xref: /dragonfly/sys/vm/vm_object.c (revision 1de703da)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.2 2003/06/17 04:29:00 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103 
104 static void	vm_object_qcollapse (vm_object_t object);
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;
134 #ifndef NULL_SIMPLELOCKS
135 static struct simplelock vm_object_list_lock;
136 #endif
137 static long vm_object_count;		/* count of all objects */
138 vm_object_t kernel_object;
139 vm_object_t kmem_object;
140 static struct vm_object kernel_object_store;
141 static struct vm_object kmem_object_store;
142 extern int vm_pageout_page_count;
143 
144 static long object_collapses;
145 static long object_bypasses;
146 static int next_index;
147 static vm_zone_t obj_zone;
148 static struct vm_zone obj_zone_store;
149 static int object_hash_rand;
150 #define VM_OBJECTS_INIT 256
151 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
152 
153 void
154 _vm_object_allocate(type, size, object)
155 	objtype_t type;
156 	vm_size_t size;
157 	vm_object_t object;
158 {
159 	int incr;
160 	TAILQ_INIT(&object->memq);
161 	LIST_INIT(&object->shadow_head);
162 
163 	object->type = type;
164 	object->size = size;
165 	object->ref_count = 1;
166 	object->flags = 0;
167 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
168 		vm_object_set_flag(object, OBJ_ONEMAPPING);
169 	object->paging_in_progress = 0;
170 	object->resident_page_count = 0;
171 	object->shadow_count = 0;
172 	object->pg_color = next_index;
173 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
174 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
175 	else
176 		incr = size;
177 	next_index = (next_index + incr) & PQ_L2_MASK;
178 	object->handle = NULL;
179 	object->backing_object = NULL;
180 	object->backing_object_offset = (vm_ooffset_t) 0;
181 	/*
182 	 * Try to generate a number that will spread objects out in the
183 	 * hash table.  We 'wipe' new objects across the hash in 128 page
184 	 * increments plus 1 more to offset it a little more by the time
185 	 * it wraps around.
186 	 */
187 	object->hash_rand = object_hash_rand - 129;
188 
189 	object->generation++;
190 
191 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
192 	vm_object_count++;
193 	object_hash_rand = object->hash_rand;
194 }
195 
196 /*
197  *	vm_object_init:
198  *
199  *	Initialize the VM objects module.
200  */
201 void
202 vm_object_init()
203 {
204 	TAILQ_INIT(&vm_object_list);
205 	simple_lock_init(&vm_object_list_lock);
206 	vm_object_count = 0;
207 
208 	kernel_object = &kernel_object_store;
209 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
210 	    kernel_object);
211 
212 	kmem_object = &kmem_object_store;
213 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
214 	    kmem_object);
215 
216 	obj_zone = &obj_zone_store;
217 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
218 		vm_objects_init, VM_OBJECTS_INIT);
219 }
220 
221 void
222 vm_object_init2() {
223 	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
224 }
225 
226 /*
227  *	vm_object_allocate:
228  *
229  *	Returns a new object with the given size.
230  */
231 
232 vm_object_t
233 vm_object_allocate(type, size)
234 	objtype_t type;
235 	vm_size_t size;
236 {
237 	vm_object_t result;
238 
239 	result = (vm_object_t) zalloc(obj_zone);
240 
241 	_vm_object_allocate(type, size, result);
242 
243 	return (result);
244 }
245 
246 
247 /*
248  *	vm_object_reference:
249  *
250  *	Gets another reference to the given object.
251  */
252 void
253 vm_object_reference(object)
254 	vm_object_t object;
255 {
256 	if (object == NULL)
257 		return;
258 
259 #if 0
260 	/* object can be re-referenced during final cleaning */
261 	KASSERT(!(object->flags & OBJ_DEAD),
262 	    ("vm_object_reference: attempting to reference dead obj"));
263 #endif
264 
265 	object->ref_count++;
266 	if (object->type == OBJT_VNODE) {
267 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curproc)) {
268 			printf("vm_object_reference: delay in getting object\n");
269 		}
270 	}
271 }
272 
273 void
274 vm_object_vndeallocate(object)
275 	vm_object_t object;
276 {
277 	struct vnode *vp = (struct vnode *) object->handle;
278 
279 	KASSERT(object->type == OBJT_VNODE,
280 	    ("vm_object_vndeallocate: not a vnode object"));
281 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
282 #ifdef INVARIANTS
283 	if (object->ref_count == 0) {
284 		vprint("vm_object_vndeallocate", vp);
285 		panic("vm_object_vndeallocate: bad object reference count");
286 	}
287 #endif
288 
289 	object->ref_count--;
290 	if (object->ref_count == 0) {
291 		vp->v_flag &= ~VTEXT;
292 		vm_object_clear_flag(object, OBJ_OPT);
293 	}
294 	vrele(vp);
295 }
296 
297 /*
298  *	vm_object_deallocate:
299  *
300  *	Release a reference to the specified object,
301  *	gained either through a vm_object_allocate
302  *	or a vm_object_reference call.  When all references
303  *	are gone, storage associated with this object
304  *	may be relinquished.
305  *
306  *	No object may be locked.
307  */
308 void
309 vm_object_deallocate(object)
310 	vm_object_t object;
311 {
312 	vm_object_t temp;
313 
314 	while (object != NULL) {
315 
316 		if (object->type == OBJT_VNODE) {
317 			vm_object_vndeallocate(object);
318 			return;
319 		}
320 
321 		if (object->ref_count == 0) {
322 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
323 		} else if (object->ref_count > 2) {
324 			object->ref_count--;
325 			return;
326 		}
327 
328 		/*
329 		 * Here on ref_count of one or two, which are special cases for
330 		 * objects.
331 		 */
332 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
333 			vm_object_set_flag(object, OBJ_ONEMAPPING);
334 			object->ref_count--;
335 			return;
336 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
337 			object->ref_count--;
338 			if ((object->handle == NULL) &&
339 			    (object->type == OBJT_DEFAULT ||
340 			     object->type == OBJT_SWAP)) {
341 				vm_object_t robject;
342 
343 				robject = LIST_FIRST(&object->shadow_head);
344 				KASSERT(robject != NULL,
345 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
346 					 object->ref_count,
347 					 object->shadow_count));
348 				if ((robject->handle == NULL) &&
349 				    (robject->type == OBJT_DEFAULT ||
350 				     robject->type == OBJT_SWAP)) {
351 
352 					robject->ref_count++;
353 
354 					while (
355 						robject->paging_in_progress ||
356 						object->paging_in_progress
357 					) {
358 						vm_object_pip_sleep(robject, "objde1");
359 						vm_object_pip_sleep(object, "objde2");
360 					}
361 
362 					if (robject->ref_count == 1) {
363 						robject->ref_count--;
364 						object = robject;
365 						goto doterm;
366 					}
367 
368 					object = robject;
369 					vm_object_collapse(object);
370 					continue;
371 				}
372 			}
373 
374 			return;
375 
376 		} else {
377 			object->ref_count--;
378 			if (object->ref_count != 0)
379 				return;
380 		}
381 
382 doterm:
383 
384 		temp = object->backing_object;
385 		if (temp) {
386 			LIST_REMOVE(object, shadow_list);
387 			temp->shadow_count--;
388 			if (temp->ref_count == 0)
389 				vm_object_clear_flag(temp, OBJ_OPT);
390 			temp->generation++;
391 			object->backing_object = NULL;
392 		}
393 
394 		/*
395 		 * Don't double-terminate, we could be in a termination
396 		 * recursion due to the terminate having to sync data
397 		 * to disk.
