xref: /dragonfly/sys/vm/vm_object.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.30 2007/03/20 00:55:10 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 static void	vm_object_qcollapse(vm_object_t object);
98 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99 					     int pagerflags);
100 
101 /*
102  *	Virtual memory objects maintain the actual data
103  *	associated with allocated virtual memory.  A given
104  *	page of memory exists within exactly one object.
105  *
106  *	An object is only deallocated when all "references"
107  *	are given up.  Only one "reference" to a given
108  *	region of an object should be writeable.
109  *
110  *	Associated with each object is a list of all resident
111  *	memory pages belonging to that object; this list is
112  *	maintained by the "vm_page" module, and locked by the object's
113  *	lock.
114  *
115  *	Each object also records a "pager" routine which is
116  *	used to retrieve (and store) pages to the proper backing
117  *	storage.  In addition, objects may be backed by other
118  *	objects from which they were virtual-copied.
119  *
120  *	The only items within the object structure which are
121  *	modified after time of creation are:
122  *		reference count		locked by object's lock
123  *		pager routine		locked by object's lock
124  *
125  */
126 
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129 
130 static long vm_object_count;		/* count of all objects */
131 extern int vm_pageout_page_count;
132 
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141 
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
144 {
145 	int incr;
146 	RB_INIT(&object->rb_memq);
147 	LIST_INIT(&object->shadow_head);
148 
149 	object->type = type;
150 	object->size = size;
151 	object->ref_count = 1;
152 	object->flags = 0;
153 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154 		vm_object_set_flag(object, OBJ_ONEMAPPING);
155 	object->paging_in_progress = 0;
156 	object->resident_page_count = 0;
157 	object->shadow_count = 0;
158 	object->pg_color = next_index;
159 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161 	else
162 		incr = size;
163 	next_index = (next_index + incr) & PQ_L2_MASK;
164 	object->handle = NULL;
165 	object->backing_object = NULL;
166 	object->backing_object_offset = (vm_ooffset_t) 0;
167 	/*
168 	 * Try to generate a number that will spread objects out in the
169 	 * hash table.  We 'wipe' new objects across the hash in 128 page
170 	 * increments plus 1 more to offset it a little more by the time
171 	 * it wraps around.
172 	 */
173 	object->hash_rand = object_hash_rand - 129;
174 
175 	object->generation++;
176 
177 	crit_enter();
178 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179 	vm_object_count++;
180 	object_hash_rand = object->hash_rand;
181 	crit_exit();
182 }
183 
184 /*
185  *	vm_object_init:
186  *
187  *	Initialize the VM objects module.
188  */
189 void
190 vm_object_init(void)
191 {
192 	TAILQ_INIT(&vm_object_list);
193 
194 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
195 			    &kernel_object);
196 
197 	obj_zone = &obj_zone_store;
198 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199 		vm_objects_init, VM_OBJECTS_INIT);
200 }
201 
202 void
203 vm_object_init2(void)
204 {
205 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
206 }
207 
208 /*
209  *	vm_object_allocate:
210  *
211  *	Returns a new object with the given size.
212  */
213 
214 vm_object_t
215 vm_object_allocate(objtype_t type, vm_size_t size)
216 {
217 	vm_object_t result;
218 
219 	result = (vm_object_t) zalloc(obj_zone);
220 
221 	_vm_object_allocate(type, size, result);
222 
223 	return (result);
224 }
225 
226 
227 /*
228  *	vm_object_reference:
229  *
230  *	Gets another reference to the given object.
231  */
232 void
233 vm_object_reference(vm_object_t object)
234 {
235 	if (object == NULL)
236 		return;
237 
238 	object->ref_count++;
239 	if (object->type == OBJT_VNODE) {
240 		vref(object->handle);
241 		/* XXX what if the vnode is being destroyed? */
242 	}
243 }
244 
245 static void
246 vm_object_vndeallocate(vm_object_t object)
247 {
248 	struct vnode *vp = (struct vnode *) object->handle;
249 
250 	KASSERT(object->type == OBJT_VNODE,
251 	    ("vm_object_vndeallocate: not a vnode object"));
252 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
253 #ifdef INVARIANTS
254 	if (object->ref_count == 0) {
255 		vprint("vm_object_vndeallocate", vp);
256 		panic("vm_object_vndeallocate: bad object reference count");
257 	}
258 #endif
259 
260 	object->ref_count--;
261 	if (object->ref_count == 0)
262 		vp->v_flag &= ~VTEXT;
263 	vrele(vp);
264 }
265 
266 /*
267  *	vm_object_deallocate:
268  *
269  *	Release a reference to the specified object,
270  *	gained either through a vm_object_allocate
271  *	or a vm_object_reference call.  When all references
272  *	are gone, storage associated with this object
273  *	may be relinquished.
274  *
275  *	No object may be locked.
276  */
277 void
278 vm_object_deallocate(vm_object_t object)
279 {
280 	vm_object_t temp;
281 
282 	while (object != NULL) {
283 		if (object->type == OBJT_VNODE) {
284 			vm_object_vndeallocate(object);
285 			return;
286 		}
287 
288 		if (object->ref_count == 0) {
289 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290 		} else if (object->ref_count > 2) {
291 			object->ref_count--;
292 			return;
293 		}
294 
295 		/*
296 		 * Here on ref_count of one or two, which are special cases for
297 		 * objects.
298 		 */
299 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300 			vm_object_set_flag(object, OBJ_ONEMAPPING);
301 			object->ref_count--;
302 			return;
303 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
304 			object->ref_count--;
305 			if ((object->handle == NULL) &&
306 			    (object->type == OBJT_DEFAULT ||
307 			     object->type == OBJT_SWAP)) {
308 				vm_object_t robject;
309 
310 				robject = LIST_FIRST(&object->shadow_head);
311 				KASSERT(robject != NULL,
312 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
313 					 object->ref_count,
314 					 object->shadow_count));
315 				if ((robject->handle == NULL) &&
316 				    (robject->type == OBJT_DEFAULT ||
317 				     robject->type == OBJT_SWAP)) {
318 
319 					robject->ref_count++;
320 
321 					while (
322 						robject->paging_in_progress ||
323 						object->paging_in_progress
324 					) {
325 						vm_object_pip_sleep(robject, "objde1");
326 						vm_object_pip_sleep(object, "objde2");
327 					}
328 
329 					if (robject->ref_count == 1) {
330 						robject->ref_count--;
331 						object = robject;
332 						goto doterm;
333 					}
334 
335 					object = robject;
336 					vm_object_collapse(object);
337 					continue;
338 				}
339 			}
340 
341 			return;
342 
343 		} else {
344 			object->ref_count--;
345 			if (object->ref_count != 0)
346 				return;
347 		}
348 
349 doterm:
350 
351 		temp = object->backing_object;
352 		if (temp) {
353 			LIST_REMOVE(object, shadow_list);
354 			temp->shadow_count--;
355 			temp->generation++;
356 			object->backing_object = NULL;
357 		}
358 
359 		/*
360 		 * Don't double-terminate, we could be in a termination
361 		 * recursion due to the terminate having to sync data
362 		 * to disk.
