *
224 	 * There should really be a pmap call to determine a reasonable
225 	 * location.
226 	 */
227 	else if (addr == 0 ||
228 	    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
229 	     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz)))
230 		addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
231 
232 	if (flags & MAP_ANON) {
233 		/*
234 		 * Mapping blank space is trivial.
235 		 */
236 		handle = NULL;
237 		maxprot = VM_PROT_ALL;
238 		pos = 0;
239 	} else {
240 		/*
241 		 * Mapping file, get fp for validation. Obtain vnode and make
242 		 * sure it is of appropriate type.
243 		 */
244 		fp = holdfp(p->p_fd, fd, -1);
245 		if (fp == NULL)
246 			return (EBADF);
247 		if (fp->f_type != DTYPE_VNODE) {
248 			error = EINVAL;
249 			goto done;
250 		}
251 		/*
252 		 * POSIX shared-memory objects are defined to have
253 		 * kernel persistence, and are not defined to support
254 		 * read(2)/write(2) -- or even open(2).  Thus, we can
255 		 * use MAP_ASYNC to trade on-disk coherence for speed.
256 		 * The shm_open(3) library routine turns on the FPOSIXSHM
257 		 * flag to request this behavior.
258 		 */
259 		if (fp->f_flag & FPOSIXSHM)
260 			flags |= MAP_NOSYNC;
261 		vp = (struct vnode *) fp->f_data;
262 		if (vp->v_type != VREG && vp->v_type != VCHR) {
263 			error = EINVAL;
264 			goto done;
265 		}
266 		if (vp->v_type == VREG) {
267 			/*
268 			 * Get the proper underlying object
269 			 */
270 			if ((obj = vp->v_object) == NULL) {
271 				error = EINVAL;
272 				goto done;
273 			}
274 			KKASSERT(vp == (struct vnode *)obj->handle);
275 		}
276 
277 		/*
278 		 * XXX hack to handle use of /dev/zero to map anon memory (ala
279 		 * SunOS).
280 		 */
281 		if (vp->v_type == VCHR && iszerodev(vp->v_rdev)) {
282 			handle = NULL;
283 			maxprot = VM_PROT_ALL;
284 			flags |= MAP_ANON;
285 			pos = 0;
286 		} else {
287 			/*
288 			 * cdevs does not provide private mappings of any kind.
289 			 */
290 			/*
291 			 * However, for XIG X server to continue to work,
292 			 * we should allow the superuser to do it anyway.
293 			 * We only allow it at securelevel < 1.
294 			 * (Because the XIG X server writes directly to video
295 			 * memory via /dev/mem, it should never work at any
296 			 * other securelevel.
297 			 * XXX this will have to go
298 			 */
299 			if (securelevel >= 1)
300 				disablexworkaround = 1;
301 			else
302 				disablexworkaround = suser(td);
303 			if (vp->v_type == VCHR && disablexworkaround &&
304 			    (flags & (MAP_PRIVATE|MAP_COPY))) {
305 				error = EINVAL;
306 				goto done;
307 			}
308 			/*
309 			 * Ensure that file and memory protections are
310 			 * compatible.  Note that we only worry about
311 			 * writability if mapping is shared; in this case,
312 			 * current and max prot are dictated by the open file.
313 			 * XXX use the vnode instead?  Problem is: what
314 			 * credentials do we use for determination? What if
315 			 * proc does a setuid?
316 			 */
317 			maxprot = VM_PROT_EXECUTE;	/* ??? */
318 			if (fp->f_flag & FREAD) {
319 				maxprot |= VM_PROT_READ;
320 			} else if (prot & PROT_READ) {
321 				error = EACCES;
322 				goto done;
323 			}
324 			/*
325 			 * If we are sharing potential changes (either via
326 			 * MAP_SHARED or via the implicit sharing of character
327 			 * device mappings), and we are trying to get write
328 			 * permission although we opened it without asking
329 			 * for it, bail out.  Check for superuser, only if
330 			 * we're at securelevel < 1, to allow the XIG X server
331 			 * to continue to work.
