xref: /dragonfly/sys/vm/vm_object.c (revision b40e316c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.21 2004/11/12 00:09:56 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #include <sys/thread2.h>
96 
97 #define EASY_SCAN_FACTOR	8
98 
99 #define MSYNC_FLUSH_HARDSEQ	0x01
100 #define MSYNC_FLUSH_SOFTSEQ	0x02
101 
102 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
103 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
104         CTLFLAG_RW, &msync_flush_flags, 0, "");
105 
106 static void	vm_object_qcollapse (vm_object_t object);
107 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
108 
109 /*
110  *	Virtual memory objects maintain the actual data
111  *	associated with allocated virtual memory.  A given
112  *	page of memory exists within exactly one object.
113  *
114  *	An object is only deallocated when all "references"
115  *	are given up.  Only one "reference" to a given
116  *	region of an object should be writeable.
117  *
118  *	Associated with each object is a list of all resident
119  *	memory pages belonging to that object; this list is
120  *	maintained by the "vm_page" module, and locked by the object's
121  *	lock.
122  *
123  *	Each object also records a "pager" routine which is
124  *	used to retrieve (and store) pages to the proper backing
125  *	storage.  In addition, objects may be backed by other
126  *	objects from which they were virtual-copied.
127  *
128  *	The only items within the object structure which are
129  *	modified after time of creation are:
130  *		reference count		locked by object's lock
131  *		pager routine		locked by object's lock
132  *
133  */
134 
135 struct object_q vm_object_list;
136 static long vm_object_count;		/* count of all objects */
137 vm_object_t kernel_object;
138 vm_object_t kmem_object;
139 static struct vm_object kernel_object_store;
140 static struct vm_object kmem_object_store;
141 extern int vm_pageout_page_count;
142 
143 static long object_collapses;
144 static long object_bypasses;
145 static int next_index;
146 static vm_zone_t obj_zone;
147 static struct vm_zone obj_zone_store;
148 static int object_hash_rand;
149 #define VM_OBJECTS_INIT 256
150 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
151 
152 void
153 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
154 {
155 	int incr;
156 	TAILQ_INIT(&object->memq);
157 	LIST_INIT(&object->shadow_head);
158 
159 	object->type = type;
160 	object->size = size;
161 	object->ref_count = 1;
162 	object->flags = 0;
163 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
164 		vm_object_set_flag(object, OBJ_ONEMAPPING);
165 	object->paging_in_progress = 0;
166 	object->resident_page_count = 0;
167 	object->shadow_count = 0;
168 	object->pg_color = next_index;
169 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
170 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
171 	else
172 		incr = size;
173 	next_index = (next_index + incr) & PQ_L2_MASK;
174 	object->handle = NULL;
175 	object->backing_object = NULL;
176 	object->backing_object_offset = (vm_ooffset_t) 0;
177 	/*
178 	 * Try to generate a number that will spread objects out in the
179 	 * hash table.  We 'wipe' new objects across the hash in 128 page
180 	 * increments plus 1 more to offset it a little more by the time
181 	 * it wraps around.
182 	 */
183 	object->hash_rand = object_hash_rand - 129;
184 
185 	object->generation++;
186 
187 	crit_enter();
188 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
189 	vm_object_count++;
190 	object_hash_rand = object->hash_rand;
191 	crit_exit();
192 }
193 
194 /*
195  *	vm_object_init:
196  *
197  *	Initialize the VM objects module.
198  */
199 void
200 vm_object_init(void)
201 {
202 	TAILQ_INIT(&vm_object_list);
203 
204 	kernel_object = &kernel_object_store;
205 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
206 	    kernel_object);
207 
208 	kmem_object = &kmem_object_store;
209 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
210 	    kmem_object);
211 
212 	obj_zone = &obj_zone_store;
213 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
214 		vm_objects_init, VM_OBJECTS_INIT);
215 }
216 
217 void
218 vm_object_init2(void)
219 {
220 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
221 }
222 
223 /*
224  *	vm_object_allocate:
225  *
226  *	Returns a new object with the given size.
227  */
228 
229 vm_object_t
230 vm_object_allocate(objtype_t type, vm_size_t size)
231 {
232 	vm_object_t result;
233 
234 	result = (vm_object_t) zalloc(obj_zone);
235 
236 	_vm_object_allocate(type, size, result);
237 
238 	return (result);
239 }
240 
241 
242 /*
243  *	vm_object_reference:
244  *
245  *	Gets another reference to the given object.
