xref: /dragonfly/sys/vm/vm_object.c (revision 9348a738)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct vm_object kernel_object;
132 
133 static long object_collapses;
134 static long object_bypasses;
135 
136 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
137 
138 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
139 
140 #if defined(DEBUG_LOCKS)
141 
142 #define vm_object_vndeallocate(obj, vpp)	\
143                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
144 
145 /*
146  * Debug helper to track hold/drop/ref/deallocate calls.
147  */
148 static void
149 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
150 {
151 	int i;
152 
153 	i = atomic_fetchadd_int(&obj->debug_index, 1);
154 	i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
155 	ksnprintf(obj->debug_hold_thrs[i],
156 		  sizeof(obj->debug_hold_thrs[i]),
157 		  "%c%d:(%d):%s",
158 		  (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
159 		  (curthread->td_proc ? curthread->td_proc->p_pid : -1),
160 		  obj->ref_count,
161 		  curthread->td_comm);
162 	obj->debug_hold_file[i] = file;
163 	obj->debug_hold_line[i] = line;
164 #if 0
165 	/* Uncomment for debugging obj refs/derefs in reproducable cases */
166 	if (strcmp(curthread->td_comm, "sshd") == 0) {
167 		kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
168 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
169 			obj, obj->ref_count, addrem, file, line);
170 	}
171 #endif
172 }
173 
174 #endif
175 
176 /*
177  * Misc low level routines
178  */
179 static void
180 vm_object_lock_init(vm_object_t obj)
181 {
182 #if defined(DEBUG_LOCKS)
183 	int i;
184 
185 	obj->debug_index = 0;
186 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
187 		obj->debug_hold_thrs[i][0] = 0;
188 		obj->debug_hold_file[i] = NULL;
189 		obj->debug_hold_line[i] = 0;
190 	}
191 #endif
192 }
193 
194 void
195 vm_object_lock_swap(void)
196 {
197 	lwkt_token_swap();
198 }
199 
200 void
201 vm_object_lock(vm_object_t obj)
202 {
203 	lwkt_gettoken(&obj->token);
204 }
205 
206 /*
207  * Returns TRUE on sucesss
208  */
209 static int
210 vm_object_lock_try(vm_object_t obj)
211 {
212 	return(lwkt_trytoken(&obj->token));
213 }
214 
215 void
216 vm_object_lock_shared(vm_object_t obj)
217 {
218 	lwkt_gettoken_shared(&obj->token);
219 }
220 
221 void
222 vm_object_unlock(vm_object_t obj)
223 {
224 	lwkt_reltoken(&obj->token);
225 }
226 
227 void
228 vm_object_upgrade(vm_object_t obj)
229 {
230 	lwkt_reltoken(&obj->token);
231 	lwkt_gettoken(&obj->token);
232 }
233 
234 void
235 vm_object_downgrade(vm_object_t obj)
236 {
237 	lwkt_reltoken(&obj->token);
238 	lwkt_gettoken_shared(&obj->token);
239 }
240 
241 static __inline void
242 vm_object_assert_held(vm_object_t obj)
243 {
244 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
245 }
246 
247 static __inline int
248 vm_quickcolor(void)
249 {
250 	globaldata_t gd = mycpu;
251 	int pg_color;
252 
253 	pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
254 	pg_color += gd->gd_quick_color;
255 	gd->gd_quick_color += PQ_PRIME2;
256 
257 	return pg_color;
258 }
259 
260 void
261 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
262 {
263 	KKASSERT(obj != NULL);
264 
265 	/*
266 	 * Object must be held (object allocation is stable due to callers
267 	 * context, typically already holding the token on a parent object)
268 	 * prior to potentially blocking on the lock, otherwise the object
269 	 * can get ripped away from us.
270 	 */
271 	refcount_acquire(&obj->hold_count);
272 	vm_object_lock(obj);
273 
274 #if defined(DEBUG_LOCKS)
275 	debugvm_object_add(obj, file, line, 1);
276 #endif
277 }
278 
279 int
280 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
281 {
282 	KKASSERT(obj != NULL);
283 
284 	/*
285 	 * Object must be held (object allocation is stable due to callers
286 	 * context, typically already holding the token on a parent object)
287 	 * prior to potentially blocking on the lock, otherwise the object
288 	 * can get ripped away from us.
289 	 */
290 	refcount_acquire(&obj->hold_count);
291 	if (vm_object_lock_try(obj) == 0) {
292 		if (refcount_release(&obj->hold_count)) {
293 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
294 				kfree(obj, M_VM_OBJECT);
295 		}
296 		return(0);
297 	}
298 
299 #if defined(DEBUG_LOCKS)
300 	debugvm_object_add(obj, file, line, 1);
301 #endif
302 	return(1);
303 }
304 
305 void
306 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
307 {
308 	KKASSERT(obj != NULL);
309 
310 	/*
311 	 * Object must be held (object allocation is stable due to callers
312 	 * context, typically already holding the token on a parent object)
313 	 * prior to potentially blocking on the lock, otherwise the object
314 	 * can get ripped away from us.
315 	 */
316 	refcount_acquire(&obj->hold_count);
317 	vm_object_lock_shared(obj);
318 
319 #if defined(DEBUG_LOCKS)
320 	debugvm_object_add(obj, file, line, 1);
321 #endif
322 }
323 
324 /*
325  * Drop the token and hold_count on the object.
326  *
327  * WARNING! Token might be shared.
328  */
329 void
330 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
331 {
332 	if (obj == NULL)
333 		return;
334 
335 	/*
336 	 * No new holders should be possible once we drop hold_count 1->0 as
337 	 * there is no longer any way to reference the object.
338 	 */
339 	KKASSERT(obj->hold_count > 0);
340 	if (refcount_release(&obj->hold_count)) {
341 #if defined(DEBUG_LOCKS)
342 		debugvm_object_add(obj, file, line, -1);
343 #endif
344 
345 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
346 			vm_object_unlock(obj);
347 			kfree(obj, M_VM_OBJECT);
348 		} else {
349 			vm_object_unlock(obj);
350 		}
351 	} else {
352 #if defined(DEBUG_LOCKS)
353 		debugvm_object_add(obj, file, line, -1);
354 #endif
355 		vm_object_unlock(obj);
356 	}
357 }
358 
359 /*
360  * Initialize a freshly allocated object, returning a held object.
361  *
362  * Used only by vm_object_allocate(), zinitna() and vm_object_init().
363  *
364  * No requirements.
365  */
366 void
367 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
368 {
369 	struct vm_object_hash *hash;
370 
371 	RB_INIT(&object->rb_memq);
372 	LIST_INIT(&object->shadow_head);
373 	lwkt_token_init(&object->token, "vmobj");
374 
375 	object->type = type;
376 	object->size = size;
377 	object->ref_count = 1;
378 	object->memattr = VM_MEMATTR_DEFAULT;
379 	object->hold_count = 0;
380 	object->flags = 0;
381 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
382 		vm_object_set_flag(object, OBJ_ONEMAPPING);
383 	object->paging_in_progress = 0;
384 	object->resident_page_count = 0;
385 	object->shadow_count = 0;
386 	/* cpu localization twist */
387 	object->pg_color = vm_quickcolor();
388 	object->handle = NULL;
389 	object->backing_object = NULL;
390 	object->backing_object_offset = (vm_ooffset_t)0;
391 
392 	atomic_add_int(&object->generation, 1);
393 	object->swblock_count = 0;
394 	RB_INIT(&object->swblock_root);
395 	vm_object_lock_init(object);
396 	pmap_object_init(object);
397 
398 	vm_object_hold(object);
399 
400 	hash = VMOBJ_HASH(object);
401 	lwkt_gettoken(&hash->token);
402 	TAILQ_INSERT_TAIL(&hash->list, object, object_list);
403 	lwkt_reltoken(&hash->token);
404 }
405 
406 /*
407  * Initialize a VM object.
408  */
409 void
410 vm_object_init(vm_object_t object, vm_pindex_t size)
411 {
412 	_vm_object_allocate(OBJT_DEFAULT, size, object);
413 	vm_object_drop(object);
414 }
415 
416 /*
417  * Initialize the VM objects module.
418  *
419  * Called from the low level boot code only.  Note that this occurs before
420  * kmalloc is initialized so we cannot allocate any VM objects.
421  */
422 void
423 vm_object_init1(void)
424 {
425 	int i;
426 
427 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
428 		TAILQ_INIT(&vm_object_hash[i].list);
429 		lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
430 	}
431 
432 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
433 			    &kernel_object);
434 	vm_object_drop(&kernel_object);
435 }
436 
437 void
438 vm_object_init2(void)
439 {
440 	kmalloc_set_unlimited(M_VM_OBJECT);
441 }
442 
443 /*
444  * Allocate and return a new object of the specified type and size.
445  *
446  * No requirements.
447  */
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
450 {
451 	vm_object_t obj;
452 
453 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
454 	_vm_object_allocate(type, size, obj);
455 	vm_object_drop(obj);
456 
457 	return (obj);
458 }
459 
460 /*
461  * This version returns a held object, allowing further atomic initialization
462  * of the object.
463  */
464 vm_object_t
465 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
466 {
467 	vm_object_t obj;
468 
469 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470 	_vm_object_allocate(type, size, obj);
471 
472 	return (obj);
473 }
474 
475 /*
476  * Add an additional reference to a vm_object.  The object must already be
477  * held.  The original non-lock version is no longer supported.  The object
478  * must NOT be chain locked by anyone at the time the reference is added.
479  *
480  * Referencing a chain-locked object can blow up the fairly sensitive
481  * ref_count and shadow_count tests in the deallocator.  Most callers
482  * will call vm_object_chain_wait() prior to calling
483  * vm_object_reference_locked() to avoid the case.
484  *
485  * The object must be held, but may be held shared if desired (hence why
486  * we use an atomic op).
487  */
488 void
489 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
490 {
491 	KKASSERT(object != NULL);
492 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
493 	KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
494 	atomic_add_int(&object->ref_count, 1);
495 	if (object->type == OBJT_VNODE) {
496 		vref(object->handle);
497 		/* XXX what if the vnode is being destroyed? */
498 	}
499 #if defined(DEBUG_LOCKS)
500 	debugvm_object_add(object, file, line, 1);
501 #endif
502 }
503 
504 /*
505  * This version is only allowed for vnode objects.
506  */
507 void
508 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
509 {
510 	KKASSERT(object->type == OBJT_VNODE);
511 	atomic_add_int(&object->ref_count, 1);
512 	vref(object->handle);
513 #if defined(DEBUG_LOCKS)
514 	debugvm_object_add(object, file, line, 1);
515 #endif
516 }
517 
518 /*
519  * Object OBJ_CHAINLOCK lock handling.
520  *
521  * The caller can chain-lock backing objects recursively and then
522  * use vm_object_chain_release_all() to undo the whole chain.
523  *
524  * Chain locks are used to prevent collapses and are only applicable
525  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
526  * on other object types are ignored.  This is also important because
527  * it allows e.g. the vnode underlying a memory mapping to take concurrent
528  * faults.
529  *
530  * The object must usually be held on entry, though intermediate
531  * objects need not be held on release.  The object must be held exclusively,
532  * NOT shared.  Note that the prefault path checks the shared state and
533  * avoids using the chain functions.
