xref: /dragonfly/sys/vm/vm_object.c (revision 38a690d7)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.6 2003/07/06 21:23:56 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103 
104 static void	vm_object_qcollapse (vm_object_t object);
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;
134 static struct lwkt_token vm_object_list_token;
135 static long vm_object_count;		/* count of all objects */
136 vm_object_t kernel_object;
137 vm_object_t kmem_object;
138 static struct vm_object kernel_object_store;
139 static struct vm_object kmem_object_store;
140 extern int vm_pageout_page_count;
141 
142 static long object_collapses;
143 static long object_bypasses;
144 static int next_index;
145 static vm_zone_t obj_zone;
146 static struct vm_zone obj_zone_store;
147 static int object_hash_rand;
148 #define VM_OBJECTS_INIT 256
149 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
150 
151 void
152 _vm_object_allocate(type, size, object)
153 	objtype_t type;
154 	vm_size_t size;
155 	vm_object_t object;
156 {
157 	int incr;
158 	TAILQ_INIT(&object->memq);
159 	LIST_INIT(&object->shadow_head);
160 
161 	object->type = type;
162 	object->size = size;
163 	object->ref_count = 1;
164 	object->flags = 0;
165 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
166 		vm_object_set_flag(object, OBJ_ONEMAPPING);
167 	object->paging_in_progress = 0;
168 	object->resident_page_count = 0;
169 	object->shadow_count = 0;
170 	object->pg_color = next_index;
171 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
172 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
173 	else
174 		incr = size;
175 	next_index = (next_index + incr) & PQ_L2_MASK;
176 	object->handle = NULL;
177 	object->backing_object = NULL;
178 	object->backing_object_offset = (vm_ooffset_t) 0;
179 	/*
180 	 * Try to generate a number that will spread objects out in the
181 	 * hash table.  We 'wipe' new objects across the hash in 128 page
182 	 * increments plus 1 more to offset it a little more by the time
183 	 * it wraps around.
184 	 */
185 	object->hash_rand = object_hash_rand - 129;
186 
187 	object->generation++;
188 
189 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
190 	vm_object_count++;
191 	object_hash_rand = object->hash_rand;
192 }
193 
194 /*
195  *	vm_object_init:
196  *
197  *	Initialize the VM objects module.
198  */
199 void
200 vm_object_init()
201 {
202 	TAILQ_INIT(&vm_object_list);
203 	lwkt_inittoken(&vm_object_list_token);
204 	vm_object_count = 0;
205 
206 	kernel_object = &kernel_object_store;
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208 	    kernel_object);
209 
210 	kmem_object = &kmem_object_store;
211 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
212 	    kmem_object);
213 
214 	obj_zone = &obj_zone_store;
215 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
216 		vm_objects_init, VM_OBJECTS_INIT);
217 }
218 
219 void
220 vm_object_init2() {
221 	zinitna(obj_zone, NULL, NULL, 0, 0, 0, 1);
222 }
223 
224 /*
225  *	vm_object_allocate:
226  *
227  *	Returns a new object with the given size.
228  */
229 
230 vm_object_t
231 vm_object_allocate(type, size)
232 	objtype_t type;
233 	vm_size_t size;
234 {
235 	vm_object_t result;
236 
237 	result = (vm_object_t) zalloc(obj_zone);
238 
239 	_vm_object_allocate(type, size, result);
240 
241 	return (result);
242 }
243 
244 
245 /*
246  *	vm_object_reference:
247  *
248  *	Gets another reference to the given object.
249  */
250 void
251 vm_object_reference(object)
252 	vm_object_t object;
253 {
254 	if (object == NULL)
255 		return;
256 
257 #if 0
258 	/* object can be re-referenced during final cleaning */
259 	KASSERT(!(object->flags & OBJ_DEAD),
260 	    ("vm_object_reference: attempting to reference dead obj"));
261 #endif
262 
263 	object->ref_count++;
264 	if (object->type == OBJT_VNODE) {
265 		while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
266 			printf("vm_object_reference: delay in getting object\n");
267 		}
268 	}
269 }
270 
271 void
272 vm_object_vndeallocate(object)
273 	vm_object_t object;
274 {
275 	struct vnode *vp = (struct vnode *) object->handle;
276 
277 	KASSERT(object->type == OBJT_VNODE,
278 	    ("vm_object_vndeallocate: not a vnode object"));
279 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
280 #ifdef INVARIANTS
281 	if (object->ref_count == 0) {
282 		vprint("vm_object_vndeallocate", vp);
283 		panic("vm_object_vndeallocate: bad object reference count");
284 	}
285 #endif
286 
287 	object->ref_count--;
288 	if (object->ref_count == 0) {
289 		vp->v_flag &= ~VTEXT;
290 		vm_object_clear_flag(object, OBJ_OPT);
291 	}
292 	vrele(vp);
293 }
294 
295 /*
296  *	vm_object_deallocate:
297  *
298  *	Release a reference to the specified object,
299  *	gained either through a vm_object_allocate
300  *	or a vm_object_reference call.  When all references
301  *	are gone, storage associated with this object
302  *	may be relinquished.
303  *
304  *	No object may be locked.
305  */
306 void
307 vm_object_deallocate(object)
308 	vm_object_t object;
309 {
310 	vm_object_t temp;
311 
312 	while (object != NULL) {
313 
314 		if (object->type == OBJT_VNODE) {
315 			vm_object_vndeallocate(object);
316 			return;
317 		}
318 
319 		if (object->ref_count == 0) {
320 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
321 		} else if (object->ref_count > 2) {
322 			object->ref_count--;
323 			return;
324 		}
325 
326 		/*
327 		 * Here on ref_count of one or two, which are special cases for
328 		 * objects.
329 		 */
330 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
331 			vm_object_set_flag(object, OBJ_ONEMAPPING);
332 			object->ref_count--;
333 			return;
334 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
335 			object->ref_count--;
336 			if ((object->handle == NULL) &&
337 			    (object->type == OBJT_DEFAULT ||
338 			     object->type == OBJT_SWAP)) {
339 				vm_object_t robject;
340 
341 				robject = LIST_FIRST(&object->shadow_head);
342 				KASSERT(robject != NULL,
343 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
344 					 object->ref_count,
345 					 object->shadow_count));
346 				if ((robject->handle == NULL) &&
347 				    (robject->type == OBJT_DEFAULT ||
348 				     robject->type == OBJT_SWAP)) {
349 
350 					robject->ref_count++;
351 
352 					while (
353 						robject->paging_in_progress ||
354 						object->paging_in_progress
355 					) {
356 						vm_object_pip_sleep(robject, "objde1");
357 						vm_object_pip_sleep(object, "objde2");
358 					}
359 
360 					if (robject->ref_count == 1) {
361 						robject->ref_count--;
362 						object = robject;
363 						goto doterm;
364 					}
365 
366 					object = robject;
367 					vm_object_collapse(object);
368 					continue;
369 				}
370 			}
371 
372 			return;
373 
374 		} else {
375 			object->ref_count--;
376 			if (object->ref_count != 0)
377 				return;
378 		}
379 
380 doterm:
381 
382 		temp = object->backing_object;
383 		if (temp) {
384 			LIST_REMOVE(object, shadow_list);
385 			temp->shadow_count--;
386 			if (temp->ref_count == 0)
387 				vm_object_clear_flag(temp, OBJ_OPT);
388 			temp->generation++;
389 			object->backing_object = NULL;
390 		}
391 
392 		/*
393 		 * Don't double-terminate, we could be in a termination
394 		 * recursion due to the terminate having to sync data
395 		 * to disk.
