xref: /dragonfly/sys/vm/vm_object.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory object module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>		/* for curproc, pageproc */
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_zone.h>
96 
97 #define EASY_SCAN_FACTOR	8
98 
99 static void	vm_object_qcollapse(vm_object_t object);
100 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 
103 /*
104  *	Virtual memory objects maintain the actual data
105  *	associated with allocated virtual memory.  A given
106  *	page of memory exists within exactly one object.
107  *
108  *	An object is only deallocated when all "references"
109  *	are given up.  Only one "reference" to a given
110  *	region of an object should be writeable.
111  *
112  *	Associated with each object is a list of all resident
113  *	memory pages belonging to that object; this list is
114  *	maintained by the "vm_page" module, and locked by the object's
115  *	lock.
116  *
117  *	Each object also records a "pager" routine which is
118  *	used to retrieve (and store) pages to the proper backing
119  *	storage.  In addition, objects may be backed by other
120  *	objects from which they were virtual-copied.
121  *
122  *	The only items within the object structure which are
123  *	modified after time of creation are:
124  *		reference count		locked by object's lock
125  *		pager routine		locked by object's lock
126  *
127  */
128 
129 struct object_q vm_object_list;		/* locked by vmobj_token */
130 struct vm_object kernel_object;
131 
132 static long vm_object_count;		/* locked by vmobj_token */
133 extern int vm_pageout_page_count;
134 
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 static int object_hash_rand;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143 
144 /*
145  * Initialize a freshly allocated object
146  *
147  * Used only by vm_object_allocate() and zinitna().
148  *
149  * No requirements.
150  */
151 void
152 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
153 {
154 	int incr;
155 
156 	RB_INIT(&object->rb_memq);
157 	LIST_INIT(&object->shadow_head);
158 
159 	object->type = type;
160 	object->size = size;
161 	object->ref_count = 1;
162 	object->flags = 0;
163 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164 		vm_object_set_flag(object, OBJ_ONEMAPPING);
165 	object->paging_in_progress = 0;
166 	object->resident_page_count = 0;
167 	object->agg_pv_list_count = 0;
168 	object->shadow_count = 0;
169 	object->pg_color = next_index;
170 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
171 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
172 	else
173 		incr = size;
174 	next_index = (next_index + incr) & PQ_L2_MASK;
175 	object->handle = NULL;
176 	object->backing_object = NULL;
177 	object->backing_object_offset = (vm_ooffset_t) 0;
178 	/*
179 	 * Try to generate a number that will spread objects out in the
180 	 * hash table.  We 'wipe' new objects across the hash in 128 page
181 	 * increments plus 1 more to offset it a little more by the time
182 	 * it wraps around.
183 	 */
184 	object->hash_rand = object_hash_rand - 129;
185 
186 	object->generation++;
187 	object->swblock_count = 0;
188 	RB_INIT(&object->swblock_root);
189 
190 	lwkt_gettoken(&vmobj_token);
191 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
192 	vm_object_count++;
193 	object_hash_rand = object->hash_rand;
194 	lwkt_reltoken(&vmobj_token);
195 }
196 
197 /*
198  * Initialize the VM objects module.
199  *
200  * Called from the low level boot code only.
201  */
202 void
203 vm_object_init(void)
204 {
205 	TAILQ_INIT(&vm_object_list);
206 
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
208 			    &kernel_object);
209 
210 	obj_zone = &obj_zone_store;
211 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 		vm_objects_init, VM_OBJECTS_INIT);
213 }
214 
215 void
216 vm_object_init2(void)
217 {
218 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220 
221 /*
222  * Allocate and return a new object of the specified type and size.
223  *
224  * No requirements.
225  */
226 vm_object_t
227 vm_object_allocate(objtype_t type, vm_pindex_t size)
228 {
229 	vm_object_t result;
230 
231 	result = (vm_object_t) zalloc(obj_zone);
232 
233 	_vm_object_allocate(type, size, result);
234 
235 	return (result);
236 }
237 
238 /*
239  * Add an additional reference to a vm_object.
240  *
241  * Object passed by caller must be stable or caller must already
242  * hold vmobj_token to avoid races.
243  */
244 void
245 vm_object_reference(vm_object_t object)
246 {
247 	if (object) {
248 		lwkt_gettoken(&vmobj_token);
249 		object->ref_count++;
250 		if (object->type == OBJT_VNODE) {
251 			vref(object->handle);
252 			/* XXX what if the vnode is being destroyed? */
253 		}
254 		lwkt_reltoken(&vmobj_token);
255 	}
256 }
257 
258 void
259 vm_object_reference_locked(vm_object_t object)
260 {
261 	if (object) {
262 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
263 		object->ref_count++;
264 		if (object->type == OBJT_VNODE) {
265 			vref(object->handle);
266 			/* XXX what if the vnode is being destroyed? */
267 		}
268 	}
269 }
270 
271 /*
272  * Dereference an object and its underlying vnode.
273  *
274  * The caller must hold vmobj_token.
275  */
276 static void
277 vm_object_vndeallocate(vm_object_t object)
278 {
279 	struct vnode *vp = (struct vnode *) object->handle;
280 
281 	KASSERT(object->type == OBJT_VNODE,
282 	    ("vm_object_vndeallocate: not a vnode object"));
283 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
284 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
285 #ifdef INVARIANTS
286 	if (object->ref_count == 0) {
287 		vprint("vm_object_vndeallocate", vp);
288 		panic("vm_object_vndeallocate: bad object reference count");
289 	}
290 #endif
291 
292 	object->ref_count--;
293 	if (object->ref_count == 0)
294 		vclrflags(vp, VTEXT);
295 	vrele(vp);
296 }
297 
298 /*
299  * Release a reference to the specified object, gained either through a
300  * vm_object_allocate or a vm_object_reference call.  When all references
301  * are gone, storage associated with this object may be relinquished.
302  */
303 void
304 vm_object_deallocate(vm_object_t object)
305 {
306 	lwkt_gettoken(&vmobj_token);
307 	vm_object_deallocate_locked(object);
308 	lwkt_reltoken(&vmobj_token);
309 }
310 
311 void
312 vm_object_deallocate_locked(vm_object_t object)
313 {
314 	vm_object_t temp;
315 
316 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
317 
318 	while (object != NULL) {
319 		if (object->type == OBJT_VNODE) {
320 			vm_object_vndeallocate(object);
321 			break;
322 		}
323 
324 		if (object->ref_count == 0) {
325 			panic("vm_object_deallocate: object deallocated "
326 			      "too many times: %d", object->type);
327 		}
328 		if (object->ref_count > 2) {
329 			object->ref_count--;
330 			break;
331 		}
332 
333 		/*
334 		 * We currently need the vm_token from this point on, and
335 		 * we must recheck ref_count after acquiring it.
336 		 */
337 		lwkt_gettoken(&vm_token);
338 
339 		if (object->ref_count > 2) {
340 			object->ref_count--;
341 			lwkt_reltoken(&vm_token);
342 			break;
343 		}
344 
345 		/*
346 		 * Here on ref_count of one or two, which are special cases for
347 		 * objects.