534  */
535 void
536 vm_object_chain_wait(vm_object_t object, int shared)
537 {
538 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539 	for (;;) {
540 		uint32_t chainlk = object->chainlk;
541 
542 		cpu_ccfence();
543 		if (shared) {
544 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
545 				tsleep_interlock(object, 0);
546 				if (atomic_cmpset_int(&object->chainlk,
547 						      chainlk,
548 						      chainlk | CHAINLK_WAIT)) {
549 					tsleep(object, PINTERLOCKED,
550 					       "objchns", 0);
551 				}
552 				/* retry */
553 			} else {
554 				break;
555 			}
556 			/* retry */
557 		} else {
558 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
559 				tsleep_interlock(object, 0);
560 				if (atomic_cmpset_int(&object->chainlk,
561 						      chainlk,
562 						      chainlk | CHAINLK_WAIT))
563 				{
564 					tsleep(object, PINTERLOCKED,
565 					       "objchnx", 0);
566 				}
567 				/* retry */
568 			} else {
569 				if (atomic_cmpset_int(&object->chainlk,
570 						      chainlk,
571 						      chainlk & ~CHAINLK_WAIT))
572 				{
573 					if (chainlk & CHAINLK_WAIT)
574 						wakeup(object);
575 					break;
576 				}
577 				/* retry */
578 			}
579 		}
580 		/* retry */
581 	}
582 }
583 
584 void
585 vm_object_chain_acquire(vm_object_t object, int shared)
586 {
587 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
588 		return;
589 	if (vm_shared_fault == 0)
590 		shared = 0;
591 
592 	for (;;) {
593 		uint32_t chainlk = object->chainlk;
594 
595 		cpu_ccfence();
596 		if (shared) {
597 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
598 				tsleep_interlock(object, 0);
599 				if (atomic_cmpset_int(&object->chainlk,
600 						      chainlk,
601 						      chainlk | CHAINLK_WAIT)) {
602 					tsleep(object, PINTERLOCKED,
603 					       "objchns", 0);
604 				}
605 				/* retry */
606 			} else if (atomic_cmpset_int(&object->chainlk,
607 					      chainlk, chainlk + 1)) {
608 				break;
609 			}
610 			/* retry */
611 		} else {
612 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
613 				tsleep_interlock(object, 0);
614 				if (atomic_cmpset_int(&object->chainlk,
615 						      chainlk,
616 						      chainlk |
617 						       CHAINLK_WAIT |
618 						       CHAINLK_EXCLREQ)) {
619 					tsleep(object, PINTERLOCKED,
620 					       "objchnx", 0);
621 				}
622 				/* retry */
623 			} else {
624 				if (atomic_cmpset_int(&object->chainlk,
625 						      chainlk,
626 						      (chainlk | CHAINLK_EXCL) &
627 						      ~(CHAINLK_EXCLREQ |
628 							CHAINLK_WAIT))) {
629 					if (chainlk & CHAINLK_WAIT)
630 						wakeup(object);
631 					break;
632 				}
633 				/* retry */
634 			}
635 		}
636 		/* retry */
637 	}
638 }
639 
640 void
641 vm_object_chain_release(vm_object_t object)
642 {
643 	/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
644 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
645 		return;
646 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
647 	for (;;) {
648 		uint32_t chainlk = object->chainlk;
649 
650 		cpu_ccfence();
651 		if (chainlk & CHAINLK_MASK) {
652 			if ((chainlk & CHAINLK_MASK) == 1 &&
653 			    atomic_cmpset_int(&object->chainlk,
654 					      chainlk,
655 					      (chainlk - 1) & ~CHAINLK_WAIT)) {
656 				if (chainlk & CHAINLK_WAIT)
657 					wakeup(object);
658 				break;
659 			}
660 			if ((chainlk & CHAINLK_MASK) > 1 &&
661 			    atomic_cmpset_int(&object->chainlk,
662 					      chainlk, chainlk - 1)) {
663 				break;
664 			}
665 			/* retry */
666 		} else {
667 			KKASSERT(chainlk & CHAINLK_EXCL);
668 			if (atomic_cmpset_int(&object->chainlk,
669 					      chainlk,
670 					      chainlk & ~(CHAINLK_EXCL |
671 							  CHAINLK_WAIT))) {
672 				if (chainlk & CHAINLK_WAIT)
673 					wakeup(object);
674 				break;
675 			}
676 		}
677 	}
678 }
679 
680 /*
681  * Release the chain from first_object through and including stopobj.
682  * The caller is typically holding the first and last object locked
683  * (shared or exclusive) to prevent destruction races.
684  *
685  * We release stopobj first as an optimization as this object is most
686  * likely to be shared across multiple processes.
687  */
688 void
689 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
690 {
691 	vm_object_t backing_object;
692 	vm_object_t object;
693 
694 	vm_object_chain_release(stopobj);
695 	object = first_object;
696 
697 	while (object != stopobj) {
698 		KKASSERT(object);
699 		backing_object = object->backing_object;
700 		vm_object_chain_release(object);
701 		object = backing_object;
702 	}
703 }
704 
705 /*
706  * Dereference an object and its underlying vnode.  The object may be
707  * held shared.  On return the object will remain held.
708  *
709  * This function may return a vnode in *vpp which the caller must release
710  * after the caller drops its own lock.  If vpp is NULL, we assume that
711  * the caller was holding an exclusive lock on the object and we vrele()
712  * the vp ourselves.
713  */
714 static void
715 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
716 				   VMOBJDBARGS)
717 {
718 	struct vnode *vp = (struct vnode *) object->handle;
719 
720 	KASSERT(object->type == OBJT_VNODE,
721 	    ("vm_object_vndeallocate: not a vnode object"));
722 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
723 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
724 #ifdef INVARIANTS
725 	if (object->ref_count == 0) {
726 		vprint("vm_object_vndeallocate", vp);
727 		panic("vm_object_vndeallocate: bad object reference count");
728 	}
729 #endif
730 	for (;;) {
731 		int count = object->ref_count;
732 		cpu_ccfence();
733 		if (count == 1) {
734 			vm_object_upgrade(object);
735 			if (atomic_cmpset_int(&object->ref_count, count, 0)) {
736 				vclrflags(vp, VTEXT);
737 				break;
738 			}
739 		} else {
740 			if (atomic_cmpset_int(&object->ref_count,
741 					      count, count - 1)) {
742 				break;
743 			}
744 		}
745 		/* retry */
746 	}
747 #if defined(DEBUG_LOCKS)
748 	debugvm_object_add(object, file, line, -1);
749 #endif
750 
751 	/*
752 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
753 	 * if the object was locked exclusively.  But there are two races
754 	 * here.
755 	 *
756 	 * We had to upgrade the object above to safely clear VTEXT
757 	 * but the alternative path where the shared lock is retained
758 	 * can STILL race to 0 in other paths and cause our own vrele()
759 	 * to terminate the vnode.  We can't allow that if the VM object
760 	 * is still locked shared.
761 	 */
762 	if (vpp)
763 		*vpp = vp;
764 	else
765 		vrele(vp);
766 }
767 
768 /*
769  * Release a reference to the specified object, gained either through a
770  * vm_object_allocate or a vm_object_reference call.  When all references
771  * are gone, storage associated with this object may be relinquished.
772  *
773  * The caller does not have to hold the object locked but must have control
774  * over the reference in question in order to guarantee that the object
775  * does not get ripped out from under us.
776  *
777  * XXX Currently all deallocations require an exclusive lock.
778  */
779 void
780 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
781 {
782 	struct vnode *vp;
783 	int count;
784 
785 	if (object == NULL)
786 		return;
787 
788 	for (;;) {
789 		count = object->ref_count;
790 		cpu_ccfence();
791 
792 		/*
793 		 * If decrementing the count enters into special handling
794 		 * territory (0, 1, or 2) we have to do it the hard way.
795 		 * Fortunate though, objects with only a few refs like this
796 		 * are not likely to be heavily contended anyway.
797 		 *
798 		 * For vnode objects we only care about 1->0 transitions.
799 		 */
800 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
801 #if defined(DEBUG_LOCKS)
802 			debugvm_object_add(object, file, line, 0);
803 #endif
804 			vm_object_hold(object);
805 			vm_object_deallocate_locked(object);
806 			vm_object_drop(object);
807 			break;
808 		}
809 
810 		/*
811 		 * Try to decrement ref_count without acquiring a hold on
812 		 * the object.  This is particularly important for the exec*()
813 		 * and exit*() code paths because the program binary may
814 		 * have a great deal of sharing and an exclusive lock will
815 		 * crowbar performance in those circumstances.
816 		 */
817 		if (object->type == OBJT_VNODE) {
818 			vp = (struct vnode *)object->handle;
819 			if (atomic_cmpset_int(&object->ref_count,
820 					      count, count - 1)) {
821 #if defined(DEBUG_LOCKS)
822 				debugvm_object_add(object, file, line, -1);
823 #endif
824 
825 				vrele(vp);
826 				break;
827 			}
828 			/* retry */
829 		} else {
830 			if (atomic_cmpset_int(&object->ref_count,
831 					      count, count - 1)) {
832 #if defined(DEBUG_LOCKS)
833 				debugvm_object_add(object, file, line, -1);
834 #endif
835 				break;
836 			}
837 			/* retry */
838 		}
839 		/* retry */
840 	}
841 }
842 
843 void
844 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
845 {
846 	struct vm_object_dealloc_list *dlist = NULL;
847 	struct vm_object_dealloc_list *dtmp;
848 	vm_object_t temp;
849 	int must_drop = 0;
850 
851 	/*
852 	 * We may chain deallocate object, but additional objects may
853 	 * collect on the dlist which also have to be deallocated.  We
854 	 * must avoid a recursion, vm_object chains can get deep.
855 	 */
856 
857 again:
858 	while (object != NULL) {
859 		/*
860 		 * vnode case, caller either locked the object exclusively
861 		 * or this is a recursion with must_drop != 0 and the vnode
862 		 * object will be locked shared.
863 		 *
864 		 * If locked shared we have to drop the object before we can
865 		 * call vrele() or risk a shared/exclusive livelock.
866 		 */
867 		if (object->type == OBJT_VNODE) {
868 			ASSERT_LWKT_TOKEN_HELD(&object->token);
869 			if (must_drop) {
870 				struct vnode *tmp_vp;
871 
872 				vm_object_vndeallocate(object, &tmp_vp);
873 				vm_object_drop(object);
874 				must_drop = 0;
875 				object = NULL;
876 				vrele(tmp_vp);
877 			} else {
878 				vm_object_vndeallocate(object, NULL);
879 			}
880 			break;
881 		}
882 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
883 
884 		/*
885 		 * Normal case (object is locked exclusively)
886 		 */
887 		if (object->ref_count == 0) {
888 			panic("vm_object_deallocate: object deallocated "
889 			      "too many times: %d", object->type);
890 		}
891 		if (object->ref_count > 2) {
892 			atomic_add_int(&object->ref_count, -1);
893 #if defined(DEBUG_LOCKS)
894 			debugvm_object_add(object, file, line, -1);
895 #endif
896 			break;
897 		}
898 
899 		/*
900 		 * Here on ref_count of one or two, which are special cases for
901 		 * objects.
902 		 *
903 		 * Nominal ref_count > 1 case if the second ref is not from
904 		 * a shadow.
905 		 *
906 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
907 		 */
908 		if (object->ref_count == 2 && object->shadow_count == 0) {
909 			if (object->type == OBJT_DEFAULT ||
910 			    object->type == OBJT_SWAP) {
911 				vm_object_set_flag(object, OBJ_ONEMAPPING);
912 			}
913 			atomic_add_int(&object->ref_count, -1);
914 #if defined(DEBUG_LOCKS)
915 			debugvm_object_add(object, file, line, -1);
916 #endif
917 			break;
918 		}
919 
920 		/*
921 		 * If the second ref is from a shadow we chain along it
922 		 * upwards if object's handle is exhausted.
923 		 *
924 		 * We have to decrement object->ref_count before potentially
925 		 * collapsing the first shadow object or the collapse code
926 		 * will not be able to handle the degenerate case to remove
927 		 * object.  However, if we do it too early the object can
928 		 * get ripped out from under us.
929 		 */
930 		if (object->ref_count == 2 && object->shadow_count == 1 &&
931 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
932 					       object->type == OBJT_SWAP)) {
933 			temp = LIST_FIRST(&object->shadow_head);
934 			KKASSERT(temp != NULL);
935 			vm_object_hold(temp);
936 
937 			/*
938 			 * Wait for any paging to complete so the collapse
939 			 * doesn't (or isn't likely to) qcollapse.  pip
940 			 * waiting must occur before we acquire the
941 			 * chainlock.
942 			 */
943 			while (
944 				temp->paging_in_progress ||
945 				object->paging_in_progress
946 			) {
947 				vm_object_pip_wait(temp, "objde1");
948 				vm_object_pip_wait(object, "objde2");
949 			}
950 
951 			/*
952 			 * If the parent is locked we have to give up, as
953 			 * otherwise we would be acquiring locks in the
954 			 * wrong order and potentially deadlock.
955 			 */
956 			if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
957 				vm_object_drop(temp);
958 				goto skip;
959 			}
960 			vm_object_chain_acquire(temp, 0);
961 
962 			/*
963 			 * Recheck/retry after the hold and the paging
964 			 * wait, both of which can block us.
965 			 */
966 			if (object->ref_count != 2 ||
967 			    object->shadow_count != 1 ||
968 			    object->handle ||
969 			    LIST_FIRST(&object->shadow_head) != temp ||
970 			    (object->type != OBJT_DEFAULT &&
971 			     object->type != OBJT_SWAP)) {
972 				vm_object_chain_release(temp);
973 				vm_object_drop(temp);
974 				continue;
975 			}
976 
977 			/*
978 			 * We can safely drop object's ref_count now.
