xref: /dragonfly/sys/vm/vm_object.c (revision 81c11cd3)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory object module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>		/* for curproc, pageproc */
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_zone.h>
96 
97 #define EASY_SCAN_FACTOR	8
98 
99 static void	vm_object_qcollapse(vm_object_t object);
100 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 
103 /*
104  *	Virtual memory objects maintain the actual data
105  *	associated with allocated virtual memory.  A given
106  *	page of memory exists within exactly one object.
107  *
108  *	An object is only deallocated when all "references"
109  *	are given up.  Only one "reference" to a given
110  *	region of an object should be writeable.
111  *
112  *	Associated with each object is a list of all resident
113  *	memory pages belonging to that object; this list is
114  *	maintained by the "vm_page" module, and locked by the object's
115  *	lock.
116  *
117  *	Each object also records a "pager" routine which is
118  *	used to retrieve (and store) pages to the proper backing
119  *	storage.  In addition, objects may be backed by other
120  *	objects from which they were virtual-copied.
121  *
122  *	The only items within the object structure which are
123  *	modified after time of creation are:
124  *		reference count		locked by object's lock
125  *		pager routine		locked by object's lock
126  *
127  */
128 
129 struct object_q vm_object_list;		/* locked by vmobj_token */
130 struct vm_object kernel_object;
131 
132 static long vm_object_count;		/* locked by vmobj_token */
133 extern int vm_pageout_page_count;
134 
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 static int object_hash_rand;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143 
144 /*
145  * Initialize a freshly allocated object
146  *
147  * Used only by vm_object_allocate() and zinitna().
148  *
149  * No requirements.
150  */
151 void
152 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
153 {
154 	int incr;
155 
156 	RB_INIT(&object->rb_memq);
157 	LIST_INIT(&object->shadow_head);
158 
159 	object->type = type;
160 	object->size = size;
161 	object->ref_count = 1;
162 	object->flags = 0;
163 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164 		vm_object_set_flag(object, OBJ_ONEMAPPING);
165 	object->paging_in_progress = 0;
166 	object->resident_page_count = 0;
167 	object->agg_pv_list_count = 0;
168 	object->shadow_count = 0;
169 	object->pg_color = next_index;
170 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
171 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
172 	else
173 		incr = size;
174 	next_index = (next_index + incr) & PQ_L2_MASK;
175 	object->handle = NULL;
176 	object->backing_object = NULL;
177 	object->backing_object_offset = (vm_ooffset_t) 0;
178 	/*
179 	 * Try to generate a number that will spread objects out in the
180 	 * hash table.  We 'wipe' new objects across the hash in 128 page
181 	 * increments plus 1 more to offset it a little more by the time
182 	 * it wraps around.
183 	 */
184 	object->hash_rand = object_hash_rand - 129;
185 
186 	object->generation++;
187 	object->swblock_count = 0;
188 	RB_INIT(&object->swblock_root);
189 
190 	lwkt_gettoken(&vmobj_token);
191 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
192 	vm_object_count++;
193 	object_hash_rand = object->hash_rand;
194 	lwkt_reltoken(&vmobj_token);
195 }
196 
197 /*
198  * Initialize the VM objects module.
199  *
200  * Called from the low level boot code only.
201  */
202 void
203 vm_object_init(void)
204 {
205 	TAILQ_INIT(&vm_object_list);
206 
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
208 			    &kernel_object);
209 
210 	obj_zone = &obj_zone_store;
211 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 		vm_objects_init, VM_OBJECTS_INIT);
213 }
214 
215 void
216 vm_object_init2(void)
217 {
218 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220 
221 /*
222  * Allocate and return a new object of the specified type and size.
223  *
224  * No requirements.
225  */
226 vm_object_t
227 vm_object_allocate(objtype_t type, vm_pindex_t size)
228 {
229 	vm_object_t result;
230 
231 	result = (vm_object_t) zalloc(obj_zone);
232 
233 	_vm_object_allocate(type, size, result);
234 
235 	return (result);
236 }
237 
238 /*
239  * Add an additional reference to a vm_object.
240  *
241  * Object passed by caller must be stable or caller must already
242  * hold vmobj_token to avoid races.
243  */
244 void
245 vm_object_reference(vm_object_t object)
246 {
247 	if (object) {
248 		lwkt_gettoken(&vmobj_token);
249 		object->ref_count++;
250 		if (object->type == OBJT_VNODE) {
251 			vref(object->handle);
252 			/* XXX what if the vnode is being destroyed? */
253 		}
254 		lwkt_reltoken(&vmobj_token);
255 	}
256 }
257 
258 void
259 vm_object_reference_locked(vm_object_t object)
260 {
261 	if (object) {
262 		ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
263 		object->ref_count++;
264 		if (object->type == OBJT_VNODE) {
265 			vref(object->handle);
266 			/* XXX what if the vnode is being destroyed? */
267 		}
268 	}
269 }
270 
271 /*
272  * Dereference an object and its underlying vnode.
273  *
274  * The caller must hold vmobj_token.
275  */
276 static void
277 vm_object_vndeallocate(vm_object_t object)
278 {
279 	struct vnode *vp = (struct vnode *) object->handle;
280 
281 	KASSERT(object->type == OBJT_VNODE,
282 	    ("vm_object_vndeallocate: not a vnode object"));
283 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
284 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
285 #ifdef INVARIANTS
286 	if (object->ref_count == 0) {
287 		vprint("vm_object_vndeallocate", vp);
288 		panic("vm_object_vndeallocate: bad object reference count");
289 	}
290 #endif
291 
292 	object->ref_count--;
293 	if (object->ref_count == 0)
294 		vclrflags(vp, VTEXT);
295 	vrele(vp);
296 }
297 
298 /*
299  * Release a reference to the specified object, gained either through a
300  * vm_object_allocate or a vm_object_reference call.  When all references
301  * are gone, storage associated with this object may be relinquished.
302  */
303 void
304 vm_object_deallocate(vm_object_t object)
305 {
306 	lwkt_gettoken(&vmobj_token);
307 	vm_object_deallocate_locked(object);
308 	lwkt_reltoken(&vmobj_token);
309 }
310 
311 void
312 vm_object_deallocate_locked(vm_object_t object)
313 {
314 	vm_object_t temp;
315 
316 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
317 
318 	while (object != NULL) {
319 		if (object->type == OBJT_VNODE) {
320 			vm_object_vndeallocate(object);
321 			break;
322 		}
323 
324 		if (object->ref_count == 0) {
325 			panic("vm_object_deallocate: object deallocated "
326 			      "too many times: %d", object->type);
327 		}
328 		if (object->ref_count > 2) {
329 			object->ref_count--;
330 			break;
331 		}
332 
333 		/*
334 		 * We currently need the vm_token from this point on, and
335 		 * we must recheck ref_count after acquiring it.
336 		 */
337 		lwkt_gettoken(&vm_token);
338 
339 		if (object->ref_count > 2) {
340 			object->ref_count--;
341 			lwkt_reltoken(&vm_token);
342 			break;
343 		}
344 
345 		/*
346 		 * Here on ref_count of one or two, which are special cases for
347 		 * objects.