398 		 */
399 		if ((object->flags & OBJ_DEAD) == 0)
400 			vm_object_terminate(object);
401 		object = temp;
402 	}
403 }
404 
405 /*
406  *	vm_object_terminate actually destroys the specified object, freeing
407  *	up all previously used resources.
408  *
409  *	The object must be locked.
410  *	This routine may block.
411  */
412 void
413 vm_object_terminate(object)
414 	vm_object_t object;
415 {
416 	vm_page_t p;
417 	int s;
418 
419 	/*
420 	 * Make sure no one uses us.
421 	 */
422 	vm_object_set_flag(object, OBJ_DEAD);
423 
424 	/*
425 	 * wait for the pageout daemon to be done with the object
426 	 */
427 	vm_object_pip_wait(object, "objtrm");
428 
429 	KASSERT(!object->paging_in_progress,
430 		("vm_object_terminate: pageout in progress"));
431 
432 	/*
433 	 * Clean and free the pages, as appropriate. All references to the
434 	 * object are gone, so we don't need to lock it.
435 	 */
436 	if (object->type == OBJT_VNODE) {
437 		struct vnode *vp;
438 
439 		/*
440 		 * Freeze optimized copies.
441 		 */
442 		vm_freeze_copyopts(object, 0, object->size);
443 
444 		/*
445 		 * Clean pages and flush buffers.
446 		 */
447 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
448 
449 		vp = (struct vnode *) object->handle;
450 		vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
451 	}
452 
453 	/*
454 	 * Wait for any I/O to complete, after which there had better not
455 	 * be any references left on the object.
456 	 */
457 	vm_object_pip_wait(object, "objtrm");
458 
459 	if (object->ref_count != 0)
460 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
461 
462 	/*
463 	 * Now free any remaining pages. For internal objects, this also
464 	 * removes them from paging queues. Don't free wired pages, just
465 	 * remove them from the object.
466 	 */
467 	s = splvm();
468 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
469 		if (p->busy || (p->flags & PG_BUSY))
470 			panic("vm_object_terminate: freeing busy page %p\n", p);
471 		if (p->wire_count == 0) {
472 			vm_page_busy(p);
473 			vm_page_free(p);
474 			cnt.v_pfree++;
475 		} else {
476 			vm_page_busy(p);
477 			vm_page_remove(p);
478 		}
479 	}
480 	splx(s);
481 
482 	/*
483 	 * Let the pager know object is dead.
484 	 */
485 	vm_pager_deallocate(object);
486 
487 	/*
488 	 * Remove the object from the global object list.
489 	 */
490 	simple_lock(&vm_object_list_lock);
491 	TAILQ_REMOVE(&vm_object_list, object, object_list);
492 	simple_unlock(&vm_object_list_lock);
493 
494 	wakeup(object);
495 
496 	/*
497 	 * Free the space for the object.
498 	 */
499 	zfree(obj_zone, object);
500 }
501 
502 /*
503  *	vm_object_page_clean
504  *
505  *	Clean all dirty pages in the specified range of object.  Leaves page
506  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
507  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
508  *	leaving the object dirty.
509  *
510  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
511  *	synchronous clustering mode implementation.
512  *
513  *	Odd semantics: if start == end, we clean everything.
514  *
515  *	The object must be locked.
516  */
517 
518 void
519 vm_object_page_clean(object, start, end, flags)
520 	vm_object_t object;
521 	vm_pindex_t start;
522 	vm_pindex_t end;
523 	int flags;
524 {
525 	vm_page_t p, np;
526 	vm_offset_t tstart, tend;
527 	vm_pindex_t pi;
528 	struct vnode *vp;
529 	int clearobjflags;
530 	int pagerflags;
531 	int curgeneration;
532 
533 	if (object->type != OBJT_VNODE ||
534 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
535 		return;
536 
537 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
538 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
539 
540 	vp = object->handle;
541 
542 	vm_object_set_flag(object, OBJ_CLEANING);
543 
544 	/*
545 	 * Handle 'entire object' case
546 	 */
547 	tstart = start;
548 	if (end == 0) {
549 		tend = object->size;
550 	} else {
551 		tend = end;
552 	}
553 
554 	/*
555 	 * If the caller is smart and only msync()s a range he knows is
556 	 * dirty, we may be able to avoid an object scan.  This results in
557 	 * a phenominal improvement in performance.  We cannot do this
558 	 * as a matter of course because the object may be huge - e.g.
559 	 * the size might be in the gigabytes or terrabytes.
560 	 */
561 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
562 		vm_offset_t tscan;
563 		int scanlimit;
564 		int scanreset;
565 
566 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
567 		if (scanreset < 16)
568 			scanreset = 16;
569 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
570 
571 		scanlimit = scanreset;
572 		tscan = tstart;
573 		while (tscan < tend) {
574 			curgeneration = object->generation;
575 			p = vm_page_lookup(object, tscan);
576 			if (p == NULL || p->valid == 0 ||
577 			    (p->queue - p->pc) == PQ_CACHE) {
578 				if (--scanlimit == 0)
579 					break;
580 				++tscan;
581 				continue;
582 			}
583 			vm_page_test_dirty(p);
584 			if ((p->dirty & p->valid) == 0) {
585 				if (--scanlimit == 0)
586 					break;
587 				++tscan;
588 				continue;
589 			}
590 			/*
591 			 * If we have been asked to skip nosync pages and
592 			 * this is a nosync page, we can't continue.
593 			 */
594 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
595 				if (--scanlimit == 0)
596 					break;
597 				++tscan;
598 				continue;
599 			}
600 			scanlimit = scanreset;
601 
602 			/*
603 			 * This returns 0 if it was unable to busy the first
604 			 * page (i.e. had to sleep).
605 			 */
606 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
607 		}
608 
609 		/*
610 		 * If everything was dirty and we flushed it successfully,
611 		 * and the requested range is not the entire object, we
612 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
613 		 * return immediately.
614 		 */
615 		if (tscan >= tend && (tstart || tend < object->size)) {
616 			vm_object_clear_flag(object, OBJ_CLEANING);
617 			return;
618 		}
619 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
620 	}
621 
622 	/*
623 	 * Generally set CLEANCHK interlock and make the page read-only so
624 	 * we can then clear the object flags.