363 		 */
364 		if ((object->flags & OBJ_DEAD) == 0)
365 			vm_object_terminate(object);
366 		object = temp;
367 	}
368 }
369 
370 /*
371  *	vm_object_terminate actually destroys the specified object, freeing
372  *	up all previously used resources.
373  *
374  *	The object must be locked.
375  *	This routine may block.
376  */
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
378 
379 void
380 vm_object_terminate(vm_object_t object)
381 {
382 	/*
383 	 * Make sure no one uses us.
384 	 */
385 	vm_object_set_flag(object, OBJ_DEAD);
386 
387 	/*
388 	 * wait for the pageout daemon to be done with the object
389 	 */
390 	vm_object_pip_wait(object, "objtrm");
391 
392 	KASSERT(!object->paging_in_progress,
393 		("vm_object_terminate: pageout in progress"));
394 
395 	/*
396 	 * Clean and free the pages, as appropriate. All references to the
397 	 * object are gone, so we don't need to lock it.
398 	 */
399 	if (object->type == OBJT_VNODE) {
400 		struct vnode *vp;
401 
402 		/*
403 		 * Clean pages and flush buffers.
404 		 */
405 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
406 
407 		vp = (struct vnode *) object->handle;
408 		vinvalbuf(vp, V_SAVE, 0, 0);
409 	}
410 
411 	/*
412 	 * Wait for any I/O to complete, after which there had better not
413 	 * be any references left on the object.
414 	 */
415 	vm_object_pip_wait(object, "objtrm");
416 
417 	if (object->ref_count != 0)
418 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
419 
420 	/*
421 	 * Now free any remaining pages. For internal objects, this also
422 	 * removes them from paging queues. Don't free wired pages, just
423 	 * remove them from the object.
424 	 */
425 	crit_enter();
426 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427 				vm_object_terminate_callback, NULL);
428 	crit_exit();
429 
430 	/*
431 	 * Let the pager know object is dead.
432 	 */
433 	vm_pager_deallocate(object);
434 
435 	/*
436 	 * Remove the object from the global object list.
437 	 */
438 	crit_enter();
439 	TAILQ_REMOVE(&vm_object_list, object, object_list);
440 	vm_object_count--;
441 	crit_exit();
442 
443 	wakeup(object);
444 	if (object->ref_count != 0)
445 		panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
446 
447 	/*
448 	 * Free the space for the object.
449 	 */
450 	zfree(obj_zone, object);
451 }
452 
453 static int
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
455 {
456 	if (p->busy || (p->flags & PG_BUSY))
457 		panic("vm_object_terminate: freeing busy page %p", p);
458 	if (p->wire_count == 0) {
459 		vm_page_busy(p);
460 		vm_page_free(p);
461 		mycpu->gd_cnt.v_pfree++;
462 	} else {
463 		if (p->queue != PQ_NONE)
464 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
465 		vm_page_busy(p);
466 		vm_page_remove(p);
467 		vm_page_wakeup(p);
468 	}
469 	return(0);
470 }
471 
472 /*
473  *	vm_object_page_clean
474  *
475  *	Clean all dirty pages in the specified range of object.  Leaves page
476  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
477  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
478  *	leaving the object dirty.
479  *
480  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
481  *	synchronous clustering mode implementation.
482  *
483  *	Odd semantics: if start == end, we clean everything.
484  */
485 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
486 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
487 
488 void
489 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
490 		     int flags)
491 {
492 	struct rb_vm_page_scan_info info;
493 	struct vnode *vp;
494 	int wholescan;
495 	int pagerflags;
496 	int curgeneration;
497 
498 	if (object->type != OBJT_VNODE ||
499 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
500 		return;
501 
502 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
503 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
504 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
505 
506 	vp = object->handle;
507 
508 	/*
509 	 * Interlock other major object operations.  This allows us to
510 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
511 	 */
512 	crit_enter();
513 	vm_object_set_flag(object, OBJ_CLEANING);
514 
515 	/*
516 	 * Handle 'entire object' case
517 	 */
518 	info.start_pindex = start;
519 	if (end == 0) {
520 		info.end_pindex = object->size - 1;
521 	} else {
522 		info.end_pindex = end - 1;
523 	}
524 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
525 	info.limit = flags;
526 	info.pagerflags = pagerflags;
527 	info.object = object;
528 
529 	/*
530 	 * If cleaning the entire object do a pass to mark the pages read-only.
531 	 * If everything worked out ok, clear OBJ_WRITEABLE and
532 	 * OBJ_MIGHTBEDIRTY.
533 	 */
534 	if (wholescan) {
535 		info.error = 0;
536 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
537 					vm_object_page_clean_pass1, &info);
538 		if (info.error == 0) {
539 			vm_object_clear_flag(object,
540 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
541 			if (object->type == OBJT_VNODE &&
542 			    (vp = (struct vnode *)object->handle) != NULL) {
543 				if (vp->v_flag & VOBJDIRTY)
544 					vclrflags(vp, VOBJDIRTY);
545 			}
546 		}
547 	}
548 
549 	/*
550 	 * Do a pass to clean all the dirty pages we find.
551 	 */
552 	do {
553 		info.error = 0;
554 		curgeneration = object->generation;
555 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
556 					vm_object_page_clean_pass2, &info);
557 	} while (info.error || curgeneration != object->generation);
558 
559 	vm_object_clear_flag(object, OBJ_CLEANING);
560 	crit_exit();
561 }
562 
563 static
564 int
565 vm_object_page_clean_pass1(struct vm_page *p, void *data)
566 {
567 	struct rb_vm_page_scan_info *info = data;
568 
569 	vm_page_flag_set(p, PG_CLEANCHK);
570 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
571 		info->error = 1;
572 	else
573 		vm_page_protect(p, VM_PROT_READ);
574 	return(0);
575 }
576 
577 static
578 int
579 vm_object_page_clean_pass2(struct vm_page *p, void *data)
580 {
581 	struct rb_vm_page_scan_info *info = data;
582 	int n;
583 
584 	/*
585 	 * Do not mess with pages that were inserted after we started
586 	 * the cleaning pass.
587 	 */
588 	if ((p->flags & PG_CLEANCHK) == 0)
589 		return(0);
590 
591 	/*
592 	 * Before wasting time traversing the pmaps, check for trivial
593 	 * cases where the page cannot be dirty.
594 	 */
595 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
596 		KKASSERT((p->dirty & p->valid) == 0);
597 		return(0);
598 	}
599 
600 	/*
601 	 * Check whether the page is dirty or not.  The page has been set
602 	 * to be read-only so the check will not race a user dirtying the
603 	 * page.