348 		 */
349 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
350 			vm_object_set_flag(object, OBJ_ONEMAPPING);
351 			object->ref_count--;
352 			lwkt_reltoken(&vm_token);
353 			break;
354 		}
355 		if ((object->ref_count == 2) && (object->shadow_count == 1)) {
356 			object->ref_count--;
357 			if ((object->handle == NULL) &&
358 			    (object->type == OBJT_DEFAULT ||
359 			     object->type == OBJT_SWAP)) {
360 				vm_object_t robject;
361 
362 				robject = LIST_FIRST(&object->shadow_head);
363 				KASSERT(robject != NULL,
364 					("vm_object_deallocate: ref_count: "
365 					"%d, shadow_count: %d",
366 					object->ref_count,
367 					object->shadow_count));
368 
369 				if ((robject->handle == NULL) &&
370 				    (robject->type == OBJT_DEFAULT ||
371 				     robject->type == OBJT_SWAP)) {
372 
373 					robject->ref_count++;
374 
375 					while (
376 						robject->paging_in_progress ||
377 						object->paging_in_progress
378 					) {
379 						vm_object_pip_sleep(robject, "objde1");
380 						vm_object_pip_sleep(object, "objde2");
381 					}
382 
383 					if (robject->ref_count == 1) {
384 						robject->ref_count--;
385 						object = robject;
386 						goto doterm;
387 					}
388 
389 					object = robject;
390 					vm_object_collapse(object);
391 					lwkt_reltoken(&vm_token);
392 					continue;
393 				}
394 			}
395 			lwkt_reltoken(&vm_token);
396 			break;
397 		}
398 
399 		/*
400 		 * Normal dereferencing path
401 		 */
402 		object->ref_count--;
403 		if (object->ref_count != 0) {
404 			lwkt_reltoken(&vm_token);
405 			break;
406 		}
407 
408 		/*
409 		 * Termination path
410 		 */
411 doterm:
412 		temp = object->backing_object;
413 		if (temp) {
414 			LIST_REMOVE(object, shadow_list);
415 			temp->shadow_count--;
416 			temp->generation++;
417 			object->backing_object = NULL;
418 		}
419 		lwkt_reltoken(&vm_token);
420 
421 		/*
422 		 * Don't double-terminate, we could be in a termination
423 		 * recursion due to the terminate having to sync data
424 		 * to disk.
425 		 */
426 		if ((object->flags & OBJ_DEAD) == 0)
427 			vm_object_terminate(object);
428 		object = temp;
429 	}
430 }
431 
432 /*
433  * Destroy the specified object, freeing up related resources.
434  *
435  * The object must have zero references.
436  *
437  * The caller must be holding vmobj_token and properly interlock with
438  * OBJ_DEAD.
439  */
440 static int vm_object_terminate_callback(vm_page_t p, void *data);
441 
442 void
443 vm_object_terminate(vm_object_t object)
444 {
445 	/*
446 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
447 	 * able to safely block.
448 	 */
449 	KKASSERT((object->flags & OBJ_DEAD) == 0);
450 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
451 	vm_object_set_flag(object, OBJ_DEAD);
452 
453 	/*
454 	 * Wait for the pageout daemon to be done with the object
455 	 */
456 	vm_object_pip_wait(object, "objtrm");
457 
458 	KASSERT(!object->paging_in_progress,
459 		("vm_object_terminate: pageout in progress"));
460 
461 	/*
462 	 * Clean and free the pages, as appropriate. All references to the
463 	 * object are gone, so we don't need to lock it.
464 	 */
465 	if (object->type == OBJT_VNODE) {
466 		struct vnode *vp;
467 
468 		/*
469 		 * Clean pages and flush buffers.
470 		 */
471 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
472 
473 		vp = (struct vnode *) object->handle;
474 		vinvalbuf(vp, V_SAVE, 0, 0);
475 	}
476 
477 	/*
478 	 * Wait for any I/O to complete, after which there had better not
479 	 * be any references left on the object.
480 	 */
481 	vm_object_pip_wait(object, "objtrm");
482 
483 	if (object->ref_count != 0) {
484 		panic("vm_object_terminate: object with references, "
485 		      "ref_count=%d", object->ref_count);
486 	}
487 
488 	/*
489 	 * Now free any remaining pages. For internal objects, this also
490 	 * removes them from paging queues. Don't free wired pages, just
491 	 * remove them from the object.
492 	 */
493 	lwkt_gettoken(&vm_token);
494 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
495 				vm_object_terminate_callback, NULL);
496 	lwkt_reltoken(&vm_token);
497 
498 	/*
499 	 * Let the pager know object is dead.
500 	 */
501 	vm_pager_deallocate(object);
502 
503 	/*
504 	 * Remove the object from the global object list.
505 	 *
506 	 * (we are holding vmobj_token)
507 	 */
508 	TAILQ_REMOVE(&vm_object_list, object, object_list);
509 	vm_object_count--;
510 	vm_object_dead_wakeup(object);
511 
512 	if (object->ref_count != 0) {
513 		panic("vm_object_terminate2: object with references, "
514 		      "ref_count=%d", object->ref_count);
515 	}
516 
517 	/*
518 	 * Free the space for the object.
519 	 */
520 	zfree(obj_zone, object);
521 }
522 
523 /*
524  * The caller must hold vm_token.
525  */
526 static int
527 vm_object_terminate_callback(vm_page_t p, void *data __unused)
528 {
529 	if (p->busy || (p->flags & PG_BUSY))
530 		panic("vm_object_terminate: freeing busy page %p", p);
531 	if (p->wire_count == 0) {
532 		vm_page_busy(p);
533 		vm_page_free(p);
534 		mycpu->gd_cnt.v_pfree++;
535 	} else {
536 		if (p->queue != PQ_NONE)
537 			kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
538 		vm_page_busy(p);
539 		vm_page_remove(p);
540 		vm_page_wakeup(p);
541 	}
542 	return(0);
543 }
544 
545 /*
546  * The object is dead but still has an object<->pager association.  Sleep
547  * and return.  The caller typically retests the association in a loop.
548  *
549  * Must be called with the vmobj_token held.
550  */
551 void
552 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
553 {
554 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
555 	if (object->handle) {
556 		vm_object_set_flag(object, OBJ_DEADWNT);
557 		tsleep(object, 0, wmesg, 0);
558 		/* object may be invalid after this point */
559 	}
560 }
561 
562 /*
563  * Wakeup anyone waiting for the object<->pager disassociation on
564  * a dead object.
565  *
566  * Must be called with the vmobj_token held.
567  */
568 void
569 vm_object_dead_wakeup(vm_object_t object)
570 {
571 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
572 	if (object->flags & OBJ_DEADWNT) {
573 		vm_object_clear_flag(object, OBJ_DEADWNT);
574 		wakeup(object);
575 	}
576 }
577 
578 /*
579  * Clean all dirty pages in the specified range of object.  Leaves page
580  * on whatever queue it is currently on.   If NOSYNC is set then do not
581  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
582  * leaving the object dirty.
583  *
584  * When stuffing pages asynchronously, allow clustering.  XXX we need a
585  * synchronous clustering mode implementation.
586  *
587  * Odd semantics: if start == end, we clean everything.
588  *
589  * The object must be locked? XXX
590  */
591 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
592 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
593 
594 void
595 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
596 		     int flags)
597 {
598 	struct rb_vm_page_scan_info info;
599 	struct vnode *vp;
600 	int wholescan;
601 	int pagerflags;
602 	int curgeneration;
603 
604 	lwkt_gettoken(&vm_token);
605 	if (object->type != OBJT_VNODE ||
606 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
607 		lwkt_reltoken(&vm_token);
608 		return;
609 	}
610 
611 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
612 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
613 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
614 
615 	vp = object->handle;
616 
617 	/*
618 	 * Interlock other major object operations.  This allows us to
619 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
620 	 */
621 	crit_enter();
622 	vm_object_set_flag(object, OBJ_CLEANING);
623 
624 	/*
625 	 * Handle 'entire object' case
626 	 */
627 	info.start_pindex = start;
628 	if (end == 0) {
629 		info.end_pindex = object->size - 1;
630 	} else {
631 		info.end_pindex = end - 1;
632 	}
633 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
634 	info.limit = flags;
635 	info.pagerflags = pagerflags;
636 	info.object = object;
637 
638 	/*
639 	 * If cleaning the entire object do a pass to mark the pages read-only.