625 	 *
626 	 * However, if this is a nosync mmap then the object is likely to
627 	 * stay dirty so do not mess with the page and do not clear the
628 	 * object flags.
629 	 */
630 
631 	clearobjflags = 1;
632 
633 	for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
634 		vm_page_flag_set(p, PG_CLEANCHK);
635 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
636 			clearobjflags = 0;
637 		else
638 			vm_page_protect(p, VM_PROT_READ);
639 	}
640 
641 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
642 		struct vnode *vp;
643 
644 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
645                 if (object->type == OBJT_VNODE &&
646                     (vp = (struct vnode *)object->handle) != NULL) {
647                         if (vp->v_flag & VOBJDIRTY) {
648                                 simple_lock(&vp->v_interlock);
649                                 vp->v_flag &= ~VOBJDIRTY;
650                                 simple_unlock(&vp->v_interlock);
651                         }
652                 }
653 	}
654 
655 rescan:
656 	curgeneration = object->generation;
657 
658 	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
659 		int n;
660 
661 		np = TAILQ_NEXT(p, listq);
662 
663 again:
664 		pi = p->pindex;
665 		if (((p->flags & PG_CLEANCHK) == 0) ||
666 			(pi < tstart) || (pi >= tend) ||
667 			(p->valid == 0) ||
668 			((p->queue - p->pc) == PQ_CACHE)) {
669 			vm_page_flag_clear(p, PG_CLEANCHK);
670 			continue;
671 		}
672 
673 		vm_page_test_dirty(p);
674 		if ((p->dirty & p->valid) == 0) {
675 			vm_page_flag_clear(p, PG_CLEANCHK);
676 			continue;
677 		}
678 
679 		/*
680 		 * If we have been asked to skip nosync pages and this is a
681 		 * nosync page, skip it.  Note that the object flags were
682 		 * not cleared in this case so we do not have to set them.
683 		 */
684 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
685 			vm_page_flag_clear(p, PG_CLEANCHK);
686 			continue;
687 		}
688 
689 		n = vm_object_page_collect_flush(object, p,
690 			curgeneration, pagerflags);
691 		if (n == 0)
692 			goto rescan;
693 		if (object->generation != curgeneration)
694 			goto rescan;
695 
696 		/*
697 		 * Try to optimize the next page.  If we can't we pick up
698 		 * our (random) scan where we left off.
699 		 */
700 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
701 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
702 				goto again;
703 		}
704 	}
705 
706 #if 0
707 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
708 #endif
709 
710 	vm_object_clear_flag(object, OBJ_CLEANING);
711 	return;
712 }
713 
714 static int
715 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
716 {
717 	int runlen;
718 	int s;
719 	int maxf;
720 	int chkb;
721 	int maxb;
722 	int i;
723 	vm_pindex_t pi;
724 	vm_page_t maf[vm_pageout_page_count];
725 	vm_page_t mab[vm_pageout_page_count];
726 	vm_page_t ma[vm_pageout_page_count];
727 
728 	s = splvm();
729 	pi = p->pindex;
730 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
731 		if (object->generation != curgeneration) {
732 			splx(s);
733 			return(0);
734 		}
735 	}
736 
737 	maxf = 0;
738 	for(i = 1; i < vm_pageout_page_count; i++) {
739 		vm_page_t tp;
740 
741 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
742 			if ((tp->flags & PG_BUSY) ||
743 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
744 				 (tp->flags & PG_CLEANCHK) == 0) ||
745 				(tp->busy != 0))
746 				break;
747 			if((tp->queue - tp->pc) == PQ_CACHE) {
748 				vm_page_flag_clear(tp, PG_CLEANCHK);
749 				break;
750 			}
751 			vm_page_test_dirty(tp);
752 			if ((tp->dirty & tp->valid) == 0) {
753 				vm_page_flag_clear(tp, PG_CLEANCHK);
754 				break;
755 			}
756 			maf[ i - 1 ] = tp;
757 			maxf++;
758 			continue;
759 		}
760 		break;
761 	}
762 
763 	maxb = 0;
764 	chkb = vm_pageout_page_count -  maxf;
765 	if (chkb) {
766 		for(i = 1; i < chkb;i++) {
767 			vm_page_t tp;
768 
769 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
770 				if ((tp->flags & PG_BUSY) ||
771 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
772 					 (tp->flags & PG_CLEANCHK) == 0) ||
773 					(tp->busy != 0))
774 					break;
775 				if((tp->queue - tp->pc) == PQ_CACHE) {
776 					vm_page_flag_clear(tp, PG_CLEANCHK);
777 					break;
778 				}
779 				vm_page_test_dirty(tp);
780 				if ((tp->dirty & tp->valid) == 0) {
781 					vm_page_flag_clear(tp, PG_CLEANCHK);
782 					break;
783 				}
784 				mab[ i - 1 ] = tp;
785 				maxb++;
786 				continue;
787 			}
788 			break;
789 		}
790 	}
791 
792 	for(i = 0; i < maxb; i++) {
793 		int index = (maxb - i) - 1;
794 		ma[index] = mab[i];
795 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
796 	}
797 	vm_page_flag_clear(p, PG_CLEANCHK);
798 	ma[maxb] = p;
799 	for(i = 0; i < maxf; i++) {
800 		int index = (maxb + i) + 1;
801 		ma[index] = maf[i];
802 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
803 	}
804 	runlen = maxb + maxf + 1;
805 
806 	splx(s);
807 	vm_pageout_flush(ma, runlen, pagerflags);
808 	for (i = 0; i < runlen; i++) {
809 		if (ma[i]->valid & ma[i]->dirty) {
810 			vm_page_protect(ma[i], VM_PROT_READ);
811 			vm_page_flag_set(ma[i], PG_CLEANCHK);
812 
813 			/*
814 			 * maxf will end up being the actual number of pages
815 			 * we wrote out contiguously, non-inclusive of the
816 			 * first page.  We do not count look-behind pages.
817 			 */
818 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
819 				maxf = i - maxb - 1;
820 		}
821 	}
822 	return(maxf + 1);
823 }
824 
825 #ifdef not_used
826 /* XXX I cannot tell if this should be an exported symbol */
827 /*
828  *	vm_object_deactivate_pages
829  *
830  *	Deactivate all pages in the specified object.  (Keep its pages
831  *	in memory even though it is no longer referenced.)
832  *
833  *	The object must be locked.
834  */
835 static void
836 vm_object_deactivate_pages(object)
837 	vm_object_t object;
838 {
839 	vm_page_t p, next;
840 
841 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
842 		next = TAILQ_NEXT(p, listq);
843 		vm_page_deactivate(p);
844 	}
845 }
846 #endif
847 
848 /*
849  * Same as vm_object_pmap_copy, except range checking really
850  * works, and is meant for small sections of an object.