604 	 */
605 	vm_page_test_dirty(p);
606 	if ((p->dirty & p->valid) == 0) {
607 		vm_page_flag_clear(p, PG_CLEANCHK);
608 		return(0);
609 	}
610 
611 	/*
612 	 * If we have been asked to skip nosync pages and this is a
613 	 * nosync page, skip it.  Note that the object flags were
614 	 * not cleared in this case (because pass1 will have returned an
615 	 * error), so we do not have to set them.
616 	 */
617 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
618 		vm_page_flag_clear(p, PG_CLEANCHK);
619 		return(0);
620 	}
621 
622 	/*
623 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
624 	 * the pages that get successfully flushed.  Set info->error if
625 	 * we raced an object modification.
626 	 */
627 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
628 	if (n == 0)
629 		info->error = 1;
630 	return(0);
631 }
632 
633 /*
634  * This routine must be called within a critical section to properly avoid
635  * an interrupt unbusy/free race that can occur prior to the busy check.
636  *
637  * Using the object generation number here to detect page ripout is not
638  * the best idea in the world. XXX
639  *
640  * NOTE: we operate under the assumption that a page found to not be busy
641  * will not be ripped out from under us by an interrupt.  XXX we should
642  * recode this to explicitly busy the pages.
643  */
644 static int
645 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
646 {
647 	int runlen;
648 	int maxf;
649 	int chkb;
650 	int maxb;
651 	int i;
652 	int curgeneration;
653 	vm_pindex_t pi;
654 	vm_page_t maf[vm_pageout_page_count];
655 	vm_page_t mab[vm_pageout_page_count];
656 	vm_page_t ma[vm_pageout_page_count];
657 
658 	curgeneration = object->generation;
659 
660 	pi = p->pindex;
661 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
662 		if (object->generation != curgeneration) {
663 			return(0);
664 		}
665 	}
666 	KKASSERT(p->object == object && p->pindex == pi);
667 
668 	maxf = 0;
669 	for(i = 1; i < vm_pageout_page_count; i++) {
670 		vm_page_t tp;
671 
672 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
673 			if ((tp->flags & PG_BUSY) ||
674 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
675 				 (tp->flags & PG_CLEANCHK) == 0) ||
676 				(tp->busy != 0))
677 				break;
678 			if((tp->queue - tp->pc) == PQ_CACHE) {
679 				vm_page_flag_clear(tp, PG_CLEANCHK);
680 				break;
681 			}
682 			vm_page_test_dirty(tp);
683 			if ((tp->dirty & tp->valid) == 0) {
684 				vm_page_flag_clear(tp, PG_CLEANCHK);
685 				break;
686 			}
687 			maf[ i - 1 ] = tp;
688 			maxf++;
689 			continue;
690 		}
691 		break;
692 	}
693 
694 	maxb = 0;
695 	chkb = vm_pageout_page_count -  maxf;
696 	if (chkb) {
697 		for(i = 1; i < chkb;i++) {
698 			vm_page_t tp;
699 
700 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
701 				if ((tp->flags & PG_BUSY) ||
702 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
703 					 (tp->flags & PG_CLEANCHK) == 0) ||
704 					(tp->busy != 0))
705 					break;
706 				if((tp->queue - tp->pc) == PQ_CACHE) {
707 					vm_page_flag_clear(tp, PG_CLEANCHK);
708 					break;
709 				}
710 				vm_page_test_dirty(tp);
711 				if ((tp->dirty & tp->valid) == 0) {
712 					vm_page_flag_clear(tp, PG_CLEANCHK);
713 					break;
714 				}
715 				mab[ i - 1 ] = tp;
716 				maxb++;
717 				continue;
718 			}
719 			break;
720 		}
721 	}
722 
723 	for(i = 0; i < maxb; i++) {
724 		int index = (maxb - i) - 1;
725 		ma[index] = mab[i];
726 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
727 	}
728 	vm_page_flag_clear(p, PG_CLEANCHK);
729 	ma[maxb] = p;
730 	for(i = 0; i < maxf; i++) {
731 		int index = (maxb + i) + 1;
732 		ma[index] = maf[i];
733 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
734 	}
735 	runlen = maxb + maxf + 1;
736 
737 	vm_pageout_flush(ma, runlen, pagerflags);
738 	for (i = 0; i < runlen; i++) {
739 		if (ma[i]->valid & ma[i]->dirty) {
740 			vm_page_protect(ma[i], VM_PROT_READ);
741 			vm_page_flag_set(ma[i], PG_CLEANCHK);
742 
743 			/*
744 			 * maxf will end up being the actual number of pages
745 			 * we wrote out contiguously, non-inclusive of the
746 			 * first page.  We do not count look-behind pages.
747 			 */
748 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
749 				maxf = i - maxb - 1;
750 		}
751 	}
752 	return(maxf + 1);
753 }
754 
755 #ifdef not_used
756 /* XXX I cannot tell if this should be an exported symbol */
757 /*
758  *	vm_object_deactivate_pages
759  *
760  *	Deactivate all pages in the specified object.  (Keep its pages
761  *	in memory even though it is no longer referenced.)
762  *
763  *	The object must be locked.
764  */
765 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
766 
767 static void
768 vm_object_deactivate_pages(vm_object_t object)
769 {
770 	crit_enter();
771 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
772 				vm_object_deactivate_pages_callback, NULL);
773 	crit_exit();
774 }
775 
776 static int
777 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
778 {
779 	vm_page_deactivate(p);
780 	return(0);
781 }
782 
783 #endif
784 
785 /*
786  * Same as vm_object_pmap_copy, except range checking really
787  * works, and is meant for small sections of an object.
788  *
789  * This code protects resident pages by making them read-only
790  * and is typically called on a fork or split when a page
791  * is converted to copy-on-write.
792  *
793  * NOTE: If the page is already at VM_PROT_NONE, calling
794  * vm_page_protect will have no effect.
795  */
796 void
797 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
798 {
799 	vm_pindex_t idx;
800 	vm_page_t p;
801 
802 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
803 		return;
804 
805 	/*
806 	 * spl protection needed to prevent races between the lookup,
807 	 * an interrupt unbusy/free, and our protect call.
808 	 */
809 	crit_enter();
810 	for (idx = start; idx < end; idx++) {
811 		p = vm_page_lookup(object, idx);
812 		if (p == NULL)
813 			continue;
814 		vm_page_protect(p, VM_PROT_READ);
815 	}
816 	crit_exit();
817 }
818 
819 /*
820  *	vm_object_pmap_remove:
821  *
822  *	Removes all physical pages in the specified
823  *	object range from all physical maps.
824  *
825  *	The object must *not* be locked.
826  */
827 
828 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
829 
830 void
831 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
832 {
833 	struct rb_vm_page_scan_info info;
834 
835 	if (object == NULL)
836 		return;
837 	info.start_pindex = start;
838 	info.end_pindex = end - 1;
839 	crit_enter();
840 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
841 				vm_object_pmap_remove_callback, &info);
842 	if (start == 0 && end == object->size)
843 		vm_object_clear_flag(object, OBJ_WRITEABLE);
844 	crit_exit();
845 }
846 
847 static int
848 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
849 {
850 	vm_page_protect(p, VM_PROT_NONE);
851 	return(0);
852 }
853 
854 /*
855  *	vm_object_madvise:
856  *
857  *	Implements the madvise function at the object/page level.