640 	 * If everything worked out ok, clear OBJ_WRITEABLE and
641 	 * OBJ_MIGHTBEDIRTY.
642 	 */
643 	if (wholescan) {
644 		info.error = 0;
645 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
646 					vm_object_page_clean_pass1, &info);
647 		if (info.error == 0) {
648 			vm_object_clear_flag(object,
649 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
650 			if (object->type == OBJT_VNODE &&
651 			    (vp = (struct vnode *)object->handle) != NULL) {
652 				if (vp->v_flag & VOBJDIRTY)
653 					vclrflags(vp, VOBJDIRTY);
654 			}
655 		}
656 	}
657 
658 	/*
659 	 * Do a pass to clean all the dirty pages we find.
660 	 */
661 	do {
662 		info.error = 0;
663 		curgeneration = object->generation;
664 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
665 					vm_object_page_clean_pass2, &info);
666 	} while (info.error || curgeneration != object->generation);
667 
668 	vm_object_clear_flag(object, OBJ_CLEANING);
669 	crit_exit();
670 	lwkt_reltoken(&vm_token);
671 }
672 
673 /*
674  * The caller must hold vm_token.
675  */
676 static
677 int
678 vm_object_page_clean_pass1(struct vm_page *p, void *data)
679 {
680 	struct rb_vm_page_scan_info *info = data;
681 
682 	vm_page_flag_set(p, PG_CLEANCHK);
683 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
684 		info->error = 1;
685 	else
686 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
687 	return(0);
688 }
689 
690 /*
691  * The caller must hold vm_token.
692  */
693 static
694 int
695 vm_object_page_clean_pass2(struct vm_page *p, void *data)
696 {
697 	struct rb_vm_page_scan_info *info = data;
698 	int n;
699 
700 	/*
701 	 * Do not mess with pages that were inserted after we started
702 	 * the cleaning pass.
703 	 */
704 	if ((p->flags & PG_CLEANCHK) == 0)
705 		return(0);
706 
707 	/*
708 	 * Before wasting time traversing the pmaps, check for trivial
709 	 * cases where the page cannot be dirty.
710 	 */
711 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
712 		KKASSERT((p->dirty & p->valid) == 0);
713 		return(0);
714 	}
715 
716 	/*
717 	 * Check whether the page is dirty or not.  The page has been set
718 	 * to be read-only so the check will not race a user dirtying the
719 	 * page.
720 	 */
721 	vm_page_test_dirty(p);
722 	if ((p->dirty & p->valid) == 0) {
723 		vm_page_flag_clear(p, PG_CLEANCHK);
724 		return(0);
725 	}
726 
727 	/*
728 	 * If we have been asked to skip nosync pages and this is a
729 	 * nosync page, skip it.  Note that the object flags were
730 	 * not cleared in this case (because pass1 will have returned an
731 	 * error), so we do not have to set them.
732 	 */
733 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
734 		vm_page_flag_clear(p, PG_CLEANCHK);
735 		return(0);
736 	}
737 
738 	/*
739 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
740 	 * the pages that get successfully flushed.  Set info->error if
741 	 * we raced an object modification.
742 	 */
743 	n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
744 	if (n == 0)
745 		info->error = 1;
746 	return(0);
747 }
748 
749 /*
750  * Collect the specified page and nearby pages and flush them out.
751  * The number of pages flushed is returned.
752  *
753  * The caller must hold vm_token.
754  */
755 static int
756 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
757 {
758 	int runlen;
759 	int maxf;
760 	int chkb;
761 	int maxb;
762 	int i;
763 	int curgeneration;
764 	vm_pindex_t pi;
765 	vm_page_t maf[vm_pageout_page_count];
766 	vm_page_t mab[vm_pageout_page_count];
767 	vm_page_t ma[vm_pageout_page_count];
768 
769 	curgeneration = object->generation;
770 
771 	pi = p->pindex;
772 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
773 		if (object->generation != curgeneration) {
774 			return(0);
775 		}
776 	}
777 	KKASSERT(p->object == object && p->pindex == pi);
778 
779 	maxf = 0;
780 	for(i = 1; i < vm_pageout_page_count; i++) {
781 		vm_page_t tp;
782 
783 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
784 			if ((tp->flags & PG_BUSY) ||
785 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
786 				 (tp->flags & PG_CLEANCHK) == 0) ||
787 				(tp->busy != 0))
788 				break;
789 			if((tp->queue - tp->pc) == PQ_CACHE) {
790 				vm_page_flag_clear(tp, PG_CLEANCHK);
791 				break;
792 			}
793 			vm_page_test_dirty(tp);
794 			if ((tp->dirty & tp->valid) == 0) {
795 				vm_page_flag_clear(tp, PG_CLEANCHK);
796 				break;
797 			}
798 			maf[ i - 1 ] = tp;
799 			maxf++;
800 			continue;
801 		}
802 		break;
803 	}
804 
805 	maxb = 0;
806 	chkb = vm_pageout_page_count -  maxf;
807 	if (chkb) {
808 		for(i = 1; i < chkb;i++) {
809 			vm_page_t tp;
810 
811 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
812 				if ((tp->flags & PG_BUSY) ||
813 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
814 					 (tp->flags & PG_CLEANCHK) == 0) ||
815 					(tp->busy != 0))
816 					break;
817 				if((tp->queue - tp->pc) == PQ_CACHE) {
818 					vm_page_flag_clear(tp, PG_CLEANCHK);
819 					break;
820 				}
821 				vm_page_test_dirty(tp);
822 				if ((tp->dirty & tp->valid) == 0) {
823 					vm_page_flag_clear(tp, PG_CLEANCHK);
824 					break;
825 				}
826 				mab[ i - 1 ] = tp;
827 				maxb++;
828 				continue;
829 			}
830 			break;
831 		}
832 	}
833 
834 	for(i = 0; i < maxb; i++) {
835 		int index = (maxb - i) - 1;
836 		ma[index] = mab[i];
837 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
838 	}
839 	vm_page_flag_clear(p, PG_CLEANCHK);
840 	ma[maxb] = p;
841 	for(i = 0; i < maxf; i++) {
842 		int index = (maxb + i) + 1;
843 		ma[index] = maf[i];
844 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
845 	}
846 	runlen = maxb + maxf + 1;
847 
848 	vm_pageout_flush(ma, runlen, pagerflags);
849 	for (i = 0; i < runlen; i++) {
850 		if (ma[i]->valid & ma[i]->dirty) {
851 			vm_page_protect(ma[i], VM_PROT_READ);
852 			vm_page_flag_set(ma[i], PG_CLEANCHK);
853 
854 			/*
855 			 * maxf will end up being the actual number of pages
856 			 * we wrote out contiguously, non-inclusive of the
857 			 * first page.  We do not count look-behind pages.
858 			 */
859 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
860 				maxf = i - maxb - 1;
861 		}
862 	}
863 	return(maxf + 1);
864 }
865 
866 /*
867  * Same as vm_object_pmap_copy, except range checking really
868  * works, and is meant for small sections of an object.
869  *
870  * This code protects resident pages by making them read-only
871  * and is typically called on a fork or split when a page
872  * is converted to copy-on-write.