348 		 */
349 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
350 			vm_object_set_flag(object, OBJ_ONEMAPPING);
351 			object->ref_count--;
352 			lwkt_reltoken(&vm_token);
353 			break;
354 		}
355 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
356 			object->ref_count--;
357 			if ((object->handle == NULL) &&
358 			    (object->type == OBJT_DEFAULT ||
359 			     object->type == OBJT_SWAP)) {
360 				vm_object_t robject;
361 
362 				robject = LIST_FIRST(&object->shadow_head);
363 				KASSERT(robject != NULL,
364 					("vm_object_deallocate: ref_count: "
365 					"%d, shadow_count: %d",
366 					object->ref_count,
367 					object->shadow_count));
368 
369 				if ((robject->handle == NULL) &&
370 				    (robject->type == OBJT_DEFAULT ||
371 				     robject->type == OBJT_SWAP)) {
372 
373 					robject->ref_count++;
374 
375 					while (
376 						robject->paging_in_progress ||
377 						object->paging_in_progress
378 					) {
379 						vm_object_pip_sleep(robject, "objde1");
380 						vm_object_pip_sleep(object, "objde2");
381 					}
382 
383 					if (robject->ref_count == 1) {
384 						robject->ref_count--;
385 						object = robject;
386 						goto doterm;
387 					}
388 
389 					object = robject;
390 					vm_object_collapse(object);
391 					lwkt_reltoken(&vm_token);
392 					continue;
393 				}
394 			}
395 			lwkt_reltoken(&vm_token);
396 			break;
397 		}
398 
399 		/*
400 		 * Normal dereferencing path
401 		 */
402 		object->ref_count--;
403 		if (object->ref_count != 0) {
404 			lwkt_reltoken(&vm_token);
405 			break;
406 		}
407 
408 		/*
409 		 * Termination path
410 		 */
411 doterm:
412 		temp = object->backing_object;
413 		if (temp) {
414 			LIST_REMOVE(object, shadow_list);
415 			temp->shadow_count--;
416 			temp->generation++;
417 			object->backing_object = NULL;
418 		}
419 		lwkt_reltoken(&vm_token);
420 
421 		/*
422 		 * Don't double-terminate, we could be in a termination
423 		 * recursion due to the terminate having to sync data
424 		 * to disk.
425 		 */
426 		if ((object->flags & OBJ_DEAD) == 0)
427 			vm_object_terminate(object);
428 		object = temp;
429 	}
430 }
431 
432 /*
433  * Destroy the specified object, freeing up related resources.
434  *
435  * The object must have zero references.
436  *
437  * The caller must be holding vmobj_token and properly interlock with
438  * OBJ_DEAD.
439  */
440 static int vm_object_terminate_callback(vm_page_t p, void *data);
441 
442 void
443 vm_object_terminate(vm_object_t object)
444 {
445 	/*
446 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
447 	 * able to safely block.
448 	 */
449 	KKASSERT((object->flags & OBJ_DEAD) == 0);
450 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
451 	vm_object_set_flag(object, OBJ_DEAD);
452 
453 	/*
454 	 * Wait for the pageout daemon to be done with the object
455 	 */
456 	vm_object_pip_wait(object, "objtrm");
457 
458 	KASSERT(!object->paging_in_progress,
459 		("vm_object_terminate: pageout in progress"));
460 
461 	/*
462 	 * Clean and free the pages, as appropriate. All references to the
463 	 * object are gone, so we don't need to lock it.
464 	 */
465 	if (object->type == OBJT_VNODE) {
466 		struct vnode *vp;
467 
468 		/*
469 		 * Clean pages and flush buffers.
470 		 */
471 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
472 
473 		vp = (struct vnode *) object->handle;
474 		vinvalbuf(vp, V_SAVE, 0, 0);
475 	}
476 
477 	/*
478 	 * Wait for any I/O to complete, after which there had better not
479 	 * be any references left on the object.
480 	 */
481 	vm_object_pip_wait(object, "objtrm");
482 
483 	if (object->ref_count != 0) {
484 		panic("vm_object_terminate: object with references, "
485 		      "ref_count=%d", object->ref_count);
486 	}
487 
488 	/*
489 	 * Now free any remaining pages. For internal objects, this also
490 	 * removes them from paging queues. Don't free wired pages, just
491 	 * remove them from the object.
492 	 */
493 	lwkt_gettoken(&vm_token);
494 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
495 				vm_object_terminate_callback, NULL);
496 	lwkt_reltoken(&vm_token);
497 
498 	/*
499 	 * Let the pager know object is dead.
500 	 */
501 	vm_pager_deallocate(object);
502 
503 	/*
504 	 * Remove the object from the global object list.
505 	 *
506 	 * (we are holding vmobj_token)
507 	 */
508 	TAILQ_REMOVE(&vm_object_list, object, object_list);
509 	vm_object_count--;
510 	vm_object_dead_wakeup(object);
511 
512 	if (object->ref_count != 0) {
513 		panic("vm_object_terminate2: object with references, "
514 		      "ref_count=%d", object->ref_count);
515 	}
516 
517 	/*
518 	 * Free the space for the object.
519 	 */
520 	zfree(obj_zone, object);
521 }
522 
523 /*
524  * The caller must hold vm_token.
525  */
526 static int
527 vm_object_terminate_callback(vm_page_t p, void *data __unused)
528 {
529 	if (p->busy || (p->flags & PG_BUSY))
530 		panic("vm_object_terminate: freeing busy page %p", p);
531 	if (p->wire_count == 0) {
532 		vm_page_busy(p);
533 		vm_page_free(p);
534 		mycpu->gd_cnt.v_pfree++;
535 	} else {
536 		if (p->queue != PQ_NONE)
537 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
538 		vm_page_busy(p);
539 		vm_page_remove(p);
540 		vm_page_wakeup(p);
541 	}
542 	return(0);
543 }
544 
545 /*
546  * The object is dead but still has an object<->pager association.  Sleep
547  * and return.  The caller typically retests the association in a loop.
548  *
549  * Must be called with the vmobj_token held.
550  */
551 void
552 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
553 {
554 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
555 	if (object->handle) {
556 		vm_object_set_flag(object, OBJ_DEADWNT);
557 		tsleep(object, 0, wmesg, 0);
558 		/* object may be invalid after this point */
559 	}
560 }
561 
562 /*
563  * Wakeup anyone waiting for the object<->pager disassociation on
564  * a dead object.
565  *
566  * Must be called with the vmobj_token held.
567  */
568 void
569 vm_object_dead_wakeup(vm_object_t object)
570 {
571 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
572 	if (object->flags & OBJ_DEADWNT) {
573 		vm_object_clear_flag(object, OBJ_DEADWNT);
574 		wakeup(object);
575 	}
576 }
577 
578 /*
579  * Clean all dirty pages in the specified range of object.  Leaves page
580  * on whatever queue it is currently on.   If NOSYNC is set then do not
581  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
582  * leaving the object dirty.
583  *
584  * When stuffing pages asynchronously, allow clustering.  XXX we need a
585  * synchronous clustering mode implementation.
586  *
587  * Odd semantics: if start == end, we clean everything.
588  *
589  * The object must be locked? XXX
590  */
591 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
592 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
593 
594 void
595 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
596 		     int flags)
597 {
598 	struct rb_vm_page_scan_info info;
599 	struct vnode *vp;
600 	int wholescan;
601 	int pagerflags;
602 	int curgeneration;
603 
604 	lwkt_gettoken(&vm_token);
605 	if (object->type != OBJT_VNODE ||
606 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
607 		lwkt_reltoken(&vm_token);
608 		return;
609 	}
610 
611 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
612 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
613 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
614 
615 	vp = object->handle;
616 
617 	/*
618 	 * Interlock other major object operations.  This allows us to
619 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
620 	 */
621 	crit_enter();
622 	vm_object_set_flag(object, OBJ_CLEANING);
623 
624 	/*
625 	 * Handle 'entire object' case
626 	 */
627 	info.start_pindex = start;
628 	if (end == 0) {
629 		info.end_pindex = object->size - 1;
630 	} else {
631 		info.end_pindex = end - 1;
632 	}
633 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
634 	info.limit = flags;
635 	info.pagerflags = pagerflags;
636 	info.object = object;
637 
638 	/*
639 	 * If cleaning the entire object do a pass to mark the pages read-only.