396 		 */
397 		if ((object->flags & OBJ_DEAD) == 0)
398 			vm_object_terminate(object);
399 		object = temp;
400 	}
401 }
402 
403 /*
404  *	vm_object_terminate actually destroys the specified object, freeing
405  *	up all previously used resources.
406  *
407  *	The object must be locked.
408  *	This routine may block.
409  */
410 void
411 vm_object_terminate(object)
412 	vm_object_t object;
413 {
414 	vm_page_t p;
415 	int s;
416 
417 	/*
418 	 * Make sure no one uses us.
419 	 */
420 	vm_object_set_flag(object, OBJ_DEAD);
421 
422 	/*
423 	 * wait for the pageout daemon to be done with the object
424 	 */
425 	vm_object_pip_wait(object, "objtrm");
426 
427 	KASSERT(!object->paging_in_progress,
428 		("vm_object_terminate: pageout in progress"));
429 
430 	/*
431 	 * Clean and free the pages, as appropriate. All references to the
432 	 * object are gone, so we don't need to lock it.
433 	 */
434 	if (object->type == OBJT_VNODE) {
435 		struct vnode *vp;
436 
437 		/*
438 		 * Freeze optimized copies.
439 		 */
440 		vm_freeze_copyopts(object, 0, object->size);
441 
442 		/*
443 		 * Clean pages and flush buffers.
444 		 */
445 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
446 
447 		vp = (struct vnode *) object->handle;
448 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
449 	}
450 
451 	/*
452 	 * Wait for any I/O to complete, after which there had better not
453 	 * be any references left on the object.
454 	 */
455 	vm_object_pip_wait(object, "objtrm");
456 
457 	if (object->ref_count != 0)
458 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
459 
460 	/*
461 	 * Now free any remaining pages. For internal objects, this also
462 	 * removes them from paging queues. Don't free wired pages, just
463 	 * remove them from the object.
464 	 */
465 	s = splvm();
466 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
467 		if (p->busy || (p->flags & PG_BUSY))
468 			panic("vm_object_terminate: freeing busy page %p\n", p);
469 		if (p->wire_count == 0) {
470 			vm_page_busy(p);
471 			vm_page_free(p);
472 			mycpu->gd_cnt.v_pfree++;
473 		} else {
474 			vm_page_busy(p);
475 			vm_page_remove(p);
476 		}
477 	}
478 	splx(s);
479 
480 	/*
481 	 * Let the pager know object is dead.
482 	 */
483 	vm_pager_deallocate(object);
484 
485 	/*
486 	 * Remove the object from the global object list.
487 	 */
488 	lwkt_gettoken(&vm_object_list_token);
489 	TAILQ_REMOVE(&vm_object_list, object, object_list);
490 	lwkt_reltoken(&vm_object_list_token);
491 
492 	wakeup(object);
493 
494 	/*
495 	 * Free the space for the object.
496 	 */
497 	zfree(obj_zone, object);
498 }
499 
500 /*
501  *	vm_object_page_clean
502  *
503  *	Clean all dirty pages in the specified range of object.  Leaves page
504  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
505  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506  *	leaving the object dirty.
507  *
508  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
509  *	synchronous clustering mode implementation.
510  *
511  *	Odd semantics: if start == end, we clean everything.
512  *
513  *	The object must be locked.
514  */
515 
516 void
517 vm_object_page_clean(object, start, end, flags)
518 	vm_object_t object;
519 	vm_pindex_t start;
520 	vm_pindex_t end;
521 	int flags;
522 {
523 	vm_page_t p, np;
524 	vm_offset_t tstart, tend;
525 	vm_pindex_t pi;
526 	struct vnode *vp;
527 	int clearobjflags;
528 	int pagerflags;
529 	int curgeneration;
530 
531 	if (object->type != OBJT_VNODE ||
532 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
533 		return;
534 
535 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
536 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
537 
538 	vp = object->handle;
539 
540 	vm_object_set_flag(object, OBJ_CLEANING);
541 
542 	/*
543 	 * Handle 'entire object' case
544 	 */
545 	tstart = start;
546 	if (end == 0) {
547 		tend = object->size;
548 	} else {
549 		tend = end;
550 	}
551 
552 	/*
553 	 * If the caller is smart and only msync()s a range he knows is
554 	 * dirty, we may be able to avoid an object scan.  This results in
555 	 * a phenominal improvement in performance.  We cannot do this
556 	 * as a matter of course because the object may be huge - e.g.
557 	 * the size might be in the gigabytes or terrabytes.
558 	 */
559 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
560 		vm_offset_t tscan;
561 		int scanlimit;
562 		int scanreset;
563 
564 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
565 		if (scanreset < 16)
566 			scanreset = 16;
567 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
568 
569 		scanlimit = scanreset;
570 		tscan = tstart;
571 		while (tscan < tend) {
572 			curgeneration = object->generation;
573 			p = vm_page_lookup(object, tscan);
574 			if (p == NULL || p->valid == 0 ||
575 			    (p->queue - p->pc) == PQ_CACHE) {
576 				if (--scanlimit == 0)
577 					break;
578 				++tscan;
579 				continue;
580 			}
581 			vm_page_test_dirty(p);
582 			if ((p->dirty & p->valid) == 0) {
583 				if (--scanlimit == 0)
584 					break;
585 				++tscan;
586 				continue;
587 			}
588 			/*
589 			 * If we have been asked to skip nosync pages and
590 			 * this is a nosync page, we can't continue.
591 			 */
592 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
593 				if (--scanlimit == 0)
594 					break;
595 				++tscan;
596 				continue;
597 			}
598 			scanlimit = scanreset;
599 
600 			/*
601 			 * This returns 0 if it was unable to busy the first
602 			 * page (i.e. had to sleep).
603 			 */
604 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
605 		}
606 
607 		/*
608 		 * If everything was dirty and we flushed it successfully,
609 		 * and the requested range is not the entire object, we
610 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
611 		 * return immediately.
612 		 */
613 		if (tscan >= tend && (tstart || tend < object->size)) {
614 			vm_object_clear_flag(object, OBJ_CLEANING);
615 			return;
616 		}
617 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
618 	}
619 
620 	/*
621 	 * Generally set CLEANCHK interlock and make the page read-only so
622 	 * we can then clear the object flags.