873  *
874  * NOTE: If the page is already at VM_PROT_NONE, calling
875  * vm_page_protect will have no effect.
876  */
877 void
878 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
879 {
880 	vm_pindex_t idx;
881 	vm_page_t p;
882 
883 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
884 		return;
885 
886 	/*
887 	 * spl protection needed to prevent races between the lookup,
888 	 * an interrupt unbusy/free, and our protect call.
889 	 */
890 	crit_enter();
891 	lwkt_gettoken(&vm_token);
892 	for (idx = start; idx < end; idx++) {
893 		p = vm_page_lookup(object, idx);
894 		if (p == NULL)
895 			continue;
896 		vm_page_protect(p, VM_PROT_READ);
897 	}
898 	lwkt_reltoken(&vm_token);
899 	crit_exit();
900 }
901 
902 /*
903  * Removes all physical pages in the specified object range from all
904  * physical maps.
905  *
906  * The object must *not* be locked.
907  */
908 
909 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
910 
911 void
912 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
913 {
914 	struct rb_vm_page_scan_info info;
915 
916 	if (object == NULL)
917 		return;
918 	info.start_pindex = start;
919 	info.end_pindex = end - 1;
920 
921 	crit_enter();
922 	lwkt_gettoken(&vm_token);
923 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
924 				vm_object_pmap_remove_callback, &info);
925 	if (start == 0 && end == object->size)
926 		vm_object_clear_flag(object, OBJ_WRITEABLE);
927 	lwkt_reltoken(&vm_token);
928 	crit_exit();
929 }
930 
931 /*
932  * The caller must hold vm_token.
933  */
934 static int
935 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
936 {
937 	vm_page_protect(p, VM_PROT_NONE);
938 	return(0);
939 }
940 
941 /*
942  * Implements the madvise function at the object/page level.
943  *
944  * MADV_WILLNEED	(any object)
945  *
946  *	Activate the specified pages if they are resident.
947  *
948  * MADV_DONTNEED	(any object)
949  *
950  *	Deactivate the specified pages if they are resident.
951  *
952  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
953  *
954  *	Deactivate and clean the specified pages if they are
955  *	resident.  This permits the process to reuse the pages
956  *	without faulting or the kernel to reclaim the pages
957  *	without I/O.
958  *
959  * No requirements.
960  */
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
963 {
964 	vm_pindex_t end, tpindex;
965 	vm_object_t tobject;
966 	vm_page_t m;
967 
968 	if (object == NULL)
969 		return;
970 
971 	end = pindex + count;
972 
973 	lwkt_gettoken(&vm_token);
974 
975 	/*
976 	 * Locate and adjust resident pages
977 	 */
978 	for (; pindex < end; pindex += 1) {
979 relookup:
980 		tobject = object;
981 		tpindex = pindex;
982 shadowlookup:
983 		/*
984 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
985 		 * and those pages must be OBJ_ONEMAPPING.
986 		 */
987 		if (advise == MADV_FREE) {
988 			if ((tobject->type != OBJT_DEFAULT &&
989 			     tobject->type != OBJT_SWAP) ||
990 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
991 				continue;
992 			}
993 		}
994 
995 		/*
996 		 * spl protection is required to avoid a race between the
997 		 * lookup, an interrupt unbusy/free, and our busy check.
998 		 */
999 
1000 		crit_enter();
1001 		m = vm_page_lookup(tobject, tpindex);
1002 
1003 		if (m == NULL) {
1004 			/*
1005 			 * There may be swap even if there is no backing page
1006 			 */
1007 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1008 				swap_pager_freespace(tobject, tpindex, 1);
1009 
1010 			/*
1011 			 * next object
1012 			 */
1013 			crit_exit();
1014 			if (tobject->backing_object == NULL)
1015 				continue;
1016 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1017 			tobject = tobject->backing_object;
1018 			goto shadowlookup;
1019 		}
1020 
1021 		/*
1022 		 * If the page is busy or not in a normal active state,
1023 		 * we skip it.  If the page is not managed there are no
1024 		 * page queues to mess with.  Things can break if we mess
1025 		 * with pages in any of the below states.
1026 		 */
1027 		if (
1028 		    m->hold_count ||
1029 		    m->wire_count ||
1030 		    (m->flags & PG_UNMANAGED) ||
1031 		    m->valid != VM_PAGE_BITS_ALL
1032 		) {
1033 			crit_exit();
1034 			continue;
1035 		}
1036 
1037  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1038 			crit_exit();
1039   			goto relookup;
1040 		}
1041 		vm_page_busy(m);
1042 		crit_exit();
1043 
1044 		/*
1045 		 * Theoretically once a page is known not to be busy, an
1046 		 * interrupt cannot come along and rip it out from under us.
1047 		 */
1048 
1049 		if (advise == MADV_WILLNEED) {
1050 			vm_page_activate(m);
1051 		} else if (advise == MADV_DONTNEED) {
1052 			vm_page_dontneed(m);
1053 		} else if (advise == MADV_FREE) {
1054 			/*
1055 			 * Mark the page clean.  This will allow the page
1056 			 * to be freed up by the system.  However, such pages
1057 			 * are often reused quickly by malloc()/free()
1058 			 * so we do not do anything that would cause
1059 			 * a page fault if we can help it.
1060 			 *
1061 			 * Specifically, we do not try to actually free
1062 			 * the page now nor do we try to put it in the
1063 			 * cache (which would cause a page fault on reuse).
1064 			 *
1065 			 * But we do make the page is freeable as we
1066 			 * can without actually taking the step of unmapping
1067 			 * it.
1068 			 */
1069 			pmap_clear_modify(m);
1070 			m->dirty = 0;
1071 			m->act_count = 0;
1072 			vm_page_dontneed(m);
1073 			if (tobject->type == OBJT_SWAP)
1074 				swap_pager_freespace(tobject, tpindex, 1);
1075 		}
1076 		vm_page_wakeup(m);
1077 	}
1078 	lwkt_reltoken(&vm_token);
1079 }
1080 
1081 /*
1082  * Create a new object which is backed by the specified existing object
1083  * range.  The source object reference is deallocated.
1084  *
1085  * The new object and offset into that object are returned in the source
1086  * parameters.
1087  *
1088  * No other requirements.
1089  */
1090 void
1091 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1092 {
1093 	vm_object_t source;
1094 	vm_object_t result;
1095 
1096 	source = *object;
1097 
1098 	/*
1099 	 * Don't create the new object if the old object isn't shared.
1100 	 */
1101 	lwkt_gettoken(&vm_token);
1102 
1103 	if (source != NULL &&
1104 	    source->ref_count == 1 &&
1105 	    source->handle == NULL &&
1106 	    (source->type == OBJT_DEFAULT ||
1107 	     source->type == OBJT_SWAP)) {
1108 		lwkt_reltoken(&vm_token);
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * Allocate a new object with the given length
1114 	 */
1115 
1116 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1117 		panic("vm_object_shadow: no object for shadowing");
1118 
1119 	/*
1120 	 * The new object shadows the source object, adding a reference to it.
1121 	 * Our caller changes his reference to point to the new object,
1122 	 * removing a reference to the source object.  Net result: no change
1123 	 * of reference count.
1124 	 *
1125 	 * Try to optimize the result object's page color when shadowing
1126 	 * in order to maintain page coloring consistency in the combined
1127 	 * shadowed object.
1128 	 */
1129 	result->backing_object = source;
1130 	if (source) {
1131 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1132 		source->shadow_count++;
1133 		source->generation++;
1134 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1135 	}
1136 
1137 	/*
1138 	 * Store the offset into the source object, and fix up the offset into
1139 	 * the new object.