332 			 */
333 
334 			if ((flags & MAP_SHARED) != 0 ||
335 			    (vp->v_type == VCHR && disablexworkaround)) {
336 				if ((fp->f_flag & FWRITE) != 0) {
337 					struct vattr va;
338 					if ((error = VOP_GETATTR(vp, &va))) {
339 						goto done;
340 					}
341 					if ((va.va_flags &
342 					    (IMMUTABLE|APPEND)) == 0) {
343 						maxprot |= VM_PROT_WRITE;
344 					} else if (prot & PROT_WRITE) {
345 						error = EPERM;
346 						goto done;
347 					}
348 				} else if ((prot & PROT_WRITE) != 0) {
349 					error = EACCES;
350 					goto done;
351 				}
352 			} else {
353 				maxprot |= VM_PROT_WRITE;
354 			}
355 			handle = (void *)vp;
356 		}
357 	}
358 
359 	/*
360 	 * Do not allow more then a certain number of vm_map_entry structures
361 	 * per process.  Scale with the number of rforks sharing the map
362 	 * to make the limit reasonable for threads.
363 	 */
364 	if (max_proc_mmap &&
365 	    vms->vm_map.nentries >= max_proc_mmap * vms->vm_refcnt) {
366 		error = ENOMEM;
367 		goto done;
368 	}
369 
370 	error = vm_mmap(&vms->vm_map, &addr, size, prot, maxprot,
371 	    flags, handle, pos);
372 	if (error == 0)
373 		*res = (void *)(addr + pageoff);
374 done:
375 	if (fp)
376 		fdrop(fp);
377 	return (error);
378 }
379 
380 int
381 sys_mmap(struct mmap_args *uap)
382 {
383 	int error;
384 
385 	error = kern_mmap(uap->addr, uap->len, uap->prot, uap->flags,
386 	    uap->fd, uap->pos, &uap->sysmsg_resultp);
387 
388 	return (error);
389 }
390 
391 /*
392  * msync_args(void *addr, int len, int flags)
393  */
394 int
395 sys_msync(struct msync_args *uap)
396 {
397 	struct proc *p = curproc;
398 	vm_offset_t addr;
399 	vm_size_t size, pageoff;
400 	int flags;
401 	vm_map_t map;
402 	int rv;
403 
404 	addr = (vm_offset_t) uap->addr;
405 	size = uap->len;
406 	flags = uap->flags;
407 
408 	pageoff = (addr & PAGE_MASK);
409 	addr -= pageoff;
410 	size += pageoff;
411 	size = (vm_size_t) round_page(size);
412 	if (addr + size < addr)
413 		return(EINVAL);
414 
415 	if ((flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE))
416 		return (EINVAL);
417 
418 	map = &p->p_vmspace->vm_map;
419 
420 	/*
421 	 * XXX Gak!  If size is zero we are supposed to sync "all modified
422 	 * pages with the region containing addr".  Unfortunately, we don't
423 	 * really keep track of individual mmaps so we approximate by flushing
424 	 * the range of the map entry containing addr. This can be incorrect
425 	 * if the region splits or is coalesced with a neighbor.
426 	 */
427 	if (size == 0) {
428 		vm_map_entry_t entry;
429 
430 		vm_map_lock_read(map);
431 		rv = vm_map_lookup_entry(map, addr, &entry);
432 		vm_map_unlock_read(map);
433 		if (rv == FALSE)
434 			return (EINVAL);
435 		addr = entry->start;
436 		size = entry->end - entry->start;
437 	}
438 
439 	/*
440 	 * Clean the pages and interpret the return value.