246  */
247 void
248 vm_object_reference(vm_object_t object)
249 {
250 	if (object == NULL)
251 		return;
252 
253 #if 0
254 	/* object can be re-referenced during final cleaning */
255 	KASSERT(!(object->flags & OBJ_DEAD),
256 	    ("vm_object_reference: attempting to reference dead obj"));
257 #endif
258 
259 	object->ref_count++;
260 	if (object->type == OBJT_VNODE) {
261 		vref(object->handle);
262 		/* XXX what if the vnode is being destroyed? */
263 #if 0
264 		while (vget((struct vnode *) object->handle,
265 		    LK_RETRY|LK_NOOBJ, curthread)) {
266 			printf("vm_object_reference: delay in getting object\n");
267 		}
268 #endif
269 	}
270 }
271 
272 void
273 vm_object_vndeallocate(vm_object_t object)
274 {
275 	struct vnode *vp = (struct vnode *) object->handle;
276 
277 	KASSERT(object->type == OBJT_VNODE,
278 	    ("vm_object_vndeallocate: not a vnode object"));
279 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
280 #ifdef INVARIANTS
281 	if (object->ref_count == 0) {
282 		vprint("vm_object_vndeallocate", vp);
283 		panic("vm_object_vndeallocate: bad object reference count");
284 	}
285 #endif
286 
287 	object->ref_count--;
288 	if (object->ref_count == 0) {
289 		vp->v_flag &= ~VTEXT;
290 		vm_object_clear_flag(object, OBJ_OPT);
291 	}
292 	vrele(vp);
293 }
294 
295 /*
296  *	vm_object_deallocate:
297  *
298  *	Release a reference to the specified object,
299  *	gained either through a vm_object_allocate
300  *	or a vm_object_reference call.  When all references
301  *	are gone, storage associated with this object
302  *	may be relinquished.
303  *
304  *	No object may be locked.
305  */
306 void
307 vm_object_deallocate(vm_object_t object)
308 {
309 	vm_object_t temp;
310 
311 	while (object != NULL) {
312 
313 		if (object->type == OBJT_VNODE) {
314 			vm_object_vndeallocate(object);
315 			return;
316 		}
317 
318 		if (object->ref_count == 0) {
319 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
320 		} else if (object->ref_count > 2) {
321 			object->ref_count--;
322 			return;
323 		}
324 
325 		/*
326 		 * Here on ref_count of one or two, which are special cases for
327 		 * objects.
328 		 */
329 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
330 			vm_object_set_flag(object, OBJ_ONEMAPPING);
331 			object->ref_count--;
332 			return;
333 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
334 			object->ref_count--;
335 			if ((object->handle == NULL) &&
336 			    (object->type == OBJT_DEFAULT ||
337 			     object->type == OBJT_SWAP)) {
338 				vm_object_t robject;
339 
340 				robject = LIST_FIRST(&object->shadow_head);
341 				KASSERT(robject != NULL,
342 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
343 					 object->ref_count,
344 					 object->shadow_count));
345 				if ((robject->handle == NULL) &&
346 				    (robject->type == OBJT_DEFAULT ||
347 				     robject->type == OBJT_SWAP)) {
348 
349 					robject->ref_count++;
350 
351 					while (
352 						robject->paging_in_progress ||
353 						object->paging_in_progress
354 					) {
355 						vm_object_pip_sleep(robject, "objde1");
356 						vm_object_pip_sleep(object, "objde2");
357 					}
358 
359 					if (robject->ref_count == 1) {
360 						robject->ref_count--;
361 						object = robject;
362 						goto doterm;
363 					}
364 
365 					object = robject;
366 					vm_object_collapse(object);
367 					continue;
368 				}
369 			}
370 
371 			return;
372 
373 		} else {
374 			object->ref_count--;
375 			if (object->ref_count != 0)
376 				return;
377 		}
378 
379 doterm:
380 
381 		temp = object->backing_object;
382 		if (temp) {
383 			LIST_REMOVE(object, shadow_list);
384 			temp->shadow_count--;
385 			if (temp->ref_count == 0)
386 				vm_object_clear_flag(temp, OBJ_OPT);
387 			temp->generation++;
388 			object->backing_object = NULL;
389 		}
390 
391 		/*
392 		 * Don't double-terminate, we could be in a termination
393 		 * recursion due to the terminate having to sync data
394 		 * to disk.
395 		 */
396 		if ((object->flags & OBJ_DEAD) == 0)
397 			vm_object_terminate(object);
398 		object = temp;
399 	}
400 }
401 
402 /*
403  *	vm_object_terminate actually destroys the specified object, freeing
404  *	up all previously used resources.
405  *
406  *	The object must be locked.
407  *	This routine may block.
408  */
409 void
410 vm_object_terminate(vm_object_t object)
411 {
412 	vm_page_t p;
413 
414 	/*
415 	 * Make sure no one uses us.
416 	 */
417 	vm_object_set_flag(object, OBJ_DEAD);
418 
419 	/*
420 	 * wait for the pageout daemon to be done with the object
421 	 */
422 	vm_object_pip_wait(object, "objtrm");
423 
424 	KASSERT(!object->paging_in_progress,
425 		("vm_object_terminate: pageout in progress"));
426 
427 	/*
428 	 * Clean and free the pages, as appropriate. All references to the
429 	 * object are gone, so we don't need to lock it.
430 	 */
431 	if (object->type == OBJT_VNODE) {
432 		struct vnode *vp;
433 
434 		/*
435 		 * Freeze optimized copies.
436 		 */
437 		vm_freeze_copyopts(object, 0, object->size);
438 
439 		/*
440 		 * Clean pages and flush buffers.
441 		 */
442 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
443 
444 		vp = (struct vnode *) object->handle;
445 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
446 	}
447 
448 	/*
449 	 * Wait for any I/O to complete, after which there had better not
450 	 * be any references left on the object.
451 	 */
452 	vm_object_pip_wait(object, "objtrm");
453 
454 	if (object->ref_count != 0)
455 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
456 
457 	/*
458 	 * Now free any remaining pages. For internal objects, this also
459 	 * removes them from paging queues. Don't free wired pages, just
460 	 * remove them from the object.