1140 	 */
1141 	result->backing_object_offset = *offset;
1142 	lwkt_reltoken(&vm_token);
1143 
1144 	/*
1145 	 * Return the new things
1146 	 */
1147 	*offset = 0;
1148 	*object = result;
1149 }
1150 
1151 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1152 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1153 #define	OBSC_COLLAPSE_WAIT	0x0004
1154 
1155 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1156 
1157 /*
1158  * The caller must hold vm_token.
1159  */
1160 static __inline int
1161 vm_object_backing_scan(vm_object_t object, int op)
1162 {
1163 	struct rb_vm_page_scan_info info;
1164 	vm_object_t backing_object;
1165 
1166 	crit_enter();
1167 
1168 	backing_object = object->backing_object;
1169 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1170 
1171 	/*
1172 	 * Initial conditions
1173 	 */
1174 
1175 	if (op & OBSC_TEST_ALL_SHADOWED) {
1176 		/*
1177 		 * We do not want to have to test for the existence of
1178 		 * swap pages in the backing object.  XXX but with the
1179 		 * new swapper this would be pretty easy to do.
1180 		 *
1181 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1182 		 * been ZFOD faulted yet?  If we do not test for this, the
1183 		 * shadow test may succeed! XXX
1184 		 */
1185 		if (backing_object->type != OBJT_DEFAULT) {
1186 			crit_exit();
1187 			return(0);
1188 		}
1189 	}
1190 	if (op & OBSC_COLLAPSE_WAIT) {
1191 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1192 		vm_object_set_flag(backing_object, OBJ_DEAD);
1193 	}
1194 
1195 	/*
1196 	 * Our scan.   We have to retry if a negative error code is returned,
1197 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1198 	 * the scan had to be stopped because the parent does not completely
1199 	 * shadow the child.
1200 	 */
1201 	info.object = object;
1202 	info.backing_object = backing_object;
1203 	info.limit = op;
1204 	do {
1205 		info.error = 1;
1206 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1207 					vm_object_backing_scan_callback,
1208 					&info);
1209 	} while (info.error < 0);
1210 	crit_exit();
1211 	return(info.error);
1212 }
1213 
1214 /*
1215  * The caller must hold vm_token.
1216  */
1217 static int
1218 vm_object_backing_scan_callback(vm_page_t p, void *data)
1219 {
1220 	struct rb_vm_page_scan_info *info = data;
1221 	vm_object_t backing_object;
1222 	vm_object_t object;
1223 	vm_pindex_t new_pindex;
1224 	vm_pindex_t backing_offset_index;
1225 	int op;
1226 
1227 	new_pindex = p->pindex - info->backing_offset_index;
1228 	op = info->limit;
1229 	object = info->object;
1230 	backing_object = info->backing_object;
1231 	backing_offset_index = info->backing_offset_index;
1232 
1233 	if (op & OBSC_TEST_ALL_SHADOWED) {
1234 		vm_page_t pp;
1235 
1236 		/*
1237 		 * Ignore pages outside the parent object's range
1238 		 * and outside the parent object's mapping of the
1239 		 * backing object.
1240 		 *
1241 		 * note that we do not busy the backing object's
1242 		 * page.
1243 		 */
1244 		if (
1245 		    p->pindex < backing_offset_index ||
1246 		    new_pindex >= object->size
1247 		) {
1248 			return(0);
1249 		}
1250 
1251 		/*
1252 		 * See if the parent has the page or if the parent's
1253 		 * object pager has the page.  If the parent has the
1254 		 * page but the page is not valid, the parent's
1255 		 * object pager must have the page.
1256 		 *
1257 		 * If this fails, the parent does not completely shadow
1258 		 * the object and we might as well give up now.
1259 		 */
1260 
1261 		pp = vm_page_lookup(object, new_pindex);
1262 		if ((pp == NULL || pp->valid == 0) &&
1263 		    !vm_pager_has_page(object, new_pindex)
1264 		) {
1265 			info->error = 0;	/* problemo */
1266 			return(-1);		/* stop the scan */
1267 		}
1268 	}
1269 
1270 	/*
1271 	 * Check for busy page
1272 	 */
1273 
1274 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1275 		vm_page_t pp;
1276 
1277 		if (op & OBSC_COLLAPSE_NOWAIT) {
1278 			if (
1279 			    (p->flags & PG_BUSY) ||
1280 			    !p->valid ||
1281 			    p->hold_count ||
1282 			    p->wire_count ||
1283 			    p->busy
1284 			) {
1285 				return(0);
1286 			}
1287 		} else if (op & OBSC_COLLAPSE_WAIT) {
1288 			if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1289 				/*
1290 				 * If we slept, anything could have
1291 				 * happened.   Ask that the scan be restarted.
1292 				 *
1293 				 * Since the object is marked dead, the
1294 				 * backing offset should not have changed.
1295 				 */
1296 				info->error = -1;
1297 				return(-1);
1298 			}
1299 		}
1300 
1301 		/*
1302 		 * Busy the page
1303 		 */
1304 		vm_page_busy(p);
1305 
1306 		KASSERT(
1307 		    p->object == backing_object,
1308 		    ("vm_object_qcollapse(): object mismatch")
1309 		);
1310 
1311 		/*
1312 		 * Destroy any associated swap
1313 		 */
1314 		if (backing_object->type == OBJT_SWAP)
1315 			swap_pager_freespace(backing_object, p->pindex, 1);
1316 
1317 		if (
1318 		    p->pindex < backing_offset_index ||
1319 		    new_pindex >= object->size
1320 		) {
1321 			/*
1322 			 * Page is out of the parent object's range, we
1323 			 * can simply destroy it.
1324 			 */
1325 			vm_page_protect(p, VM_PROT_NONE);
1326 			vm_page_free(p);
1327 			return(0);
1328 		}
1329 
1330 		pp = vm_page_lookup(object, new_pindex);
1331 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1332 			/*
1333 			 * page already exists in parent OR swap exists
1334 			 * for this location in the parent.  Destroy
1335 			 * the original page from the backing object.
1336 			 *
1337 			 * Leave the parent's page alone
1338 			 */
1339 			vm_page_protect(p, VM_PROT_NONE);
1340 			vm_page_free(p);
1341 			return(0);
1342 		}
1343 
1344 		/*
1345 		 * Page does not exist in parent, rename the
1346 		 * page from the backing object to the main object.
1347 		 *
1348 		 * If the page was mapped to a process, it can remain
1349 		 * mapped through the rename.
1350 		 */
1351 		if ((p->queue - p->pc) == PQ_CACHE)
1352 			vm_page_deactivate(p);
1353 
1354 		vm_page_rename(p, object, new_pindex);
1355 		/* page automatically made dirty by rename */
1356 	}
1357 	return(0);
1358 }
1359 
1360 /*
1361  * This version of collapse allows the operation to occur earlier and
1362  * when paging_in_progress is true for an object...  This is not a complete
1363  * operation, but should plug 99.9% of the rest of the leaks.
1364  *
1365  * The caller must hold vm_token and vmobj_token.
1366  * (only called from vm_object_collapse)
1367  */
1368 static void
1369 vm_object_qcollapse(vm_object_t object)
1370 {
1371 	vm_object_t backing_object = object->backing_object;
1372 
1373 	if (backing_object->ref_count != 1)
1374 		return;
1375 
1376 	backing_object->ref_count += 2;
1377 
1378 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1379 
1380 	backing_object->ref_count -= 2;
1381 }
1382 
1383 /*
1384  * Collapse an object with the object backing it.  Pages in the backing
1385  * object are moved into the parent, and the backing object is deallocated.