851  *
852  * This code protects resident pages by making them read-only
853  * and is typically called on a fork or split when a page
854  * is converted to copy-on-write.
855  *
856  * NOTE: If the page is already at VM_PROT_NONE, calling
857  * vm_page_protect will have no effect.
858  */
859 
860 void
861 vm_object_pmap_copy_1(object, start, end)
862 	vm_object_t object;
863 	vm_pindex_t start;
864 	vm_pindex_t end;
865 {
866 	vm_pindex_t idx;
867 	vm_page_t p;
868 
869 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
870 		return;
871 
872 	for (idx = start; idx < end; idx++) {
873 		p = vm_page_lookup(object, idx);
874 		if (p == NULL)
875 			continue;
876 		vm_page_protect(p, VM_PROT_READ);
877 	}
878 }
879 
880 /*
881  *	vm_object_pmap_remove:
882  *
883  *	Removes all physical pages in the specified
884  *	object range from all physical maps.
885  *
886  *	The object must *not* be locked.
887  */
888 void
889 vm_object_pmap_remove(object, start, end)
890 	vm_object_t object;
891 	vm_pindex_t start;
892 	vm_pindex_t end;
893 {
894 	vm_page_t p;
895 
896 	if (object == NULL)
897 		return;
898 	for (p = TAILQ_FIRST(&object->memq);
899 		p != NULL;
900 		p = TAILQ_NEXT(p, listq)) {
901 		if (p->pindex >= start && p->pindex < end)
902 			vm_page_protect(p, VM_PROT_NONE);
903 	}
904 	if ((start == 0) && (object->size == end))
905 		vm_object_clear_flag(object, OBJ_WRITEABLE);
906 }
907 
908 /*
909  *	vm_object_madvise:
910  *
911  *	Implements the madvise function at the object/page level.
912  *
913  *	MADV_WILLNEED	(any object)
914  *
915  *	    Activate the specified pages if they are resident.
916  *
917  *	MADV_DONTNEED	(any object)
918  *
919  *	    Deactivate the specified pages if they are resident.
920  *
921  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
922  *			 OBJ_ONEMAPPING only)
923  *
924  *	    Deactivate and clean the specified pages if they are
925  *	    resident.  This permits the process to reuse the pages
926  *	    without faulting or the kernel to reclaim the pages
927  *	    without I/O.
928  */
929 void
930 vm_object_madvise(object, pindex, count, advise)
931 	vm_object_t object;
932 	vm_pindex_t pindex;
933 	int count;
934 	int advise;
935 {
936 	vm_pindex_t end, tpindex;
937 	vm_object_t tobject;
938 	vm_page_t m;
939 
940 	if (object == NULL)
941 		return;
942 
943 	end = pindex + count;
944 
945 	/*
946 	 * Locate and adjust resident pages
947 	 */
948 
949 	for (; pindex < end; pindex += 1) {
950 relookup:
951 		tobject = object;
952 		tpindex = pindex;
953 shadowlookup:
954 		/*
955 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
956 		 * and those pages must be OBJ_ONEMAPPING.
957 		 */
958 		if (advise == MADV_FREE) {
959 			if ((tobject->type != OBJT_DEFAULT &&
960 			     tobject->type != OBJT_SWAP) ||
961 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
962 				continue;
963 			}
964 		}
965 
966 		m = vm_page_lookup(tobject, tpindex);
967 
968 		if (m == NULL) {
969 			/*
970 			 * There may be swap even if there is no backing page
971 			 */
972 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
973 				swap_pager_freespace(tobject, tpindex, 1);
974 
975 			/*
976 			 * next object
977 			 */
978 			tobject = tobject->backing_object;
979 			if (tobject == NULL)
980 				continue;
981 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
982 			goto shadowlookup;
983 		}
984 
985 		/*
986 		 * If the page is busy or not in a normal active state,
987 		 * we skip it.  If the page is not managed there are no
988 		 * page queues to mess with.  Things can break if we mess
989 		 * with pages in any of the below states.
990 		 */
991 		if (
992 		    m->hold_count ||
993 		    m->wire_count ||
994 		    (m->flags & PG_UNMANAGED) ||
995 		    m->valid != VM_PAGE_BITS_ALL
996 		) {
997 			continue;
998 		}
999 
1000  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1001   			goto relookup;
1002 
1003 		if (advise == MADV_WILLNEED) {
1004 			vm_page_activate(m);
1005 		} else if (advise == MADV_DONTNEED) {
1006 			vm_page_dontneed(m);
1007 		} else if (advise == MADV_FREE) {
1008 			/*
1009 			 * Mark the page clean.  This will allow the page
1010 			 * to be freed up by the system.  However, such pages
1011 			 * are often reused quickly by malloc()/free()
1012 			 * so we do not do anything that would cause
1013 			 * a page fault if we can help it.
1014 			 *
1015 			 * Specifically, we do not try to actually free
1016 			 * the page now nor do we try to put it in the
1017 			 * cache (which would cause a page fault on reuse).
1018 			 *
1019 			 * But we do make the page is freeable as we
1020 			 * can without actually taking the step of unmapping
1021 			 * it.
1022 			 */
1023 			pmap_clear_modify(m);
1024 			m->dirty = 0;
1025 			m->act_count = 0;
1026 			vm_page_dontneed(m);
1027 			if (tobject->type == OBJT_SWAP)
1028 				swap_pager_freespace(tobject, tpindex, 1);
1029 		}
1030 	}
1031 }
1032 
1033 /*
1034  *	vm_object_shadow:
1035  *
1036  *	Create a new object which is backed by the
1037  *	specified existing object range.  The source
1038  *	object reference is deallocated.
1039  *
1040  *	The new object and offset into that object
1041  *	are returned in the source parameters.
1042  */
1043 
1044 void
1045 vm_object_shadow(object, offset, length)
1046 	vm_object_t *object;	/* IN/OUT */
1047 	vm_ooffset_t *offset;	/* IN/OUT */
1048 	vm_size_t length;
1049 {
1050 	vm_object_t source;
1051 	vm_object_t result;
1052 
1053 	source = *object;
1054 
1055 	/*
1056 	 * Don't create the new object if the old object isn't shared.
1057 	 */
1058 
1059 	if (source != NULL &&
1060 	    source->ref_count == 1 &&
1061 	    source->handle == NULL &&
1062 	    (source->type == OBJT_DEFAULT ||
1063 	     source->type == OBJT_SWAP))
1064 		return;
1065 
1066 	/*
1067 	 * Allocate a new object with the given length
1068 	 */
1069 
1070 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1071 		panic("vm_object_shadow: no object for shadowing");
1072 
1073 	/*
1074 	 * The new object shadows the source object, adding a reference to it.
1075 	 * Our caller changes his reference to point to the new object,
1076 	 * removing a reference to the source object.  Net result: no change
1077 	 * of reference count.
1078 	 *
1079 	 * Try to optimize the result object's page color when shadowing
1080 	 * in order to maintain page coloring consistency in the combined
1081 	 * shadowed object.