979 			 */
980 			KKASSERT(object->ref_count == 2);
981 			atomic_add_int(&object->ref_count, -1);
982 #if defined(DEBUG_LOCKS)
983 			debugvm_object_add(object, file, line, -1);
984 #endif
985 
986 			/*
987 			 * If our single parent is not collapseable just
988 			 * decrement ref_count (2->1) and stop.
989 			 */
990 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
991 					     temp->type != OBJT_SWAP)) {
992 				vm_object_chain_release(temp);
993 				vm_object_drop(temp);
994 				break;
995 			}
996 
997 			/*
998 			 * At this point we have already dropped object's
999 			 * ref_count so it is possible for a race to
1000 			 * deallocate obj out from under us.  Any collapse
1001 			 * will re-check the situation.  We must not block
1002 			 * until we are able to collapse.
1003 			 *
1004 			 * Bump temp's ref_count to avoid an unwanted
1005 			 * degenerate recursion (can't call
1006 			 * vm_object_reference_locked() because it asserts
1007 			 * that CHAINLOCK is not set).
1008 			 */
1009 			atomic_add_int(&temp->ref_count, 1);
1010 			KKASSERT(temp->ref_count > 1);
1011 
1012 			/*
1013 			 * Collapse temp, then deallocate the extra ref
1014 			 * formally.
1015 			 */
1016 			vm_object_collapse(temp, &dlist);
1017 			vm_object_chain_release(temp);
1018 			if (must_drop) {
1019 				vm_object_lock_swap();
1020 				vm_object_drop(object);
1021 			}
1022 			object = temp;
1023 			must_drop = 1;
1024 			continue;
1025 		}
1026 
1027 		/*
1028 		 * Drop the ref and handle termination on the 1->0 transition.
1029 		 * We may have blocked above so we have to recheck.
1030 		 */
1031 skip:
1032 		KKASSERT(object->ref_count != 0);
1033 		if (object->ref_count >= 2) {
1034 			atomic_add_int(&object->ref_count, -1);
1035 #if defined(DEBUG_LOCKS)
1036 			debugvm_object_add(object, file, line, -1);
1037 #endif
1038 			break;
1039 		}
1040 		KKASSERT(object->ref_count == 1);
1041 
1042 		/*
1043 		 * 1->0 transition.  Chain through the backing_object.
1044 		 * Maintain the ref until we've located the backing object,
1045 		 * then re-check.
1046 		 */
1047 		while ((temp = object->backing_object) != NULL) {
1048 			if (temp->type == OBJT_VNODE)
1049 				vm_object_hold_shared(temp);
1050 			else
1051 				vm_object_hold(temp);
1052 			if (temp == object->backing_object)
1053 				break;
1054 			vm_object_drop(temp);
1055 		}
1056 
1057 		/*
1058 		 * 1->0 transition verified, retry if ref_count is no longer
1059 		 * 1.  Otherwise disconnect the backing_object (temp) and
1060 		 * clean up.
1061 		 */
1062 		if (object->ref_count != 1) {
1063 			vm_object_drop(temp);
1064 			continue;
1065 		}
1066 
1067 		/*
1068 		 * It shouldn't be possible for the object to be chain locked
1069 		 * if we're removing the last ref on it.
1070 		 *
1071 		 * Removing object from temp's shadow list requires dropping
1072 		 * temp, which we will do on loop.
1073 		 *
1074 		 * NOTE! vnodes do not use the shadow list, but still have
1075 		 *	 the backing_object reference.
1076 		 */
1077 		KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1078 
1079 		if (temp) {
1080 			if (object->flags & OBJ_ONSHADOW) {
1081 				LIST_REMOVE(object, shadow_list);
1082 				temp->shadow_count--;
1083 				atomic_add_int(&temp->generation, 1);
1084 				vm_object_clear_flag(object, OBJ_ONSHADOW);
1085 			}
1086 			object->backing_object = NULL;
1087 		}
1088 
1089 		atomic_add_int(&object->ref_count, -1);
1090 		if ((object->flags & OBJ_DEAD) == 0)
1091 			vm_object_terminate(object);
1092 		if (must_drop && temp)
1093 			vm_object_lock_swap();
1094 		if (must_drop)
1095 			vm_object_drop(object);
1096 		object = temp;
1097 		must_drop = 1;
1098 	}
1099 
1100 	if (must_drop && object)
1101 		vm_object_drop(object);
1102 
1103 	/*
1104 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1105 	 * on the dlist have a hold count but are not locked.
1106 	 */
1107 	if ((dtmp = dlist) != NULL) {
1108 		dlist = dtmp->next;
1109 		object = dtmp->object;
1110 		kfree(dtmp, M_TEMP);
1111 
1112 		vm_object_lock(object);	/* already held, add lock */
1113 		must_drop = 1;		/* and we're responsible for it */
1114 		goto again;
1115 	}
1116 }
1117 
1118 /*
1119  * Destroy the specified object, freeing up related resources.
1120  *
1121  * The object must have zero references.
1122  *
1123  * The object must held.  The caller is responsible for dropping the object
1124  * after terminate returns.  Terminate does NOT drop the object.
1125  */
1126 static int vm_object_terminate_callback(vm_page_t p, void *data);
1127 
1128 void
1129 vm_object_terminate(vm_object_t object)
1130 {
1131 	struct rb_vm_page_scan_info info;
1132 	struct vm_object_hash *hash;
1133 
1134 	/*
1135 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1136 	 * able to safely block.
1137 	 */
1138 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1139 	KKASSERT((object->flags & OBJ_DEAD) == 0);
1140 	vm_object_set_flag(object, OBJ_DEAD);
1141 
1142 	/*
1143 	 * Wait for the pageout daemon to be done with the object
1144 	 */
1145 	vm_object_pip_wait(object, "objtrm1");
1146 
1147 	KASSERT(!object->paging_in_progress,
1148 		("vm_object_terminate: pageout in progress"));
1149 
1150 	/*
1151 	 * Clean and free the pages, as appropriate. All references to the
1152 	 * object are gone, so we don't need to lock it.
1153 	 */
1154 	if (object->type == OBJT_VNODE) {
1155 		struct vnode *vp;
1156 
1157 		/*
1158 		 * Clean pages and flush buffers.
1159 		 *
1160 		 * NOTE!  TMPFS buffer flushes do not typically flush the
1161 		 *	  actual page to swap as this would be highly
1162 		 *	  inefficient, and normal filesystems usually wrap
1163 		 *	  page flushes with buffer cache buffers.
1164 		 *
1165 		 *	  To deal with this we have to call vinvalbuf() both
1166 		 *	  before and after the vm_object_page_clean().
1167 		 */
1168 		vp = (struct vnode *) object->handle;
1169 		vinvalbuf(vp, V_SAVE, 0, 0);
1170 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1171 		vinvalbuf(vp, V_SAVE, 0, 0);
1172 	}
1173 
1174 	/*
1175 	 * Wait for any I/O to complete, after which there had better not
1176 	 * be any references left on the object.
1177 	 */
1178 	vm_object_pip_wait(object, "objtrm2");
1179 
1180 	if (object->ref_count != 0) {
1181 		panic("vm_object_terminate: object with references, "
1182 		      "ref_count=%d", object->ref_count);
1183 	}
1184 
1185 	/*
1186 	 * Cleanup any shared pmaps associated with this object.
1187 	 */
1188 	pmap_object_free(object);
1189 
1190 	/*
1191 	 * Now free any remaining pages. For internal objects, this also
1192 	 * removes them from paging queues. Don't free wired pages, just
1193 	 * remove them from the object.
1194 	 */
1195 	info.count = 0;
1196 	info.object = object;
1197 	do {
1198 		info.error = 0;
1199 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1200 					vm_object_terminate_callback, &info);
1201 	} while (info.error);
1202 
1203 	/*
1204 	 * Let the pager know object is dead.
1205 	 */
1206 	vm_pager_deallocate(object);
1207 
1208 	/*
1209 	 * Wait for the object hold count to hit 1, clean out pages as
1210 	 * we go.  vmobj_token interlocks any race conditions that might
1211 	 * pick the object up from the vm_object_list after we have cleared
1212 	 * rb_memq.
1213 	 */
1214 	for (;;) {
1215 		if (RB_ROOT(&object->rb_memq) == NULL)
1216 			break;
1217 		kprintf("vm_object_terminate: Warning, object %p "
1218 			"still has %ld pages\n",
1219 			object, object->resident_page_count);
1220 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1221 					vm_object_terminate_callback, &info);
1222 	}
1223 
1224 	/*
1225 	 * There had better not be any pages left
1226 	 */
1227 	KKASSERT(object->resident_page_count == 0);
1228 
1229 	/*
1230 	 * Remove the object from the global object list.
1231 	 */
1232 	hash = VMOBJ_HASH(object);
1233 	lwkt_gettoken(&hash->token);
1234 	TAILQ_REMOVE(&hash->list, object, object_list);
1235 	lwkt_reltoken(&hash->token);
1236 
1237 	if (object->ref_count != 0) {
1238 		panic("vm_object_terminate2: object with references, "
1239 		      "ref_count=%d", object->ref_count);
1240 	}
1241 
1242 	/*
1243 	 * NOTE: The object hold_count is at least 1, so we cannot kfree()
1244 	 *	 the object here.  See vm_object_drop().
1245 	 */
1246 }
1247 
1248 /*
1249  * The caller must hold the object.
1250  */
1251 static int
1252 vm_object_terminate_callback(vm_page_t p, void *data)
1253 {
1254 	struct rb_vm_page_scan_info *info = data;
1255 	vm_object_t object;
1256 
1257 	object = p->object;
1258 	KKASSERT(object == info->object);
1259 	if (vm_page_busy_try(p, TRUE)) {
1260 		vm_page_sleep_busy(p, TRUE, "vmotrm");
1261 		info->error = 1;
1262 		return 0;
1263 	}
1264 	if (object != p->object) {
1265 		/* XXX remove once we determine it can't happen */
1266 		kprintf("vm_object_terminate: Warning: Encountered "
1267 			"busied page %p on queue %d\n", p, p->queue);
1268 		vm_page_wakeup(p);
1269 		info->error = 1;
1270 	} else if (p->wire_count == 0) {
1271 		/*
1272 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1273 		 */
1274 		vm_page_free(p);
1275 		mycpu->gd_cnt.v_pfree++;
1276 	} else {
1277 		if (p->queue != PQ_NONE)
1278 			kprintf("vm_object_terminate: Warning: Encountered "
1279 				"wired page %p on queue %d\n", p, p->queue);
1280 		vm_page_remove(p);
1281 		vm_page_wakeup(p);
1282 	}
1283 
1284 	/*
1285 	 * Must be at end to avoid SMP races, caller holds object token
1286 	 */
1287 	if ((++info->count & 63) == 0)
1288 		lwkt_user_yield();
1289 	return(0);
1290 }
1291 
1292 /*
1293  * Clean all dirty pages in the specified range of object.  Leaves page
1294  * on whatever queue it is currently on.   If NOSYNC is set then do not
1295  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1296  * leaving the object dirty.
1297  *
1298  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1299  * synchronous clustering mode implementation.
1300  *
1301  * Odd semantics: if start == end, we clean everything.
1302  *
1303  * The object must be locked? XXX
1304  */
1305 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1306 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1307 
1308 void
1309 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1310 		     int flags)
1311 {
1312 	struct rb_vm_page_scan_info info;
1313 	struct vnode *vp;
1314 	int wholescan;
1315 	int pagerflags;
1316 	int generation;
1317 
1318 	vm_object_hold(object);
1319 	if (object->type != OBJT_VNODE ||
1320 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1321 		vm_object_drop(object);
1322 		return;
1323 	}
1324 
1325 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1326 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1327 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1328 
1329 	vp = object->handle;
1330 
1331 	/*
1332 	 * Interlock other major object operations.  This allows us to
1333 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1334 	 */
1335 	vm_object_set_flag(object, OBJ_CLEANING);
1336 
1337 	/*
1338 	 * Handle 'entire object' case
1339 	 */
1340 	info.start_pindex = start;
1341 	if (end == 0) {
1342 		info.end_pindex = object->size - 1;
1343 	} else {
1344 		info.end_pindex = end - 1;
1345 	}
1346 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1347 	info.limit = flags;
1348 	info.pagerflags = pagerflags;
1349 	info.object = object;
1350 
1351 	/*
1352 	 * If cleaning the entire object do a pass to mark the pages read-only.