461 	 */
462 	crit_enter();
463 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
464 		if (p->busy || (p->flags & PG_BUSY))
465 			panic("vm_object_terminate: freeing busy page %p", p);
466 		if (p->wire_count == 0) {
467 			vm_page_busy(p);
468 			vm_page_free(p);
469 			mycpu->gd_cnt.v_pfree++;
470 		} else {
471 			vm_page_busy(p);
472 			vm_page_remove(p);
473 			vm_page_wakeup(p);
474 		}
475 	}
476 	crit_exit();
477 
478 	/*
479 	 * Let the pager know object is dead.
480 	 */
481 	vm_pager_deallocate(object);
482 
483 	/*
484 	 * Remove the object from the global object list.
485 	 */
486 	crit_enter();
487 	TAILQ_REMOVE(&vm_object_list, object, object_list);
488 	vm_object_count--;
489 	crit_exit();
490 
491 	wakeup(object);
492 	if (object->ref_count != 0)
493 		panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
494 
495 	/*
496 	 * Free the space for the object.
497 	 */
498 	zfree(obj_zone, object);
499 }
500 
501 /*
502  *	vm_object_page_clean
503  *
504  *	Clean all dirty pages in the specified range of object.  Leaves page
505  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
506  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
507  *	leaving the object dirty.
508  *
509  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
510  *	synchronous clustering mode implementation.
511  *
512  *	Odd semantics: if start == end, we clean everything.
513  */
514 
515 void
516 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
517     int flags)
518 {
519 	vm_page_t p, np;
520 	vm_offset_t tstart, tend;
521 	vm_pindex_t pi;
522 	struct vnode *vp;
523 	int clearobjflags;
524 	int pagerflags;
525 	int curgeneration;
526 
527 	if (object->type != OBJT_VNODE ||
528 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
529 		return;
530 
531 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
532 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
533 
534 	vp = object->handle;
535 
536 	vm_object_set_flag(object, OBJ_CLEANING);
537 
538 	/*
539 	 * Handle 'entire object' case
540 	 */
541 	tstart = start;
542 	if (end == 0) {
543 		tend = object->size;
544 	} else {
545 		tend = end;
546 	}
547 
548 	/*
549 	 * If the caller is smart and only msync()s a range he knows is
550 	 * dirty, we may be able to avoid an object scan.  This results in
551 	 * a phenominal improvement in performance.  We cannot do this
552 	 * as a matter of course because the object may be huge - e.g.
553 	 * the size might be in the gigabytes or terrabytes.
554 	 */
555 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
556 		vm_offset_t tscan;
557 		int scanlimit;
558 		int scanreset;
559 
560 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
561 		if (scanreset < 16)
562 			scanreset = 16;
563 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
564 
565 		scanlimit = scanreset;
566 		tscan = tstart;
567 
568 		/*
569 		 * spl protection is required despite the obj generation
570 		 * tracking because we cannot safely call vm_page_test_dirty()
571 		 * or avoid page field tests against an interrupt unbusy/free
572 		 * race that might occur prior to the busy check in
573 		 * vm_object_page_collect_flush().
574 		 */
575 		crit_enter();
576 		while (tscan < tend) {
577 			curgeneration = object->generation;
578 			p = vm_page_lookup(object, tscan);
579 			if (p == NULL || p->valid == 0 ||
580 			    (p->queue - p->pc) == PQ_CACHE) {
581 				if (--scanlimit == 0)
582 					break;
583 				++tscan;
584 				continue;
585 			}
586 			vm_page_test_dirty(p);
587 			if ((p->dirty & p->valid) == 0) {
588 				if (--scanlimit == 0)
589 					break;
590 				++tscan;
591 				continue;
592 			}
593 			/*
594 			 * If we have been asked to skip nosync pages and
595 			 * this is a nosync page, we can't continue.
596 			 */
597 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
598 				if (--scanlimit == 0)
599 					break;
600 				++tscan;
601 				continue;
602 			}
603 			scanlimit = scanreset;
604 
605 			/*
606 			 * This returns 0 if it was unable to busy the first
607 			 * page (i.e. had to sleep).
608 			 */
609 			tscan += vm_object_page_collect_flush(object, p,
610 						curgeneration, pagerflags);
611 		}
612 		crit_exit();
613 
614 		/*
615 		 * If everything was dirty and we flushed it successfully,
616 		 * and the requested range is not the entire object, we
617 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
618 		 * return immediately.
619 		 */
620 		if (tscan >= tend && (tstart || tend < object->size)) {
621 			vm_object_clear_flag(object, OBJ_CLEANING);
622 			return;
623 		}
624 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
625 	}
626 
627 	/*
628 	 * Generally set CLEANCHK interlock and make the page read-only so
629 	 * we can then clear the object flags.
630 	 *
631 	 * However, if this is a nosync mmap then the object is likely to
632 	 * stay dirty so do not mess with the page and do not clear the
633 	 * object flags.
634 	 *
635 	 * spl protection is required because an interrupt can remove page
636 	 * from the object.