1082 	 */
1083 	result->backing_object = source;
1084 	if (source) {
1085 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1086 		source->shadow_count++;
1087 		source->generation++;
1088 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1089 	}
1090 
1091 	/*
1092 	 * Store the offset into the source object, and fix up the offset into
1093 	 * the new object.
1094 	 */
1095 
1096 	result->backing_object_offset = *offset;
1097 
1098 	/*
1099 	 * Return the new things
1100 	 */
1101 
1102 	*offset = 0;
1103 	*object = result;
1104 }
1105 
1106 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1107 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1108 #define	OBSC_COLLAPSE_WAIT	0x0004
1109 
1110 static __inline int
1111 vm_object_backing_scan(vm_object_t object, int op)
1112 {
1113 	int s;
1114 	int r = 1;
1115 	vm_page_t p;
1116 	vm_object_t backing_object;
1117 	vm_pindex_t backing_offset_index;
1118 
1119 	s = splvm();
1120 
1121 	backing_object = object->backing_object;
1122 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1123 
1124 	/*
1125 	 * Initial conditions
1126 	 */
1127 
1128 	if (op & OBSC_TEST_ALL_SHADOWED) {
1129 		/*
1130 		 * We do not want to have to test for the existence of
1131 		 * swap pages in the backing object.  XXX but with the
1132 		 * new swapper this would be pretty easy to do.
1133 		 *
1134 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1135 		 * been ZFOD faulted yet?  If we do not test for this, the
1136 		 * shadow test may succeed! XXX
1137 		 */
1138 		if (backing_object->type != OBJT_DEFAULT) {
1139 			splx(s);
1140 			return(0);
1141 		}
1142 	}
1143 	if (op & OBSC_COLLAPSE_WAIT) {
1144 		vm_object_set_flag(backing_object, OBJ_DEAD);
1145 	}
1146 
1147 	/*
1148 	 * Our scan
1149 	 */
1150 
1151 	p = TAILQ_FIRST(&backing_object->memq);
1152 	while (p) {
1153 		vm_page_t next = TAILQ_NEXT(p, listq);
1154 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1155 
1156 		if (op & OBSC_TEST_ALL_SHADOWED) {
1157 			vm_page_t pp;
1158 
1159 			/*
1160 			 * Ignore pages outside the parent object's range
1161 			 * and outside the parent object's mapping of the
1162 			 * backing object.
1163 			 *
1164 			 * note that we do not busy the backing object's
1165 			 * page.
1166 			 */
1167 
1168 			if (
1169 			    p->pindex < backing_offset_index ||
1170 			    new_pindex >= object->size
1171 			) {
1172 				p = next;
1173 				continue;
1174 			}
1175 
1176 			/*
1177 			 * See if the parent has the page or if the parent's
1178 			 * object pager has the page.  If the parent has the
1179 			 * page but the page is not valid, the parent's
1180 			 * object pager must have the page.
1181 			 *
1182 			 * If this fails, the parent does not completely shadow
1183 			 * the object and we might as well give up now.
1184 			 */
1185 
1186 			pp = vm_page_lookup(object, new_pindex);
1187 			if (
1188 			    (pp == NULL || pp->valid == 0) &&
1189 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1190 			) {
1191 				r = 0;
1192 				break;
1193 			}
1194 		}
1195 
1196 		/*
1197 		 * Check for busy page
1198 		 */
1199 
1200 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1201 			vm_page_t pp;
1202 
1203 			if (op & OBSC_COLLAPSE_NOWAIT) {
1204 				if (
1205 				    (p->flags & PG_BUSY) ||
1206 				    !p->valid ||
1207 				    p->hold_count ||
1208 				    p->wire_count ||
1209 				    p->busy
1210 				) {
1211 					p = next;
1212 					continue;
1213 				}
1214 			} else if (op & OBSC_COLLAPSE_WAIT) {
1215 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1216 					/*
1217 					 * If we slept, anything could have
1218 					 * happened.  Since the object is
1219 					 * marked dead, the backing offset
1220 					 * should not have changed so we
1221 					 * just restart our scan.
1222 					 */
1223 					p = TAILQ_FIRST(&backing_object->memq);
1224 					continue;
1225 				}
1226 			}
1227 
1228 			/*
1229 			 * Busy the page
1230 			 */
1231 			vm_page_busy(p);
1232 
1233 			KASSERT(
1234 			    p->object == backing_object,
1235 			    ("vm_object_qcollapse(): object mismatch")
1236 			);
1237 
1238 			/*
1239 			 * Destroy any associated swap
1240 			 */
1241 			if (backing_object->type == OBJT_SWAP) {
1242 				swap_pager_freespace(
1243 				    backing_object,
1244 				    p->pindex,
1245 				    1
1246 				);
1247 			}
1248 
1249 			if (
1250 			    p->pindex < backing_offset_index ||
1251 			    new_pindex >= object->size
1252 			) {
1253 				/*
1254 				 * Page is out of the parent object's range, we
1255 				 * can simply destroy it.
1256 				 */
1257 				vm_page_protect(p, VM_PROT_NONE);
1258 				vm_page_free(p);
1259 				p = next;
1260 				continue;
1261 			}
1262 
1263 			pp = vm_page_lookup(object, new_pindex);
1264 			if (
1265 			    pp != NULL ||
1266 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1267 			) {
1268 				/*
1269 				 * page already exists in parent OR swap exists
1270 				 * for this location in the parent.  Destroy
1271 				 * the original page from the backing object.
1272 				 *
1273 				 * Leave the parent's page alone
1274 				 */
1275 				vm_page_protect(p, VM_PROT_NONE);
1276 				vm_page_free(p);
1277 				p = next;
1278 				continue;
1279 			}
1280 
1281 			/*
1282 			 * Page does not exist in parent, rename the
1283 			 * page from the backing object to the main object.
1284 			 *
1285 			 * If the page was mapped to a process, it can remain
1286 			 * mapped through the rename.
1287 			 */
1288 			if ((p->queue - p->pc) == PQ_CACHE)
1289 				vm_page_deactivate(p);
1290 
1291 			vm_page_rename(p, object, new_pindex);
1292 			/* page automatically made dirty by rename */
1293 		}
1294 		p = next;
1295 	}
1296 	splx(s);
1297 	return(r);
1298 }
1299 
1300 
1301 /*
1302  * this version of collapse allows the operation to occur earlier and
1303  * when paging_in_progress is true for an object...  This is not a complete
1304  * operation, but should plug 99.9% of the rest of the leaks.
1305  */
1306 static void
1307 vm_object_qcollapse(object)
1308 	vm_object_t object;
1309 {
1310 	vm_object_t backing_object = object->backing_object;
1311 
1312 	if (backing_object->ref_count != 1)
1313 		return;
1314 
1315 	backing_object->ref_count += 2;
1316 
1317 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1318 
1319 	backing_object->ref_count -= 2;
1320 }
1321 
1322 /*
1323  *	vm_object_collapse:
1324  *
1325  *	Collapse an object with the object backing it.