1353 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1354 	 * OBJ_MIGHTBEDIRTY.
1355 	 */
1356 	if (wholescan) {
1357 		info.error = 0;
1358 		info.count = 0;
1359 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1360 					vm_object_page_clean_pass1, &info);
1361 		if (info.error == 0) {
1362 			vm_object_clear_flag(object,
1363 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1364 			if (object->type == OBJT_VNODE &&
1365 			    (vp = (struct vnode *)object->handle) != NULL) {
1366 				/*
1367 				 * Use new-style interface to clear VISDIRTY
1368 				 * because the vnode is not necessarily removed
1369 				 * from the syncer list(s) as often as it was
1370 				 * under the old interface, which can leave
1371 				 * the vnode on the syncer list after reclaim.
1372 				 */
1373 				vclrobjdirty(vp);
1374 			}
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Do a pass to clean all the dirty pages we find.
1380 	 */
1381 	do {
1382 		info.error = 0;
1383 		info.count = 0;
1384 		generation = object->generation;
1385 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1386 					vm_object_page_clean_pass2, &info);
1387 	} while (info.error || generation != object->generation);
1388 
1389 	vm_object_clear_flag(object, OBJ_CLEANING);
1390 	vm_object_drop(object);
1391 }
1392 
1393 /*
1394  * The caller must hold the object.
1395  */
1396 static
1397 int
1398 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1399 {
1400 	struct rb_vm_page_scan_info *info = data;
1401 
1402 	KKASSERT(p->object == info->object);
1403 
1404 	vm_page_flag_set(p, PG_CLEANCHK);
1405 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1406 		info->error = 1;
1407 	} else if (vm_page_busy_try(p, FALSE)) {
1408 		info->error = 1;
1409 	} else {
1410 		KKASSERT(p->object == info->object);
1411 		vm_page_protect(p, VM_PROT_READ);
1412 		vm_page_wakeup(p);
1413 	}
1414 
1415 	/*
1416 	 * Must be at end to avoid SMP races, caller holds object token
1417 	 */
1418 	if ((++info->count & 63) == 0)
1419 		lwkt_user_yield();
1420 	return(0);
1421 }
1422 
1423 /*
1424  * The caller must hold the object
1425  */
1426 static
1427 int
1428 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1429 {
1430 	struct rb_vm_page_scan_info *info = data;
1431 	int generation;
1432 
1433 	KKASSERT(p->object == info->object);
1434 
1435 	/*
1436 	 * Do not mess with pages that were inserted after we started
1437 	 * the cleaning pass.
1438 	 */
1439 	if ((p->flags & PG_CLEANCHK) == 0)
1440 		goto done;
1441 
1442 	generation = info->object->generation;
1443 
1444 	if (vm_page_busy_try(p, TRUE)) {
1445 		vm_page_sleep_busy(p, TRUE, "vpcwai");
1446 		info->error = 1;
1447 		goto done;
1448 	}
1449 
1450 	KKASSERT(p->object == info->object &&
1451 		 info->object->generation == generation);
1452 
1453 	/*
1454 	 * Before wasting time traversing the pmaps, check for trivial
1455 	 * cases where the page cannot be dirty.
1456 	 */
1457 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1458 		KKASSERT((p->dirty & p->valid) == 0 &&
1459 			 (p->flags & PG_NEED_COMMIT) == 0);
1460 		vm_page_wakeup(p);
1461 		goto done;
1462 	}
1463 
1464 	/*
1465 	 * Check whether the page is dirty or not.  The page has been set
1466 	 * to be read-only so the check will not race a user dirtying the
1467 	 * page.
1468 	 */
1469 	vm_page_test_dirty(p);
1470 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1471 		vm_page_flag_clear(p, PG_CLEANCHK);
1472 		vm_page_wakeup(p);
1473 		goto done;
1474 	}
1475 
1476 	/*
1477 	 * If we have been asked to skip nosync pages and this is a
1478 	 * nosync page, skip it.  Note that the object flags were
1479 	 * not cleared in this case (because pass1 will have returned an
1480 	 * error), so we do not have to set them.
1481 	 */
1482 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1483 		vm_page_flag_clear(p, PG_CLEANCHK);
1484 		vm_page_wakeup(p);
1485 		goto done;
1486 	}
1487 
1488 	/*
1489 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1490 	 * the pages that get successfully flushed.  Set info->error if
1491 	 * we raced an object modification.
1492 	 */
1493 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1494 	/* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1495 
1496 	/*
1497 	 * Must be at end to avoid SMP races, caller holds object token
1498 	 */
1499 done:
1500 	if ((++info->count & 63) == 0)
1501 		lwkt_user_yield();
1502 	return(0);
1503 }
1504 
1505 /*
1506  * Collect the specified page and nearby pages and flush them out.
1507  * The number of pages flushed is returned.  The passed page is busied
1508  * by the caller and we are responsible for its disposition.
1509  *
1510  * The caller must hold the object.
1511  */
1512 static void
1513 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1514 {
1515 	int error;
1516 	int is;
1517 	int ib;
1518 	int i;
1519 	int page_base;
1520 	vm_pindex_t pi;
1521 	vm_page_t ma[BLIST_MAX_ALLOC];
1522 
1523 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1524 
1525 	pi = p->pindex;
1526 	page_base = pi % BLIST_MAX_ALLOC;
1527 	ma[page_base] = p;
1528 	ib = page_base - 1;
1529 	is = page_base + 1;
1530 
1531 	while (ib >= 0) {
1532 		vm_page_t tp;
1533 
1534 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1535 					     TRUE, &error);
1536 		if (error)
1537 			break;
1538 		if (tp == NULL)
1539 			break;
1540 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1541 		    (tp->flags & PG_CLEANCHK) == 0) {
1542 			vm_page_wakeup(tp);
1543 			break;
1544 		}
1545 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1546 			vm_page_flag_clear(tp, PG_CLEANCHK);
1547 			vm_page_wakeup(tp);
1548 			break;
1549 		}
1550 		vm_page_test_dirty(tp);
1551 		if ((tp->dirty & tp->valid) == 0 &&
1552 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1553 			vm_page_flag_clear(tp, PG_CLEANCHK);
1554 			vm_page_wakeup(tp);
1555 			break;
1556 		}
1557 		ma[ib] = tp;
1558 		--ib;
1559 	}
1560 	++ib;	/* fixup */
1561 
1562 	while (is < BLIST_MAX_ALLOC &&
1563 	       pi - page_base + is < object->size) {
1564 		vm_page_t tp;
1565 
1566 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1567 					     TRUE, &error);
1568 		if (error)
1569 			break;
1570 		if (tp == NULL)
1571 			break;
1572 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1573 		    (tp->flags & PG_CLEANCHK) == 0) {
1574 			vm_page_wakeup(tp);
1575 			break;
1576 		}
1577 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1578 			vm_page_flag_clear(tp, PG_CLEANCHK);
1579 			vm_page_wakeup(tp);
1580 			break;
1581 		}
1582 		vm_page_test_dirty(tp);
1583 		if ((tp->dirty & tp->valid) == 0 &&
1584 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1585 			vm_page_flag_clear(tp, PG_CLEANCHK);
1586 			vm_page_wakeup(tp);
1587 			break;
1588 		}
1589 		ma[is] = tp;
1590 		++is;
1591 	}
1592 
1593 	/*
1594 	 * All pages in the ma[] array are busied now
1595 	 */
1596 	for (i = ib; i < is; ++i) {
1597 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1598 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1599 	}
1600 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1601 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1602 		vm_page_unhold(ma[i]);
1603 }
1604 
1605 /*
1606  * Same as vm_object_pmap_copy, except range checking really
1607  * works, and is meant for small sections of an object.
1608  *
1609  * This code protects resident pages by making them read-only
1610  * and is typically called on a fork or split when a page
1611  * is converted to copy-on-write.
1612  *
1613  * NOTE: If the page is already at VM_PROT_NONE, calling
1614  * vm_page_protect will have no effect.
1615  */
1616 void
1617 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1618 {
1619 	vm_pindex_t idx;
1620 	vm_page_t p;
1621 
1622 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1623 		return;
1624 
1625 	vm_object_hold(object);
1626 	for (idx = start; idx < end; idx++) {
1627 		p = vm_page_lookup(object, idx);
1628 		if (p == NULL)
1629 			continue;
1630 		vm_page_protect(p, VM_PROT_READ);
1631 	}
1632 	vm_object_drop(object);
1633 }
1634 
1635 /*
1636  * Removes all physical pages in the specified object range from all
1637  * physical maps.
1638  *
1639  * The object must *not* be locked.
1640  */
1641 
1642 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1643 
1644 void
1645 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1646 {
1647 	struct rb_vm_page_scan_info info;
1648 
1649 	if (object == NULL)
1650 		return;
1651 	if (start == end)
1652 		return;
1653 	info.start_pindex = start;
1654 	info.end_pindex = end - 1;
1655 	info.count = 0;
1656 	info.object = object;
1657 
1658 	vm_object_hold(object);
1659 	do {
1660 		info.error = 0;
1661 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1662 					vm_object_pmap_remove_callback, &info);
1663 	} while (info.error);
1664 	if (start == 0 && end == object->size)
1665 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1666 	vm_object_drop(object);
1667 }
1668 
1669 /*
1670  * The caller must hold the object
1671  */
1672 static int
1673 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1674 {
1675 	struct rb_vm_page_scan_info *info = data;
1676 
1677 	if (info->object != p->object ||
1678 	    p->pindex < info->start_pindex ||
1679 	    p->pindex > info->end_pindex) {
1680 		kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1681 			info->object, p);
1682 		info->error = 1;
1683 		return(0);
1684 	}
1685 
1686 	vm_page_protect(p, VM_PROT_NONE);
1687 
1688 	/*
1689 	 * Must be at end to avoid SMP races, caller holds object token
1690 	 */
1691 	if ((++info->count & 63) == 0)
1692 		lwkt_user_yield();
1693 	return(0);
1694 }
1695 
1696 /*
1697  * Implements the madvise function at the object/page level.
1698  *
1699  * MADV_WILLNEED	(any object)
1700  *
1701  *	Activate the specified pages if they are resident.
1702  *
1703  * MADV_DONTNEED	(any object)
1704  *
1705  *	Deactivate the specified pages if they are resident.
1706  *
1707  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1708  *
1709  *	Deactivate and clean the specified pages if they are
1710  *	resident.  This permits the process to reuse the pages
1711  *	without faulting or the kernel to reclaim the pages
1712  *	without I/O.
1713  *
1714  * No requirements.
1715  */
1716 void
1717 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1718 		  vm_pindex_t count, int advise)
1719 {
1720 	vm_pindex_t end, tpindex;
1721 	vm_object_t tobject;
1722 	vm_object_t xobj;
1723 	vm_page_t m;
1724 	int error;
1725 
1726 	if (object == NULL)
1727 		return;
1728 
1729 	end = pindex + count;
1730 
1731 	vm_object_hold(object);
1732 	tobject = object;
1733 
1734 	/*
1735 	 * Locate and adjust resident pages
1736 	 */
1737 	for (; pindex < end; pindex += 1) {
1738 relookup:
1739 		if (tobject != object)
1740 			vm_object_drop(tobject);
1741 		tobject = object;
1742 		tpindex = pindex;
1743 shadowlookup:
1744 		/*
1745 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1746 		 * and those pages must be OBJ_ONEMAPPING.
1747 		 */
1748 		if (advise == MADV_FREE) {
1749 			if ((tobject->type != OBJT_DEFAULT &&
1750 			     tobject->type != OBJT_SWAP) ||
1751 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1752 				continue;
1753 			}
1754 		}
1755 
1756 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1757 
1758 		if (error) {
1759 			vm_page_sleep_busy(m, TRUE, "madvpo");
1760 			goto relookup;
1761 		}
1762 		if (m == NULL) {
1763 			/*
1764 			 * There may be swap even if there is no backing page
1765 			 */
1766 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1767 				swap_pager_freespace(tobject, tpindex, 1);
1768 
1769 			/*
1770 			 * next object
1771 			 */
1772 			while ((xobj = tobject->backing_object) != NULL) {
1773 				KKASSERT(xobj != object);
1774 				vm_object_hold(xobj);
1775 				if (xobj == tobject->backing_object)
1776 					break;
1777 				vm_object_drop(xobj);
1778 			}
1779 			if (xobj == NULL)
1780 				continue;
1781 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1782 			if (tobject != object) {
1783 				vm_object_lock_swap();
1784 				vm_object_drop(tobject);
1785 			}
1786 			tobject = xobj;
1787 			goto shadowlookup;
1788 		}
1789 
1790 		/*
1791 		 * If the page is not in a normal active state, we skip it.