858  *
859  *	MADV_WILLNEED	(any object)
860  *
861  *	    Activate the specified pages if they are resident.
862  *
863  *	MADV_DONTNEED	(any object)
864  *
865  *	    Deactivate the specified pages if they are resident.
866  *
867  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
868  *			 OBJ_ONEMAPPING only)
869  *
870  *	    Deactivate and clean the specified pages if they are
871  *	    resident.  This permits the process to reuse the pages
872  *	    without faulting or the kernel to reclaim the pages
873  *	    without I/O.
874  */
875 void
876 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
877 {
878 	vm_pindex_t end, tpindex;
879 	vm_object_t tobject;
880 	vm_page_t m;
881 
882 	if (object == NULL)
883 		return;
884 
885 	end = pindex + count;
886 
887 	/*
888 	 * Locate and adjust resident pages
889 	 */
890 
891 	for (; pindex < end; pindex += 1) {
892 relookup:
893 		tobject = object;
894 		tpindex = pindex;
895 shadowlookup:
896 		/*
897 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
898 		 * and those pages must be OBJ_ONEMAPPING.
899 		 */
900 		if (advise == MADV_FREE) {
901 			if ((tobject->type != OBJT_DEFAULT &&
902 			     tobject->type != OBJT_SWAP) ||
903 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
904 				continue;
905 			}
906 		}
907 
908 		/*
909 		 * spl protection is required to avoid a race between the
910 		 * lookup, an interrupt unbusy/free, and our busy check.
911 		 */
912 
913 		crit_enter();
914 		m = vm_page_lookup(tobject, tpindex);
915 
916 		if (m == NULL) {
917 			/*
918 			 * There may be swap even if there is no backing page
919 			 */
920 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
921 				swap_pager_freespace(tobject, tpindex, 1);
922 
923 			/*
924 			 * next object
925 			 */
926 			crit_exit();
927 			if (tobject->backing_object == NULL)
928 				continue;
929 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
930 			tobject = tobject->backing_object;
931 			goto shadowlookup;
932 		}
933 
934 		/*
935 		 * If the page is busy or not in a normal active state,
936 		 * we skip it.  If the page is not managed there are no
937 		 * page queues to mess with.  Things can break if we mess
938 		 * with pages in any of the below states.
939 		 */
940 		if (
941 		    m->hold_count ||
942 		    m->wire_count ||
943 		    (m->flags & PG_UNMANAGED) ||
944 		    m->valid != VM_PAGE_BITS_ALL
945 		) {
946 			crit_exit();
947 			continue;
948 		}
949 
950  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
951 			crit_exit();
952   			goto relookup;
953 		}
954 		crit_exit();
955 
956 		/*
957 		 * Theoretically once a page is known not to be busy, an
958 		 * interrupt cannot come along and rip it out from under us.
959 		 */
960 
961 		if (advise == MADV_WILLNEED) {
962 			vm_page_activate(m);
963 		} else if (advise == MADV_DONTNEED) {
964 			vm_page_dontneed(m);
965 		} else if (advise == MADV_FREE) {
966 			/*
967 			 * Mark the page clean.  This will allow the page
968 			 * to be freed up by the system.  However, such pages
969 			 * are often reused quickly by malloc()/free()
970 			 * so we do not do anything that would cause
971 			 * a page fault if we can help it.
972 			 *
973 			 * Specifically, we do not try to actually free
974 			 * the page now nor do we try to put it in the
975 			 * cache (which would cause a page fault on reuse).
976 			 *
977 			 * But we do make the page is freeable as we
978 			 * can without actually taking the step of unmapping
979 			 * it.
980 			 */
981 			pmap_clear_modify(m);
982 			m->dirty = 0;
983 			m->act_count = 0;
984 			vm_page_dontneed(m);
985 			if (tobject->type == OBJT_SWAP)
986 				swap_pager_freespace(tobject, tpindex, 1);
987 		}
988 	}
989 }
990 
991 /*
992  *	vm_object_shadow:
993  *
994  *	Create a new object which is backed by the
995  *	specified existing object range.  The source
996  *	object reference is deallocated.
997  *
998  *	The new object and offset into that object
999  *	are returned in the source parameters.
1000  */
1001 
1002 void
1003 vm_object_shadow(vm_object_t *object,	/* IN/OUT */
1004 		 vm_ooffset_t *offset,	/* IN/OUT */
1005 		 vm_size_t length)
1006 {
1007 	vm_object_t source;
1008 	vm_object_t result;
1009 
1010 	source = *object;
1011 
1012 	/*
1013 	 * Don't create the new object if the old object isn't shared.
1014 	 */
1015 
1016 	if (source != NULL &&
1017 	    source->ref_count == 1 &&
1018 	    source->handle == NULL &&
1019 	    (source->type == OBJT_DEFAULT ||
1020 	     source->type == OBJT_SWAP))
1021 		return;
1022 
1023 	/*
1024 	 * Allocate a new object with the given length
1025 	 */
1026 
1027 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1028 		panic("vm_object_shadow: no object for shadowing");
1029 
1030 	/*
1031 	 * The new object shadows the source object, adding a reference to it.
1032 	 * Our caller changes his reference to point to the new object,
1033 	 * removing a reference to the source object.  Net result: no change
1034 	 * of reference count.
1035 	 *
1036 	 * Try to optimize the result object's page color when shadowing
1037 	 * in order to maintain page coloring consistency in the combined
1038 	 * shadowed object.
1039 	 */
1040 	result->backing_object = source;
1041 	if (source) {
1042 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1043 		source->shadow_count++;
1044 		source->generation++;
1045 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1046 	}
1047 
1048 	/*
1049 	 * Store the offset into the source object, and fix up the offset into
1050 	 * the new object.
1051 	 */
1052 
1053 	result->backing_object_offset = *offset;
1054 
1055 	/*
1056 	 * Return the new things
1057 	 */
1058 
1059 	*offset = 0;
1060 	*object = result;
1061 }
1062 
1063 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1064 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1065 #define	OBSC_COLLAPSE_WAIT	0x0004
1066 
1067 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1068 
1069 static __inline int
1070 vm_object_backing_scan(vm_object_t object, int op)
1071 {
1072 	struct rb_vm_page_scan_info info;
1073 	vm_object_t backing_object;
1074 
1075 	/*
1076 	 * spl protection is required to avoid races between the memq/lookup,
1077 	 * an interrupt doing an unbusy/free, and our busy check.  Amoung
1078 	 * other things.