640 	 * If everything worked out ok, clear OBJ_WRITEABLE and
641 	 * OBJ_MIGHTBEDIRTY.
642 	 */
643 	if (wholescan) {
644 		info.error = 0;
645 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
646 					vm_object_page_clean_pass1, &info);
647 		if (info.error == 0) {
648 			vm_object_clear_flag(object,
649 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
650 			if (object->type == OBJT_VNODE &&
651 			    (vp = (struct vnode *)object->handle) != NULL) {
652 				if (vp->v_flag & VOBJDIRTY)
653 					vclrflags(vp, VOBJDIRTY);
654 			}
655 		}
656 	}
657 
658 	/*
659 	 * Do a pass to clean all the dirty pages we find.
660 	 */
661 	do {
662 		info.error = 0;
663 		curgeneration = object->generation;
664 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
665 					vm_object_page_clean_pass2, &info);
666 	} while (info.error || curgeneration != object->generation);
667 
668 	vm_object_clear_flag(object, OBJ_CLEANING);
669 	crit_exit();
670 	lwkt_reltoken(&vm_token);
671 }
672 
673 /*
674  * The caller must hold vm_token.
675  */
676 static
677 int
678 vm_object_page_clean_pass1(struct vm_page *p, void *data)
679 {
680 	struct rb_vm_page_scan_info *info = data;
681 
682 	vm_page_flag_set(p, PG_CLEANCHK);
683 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
684 		info->error = 1;
685 	else
686 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
687 	return(0);
688 }
689 
690 /*
691  * The caller must hold vm_token.
692  */
693 static
694 int
695 vm_object_page_clean_pass2(struct vm_page *p, void *data)
696 {
697 	struct rb_vm_page_scan_info *info = data;
698 	int n;
699 
700 	/*
701 	 * Do not mess with pages that were inserted after we started
702 	 * the cleaning pass.
703 	 */
704 	if ((p->flags & PG_CLEANCHK) == 0)
705 		return(0);
706 
707 	/*
708 	 * Before wasting time traversing the pmaps, check for trivial
709 	 * cases where the page cannot be dirty.
710 	 */
711 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
712 		KKASSERT((p->dirty & p->valid) == 0);
713 		return(0);
714 	}
715 
716 	/*
717 	 * Check whether the page is dirty or not.  The page has been set
718 	 * to be read-only so the check will not race a user dirtying the
719 	 * page.
720 	 */
721 	vm_page_test_dirty(p);
722 	if ((p->dirty & p->valid) == 0) {
723 		vm_page_flag_clear(p, PG_CLEANCHK);
724 		return(0);
725 	}
726 
727 	/*
728 	 * If we have been asked to skip nosync pages and this is a
729 	 * nosync page, skip it.  Note that the object flags were
730 	 * not cleared in this case (because pass1 will have returned an
731 	 * error), so we do not have to set them.
732 	 */
733 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
734 		vm_page_flag_clear(p, PG_CLEANCHK);
735 		return(0);
736 	}
737 
738 	/*
739 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
740 	 * the pages that get successfully flushed.  Set info->error if
741 	 * we raced an object modification.
742 	 */
743 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
744 	if (n == 0)
745 		info->error = 1;
746 	return(0);
747 }
748 
749 /*
750  * Collect the specified page and nearby pages and flush them out.
751  * The number of pages flushed is returned.
752  *
753  * The caller must hold vm_token.
754  */
755 static int
756 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
757 {
758 	int runlen;
759 	int maxf;
760 	int chkb;
761 	int maxb;
762 	int i;
763 	int curgeneration;
764 	vm_pindex_t pi;
765 	vm_page_t maf[vm_pageout_page_count];
766 	vm_page_t mab[vm_pageout_page_count];
767 	vm_page_t ma[vm_pageout_page_count];
768 
769 	curgeneration = object->generation;
770 
771 	pi = p->pindex;
772 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
773 		if (object->generation != curgeneration) {
774 			return(0);
775 		}
776 	}
777 	KKASSERT(p->object == object && p->pindex == pi);
778 
779 	maxf = 0;
780 	for(i = 1; i < vm_pageout_page_count; i++) {
781 		vm_page_t tp;
782 
783 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
784 			if ((tp->flags & PG_BUSY) ||
785 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
786 				 (tp->flags & PG_CLEANCHK) == 0) ||
787 				(tp->busy != 0))
788 				break;
789 			if((tp->queue - tp->pc) == PQ_CACHE) {
790 				vm_page_flag_clear(tp, PG_CLEANCHK);
791 				break;
792 			}
793 			vm_page_test_dirty(tp);
794 			if ((tp->dirty & tp->valid) == 0) {
795 				vm_page_flag_clear(tp, PG_CLEANCHK);
796 				break;
797 			}
798 			maf[ i - 1 ] = tp;
799 			maxf++;
800 			continue;
801 		}
802 		break;
803 	}
804 
805 	maxb = 0;
806 	chkb = vm_pageout_page_count -  maxf;
807 	if (chkb) {
808 		for(i = 1; i < chkb;i++) {
809 			vm_page_t tp;
810 
811 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
812 				if ((tp->flags & PG_BUSY) ||
813 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
814 					 (tp->flags & PG_CLEANCHK) == 0) ||
815 					(tp->busy != 0))
816 					break;
817 				if((tp->queue - tp->pc) == PQ_CACHE) {
818 					vm_page_flag_clear(tp, PG_CLEANCHK);
819 					break;
820 				}
821 				vm_page_test_dirty(tp);
822 				if ((tp->dirty & tp->valid) == 0) {
823 					vm_page_flag_clear(tp, PG_CLEANCHK);
824 					break;
825 				}
826 				mab[ i - 1 ] = tp;
827 				maxb++;
828 				continue;
829 			}
830 			break;
831 		}
832 	}
833 
834 	for(i = 0; i < maxb; i++) {
835 		int index = (maxb - i) - 1;
836 		ma[index] = mab[i];
837 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
838 	}
839 	vm_page_flag_clear(p, PG_CLEANCHK);
840 	ma[maxb] = p;
841 	for(i = 0; i < maxf; i++) {
842 		int index = (maxb + i) + 1;
843 		ma[index] = maf[i];
844 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
845 	}
846 	runlen = maxb + maxf + 1;
847 
848 	vm_pageout_flush(ma, runlen, pagerflags);
849 	for (i = 0; i < runlen; i++) {
850 		if (ma[i]->valid & ma[i]->dirty) {
851 			vm_page_protect(ma[i], VM_PROT_READ);
852 			vm_page_flag_set(ma[i], PG_CLEANCHK);
853 
854 			/*
855 			 * maxf will end up being the actual number of pages
856 			 * we wrote out contiguously, non-inclusive of the
857 			 * first page.  We do not count look-behind pages.
858 			 */
859 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
860 				maxf = i - maxb - 1;
861 		}
862 	}
863 	return(maxf + 1);
864 }
865 
866 /*
867  * Same as vm_object_pmap_copy, except range checking really
868  * works, and is meant for small sections of an object.
869  *
870  * This code protects resident pages by making them read-only
871  * and is typically called on a fork or split when a page
872  * is converted to copy-on-write.