1792 		 * If the page is not managed there are no page queues to
1793 		 * mess with.  Things can break if we mess with pages in
1794 		 * any of the below states.
1795 		 */
1796 		if (m->wire_count ||
1797 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1798 		    m->valid != VM_PAGE_BITS_ALL
1799 		) {
1800 			vm_page_wakeup(m);
1801 			continue;
1802 		}
1803 
1804 		/*
1805 		 * Theoretically once a page is known not to be busy, an
1806 		 * interrupt cannot come along and rip it out from under us.
1807 		 */
1808 
1809 		if (advise == MADV_WILLNEED) {
1810 			vm_page_activate(m);
1811 		} else if (advise == MADV_DONTNEED) {
1812 			vm_page_dontneed(m);
1813 		} else if (advise == MADV_FREE) {
1814 			/*
1815 			 * Mark the page clean.  This will allow the page
1816 			 * to be freed up by the system.  However, such pages
1817 			 * are often reused quickly by malloc()/free()
1818 			 * so we do not do anything that would cause
1819 			 * a page fault if we can help it.
1820 			 *
1821 			 * Specifically, we do not try to actually free
1822 			 * the page now nor do we try to put it in the
1823 			 * cache (which would cause a page fault on reuse).
1824 			 *
1825 			 * But we do make the page is freeable as we
1826 			 * can without actually taking the step of unmapping
1827 			 * it.
1828 			 */
1829 			pmap_clear_modify(m);
1830 			m->dirty = 0;
1831 			m->act_count = 0;
1832 			vm_page_dontneed(m);
1833 			if (tobject->type == OBJT_SWAP)
1834 				swap_pager_freespace(tobject, tpindex, 1);
1835 		}
1836 		vm_page_wakeup(m);
1837 	}
1838 	if (tobject != object)
1839 		vm_object_drop(tobject);
1840 	vm_object_drop(object);
1841 }
1842 
1843 /*
1844  * Create a new object which is backed by the specified existing object
1845  * range.  Replace the pointer and offset that was pointing at the existing
1846  * object with the pointer/offset for the new object.
1847  *
1848  * If addref is non-zero the returned object is given an additional reference.
1849  * This mechanic exists to avoid the situation where refs might be 1 and
1850  * race against a collapse when the caller intends to bump it.  So the
1851  * caller cannot add the ref after the fact.  Used when the caller is
1852  * duplicating a vm_map_entry.
1853  *
1854  * No other requirements.
1855  */
1856 void
1857 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1858 		 int addref)
1859 {
1860 	vm_object_t source;
1861 	vm_object_t result;
1862 	int useshadowlist;
1863 
1864 	source = *objectp;
1865 
1866 	/*
1867 	 * Don't create the new object if the old object isn't shared.
1868 	 * We have to chain wait before adding the reference to avoid
1869 	 * racing a collapse or deallocation.
1870 	 *
1871 	 * Clear OBJ_ONEMAPPING flag when shadowing.
1872 	 *
1873 	 * The caller owns a ref on source via *objectp which we are going
1874 	 * to replace.  This ref is inherited by the backing_object assignment.
1875 	 * from nobject and does not need to be incremented here.
1876 	 *
1877 	 * However, we add a temporary extra reference to the original source
1878 	 * prior to holding nobject in case we block, to avoid races where
1879 	 * someone else might believe that the source can be collapsed.
1880 	 */
1881 	useshadowlist = 0;
1882 	if (source) {
1883 		if (source->type != OBJT_VNODE) {
1884 			useshadowlist = 1;
1885 			vm_object_hold(source);
1886 			vm_object_chain_wait(source, 0);
1887 			if (source->ref_count == 1 &&
1888 			    source->handle == NULL &&
1889 			    (source->type == OBJT_DEFAULT ||
1890 			     source->type == OBJT_SWAP)) {
1891 				if (addref) {
1892 					vm_object_reference_locked(source);
1893 					vm_object_clear_flag(source,
1894 							     OBJ_ONEMAPPING);
1895 				}
1896 				vm_object_drop(source);
1897 				return;
1898 			}
1899 			vm_object_reference_locked(source);
1900 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1901 		} else {
1902 			vm_object_reference_quick(source);
1903 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1904 		}
1905 	}
1906 
1907 	/*
1908 	 * Allocate a new object with the given length.  The new object
1909 	 * is returned referenced but we may have to add another one.
1910 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1911 	 * (typically because the caller is about to clone a vm_map_entry).
1912 	 *
1913 	 * The source object currently has an extra reference to prevent
1914 	 * collapses into it while we mess with its shadow list, which
1915 	 * we will remove later in this routine.
1916 	 *
1917 	 * The target object may require a second reference if asked for one
1918 	 * by the caller.
1919 	 */
1920 	result = vm_object_allocate(OBJT_DEFAULT, length);
1921 	if (result == NULL)
1922 		panic("vm_object_shadow: no object for shadowing");
1923 	vm_object_hold(result);
1924 	if (addref) {
1925 		vm_object_reference_locked(result);
1926 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1927 	}
1928 
1929 	/*
1930 	 * The new object shadows the source object.  Chain wait before
1931 	 * adjusting shadow_count or the shadow list to avoid races.
1932 	 *
1933 	 * Try to optimize the result object's page color when shadowing
1934 	 * in order to maintain page coloring consistency in the combined
1935 	 * shadowed object.
1936 	 *
1937 	 * The backing_object reference to source requires adding a ref to
1938 	 * source.  We simply inherit the ref from the original *objectp
1939 	 * (which we are replacing) so no additional refs need to be added.
1940 	 * (we must still clean up the extra ref we had to prevent collapse
1941 	 * races).
1942 	 *
1943 	 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1944 	 */
1945 	KKASSERT(result->backing_object == NULL);
1946 	result->backing_object = source;
1947 	if (source) {
1948 		if (useshadowlist) {
1949 			vm_object_chain_wait(source, 0);
1950 			LIST_INSERT_HEAD(&source->shadow_head,
1951 					 result, shadow_list);
1952 			source->shadow_count++;
1953 			atomic_add_int(&source->generation, 1);
1954 			vm_object_set_flag(result, OBJ_ONSHADOW);
1955 		}
1956 		/* cpu localization twist */
1957 		result->pg_color = vm_quickcolor();
1958 	}
1959 
1960 	/*
1961 	 * Adjust the return storage.  Drop the ref on source before
1962 	 * returning.
1963 	 */
1964 	result->backing_object_offset = *offset;
1965 	vm_object_drop(result);
1966 	*offset = 0;
1967 	if (source) {
1968 		if (useshadowlist) {
1969 			vm_object_deallocate_locked(source);
1970 			vm_object_drop(source);
1971 		} else {
1972 			vm_object_deallocate(source);
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * Return the new things
1978 	 */
1979 	*objectp = result;
1980 }
1981 
1982 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1983 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1984 #define	OBSC_COLLAPSE_WAIT	0x0004
1985 
1986 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1987 
1988 /*
1989  * The caller must hold the object.
1990  */
1991 static __inline int
1992 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1993 {
1994 	struct rb_vm_page_scan_info info;
1995 	struct vm_object_hash *hash;
1996 
1997 	vm_object_assert_held(object);
1998 	vm_object_assert_held(backing_object);
1999 
2000 	KKASSERT(backing_object == object->backing_object);
2001 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2002 
2003 	/*
2004 	 * Initial conditions
2005 	 */
2006 	if (op & OBSC_TEST_ALL_SHADOWED) {
2007 		/*
2008 		 * We do not want to have to test for the existence of
2009 		 * swap pages in the backing object.  XXX but with the
2010 		 * new swapper this would be pretty easy to do.
2011 		 *
2012 		 * XXX what about anonymous MAP_SHARED memory that hasn't
2013 		 * been ZFOD faulted yet?  If we do not test for this, the
2014 		 * shadow test may succeed! XXX
2015 		 */
2016 		if (backing_object->type != OBJT_DEFAULT)
2017 			return(0);
2018 	}
2019 	if (op & OBSC_COLLAPSE_WAIT) {
2020 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2021 		vm_object_set_flag(backing_object, OBJ_DEAD);
2022 
2023 		hash = VMOBJ_HASH(backing_object);
2024 		lwkt_gettoken(&hash->token);
2025 		TAILQ_REMOVE(&hash->list, backing_object, object_list);
2026 		lwkt_reltoken(&hash->token);
2027 	}
2028 
2029 	/*
2030 	 * Our scan.   We have to retry if a negative error code is returned,
2031 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2032 	 * the scan had to be stopped because the parent does not completely
2033 	 * shadow the child.
2034 	 */
2035 	info.object = object;
2036 	info.backing_object = backing_object;
2037 	info.limit = op;
2038 	info.count = 0;
2039 	do {
2040 		info.error = 1;
2041 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2042 					vm_object_backing_scan_callback,
2043 					&info);
2044 	} while (info.error < 0);
2045 
2046 	return(info.error);
2047 }
2048 
2049 /*
2050  * The caller must hold the object.
2051  */
2052 static int
2053 vm_object_backing_scan_callback(vm_page_t p, void *data)
2054 {
2055 	struct rb_vm_page_scan_info *info = data;
2056 	vm_object_t backing_object;
2057 	vm_object_t object;
2058 	vm_pindex_t pindex;
2059 	vm_pindex_t new_pindex;
2060 	vm_pindex_t backing_offset_index;
2061 	int op;
2062 
2063 	pindex = p->pindex;
2064 	new_pindex = pindex - info->backing_offset_index;
2065 	op = info->limit;
2066 	object = info->object;
2067 	backing_object = info->backing_object;
2068 	backing_offset_index = info->backing_offset_index;
2069 
2070 	if (op & OBSC_TEST_ALL_SHADOWED) {
2071 		vm_page_t pp;
2072 
2073 		/*
2074 		 * Ignore pages outside the parent object's range
2075 		 * and outside the parent object's mapping of the
2076 		 * backing object.
2077 		 *
2078 		 * note that we do not busy the backing object's
2079 		 * page.
2080 		 */
2081 		if (pindex < backing_offset_index ||
2082 		    new_pindex >= object->size
2083 		) {
2084 			return(0);
2085 		}
2086 
2087 		/*
2088 		 * See if the parent has the page or if the parent's
2089 		 * object pager has the page.  If the parent has the
2090 		 * page but the page is not valid, the parent's
2091 		 * object pager must have the page.
2092 		 *
2093 		 * If this fails, the parent does not completely shadow
2094 		 * the object and we might as well give up now.
2095 		 */
2096 		pp = vm_page_lookup(object, new_pindex);
2097 		if ((pp == NULL || pp->valid == 0) &&
2098 		    !vm_pager_has_page(object, new_pindex)
2099 		) {
2100 			info->error = 0;	/* problemo */
2101 			return(-1);		/* stop the scan */
2102 		}
2103 	}
2104 
2105 	/*
2106 	 * Check for busy page.  Note that we may have lost (p) when we
2107 	 * possibly blocked above.
2108 	 */
2109 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2110 		vm_page_t pp;
2111 
2112 		if (vm_page_busy_try(p, TRUE)) {
2113 			if (op & OBSC_COLLAPSE_NOWAIT) {
2114 				return(0);
2115 			} else {
2116 				/*
2117 				 * If we slept, anything could have
2118 				 * happened.   Ask that the scan be restarted.
2119 				 *
2120 				 * Since the object is marked dead, the
2121 				 * backing offset should not have changed.
2122 				 */
2123 				vm_page_sleep_busy(p, TRUE, "vmocol");
2124 				info->error = -1;
2125 				return(-1);
2126 			}
2127 		}
2128 
2129 		/*
2130 		 * If (p) is no longer valid restart the scan.