1079 	 */
1080 	crit_enter();
1081 
1082 	backing_object = object->backing_object;
1083 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1084 
1085 	/*
1086 	 * Initial conditions
1087 	 */
1088 
1089 	if (op & OBSC_TEST_ALL_SHADOWED) {
1090 		/*
1091 		 * We do not want to have to test for the existence of
1092 		 * swap pages in the backing object.  XXX but with the
1093 		 * new swapper this would be pretty easy to do.
1094 		 *
1095 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1096 		 * been ZFOD faulted yet?  If we do not test for this, the
1097 		 * shadow test may succeed! XXX
1098 		 */
1099 		if (backing_object->type != OBJT_DEFAULT) {
1100 			crit_exit();
1101 			return(0);
1102 		}
1103 	}
1104 	if (op & OBSC_COLLAPSE_WAIT) {
1105 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1106 		vm_object_set_flag(backing_object, OBJ_DEAD);
1107 	}
1108 
1109 	/*
1110 	 * Our scan.   We have to retry if a negative error code is returned,
1111 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1112 	 * the scan had to be stopped because the parent does not completely
1113 	 * shadow the child.
1114 	 */
1115 	info.object = object;
1116 	info.backing_object = backing_object;
1117 	info.limit = op;
1118 	do {
1119 		info.error = 1;
1120 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1121 					vm_object_backing_scan_callback,
1122 					&info);
1123 	} while (info.error < 0);
1124 	crit_exit();
1125 	return(info.error);
1126 }
1127 
1128 static int
1129 vm_object_backing_scan_callback(vm_page_t p, void *data)
1130 {
1131 	struct rb_vm_page_scan_info *info = data;
1132 	vm_object_t backing_object;
1133 	vm_object_t object;
1134 	vm_pindex_t new_pindex;
1135 	vm_pindex_t backing_offset_index;
1136 	int op;
1137 
1138 	new_pindex = p->pindex - info->backing_offset_index;
1139 	op = info->limit;
1140 	object = info->object;
1141 	backing_object = info->backing_object;
1142 	backing_offset_index = info->backing_offset_index;
1143 
1144 	if (op & OBSC_TEST_ALL_SHADOWED) {
1145 		vm_page_t pp;
1146 
1147 		/*
1148 		 * Ignore pages outside the parent object's range
1149 		 * and outside the parent object's mapping of the
1150 		 * backing object.
1151 		 *
1152 		 * note that we do not busy the backing object's
1153 		 * page.
1154 		 */
1155 		if (
1156 		    p->pindex < backing_offset_index ||
1157 		    new_pindex >= object->size
1158 		) {
1159 			return(0);
1160 		}
1161 
1162 		/*
1163 		 * See if the parent has the page or if the parent's
1164 		 * object pager has the page.  If the parent has the
1165 		 * page but the page is not valid, the parent's
1166 		 * object pager must have the page.
1167 		 *
1168 		 * If this fails, the parent does not completely shadow
1169 		 * the object and we might as well give up now.
1170 		 */
1171 
1172 		pp = vm_page_lookup(object, new_pindex);
1173 		if (
1174 		    (pp == NULL || pp->valid == 0) &&
1175 		    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1176 		) {
1177 			info->error = 0;	/* problemo */
1178 			return(-1);		/* stop the scan */
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Check for busy page
1184 	 */
1185 
1186 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1187 		vm_page_t pp;
1188 
1189 		if (op & OBSC_COLLAPSE_NOWAIT) {
1190 			if (
1191 			    (p->flags & PG_BUSY) ||
1192 			    !p->valid ||
1193 			    p->hold_count ||
1194 			    p->wire_count ||
1195 			    p->busy
1196 			) {
1197 				return(0);
1198 			}
1199 		} else if (op & OBSC_COLLAPSE_WAIT) {
1200 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1201 				/*
1202 				 * If we slept, anything could have
1203 				 * happened.   Ask that the scan be restarted.
1204 				 *
1205 				 * Since the object is marked dead, the
1206 				 * backing offset should not have changed.
1207 				 */
1208 				info->error = -1;
1209 				return(-1);
1210 			}
1211 		}
1212 
1213 		/*
1214 		 * Busy the page
1215 		 */
1216 		vm_page_busy(p);
1217 
1218 		KASSERT(
1219 		    p->object == backing_object,
1220 		    ("vm_object_qcollapse(): object mismatch")
1221 		);
1222 
1223 		/*
1224 		 * Destroy any associated swap
1225 		 */
1226 		if (backing_object->type == OBJT_SWAP) {
1227 			swap_pager_freespace(
1228 			    backing_object,
1229 			    p->pindex,
1230 			    1
1231 			);
1232 		}
1233 
1234 		if (
1235 		    p->pindex < backing_offset_index ||
1236 		    new_pindex >= object->size
1237 		) {
1238 			/*
1239 			 * Page is out of the parent object's range, we
1240 			 * can simply destroy it.
1241 			 */
1242 			vm_page_protect(p, VM_PROT_NONE);
1243 			vm_page_free(p);
1244 			return(0);
1245 		}
1246 
1247 		pp = vm_page_lookup(object, new_pindex);
1248 		if (
1249 		    pp != NULL ||
1250 		    vm_pager_has_page(object, new_pindex, NULL, NULL)
1251 		) {
1252 			/*
1253 			 * page already exists in parent OR swap exists
1254 			 * for this location in the parent.  Destroy
1255 			 * the original page from the backing object.
1256 			 *
1257 			 * Leave the parent's page alone
1258 			 */
1259 			vm_page_protect(p, VM_PROT_NONE);
1260 			vm_page_free(p);
1261 			return(0);
1262 		}
1263 
1264 		/*
1265 		 * Page does not exist in parent, rename the
1266 		 * page from the backing object to the main object.
1267 		 *
1268 		 * If the page was mapped to a process, it can remain
1269 		 * mapped through the rename.
1270 		 */
1271 		if ((p->queue - p->pc) == PQ_CACHE)
1272 			vm_page_deactivate(p);
1273 
1274 		vm_page_rename(p, object, new_pindex);
1275 		/* page automatically made dirty by rename */
1276 	}
1277 	return(0);
1278 }
1279 
1280 /*
1281  * this version of collapse allows the operation to occur earlier and
1282  * when paging_in_progress is true for an object...  This is not a complete
1283  * operation, but should plug 99.9% of the rest of the leaks.
1284  */
1285 static void
1286 vm_object_qcollapse(vm_object_t object)
1287 {
1288 	vm_object_t backing_object = object->backing_object;
1289 
1290 	if (backing_object->ref_count != 1)
1291 		return;
1292 
1293 	backing_object->ref_count += 2;
1294 
1295 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1296 
1297 	backing_object->ref_count -= 2;
1298 }
1299 
1300 /*
1301  *	vm_object_collapse:
1302  *
1303  *	Collapse an object with the object backing it.
1304  *	Pages in the backing object are moved into the
1305  *	parent, and the backing object is deallocated.