623 	 *
624 	 * However, if this is a nosync mmap then the object is likely to
625 	 * stay dirty so do not mess with the page and do not clear the
626 	 * object flags.
627 	 */
628 
629 	clearobjflags = 1;
630 
631 	for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
632 		vm_page_flag_set(p, PG_CLEANCHK);
633 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
634 			clearobjflags = 0;
635 		else
636 			vm_page_protect(p, VM_PROT_READ);
637 	}
638 
639 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
640 		struct vnode *vp;
641 
642 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
643                 if (object->type == OBJT_VNODE &&
644                     (vp = (struct vnode *)object->handle) != NULL) {
645                         if (vp->v_flag & VOBJDIRTY) {
646                                 lwkt_gettoken(&vp->v_interlock);
647                                 vp->v_flag &= ~VOBJDIRTY;
648                                 lwkt_reltoken(&vp->v_interlock);
649                         }
650                 }
651 	}
652 
653 rescan:
654 	curgeneration = object->generation;
655 
656 	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
657 		int n;
658 
659 		np = TAILQ_NEXT(p, listq);
660 
661 again:
662 		pi = p->pindex;
663 		if (((p->flags & PG_CLEANCHK) == 0) ||
664 			(pi < tstart) || (pi >= tend) ||
665 			(p->valid == 0) ||
666 			((p->queue - p->pc) == PQ_CACHE)) {
667 			vm_page_flag_clear(p, PG_CLEANCHK);
668 			continue;
669 		}
670 
671 		vm_page_test_dirty(p);
672 		if ((p->dirty & p->valid) == 0) {
673 			vm_page_flag_clear(p, PG_CLEANCHK);
674 			continue;
675 		}
676 
677 		/*
678 		 * If we have been asked to skip nosync pages and this is a
679 		 * nosync page, skip it.  Note that the object flags were
680 		 * not cleared in this case so we do not have to set them.
681 		 */
682 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
683 			vm_page_flag_clear(p, PG_CLEANCHK);
684 			continue;
685 		}
686 
687 		n = vm_object_page_collect_flush(object, p,
688 			curgeneration, pagerflags);
689 		if (n == 0)
690 			goto rescan;
691 		if (object->generation != curgeneration)
692 			goto rescan;
693 
694 		/*
695 		 * Try to optimize the next page.  If we can't we pick up
696 		 * our (random) scan where we left off.
697 		 */
698 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
699 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
700 				goto again;
701 		}
702 	}
703 
704 #if 0
705 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
706 #endif
707 
708 	vm_object_clear_flag(object, OBJ_CLEANING);
709 	return;
710 }
711 
712 static int
713 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
714 {
715 	int runlen;
716 	int s;
717 	int maxf;
718 	int chkb;
719 	int maxb;
720 	int i;
721 	vm_pindex_t pi;
722 	vm_page_t maf[vm_pageout_page_count];
723 	vm_page_t mab[vm_pageout_page_count];
724 	vm_page_t ma[vm_pageout_page_count];
725 
726 	s = splvm();
727 	pi = p->pindex;
728 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
729 		if (object->generation != curgeneration) {
730 			splx(s);
731 			return(0);
732 		}
733 	}
734 
735 	maxf = 0;
736 	for(i = 1; i < vm_pageout_page_count; i++) {
737 		vm_page_t tp;
738 
739 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
740 			if ((tp->flags & PG_BUSY) ||
741 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
742 				 (tp->flags & PG_CLEANCHK) == 0) ||
743 				(tp->busy != 0))
744 				break;
745 			if((tp->queue - tp->pc) == PQ_CACHE) {
746 				vm_page_flag_clear(tp, PG_CLEANCHK);
747 				break;
748 			}
749 			vm_page_test_dirty(tp);
750 			if ((tp->dirty & tp->valid) == 0) {
751 				vm_page_flag_clear(tp, PG_CLEANCHK);
752 				break;
753 			}
754 			maf[ i - 1 ] = tp;
755 			maxf++;
756 			continue;
757 		}
758 		break;
759 	}
760 
761 	maxb = 0;
762 	chkb = vm_pageout_page_count -  maxf;
763 	if (chkb) {
764 		for(i = 1; i < chkb;i++) {
765 			vm_page_t tp;
766 
767 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
768 				if ((tp->flags & PG_BUSY) ||
769 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
770 					 (tp->flags & PG_CLEANCHK) == 0) ||
771 					(tp->busy != 0))
772 					break;
773 				if((tp->queue - tp->pc) == PQ_CACHE) {
774 					vm_page_flag_clear(tp, PG_CLEANCHK);
775 					break;
776 				}
777 				vm_page_test_dirty(tp);
778 				if ((tp->dirty & tp->valid) == 0) {
779 					vm_page_flag_clear(tp, PG_CLEANCHK);
780 					break;
781 				}
782 				mab[ i - 1 ] = tp;
783 				maxb++;
784 				continue;
785 			}
786 			break;
787 		}
788 	}
789 
790 	for(i = 0; i < maxb; i++) {
791 		int index = (maxb - i) - 1;
792 		ma[index] = mab[i];
793 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
794 	}
795 	vm_page_flag_clear(p, PG_CLEANCHK);
796 	ma[maxb] = p;
797 	for(i = 0; i < maxf; i++) {
798 		int index = (maxb + i) + 1;
799 		ma[index] = maf[i];
800 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
801 	}
802 	runlen = maxb + maxf + 1;
803 
804 	splx(s);
805 	vm_pageout_flush(ma, runlen, pagerflags);
806 	for (i = 0; i < runlen; i++) {
807 		if (ma[i]->valid & ma[i]->dirty) {
808 			vm_page_protect(ma[i], VM_PROT_READ);
809 			vm_page_flag_set(ma[i], PG_CLEANCHK);
810 
811 			/*
812 			 * maxf will end up being the actual number of pages
813 			 * we wrote out contiguously, non-inclusive of the
814 			 * first page.  We do not count look-behind pages.
815 			 */
816 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
817 				maxf = i - maxb - 1;
818 		}
819 	}
820 	return(maxf + 1);
821 }
822 
823 #ifdef not_used
824 /* XXX I cannot tell if this should be an exported symbol */
825 /*
826  *	vm_object_deactivate_pages
827  *
828  *	Deactivate all pages in the specified object.  (Keep its pages
829  *	in memory even though it is no longer referenced.)
830  *
831  *	The object must be locked.
832  */
833 static void
834 vm_object_deactivate_pages(object)
835 	vm_object_t object;
836 {
837 	vm_page_t p, next;
838 
839 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
840 		next = TAILQ_NEXT(p, listq);
841 		vm_page_deactivate(p);
842 	}
843 }
844 #endif
845 
846 /*
847  * Same as vm_object_pmap_copy, except range checking really
848  * works, and is meant for small sections of an object.