2131 		 */
2132 		if (p->object != backing_object || p->pindex != pindex) {
2133 			kprintf("vm_object_backing_scan: Warning: page "
2134 				"%p ripped out from under us\n", p);
2135 			vm_page_wakeup(p);
2136 			info->error = -1;
2137 			return(-1);
2138 		}
2139 
2140 		if (op & OBSC_COLLAPSE_NOWAIT) {
2141 			if (p->valid == 0 ||
2142 			    p->wire_count ||
2143 			    (p->flags & PG_NEED_COMMIT)) {
2144 				vm_page_wakeup(p);
2145 				return(0);
2146 			}
2147 		} else {
2148 			/* XXX what if p->valid == 0 , hold_count, etc? */
2149 		}
2150 
2151 		KASSERT(
2152 		    p->object == backing_object,
2153 		    ("vm_object_qcollapse(): object mismatch")
2154 		);
2155 
2156 		/*
2157 		 * Destroy any associated swap
2158 		 */
2159 		if (backing_object->type == OBJT_SWAP)
2160 			swap_pager_freespace(backing_object, p->pindex, 1);
2161 
2162 		if (
2163 		    p->pindex < backing_offset_index ||
2164 		    new_pindex >= object->size
2165 		) {
2166 			/*
2167 			 * Page is out of the parent object's range, we
2168 			 * can simply destroy it.
2169 			 */
2170 			vm_page_protect(p, VM_PROT_NONE);
2171 			vm_page_free(p);
2172 			return(0);
2173 		}
2174 
2175 		pp = vm_page_lookup(object, new_pindex);
2176 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2177 			/*
2178 			 * page already exists in parent OR swap exists
2179 			 * for this location in the parent.  Destroy
2180 			 * the original page from the backing object.
2181 			 *
2182 			 * Leave the parent's page alone
2183 			 */
2184 			vm_page_protect(p, VM_PROT_NONE);
2185 			vm_page_free(p);
2186 			return(0);
2187 		}
2188 
2189 		/*
2190 		 * Page does not exist in parent, rename the
2191 		 * page from the backing object to the main object.
2192 		 *
2193 		 * If the page was mapped to a process, it can remain
2194 		 * mapped through the rename.
2195 		 */
2196 		if ((p->queue - p->pc) == PQ_CACHE)
2197 			vm_page_deactivate(p);
2198 
2199 		vm_page_rename(p, object, new_pindex);
2200 		vm_page_wakeup(p);
2201 		/* page automatically made dirty by rename */
2202 	}
2203 	return(0);
2204 }
2205 
2206 /*
2207  * This version of collapse allows the operation to occur earlier and
2208  * when paging_in_progress is true for an object...  This is not a complete
2209  * operation, but should plug 99.9% of the rest of the leaks.
2210  *
2211  * The caller must hold the object and backing_object and both must be
2212  * chainlocked.
2213  *
2214  * (only called from vm_object_collapse)
2215  */
2216 static void
2217 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2218 {
2219 	if (backing_object->ref_count == 1) {
2220 		atomic_add_int(&backing_object->ref_count, 2);
2221 #if defined(DEBUG_LOCKS)
2222 		debugvm_object_add(backing_object, "qcollapse", 1, 2);
2223 #endif
2224 		vm_object_backing_scan(object, backing_object,
2225 				       OBSC_COLLAPSE_NOWAIT);
2226 		atomic_add_int(&backing_object->ref_count, -2);
2227 #if defined(DEBUG_LOCKS)
2228 		debugvm_object_add(backing_object, "qcollapse", 2, -2);
2229 #endif
2230 	}
2231 }
2232 
2233 /*
2234  * Collapse an object with the object backing it.  Pages in the backing
2235  * object are moved into the parent, and the backing object is deallocated.
2236  * Any conflict is resolved in favor of the parent's existing pages.
2237  *
2238  * object must be held and chain-locked on call.
2239  *
2240  * The caller must have an extra ref on object to prevent a race from
2241  * destroying it during the collapse.
2242  */
2243 void
2244 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2245 {
2246 	struct vm_object_dealloc_list *dlist = NULL;
2247 	vm_object_t backing_object;
2248 
2249 	/*
2250 	 * Only one thread is attempting a collapse at any given moment.
2251 	 * There are few restrictions for (object) that callers of this
2252 	 * function check so reentrancy is likely.
2253 	 */
2254 	KKASSERT(object != NULL);
2255 	vm_object_assert_held(object);
2256 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2257 
2258 	for (;;) {
2259 		vm_object_t bbobj;
2260 		int dodealloc;
2261 
2262 		/*
2263 		 * We can only collapse a DEFAULT/SWAP object with a
2264 		 * DEFAULT/SWAP object.
2265 		 */
2266 		if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2267 			backing_object = NULL;
2268 			break;
2269 		}
2270 
2271 		backing_object = object->backing_object;
2272 		if (backing_object == NULL)
2273 			break;
2274 		if (backing_object->type != OBJT_DEFAULT &&
2275 		    backing_object->type != OBJT_SWAP) {
2276 			backing_object = NULL;
2277 			break;
2278 		}
2279 
2280 		/*
2281 		 * Hold the backing_object and check for races
2282 		 */
2283 		vm_object_hold(backing_object);
2284 		if (backing_object != object->backing_object ||
2285 		    (backing_object->type != OBJT_DEFAULT &&
2286 		     backing_object->type != OBJT_SWAP)) {
2287 			vm_object_drop(backing_object);
2288 			continue;
2289 		}
2290 
2291 		/*
2292 		 * Chain-lock the backing object too because if we
2293 		 * successfully merge its pages into the top object we
2294 		 * will collapse backing_object->backing_object as the
2295 		 * new backing_object.  Re-check that it is still our
2296 		 * backing object.
2297 		 */
2298 		vm_object_chain_acquire(backing_object, 0);
2299 		if (backing_object != object->backing_object) {
2300 			vm_object_chain_release(backing_object);
2301 			vm_object_drop(backing_object);
2302 			continue;
2303 		}
2304 
2305 		/*
2306 		 * we check the backing object first, because it is most likely
2307 		 * not collapsable.
2308 		 */
2309 		if (backing_object->handle != NULL ||
2310 		    (backing_object->type != OBJT_DEFAULT &&
2311 		     backing_object->type != OBJT_SWAP) ||
2312 		    (backing_object->flags & OBJ_DEAD) ||
2313 		    object->handle != NULL ||
2314 		    (object->type != OBJT_DEFAULT &&
2315 		     object->type != OBJT_SWAP) ||
2316 		    (object->flags & OBJ_DEAD)) {
2317 			break;
2318 		}
2319 
2320 		/*
2321 		 * If paging is in progress we can't do a normal collapse.
2322 		 */
2323 		if (
2324 		    object->paging_in_progress != 0 ||
2325 		    backing_object->paging_in_progress != 0
2326 		) {
2327 			vm_object_qcollapse(object, backing_object);
2328 			break;
2329 		}
2330 
2331 		/*
2332 		 * We know that we can either collapse the backing object (if
2333 		 * the parent is the only reference to it) or (perhaps) have
2334 		 * the parent bypass the object if the parent happens to shadow
2335 		 * all the resident pages in the entire backing object.
2336 		 *
2337 		 * This is ignoring pager-backed pages such as swap pages.
2338 		 * vm_object_backing_scan fails the shadowing test in this
2339 		 * case.
2340 		 */
2341 		if (backing_object->ref_count == 1) {
2342 			/*
2343 			 * If there is exactly one reference to the backing
2344 			 * object, we can collapse it into the parent.
2345 			 */
2346 			KKASSERT(object->backing_object == backing_object);
2347 			vm_object_backing_scan(object, backing_object,
2348 					       OBSC_COLLAPSE_WAIT);
2349 
2350 			/*
2351 			 * Move the pager from backing_object to object.
2352 			 */
2353 			if (backing_object->type == OBJT_SWAP) {
2354 				vm_object_pip_add(backing_object, 1);
2355 
2356 				/*
2357 				 * scrap the paging_offset junk and do a
2358 				 * discrete copy.  This also removes major
2359 				 * assumptions about how the swap-pager
2360 				 * works from where it doesn't belong.  The
2361 				 * new swapper is able to optimize the
2362 				 * destroy-source case.
2363 				 */
2364 				vm_object_pip_add(object, 1);
2365 				swap_pager_copy(backing_object, object,
2366 				    OFF_TO_IDX(object->backing_object_offset),
2367 				    TRUE);
2368 				vm_object_pip_wakeup(object);
2369 				vm_object_pip_wakeup(backing_object);
2370 			}
2371 
2372 			/*
2373 			 * Object now shadows whatever backing_object did.
2374 			 * Remove object from backing_object's shadow_list.
2375 			 *
2376 			 * Removing object from backing_objects shadow list
2377 			 * requires releasing object, which we will do below.
2378 			 */
2379 			KKASSERT(object->backing_object == backing_object);
2380 			if (object->flags & OBJ_ONSHADOW) {
2381 				LIST_REMOVE(object, shadow_list);
2382 				backing_object->shadow_count--;
2383 				atomic_add_int(&backing_object->generation, 1);
2384 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2385 			}
2386 
2387 			/*
2388 			 * backing_object->backing_object moves from within
2389 			 * backing_object to within object.
2390 			 *
2391 			 * OBJT_VNODE bbobj's should have empty shadow lists.
2392 			 */
2393 			while ((bbobj = backing_object->backing_object) != NULL) {
2394 				if (bbobj->type == OBJT_VNODE)
2395 					vm_object_hold_shared(bbobj);
2396 				else
2397 					vm_object_hold(bbobj);
2398 				if (bbobj == backing_object->backing_object)
2399 					break;
2400 				vm_object_drop(bbobj);
2401 			}
2402 
2403 			/*
2404 			 * We are removing backing_object from bbobj's
2405 			 * shadow list and adding object to bbobj's shadow
2406 			 * list, so the ref_count on bbobj is unchanged.
2407 			 */
2408 			if (bbobj) {
2409 				if (backing_object->flags & OBJ_ONSHADOW) {
2410 					/* not locked exclusively if vnode */
2411 					KKASSERT(bbobj->type != OBJT_VNODE);
2412 					LIST_REMOVE(backing_object,
2413 						    shadow_list);
2414 					bbobj->shadow_count--;
2415 					atomic_add_int(&bbobj->generation, 1);
2416 					vm_object_clear_flag(backing_object,
2417 							     OBJ_ONSHADOW);
2418 				}
2419 				backing_object->backing_object = NULL;
2420 			}
2421 			object->backing_object = bbobj;
2422 			if (bbobj) {
2423 				if (bbobj->type != OBJT_VNODE) {
2424 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2425 							 object, shadow_list);
2426 					bbobj->shadow_count++;
2427 					atomic_add_int(&bbobj->generation, 1);
2428 					vm_object_set_flag(object,
2429 							   OBJ_ONSHADOW);
2430 				}
2431 			}
2432 
2433 			object->backing_object_offset +=
2434 				backing_object->backing_object_offset;
2435 
2436 			vm_object_drop(bbobj);
2437 
2438 			/*
2439 			 * Discard the old backing_object.  Nothing should be
2440 			 * able to ref it, other than a vm_map_split(),
2441 			 * and vm_map_split() will stall on our chain lock.
2442 			 * And we control the parent so it shouldn't be
2443 			 * possible for it to go away either.
2444 			 *
2445 			 * Since the backing object has no pages, no pager
2446 			 * left, and no object references within it, all
2447 			 * that is necessary is to dispose of it.
2448 			 */
2449 			KASSERT(backing_object->ref_count == 1,
2450 				("backing_object %p was somehow "
2451 				 "re-referenced during collapse!",
2452 				 backing_object));
2453 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2454 				("backing_object %p somehow has left "
2455 				 "over pages during collapse!",
2456 				 backing_object));
2457 
2458 			/*
2459 			 * The object can be destroyed.
2460 			 *
2461 			 * XXX just fall through and dodealloc instead
2462 			 *     of forcing destruction?
2463 			 */
2464 			atomic_add_int(&backing_object->ref_count, -1);
2465 #if defined(DEBUG_LOCKS)
2466 			debugvm_object_add(backing_object, "collapse", 1, -1);
2467 #endif
2468 			if ((backing_object->flags & OBJ_DEAD) == 0)
2469 				vm_object_terminate(backing_object);
2470 			object_collapses++;
2471 			dodealloc = 0;
2472 		} else {
2473 			/*
2474 			 * If we do not entirely shadow the backing object,
2475 			 * there is nothing we can do so we give up.
2476 			 */
2477 			if (vm_object_backing_scan(object, backing_object,
2478 						OBSC_TEST_ALL_SHADOWED) == 0) {
2479 				break;
2480 			}
2481 
2482 			/*
2483 			 * bbobj is backing_object->backing_object.  Since
2484 			 * object completely shadows backing_object we can
2485 			 * bypass it and become backed by bbobj instead.
2486 			 *
2487 			 * The shadow list for vnode backing objects is not
2488 			 * used and a shared hold is allowed.