441 	 */
442 	rv = vm_map_clean(map, addr, addr + size, (flags & MS_ASYNC) == 0,
443 	    (flags & MS_INVALIDATE) != 0);
444 
445 	switch (rv) {
446 	case KERN_SUCCESS:
447 		break;
448 	case KERN_INVALID_ADDRESS:
449 		return (EINVAL);	/* Sun returns ENOMEM? */
450 	case KERN_FAILURE:
451 		return (EIO);
452 	default:
453 		return (EINVAL);
454 	}
455 
456 	return (0);
457 }
458 
459 /*
460  * munmap_args(void *addr, size_t len)
461  */
462 int
463 sys_munmap(struct munmap_args *uap)
464 {
465 	struct proc *p = curproc;
466 	vm_offset_t addr;
467 	vm_size_t size, pageoff;
468 	vm_map_t map;
469 
470 	addr = (vm_offset_t) uap->addr;
471 	size = uap->len;
472 
473 	pageoff = (addr & PAGE_MASK);
474 	addr -= pageoff;
475 	size += pageoff;
476 	size = (vm_size_t) round_page(size);
477 	if (addr + size < addr)
478 		return(EINVAL);
479 
480 	if (size == 0)
481 		return (0);
482 
483 	/*
484 	 * Check for illegal addresses.  Watch out for address wrap... Note
485 	 * that VM_*_ADDRESS are not constants due to casts (argh).
486 	 */
487 	if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
488 		return (EINVAL);
489 #ifndef i386
490 	if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
491 		return (EINVAL);
492 #endif
493 	map = &p->p_vmspace->vm_map;
494 	/*
495 	 * Make sure entire range is allocated.
496 	 */
497 	if (!vm_map_check_protection(map, addr, addr + size, VM_PROT_NONE))
498 		return (EINVAL);
499 	/* returns nothing but KERN_SUCCESS anyway */
500 	vm_map_remove(map, addr, addr + size);
501 	return (0);
502 }
503 
504 /*
505  * mprotect_args(const void *addr, size_t len, int prot)
506  */
507 int
508 sys_mprotect(struct mprotect_args *uap)
509 {
510 	struct proc *p = curproc;
511 	vm_offset_t addr;
512 	vm_size_t size, pageoff;
513 	vm_prot_t prot;
514 
515 	addr = (vm_offset_t) uap->addr;
516 	size = uap->len;
517 	prot = uap->prot & VM_PROT_ALL;
518 #if defined(VM_PROT_READ_IS_EXEC)
519 	if (prot & VM_PROT_READ)
520 		prot |= VM_PROT_EXECUTE;
521 #endif
522 
523 	pageoff = (addr & PAGE_MASK);
524 	addr -= pageoff;
525 	size += pageoff;
526 	size = (vm_size_t) round_page(size);
527 	if (addr + size < addr)
528 		return(EINVAL);
529 
530 	switch (vm_map_protect(&p->p_vmspace->vm_map, addr, addr + size, prot,
531 		FALSE)) {
532 	case KERN_SUCCESS:
533 		return (0);
534 	case KERN_PROTECTION_FAILURE:
535 		return (EACCES);
536 	}
537 	return (EINVAL);
538 }
539 
540 /*
541  * minherit_args(void *addr, size_t len, int inherit)
542  */
543 int
544 sys_minherit(struct minherit_args *uap)
545 {
546 	struct proc *p = curproc;
547 	vm_offset_t addr;
548 	vm_size_t size, pageoff;
549 	vm_inherit_t inherit;
550 
551 	addr = (vm_offset_t)uap->addr;
552 	size = uap->len;
553 	inherit = uap->inherit;
554 
555 	pageoff = (addr & PAGE_MASK);
556 	addr -= pageoff;
557 	size += pageoff;
558 	size = (vm_size_t) round_page(size);
559 	if (addr + size < addr)
560 		return(EINVAL);
561 
562 	switch (vm_map_inherit(&p->p_vmspace->vm_map, addr, addr+size,
563 	    inherit)) {
564 	case KERN_SUCCESS:
565 		return (0);
566 	case KERN_PROTECTION_FAILURE:
567 		return (EACCES);
568 	}
569 	return (EINVAL);
570 }
571 
572 /*
573  * madvise_args(void *addr, size_t len, int behav)
574  */
575 /* ARGSUSED */
576 int
577 sys_madvise(struct madvise_args *uap)
578 {
579 	struct proc *p = curproc;
580 	vm_offset_t start, end;
581 
582 	/*
583 	 * Check for illegal behavior
584 	 */
585 	if (uap->behav < 0 || uap->behav > MADV_CORE)
586 		return (EINVAL);
587 	/*
588 	 * Check for illegal addresses.  Watch out for address wrap... Note
589 	 * that VM_*_ADDRESS are not constants due to casts (argh).