1306  */
1307 void
1308 vm_object_collapse(vm_object_t object)
1309 {
1310 	while (TRUE) {
1311 		vm_object_t backing_object;
1312 
1313 		/*
1314 		 * Verify that the conditions are right for collapse:
1315 		 *
1316 		 * The object exists and the backing object exists.
1317 		 */
1318 		if (object == NULL)
1319 			break;
1320 
1321 		if ((backing_object = object->backing_object) == NULL)
1322 			break;
1323 
1324 		/*
1325 		 * we check the backing object first, because it is most likely
1326 		 * not collapsable.
1327 		 */
1328 		if (backing_object->handle != NULL ||
1329 		    (backing_object->type != OBJT_DEFAULT &&
1330 		     backing_object->type != OBJT_SWAP) ||
1331 		    (backing_object->flags & OBJ_DEAD) ||
1332 		    object->handle != NULL ||
1333 		    (object->type != OBJT_DEFAULT &&
1334 		     object->type != OBJT_SWAP) ||
1335 		    (object->flags & OBJ_DEAD)) {
1336 			break;
1337 		}
1338 
1339 		if (
1340 		    object->paging_in_progress != 0 ||
1341 		    backing_object->paging_in_progress != 0
1342 		) {
1343 			vm_object_qcollapse(object);
1344 			break;
1345 		}
1346 
1347 		/*
1348 		 * We know that we can either collapse the backing object (if
1349 		 * the parent is the only reference to it) or (perhaps) have
1350 		 * the parent bypass the object if the parent happens to shadow
1351 		 * all the resident pages in the entire backing object.
1352 		 *
1353 		 * This is ignoring pager-backed pages such as swap pages.
1354 		 * vm_object_backing_scan fails the shadowing test in this
1355 		 * case.
1356 		 */
1357 
1358 		if (backing_object->ref_count == 1) {
1359 			/*
1360 			 * If there is exactly one reference to the backing
1361 			 * object, we can collapse it into the parent.
1362 			 */
1363 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1364 
1365 			/*
1366 			 * Move the pager from backing_object to object.
1367 			 */
1368 
1369 			if (backing_object->type == OBJT_SWAP) {
1370 				vm_object_pip_add(backing_object, 1);
1371 
1372 				/*
1373 				 * scrap the paging_offset junk and do a
1374 				 * discrete copy.  This also removes major
1375 				 * assumptions about how the swap-pager
1376 				 * works from where it doesn't belong.  The
1377 				 * new swapper is able to optimize the
1378 				 * destroy-source case.
1379 				 */
1380 
1381 				vm_object_pip_add(object, 1);
1382 				swap_pager_copy(
1383 				    backing_object,
1384 				    object,
1385 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1386 				vm_object_pip_wakeup(object);
1387 
1388 				vm_object_pip_wakeup(backing_object);
1389 			}
1390 			/*
1391 			 * Object now shadows whatever backing_object did.
1392 			 * Note that the reference to
1393 			 * backing_object->backing_object moves from within
1394 			 * backing_object to within object.
1395 			 */
1396 
1397 			LIST_REMOVE(object, shadow_list);
1398 			object->backing_object->shadow_count--;
1399 			object->backing_object->generation++;
1400 			if (backing_object->backing_object) {
1401 				LIST_REMOVE(backing_object, shadow_list);
1402 				backing_object->backing_object->shadow_count--;
1403 				backing_object->backing_object->generation++;
1404 			}
1405 			object->backing_object = backing_object->backing_object;
1406 			if (object->backing_object) {
1407 				LIST_INSERT_HEAD(
1408 				    &object->backing_object->shadow_head,
1409 				    object,
1410 				    shadow_list
1411 				);
1412 				object->backing_object->shadow_count++;
1413 				object->backing_object->generation++;
1414 			}
1415 
1416 			object->backing_object_offset +=
1417 			    backing_object->backing_object_offset;
1418 
1419 			/*
1420 			 * Discard backing_object.
1421 			 *
1422 			 * Since the backing object has no pages, no pager left,
1423 			 * and no object references within it, all that is
1424 			 * necessary is to dispose of it.
1425 			 */
1426 
1427 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1428 			KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1429 			crit_enter();
1430 			TAILQ_REMOVE(
1431 			    &vm_object_list,
1432 			    backing_object,
1433 			    object_list
1434 			);
1435 			vm_object_count--;
1436 			crit_exit();
1437 
1438 			zfree(obj_zone, backing_object);
1439 
1440 			object_collapses++;
1441 		} else {
1442 			vm_object_t new_backing_object;
1443 
1444 			/*
1445 			 * If we do not entirely shadow the backing object,
1446 			 * there is nothing we can do so we give up.
1447 			 */
1448 
1449 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1450 				break;
1451 			}
1452 
1453 			/*
1454 			 * Make the parent shadow the next object in the
1455 			 * chain.  Deallocating backing_object will not remove
1456 			 * it, since its reference count is at least 2.
1457 			 */
1458 
1459 			LIST_REMOVE(object, shadow_list);
1460 			backing_object->shadow_count--;
1461 			backing_object->generation++;
1462 
1463 			new_backing_object = backing_object->backing_object;
1464 			if ((object->backing_object = new_backing_object) != NULL) {
1465 				vm_object_reference(new_backing_object);
1466 				LIST_INSERT_HEAD(
1467 				    &new_backing_object->shadow_head,
1468 				    object,
1469 				    shadow_list
1470 				);
1471 				new_backing_object->shadow_count++;
1472 				new_backing_object->generation++;
1473 				object->backing_object_offset +=
1474 					backing_object->backing_object_offset;
1475 			}
1476 
1477 			/*
1478 			 * Drop the reference count on backing_object. Since
1479 			 * its ref_count was at least 2, it will not vanish;
1480 			 * so we don't need to call vm_object_deallocate, but
1481 			 * we do anyway.
1482 			 */
1483 			vm_object_deallocate(backing_object);
1484 			object_bypasses++;
1485 		}
1486 
1487 		/*
1488 		 * Try again with this object's new backing object.
1489 		 */
1490 	}
1491 }
1492 
1493 /*
1494  *	vm_object_page_remove: [internal]
1495  *
1496  *	Removes all physical pages in the specified
1497  *	object range from the object's list of pages.
1498  */
1499 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1500 
1501 void
1502 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1503 		      boolean_t clean_only)
1504 {
1505 	struct rb_vm_page_scan_info info;
1506 	int all;
1507 
1508 	/*
1509 	 * Degenerate cases and assertions
1510 	 */
1511 	if (object == NULL || object->resident_page_count == 0)
1512 		return;
1513 	KASSERT(object->type != OBJT_PHYS,
1514 		("attempt to remove pages from a physical object"));
1515 
1516 	/*
1517 	 * Indicate that paging is occuring on the object
1518 	 */
1519 	crit_enter();
1520 	vm_object_pip_add(object, 1);
1521 
1522 	/*
1523 	 * Figure out the actual removal range and whether we are removing
1524 	 * the entire contents of the object or not.  If removing the entire
1525 	 * contents, be sure to get all pages, even those that might be
1526 	 * beyond the end of the object.