1386  */
1387 void
1388 vm_object_collapse(vm_object_t object)
1389 {
1390 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1391 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1392 
1393 	while (TRUE) {
1394 		vm_object_t backing_object;
1395 
1396 		/*
1397 		 * Verify that the conditions are right for collapse:
1398 		 *
1399 		 * The object exists and the backing object exists.
1400 		 */
1401 		if (object == NULL)
1402 			break;
1403 
1404 		if ((backing_object = object->backing_object) == NULL)
1405 			break;
1406 
1407 		/*
1408 		 * we check the backing object first, because it is most likely
1409 		 * not collapsable.
1410 		 */
1411 		if (backing_object->handle != NULL ||
1412 		    (backing_object->type != OBJT_DEFAULT &&
1413 		     backing_object->type != OBJT_SWAP) ||
1414 		    (backing_object->flags & OBJ_DEAD) ||
1415 		    object->handle != NULL ||
1416 		    (object->type != OBJT_DEFAULT &&
1417 		     object->type != OBJT_SWAP) ||
1418 		    (object->flags & OBJ_DEAD)) {
1419 			break;
1420 		}
1421 
1422 		if (
1423 		    object->paging_in_progress != 0 ||
1424 		    backing_object->paging_in_progress != 0
1425 		) {
1426 			vm_object_qcollapse(object);
1427 			break;
1428 		}
1429 
1430 		/*
1431 		 * We know that we can either collapse the backing object (if
1432 		 * the parent is the only reference to it) or (perhaps) have
1433 		 * the parent bypass the object if the parent happens to shadow
1434 		 * all the resident pages in the entire backing object.
1435 		 *
1436 		 * This is ignoring pager-backed pages such as swap pages.
1437 		 * vm_object_backing_scan fails the shadowing test in this
1438 		 * case.
1439 		 */
1440 
1441 		if (backing_object->ref_count == 1) {
1442 			/*
1443 			 * If there is exactly one reference to the backing
1444 			 * object, we can collapse it into the parent.
1445 			 */
1446 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1447 
1448 			/*
1449 			 * Move the pager from backing_object to object.
1450 			 */
1451 
1452 			if (backing_object->type == OBJT_SWAP) {
1453 				vm_object_pip_add(backing_object, 1);
1454 
1455 				/*
1456 				 * scrap the paging_offset junk and do a
1457 				 * discrete copy.  This also removes major
1458 				 * assumptions about how the swap-pager
1459 				 * works from where it doesn't belong.  The
1460 				 * new swapper is able to optimize the
1461 				 * destroy-source case.
1462 				 */
1463 
1464 				vm_object_pip_add(object, 1);
1465 				swap_pager_copy(
1466 				    backing_object,
1467 				    object,
1468 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1469 				vm_object_pip_wakeup(object);
1470 
1471 				vm_object_pip_wakeup(backing_object);
1472 			}
1473 			/*
1474 			 * Object now shadows whatever backing_object did.
1475 			 * Note that the reference to
1476 			 * backing_object->backing_object moves from within
1477 			 * backing_object to within object.
1478 			 */
1479 
1480 			LIST_REMOVE(object, shadow_list);
1481 			object->backing_object->shadow_count--;
1482 			object->backing_object->generation++;
1483 			if (backing_object->backing_object) {
1484 				LIST_REMOVE(backing_object, shadow_list);
1485 				backing_object->backing_object->shadow_count--;
1486 				backing_object->backing_object->generation++;
1487 			}
1488 			object->backing_object = backing_object->backing_object;
1489 			if (object->backing_object) {
1490 				LIST_INSERT_HEAD(
1491 				    &object->backing_object->shadow_head,
1492 				    object,
1493 				    shadow_list
1494 				);
1495 				object->backing_object->shadow_count++;
1496 				object->backing_object->generation++;
1497 			}
1498 
1499 			object->backing_object_offset +=
1500 			    backing_object->backing_object_offset;
1501 
1502 			/*
1503 			 * Discard backing_object.
1504 			 *
1505 			 * Since the backing object has no pages, no pager left,
1506 			 * and no object references within it, all that is
1507 			 * necessary is to dispose of it.
1508 			 */
1509 
1510 			KASSERT(backing_object->ref_count == 1,
1511 				("backing_object %p was somehow "
1512 				 "re-referenced during collapse!",
1513 				 backing_object));
1514 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
1515 				("backing_object %p somehow has left "
1516 				 "over pages during collapse!",
1517 				 backing_object));
1518 
1519 			/* (we are holding vmobj_token) */
1520 			TAILQ_REMOVE(&vm_object_list, backing_object,
1521 				     object_list);
1522 			vm_object_count--;
1523 
1524 			zfree(obj_zone, backing_object);
1525 
1526 			object_collapses++;
1527 		} else {
1528 			vm_object_t new_backing_object;
1529 
1530 			/*
1531 			 * If we do not entirely shadow the backing object,
1532 			 * there is nothing we can do so we give up.
1533 			 */
1534 
1535 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1536 				break;
1537 			}
1538 
1539 			/*
1540 			 * Make the parent shadow the next object in the
1541 			 * chain.  Deallocating backing_object will not remove
1542 			 * it, since its reference count is at least 2.
1543 			 */
1544 
1545 			LIST_REMOVE(object, shadow_list);
1546 			backing_object->shadow_count--;
1547 			backing_object->generation++;
1548 
1549 			new_backing_object = backing_object->backing_object;
1550 			if ((object->backing_object = new_backing_object) != NULL) {
1551 				vm_object_reference(new_backing_object);
1552 				LIST_INSERT_HEAD(
1553 				    &new_backing_object->shadow_head,
1554 				    object,
1555 				    shadow_list
1556 				);
1557 				new_backing_object->shadow_count++;
1558 				new_backing_object->generation++;
1559 				object->backing_object_offset +=
1560 					backing_object->backing_object_offset;
1561 			}
1562 
1563 			/*
1564 			 * Drop the reference count on backing_object. Since
1565 			 * its ref_count was at least 2, it will not vanish;
1566 			 * so we don't need to call vm_object_deallocate, but
1567 			 * we do anyway.
1568 			 */
1569 			vm_object_deallocate_locked(backing_object);
1570 			object_bypasses++;
1571 		}
1572 
1573 		/*
1574 		 * Try again with this object's new backing object.
1575 		 */
1576 	}
1577 }
1578 
1579 /*
1580  * Removes all physical pages in the specified object range from the
1581  * object's list of pages.
1582  *
1583  * No requirements.
1584  */
1585 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1586 
1587 void
1588 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1589 		      boolean_t clean_only)
1590 {
1591 	struct rb_vm_page_scan_info info;
1592 	int all;
1593 
1594 	/*
1595 	 * Degenerate cases and assertions
1596 	 */
1597 	lwkt_gettoken(&vm_token);
1598 	if (object == NULL ||
1599 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
1600 		lwkt_reltoken(&vm_token);
1601 		return;
1602 	}
1603 	KASSERT(object->type != OBJT_PHYS,
1604 		("attempt to remove pages from a physical object"));
1605 
1606 	/*
1607 	 * Indicate that paging is occuring on the object
1608 	 */
1609 	crit_enter();
1610 	vm_object_pip_add(object, 1);
1611 
1612 	/*
1613 	 * Figure out the actual removal range and whether we are removing
1614 	 * the entire contents of the object or not.  If removing the entire
1615 	 * contents, be sure to get all pages, even those that might be
1616 	 * beyond the end of the object.