1326  *	Pages in the backing object are moved into the
1327  *	parent, and the backing object is deallocated.
1328  */
1329 void
1330 vm_object_collapse(object)
1331 	vm_object_t object;
1332 {
1333 	while (TRUE) {
1334 		vm_object_t backing_object;
1335 
1336 		/*
1337 		 * Verify that the conditions are right for collapse:
1338 		 *
1339 		 * The object exists and the backing object exists.
1340 		 */
1341 		if (object == NULL)
1342 			break;
1343 
1344 		if ((backing_object = object->backing_object) == NULL)
1345 			break;
1346 
1347 		/*
1348 		 * we check the backing object first, because it is most likely
1349 		 * not collapsable.
1350 		 */
1351 		if (backing_object->handle != NULL ||
1352 		    (backing_object->type != OBJT_DEFAULT &&
1353 		     backing_object->type != OBJT_SWAP) ||
1354 		    (backing_object->flags & OBJ_DEAD) ||
1355 		    object->handle != NULL ||
1356 		    (object->type != OBJT_DEFAULT &&
1357 		     object->type != OBJT_SWAP) ||
1358 		    (object->flags & OBJ_DEAD)) {
1359 			break;
1360 		}
1361 
1362 		if (
1363 		    object->paging_in_progress != 0 ||
1364 		    backing_object->paging_in_progress != 0
1365 		) {
1366 			vm_object_qcollapse(object);
1367 			break;
1368 		}
1369 
1370 		/*
1371 		 * We know that we can either collapse the backing object (if
1372 		 * the parent is the only reference to it) or (perhaps) have
1373 		 * the parent bypass the object if the parent happens to shadow
1374 		 * all the resident pages in the entire backing object.
1375 		 *
1376 		 * This is ignoring pager-backed pages such as swap pages.
1377 		 * vm_object_backing_scan fails the shadowing test in this
1378 		 * case.
1379 		 */
1380 
1381 		if (backing_object->ref_count == 1) {
1382 			/*
1383 			 * If there is exactly one reference to the backing
1384 			 * object, we can collapse it into the parent.
1385 			 */
1386 
1387 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1388 
1389 			/*
1390 			 * Move the pager from backing_object to object.
1391 			 */
1392 
1393 			if (backing_object->type == OBJT_SWAP) {
1394 				vm_object_pip_add(backing_object, 1);
1395 
1396 				/*
1397 				 * scrap the paging_offset junk and do a
1398 				 * discrete copy.  This also removes major
1399 				 * assumptions about how the swap-pager
1400 				 * works from where it doesn't belong.  The
1401 				 * new swapper is able to optimize the
1402 				 * destroy-source case.
1403 				 */
1404 
1405 				vm_object_pip_add(object, 1);
1406 				swap_pager_copy(
1407 				    backing_object,
1408 				    object,
1409 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1410 				vm_object_pip_wakeup(object);
1411 
1412 				vm_object_pip_wakeup(backing_object);
1413 			}
1414 			/*
1415 			 * Object now shadows whatever backing_object did.
1416 			 * Note that the reference to
1417 			 * backing_object->backing_object moves from within
1418 			 * backing_object to within object.
1419 			 */
1420 
1421 			LIST_REMOVE(object, shadow_list);
1422 			object->backing_object->shadow_count--;
1423 			object->backing_object->generation++;
1424 			if (backing_object->backing_object) {
1425 				LIST_REMOVE(backing_object, shadow_list);
1426 				backing_object->backing_object->shadow_count--;
1427 				backing_object->backing_object->generation++;
1428 			}
1429 			object->backing_object = backing_object->backing_object;
1430 			if (object->backing_object) {
1431 				LIST_INSERT_HEAD(
1432 				    &object->backing_object->shadow_head,
1433 				    object,
1434 				    shadow_list
1435 				);
1436 				object->backing_object->shadow_count++;
1437 				object->backing_object->generation++;
1438 			}
1439 
1440 			object->backing_object_offset +=
1441 			    backing_object->backing_object_offset;
1442 
1443 			/*
1444 			 * Discard backing_object.
1445 			 *
1446 			 * Since the backing object has no pages, no pager left,
1447 			 * and no object references within it, all that is
1448 			 * necessary is to dispose of it.
1449 			 */
1450 
1451 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1452 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1453 			TAILQ_REMOVE(
1454 			    &vm_object_list,
1455 			    backing_object,
1456 			    object_list
1457 			);
1458 			vm_object_count--;
1459 
1460 			zfree(obj_zone, backing_object);
1461 
1462 			object_collapses++;
1463 		} else {
1464 			vm_object_t new_backing_object;
1465 
1466 			/*
1467 			 * If we do not entirely shadow the backing object,
1468 			 * there is nothing we can do so we give up.
1469 			 */
1470 
1471 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1472 				break;
1473 			}
1474 
1475 			/*
1476 			 * Make the parent shadow the next object in the
1477 			 * chain.  Deallocating backing_object will not remove
1478 			 * it, since its reference count is at least 2.
1479 			 */
1480 
1481 			LIST_REMOVE(object, shadow_list);
1482 			backing_object->shadow_count--;
1483 			backing_object->generation++;
1484 
1485 			new_backing_object = backing_object->backing_object;
1486 			if ((object->backing_object = new_backing_object) != NULL) {
1487 				vm_object_reference(new_backing_object);
1488 				LIST_INSERT_HEAD(
1489 				    &new_backing_object->shadow_head,
1490 				    object,
1491 				    shadow_list
1492 				);
1493 				new_backing_object->shadow_count++;
1494 				new_backing_object->generation++;
1495 				object->backing_object_offset +=
1496 					backing_object->backing_object_offset;
1497 			}
1498 
1499 			/*
1500 			 * Drop the reference count on backing_object. Since
1501 			 * its ref_count was at least 2, it will not vanish;
1502 			 * so we don't need to call vm_object_deallocate, but
1503 			 * we do anyway.
1504 			 */
1505 			vm_object_deallocate(backing_object);
1506 			object_bypasses++;
1507 		}
1508 
1509 		/*
1510 		 * Try again with this object's new backing object.
1511 		 */
1512 	}
1513 }
1514 
1515 /*
1516  *	vm_object_page_remove: [internal]
1517  *
1518  *	Removes all physical pages in the specified
1519  *	object range from the object's list of pages.
1520  *
1521  *	The object must be locked.
1522  */
1523 void
1524 vm_object_page_remove(object, start, end, clean_only)
1525 	vm_object_t object;
1526 	vm_pindex_t start;
1527 	vm_pindex_t end;
1528 	boolean_t clean_only;
1529 {
1530 	vm_page_t p, next;
1531 	unsigned int size;
1532 	int all;
1533 
1534 	if (object == NULL ||
1535 	    object->resident_page_count == 0)
1536 		return;
1537 
1538 	all = ((end == 0) && (start == 0));
1539 
1540 	/*
1541 	 * Since physically-backed objects do not use managed pages, we can't
1542 	 * remove pages from the object (we must instead remove the page
1543 	 * references, and then destroy the object).