637 	 */
638 	clearobjflags = 1;
639 
640 	crit_enter();
641 	for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
642 		vm_page_flag_set(p, PG_CLEANCHK);
643 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
644 			clearobjflags = 0;
645 		else
646 			vm_page_protect(p, VM_PROT_READ);
647 	}
648 	crit_exit();
649 
650 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
651 		struct vnode *vp;
652 
653 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
654                 if (object->type == OBJT_VNODE &&
655                     (vp = (struct vnode *)object->handle) != NULL) {
656                         if (vp->v_flag & VOBJDIRTY)
657 				vclrflags(vp, VOBJDIRTY);
658                 }
659 	}
660 
661 	/*
662 	 * spl protection is required both to avoid an interrupt unbusy/free
663 	 * race against a vm_page_lookup(), and also to ensure that the
664 	 * memq is consistent.  We do not want a busy page to be ripped out
665 	 * from under us.
666 	 */
667 	crit_enter();
668 rescan:
669 	crit_exit();
670 	crit_enter();
671 	curgeneration = object->generation;
672 
673 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
674 		int n;
675 
676 		np = TAILQ_NEXT(p, listq);
677 
678 again:
679 		pi = p->pindex;
680 		if (((p->flags & PG_CLEANCHK) == 0) ||
681 			(pi < tstart) || (pi >= tend) ||
682 			(p->valid == 0) ||
683 			((p->queue - p->pc) == PQ_CACHE)) {
684 			vm_page_flag_clear(p, PG_CLEANCHK);
685 			continue;
686 		}
687 
688 		vm_page_test_dirty(p);
689 		if ((p->dirty & p->valid) == 0) {
690 			vm_page_flag_clear(p, PG_CLEANCHK);
691 			continue;
692 		}
693 
694 		/*
695 		 * If we have been asked to skip nosync pages and this is a
696 		 * nosync page, skip it.  Note that the object flags were
697 		 * not cleared in this case so we do not have to set them.
698 		 */
699 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
700 			vm_page_flag_clear(p, PG_CLEANCHK);
701 			continue;
702 		}
703 
704 		n = vm_object_page_collect_flush(object, p,
705 			curgeneration, pagerflags);
706 		if (n == 0)
707 			goto rescan;
708 		if (object->generation != curgeneration)
709 			goto rescan;
710 
711 		/*
712 		 * Try to optimize the next page.  If we can't we pick up
713 		 * our (random) scan where we left off.
714 		 */
715 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
716 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
717 				goto again;
718 		}
719 	}
720 	crit_exit();
721 
722 #if 0
723 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
724 #endif
725 
726 	vm_object_clear_flag(object, OBJ_CLEANING);
727 	return;
728 }
729 
730 /*
731  * This routine must be called within a critical section to properly avoid
732  * an interrupt unbusy/free race that can occur prior to the busy check.
733  *
734  * Using the object generation number here to detect page ripout is not
735  * the best idea in the world. XXX
736  *
737  * NOTE: we operate under the assumption that a page found to not be busy
738  * will not be ripped out from under us by an interrupt.  XXX we should
739  * recode this to explicitly busy the pages.
740  */
741 static int
742 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
743 {
744 	int runlen;
745 	int maxf;
746 	int chkb;
747 	int maxb;
748 	int i;
749 	vm_pindex_t pi;
750 	vm_page_t maf[vm_pageout_page_count];
751 	vm_page_t mab[vm_pageout_page_count];
752 	vm_page_t ma[vm_pageout_page_count];
753 
754 	pi = p->pindex;
755 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
756 		if (object->generation != curgeneration) {
757 			return(0);
758 		}
759 	}
760 
761 	maxf = 0;
762 	for(i = 1; i < vm_pageout_page_count; i++) {
763 		vm_page_t tp;
764 
765 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
766 			if ((tp->flags & PG_BUSY) ||
767 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
768 				 (tp->flags & PG_CLEANCHK) == 0) ||
769 				(tp->busy != 0))
770 				break;
771 			if((tp->queue - tp->pc) == PQ_CACHE) {
772 				vm_page_flag_clear(tp, PG_CLEANCHK);
773 				break;
774 			}
775 			vm_page_test_dirty(tp);
776 			if ((tp->dirty & tp->valid) == 0) {
777 				vm_page_flag_clear(tp, PG_CLEANCHK);
778 				break;
779 			}
780 			maf[ i - 1 ] = tp;
781 			maxf++;
782 			continue;
783 		}
784 		break;
785 	}
786 
787 	maxb = 0;
788 	chkb = vm_pageout_page_count -  maxf;
789 	if (chkb) {
790 		for(i = 1; i < chkb;i++) {
791 			vm_page_t tp;
792 
793 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
794 				if ((tp->flags & PG_BUSY) ||
795 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
796 					 (tp->flags & PG_CLEANCHK) == 0) ||
797 					(tp->busy != 0))
798 					break;
799 				if((tp->queue - tp->pc) == PQ_CACHE) {
800 					vm_page_flag_clear(tp, PG_CLEANCHK);
801 					break;
802 				}
803 				vm_page_test_dirty(tp);
804 				if ((tp->dirty & tp->valid) == 0) {
805 					vm_page_flag_clear(tp, PG_CLEANCHK);
806 					break;
807 				}
808 				mab[ i - 1 ] = tp;
809 				maxb++;
810 				continue;
811 			}
812 			break;
813 		}
814 	}
815 
816 	for(i = 0; i < maxb; i++) {
817 		int index = (maxb - i) - 1;
818 		ma[index] = mab[i];
819 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
820 	}
821 	vm_page_flag_clear(p, PG_CLEANCHK);
822 	ma[maxb] = p;
823 	for(i = 0; i < maxf; i++) {
824 		int index = (maxb + i) + 1;
825 		ma[index] = maf[i];
826 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
827 	}
828 	runlen = maxb + maxf + 1;
829 
830 	vm_pageout_flush(ma, runlen, pagerflags);
831 	for (i = 0; i < runlen; i++) {
832 		if (ma[i]->valid & ma[i]->dirty) {
833 			vm_page_protect(ma[i], VM_PROT_READ);
834 			vm_page_flag_set(ma[i], PG_CLEANCHK);
835 
836 			/*
837 			 * maxf will end up being the actual number of pages
838 			 * we wrote out contiguously, non-inclusive of the
839 			 * first page.  We do not count look-behind pages.