873  *
874  * NOTE: If the page is already at VM_PROT_NONE, calling
875  * vm_page_protect will have no effect.
876  */
877 void
878 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
879 {
880 	vm_pindex_t idx;
881 	vm_page_t p;
882 
883 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
884 		return;
885 
886 	/*
887 	 * spl protection needed to prevent races between the lookup,
888 	 * an interrupt unbusy/free, and our protect call.
889 	 */
890 	crit_enter();
891 	lwkt_gettoken(&vm_token);
892 	for (idx = start; idx < end; idx++) {
893 		p = vm_page_lookup(object, idx);
894 		if (p == NULL)
895 			continue;
896 		vm_page_protect(p, VM_PROT_READ);
897 	}
898 	lwkt_reltoken(&vm_token);
899 	crit_exit();
900 }
901 
902 /*
903  * Removes all physical pages in the specified object range from all
904  * physical maps.
905  *
906  * The object must *not* be locked.
907  */
908 
909 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
910 
911 void
912 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
913 {
914 	struct rb_vm_page_scan_info info;
915 
916 	if (object == NULL)
917 		return;
918 	info.start_pindex = start;
919 	info.end_pindex = end - 1;
920 
921 	crit_enter();
922 	lwkt_gettoken(&vm_token);
923 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
924 				vm_object_pmap_remove_callback, &info);
925 	if (start == 0 && end == object->size)
926 		vm_object_clear_flag(object, OBJ_WRITEABLE);
927 	lwkt_reltoken(&vm_token);
928 	crit_exit();
929 }
930 
931 /*
932  * The caller must hold vm_token.
933  */
934 static int
935 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
936 {
937 	vm_page_protect(p, VM_PROT_NONE);
938 	return(0);
939 }
940 
941 /*
942  * Implements the madvise function at the object/page level.
943  *
944  * MADV_WILLNEED	(any object)
945  *
946  *	Activate the specified pages if they are resident.
947  *
948  * MADV_DONTNEED	(any object)
949  *
950  *	Deactivate the specified pages if they are resident.
951  *
952  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
953  *
954  *	Deactivate and clean the specified pages if they are
955  *	resident.  This permits the process to reuse the pages
956  *	without faulting or the kernel to reclaim the pages
957  *	without I/O.
958  *
959  * No requirements.
960  */
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
963 {
964 	vm_pindex_t end, tpindex;
965 	vm_object_t tobject;
966 	vm_page_t m;
967 
968 	if (object == NULL)
969 		return;
970 
971 	end = pindex + count;
972 
973 	lwkt_gettoken(&vm_token);
974 
975 	/*
976 	 * Locate and adjust resident pages
977 	 */
978 	for (; pindex < end; pindex += 1) {
979 relookup:
980 		tobject = object;
981 		tpindex = pindex;
982 shadowlookup:
983 		/*
984 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985 		 * and those pages must be OBJ_ONEMAPPING.
986 		 */
987 		if (advise == MADV_FREE) {
988 			if ((tobject->type != OBJT_DEFAULT &&
989 			     tobject->type != OBJT_SWAP) ||
990 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
991 				continue;
992 			}
993 		}
994 
995 		/*
996 		 * spl protection is required to avoid a race between the
997 		 * lookup, an interrupt unbusy/free, and our busy check.
998 		 */
999 
1000 		crit_enter();
1001 		m = vm_page_lookup(tobject, tpindex);
1002 
1003 		if (m == NULL) {
1004 			/*
1005 			 * There may be swap even if there is no backing page
1006 			 */
1007 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1008 				swap_pager_freespace(tobject, tpindex, 1);
1009 
1010 			/*
1011 			 * next object
1012 			 */
1013 			crit_exit();
1014 			if (tobject->backing_object == NULL)
1015 				continue;
1016 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1017 			tobject = tobject->backing_object;
1018 			goto shadowlookup;
1019 		}
1020 
1021 		/*
1022 		 * If the page is busy or not in a normal active state,
1023 		 * we skip it.  If the page is not managed there are no
1024 		 * page queues to mess with.  Things can break if we mess
1025 		 * with pages in any of the below states.
1026 		 */
1027 		if (
1028 		    m->hold_count ||
1029 		    m->wire_count ||
1030 		    (m->flags & PG_UNMANAGED) ||
1031 		    m->valid != VM_PAGE_BITS_ALL
1032 		) {
1033 			crit_exit();
1034 			continue;
1035 		}
1036 
1037  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1038 			crit_exit();
1039   			goto relookup;
1040 		}
1041 		crit_exit();
1042 
1043 		/*
1044 		 * Theoretically once a page is known not to be busy, an
1045 		 * interrupt cannot come along and rip it out from under us.
1046 		 */
1047 
1048 		if (advise == MADV_WILLNEED) {
1049 			vm_page_activate(m);
1050 		} else if (advise == MADV_DONTNEED) {
1051 			vm_page_dontneed(m);
1052 		} else if (advise == MADV_FREE) {
1053 			/*
1054 			 * Mark the page clean.  This will allow the page
1055 			 * to be freed up by the system.  However, such pages
1056 			 * are often reused quickly by malloc()/free()
1057 			 * so we do not do anything that would cause
1058 			 * a page fault if we can help it.
1059 			 *
1060 			 * Specifically, we do not try to actually free
1061 			 * the page now nor do we try to put it in the
1062 			 * cache (which would cause a page fault on reuse).
1063 			 *
1064 			 * But we do make the page is freeable as we
1065 			 * can without actually taking the step of unmapping
1066 			 * it.
1067 			 */
1068 			pmap_clear_modify(m);
1069 			m->dirty = 0;
1070 			m->act_count = 0;
1071 			vm_page_dontneed(m);
1072 			if (tobject->type == OBJT_SWAP)
1073 				swap_pager_freespace(tobject, tpindex, 1);
1074 		}
1075 	}
1076 	lwkt_reltoken(&vm_token);
1077 }
1078 
1079 /*
1080  * Create a new object which is backed by the specified existing object
1081  * range.  The source object reference is deallocated.
1082  *
1083  * The new object and offset into that object are returned in the source
1084  * parameters.
1085  *
1086  * No other requirements.
1087  */
1088 void
1089 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1090 {
1091 	vm_object_t source;
1092 	vm_object_t result;
1093 
1094 	source = *object;
1095 
1096 	/*
1097 	 * Don't create the new object if the old object isn't shared.
1098 	 */
1099 	lwkt_gettoken(&vm_token);
1100 
1101 	if (source != NULL &&
1102 	    source->ref_count == 1 &&
1103 	    source->handle == NULL &&
1104 	    (source->type == OBJT_DEFAULT ||
1105 	     source->type == OBJT_SWAP)) {
1106 		lwkt_reltoken(&vm_token);
1107 		return;
1108 	}
1109 
1110 	/*
1111 	 * Allocate a new object with the given length
1112 	 */
1113 
1114 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1115 		panic("vm_object_shadow: no object for shadowing");
1116 
1117 	/*
1118 	 * The new object shadows the source object, adding a reference to it.
1119 	 * Our caller changes his reference to point to the new object,
1120 	 * removing a reference to the source object.  Net result: no change
1121 	 * of reference count.
1122 	 *
1123 	 * Try to optimize the result object's page color when shadowing
1124 	 * in order to maintain page coloring consistency in the combined
1125 	 * shadowed object.
1126 	 */
1127 	result->backing_object = source;
1128 	if (source) {
1129 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1130 		source->shadow_count++;
1131 		source->generation++;
1132 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1133 	}
1134 
1135 	/*
1136 	 * Store the offset into the source object, and fix up the offset into
1137 	 * the new object.