849  *
850  * This code protects resident pages by making them read-only
851  * and is typically called on a fork or split when a page
852  * is converted to copy-on-write.
853  *
854  * NOTE: If the page is already at VM_PROT_NONE, calling
855  * vm_page_protect will have no effect.
856  */
857 
858 void
859 vm_object_pmap_copy_1(object, start, end)
860 	vm_object_t object;
861 	vm_pindex_t start;
862 	vm_pindex_t end;
863 {
864 	vm_pindex_t idx;
865 	vm_page_t p;
866 
867 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
868 		return;
869 
870 	for (idx = start; idx < end; idx++) {
871 		p = vm_page_lookup(object, idx);
872 		if (p == NULL)
873 			continue;
874 		vm_page_protect(p, VM_PROT_READ);
875 	}
876 }
877 
878 /*
879  *	vm_object_pmap_remove:
880  *
881  *	Removes all physical pages in the specified
882  *	object range from all physical maps.
883  *
884  *	The object must *not* be locked.
885  */
886 void
887 vm_object_pmap_remove(object, start, end)
888 	vm_object_t object;
889 	vm_pindex_t start;
890 	vm_pindex_t end;
891 {
892 	vm_page_t p;
893 
894 	if (object == NULL)
895 		return;
896 	for (p = TAILQ_FIRST(&object->memq);
897 		p != NULL;
898 		p = TAILQ_NEXT(p, listq)) {
899 		if (p->pindex >= start && p->pindex < end)
900 			vm_page_protect(p, VM_PROT_NONE);
901 	}
902 	if ((start == 0) && (object->size == end))
903 		vm_object_clear_flag(object, OBJ_WRITEABLE);
904 }
905 
906 /*
907  *	vm_object_madvise:
908  *
909  *	Implements the madvise function at the object/page level.
910  *
911  *	MADV_WILLNEED	(any object)
912  *
913  *	    Activate the specified pages if they are resident.
914  *
915  *	MADV_DONTNEED	(any object)
916  *
917  *	    Deactivate the specified pages if they are resident.
918  *
919  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
920  *			 OBJ_ONEMAPPING only)
921  *
922  *	    Deactivate and clean the specified pages if they are
923  *	    resident.  This permits the process to reuse the pages
924  *	    without faulting or the kernel to reclaim the pages
925  *	    without I/O.
926  */
927 void
928 vm_object_madvise(object, pindex, count, advise)
929 	vm_object_t object;
930 	vm_pindex_t pindex;
931 	int count;
932 	int advise;
933 {
934 	vm_pindex_t end, tpindex;
935 	vm_object_t tobject;
936 	vm_page_t m;
937 
938 	if (object == NULL)
939 		return;
940 
941 	end = pindex + count;
942 
943 	/*
944 	 * Locate and adjust resident pages
945 	 */
946 
947 	for (; pindex < end; pindex += 1) {
948 relookup:
949 		tobject = object;
950 		tpindex = pindex;
951 shadowlookup:
952 		/*
953 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
954 		 * and those pages must be OBJ_ONEMAPPING.
955 		 */
956 		if (advise == MADV_FREE) {
957 			if ((tobject->type != OBJT_DEFAULT &&
958 			     tobject->type != OBJT_SWAP) ||
959 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
960 				continue;
961 			}
962 		}
963 
964 		m = vm_page_lookup(tobject, tpindex);
965 
966 		if (m == NULL) {
967 			/*
968 			 * There may be swap even if there is no backing page
969 			 */
970 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
971 				swap_pager_freespace(tobject, tpindex, 1);
972 
973 			/*
974 			 * next object
975 			 */
976 			tobject = tobject->backing_object;
977 			if (tobject == NULL)
978 				continue;
979 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
980 			goto shadowlookup;
981 		}
982 
983 		/*
984 		 * If the page is busy or not in a normal active state,
985 		 * we skip it.  If the page is not managed there are no
986 		 * page queues to mess with.  Things can break if we mess
987 		 * with pages in any of the below states.
988 		 */
989 		if (
990 		    m->hold_count ||
991 		    m->wire_count ||
992 		    (m->flags & PG_UNMANAGED) ||
993 		    m->valid != VM_PAGE_BITS_ALL
994 		) {
995 			continue;
996 		}
997 
998  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
999   			goto relookup;
1000 
1001 		if (advise == MADV_WILLNEED) {
1002 			vm_page_activate(m);
1003 		} else if (advise == MADV_DONTNEED) {
1004 			vm_page_dontneed(m);
1005 		} else if (advise == MADV_FREE) {
1006 			/*
1007 			 * Mark the page clean.  This will allow the page
1008 			 * to be freed up by the system.  However, such pages
1009 			 * are often reused quickly by malloc()/free()
1010 			 * so we do not do anything that would cause
1011 			 * a page fault if we can help it.
1012 			 *
1013 			 * Specifically, we do not try to actually free
1014 			 * the page now nor do we try to put it in the
1015 			 * cache (which would cause a page fault on reuse).
1016 			 *
1017 			 * But we do make the page is freeable as we
1018 			 * can without actually taking the step of unmapping
1019 			 * it.
1020 			 */
1021 			pmap_clear_modify(m);
1022 			m->dirty = 0;
1023 			m->act_count = 0;
1024 			vm_page_dontneed(m);
1025 			if (tobject->type == OBJT_SWAP)
1026 				swap_pager_freespace(tobject, tpindex, 1);
1027 		}
1028 	}
1029 }
1030 
1031 /*
1032  *	vm_object_shadow:
1033  *
1034  *	Create a new object which is backed by the
1035  *	specified existing object range.  The source
1036  *	object reference is deallocated.
1037  *
1038  *	The new object and offset into that object
1039  *	are returned in the source parameters.
1040  */
1041 
1042 void
1043 vm_object_shadow(object, offset, length)
1044 	vm_object_t *object;	/* IN/OUT */
1045 	vm_ooffset_t *offset;	/* IN/OUT */
1046 	vm_size_t length;
1047 {
1048 	vm_object_t source;
1049 	vm_object_t result;
1050 
1051 	source = *object;
1052 
1053 	/*
1054 	 * Don't create the new object if the old object isn't shared.
1055 	 */
1056 
1057 	if (source != NULL &&
1058 	    source->ref_count == 1 &&
1059 	    source->handle == NULL &&
1060 	    (source->type == OBJT_DEFAULT ||
1061 	     source->type == OBJT_SWAP))
1062 		return;
1063 
1064 	/*
1065 	 * Allocate a new object with the given length
1066 	 */
1067 
1068 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1069 		panic("vm_object_shadow: no object for shadowing");
1070 
1071 	/*
1072 	 * The new object shadows the source object, adding a reference to it.
1073 	 * Our caller changes his reference to point to the new object,
1074 	 * removing a reference to the source object.  Net result: no change
1075 	 * of reference count.
1076 	 *
1077 	 * Try to optimize the result object's page color when shadowing
1078 	 * in order to maintain page coloring consistency in the combined
1079 	 * shadowed object.