1544 	 */
1545 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1546 
1547 	vm_object_pip_add(object, 1);
1548 again:
1549 	size = end - start;
1550 	if (all || size > object->resident_page_count / 4) {
1551 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1552 			next = TAILQ_NEXT(p, listq);
1553 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1554 				if (p->wire_count != 0) {
1555 					vm_page_protect(p, VM_PROT_NONE);
1556 					if (!clean_only)
1557 						p->valid = 0;
1558 					continue;
1559 				}
1560 
1561 				/*
1562 				 * The busy flags are only cleared at
1563 				 * interrupt -- minimize the spl transitions
1564 				 */
1565 
1566  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1567  					goto again;
1568 
1569 				if (clean_only && p->valid) {
1570 					vm_page_test_dirty(p);
1571 					if (p->valid & p->dirty)
1572 						continue;
1573 				}
1574 
1575 				vm_page_busy(p);
1576 				vm_page_protect(p, VM_PROT_NONE);
1577 				vm_page_free(p);
1578 			}
1579 		}
1580 	} else {
1581 		while (size > 0) {
1582 			if ((p = vm_page_lookup(object, start)) != 0) {
1583 
1584 				if (p->wire_count != 0) {
1585 					vm_page_protect(p, VM_PROT_NONE);
1586 					if (!clean_only)
1587 						p->valid = 0;
1588 					start += 1;
1589 					size -= 1;
1590 					continue;
1591 				}
1592 
1593 				/*
1594 				 * The busy flags are only cleared at
1595 				 * interrupt -- minimize the spl transitions
1596 				 */
1597  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1598 					goto again;
1599 
1600 				if (clean_only && p->valid) {
1601 					vm_page_test_dirty(p);
1602 					if (p->valid & p->dirty) {
1603 						start += 1;
1604 						size -= 1;
1605 						continue;
1606 					}
1607 				}
1608 
1609 				vm_page_busy(p);
1610 				vm_page_protect(p, VM_PROT_NONE);
1611 				vm_page_free(p);
1612 			}
1613 			start += 1;
1614 			size -= 1;
1615 		}
1616 	}
1617 	vm_object_pip_wakeup(object);
1618 }
1619 
1620 /*
1621  *	Routine:	vm_object_coalesce
1622  *	Function:	Coalesces two objects backing up adjoining
1623  *			regions of memory into a single object.
1624  *
1625  *	returns TRUE if objects were combined.
1626  *
1627  *	NOTE:	Only works at the moment if the second object is NULL -
1628  *		if it's not, which object do we lock first?
1629  *
1630  *	Parameters:
1631  *		prev_object	First object to coalesce
1632  *		prev_offset	Offset into prev_object
1633  *		next_object	Second object into coalesce
1634  *		next_offset	Offset into next_object
1635  *
1636  *		prev_size	Size of reference to prev_object
1637  *		next_size	Size of reference to next_object
1638  *
1639  *	Conditions:
1640  *	The object must *not* be locked.
1641  */
1642 boolean_t
1643 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1644 	vm_object_t prev_object;
1645 	vm_pindex_t prev_pindex;
1646 	vm_size_t prev_size, next_size;
1647 {
1648 	vm_pindex_t next_pindex;
1649 
1650 	if (prev_object == NULL) {
1651 		return (TRUE);
1652 	}
1653 
1654 	if (prev_object->type != OBJT_DEFAULT &&
1655 	    prev_object->type != OBJT_SWAP) {
1656 		return (FALSE);
1657 	}
1658 
1659 	/*
1660 	 * Try to collapse the object first
1661 	 */
1662 	vm_object_collapse(prev_object);
1663 
1664 	/*
1665 	 * Can't coalesce if: . more than one reference . paged out . shadows
1666 	 * another object . has a copy elsewhere (any of which mean that the
1667 	 * pages not mapped to prev_entry may be in use anyway)
1668 	 */
1669 
1670 	if (prev_object->backing_object != NULL) {
1671 		return (FALSE);
1672 	}
1673 
1674 	prev_size >>= PAGE_SHIFT;
1675 	next_size >>= PAGE_SHIFT;
1676 	next_pindex = prev_pindex + prev_size;
1677 
1678 	if ((prev_object->ref_count > 1) &&
1679 	    (prev_object->size != next_pindex)) {
1680 		return (FALSE);
1681 	}
1682 
1683 	/*
1684 	 * Remove any pages that may still be in the object from a previous
1685 	 * deallocation.
1686 	 */
1687 	if (next_pindex < prev_object->size) {
1688 		vm_object_page_remove(prev_object,
1689 				      next_pindex,
1690 				      next_pindex + next_size, FALSE);
1691 		if (prev_object->type == OBJT_SWAP)
1692 			swap_pager_freespace(prev_object,
1693 					     next_pindex, next_size);
1694 	}
1695 
1696 	/*
1697 	 * Extend the object if necessary.
1698 	 */
1699 	if (next_pindex + next_size > prev_object->size)
1700 		prev_object->size = next_pindex + next_size;
1701 
1702 	return (TRUE);
1703 }
1704 
1705 void
1706 vm_object_set_writeable_dirty(vm_object_t object)
1707 {
1708 	struct vnode *vp;
1709 
1710 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1711 	if (object->type == OBJT_VNODE &&
1712 	    (vp = (struct vnode *)object->handle) != NULL) {
1713 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1714 			simple_lock(&vp->v_interlock);
1715 			vp->v_flag |= VOBJDIRTY;
1716 			simple_unlock(&vp->v_interlock);
1717 		}
1718 	}
1719 }
1720 
1721 
1722 
1723 #include "opt_ddb.h"
1724 #ifdef DDB
1725 #include <sys/kernel.h>
1726 
1727 #include <sys/cons.h>
1728 
1729 #include <ddb/ddb.h>
1730 
1731 static int	_vm_object_in_map __P((vm_map_t map, vm_object_t object,
1732 				       vm_map_entry_t entry));
1733 static int	vm_object_in_map __P((vm_object_t object));
1734 
1735 static int
1736 _vm_object_in_map(map, object, entry)
1737 	vm_map_t map;
1738 	vm_object_t object;
1739 	vm_map_entry_t entry;
1740 {
1741 	vm_map_t tmpm;
1742 	vm_map_entry_t tmpe;
1743 	vm_object_t obj;
1744 	int entcount;
1745 
1746 	if (map == 0)
1747 		return 0;
1748 
1749 	if (entry == 0) {
1750 		tmpe = map->header.next;
1751 		entcount = map->nentries;
1752 		while (entcount-- && (tmpe != &map->header)) {
1753 			if( _vm_object_in_map(map, object, tmpe)) {
1754 				return 1;
1755 			}
1756 			tmpe = tmpe->next;
1757 		}
1758 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1759 		tmpm = entry->object.sub_map;
1760 		tmpe = tmpm->header.next;
1761 		entcount = tmpm->nentries;
1762 		while (entcount-- && tmpe != &tmpm->header) {
1763 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1764 				return 1;
1765 			}
1766 			tmpe = tmpe->next;
1767 		}
1768 	} else if ((obj = entry->object.vm_object) != NULL) {
1769 		for(; obj; obj=obj->backing_object)
1770 			if( obj == object) {
1771 				return 1;
1772 			}
1773 	}
1774 	return 0;
1775 }
1776 
1777 static int
1778 vm_object_in_map( object)
1779 	vm_object_t object;
1780 {
1781 	struct proc *p;
1782 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1783 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1784 			continue;
1785 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1786 			return 1;
1787 	}
1788 	if( _vm_object_in_map( kernel_map, object, 0))
1789 		return 1;
1790 	if( _vm_object_in_map( kmem_map, object, 0))
1791 		return 1;
1792 	if( _vm_object_in_map( pager_map, object, 0))
1793 		return 1;
1794 	if( _vm_object_in_map( buffer_map, object, 0))
1795 		return 1;
1796 	if( _vm_object_in_map( mb_map, object, 0))
1797 		return 1;
1798 	return 0;
1799 }
1800 
1801 DB_SHOW_COMMAND(vmochk, vm_object_check)
1802 {
1803 	vm_object_t object;
1804 
1805 	/*
1806 	 * make sure that internal objs are in a map somewhere
1807 	 * and none have zero ref counts.