1138 	 */
1139 	result->backing_object_offset = *offset;
1140 	lwkt_reltoken(&vm_token);
1141 
1142 	/*
1143 	 * Return the new things
1144 	 */
1145 	*offset = 0;
1146 	*object = result;
1147 }
1148 
1149 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1150 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1151 #define	OBSC_COLLAPSE_WAIT	0x0004
1152 
1153 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1154 
1155 /*
1156  * The caller must hold vm_token.
1157  */
1158 static __inline int
1159 vm_object_backing_scan(vm_object_t object, int op)
1160 {
1161 	struct rb_vm_page_scan_info info;
1162 	vm_object_t backing_object;
1163 
1164 	crit_enter();
1165 
1166 	backing_object = object->backing_object;
1167 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1168 
1169 	/*
1170 	 * Initial conditions
1171 	 */
1172 
1173 	if (op & OBSC_TEST_ALL_SHADOWED) {
1174 		/*
1175 		 * We do not want to have to test for the existence of
1176 		 * swap pages in the backing object.  XXX but with the
1177 		 * new swapper this would be pretty easy to do.
1178 		 *
1179 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1180 		 * been ZFOD faulted yet?  If we do not test for this, the
1181 		 * shadow test may succeed! XXX
1182 		 */
1183 		if (backing_object->type != OBJT_DEFAULT) {
1184 			crit_exit();
1185 			return(0);
1186 		}
1187 	}
1188 	if (op & OBSC_COLLAPSE_WAIT) {
1189 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1190 		vm_object_set_flag(backing_object, OBJ_DEAD);
1191 	}
1192 
1193 	/*
1194 	 * Our scan.   We have to retry if a negative error code is returned,
1195 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1196 	 * the scan had to be stopped because the parent does not completely
1197 	 * shadow the child.
1198 	 */
1199 	info.object = object;
1200 	info.backing_object = backing_object;
1201 	info.limit = op;
1202 	do {
1203 		info.error = 1;
1204 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1205 					vm_object_backing_scan_callback,
1206 					&info);
1207 	} while (info.error < 0);
1208 	crit_exit();
1209 	return(info.error);
1210 }
1211 
1212 /*
1213  * The caller must hold vm_token.
1214  */
1215 static int
1216 vm_object_backing_scan_callback(vm_page_t p, void *data)
1217 {
1218 	struct rb_vm_page_scan_info *info = data;
1219 	vm_object_t backing_object;
1220 	vm_object_t object;
1221 	vm_pindex_t new_pindex;
1222 	vm_pindex_t backing_offset_index;
1223 	int op;
1224 
1225 	new_pindex = p->pindex - info->backing_offset_index;
1226 	op = info->limit;
1227 	object = info->object;
1228 	backing_object = info->backing_object;
1229 	backing_offset_index = info->backing_offset_index;
1230 
1231 	if (op & OBSC_TEST_ALL_SHADOWED) {
1232 		vm_page_t pp;
1233 
1234 		/*
1235 		 * Ignore pages outside the parent object's range
1236 		 * and outside the parent object's mapping of the
1237 		 * backing object.
1238 		 *
1239 		 * note that we do not busy the backing object's
1240 		 * page.
1241 		 */
1242 		if (
1243 		    p->pindex < backing_offset_index ||
1244 		    new_pindex >= object->size
1245 		) {
1246 			return(0);
1247 		}
1248 
1249 		/*
1250 		 * See if the parent has the page or if the parent's
1251 		 * object pager has the page.  If the parent has the
1252 		 * page but the page is not valid, the parent's
1253 		 * object pager must have the page.
1254 		 *
1255 		 * If this fails, the parent does not completely shadow
1256 		 * the object and we might as well give up now.
1257 		 */
1258 
1259 		pp = vm_page_lookup(object, new_pindex);
1260 		if ((pp == NULL || pp->valid == 0) &&
1261 		    !vm_pager_has_page(object, new_pindex)
1262 		) {
1263 			info->error = 0;	/* problemo */
1264 			return(-1);		/* stop the scan */
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Check for busy page
1270 	 */
1271 
1272 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1273 		vm_page_t pp;
1274 
1275 		if (op & OBSC_COLLAPSE_NOWAIT) {
1276 			if (
1277 			    (p->flags & PG_BUSY) ||
1278 			    !p->valid ||
1279 			    p->hold_count ||
1280 			    p->wire_count ||
1281 			    p->busy
1282 			) {
1283 				return(0);
1284 			}
1285 		} else if (op & OBSC_COLLAPSE_WAIT) {
1286 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1287 				/*
1288 				 * If we slept, anything could have
1289 				 * happened.   Ask that the scan be restarted.
1290 				 *
1291 				 * Since the object is marked dead, the
1292 				 * backing offset should not have changed.
1293 				 */
1294 				info->error = -1;
1295 				return(-1);
1296 			}
1297 		}
1298 
1299 		/*
1300 		 * Busy the page
1301 		 */
1302 		vm_page_busy(p);
1303 
1304 		KASSERT(
1305 		    p->object == backing_object,
1306 		    ("vm_object_qcollapse(): object mismatch")
1307 		);
1308 
1309 		/*
1310 		 * Destroy any associated swap
1311 		 */
1312 		if (backing_object->type == OBJT_SWAP)
1313 			swap_pager_freespace(backing_object, p->pindex, 1);
1314 
1315 		if (
1316 		    p->pindex < backing_offset_index ||
1317 		    new_pindex >= object->size
1318 		) {
1319 			/*
1320 			 * Page is out of the parent object's range, we
1321 			 * can simply destroy it.
1322 			 */
1323 			vm_page_protect(p, VM_PROT_NONE);
1324 			vm_page_free(p);
1325 			return(0);
1326 		}
1327 
1328 		pp = vm_page_lookup(object, new_pindex);
1329 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1330 			/*
1331 			 * page already exists in parent OR swap exists
1332 			 * for this location in the parent.  Destroy
1333 			 * the original page from the backing object.
1334 			 *
1335 			 * Leave the parent's page alone
1336 			 */
1337 			vm_page_protect(p, VM_PROT_NONE);
1338 			vm_page_free(p);
1339 			return(0);
1340 		}
1341 
1342 		/*
1343 		 * Page does not exist in parent, rename the
1344 		 * page from the backing object to the main object.
1345 		 *
1346 		 * If the page was mapped to a process, it can remain
1347 		 * mapped through the rename.
1348 		 */
1349 		if ((p->queue - p->pc) == PQ_CACHE)
1350 			vm_page_deactivate(p);
1351 
1352 		vm_page_rename(p, object, new_pindex);
1353 		/* page automatically made dirty by rename */
1354 	}
1355 	return(0);
1356 }
1357 
1358 /*
1359  * This version of collapse allows the operation to occur earlier and
1360  * when paging_in_progress is true for an object...  This is not a complete
1361  * operation, but should plug 99.9% of the rest of the leaks.
1362  *
1363  * The caller must hold vm_token and vmobj_token.
1364  * (only called from vm_object_collapse)
1365  */
1366 static void
1367 vm_object_qcollapse(vm_object_t object)
1368 {
1369 	vm_object_t backing_object = object->backing_object;
1370 
1371 	if (backing_object->ref_count != 1)
1372 		return;
1373 
1374 	backing_object->ref_count += 2;
1375 
1376 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1377 
1378 	backing_object->ref_count -= 2;
1379 }
1380 
1381 /*
1382  * Collapse an object with the object backing it.  Pages in the backing
1383  * object are moved into the parent, and the backing object is deallocated.