1080 	 */
1081 	result->backing_object = source;
1082 	if (source) {
1083 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1084 		source->shadow_count++;
1085 		source->generation++;
1086 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1087 	}
1088 
1089 	/*
1090 	 * Store the offset into the source object, and fix up the offset into
1091 	 * the new object.
1092 	 */
1093 
1094 	result->backing_object_offset = *offset;
1095 
1096 	/*
1097 	 * Return the new things
1098 	 */
1099 
1100 	*offset = 0;
1101 	*object = result;
1102 }
1103 
1104 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1105 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1106 #define	OBSC_COLLAPSE_WAIT	0x0004
1107 
1108 static __inline int
1109 vm_object_backing_scan(vm_object_t object, int op)
1110 {
1111 	int s;
1112 	int r = 1;
1113 	vm_page_t p;
1114 	vm_object_t backing_object;
1115 	vm_pindex_t backing_offset_index;
1116 
1117 	s = splvm();
1118 
1119 	backing_object = object->backing_object;
1120 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1121 
1122 	/*
1123 	 * Initial conditions
1124 	 */
1125 
1126 	if (op & OBSC_TEST_ALL_SHADOWED) {
1127 		/*
1128 		 * We do not want to have to test for the existence of
1129 		 * swap pages in the backing object.  XXX but with the
1130 		 * new swapper this would be pretty easy to do.
1131 		 *
1132 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1133 		 * been ZFOD faulted yet?  If we do not test for this, the
1134 		 * shadow test may succeed! XXX
1135 		 */
1136 		if (backing_object->type != OBJT_DEFAULT) {
1137 			splx(s);
1138 			return(0);
1139 		}
1140 	}
1141 	if (op & OBSC_COLLAPSE_WAIT) {
1142 		vm_object_set_flag(backing_object, OBJ_DEAD);
1143 	}
1144 
1145 	/*
1146 	 * Our scan
1147 	 */
1148 
1149 	p = TAILQ_FIRST(&backing_object->memq);
1150 	while (p) {
1151 		vm_page_t next = TAILQ_NEXT(p, listq);
1152 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1153 
1154 		if (op & OBSC_TEST_ALL_SHADOWED) {
1155 			vm_page_t pp;
1156 
1157 			/*
1158 			 * Ignore pages outside the parent object's range
1159 			 * and outside the parent object's mapping of the
1160 			 * backing object.
1161 			 *
1162 			 * note that we do not busy the backing object's
1163 			 * page.
1164 			 */
1165 
1166 			if (
1167 			    p->pindex < backing_offset_index ||
1168 			    new_pindex >= object->size
1169 			) {
1170 				p = next;
1171 				continue;
1172 			}
1173 
1174 			/*
1175 			 * See if the parent has the page or if the parent's
1176 			 * object pager has the page.  If the parent has the
1177 			 * page but the page is not valid, the parent's
1178 			 * object pager must have the page.
1179 			 *
1180 			 * If this fails, the parent does not completely shadow
1181 			 * the object and we might as well give up now.
1182 			 */
1183 
1184 			pp = vm_page_lookup(object, new_pindex);
1185 			if (
1186 			    (pp == NULL || pp->valid == 0) &&
1187 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1188 			) {
1189 				r = 0;
1190 				break;
1191 			}
1192 		}
1193 
1194 		/*
1195 		 * Check for busy page
1196 		 */
1197 
1198 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1199 			vm_page_t pp;
1200 
1201 			if (op & OBSC_COLLAPSE_NOWAIT) {
1202 				if (
1203 				    (p->flags & PG_BUSY) ||
1204 				    !p->valid ||
1205 				    p->hold_count ||
1206 				    p->wire_count ||
1207 				    p->busy
1208 				) {
1209 					p = next;
1210 					continue;
1211 				}
1212 			} else if (op & OBSC_COLLAPSE_WAIT) {
1213 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1214 					/*
1215 					 * If we slept, anything could have
1216 					 * happened.  Since the object is
1217 					 * marked dead, the backing offset
1218 					 * should not have changed so we
1219 					 * just restart our scan.
1220 					 */
1221 					p = TAILQ_FIRST(&backing_object->memq);
1222 					continue;
1223 				}
1224 			}
1225 
1226 			/*
1227 			 * Busy the page
1228 			 */
1229 			vm_page_busy(p);
1230 
1231 			KASSERT(
1232 			    p->object == backing_object,
1233 			    ("vm_object_qcollapse(): object mismatch")
1234 			);
1235 
1236 			/*
1237 			 * Destroy any associated swap
1238 			 */
1239 			if (backing_object->type == OBJT_SWAP) {
1240 				swap_pager_freespace(
1241 				    backing_object,
1242 				    p->pindex,
1243 				    1
1244 				);
1245 			}
1246 
1247 			if (
1248 			    p->pindex < backing_offset_index ||
1249 			    new_pindex >= object->size
1250 			) {
1251 				/*
1252 				 * Page is out of the parent object's range, we
1253 				 * can simply destroy it.
1254 				 */
1255 				vm_page_protect(p, VM_PROT_NONE);
1256 				vm_page_free(p);
1257 				p = next;
1258 				continue;
1259 			}
1260 
1261 			pp = vm_page_lookup(object, new_pindex);
1262 			if (
1263 			    pp != NULL ||
1264 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1265 			) {
1266 				/*
1267 				 * page already exists in parent OR swap exists
1268 				 * for this location in the parent.  Destroy
1269 				 * the original page from the backing object.
1270 				 *
1271 				 * Leave the parent's page alone
1272 				 */
1273 				vm_page_protect(p, VM_PROT_NONE);
1274 				vm_page_free(p);
1275 				p = next;
1276 				continue;
1277 			}
1278 
1279 			/*
1280 			 * Page does not exist in parent, rename the
1281 			 * page from the backing object to the main object.
1282 			 *
1283 			 * If the page was mapped to a process, it can remain
1284 			 * mapped through the rename.
1285 			 */
1286 			if ((p->queue - p->pc) == PQ_CACHE)
1287 				vm_page_deactivate(p);
1288 
1289 			vm_page_rename(p, object, new_pindex);
1290 			/* page automatically made dirty by rename */
1291 		}
1292 		p = next;
1293 	}
1294 	splx(s);
1295 	return(r);
1296 }
1297 
1298 
1299 /*
1300  * this version of collapse allows the operation to occur earlier and
1301  * when paging_in_progress is true for an object...  This is not a complete
1302  * operation, but should plug 99.9% of the rest of the leaks.
1303  */
1304 static void
1305 vm_object_qcollapse(object)
1306 	vm_object_t object;
1307 {
1308 	vm_object_t backing_object = object->backing_object;
1309 
1310 	if (backing_object->ref_count != 1)
1311 		return;
1312 
1313 	backing_object->ref_count += 2;
1314 
1315 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1316 
1317 	backing_object->ref_count -= 2;
1318 }
1319 
1320 /*
1321  *	vm_object_collapse:
1322  *
1323  *	Collapse an object with the object backing it.