2489 			 */
2490 			while ((bbobj = backing_object->backing_object) != NULL) {
2491 				if (bbobj->type == OBJT_VNODE)
2492 					vm_object_hold_shared(bbobj);
2493 				else
2494 					vm_object_hold(bbobj);
2495 				if (bbobj == backing_object->backing_object)
2496 					break;
2497 				vm_object_drop(bbobj);
2498 			}
2499 
2500 			/*
2501 			 * Make object shadow bbobj instead of backing_object.
2502 			 * Remove object from backing_object's shadow list.
2503 			 *
2504 			 * Deallocating backing_object will not remove
2505 			 * it, since its reference count is at least 2.
2506 			 *
2507 			 * Removing object from backing_object's shadow
2508 			 * list requires releasing a ref, which we do
2509 			 * below by setting dodealloc to 1.
2510 			 */
2511 			KKASSERT(object->backing_object == backing_object);
2512 			if (object->flags & OBJ_ONSHADOW) {
2513 				LIST_REMOVE(object, shadow_list);
2514 				backing_object->shadow_count--;
2515 				atomic_add_int(&backing_object->generation, 1);
2516 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2517 			}
2518 
2519 			/*
2520 			 * Add a ref to bbobj, bbobj now shadows object.
2521 			 *
2522 			 * NOTE: backing_object->backing_object still points
2523 			 *	 to bbobj.  That relationship remains intact
2524 			 *	 because backing_object has > 1 ref, so
2525 			 *	 someone else is pointing to it (hence why
2526 			 *	 we can't collapse it into object and can
2527 			 *	 only handle the all-shadowed bypass case).
2528 			 */
2529 			if (bbobj) {
2530 				if (bbobj->type != OBJT_VNODE) {
2531 					vm_object_chain_wait(bbobj, 0);
2532 					vm_object_reference_locked(bbobj);
2533 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2534 							 object, shadow_list);
2535 					bbobj->shadow_count++;
2536 					atomic_add_int(&bbobj->generation, 1);
2537 					vm_object_set_flag(object,
2538 							   OBJ_ONSHADOW);
2539 				} else {
2540 					vm_object_reference_quick(bbobj);
2541 				}
2542 				object->backing_object_offset +=
2543 					backing_object->backing_object_offset;
2544 				object->backing_object = bbobj;
2545 				vm_object_drop(bbobj);
2546 			} else {
2547 				object->backing_object = NULL;
2548 			}
2549 
2550 			/*
2551 			 * Drop the reference count on backing_object.  To
2552 			 * handle ref_count races properly we can't assume
2553 			 * that the ref_count is still at least 2 so we
2554 			 * have to actually call vm_object_deallocate()
2555 			 * (after clearing the chainlock).
2556 			 */
2557 			object_bypasses++;
2558 			dodealloc = 1;
2559 		}
2560 
2561 		/*
2562 		 * Ok, we want to loop on the new object->bbobj association,
2563 		 * possibly collapsing it further.  However if dodealloc is
2564 		 * non-zero we have to deallocate the backing_object which
2565 		 * itself can potentially undergo a collapse, creating a
2566 		 * recursion depth issue with the LWKT token subsystem.
2567 		 *
2568 		 * In the case where we must deallocate the backing_object
2569 		 * it is possible now that the backing_object has a single
2570 		 * shadow count on some other object (not represented here
2571 		 * as yet), since it no longer shadows us.  Thus when we
2572 		 * call vm_object_deallocate() it may attempt to collapse
2573 		 * itself into its remaining parent.
2574 		 */
2575 		if (dodealloc) {
2576 			struct vm_object_dealloc_list *dtmp;
2577 
2578 			vm_object_chain_release(backing_object);
2579 			vm_object_unlock(backing_object);
2580 			/* backing_object remains held */
2581 
2582 			/*
2583 			 * Auto-deallocation list for caller convenience.
2584 			 */
2585 			if (dlistp == NULL)
2586 				dlistp = &dlist;
2587 
2588 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2589 			dtmp->object = backing_object;
2590 			dtmp->next = *dlistp;
2591 			*dlistp = dtmp;
2592 		} else {
2593 			vm_object_chain_release(backing_object);
2594 			vm_object_drop(backing_object);
2595 		}
2596 		/* backing_object = NULL; not needed */
2597 		/* loop */
2598 	}
2599 
2600 	/*
2601 	 * Clean up any left over backing_object
2602 	 */
2603 	if (backing_object) {
2604 		vm_object_chain_release(backing_object);
2605 		vm_object_drop(backing_object);
2606 	}
2607 
2608 	/*
2609 	 * Clean up any auto-deallocation list.  This is a convenience
2610 	 * for top-level callers so they don't have to pass &dlist.
2611 	 * Do not clean up any caller-passed dlistp, the caller will
2612 	 * do that.
2613 	 */
2614 	if (dlist)
2615 		vm_object_deallocate_list(&dlist);
2616 
2617 }
2618 
2619 /*
2620  * vm_object_collapse() may collect additional objects in need of
2621  * deallocation.  This routine deallocates these objects.  The
2622  * deallocation itself can trigger additional collapses (which the
2623  * deallocate function takes care of).  This procedure is used to
2624  * reduce procedural recursion since these vm_object shadow chains
2625  * can become quite long.
2626  */
2627 void
2628 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2629 {
2630 	struct vm_object_dealloc_list *dlist;
2631 
2632 	while ((dlist = *dlistp) != NULL) {
2633 		*dlistp = dlist->next;
2634 		vm_object_lock(dlist->object);
2635 		vm_object_deallocate_locked(dlist->object);
2636 		vm_object_drop(dlist->object);
2637 		kfree(dlist, M_TEMP);
2638 	}
2639 }
2640 
2641 /*
2642  * Removes all physical pages in the specified object range from the
2643  * object's list of pages.
2644  *
2645  * No requirements.
2646  */
2647 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2648 
2649 void
2650 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2651 		      boolean_t clean_only)
2652 {
2653 	struct rb_vm_page_scan_info info;
2654 	int all;
2655 
2656 	/*
2657 	 * Degenerate cases and assertions
2658 	 */
2659 	vm_object_hold(object);
2660 	if (object == NULL ||
2661 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2662 		vm_object_drop(object);
2663 		return;
2664 	}
2665 	KASSERT(object->type != OBJT_PHYS,
2666 		("attempt to remove pages from a physical object"));
2667 
2668 	/*
2669 	 * Indicate that paging is occuring on the object
2670 	 */
2671 	vm_object_pip_add(object, 1);
2672 
2673 	/*
2674 	 * Figure out the actual removal range and whether we are removing
2675 	 * the entire contents of the object or not.  If removing the entire
2676 	 * contents, be sure to get all pages, even those that might be
2677 	 * beyond the end of the object.
2678 	 */
2679 	info.object = object;
2680 	info.start_pindex = start;
2681 	if (end == 0)
2682 		info.end_pindex = (vm_pindex_t)-1;
2683 	else
2684 		info.end_pindex = end - 1;
2685 	info.limit = clean_only;
2686 	info.count = 0;
2687 	all = (start == 0 && info.end_pindex >= object->size - 1);
2688 
2689 	/*
2690 	 * Loop until we are sure we have gotten them all.
2691 	 */
2692 	do {
2693 		info.error = 0;
2694 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2695 					vm_object_page_remove_callback, &info);
2696 	} while (info.error);
2697 
2698 	/*
2699 	 * Remove any related swap if throwing away pages, or for
2700 	 * non-swap objects (the swap is a clean copy in that case).
2701 	 */
2702 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2703 		if (all)
2704 			swap_pager_freespace_all(object);
2705 		else
2706 			swap_pager_freespace(object, info.start_pindex,
2707 			     info.end_pindex - info.start_pindex + 1);
2708 	}
2709 
2710 	/*
2711 	 * Cleanup
2712 	 */
2713 	vm_object_pip_wakeup(object);
2714 	vm_object_drop(object);
2715 }
2716 
2717 /*
2718  * The caller must hold the object.
2719  *
2720  * NOTE: User yields are allowed when removing more than one page, but not
2721  *	 allowed if only removing one page (the path for single page removals
2722  *	 might hold a spinlock).
2723  */
2724 static int
2725 vm_object_page_remove_callback(vm_page_t p, void *data)
2726 {
2727 	struct rb_vm_page_scan_info *info = data;
2728 
2729 	if (info->object != p->object ||
2730 	    p->pindex < info->start_pindex ||
2731 	    p->pindex > info->end_pindex) {
2732 		kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2733 			info->object, p);
2734 		return(0);
2735 	}
2736 	if (vm_page_busy_try(p, TRUE)) {
2737 		vm_page_sleep_busy(p, TRUE, "vmopar");
2738 		info->error = 1;
2739 		return(0);
2740 	}
2741 	if (info->object != p->object) {
2742 		/* this should never happen */
2743 		kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2744 			info->object, p);
2745 		vm_page_wakeup(p);
2746 		return(0);
2747 	}
2748 
2749 	/*
2750 	 * Wired pages cannot be destroyed, but they can be invalidated
2751 	 * and we do so if clean_only (limit) is not set.
2752 	 *
2753 	 * WARNING!  The page may be wired due to being part of a buffer
2754 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2755 	 *	     This is fine as part of a truncation but VFSs must be
2756 	 *	     sure to fix the buffer up when re-extending the file.
2757 	 *
2758 	 * NOTE!     PG_NEED_COMMIT is ignored.
2759 	 */
2760 	if (p->wire_count != 0) {
2761 		vm_page_protect(p, VM_PROT_NONE);
2762 		if (info->limit == 0)
2763 			p->valid = 0;
2764 		vm_page_wakeup(p);
2765 		goto done;
2766 	}
2767 
2768 	/*
2769 	 * limit is our clean_only flag.  If set and the page is dirty or
2770 	 * requires a commit, do not free it.  If set and the page is being
2771 	 * held by someone, do not free it.
2772 	 */
2773 	if (info->limit && p->valid) {
2774 		vm_page_test_dirty(p);
2775 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2776 			vm_page_wakeup(p);
2777 			goto done;
2778 		}
2779 	}
2780 
2781 	/*
2782 	 * Destroy the page
2783 	 */
2784 	vm_page_protect(p, VM_PROT_NONE);
2785 	vm_page_free(p);
2786 
2787 	/*
2788 	 * Must be at end to avoid SMP races, caller holds object token
2789 	 */
2790 done:
2791 	if ((++info->count & 63) == 0)
2792 		lwkt_user_yield();
2793 
2794 	return(0);
2795 }
2796 
2797 /*
2798  * Coalesces two objects backing up adjoining regions of memory into a
2799  * single object.
2800  *
2801  * returns TRUE if objects were combined.
2802  *
2803  * NOTE: Only works at the moment if the second object is NULL -
2804  *	 if it's not, which object do we lock first?
2805  *
2806  * Parameters:
2807  *	prev_object	First object to coalesce
2808  *	prev_offset	Offset into prev_object
2809  *	next_object	Second object into coalesce
2810  *	next_offset	Offset into next_object
2811  *
2812  *	prev_size	Size of reference to prev_object
2813  *	next_size	Size of reference to next_object
2814  *
2815  * The caller does not need to hold (prev_object) but must have a stable
2816  * pointer to it (typically by holding the vm_map locked).
2817  */
2818 boolean_t
2819 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2820 		   vm_size_t prev_size, vm_size_t next_size)
2821 {
2822 	vm_pindex_t next_pindex;
2823 
2824 	if (prev_object == NULL)
2825 		return (TRUE);
2826 
2827 	vm_object_hold(prev_object);
2828 
2829 	if (prev_object->type != OBJT_DEFAULT &&
2830 	    prev_object->type != OBJT_SWAP) {
2831 		vm_object_drop(prev_object);
2832 		return (FALSE);
2833 	}
2834 
2835 	/*
2836 	 * Try to collapse the object first
2837 	 */
2838 	vm_object_chain_acquire(prev_object, 0);
2839 	vm_object_collapse(prev_object, NULL);
2840 
2841 	/*
2842 	 * Can't coalesce if: . more than one reference . paged out . shadows
2843 	 * another object . has a copy elsewhere (any of which mean that the
2844 	 * pages not mapped to prev_entry may be in use anyway)
2845 	 */
2846 
2847 	if (prev_object->backing_object != NULL) {
2848 		vm_object_chain_release(prev_object);
2849 		vm_object_drop(prev_object);
2850 		return (FALSE);
2851 	}
2852 
2853 	prev_size >>= PAGE_SHIFT;
2854 	next_size >>= PAGE_SHIFT;
2855 	next_pindex = prev_pindex + prev_size;
2856 
2857 	if ((prev_object->ref_count > 1) &&
2858 	    (prev_object->size != next_pindex)) {
2859 		vm_object_chain_release(prev_object);
2860 		vm_object_drop(prev_object);
2861 		return (FALSE);
2862 	}
2863 
2864 	/*
2865 	 * Remove any pages that may still be in the object from a previous
2866 	 * deallocation.