590 	 */
591 	if (VM_MAXUSER_ADDRESS > 0 &&
592 		((vm_offset_t) uap->addr + uap->len) > VM_MAXUSER_ADDRESS)
593 		return (EINVAL);
594 #ifndef i386
595 	if (VM_MIN_ADDRESS > 0 && uap->addr < VM_MIN_ADDRESS)
596 		return (EINVAL);
597 #endif
598 	if (((vm_offset_t) uap->addr + uap->len) < (vm_offset_t) uap->addr)
599 		return (EINVAL);
600 
601 	/*
602 	 * Since this routine is only advisory, we default to conservative
603 	 * behavior.
604 	 */
605 	start = trunc_page((vm_offset_t) uap->addr);
606 	end = round_page((vm_offset_t) uap->addr + uap->len);
607 
608 	if (vm_map_madvise(&p->p_vmspace->vm_map, start, end, uap->behav))
609 		return (EINVAL);
610 	return (0);
611 }
612 
613 /*
614  * mincore_args(const void *addr, size_t len, char *vec)
615  */
616 /* ARGSUSED */
617 int
618 sys_mincore(struct mincore_args *uap)
619 {
620 	struct proc *p = curproc;
621 	vm_offset_t addr, first_addr;
622 	vm_offset_t end, cend;
623 	pmap_t pmap;
624 	vm_map_t map;
625 	char *vec;
626 	int error;
627 	int vecindex, lastvecindex;
628 	vm_map_entry_t current;
629 	vm_map_entry_t entry;
630 	int mincoreinfo;
631 	unsigned int timestamp;
632 
633 	/*
634 	 * Make sure that the addresses presented are valid for user
635 	 * mode.
636 	 */
637 	first_addr = addr = trunc_page((vm_offset_t) uap->addr);
638 	end = addr + (vm_size_t)round_page(uap->len);
639 	if (VM_MAXUSER_ADDRESS > 0 && end > VM_MAXUSER_ADDRESS)
640 		return (EINVAL);
641 	if (end < addr)
642 		return (EINVAL);
643 
644 	/*
645 	 * Address of byte vector
646 	 */
647 	vec = uap->vec;
648 
649 	map = &p->p_vmspace->vm_map;
650 	pmap = vmspace_pmap(p->p_vmspace);
651 
652 	vm_map_lock_read(map);
653 RestartScan:
654 	timestamp = map->timestamp;
655 
656 	if (!vm_map_lookup_entry(map, addr, &entry))
657 		entry = entry->next;
658 
659 	/*
660 	 * Do this on a map entry basis so that if the pages are not
661 	 * in the current processes address space, we can easily look
662 	 * up the pages elsewhere.
663 	 */
664 	lastvecindex = -1;
665 	for(current = entry;
666 		(current != &map->header) && (current->start < end);
667 		current = current->next) {
668 
669 		/*
670 		 * ignore submaps (for now) or null objects
671 		 */
672 		if ((current->eflags & MAP_ENTRY_IS_SUB_MAP) ||
673 			current->object.vm_object == NULL)
674 			continue;
675 
676 		/*
677 		 * limit this scan to the current map entry and the
678 		 * limits for the mincore call
679 		 */
680 		if (addr < current->start)
681 			addr = current->start;
682 		cend = current->end;
683 		if (cend > end)
684 			cend = end;
685 
686 		/*
687 		 * scan this entry one page at a time
688 		 */
689 		while (addr < cend) {
690 			/*
691 			 * Check pmap first, it is likely faster, also
692 			 * it can provide info as to whether we are the
693 			 * one referencing or modifying the page.