840 			 */
841 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
842 				maxf = i - maxb - 1;
843 		}
844 	}
845 	return(maxf + 1);
846 }
847 
848 #ifdef not_used
849 /* XXX I cannot tell if this should be an exported symbol */
850 /*
851  *	vm_object_deactivate_pages
852  *
853  *	Deactivate all pages in the specified object.  (Keep its pages
854  *	in memory even though it is no longer referenced.)
855  *
856  *	The object must be locked.
857  */
858 static void
859 vm_object_deactivate_pages(vm_object_t object)
860 {
861 	vm_page_t p, next;
862 	int s;
863 
864 	crit_enter();
865 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
866 		next = TAILQ_NEXT(p, listq);
867 		vm_page_deactivate(p);
868 	}
869 	crit_exit();
870 }
871 #endif
872 
873 /*
874  * Same as vm_object_pmap_copy, except range checking really
875  * works, and is meant for small sections of an object.
876  *
877  * This code protects resident pages by making them read-only
878  * and is typically called on a fork or split when a page
879  * is converted to copy-on-write.
880  *
881  * NOTE: If the page is already at VM_PROT_NONE, calling
882  * vm_page_protect will have no effect.
883  */
884 void
885 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
886 {
887 	vm_pindex_t idx;
888 	vm_page_t p;
889 
890 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
891 		return;
892 
893 	/*
894 	 * spl protection needed to prevent races between the lookup,
895 	 * an interrupt unbusy/free, and our protect call.
896 	 */
897 	crit_enter();
898 	for (idx = start; idx < end; idx++) {
899 		p = vm_page_lookup(object, idx);
900 		if (p == NULL)
901 			continue;
902 		vm_page_protect(p, VM_PROT_READ);
903 	}
904 	crit_exit();
905 }
906 
907 /*
908  *	vm_object_pmap_remove:
909  *
910  *	Removes all physical pages in the specified
911  *	object range from all physical maps.
912  *
913  *	The object must *not* be locked.
914  */
915 void
916 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
917 {
918 	vm_page_t p;
919 
920 	if (object == NULL)
921 		return;
922 
923 	/*
924 	 * spl protection is required because an interrupt can unbusy/free
925 	 * a page.
926 	 */
927 	crit_enter();
928 	for (p = TAILQ_FIRST(&object->memq);
929 	    p != NULL;
930 	    p = TAILQ_NEXT(p, listq)
931 	) {
932 		if (p->pindex >= start && p->pindex < end)
933 			vm_page_protect(p, VM_PROT_NONE);
934 	}
935 	crit_exit();
936 	if ((start == 0) && (object->size == end))
937 		vm_object_clear_flag(object, OBJ_WRITEABLE);
938 }
939 
940 /*
941  *	vm_object_madvise:
942  *
943  *	Implements the madvise function at the object/page level.
944  *
945  *	MADV_WILLNEED	(any object)
946  *
947  *	    Activate the specified pages if they are resident.
948  *
949  *	MADV_DONTNEED	(any object)
950  *
951  *	    Deactivate the specified pages if they are resident.
952  *
953  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
954  *			 OBJ_ONEMAPPING only)
955  *
956  *	    Deactivate and clean the specified pages if they are
957  *	    resident.  This permits the process to reuse the pages
958  *	    without faulting or the kernel to reclaim the pages
959  *	    without I/O.
960  */
961 void
962 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
963 {
964 	vm_pindex_t end, tpindex;
965 	vm_object_t tobject;
966 	vm_page_t m;
967 
968 	if (object == NULL)
969 		return;
970 
971 	end = pindex + count;
972 
973 	/*
974 	 * Locate and adjust resident pages
975 	 */
976 
977 	for (; pindex < end; pindex += 1) {
978 relookup:
979 		tobject = object;
980 		tpindex = pindex;
981 shadowlookup:
982 		/*
983 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
984 		 * and those pages must be OBJ_ONEMAPPING.
985 		 */
986 		if (advise == MADV_FREE) {
987 			if ((tobject->type != OBJT_DEFAULT &&
988 			     tobject->type != OBJT_SWAP) ||
989 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
990 				continue;
991 			}
992 		}
993 
994 		/*
995 		 * spl protection is required to avoid a race between the
996 		 * lookup, an interrupt unbusy/free, and our busy check.