1324  *	Pages in the backing object are moved into the
1325  *	parent, and the backing object is deallocated.
1326  */
1327 void
1328 vm_object_collapse(object)
1329 	vm_object_t object;
1330 {
1331 	while (TRUE) {
1332 		vm_object_t backing_object;
1333 
1334 		/*
1335 		 * Verify that the conditions are right for collapse:
1336 		 *
1337 		 * The object exists and the backing object exists.
1338 		 */
1339 		if (object == NULL)
1340 			break;
1341 
1342 		if ((backing_object = object->backing_object) == NULL)
1343 			break;
1344 
1345 		/*
1346 		 * we check the backing object first, because it is most likely
1347 		 * not collapsable.
1348 		 */
1349 		if (backing_object->handle != NULL ||
1350 		    (backing_object->type != OBJT_DEFAULT &&
1351 		     backing_object->type != OBJT_SWAP) ||
1352 		    (backing_object->flags & OBJ_DEAD) ||
1353 		    object->handle != NULL ||
1354 		    (object->type != OBJT_DEFAULT &&
1355 		     object->type != OBJT_SWAP) ||
1356 		    (object->flags & OBJ_DEAD)) {
1357 			break;
1358 		}
1359 
1360 		if (
1361 		    object->paging_in_progress != 0 ||
1362 		    backing_object->paging_in_progress != 0
1363 		) {
1364 			vm_object_qcollapse(object);
1365 			break;
1366 		}
1367 
1368 		/*
1369 		 * We know that we can either collapse the backing object (if
1370 		 * the parent is the only reference to it) or (perhaps) have
1371 		 * the parent bypass the object if the parent happens to shadow
1372 		 * all the resident pages in the entire backing object.
1373 		 *
1374 		 * This is ignoring pager-backed pages such as swap pages.
1375 		 * vm_object_backing_scan fails the shadowing test in this
1376 		 * case.
1377 		 */
1378 
1379 		if (backing_object->ref_count == 1) {
1380 			/*
1381 			 * If there is exactly one reference to the backing
1382 			 * object, we can collapse it into the parent.
1383 			 */
1384 
1385 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1386 
1387 			/*
1388 			 * Move the pager from backing_object to object.
1389 			 */
1390 
1391 			if (backing_object->type == OBJT_SWAP) {
1392 				vm_object_pip_add(backing_object, 1);
1393 
1394 				/*
1395 				 * scrap the paging_offset junk and do a
1396 				 * discrete copy.  This also removes major
1397 				 * assumptions about how the swap-pager
1398 				 * works from where it doesn't belong.  The
1399 				 * new swapper is able to optimize the
1400 				 * destroy-source case.
1401 				 */
1402 
1403 				vm_object_pip_add(object, 1);
1404 				swap_pager_copy(
1405 				    backing_object,
1406 				    object,
1407 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1408 				vm_object_pip_wakeup(object);
1409 
1410 				vm_object_pip_wakeup(backing_object);
1411 			}
1412 			/*
1413 			 * Object now shadows whatever backing_object did.
1414 			 * Note that the reference to
1415 			 * backing_object->backing_object moves from within
1416 			 * backing_object to within object.
1417 			 */
1418 
1419 			LIST_REMOVE(object, shadow_list);
1420 			object->backing_object->shadow_count--;
1421 			object->backing_object->generation++;
1422 			if (backing_object->backing_object) {
1423 				LIST_REMOVE(backing_object, shadow_list);
1424 				backing_object->backing_object->shadow_count--;
1425 				backing_object->backing_object->generation++;
1426 			}
1427 			object->backing_object = backing_object->backing_object;
1428 			if (object->backing_object) {
1429 				LIST_INSERT_HEAD(
1430 				    &object->backing_object->shadow_head,
1431 				    object,
1432 				    shadow_list
1433 				);
1434 				object->backing_object->shadow_count++;
1435 				object->backing_object->generation++;
1436 			}
1437 
1438 			object->backing_object_offset +=
1439 			    backing_object->backing_object_offset;
1440 
1441 			/*
1442 			 * Discard backing_object.
1443 			 *
1444 			 * Since the backing object has no pages, no pager left,
1445 			 * and no object references within it, all that is
1446 			 * necessary is to dispose of it.
1447 			 */
1448 
1449 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1450 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1451 			TAILQ_REMOVE(
1452 			    &vm_object_list,
1453 			    backing_object,
1454 			    object_list
1455 			);
1456 			vm_object_count--;
1457 
1458 			zfree(obj_zone, backing_object);
1459 
1460 			object_collapses++;
1461 		} else {
1462 			vm_object_t new_backing_object;
1463 
1464 			/*
1465 			 * If we do not entirely shadow the backing object,
1466 			 * there is nothing we can do so we give up.
1467 			 */
1468 
1469 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1470 				break;
1471 			}
1472 
1473 			/*
1474 			 * Make the parent shadow the next object in the
1475 			 * chain.  Deallocating backing_object will not remove
1476 			 * it, since its reference count is at least 2.
1477 			 */
1478 
1479 			LIST_REMOVE(object, shadow_list);
1480 			backing_object->shadow_count--;
1481 			backing_object->generation++;
1482 
1483 			new_backing_object = backing_object->backing_object;
1484 			if ((object->backing_object = new_backing_object) != NULL) {
1485 				vm_object_reference(new_backing_object);
1486 				LIST_INSERT_HEAD(
1487 				    &new_backing_object->shadow_head,
1488 				    object,
1489 				    shadow_list
1490 				);
1491 				new_backing_object->shadow_count++;
1492 				new_backing_object->generation++;
1493 				object->backing_object_offset +=
1494 					backing_object->backing_object_offset;
1495 			}
1496 
1497 			/*
1498 			 * Drop the reference count on backing_object. Since
1499 			 * its ref_count was at least 2, it will not vanish;
1500 			 * so we don't need to call vm_object_deallocate, but
1501 			 * we do anyway.
1502 			 */
1503 			vm_object_deallocate(backing_object);
1504 			object_bypasses++;
1505 		}
1506 
1507 		/*
1508 		 * Try again with this object's new backing object.
1509 		 */
1510 	}
1511 }
1512 
1513 /*
1514  *	vm_object_page_remove: [internal]
1515  *
1516  *	Removes all physical pages in the specified
1517  *	object range from the object's list of pages.
1518  *
1519  *	The object must be locked.
1520  */
1521 void
1522 vm_object_page_remove(object, start, end, clean_only)
1523 	vm_object_t object;
1524 	vm_pindex_t start;
1525 	vm_pindex_t end;
1526 	boolean_t clean_only;
1527 {
1528 	vm_page_t p, next;
1529 	unsigned int size;
1530 	int all;
1531 
1532 	if (object == NULL ||
1533 	    object->resident_page_count == 0)
1534 		return;
1535 
1536 	all = ((end == 0) && (start == 0));
1537 
1538 	/*
1539 	 * Since physically-backed objects do not use managed pages, we can't
1540 	 * remove pages from the object (we must instead remove the page
1541 	 * references, and then destroy the object).