1617 	 */
1618 	info.start_pindex = start;
1619 	if (end == 0)
1620 		info.end_pindex = (vm_pindex_t)-1;
1621 	else
1622 		info.end_pindex = end - 1;
1623 	info.limit = clean_only;
1624 	all = (start == 0 && info.end_pindex >= object->size - 1);
1625 
1626 	/*
1627 	 * Loop until we are sure we have gotten them all.
1628 	 */
1629 	do {
1630 		info.error = 0;
1631 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1632 					vm_object_page_remove_callback, &info);
1633 	} while (info.error);
1634 
1635 	/*
1636 	 * Remove any related swap if throwing away pages, or for
1637 	 * non-swap objects (the swap is a clean copy in that case).
1638 	 */
1639 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1640 		if (all)
1641 			swap_pager_freespace_all(object);
1642 		else
1643 			swap_pager_freespace(object, info.start_pindex,
1644 			     info.end_pindex - info.start_pindex + 1);
1645 	}
1646 
1647 	/*
1648 	 * Cleanup
1649 	 */
1650 	vm_object_pip_wakeup(object);
1651 	crit_exit();
1652 	lwkt_reltoken(&vm_token);
1653 }
1654 
1655 /*
1656  * The caller must hold vm_token.
1657  */
1658 static int
1659 vm_object_page_remove_callback(vm_page_t p, void *data)
1660 {
1661 	struct rb_vm_page_scan_info *info = data;
1662 
1663 	/*
1664 	 * Wired pages cannot be destroyed, but they can be invalidated
1665 	 * and we do so if clean_only (limit) is not set.
1666 	 *
1667 	 * WARNING!  The page may be wired due to being part of a buffer
1668 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1669 	 *	     This is fine as part of a truncation but VFSs must be
1670 	 *	     sure to fix the buffer up when re-extending the file.
1671 	 */
1672 	if (p->wire_count != 0) {
1673 		vm_page_protect(p, VM_PROT_NONE);
1674 		if (info->limit == 0)
1675 			p->valid = 0;
1676 		return(0);
1677 	}
1678 
1679 	/*
1680 	 * The busy flags are only cleared at
1681 	 * interrupt -- minimize the spl transitions
1682 	 */
1683 
1684 	if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1685 		info->error = 1;
1686 		return(0);
1687 	}
1688 
1689 	/*
1690 	 * limit is our clean_only flag.  If set and the page is dirty, do
1691 	 * not free it.  If set and the page is being held by someone, do
1692 	 * not free it.
1693 	 */
1694 	if (info->limit && p->valid) {
1695 		vm_page_test_dirty(p);
1696 		if (p->valid & p->dirty)
1697 			return(0);
1698 		if (p->hold_count)
1699 			return(0);
1700 	}
1701 
1702 	/*
1703 	 * Destroy the page
1704 	 */
1705 	vm_page_busy(p);
1706 	vm_page_protect(p, VM_PROT_NONE);
1707 	vm_page_free(p);
1708 	return(0);
1709 }
1710 
1711 /*
1712  * Coalesces two objects backing up adjoining regions of memory into a
1713  * single object.
1714  *
1715  * returns TRUE if objects were combined.
1716  *
1717  * NOTE: Only works at the moment if the second object is NULL -
1718  *	 if it's not, which object do we lock first?
1719  *
1720  * Parameters:
1721  *	prev_object	First object to coalesce
1722  *	prev_offset	Offset into prev_object
1723  *	next_object	Second object into coalesce
1724  *	next_offset	Offset into next_object
1725  *
1726  *	prev_size	Size of reference to prev_object
1727  *	next_size	Size of reference to next_object
1728  *
1729  * The object must not be locked.
1730  * The caller must hold vm_token and vmobj_token.
1731  */
1732 boolean_t
1733 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1734 		   vm_size_t prev_size, vm_size_t next_size)
1735 {
1736 	vm_pindex_t next_pindex;
1737 
1738 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1739 	ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1740 
1741 	if (prev_object == NULL) {
1742 		return (TRUE);
1743 	}
1744 
1745 	if (prev_object->type != OBJT_DEFAULT &&
1746 	    prev_object->type != OBJT_SWAP) {
1747 		return (FALSE);
1748 	}
1749 
1750 	/*
1751 	 * Try to collapse the object first
1752 	 */
1753 	vm_object_collapse(prev_object);
1754 
1755 	/*
1756 	 * Can't coalesce if: . more than one reference . paged out . shadows
1757 	 * another object . has a copy elsewhere (any of which mean that the
1758 	 * pages not mapped to prev_entry may be in use anyway)
1759 	 */
1760 
1761 	if (prev_object->backing_object != NULL)
1762 		return (FALSE);
1763 
1764 	prev_size >>= PAGE_SHIFT;
1765 	next_size >>= PAGE_SHIFT;
1766 	next_pindex = prev_pindex + prev_size;
1767 
1768 	if ((prev_object->ref_count > 1) &&
1769 	    (prev_object->size != next_pindex)) {
1770 		return (FALSE);
1771 	}
1772 
1773 	/*
1774 	 * Remove any pages that may still be in the object from a previous
1775 	 * deallocation.
1776 	 */
1777 	if (next_pindex < prev_object->size) {
1778 		vm_object_page_remove(prev_object,
1779 				      next_pindex,
1780 				      next_pindex + next_size, FALSE);
1781 		if (prev_object->type == OBJT_SWAP)
1782 			swap_pager_freespace(prev_object,
1783 					     next_pindex, next_size);
1784 	}
1785 
1786 	/*
1787 	 * Extend the object if necessary.
1788 	 */
1789 	if (next_pindex + next_size > prev_object->size)
1790 		prev_object->size = next_pindex + next_size;
1791 	return (TRUE);
1792 }
1793 
1794 /*
1795  * Make the object writable and flag is being possibly dirty.
1796  *
1797  * No requirements.
1798  */
1799 void
1800 vm_object_set_writeable_dirty(vm_object_t object)
1801 {
1802 	struct vnode *vp;
1803 
1804 	lwkt_gettoken(&vm_token);
1805 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1806 	if (object->type == OBJT_VNODE &&
1807 	    (vp = (struct vnode *)object->handle) != NULL) {
1808 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1809 			vsetflags(vp, VOBJDIRTY);
1810 		}
1811 	}
1812 	lwkt_reltoken(&vm_token);
1813 }
1814 
1815 #include "opt_ddb.h"
1816 #ifdef DDB
1817 #include <sys/kernel.h>
1818 
1819 #include <sys/cons.h>
1820 
1821 #include <ddb/ddb.h>
1822 
1823 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1824 				       vm_map_entry_t entry);
1825 static int	vm_object_in_map (vm_object_t object);
1826 
1827 /*
1828  * The caller must hold vm_token.