694 			 */
695 			mincoreinfo = pmap_mincore(pmap, addr);
696 			if (!mincoreinfo) {
697 				vm_pindex_t pindex;
698 				vm_ooffset_t offset;
699 				vm_page_t m;
700 
701 				/*
702 				 * calculate the page index into the object
703 				 */
704 				offset = current->offset + (addr - current->start);
705 				pindex = OFF_TO_IDX(offset);
706 
707 				/*
708 				 * if the page is resident, then gather
709 				 * information about it.  spl protection is
710 				 * required to maintain the object
711 				 * association.  And XXX what if the page is
712 				 * busy?  What's the deal with that?
713 				 */
714 				crit_enter();
715 				m = vm_page_lookup(current->object.vm_object,
716 						    pindex);
717 				if (m && m->valid) {
718 					mincoreinfo = MINCORE_INCORE;
719 					if (m->dirty ||
720 						pmap_is_modified(m))
721 						mincoreinfo |= MINCORE_MODIFIED_OTHER;
722 					if ((m->flags & PG_REFERENCED) ||
723 						pmap_ts_referenced(m)) {
724 						vm_page_flag_set(m, PG_REFERENCED);
725 						mincoreinfo |= MINCORE_REFERENCED_OTHER;
726 					}
727 				}
728 				crit_exit();
729 			}
730 
731 			/*
732 			 * subyte may page fault.  In case it needs to modify
733 			 * the map, we release the lock.
734 			 */
735 			vm_map_unlock_read(map);
736 
737 			/*
738 			 * calculate index into user supplied byte vector
739 			 */
740 			vecindex = OFF_TO_IDX(addr - first_addr);
741 
742 			/*
743 			 * If we have skipped map entries, we need to make sure that
744 			 * the byte vector is zeroed for those skipped entries.
745 			 */
746 			while((lastvecindex + 1) < vecindex) {
747 				error = subyte( vec + lastvecindex, 0);
748 				if (error) {
749 					return (EFAULT);
750 				}
751 				++lastvecindex;
752 			}
753 
754 			/*
755 			 * Pass the page information to the user
756 			 */
757 			error = subyte( vec + vecindex, mincoreinfo);
758 			if (error) {
759 				return (EFAULT);
760 			}
761 
762 			/*
763 			 * If the map has changed, due to the subyte, the previous
764 			 * output may be invalid.
765 			 */
766 			vm_map_lock_read(map);
767 			if (timestamp != map->timestamp)
768 				goto RestartScan;
769 
770 			lastvecindex = vecindex;
771 			addr += PAGE_SIZE;
772 		}
773 	}
774 
775 	/*
776 	 * subyte may page fault.  In case it needs to modify
777 	 * the map, we release the lock.
778 	 */
779 	vm_map_unlock_read(map);
780 
781 	/*
782 	 * Zero the last entries in the byte vector.
783 	 */
784 	vecindex = OFF_TO_IDX(end - first_addr);
785 	while((lastvecindex + 1) < vecindex) {
786 		error = subyte( vec + lastvecindex, 0);
787 		if (error) {
788 			return (EFAULT);
789 		}
790 		++lastvecindex;
791 	}
792 
793 	/*
794 	 * If the map has changed, due to the subyte, the previous
795 	 * output may be invalid.