997 		 */
998 
999 		crit_enter();
1000 		m = vm_page_lookup(tobject, tpindex);
1001 
1002 		if (m == NULL) {
1003 			/*
1004 			 * There may be swap even if there is no backing page
1005 			 */
1006 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1007 				swap_pager_freespace(tobject, tpindex, 1);
1008 
1009 			/*
1010 			 * next object
1011 			 */
1012 			crit_exit();
1013 			if (tobject->backing_object == NULL)
1014 				continue;
1015 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1016 			tobject = tobject->backing_object;
1017 			goto shadowlookup;
1018 		}
1019 
1020 		/*
1021 		 * If the page is busy or not in a normal active state,
1022 		 * we skip it.  If the page is not managed there are no
1023 		 * page queues to mess with.  Things can break if we mess
1024 		 * with pages in any of the below states.
1025 		 */
1026 		if (
1027 		    m->hold_count ||
1028 		    m->wire_count ||
1029 		    (m->flags & PG_UNMANAGED) ||
1030 		    m->valid != VM_PAGE_BITS_ALL
1031 		) {
1032 			crit_exit();
1033 			continue;
1034 		}
1035 
1036  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1037 			crit_exit();
1038   			goto relookup;
1039 		}
1040 		crit_exit();
1041 
1042 		/*
1043 		 * Theoretically once a page is known not to be busy, an
1044 		 * interrupt cannot come along and rip it out from under us.
1045 		 */
1046 
1047 		if (advise == MADV_WILLNEED) {
1048 			vm_page_activate(m);
1049 		} else if (advise == MADV_DONTNEED) {
1050 			vm_page_dontneed(m);
1051 		} else if (advise == MADV_FREE) {
1052 			/*
1053 			 * Mark the page clean.  This will allow the page
1054 			 * to be freed up by the system.  However, such pages
1055 			 * are often reused quickly by malloc()/free()
1056 			 * so we do not do anything that would cause
1057 			 * a page fault if we can help it.
1058 			 *
1059 			 * Specifically, we do not try to actually free
1060 			 * the page now nor do we try to put it in the
1061 			 * cache (which would cause a page fault on reuse).
1062 			 *
1063 			 * But we do make the page is freeable as we
1064 			 * can without actually taking the step of unmapping
1065 			 * it.
1066 			 */
1067 			pmap_clear_modify(m);
1068 			m->dirty = 0;
1069 			m->act_count = 0;
1070 			vm_page_dontneed(m);
1071 			if (tobject->type == OBJT_SWAP)
1072 				swap_pager_freespace(tobject, tpindex, 1);
1073 		}
1074 	}
1075 }
1076 
1077 /*
1078  *	vm_object_shadow:
1079  *
1080  *	Create a new object which is backed by the
1081  *	specified existing object range.  The source
1082  *	object reference is deallocated.
1083  *
1084  *	The new object and offset into that object
1085  *	are returned in the source parameters.
1086  */
1087 
1088 void
1089 vm_object_shadow(vm_object_t *object,	/* IN/OUT */
1090 		 vm_ooffset_t *offset,	/* IN/OUT */
1091 		 vm_size_t length)
1092 {
1093 	vm_object_t source;
1094 	vm_object_t result;
1095 
1096 	source = *object;
1097 
1098 	/*
1099 	 * Don't create the new object if the old object isn't shared.
1100 	 */
1101 
1102 	if (source != NULL &&
1103 	    source->ref_count == 1 &&
1104 	    source->handle == NULL &&
1105 	    (source->type == OBJT_DEFAULT ||
1106 	     source->type == OBJT_SWAP))
1107 		return;
1108 
1109 	/*
1110 	 * Allocate a new object with the given length
1111 	 */
1112 
1113 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1114 		panic("vm_object_shadow: no object for shadowing");
1115 
1116 	/*
1117 	 * The new object shadows the source object, adding a reference to it.
1118 	 * Our caller changes his reference to point to the new object,
1119 	 * removing a reference to the source object.  Net result: no change
1120 	 * of reference count.
1121 	 *
1122 	 * Try to optimize the result object's page color when shadowing
1123 	 * in order to maintain page coloring consistency in the combined
1124 	 * shadowed object.
1125 	 */
1126 	result->backing_object = source;
1127 	if (source) {
1128 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1129 		source->shadow_count++;
1130 		source->generation++;
1131 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1132 	}
1133 
1134 	/*
1135 	 * Store the offset into the source object, and fix up the offset into
1136 	 * the new object.
1137 	 */
1138 
1139 	result->backing_object_offset = *offset;
1140 
1141 	/*
1142 	 * Return the new things
1143 	 */
1144 
1145 	*offset = 0;
1146 	*object = result;
1147 }
1148 
1149 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1150 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1151 #define	OBSC_COLLAPSE_WAIT	0x0004
1152 
1153 static __inline int
1154 vm_object_backing_scan(vm_object_t object, int op)
1155 {
1156 	int r = 1;
1157 	vm_page_t p;
1158 	vm_object_t backing_object;
1159 	vm_pindex_t backing_offset_index;
1160 
1161 	/*
1162 	 * spl protection is required to avoid races between the memq/lookup,
1163 	 * an interrupt doing an unbusy/free, and our busy check.  Amoung
1164 	 * other things.
1165 	 */
1166 	crit_enter();
1167 
1168 	backing_object = object->backing_object;
1169 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1170 
1171 	/*
1172 	 * Initial conditions
1173 	 */
1174 
1175 	if (op & OBSC_TEST_ALL_SHADOWED) {
1176 		/*
1177 		 * We do not want to have to test for the existence of
1178 		 * swap pages in the backing object.  XXX but with the
1179 		 * new swapper this would be pretty easy to do.