1808 	 */
1809 	for (object = TAILQ_FIRST(&vm_object_list);
1810 			object != NULL;
1811 			object = TAILQ_NEXT(object, object_list)) {
1812 		if (object->handle == NULL &&
1813 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1814 			if (object->ref_count == 0) {
1815 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1816 					(long)object->size);
1817 			}
1818 			if (!vm_object_in_map(object)) {
1819 				db_printf(
1820 			"vmochk: internal obj is not in a map: "
1821 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1822 				    object->ref_count, (u_long)object->size,
1823 				    (u_long)object->size,
1824 				    (void *)object->backing_object);
1825 			}
1826 		}
1827 	}
1828 }
1829 
1830 /*
1831  *	vm_object_print:	[ debug ]
1832  */
1833 DB_SHOW_COMMAND(object, vm_object_print_static)
1834 {
1835 	/* XXX convert args. */
1836 	vm_object_t object = (vm_object_t)addr;
1837 	boolean_t full = have_addr;
1838 
1839 	vm_page_t p;
1840 
1841 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1842 #define	count	was_count
1843 
1844 	int count;
1845 
1846 	if (object == NULL)
1847 		return;
1848 
1849 	db_iprintf(
1850 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1851 	    object, (int)object->type, (u_long)object->size,
1852 	    object->resident_page_count, object->ref_count, object->flags);
1853 	/*
1854 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1855 	 */
1856 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1857 	    object->shadow_count,
1858 	    object->backing_object ? object->backing_object->ref_count : 0,
1859 	    object->backing_object, (long)object->backing_object_offset);
1860 
1861 	if (!full)
1862 		return;
1863 
1864 	db_indent += 2;
1865 	count = 0;
1866 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1867 		if (count == 0)
1868 			db_iprintf("memory:=");
1869 		else if (count == 6) {
1870 			db_printf("\n");
1871 			db_iprintf(" ...");
1872 			count = 0;
1873 		} else
1874 			db_printf(",");
1875 		count++;
1876 
1877 		db_printf("(off=0x%lx,page=0x%lx)",
1878 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1879 	}
1880 	if (count != 0)
1881 		db_printf("\n");
1882 	db_indent -= 2;
1883 }
1884 
1885 /* XXX. */
1886 #undef count
1887 
1888 /* XXX need this non-static entry for calling from vm_map_print. */
1889 void
1890 vm_object_print(addr, have_addr, count, modif)
1891         /* db_expr_t */ long addr;
1892 	boolean_t have_addr;
1893 	/* db_expr_t */ long count;
1894 	char *modif;
1895 {
1896 	vm_object_print_static(addr, have_addr, count, modif);
1897 }
1898 
1899 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1900 {
1901 	vm_object_t object;
1902 	int nl = 0;
1903 	int c;
1904 	for (object = TAILQ_FIRST(&vm_object_list);
1905 			object != NULL;
1906 			object = TAILQ_NEXT(object, object_list)) {
1907 		vm_pindex_t idx, fidx;
1908 		vm_pindex_t osize;
1909 		vm_offset_t pa = -1, padiff;
1910 		int rcount;
1911 		vm_page_t m;
1912 
1913 		db_printf("new object: %p\n", (void *)object);
1914 		if ( nl > 18) {
1915 			c = cngetc();
1916 			if (c != ' ')
1917 				return;
1918 			nl = 0;
1919 		}
1920 		nl++;
1921 		rcount = 0;
1922 		fidx = 0;
1923 		osize = object->size;
1924 		if (osize > 128)
1925 			osize = 128;
1926 		for(idx=0;idx<osize;idx++) {
1927 			m = vm_page_lookup(object, idx);
1928 			if (m == NULL) {
1929 				if (rcount) {
1930 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1931 						(long)fidx, rcount, (long)pa);
1932 					if ( nl > 18) {
1933 						c = cngetc();
1934 						if (c != ' ')
1935 							return;
1936 						nl = 0;
1937 					}
1938 					nl++;
1939 					rcount = 0;
1940 				}
1941 				continue;
1942 			}
1943 
1944 
1945 			if (rcount &&
1946 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1947 				++rcount;
1948 				continue;
1949 			}
1950 			if (rcount) {
1951 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1952 				padiff >>= PAGE_SHIFT;
1953 				padiff &= PQ_L2_MASK;
1954 				if (padiff == 0) {
1955 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1956 					++rcount;
1957 					continue;
1958 				}
1959 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1960 					(long)fidx, rcount, (long)pa);
1961 				db_printf("pd(%ld)\n", (long)padiff);
1962 				if ( nl > 18) {
1963 					c = cngetc();
1964 					if (c != ' ')
1965 						return;
1966 					nl = 0;
1967 				}
1968 				nl++;
1969 			}
1970 			fidx = idx;
1971 			pa = VM_PAGE_TO_PHYS(m);
1972 			rcount = 1;
1973 		}
1974 		if (rcount) {
1975 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1976 				(long)fidx, rcount, (long)pa);
1977 			if ( nl > 18) {
1978 				c = cngetc();
1979 				if (c != ' ')
1980 					return;
1981 				nl = 0;
1982 			}
1983 			nl++;
1984 		}
1985 	}
1986 }
1987 #endif /* DDB */
1988