1829  */
1830 static int
1831 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1832 {
1833 	vm_map_t tmpm;
1834 	vm_map_entry_t tmpe;
1835 	vm_object_t obj;
1836 	int entcount;
1837 
1838 	if (map == 0)
1839 		return 0;
1840 	if (entry == 0) {
1841 		tmpe = map->header.next;
1842 		entcount = map->nentries;
1843 		while (entcount-- && (tmpe != &map->header)) {
1844 			if( _vm_object_in_map(map, object, tmpe)) {
1845 				return 1;
1846 			}
1847 			tmpe = tmpe->next;
1848 		}
1849 		return (0);
1850 	}
1851 	switch(entry->maptype) {
1852 	case VM_MAPTYPE_SUBMAP:
1853 		tmpm = entry->object.sub_map;
1854 		tmpe = tmpm->header.next;
1855 		entcount = tmpm->nentries;
1856 		while (entcount-- && tmpe != &tmpm->header) {
1857 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1858 				return 1;
1859 			}
1860 			tmpe = tmpe->next;
1861 		}
1862 		break;
1863 	case VM_MAPTYPE_NORMAL:
1864 	case VM_MAPTYPE_VPAGETABLE:
1865 		obj = entry->object.vm_object;
1866 		while (obj) {
1867 			if (obj == object)
1868 				return 1;
1869 			obj = obj->backing_object;
1870 		}
1871 		break;
1872 	default:
1873 		break;
1874 	}
1875 	return 0;
1876 }
1877 
1878 static int vm_object_in_map_callback(struct proc *p, void *data);
1879 
1880 struct vm_object_in_map_info {
1881 	vm_object_t object;
1882 	int rv;
1883 };
1884 
1885 /*
1886  * Debugging only
1887  */
1888 static int
1889 vm_object_in_map(vm_object_t object)
1890 {
1891 	struct vm_object_in_map_info info;
1892 
1893 	info.rv = 0;
1894 	info.object = object;
1895 
1896 	allproc_scan(vm_object_in_map_callback, &info);
1897 	if (info.rv)
1898 		return 1;
1899 	if( _vm_object_in_map(&kernel_map, object, 0))
1900 		return 1;
1901 	if( _vm_object_in_map(&pager_map, object, 0))
1902 		return 1;
1903 	if( _vm_object_in_map(&buffer_map, object, 0))
1904 		return 1;
1905 	return 0;
1906 }
1907 
1908 /*
1909  * Debugging only
1910  */
1911 static int
1912 vm_object_in_map_callback(struct proc *p, void *data)
1913 {
1914 	struct vm_object_in_map_info *info = data;
1915 
1916 	if (p->p_vmspace) {
1917 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1918 			info->rv = 1;
1919 			return -1;
1920 		}
1921 	}
1922 	return (0);
1923 }
1924 
1925 DB_SHOW_COMMAND(vmochk, vm_object_check)
1926 {
1927 	vm_object_t object;
1928 
1929 	/*
1930 	 * make sure that internal objs are in a map somewhere
1931 	 * and none have zero ref counts.
1932 	 */
1933 	for (object = TAILQ_FIRST(&vm_object_list);
1934 			object != NULL;
1935 			object = TAILQ_NEXT(object, object_list)) {
1936 		if (object->type == OBJT_MARKER)
1937 			continue;
1938 		if (object->handle == NULL &&
1939 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1940 			if (object->ref_count == 0) {
1941 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1942 					(long)object->size);
1943 			}
1944 			if (!vm_object_in_map(object)) {
1945 				db_printf(
1946 			"vmochk: internal obj is not in a map: "
1947 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1948 				    object->ref_count, (u_long)object->size,
1949 				    (u_long)object->size,
1950 				    (void *)object->backing_object);
1951 			}
1952 		}
1953 	}
1954 }
1955 
1956 /*
1957  * Debugging only
1958  */
1959 DB_SHOW_COMMAND(object, vm_object_print_static)
1960 {
1961 	/* XXX convert args. */
1962 	vm_object_t object = (vm_object_t)addr;
1963 	boolean_t full = have_addr;
1964 
1965 	vm_page_t p;
1966 
1967 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1968 #define	count	was_count
1969 
1970 	int count;
1971 
1972 	if (object == NULL)
1973 		return;
1974 
1975 	db_iprintf(
1976 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1977 	    object, (int)object->type, (u_long)object->size,
1978 	    object->resident_page_count, object->ref_count, object->flags);
1979 	/*
1980 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1981 	 */
1982 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1983 	    object->shadow_count,
1984 	    object->backing_object ? object->backing_object->ref_count : 0,
1985 	    object->backing_object, (long)object->backing_object_offset);
1986 
1987 	if (!full)
1988 		return;
1989 
1990 	db_indent += 2;
1991 	count = 0;
1992 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1993 		if (count == 0)
1994 			db_iprintf("memory:=");
1995 		else if (count == 6) {
1996 			db_printf("\n");
1997 			db_iprintf(" ...");
1998 			count = 0;
1999 		} else
2000 			db_printf(",");
2001 		count++;
2002 
2003 		db_printf("(off=0x%lx,page=0x%lx)",
2004 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2005 	}
2006 	if (count != 0)
2007 		db_printf("\n");
2008 	db_indent -= 2;
2009 }
2010 
2011 /* XXX. */
2012 #undef count
2013 
2014 /*
2015  * XXX need this non-static entry for calling from vm_map_print.
2016  *
2017  * Debugging only
2018  */
2019 void
2020 vm_object_print(/* db_expr_t */ long addr,
2021 		boolean_t have_addr,
2022 		/* db_expr_t */ long count,
2023 		char *modif)
2024 {
2025 	vm_object_print_static(addr, have_addr, count, modif);
2026 }
2027 
2028 /*
2029  * Debugging only
2030  */
2031 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2032 {
2033 	vm_object_t object;
2034 	int nl = 0;
2035 	int c;
2036 	for (object = TAILQ_FIRST(&vm_object_list);
2037 			object != NULL;
2038 			object = TAILQ_NEXT(object, object_list)) {
2039 		vm_pindex_t idx, fidx;
2040 		vm_pindex_t osize;
2041 		vm_paddr_t pa = -1, padiff;
2042 		int rcount;
2043 		vm_page_t m;
2044 
2045 		if (object->type == OBJT_MARKER)
2046 			continue;
2047 		db_printf("new object: %p\n", (void *)object);
2048 		if ( nl > 18) {
2049 			c = cngetc();
2050 			if (c != ' ')
2051 				return;
2052 			nl = 0;
2053 		}
2054 		nl++;
2055 		rcount = 0;
2056 		fidx = 0;
2057 		osize = object->size;
2058 		if (osize > 128)
2059 			osize = 128;
2060 		for (idx = 0; idx < osize; idx++) {
2061 			m = vm_page_lookup(object, idx);
2062 			if (m == NULL) {
2063 				if (rcount) {
2064 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2065 						(long)fidx, rcount, (long)pa);
2066 					if ( nl > 18) {
2067 						c = cngetc();
2068 						if (c != ' ')
2069 							return;
2070 						nl = 0;
2071 					}
2072 					nl++;
2073 					rcount = 0;
2074 				}
2075 				continue;
2076 			}
2077 
2078 
2079 			if (rcount &&
2080 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2081 				++rcount;
2082 				continue;
2083 			}
2084 			if (rcount) {
2085 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2086 				padiff >>= PAGE_SHIFT;
2087 				padiff &= PQ_L2_MASK;
2088 				if (padiff == 0) {
2089 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2090 					++rcount;
2091 					continue;
2092 				}
2093 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2094 					(long)fidx, rcount, (long)pa);
2095 				db_printf("pd(%ld)\n", (long)padiff);
2096 				if ( nl > 18) {
2097 					c = cngetc();
2098 					if (c != ' ')
2099 						return;
2100 					nl = 0;
2101 				}
2102 				nl++;
2103 			}
2104 			fidx = idx;
2105 			pa = VM_PAGE_TO_PHYS(m);
2106 			rcount = 1;
2107 		}
2108 		if (rcount) {
2109 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2110 				(long)fidx, rcount, (long)pa);
2111 			if ( nl > 18) {
2112 				c = cngetc();
2113 				if (c != ' ')
2114 					return;
2115 				nl = 0;
2116 			}
2117 			nl++;
2118 		}
2119 	}
2120 }
2121 #endif /* DDB */
2122