1180 		 *
1181 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1182 		 * been ZFOD faulted yet?  If we do not test for this, the
1183 		 * shadow test may succeed! XXX
1184 		 */
1185 		if (backing_object->type != OBJT_DEFAULT) {
1186 			crit_exit();
1187 			return(0);
1188 		}
1189 	}
1190 	if (op & OBSC_COLLAPSE_WAIT) {
1191 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1192 		vm_object_set_flag(backing_object, OBJ_DEAD);
1193 	}
1194 
1195 	/*
1196 	 * Our scan
1197 	 */
1198 
1199 	p = TAILQ_FIRST(&backing_object->memq);
1200 	while (p) {
1201 		vm_page_t next = TAILQ_NEXT(p, listq);
1202 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1203 
1204 		if (op & OBSC_TEST_ALL_SHADOWED) {
1205 			vm_page_t pp;
1206 
1207 			/*
1208 			 * Ignore pages outside the parent object's range
1209 			 * and outside the parent object's mapping of the
1210 			 * backing object.
1211 			 *
1212 			 * note that we do not busy the backing object's
1213 			 * page.
1214 			 */
1215 
1216 			if (
1217 			    p->pindex < backing_offset_index ||
1218 			    new_pindex >= object->size
1219 			) {
1220 				p = next;
1221 				continue;
1222 			}
1223 
1224 			/*
1225 			 * See if the parent has the page or if the parent's
1226 			 * object pager has the page.  If the parent has the
1227 			 * page but the page is not valid, the parent's
1228 			 * object pager must have the page.
1229 			 *
1230 			 * If this fails, the parent does not completely shadow
1231 			 * the object and we might as well give up now.
1232 			 */
1233 
1234 			pp = vm_page_lookup(object, new_pindex);
1235 			if (
1236 			    (pp == NULL || pp->valid == 0) &&
1237 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1238 			) {
1239 				r = 0;
1240 				break;
1241 			}
1242 		}
1243 
1244 		/*
1245 		 * Check for busy page
1246 		 */
1247 
1248 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1249 			vm_page_t pp;
1250 
1251 			if (op & OBSC_COLLAPSE_NOWAIT) {
1252 				if (
1253 				    (p->flags & PG_BUSY) ||
1254 				    !p->valid ||
1255 				    p->hold_count ||
1256 				    p->wire_count ||
1257 				    p->busy
1258 				) {
1259 					p = next;
1260 					continue;
1261 				}
1262 			} else if (op & OBSC_COLLAPSE_WAIT) {
1263 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1264 					/*
1265 					 * If we slept, anything could have
1266 					 * happened.  Since the object is
1267 					 * marked dead, the backing offset
1268 					 * should not have changed so we
1269 					 * just restart our scan.
1270 					 */
1271 					p = TAILQ_FIRST(&backing_object->memq);
1272 					continue;
1273 				}
1274 			}
1275 
1276 			/*
1277 			 * Busy the page
1278 			 */
1279 			vm_page_busy(p);
1280 
1281 			KASSERT(
1282 			    p->object == backing_object,
1283 			    ("vm_object_qcollapse(): object mismatch")
1284 			);
1285 
1286 			/*
1287 			 * Destroy any associated swap
1288 			 */
1289 			if (backing_object->type == OBJT_SWAP) {
1290 				swap_pager_freespace(
1291 				    backing_object,
1292 				    p->pindex,
1293 				    1
1294 				);
1295 			}
1296 
1297 			if (
1298 			    p->pindex < backing_offset_index ||
1299 			    new_pindex >= object->size
1300 			) {
1301 				/*
1302 				 * Page is out of the parent object's range, we
1303 				 * can simply destroy it.
1304 				 */
1305 				vm_page_protect(p, VM_PROT_NONE);
1306 				vm_page_free(p);
1307 				p = next;
1308 				continue;
1309 			}
1310 
1311 			pp = vm_page_lookup(object, new_pindex);
1312 			if (
1313 			    pp != NULL ||
1314 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1315 			) {
1316 				/*
1317 				 * page already exists in parent OR swap exists
1318 				 * for this location in the parent.  Destroy
1319 				 * the original page from the backing object.
1320 				 *
1321 				 * Leave the parent's page alone
1322 				 */
1323 				vm_page_protect(p, VM_PROT_NONE);
1324 				vm_page_free(p);
1325 				p = next;
1326 				continue;
1327 			}
1328 
1329 			/*
1330 			 * Page does not exist in parent, rename the
1331 			 * page from the backing object to the main object.
1332 			 *
1333 			 * If the page was mapped to a process, it can remain
1334 			 * mapped through the rename.
1335 			 */
1336 			if ((p->queue - p->pc) == PQ_CACHE)
1337 				vm_page_deactivate(p);
1338 
1339 			vm_page_rename(p, object, new_pindex);
1340 			/* page automatically made dirty by rename */
1341 		}
1342 		p = next;
1343 	}
1344 	crit_exit();
1345 	return(r);
1346 }
1347 
1348 
1349 /*
1350  * this version of collapse allows the operation to occur earlier and
1351  * when paging_in_progress is true for an object...  This is not a complete
1352  * operation, but should plug 99.9% of the rest of the leaks.