2867 	 */
2868 	if (next_pindex < prev_object->size) {
2869 		vm_object_page_remove(prev_object,
2870 				      next_pindex,
2871 				      next_pindex + next_size, FALSE);
2872 		if (prev_object->type == OBJT_SWAP)
2873 			swap_pager_freespace(prev_object,
2874 					     next_pindex, next_size);
2875 	}
2876 
2877 	/*
2878 	 * Extend the object if necessary.
2879 	 */
2880 	if (next_pindex + next_size > prev_object->size)
2881 		prev_object->size = next_pindex + next_size;
2882 
2883 	vm_object_chain_release(prev_object);
2884 	vm_object_drop(prev_object);
2885 	return (TRUE);
2886 }
2887 
2888 /*
2889  * Make the object writable and flag is being possibly dirty.
2890  *
2891  * The object might not be held (or might be held but held shared),
2892  * the related vnode is probably not held either.  Object and vnode are
2893  * stable by virtue of the vm_page busied by the caller preventing
2894  * destruction.
2895  *
2896  * If the related mount is flagged MNTK_THR_SYNC we need to call
2897  * vsetobjdirty().  Filesystems using this option usually shortcut
2898  * synchronization by only scanning the syncer list.
2899  */
2900 void
2901 vm_object_set_writeable_dirty(vm_object_t object)
2902 {
2903 	struct vnode *vp;
2904 
2905 	/*vm_object_assert_held(object);*/
2906 	/*
2907 	 * Avoid contention in vm fault path by checking the state before
2908 	 * issuing an atomic op on it.
2909 	 */
2910 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2911 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2912 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2913 	}
2914 	if (object->type == OBJT_VNODE &&
2915 	    (vp = (struct vnode *)object->handle) != NULL) {
2916 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2917 			if (vp->v_mount &&
2918 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2919 				/*
2920 				 * New style THR_SYNC places vnodes on the
2921 				 * syncer list more deterministically.
2922 				 */
2923 				vsetobjdirty(vp);
2924 			} else {
2925 				/*
2926 				 * Old style scan would not necessarily place
2927 				 * a vnode on the syncer list when possibly
2928 				 * modified via mmap.
2929 				 */
2930 				vsetflags(vp, VOBJDIRTY);
2931 			}
2932 		}
2933 	}
2934 }
2935 
2936 #include "opt_ddb.h"
2937 #ifdef DDB
2938 #include <sys/cons.h>
2939 
2940 #include <ddb/ddb.h>
2941 
2942 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2943 				       vm_map_entry_t entry);
2944 static int	vm_object_in_map (vm_object_t object);
2945 
2946 /*
2947  * The caller must hold the object.
2948  */
2949 static int
2950 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2951 {
2952 	vm_map_t tmpm;
2953 	vm_map_entry_t tmpe;
2954 	vm_object_t obj, nobj;
2955 	int entcount;
2956 
2957 	if (map == 0)
2958 		return 0;
2959 	if (entry == 0) {
2960 		tmpe = map->header.next;
2961 		entcount = map->nentries;
2962 		while (entcount-- && (tmpe != &map->header)) {
2963 			if( _vm_object_in_map(map, object, tmpe)) {
2964 				return 1;
2965 			}
2966 			tmpe = tmpe->next;
2967 		}
2968 		return (0);
2969 	}
2970 	switch(entry->maptype) {
2971 	case VM_MAPTYPE_SUBMAP:
2972 		tmpm = entry->object.sub_map;
2973 		tmpe = tmpm->header.next;
2974 		entcount = tmpm->nentries;
2975 		while (entcount-- && tmpe != &tmpm->header) {
2976 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2977 				return 1;
2978 			}
2979 			tmpe = tmpe->next;
2980 		}
2981 		break;
2982 	case VM_MAPTYPE_NORMAL:
2983 	case VM_MAPTYPE_VPAGETABLE:
2984 		obj = entry->object.vm_object;
2985 		while (obj) {
2986 			if (obj == object) {
2987 				if (obj != entry->object.vm_object)
2988 					vm_object_drop(obj);
2989 				return 1;
2990 			}
2991 			while ((nobj = obj->backing_object) != NULL) {
2992 				vm_object_hold(nobj);
2993 				if (nobj == obj->backing_object)
2994 					break;
2995 				vm_object_drop(nobj);
2996 			}
2997 			if (obj != entry->object.vm_object) {
2998 				if (nobj)
2999 					vm_object_lock_swap();
3000 				vm_object_drop(obj);
3001 			}
3002 			obj = nobj;
3003 		}
3004 		break;
3005 	default:
3006 		break;
3007 	}
3008 	return 0;
3009 }
3010 
3011 static int vm_object_in_map_callback(struct proc *p, void *data);
3012 
3013 struct vm_object_in_map_info {
3014 	vm_object_t object;
3015 	int rv;
3016 };
3017 
3018 /*
3019  * Debugging only
3020  */
3021 static int
3022 vm_object_in_map(vm_object_t object)
3023 {
3024 	struct vm_object_in_map_info info;
3025 
3026 	info.rv = 0;
3027 	info.object = object;
3028 
3029 	allproc_scan(vm_object_in_map_callback, &info);
3030 	if (info.rv)
3031 		return 1;
3032 	if( _vm_object_in_map(&kernel_map, object, 0))
3033 		return 1;
3034 	if( _vm_object_in_map(&pager_map, object, 0))
3035 		return 1;
3036 	if( _vm_object_in_map(&buffer_map, object, 0))
3037 		return 1;
3038 	return 0;
3039 }
3040 
3041 /*
3042  * Debugging only
3043  */
3044 static int
3045 vm_object_in_map_callback(struct proc *p, void *data)
3046 {
3047 	struct vm_object_in_map_info *info = data;
3048 
3049 	if (p->p_vmspace) {
3050 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3051 			info->rv = 1;
3052 			return -1;
3053 		}
3054 	}
3055 	return (0);
3056 }
3057 
3058 DB_SHOW_COMMAND(vmochk, vm_object_check)
3059 {
3060 	struct vm_object_hash *hash;
3061 	vm_object_t object;
3062 	int n;
3063 
3064 	/*
3065 	 * make sure that internal objs are in a map somewhere
3066 	 * and none have zero ref counts.
3067 	 */
3068 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3069 		hash = &vm_object_hash[n];
3070 		for (object = TAILQ_FIRST(&hash->list);
3071 				object != NULL;
3072 				object = TAILQ_NEXT(object, object_list)) {
3073 			if (object->type == OBJT_MARKER)
3074 				continue;
3075 			if (object->handle != NULL ||
3076 			    (object->type != OBJT_DEFAULT &&
3077 			     object->type != OBJT_SWAP)) {
3078 				continue;
3079 			}
3080 			if (object->ref_count == 0) {
3081 				db_printf("vmochk: internal obj has "
3082 					  "zero ref count: %ld\n",
3083 					  (long)object->size);
3084 			}
3085 			if (vm_object_in_map(object))
3086 				continue;
3087 			db_printf("vmochk: internal obj is not in a map: "
3088 				  "ref: %d, size: %lu: 0x%lx, "
3089 				  "backing_object: %p\n",
3090 				  object->ref_count, (u_long)object->size,
3091 				  (u_long)object->size,
3092 				  (void *)object->backing_object);
3093 		}
3094 	}
3095 }
3096 
3097 /*
3098  * Debugging only
3099  */
3100 DB_SHOW_COMMAND(object, vm_object_print_static)
3101 {
3102 	/* XXX convert args. */
3103 	vm_object_t object = (vm_object_t)addr;
3104 	boolean_t full = have_addr;
3105 
3106 	vm_page_t p;
3107 
3108 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
3109 #define	count	was_count
3110 
3111 	int count;
3112 
3113 	if (object == NULL)
3114 		return;
3115 
3116 	db_iprintf(
3117 	    "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3118 	    object, (int)object->type, (u_long)object->size,
3119 	    object->resident_page_count, object->ref_count, object->flags);
3120 	/*
3121 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3122 	 */
3123 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3124 	    object->shadow_count,
3125 	    object->backing_object ? object->backing_object->ref_count : 0,
3126 	    object->backing_object, (long)object->backing_object_offset);
3127 
3128 	if (!full)
3129 		return;
3130 
3131 	db_indent += 2;
3132 	count = 0;
3133 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3134 		if (count == 0)
3135 			db_iprintf("memory:=");
3136 		else if (count == 6) {
3137 			db_printf("\n");
3138 			db_iprintf(" ...");
3139 			count = 0;
3140 		} else
3141 			db_printf(",");
3142 		count++;
3143 
3144 		db_printf("(off=0x%lx,page=0x%lx)",
3145 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3146 	}
3147 	if (count != 0)
3148 		db_printf("\n");
3149 	db_indent -= 2;
3150 }
3151 
3152 /* XXX. */
3153 #undef count
3154 
3155 /*
3156  * XXX need this non-static entry for calling from vm_map_print.
3157  *
3158  * Debugging only
3159  */
3160 void
3161 vm_object_print(/* db_expr_t */ long addr,
3162 		boolean_t have_addr,
3163 		/* db_expr_t */ long count,
3164 		char *modif)
3165 {
3166 	vm_object_print_static(addr, have_addr, count, modif);
3167 }
3168 
3169 /*
3170  * Debugging only
3171  */
3172 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3173 {
3174 	struct vm_object_hash *hash;
3175 	vm_object_t object;
3176 	int nl = 0;
3177 	int c;
3178 	int n;
3179 
3180 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3181 		hash = &vm_object_hash[n];
3182 		for (object = TAILQ_FIRST(&hash->list);
3183 				object != NULL;
3184 				object = TAILQ_NEXT(object, object_list)) {
3185 			vm_pindex_t idx, fidx;
3186 			vm_pindex_t osize;
3187 			vm_paddr_t pa = -1, padiff;
3188 			int rcount;
3189 			vm_page_t m;
3190 
3191 			if (object->type == OBJT_MARKER)
3192 				continue;
3193 			db_printf("new object: %p\n", (void *)object);
3194 			if ( nl > 18) {
3195 				c = cngetc();
3196 				if (c != ' ')
3197 					return;
3198 				nl = 0;
3199 			}
3200 			nl++;
3201 			rcount = 0;
3202 			fidx = 0;
3203 			osize = object->size;
3204 			if (osize > 128)
3205 				osize = 128;
3206 			for (idx = 0; idx < osize; idx++) {
3207 				m = vm_page_lookup(object, idx);
3208 				if (m == NULL) {
3209 					if (rcount) {
3210 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3211 							(long)fidx, rcount, (long)pa);
3212 						if ( nl > 18) {
3213 							c = cngetc();
3214 							if (c != ' ')
3215 								return;
3216 							nl = 0;
3217 						}
3218 						nl++;
3219 						rcount = 0;
3220 					}
3221 					continue;
3222 				}
3223 
3224 				if (rcount &&
3225 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3226 					++rcount;
3227 					continue;
3228 				}
3229 				if (rcount) {
3230 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3231 					padiff >>= PAGE_SHIFT;
3232 					padiff &= PQ_L2_MASK;
3233 					if (padiff == 0) {
3234 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3235 						++rcount;
3236 						continue;
3237 					}
3238 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
3239 						(long)fidx, rcount, (long)pa);
3240 					db_printf("pd(%ld)\n", (long)padiff);
3241 					if ( nl > 18) {
3242 						c = cngetc();
3243 						if (c != ' ')
3244 							return;
3245 						nl = 0;
3246 					}
3247 					nl++;
3248 				}
3249 				fidx = idx;
3250 				pa = VM_PAGE_TO_PHYS(m);
3251 				rcount = 1;
3252 			}
3253 			if (rcount) {
3254 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3255 					(long)fidx, rcount, (long)pa);
3256 				if ( nl > 18) {
3257 					c = cngetc();
3258 					if (c != ' ')
3259 						return;
3260 					nl = 0;
3261 				}
3262 				nl++;
3263 			}
3264 		}
3265 	}
3266 }
3267 #endif /* DDB */
3268