1384  */
1385 void
1386 vm_object_collapse(vm_object_t object)
1387 {
1388 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1389 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1390 
1391 	while (TRUE) {
1392 		vm_object_t backing_object;
1393 
1394 		/*
1395 		 * Verify that the conditions are right for collapse:
1396 		 *
1397 		 * The object exists and the backing object exists.
1398 		 */
1399 		if (object == NULL)
1400 			break;
1401 
1402 		if ((backing_object = object->backing_object) == NULL)
1403 			break;
1404 
1405 		/*
1406 		 * we check the backing object first, because it is most likely
1407 		 * not collapsable.
1408 		 */
1409 		if (backing_object->handle != NULL ||
1410 		    (backing_object->type != OBJT_DEFAULT &&
1411 		     backing_object->type != OBJT_SWAP) ||
1412 		    (backing_object->flags & OBJ_DEAD) ||
1413 		    object->handle != NULL ||
1414 		    (object->type != OBJT_DEFAULT &&
1415 		     object->type != OBJT_SWAP) ||
1416 		    (object->flags & OBJ_DEAD)) {
1417 			break;
1418 		}
1419 
1420 		if (
1421 		    object->paging_in_progress != 0 ||
1422 		    backing_object->paging_in_progress != 0
1423 		) {
1424 			vm_object_qcollapse(object);
1425 			break;
1426 		}
1427 
1428 		/*
1429 		 * We know that we can either collapse the backing object (if
1430 		 * the parent is the only reference to it) or (perhaps) have
1431 		 * the parent bypass the object if the parent happens to shadow
1432 		 * all the resident pages in the entire backing object.
1433 		 *
1434 		 * This is ignoring pager-backed pages such as swap pages.
1435 		 * vm_object_backing_scan fails the shadowing test in this
1436 		 * case.
1437 		 */
1438 
1439 		if (backing_object->ref_count == 1) {
1440 			/*
1441 			 * If there is exactly one reference to the backing
1442 			 * object, we can collapse it into the parent.
1443 			 */
1444 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1445 
1446 			/*
1447 			 * Move the pager from backing_object to object.
1448 			 */
1449 
1450 			if (backing_object->type == OBJT_SWAP) {
1451 				vm_object_pip_add(backing_object, 1);
1452 
1453 				/*
1454 				 * scrap the paging_offset junk and do a
1455 				 * discrete copy.  This also removes major
1456 				 * assumptions about how the swap-pager
1457 				 * works from where it doesn't belong.  The
1458 				 * new swapper is able to optimize the
1459 				 * destroy-source case.
1460 				 */
1461 
1462 				vm_object_pip_add(object, 1);
1463 				swap_pager_copy(
1464 				    backing_object,
1465 				    object,
1466 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1467 				vm_object_pip_wakeup(object);
1468 
1469 				vm_object_pip_wakeup(backing_object);
1470 			}
1471 			/*
1472 			 * Object now shadows whatever backing_object did.
1473 			 * Note that the reference to
1474 			 * backing_object->backing_object moves from within
1475 			 * backing_object to within object.
1476 			 */
1477 
1478 			LIST_REMOVE(object, shadow_list);
1479 			object->backing_object->shadow_count--;
1480 			object->backing_object->generation++;
1481 			if (backing_object->backing_object) {
1482 				LIST_REMOVE(backing_object, shadow_list);
1483 				backing_object->backing_object->shadow_count--;
1484 				backing_object->backing_object->generation++;
1485 			}
1486 			object->backing_object = backing_object->backing_object;
1487 			if (object->backing_object) {
1488 				LIST_INSERT_HEAD(
1489 				    &object->backing_object->shadow_head,
1490 				    object,
1491 				    shadow_list
1492 				);
1493 				object->backing_object->shadow_count++;
1494 				object->backing_object->generation++;
1495 			}
1496 
1497 			object->backing_object_offset +=
1498 			    backing_object->backing_object_offset;
1499 
1500 			/*
1501 			 * Discard backing_object.
1502 			 *
1503 			 * Since the backing object has no pages, no pager left,
1504 			 * and no object references within it, all that is
1505 			 * necessary is to dispose of it.
1506 			 */
1507 
1508 			KASSERT(backing_object->ref_count == 1,
1509 				("backing_object %p was somehow "
1510 				 "re-referenced during collapse!",
1511 				 backing_object));
1512 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1513 				("backing_object %p somehow has left "
1514 				 "over pages during collapse!",
1515 				 backing_object));
1516 
1517 			/* (we are holding vmobj_token) */
1518 			TAILQ_REMOVE(&vm_object_list, backing_object,
1519 				     object_list);
1520 			vm_object_count--;
1521 
1522 			zfree(obj_zone, backing_object);
1523 
1524 			object_collapses++;
1525 		} else {
1526 			vm_object_t new_backing_object;
1527 
1528 			/*
1529 			 * If we do not entirely shadow the backing object,
1530 			 * there is nothing we can do so we give up.
1531 			 */
1532 
1533 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1534 				break;
1535 			}
1536 
1537 			/*
1538 			 * Make the parent shadow the next object in the
1539 			 * chain.  Deallocating backing_object will not remove
1540 			 * it, since its reference count is at least 2.
1541 			 */
1542 
1543 			LIST_REMOVE(object, shadow_list);
1544 			backing_object->shadow_count--;
1545 			backing_object->generation++;
1546 
1547 			new_backing_object = backing_object->backing_object;
1548 			if ((object->backing_object = new_backing_object) != NULL) {
1549 				vm_object_reference(new_backing_object);
1550 				LIST_INSERT_HEAD(
1551 				    &new_backing_object->shadow_head,
1552 				    object,
1553 				    shadow_list
1554 				);
1555 				new_backing_object->shadow_count++;
1556 				new_backing_object->generation++;
1557 				object->backing_object_offset +=
1558 					backing_object->backing_object_offset;
1559 			}
1560 
1561 			/*
1562 			 * Drop the reference count on backing_object. Since
1563 			 * its ref_count was at least 2, it will not vanish;
1564 			 * so we don't need to call vm_object_deallocate, but
1565 			 * we do anyway.
1566 			 */
1567 			vm_object_deallocate_locked(backing_object);
1568 			object_bypasses++;
1569 		}
1570 
1571 		/*
1572 		 * Try again with this object's new backing object.
1573 		 */
1574 	}
1575 }
1576 
1577 /*
1578  * Removes all physical pages in the specified object range from the
1579  * object's list of pages.
1580  *
1581  * No requirements.
1582  */
1583 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1584 
1585 void
1586 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1587 		      boolean_t clean_only)
1588 {
1589 	struct rb_vm_page_scan_info info;
1590 	int all;
1591 
1592 	/*
1593 	 * Degenerate cases and assertions
1594 	 */
1595 	lwkt_gettoken(&vm_token);
1596 	if (object == NULL ||
1597 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1598 		lwkt_reltoken(&vm_token);
1599 		return;
1600 	}
1601 	KASSERT(object->type != OBJT_PHYS,
1602 		("attempt to remove pages from a physical object"));
1603 
1604 	/*
1605 	 * Indicate that paging is occuring on the object
1606 	 */
1607 	crit_enter();
1608 	vm_object_pip_add(object, 1);
1609 
1610 	/*
1611 	 * Figure out the actual removal range and whether we are removing
1612 	 * the entire contents of the object or not.  If removing the entire
1613 	 * contents, be sure to get all pages, even those that might be
1614 	 * beyond the end of the object.