1527 	 */
1528 	info.start_pindex = start;
1529 	if (end == 0)
1530 		info.end_pindex = (vm_pindex_t)-1;
1531 	else
1532 		info.end_pindex = end - 1;
1533 	info.limit = clean_only;
1534 	all = (start == 0 && info.end_pindex >= object->size - 1);
1535 
1536 	/*
1537 	 * Loop until we are sure we have gotten them all.
1538 	 */
1539 	do {
1540 		info.error = 0;
1541 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1542 					vm_object_page_remove_callback, &info);
1543 	} while (info.error);
1544 
1545 	/*
1546 	 * Cleanup
1547 	 */
1548 	vm_object_pip_wakeup(object);
1549 	crit_exit();
1550 }
1551 
1552 static int
1553 vm_object_page_remove_callback(vm_page_t p, void *data)
1554 {
1555 	struct rb_vm_page_scan_info *info = data;
1556 
1557 	/*
1558 	 * Wired pages cannot be destroyed, but they can be invalidated
1559 	 * and we do so if clean_only (limit) is not set.
1560 	 */
1561 	if (p->wire_count != 0) {
1562 		vm_page_protect(p, VM_PROT_NONE);
1563 		if (info->limit == 0)
1564 			p->valid = 0;
1565 		return(0);
1566 	}
1567 
1568 	/*
1569 	 * The busy flags are only cleared at
1570 	 * interrupt -- minimize the spl transitions
1571 	 */
1572 
1573 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1574 		info->error = 1;
1575 		return(0);
1576 	}
1577 
1578 	/*
1579 	 * limit is our clean_only flag.  If set and the page is dirty, do
1580 	 * not free it.
1581 	 */
1582 	if (info->limit && p->valid) {
1583 		vm_page_test_dirty(p);
1584 		if (p->valid & p->dirty)
1585 			return(0);
1586 	}
1587 
1588 	/*
1589 	 * Destroy the page
1590 	 */
1591 	vm_page_busy(p);
1592 	vm_page_protect(p, VM_PROT_NONE);
1593 	vm_page_free(p);
1594 	return(0);
1595 }
1596 
1597 /*
1598  *	Routine:	vm_object_coalesce
1599  *	Function:	Coalesces two objects backing up adjoining
1600  *			regions of memory into a single object.
1601  *
1602  *	returns TRUE if objects were combined.
1603  *
1604  *	NOTE:	Only works at the moment if the second object is NULL -
1605  *		if it's not, which object do we lock first?
1606  *
1607  *	Parameters:
1608  *		prev_object	First object to coalesce
1609  *		prev_offset	Offset into prev_object
1610  *		next_object	Second object into coalesce
1611  *		next_offset	Offset into next_object
1612  *
1613  *		prev_size	Size of reference to prev_object
1614  *		next_size	Size of reference to next_object
1615  *
1616  *	Conditions:
1617  *	The object must *not* be locked.
1618  */
1619 boolean_t
1620 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1621     vm_size_t prev_size, vm_size_t next_size)
1622 {
1623 	vm_pindex_t next_pindex;
1624 
1625 	if (prev_object == NULL) {
1626 		return (TRUE);
1627 	}
1628 
1629 	if (prev_object->type != OBJT_DEFAULT &&
1630 	    prev_object->type != OBJT_SWAP) {
1631 		return (FALSE);
1632 	}
1633 
1634 	/*
1635 	 * Try to collapse the object first
1636 	 */
1637 	vm_object_collapse(prev_object);
1638 
1639 	/*
1640 	 * Can't coalesce if: . more than one reference . paged out . shadows
1641 	 * another object . has a copy elsewhere (any of which mean that the
1642 	 * pages not mapped to prev_entry may be in use anyway)
1643 	 */
1644 
1645 	if (prev_object->backing_object != NULL) {
1646 		return (FALSE);
1647 	}
1648 
1649 	prev_size >>= PAGE_SHIFT;
1650 	next_size >>= PAGE_SHIFT;
1651 	next_pindex = prev_pindex + prev_size;
1652 
1653 	if ((prev_object->ref_count > 1) &&
1654 	    (prev_object->size != next_pindex)) {
1655 		return (FALSE);
1656 	}
1657 
1658 	/*
1659 	 * Remove any pages that may still be in the object from a previous
1660 	 * deallocation.
1661 	 */
1662 	if (next_pindex < prev_object->size) {
1663 		vm_object_page_remove(prev_object,
1664 				      next_pindex,
1665 				      next_pindex + next_size, FALSE);
1666 		if (prev_object->type == OBJT_SWAP)
1667 			swap_pager_freespace(prev_object,
1668 					     next_pindex, next_size);
1669 	}
1670 
1671 	/*
1672 	 * Extend the object if necessary.
1673 	 */
1674 	if (next_pindex + next_size > prev_object->size)
1675 		prev_object->size = next_pindex + next_size;
1676 
1677 	return (TRUE);
1678 }
1679 
1680 void
1681 vm_object_set_writeable_dirty(vm_object_t object)
1682 {
1683 	struct vnode *vp;
1684 
1685 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1686 	if (object->type == OBJT_VNODE &&
1687 	    (vp = (struct vnode *)object->handle) != NULL) {
1688 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1689 			vsetflags(vp, VOBJDIRTY);
1690 		}
1691 	}
1692 }
1693 
1694 
1695 
1696 #include "opt_ddb.h"
1697 #ifdef DDB
1698 #include <sys/kernel.h>
1699 
1700 #include <sys/cons.h>
1701 
1702 #include <ddb/ddb.h>
1703 
1704 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1705 				       vm_map_entry_t entry);
1706 static int	vm_object_in_map (vm_object_t object);
1707 
1708 static int
1709 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1710 {
1711 	vm_map_t tmpm;
1712 	vm_map_entry_t tmpe;
1713 	vm_object_t obj;
1714 	int entcount;
1715 
1716 	if (map == 0)
1717 		return 0;
1718 	if (entry == 0) {
1719 		tmpe = map->header.next;
1720 		entcount = map->nentries;
1721 		while (entcount-- && (tmpe != &map->header)) {
1722 			if( _vm_object_in_map(map, object, tmpe)) {
1723 				return 1;
1724 			}
1725 			tmpe = tmpe->next;
1726 		}
1727 		return (0);
1728 	}
1729 	switch(entry->maptype) {
1730 	case VM_MAPTYPE_SUBMAP:
1731 		tmpm = entry->object.sub_map;
1732 		tmpe = tmpm->header.next;
1733 		entcount = tmpm->nentries;
1734 		while (entcount-- && tmpe != &tmpm->header) {
1735 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1736 				return 1;
1737 			}
1738 			tmpe = tmpe->next;
1739 		}
1740 		break;
1741 	case VM_MAPTYPE_NORMAL:
1742 	case VM_MAPTYPE_VPAGETABLE:
1743 		obj = entry->object.vm_object;
1744 		while (obj) {
1745 			if (obj == object)
1746 				return 1;
1747 			obj = obj->backing_object;
1748 		}
1749 		break;
1750 	default:
1751 		break;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static int vm_object_in_map_callback(struct proc *p, void *data);
1757 
1758 struct vm_object_in_map_info {
1759 	vm_object_t object;
1760 	int rv;
1761 };
1762 
1763 static int
1764 vm_object_in_map(vm_object_t object)
1765 {
1766 	struct vm_object_in_map_info info;
1767 
1768 	info.rv = 0;
1769 	info.object = object;
1770 
1771 	allproc_scan(vm_object_in_map_callback, &info);
1772 	if (info.rv)
1773 		return 1;
1774 	if( _vm_object_in_map(&kernel_map, object, 0))
1775 		return 1;
1776 	if( _vm_object_in_map(&pager_map, object, 0))
1777 		return 1;
1778 	if( _vm_object_in_map(&buffer_map, object, 0))
1779 		return 1;
1780 	return 0;
1781 }
1782 
1783 static int
1784 vm_object_in_map_callback(struct proc *p, void *data)
1785 {
1786 	struct vm_object_in_map_info *info = data;
1787 
1788 	if (p->p_vmspace) {
1789 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1790 			info->rv = 1;
1791 			return -1;
1792 		}
1793 	}
1794 	return (0);
1795 }
1796 
1797 DB_SHOW_COMMAND(vmochk, vm_object_check)
1798 {
1799 	vm_object_t object;
1800 
1801 	/*
1802 	 * make sure that internal objs are in a map somewhere
1803 	 * and none have zero ref counts.