796 	 */
797 	vm_map_lock_read(map);
798 	if (timestamp != map->timestamp)
799 		goto RestartScan;
800 	vm_map_unlock_read(map);
801 
802 	return (0);
803 }
804 
805 /*
806  * mlock_args(const void *addr, size_t len)
807  */
808 int
809 sys_mlock(struct mlock_args *uap)
810 {
811 	vm_offset_t addr;
812 	vm_size_t size, pageoff;
813 	int error;
814 	struct proc *p = curproc;
815 
816 	addr = (vm_offset_t) uap->addr;
817 	size = uap->len;
818 
819 	pageoff = (addr & PAGE_MASK);
820 	addr -= pageoff;
821 	size += pageoff;
822 	size = (vm_size_t) round_page(size);
823 
824 	/* disable wrap around */
825 	if (addr + size < addr)
826 		return (EINVAL);
827 
828 	if (atop(size) + vmstats.v_wire_count > vm_page_max_wired)
829 		return (EAGAIN);
830 
831 #ifdef pmap_wired_count
832 	if (size + ptoa(pmap_wired_count(vm_map_pmap(&p->p_vmspace->vm_map))) >
833 	    p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur)
834 		return (ENOMEM);
835 #else
836 	error = suser_cred(p->p_ucred, 0);
837 	if (error)
838 		return (error);
839 #endif
840 
841 	error = vm_map_unwire(&p->p_vmspace->vm_map, addr, addr + size, FALSE);
842 	return (error == KERN_SUCCESS ? 0 : ENOMEM);
843 }
844 
845 /*
846  * mlockall_args(int how)
847  */
848 int
849 sys_mlockall(struct mlockall_args *uap)
850 {
851 	return 0;
852 }
853 
854 /*
855  * munlockall_args(void)
856  */
857 int
858 sys_munlockall(struct munlockall_args *uap)
859 {
860 	return 0;
861 }
862 
863 /*
864  * munlock_args(const void *addr, size_t len)
865  */
866 int
867 sys_munlock(struct munlock_args *uap)
868 {
869 	struct thread *td = curthread;
870 	struct proc *p = td->td_proc;
871 	vm_offset_t addr;
872 	vm_size_t size, pageoff;
873 	int error;
874 
875 	addr = (vm_offset_t) uap->addr;
876 	size = uap->len;
877 
878 	pageoff = (addr & PAGE_MASK);
879 	addr -= pageoff;
880 	size += pageoff;
881 	size = (vm_size_t) round_page(size);
882 
883 	/* disable wrap around */
884 	if (addr + size < addr)
885 		return (EINVAL);
886 
887 #ifndef pmap_wired_count
888 	error = suser(td);
889 	if (error)
890 		return (error);
891 #endif
892 
893 	error = vm_map_unwire(&p->p_vmspace->vm_map, addr, addr + size, TRUE);
894 	return (error == KERN_SUCCESS ? 0 : ENOMEM);
895 }
896 
897 /*
898  * Internal version of mmap.
899  * Currently used by mmap, exec, and sys5 shared memory.
900  * Handle is either a vnode pointer or NULL for MAP_ANON.
901  */
902 int
903 vm_mmap(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot,
904 	vm_prot_t maxprot, int flags,
905 	void *handle,
906 	vm_ooffset_t foff)
907 {
908 	boolean_t fitit;
909 	vm_object_t object;
910 	struct vnode *vp = NULL;
911 	objtype_t type;
912 	int rv = KERN_SUCCESS;
913 	off_t objsize;
914 	int docow;
915 	struct thread *td = curthread;	/* XXX */
916 	struct proc *p = td->td_proc;
917 
918 	KKASSERT(p);
919 
920 	if (size == 0)
921 		return (0);
922 
923 	objsize = size = round_page(size);
924 
925 	if (p->p_vmspace->vm_map.size + size >
926 	    p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
927 		return(ENOMEM);
928 	}
929 
930 	/*
931 	 * We currently can only deal with page aligned file offsets.
932 	 * The check is here rather than in the syscall because the
933 	 * kernel calls this function internally for other mmaping
934 	 * operations (such as in exec) and non-aligned offsets will
935 	 * cause pmap inconsistencies...so we want to be sure to
936 	 * disallow this in all cases.
937 	 */
938 	if (foff & PAGE_MASK)
939 		return (EINVAL);
940 
941 	if ((flags & MAP_FIXED) == 0) {
942 		fitit = TRUE;
943 		*addr = round_page(*addr);
944 	} else {
945 		if (*addr != trunc_page(*addr))
946 			return (EINVAL);
947 		fitit = FALSE;
948 		vm_map_remove(map, *addr, *addr + size);
949 	}
950 
951 	/*
952 	 * Lookup/allocate object.