1615 	 */
1616 	info.start_pindex = start;
1617 	if (end == 0)
1618 		info.end_pindex = (vm_pindex_t)-1;
1619 	else
1620 		info.end_pindex = end - 1;
1621 	info.limit = clean_only;
1622 	all = (start == 0 && info.end_pindex >= object->size - 1);
1623 
1624 	/*
1625 	 * Loop until we are sure we have gotten them all.
1626 	 */
1627 	do {
1628 		info.error = 0;
1629 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1630 					vm_object_page_remove_callback, &info);
1631 	} while (info.error);
1632 
1633 	/*
1634 	 * Remove any related swap if throwing away pages, or for
1635 	 * non-swap objects (the swap is a clean copy in that case).
1636 	 */
1637 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1638 		if (all)
1639 			swap_pager_freespace_all(object);
1640 		else
1641 			swap_pager_freespace(object, info.start_pindex,
1642 			     info.end_pindex - info.start_pindex + 1);
1643 	}
1644 
1645 	/*
1646 	 * Cleanup
1647 	 */
1648 	vm_object_pip_wakeup(object);
1649 	crit_exit();
1650 	lwkt_reltoken(&vm_token);
1651 }
1652 
1653 /*
1654  * The caller must hold vm_token.
1655  */
1656 static int
1657 vm_object_page_remove_callback(vm_page_t p, void *data)
1658 {
1659 	struct rb_vm_page_scan_info *info = data;
1660 
1661 	/*
1662 	 * Wired pages cannot be destroyed, but they can be invalidated
1663 	 * and we do so if clean_only (limit) is not set.
1664 	 *
1665 	 * WARNING!  The page may be wired due to being part of a buffer
1666 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1667 	 *	     This is fine as part of a truncation but VFSs must be
1668 	 *	     sure to fix the buffer up when re-extending the file.
1669 	 */
1670 	if (p->wire_count != 0) {
1671 		vm_page_protect(p, VM_PROT_NONE);
1672 		if (info->limit == 0)
1673 			p->valid = 0;
1674 		return(0);
1675 	}
1676 
1677 	/*
1678 	 * The busy flags are only cleared at
1679 	 * interrupt -- minimize the spl transitions
1680 	 */
1681 
1682 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1683 		info->error = 1;
1684 		return(0);
1685 	}
1686 
1687 	/*
1688 	 * limit is our clean_only flag.  If set and the page is dirty, do
1689 	 * not free it.  If set and the page is being held by someone, do
1690 	 * not free it.
1691 	 */
1692 	if (info->limit && p->valid) {
1693 		vm_page_test_dirty(p);
1694 		if (p->valid & p->dirty)
1695 			return(0);
1696 		if (p->hold_count)
1697 			return(0);
1698 	}
1699 
1700 	/*
1701 	 * Destroy the page
1702 	 */
1703 	vm_page_busy(p);
1704 	vm_page_protect(p, VM_PROT_NONE);
1705 	vm_page_free(p);
1706 	return(0);
1707 }
1708 
1709 /*
1710  * Coalesces two objects backing up adjoining regions of memory into a
1711  * single object.
1712  *
1713  * returns TRUE if objects were combined.
1714  *
1715  * NOTE: Only works at the moment if the second object is NULL -
1716  *	 if it's not, which object do we lock first?
1717  *
1718  * Parameters:
1719  *	prev_object	First object to coalesce
1720  *	prev_offset	Offset into prev_object
1721  *	next_object	Second object into coalesce
1722  *	next_offset	Offset into next_object
1723  *
1724  *	prev_size	Size of reference to prev_object
1725  *	next_size	Size of reference to next_object
1726  *
1727  * The object must not be locked.
1728  * The caller must hold vm_token and vmobj_token.
1729  */
1730 boolean_t
1731 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1732 		   vm_size_t prev_size, vm_size_t next_size)
1733 {
1734 	vm_pindex_t next_pindex;
1735 
1736 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1737 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1738 
1739 	if (prev_object == NULL) {
1740 		return (TRUE);
1741 	}
1742 
1743 	if (prev_object->type != OBJT_DEFAULT &&
1744 	    prev_object->type != OBJT_SWAP) {
1745 		return (FALSE);
1746 	}
1747 
1748 	/*
1749 	 * Try to collapse the object first
1750 	 */
1751 	vm_object_collapse(prev_object);
1752 
1753 	/*
1754 	 * Can't coalesce if: . more than one reference . paged out . shadows
1755 	 * another object . has a copy elsewhere (any of which mean that the
1756 	 * pages not mapped to prev_entry may be in use anyway)
1757 	 */
1758 
1759 	if (prev_object->backing_object != NULL)
1760 		return (FALSE);
1761 
1762 	prev_size >>= PAGE_SHIFT;
1763 	next_size >>= PAGE_SHIFT;
1764 	next_pindex = prev_pindex + prev_size;
1765 
1766 	if ((prev_object->ref_count > 1) &&
1767 	    (prev_object->size != next_pindex)) {
1768 		return (FALSE);
1769 	}
1770 
1771 	/*
1772 	 * Remove any pages that may still be in the object from a previous
1773 	 * deallocation.
1774 	 */
1775 	if (next_pindex < prev_object->size) {
1776 		vm_object_page_remove(prev_object,
1777 				      next_pindex,
1778 				      next_pindex + next_size, FALSE);
1779 		if (prev_object->type == OBJT_SWAP)
1780 			swap_pager_freespace(prev_object,
1781 					     next_pindex, next_size);
1782 	}
1783 
1784 	/*
1785 	 * Extend the object if necessary.
1786 	 */
1787 	if (next_pindex + next_size > prev_object->size)
1788 		prev_object->size = next_pindex + next_size;
1789 	return (TRUE);
1790 }
1791 
1792 /*
1793  * Make the object writable and flag is being possibly dirty.
1794  *
1795  * No requirements.
1796  */
1797 void
1798 vm_object_set_writeable_dirty(vm_object_t object)
1799 {
1800 	struct vnode *vp;
1801 
1802 	lwkt_gettoken(&vm_token);
1803 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1804 	if (object->type == OBJT_VNODE &&
1805 	    (vp = (struct vnode *)object->handle) != NULL) {
1806 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1807 			vsetflags(vp, VOBJDIRTY);
1808 		}
1809 	}
1810 	lwkt_reltoken(&vm_token);
1811 }
1812 
1813 #include "opt_ddb.h"
1814 #ifdef DDB
1815 #include <sys/kernel.h>
1816 
1817 #include <sys/cons.h>
1818 
1819 #include <ddb/ddb.h>
1820 
1821 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1822 				       vm_map_entry_t entry);
1823 static int	vm_object_in_map (vm_object_t object);
1824 
1825 /*
1826  * The caller must hold vm_token.