1804 	 */
1805 	for (object = TAILQ_FIRST(&vm_object_list);
1806 			object != NULL;
1807 			object = TAILQ_NEXT(object, object_list)) {
1808 		if (object->handle == NULL &&
1809 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1810 			if (object->ref_count == 0) {
1811 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1812 					(long)object->size);
1813 			}
1814 			if (!vm_object_in_map(object)) {
1815 				db_printf(
1816 			"vmochk: internal obj is not in a map: "
1817 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1818 				    object->ref_count, (u_long)object->size,
1819 				    (u_long)object->size,
1820 				    (void *)object->backing_object);
1821 			}
1822 		}
1823 	}
1824 }
1825 
1826 /*
1827  *	vm_object_print:	[ debug ]
1828  */
1829 DB_SHOW_COMMAND(object, vm_object_print_static)
1830 {
1831 	/* XXX convert args. */
1832 	vm_object_t object = (vm_object_t)addr;
1833 	boolean_t full = have_addr;
1834 
1835 	vm_page_t p;
1836 
1837 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1838 #define	count	was_count
1839 
1840 	int count;
1841 
1842 	if (object == NULL)
1843 		return;
1844 
1845 	db_iprintf(
1846 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1847 	    object, (int)object->type, (u_long)object->size,
1848 	    object->resident_page_count, object->ref_count, object->flags);
1849 	/*
1850 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1851 	 */
1852 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1853 	    object->shadow_count,
1854 	    object->backing_object ? object->backing_object->ref_count : 0,
1855 	    object->backing_object, (long)object->backing_object_offset);
1856 
1857 	if (!full)
1858 		return;
1859 
1860 	db_indent += 2;
1861 	count = 0;
1862 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1863 		if (count == 0)
1864 			db_iprintf("memory:=");
1865 		else if (count == 6) {
1866 			db_printf("\n");
1867 			db_iprintf(" ...");
1868 			count = 0;
1869 		} else
1870 			db_printf(",");
1871 		count++;
1872 
1873 		db_printf("(off=0x%lx,page=0x%lx)",
1874 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1875 	}
1876 	if (count != 0)
1877 		db_printf("\n");
1878 	db_indent -= 2;
1879 }
1880 
1881 /* XXX. */
1882 #undef count
1883 
1884 /* XXX need this non-static entry for calling from vm_map_print. */
1885 void
1886 vm_object_print(/* db_expr_t */ long addr,
1887 		boolean_t have_addr,
1888 		/* db_expr_t */ long count,
1889 		char *modif)
1890 {
1891 	vm_object_print_static(addr, have_addr, count, modif);
1892 }
1893 
1894 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1895 {
1896 	vm_object_t object;
1897 	int nl = 0;
1898 	int c;
1899 	for (object = TAILQ_FIRST(&vm_object_list);
1900 			object != NULL;
1901 			object = TAILQ_NEXT(object, object_list)) {
1902 		vm_pindex_t idx, fidx;
1903 		vm_pindex_t osize;
1904 		vm_paddr_t pa = -1, padiff;
1905 		int rcount;
1906 		vm_page_t m;
1907 
1908 		db_printf("new object: %p\n", (void *)object);
1909 		if ( nl > 18) {
1910 			c = cngetc();
1911 			if (c != ' ')
1912 				return;
1913 			nl = 0;
1914 		}
1915 		nl++;
1916 		rcount = 0;
1917 		fidx = 0;
1918 		osize = object->size;
1919 		if (osize > 128)
1920 			osize = 128;
1921 		for (idx = 0; idx < osize; idx++) {
1922 			m = vm_page_lookup(object, idx);
1923 			if (m == NULL) {
1924 				if (rcount) {
1925 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1926 						(long)fidx, rcount, (long)pa);
1927 					if ( nl > 18) {
1928 						c = cngetc();
1929 						if (c != ' ')
1930 							return;
1931 						nl = 0;
1932 					}
1933 					nl++;
1934 					rcount = 0;
1935 				}
1936 				continue;
1937 			}
1938 
1939 
1940 			if (rcount &&
1941 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1942 				++rcount;
1943 				continue;
1944 			}
1945 			if (rcount) {
1946 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1947 				padiff >>= PAGE_SHIFT;
1948 				padiff &= PQ_L2_MASK;
1949 				if (padiff == 0) {
1950 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1951 					++rcount;
1952 					continue;
1953 				}
1954 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1955 					(long)fidx, rcount, (long)pa);
1956 				db_printf("pd(%ld)\n", (long)padiff);
1957 				if ( nl > 18) {
1958 					c = cngetc();
1959 					if (c != ' ')
1960 						return;
1961 					nl = 0;
1962 				}
1963 				nl++;
1964 			}
1965 			fidx = idx;
1966 			pa = VM_PAGE_TO_PHYS(m);
1967 			rcount = 1;
1968 		}
1969 		if (rcount) {
1970 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1971 				(long)fidx, rcount, (long)pa);
1972 			if ( nl > 18) {
1973 				c = cngetc();
1974 				if (c != ' ')
1975 					return;
1976 				nl = 0;
1977 			}
1978 			nl++;
1979 		}
1980 	}
1981 }
1982 #endif /* DDB */
1983