1542 	 */
1543 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1544 
1545 	vm_object_pip_add(object, 1);
1546 again:
1547 	size = end - start;
1548 	if (all || size > object->resident_page_count / 4) {
1549 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1550 			next = TAILQ_NEXT(p, listq);
1551 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1552 				if (p->wire_count != 0) {
1553 					vm_page_protect(p, VM_PROT_NONE);
1554 					if (!clean_only)
1555 						p->valid = 0;
1556 					continue;
1557 				}
1558 
1559 				/*
1560 				 * The busy flags are only cleared at
1561 				 * interrupt -- minimize the spl transitions
1562 				 */
1563 
1564  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1565  					goto again;
1566 
1567 				if (clean_only && p->valid) {
1568 					vm_page_test_dirty(p);
1569 					if (p->valid & p->dirty)
1570 						continue;
1571 				}
1572 
1573 				vm_page_busy(p);
1574 				vm_page_protect(p, VM_PROT_NONE);
1575 				vm_page_free(p);
1576 			}
1577 		}
1578 	} else {
1579 		while (size > 0) {
1580 			if ((p = vm_page_lookup(object, start)) != 0) {
1581 
1582 				if (p->wire_count != 0) {
1583 					vm_page_protect(p, VM_PROT_NONE);
1584 					if (!clean_only)
1585 						p->valid = 0;
1586 					start += 1;
1587 					size -= 1;
1588 					continue;
1589 				}
1590 
1591 				/*
1592 				 * The busy flags are only cleared at
1593 				 * interrupt -- minimize the spl transitions
1594 				 */
1595  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1596 					goto again;
1597 
1598 				if (clean_only && p->valid) {
1599 					vm_page_test_dirty(p);
1600 					if (p->valid & p->dirty) {
1601 						start += 1;
1602 						size -= 1;
1603 						continue;
1604 					}
1605 				}
1606 
1607 				vm_page_busy(p);
1608 				vm_page_protect(p, VM_PROT_NONE);
1609 				vm_page_free(p);
1610 			}
1611 			start += 1;
1612 			size -= 1;
1613 		}
1614 	}
1615 	vm_object_pip_wakeup(object);
1616 }
1617 
1618 /*
1619  *	Routine:	vm_object_coalesce
1620  *	Function:	Coalesces two objects backing up adjoining
1621  *			regions of memory into a single object.
1622  *
1623  *	returns TRUE if objects were combined.
1624  *
1625  *	NOTE:	Only works at the moment if the second object is NULL -
1626  *		if it's not, which object do we lock first?
1627  *
1628  *	Parameters:
1629  *		prev_object	First object to coalesce
1630  *		prev_offset	Offset into prev_object
1631  *		next_object	Second object into coalesce
1632  *		next_offset	Offset into next_object
1633  *
1634  *		prev_size	Size of reference to prev_object
1635  *		next_size	Size of reference to next_object
1636  *
1637  *	Conditions:
1638  *	The object must *not* be locked.
1639  */
1640 boolean_t
1641 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1642 	vm_object_t prev_object;
1643 	vm_pindex_t prev_pindex;
1644 	vm_size_t prev_size, next_size;
1645 {
1646 	vm_pindex_t next_pindex;
1647 
1648 	if (prev_object == NULL) {
1649 		return (TRUE);
1650 	}
1651 
1652 	if (prev_object->type != OBJT_DEFAULT &&
1653 	    prev_object->type != OBJT_SWAP) {
1654 		return (FALSE);
1655 	}
1656 
1657 	/*
1658 	 * Try to collapse the object first
1659 	 */
1660 	vm_object_collapse(prev_object);
1661 
1662 	/*
1663 	 * Can't coalesce if: . more than one reference . paged out . shadows
1664 	 * another object . has a copy elsewhere (any of which mean that the
1665 	 * pages not mapped to prev_entry may be in use anyway)
1666 	 */
1667 
1668 	if (prev_object->backing_object != NULL) {
1669 		return (FALSE);
1670 	}
1671 
1672 	prev_size >>= PAGE_SHIFT;
1673 	next_size >>= PAGE_SHIFT;
1674 	next_pindex = prev_pindex + prev_size;
1675 
1676 	if ((prev_object->ref_count > 1) &&
1677 	    (prev_object->size != next_pindex)) {
1678 		return (FALSE);
1679 	}
1680 
1681 	/*
1682 	 * Remove any pages that may still be in the object from a previous
1683 	 * deallocation.
1684 	 */
1685 	if (next_pindex < prev_object->size) {
1686 		vm_object_page_remove(prev_object,
1687 				      next_pindex,
1688 				      next_pindex + next_size, FALSE);
1689 		if (prev_object->type == OBJT_SWAP)
1690 			swap_pager_freespace(prev_object,
1691 					     next_pindex, next_size);
1692 	}
1693 
1694 	/*
1695 	 * Extend the object if necessary.
1696 	 */
1697 	if (next_pindex + next_size > prev_object->size)
1698 		prev_object->size = next_pindex + next_size;
1699 
1700 	return (TRUE);
1701 }
1702 
1703 void
1704 vm_object_set_writeable_dirty(vm_object_t object)
1705 {
1706 	struct vnode *vp;
1707 
1708 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1709 	if (object->type == OBJT_VNODE &&
1710 	    (vp = (struct vnode *)object->handle) != NULL) {
1711 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1712 			lwkt_gettoken(&vp->v_interlock);
1713 			vp->v_flag |= VOBJDIRTY;
1714 			lwkt_reltoken(&vp->v_interlock);
1715 		}
1716 	}
1717 }
1718 
1719 
1720 
1721 #include "opt_ddb.h"
1722 #ifdef DDB
1723 #include <sys/kernel.h>
1724 
1725 #include <sys/cons.h>
1726 
1727 #include <ddb/ddb.h>
1728 
1729 static int	_vm_object_in_map __P((vm_map_t map, vm_object_t object,
1730 				       vm_map_entry_t entry));
1731 static int	vm_object_in_map __P((vm_object_t object));
1732 
1733 static int
1734 _vm_object_in_map(map, object, entry)
1735 	vm_map_t map;
1736 	vm_object_t object;
1737 	vm_map_entry_t entry;
1738 {
1739 	vm_map_t tmpm;
1740 	vm_map_entry_t tmpe;
1741 	vm_object_t obj;
1742 	int entcount;
1743 
1744 	if (map == 0)
1745 		return 0;
1746 
1747 	if (entry == 0) {
1748 		tmpe = map->header.next;
1749 		entcount = map->nentries;
1750 		while (entcount-- && (tmpe != &map->header)) {
1751 			if( _vm_object_in_map(map, object, tmpe)) {
1752 				return 1;
1753 			}
1754 			tmpe = tmpe->next;
1755 		}
1756 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1757 		tmpm = entry->object.sub_map;
1758 		tmpe = tmpm->header.next;
1759 		entcount = tmpm->nentries;
1760 		while (entcount-- && tmpe != &tmpm->header) {
1761 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1762 				return 1;
1763 			}
1764 			tmpe = tmpe->next;
1765 		}
1766 	} else if ((obj = entry->object.vm_object) != NULL) {
1767 		for(; obj; obj=obj->backing_object)
1768 			if( obj == object) {
1769 				return 1;
1770 			}
1771 	}
1772 	return 0;
1773 }
1774 
1775 static int
1776 vm_object_in_map( object)
1777 	vm_object_t object;
1778 {
1779 	struct proc *p;
1780 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1781 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1782 			continue;
1783 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1784 			return 1;
1785 	}
1786 	if( _vm_object_in_map( kernel_map, object, 0))
1787 		return 1;
1788 	if( _vm_object_in_map( kmem_map, object, 0))
1789 		return 1;
1790 	if( _vm_object_in_map( pager_map, object, 0))
1791 		return 1;
1792 	if( _vm_object_in_map( buffer_map, object, 0))
1793 		return 1;
1794 	if( _vm_object_in_map( mb_map, object, 0))
1795 		return 1;
1796 	return 0;
1797 }
1798 
1799 DB_SHOW_COMMAND(vmochk, vm_object_check)
1800 {
1801 	vm_object_t object;
1802 
1803 	/*
1804 	 * make sure that internal objs are in a map somewhere
1805 	 * and none have zero ref counts.