953 	 */
954 	if (flags & MAP_ANON) {
955 		type = OBJT_DEFAULT;
956 		/*
957 		 * Unnamed anonymous regions always start at 0.
958 		 */
959 		if (handle == 0)
960 			foff = 0;
961 	} else {
962 		vp = (struct vnode *) handle;
963 		if (vp->v_type == VCHR) {
964 			type = OBJT_DEVICE;
965 			handle = (void *)(intptr_t)vp->v_rdev;
966 		} else {
967 			struct vattr vat;
968 			int error;
969 
970 			error = VOP_GETATTR(vp, &vat);
971 			if (error)
972 				return (error);
973 			objsize = vat.va_size;
974 			type = OBJT_VNODE;
975 			/*
976 			 * if it is a regular file without any references
977 			 * we do not need to sync it.
978 			 */
979 			if (vp->v_type == VREG && vat.va_nlink == 0) {
980 				flags |= MAP_NOSYNC;
981 			}
982 		}
983 	}
984 
985 	if (handle == NULL) {
986 		object = NULL;
987 		docow = 0;
988 	} else {
989 		object = vm_pager_allocate(type, handle, objsize, prot, foff);
990 		if (object == NULL)
991 			return (type == OBJT_DEVICE ? EINVAL : ENOMEM);
992 		docow = MAP_PREFAULT_PARTIAL;
993 	}
994 
995 	/*
996 	 * Force device mappings to be shared.
997 	 */
998 	if (type == OBJT_DEVICE || type == OBJT_PHYS) {
999 		flags &= ~(MAP_PRIVATE|MAP_COPY);
1000 		flags |= MAP_SHARED;
1001 	}
1002 
1003 	if ((flags & (MAP_ANON|MAP_SHARED)) == 0)
1004 		docow |= MAP_COPY_ON_WRITE;
1005 	if (flags & MAP_NOSYNC)
1006 		docow |= MAP_DISABLE_SYNCER;
1007 	if (flags & MAP_NOCORE)
1008 		docow |= MAP_DISABLE_COREDUMP;
1009 
1010 #if defined(VM_PROT_READ_IS_EXEC)
1011 	if (prot & VM_PROT_READ)
1012 		prot |= VM_PROT_EXECUTE;
1013 
1014 	if (maxprot & VM_PROT_READ)
1015 		maxprot |= VM_PROT_EXECUTE;
1016 #endif
1017 
1018 	if (fitit) {
1019 		*addr = pmap_addr_hint(object, *addr, size);
1020 	}
1021 
1022 	if (flags & MAP_STACK)
1023 		rv = vm_map_stack (map, *addr, size, prot,
1024 				   maxprot, docow);
1025 	else
1026 		rv = vm_map_find(map, object, foff, addr, size, fitit,
1027 				 prot, maxprot, docow);
1028 
1029 	if (rv != KERN_SUCCESS) {
1030 		/*
1031 		 * Lose the object reference. Will destroy the
1032 		 * object if it's an unnamed anonymous mapping
1033 		 * or named anonymous without other references.
1034 		 */
1035 		vm_object_deallocate(object);
1036 		goto out;
1037 	}
1038 
1039 	/*
1040 	 * Shared memory is also shared with children.
1041 	 */
1042 	if (flags & (MAP_SHARED|MAP_INHERIT)) {
1043 		rv = vm_map_inherit(map, *addr, *addr + size, VM_INHERIT_SHARE);
1044 		if (rv != KERN_SUCCESS) {
1045 			vm_map_remove(map, *addr, *addr + size);
1046 			goto out;
1047 		}
1048 	}
1049 out:
1050 	switch (rv) {
1051 	case KERN_SUCCESS:
1052 		return (0);
1053 	case KERN_INVALID_ADDRESS:
1054 	case KERN_NO_SPACE:
1055 		return (ENOMEM);
1056 	case KERN_PROTECTION_FAILURE:
1057 		return (EACCES);
1058 	default:
1059 		return (EINVAL);
1060 	}
1061 }
1062