1827  */
1828 static int
1829 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1830 {
1831 	vm_map_t tmpm;
1832 	vm_map_entry_t tmpe;
1833 	vm_object_t obj;
1834 	int entcount;
1835 
1836 	if (map == 0)
1837 		return 0;
1838 	if (entry == 0) {
1839 		tmpe = map->header.next;
1840 		entcount = map->nentries;
1841 		while (entcount-- && (tmpe != &map->header)) {
1842 			if( _vm_object_in_map(map, object, tmpe)) {
1843 				return 1;
1844 			}
1845 			tmpe = tmpe->next;
1846 		}
1847 		return (0);
1848 	}
1849 	switch(entry->maptype) {
1850 	case VM_MAPTYPE_SUBMAP:
1851 		tmpm = entry->object.sub_map;
1852 		tmpe = tmpm->header.next;
1853 		entcount = tmpm->nentries;
1854 		while (entcount-- && tmpe != &tmpm->header) {
1855 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1856 				return 1;
1857 			}
1858 			tmpe = tmpe->next;
1859 		}
1860 		break;
1861 	case VM_MAPTYPE_NORMAL:
1862 	case VM_MAPTYPE_VPAGETABLE:
1863 		obj = entry->object.vm_object;
1864 		while (obj) {
1865 			if (obj == object)
1866 				return 1;
1867 			obj = obj->backing_object;
1868 		}
1869 		break;
1870 	default:
1871 		break;
1872 	}
1873 	return 0;
1874 }
1875 
1876 static int vm_object_in_map_callback(struct proc *p, void *data);
1877 
1878 struct vm_object_in_map_info {
1879 	vm_object_t object;
1880 	int rv;
1881 };
1882 
1883 /*
1884  * Debugging only
1885  */
1886 static int
1887 vm_object_in_map(vm_object_t object)
1888 {
1889 	struct vm_object_in_map_info info;
1890 
1891 	info.rv = 0;
1892 	info.object = object;
1893 
1894 	allproc_scan(vm_object_in_map_callback, &info);
1895 	if (info.rv)
1896 		return 1;
1897 	if( _vm_object_in_map(&kernel_map, object, 0))
1898 		return 1;
1899 	if( _vm_object_in_map(&pager_map, object, 0))
1900 		return 1;
1901 	if( _vm_object_in_map(&buffer_map, object, 0))
1902 		return 1;
1903 	return 0;
1904 }
1905 
1906 /*
1907  * Debugging only
1908  */
1909 static int
1910 vm_object_in_map_callback(struct proc *p, void *data)
1911 {
1912 	struct vm_object_in_map_info *info = data;
1913 
1914 	if (p->p_vmspace) {
1915 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1916 			info->rv = 1;
1917 			return -1;
1918 		}
1919 	}
1920 	return (0);
1921 }
1922 
1923 DB_SHOW_COMMAND(vmochk, vm_object_check)
1924 {
1925 	vm_object_t object;
1926 
1927 	/*
1928 	 * make sure that internal objs are in a map somewhere
1929 	 * and none have zero ref counts.
1930 	 */
1931 	for (object = TAILQ_FIRST(&vm_object_list);
1932 			object != NULL;
1933 			object = TAILQ_NEXT(object, object_list)) {
1934 		if (object->type == OBJT_MARKER)
1935 			continue;
1936 		if (object->handle == NULL &&
1937 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1938 			if (object->ref_count == 0) {
1939 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1940 					(long)object->size);
1941 			}
1942 			if (!vm_object_in_map(object)) {
1943 				db_printf(
1944 			"vmochk: internal obj is not in a map: "
1945 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1946 				    object->ref_count, (u_long)object->size,
1947 				    (u_long)object->size,
1948 				    (void *)object->backing_object);
1949 			}
1950 		}
1951 	}
1952 }
1953 
1954 /*
1955  * Debugging only
1956  */
1957 DB_SHOW_COMMAND(object, vm_object_print_static)
1958 {
1959 	/* XXX convert args. */
1960 	vm_object_t object = (vm_object_t)addr;
1961 	boolean_t full = have_addr;
1962 
1963 	vm_page_t p;
1964 
1965 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1966 #define	count	was_count
1967 
1968 	int count;
1969 
1970 	if (object == NULL)
1971 		return;
1972 
1973 	db_iprintf(
1974 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1975 	    object, (int)object->type, (u_long)object->size,
1976 	    object->resident_page_count, object->ref_count, object->flags);
1977 	/*
1978 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1979 	 */
1980 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1981 	    object->shadow_count,
1982 	    object->backing_object ? object->backing_object->ref_count : 0,
1983 	    object->backing_object, (long)object->backing_object_offset);
1984 
1985 	if (!full)
1986 		return;
1987 
1988 	db_indent += 2;
1989 	count = 0;
1990 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1991 		if (count == 0)
1992 			db_iprintf("memory:=");
1993 		else if (count == 6) {
1994 			db_printf("\n");
1995 			db_iprintf(" ...");
1996 			count = 0;
1997 		} else
1998 			db_printf(",");
1999 		count++;
2000 
2001 		db_printf("(off=0x%lx,page=0x%lx)",
2002 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2003 	}
2004 	if (count != 0)
2005 		db_printf("\n");
2006 	db_indent -= 2;
2007 }
2008 
2009 /* XXX. */
2010 #undef count
2011 
2012 /*
2013  * XXX need this non-static entry for calling from vm_map_print.
2014  *
2015  * Debugging only
2016  */
2017 void
2018 vm_object_print(/* db_expr_t */ long addr,
2019 		boolean_t have_addr,
2020 		/* db_expr_t */ long count,
2021 		char *modif)
2022 {
2023 	vm_object_print_static(addr, have_addr, count, modif);
2024 }
2025 
2026 /*
2027  * Debugging only
2028  */
2029 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2030 {
2031 	vm_object_t object;
2032 	int nl = 0;
2033 	int c;
2034 	for (object = TAILQ_FIRST(&vm_object_list);
2035 			object != NULL;
2036 			object = TAILQ_NEXT(object, object_list)) {
2037 		vm_pindex_t idx, fidx;
2038 		vm_pindex_t osize;
2039 		vm_paddr_t pa = -1, padiff;
2040 		int rcount;
2041 		vm_page_t m;
2042 
2043 		if (object->type == OBJT_MARKER)
2044 			continue;
2045 		db_printf("new object: %p\n", (void *)object);
2046 		if ( nl > 18) {
2047 			c = cngetc();
2048 			if (c != ' ')
2049 				return;
2050 			nl = 0;
2051 		}
2052 		nl++;
2053 		rcount = 0;
2054 		fidx = 0;
2055 		osize = object->size;
2056 		if (osize > 128)
2057 			osize = 128;
2058 		for (idx = 0; idx < osize; idx++) {
2059 			m = vm_page_lookup(object, idx);
2060 			if (m == NULL) {
2061 				if (rcount) {
2062 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2063 						(long)fidx, rcount, (long)pa);
2064 					if ( nl > 18) {
2065 						c = cngetc();
2066 						if (c != ' ')
2067 							return;
2068 						nl = 0;
2069 					}
2070 					nl++;
2071 					rcount = 0;
2072 				}
2073 				continue;
2074 			}
2075 
2076 
2077 			if (rcount &&
2078 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2079 				++rcount;
2080 				continue;
2081 			}
2082 			if (rcount) {
2083 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2084 				padiff >>= PAGE_SHIFT;
2085 				padiff &= PQ_L2_MASK;
2086 				if (padiff == 0) {
2087 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2088 					++rcount;
2089 					continue;
2090 				}
2091 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2092 					(long)fidx, rcount, (long)pa);
2093 				db_printf("pd(%ld)\n", (long)padiff);
2094 				if ( nl > 18) {
2095 					c = cngetc();
2096 					if (c != ' ')
2097 						return;
2098 					nl = 0;
2099 				}
2100 				nl++;
2101 			}
2102 			fidx = idx;
2103 			pa = VM_PAGE_TO_PHYS(m);
2104 			rcount = 1;
2105 		}
2106 		if (rcount) {
2107 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2108 				(long)fidx, rcount, (long)pa);
2109 			if ( nl > 18) {
2110 				c = cngetc();
2111 				if (c != ' ')
2112 					return;
2113 				nl = 0;
2114 			}
2115 			nl++;
2116 		}
2117 	}
2118 }
2119 #endif /* DDB */
2120