1806 	 */
1807 	for (object = TAILQ_FIRST(&vm_object_list);
1808 			object != NULL;
1809 			object = TAILQ_NEXT(object, object_list)) {
1810 		if (object->handle == NULL &&
1811 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1812 			if (object->ref_count == 0) {
1813 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1814 					(long)object->size);
1815 			}
1816 			if (!vm_object_in_map(object)) {
1817 				db_printf(
1818 			"vmochk: internal obj is not in a map: "
1819 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1820 				    object->ref_count, (u_long)object->size,
1821 				    (u_long)object->size,
1822 				    (void *)object->backing_object);
1823 			}
1824 		}
1825 	}
1826 }
1827 
1828 /*
1829  *	vm_object_print:	[ debug ]
1830  */
1831 DB_SHOW_COMMAND(object, vm_object_print_static)
1832 {
1833 	/* XXX convert args. */
1834 	vm_object_t object = (vm_object_t)addr;
1835 	boolean_t full = have_addr;
1836 
1837 	vm_page_t p;
1838 
1839 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1840 #define	count	was_count
1841 
1842 	int count;
1843 
1844 	if (object == NULL)
1845 		return;
1846 
1847 	db_iprintf(
1848 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1849 	    object, (int)object->type, (u_long)object->size,
1850 	    object->resident_page_count, object->ref_count, object->flags);
1851 	/*
1852 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1853 	 */
1854 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1855 	    object->shadow_count,
1856 	    object->backing_object ? object->backing_object->ref_count : 0,
1857 	    object->backing_object, (long)object->backing_object_offset);
1858 
1859 	if (!full)
1860 		return;
1861 
1862 	db_indent += 2;
1863 	count = 0;
1864 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1865 		if (count == 0)
1866 			db_iprintf("memory:=");
1867 		else if (count == 6) {
1868 			db_printf("\n");
1869 			db_iprintf(" ...");
1870 			count = 0;
1871 		} else
1872 			db_printf(",");
1873 		count++;
1874 
1875 		db_printf("(off=0x%lx,page=0x%lx)",
1876 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1877 	}
1878 	if (count != 0)
1879 		db_printf("\n");
1880 	db_indent -= 2;
1881 }
1882 
1883 /* XXX. */
1884 #undef count
1885 
1886 /* XXX need this non-static entry for calling from vm_map_print. */
1887 void
1888 vm_object_print(addr, have_addr, count, modif)
1889         /* db_expr_t */ long addr;
1890 	boolean_t have_addr;
1891 	/* db_expr_t */ long count;
1892 	char *modif;
1893 {
1894 	vm_object_print_static(addr, have_addr, count, modif);
1895 }
1896 
1897 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1898 {
1899 	vm_object_t object;
1900 	int nl = 0;
1901 	int c;
1902 	for (object = TAILQ_FIRST(&vm_object_list);
1903 			object != NULL;
1904 			object = TAILQ_NEXT(object, object_list)) {
1905 		vm_pindex_t idx, fidx;
1906 		vm_pindex_t osize;
1907 		vm_offset_t pa = -1, padiff;
1908 		int rcount;
1909 		vm_page_t m;
1910 
1911 		db_printf("new object: %p\n", (void *)object);
1912 		if ( nl > 18) {
1913 			c = cngetc();
1914 			if (c != ' ')
1915 				return;
1916 			nl = 0;
1917 		}
1918 		nl++;
1919 		rcount = 0;
1920 		fidx = 0;
1921 		osize = object->size;
1922 		if (osize > 128)
1923 			osize = 128;
1924 		for(idx=0;idx<osize;idx++) {
1925 			m = vm_page_lookup(object, idx);
1926 			if (m == NULL) {
1927 				if (rcount) {
1928 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1929 						(long)fidx, rcount, (long)pa);
1930 					if ( nl > 18) {
1931 						c = cngetc();
1932 						if (c != ' ')
1933 							return;
1934 						nl = 0;
1935 					}
1936 					nl++;
1937 					rcount = 0;
1938 				}
1939 				continue;
1940 			}
1941 
1942 
1943 			if (rcount &&
1944 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1945 				++rcount;
1946 				continue;
1947 			}
1948 			if (rcount) {
1949 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1950 				padiff >>= PAGE_SHIFT;
1951 				padiff &= PQ_L2_MASK;
1952 				if (padiff == 0) {
1953 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1954 					++rcount;
1955 					continue;
1956 				}
1957 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1958 					(long)fidx, rcount, (long)pa);
1959 				db_printf("pd(%ld)\n", (long)padiff);
1960 				if ( nl > 18) {
1961 					c = cngetc();
1962 					if (c != ' ')
1963 						return;
1964 					nl = 0;
1965 				}
1966 				nl++;
1967 			}
1968 			fidx = idx;
1969 			pa = VM_PAGE_TO_PHYS(m);
1970 			rcount = 1;
1971 		}
1972 		if (rcount) {
1973 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1974 				(long)fidx, rcount, (long)pa);
1975 			if ( nl > 18) {
1976 				c = cngetc();
1977 				if (c != ' ')
1978 					return;
1979 				nl = 0;
1980 			}
1981 			nl++;
1982 		}
1983 	}
1984 }
1985 #endif /* DDB */
1986