1353  */
1354 static void
1355 vm_object_qcollapse(vm_object_t object)
1356 {
1357 	vm_object_t backing_object = object->backing_object;
1358 
1359 	if (backing_object->ref_count != 1)
1360 		return;
1361 
1362 	backing_object->ref_count += 2;
1363 
1364 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1365 
1366 	backing_object->ref_count -= 2;
1367 }
1368 
1369 /*
1370  *	vm_object_collapse:
1371  *
1372  *	Collapse an object with the object backing it.
1373  *	Pages in the backing object are moved into the
1374  *	parent, and the backing object is deallocated.
1375  */
1376 void
1377 vm_object_collapse(vm_object_t object)
1378 {
1379 	while (TRUE) {
1380 		vm_object_t backing_object;
1381 
1382 		/*
1383 		 * Verify that the conditions are right for collapse:
1384 		 *
1385 		 * The object exists and the backing object exists.
1386 		 */
1387 		if (object == NULL)
1388 			break;
1389 
1390 		if ((backing_object = object->backing_object) == NULL)
1391 			break;
1392 
1393 		/*
1394 		 * we check the backing object first, because it is most likely
1395 		 * not collapsable.
1396 		 */
1397 		if (backing_object->handle != NULL ||
1398 		    (backing_object->type != OBJT_DEFAULT &&
1399 		     backing_object->type != OBJT_SWAP) ||
1400 		    (backing_object->flags & OBJ_DEAD) ||
1401 		    object->handle != NULL ||
1402 		    (object->type != OBJT_DEFAULT &&
1403 		     object->type != OBJT_SWAP) ||
1404 		    (object->flags & OBJ_DEAD)) {
1405 			break;
1406 		}
1407 
1408 		if (
1409 		    object->paging_in_progress != 0 ||
1410 		    backing_object->paging_in_progress != 0
1411 		) {
1412 			vm_object_qcollapse(object);
1413 			break;
1414 		}
1415 
1416 		/*
1417 		 * We know that we can either collapse the backing object (if
1418 		 * the parent is the only reference to it) or (perhaps) have
1419 		 * the parent bypass the object if the parent happens to shadow
1420 		 * all the resident pages in the entire backing object.
1421 		 *
1422 		 * This is ignoring pager-backed pages such as swap pages.
1423 		 * vm_object_backing_scan fails the shadowing test in this
1424 		 * case.
1425 		 */
1426 
1427 		if (backing_object->ref_count == 1) {
1428 			/*
1429 			 * If there is exactly one reference to the backing
1430 			 * object, we can collapse it into the parent.
1431 			 */
1432 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1433 
1434 			/*
1435 			 * Move the pager from backing_object to object.
1436 			 */
1437 
1438 			if (backing_object->type == OBJT_SWAP) {
1439 				vm_object_pip_add(backing_object, 1);
1440 
1441 				/*
1442 				 * scrap the paging_offset junk and do a
1443 				 * discrete copy.  This also removes major
1444 				 * assumptions about how the swap-pager
1445 				 * works from where it doesn't belong.  The
1446 				 * new swapper is able to optimize the
1447 				 * destroy-source case.
1448 				 */
1449 
1450 				vm_object_pip_add(object, 1);
1451 				swap_pager_copy(
1452 				    backing_object,
1453 				    object,
1454 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1455 				vm_object_pip_wakeup(object);
1456 
1457 				vm_object_pip_wakeup(backing_object);
1458 			}
1459 			/*
1460 			 * Object now shadows whatever backing_object did.
1461 			 * Note that the reference to
1462 			 * backing_object->backing_object moves from within
1463 			 * backing_object to within object.
1464 			 */
1465 
1466 			LIST_REMOVE(object, shadow_list);
1467 			object->backing_object->shadow_count--;
1468 			object->backing_object->generation++;
1469 			if (backing_object->backing_object) {
1470 				LIST_REMOVE(backing_object, shadow_list);
1471 				backing_object->backing_object->shadow_count--;
1472 				backing_object->backing_object->generation++;
1473 			}
1474 			object->backing_object = backing_object->backing_object;
1475 			if (object->backing_object) {
1476 				LIST_INSERT_HEAD(
1477 				    &object->backing_object->shadow_head,
1478 				    object,
1479 				    shadow_list
1480 				);
1481 				object->backing_object->shadow_count++;
1482 				object->backing_object->generation++;
1483 			}
1484 
1485 			object->backing_object_offset +=
1486 			    backing_object->backing_object_offset;
1487 
1488 			/*
1489 			 * Discard backing_object.
1490 			 *
1491 			 * Since the backing object has no pages, no pager left,
1492 			 * and no object references within it, all that is
1493 			 * necessary is to dispose of it.
1494 			 */
1495 
1496 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1497 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1498 			crit_enter();
1499 			TAILQ_REMOVE(
1500 			    &vm_object_list,
1501 			    backing_object,
1502 			    object_list
1503 			);
1504 			vm_object_count--;
1505 			crit_exit();
1506 
1507 			zfree(obj_zone, backing_object);
1508 
1509 			object_collapses++;
1510 		} else {
1511 			vm_object_t new_backing_object;
1512 
1513 			/*
1514 			 * If we do not entirely shadow the backing object,
1515 			 * there is nothing we can do so we give up.
1516 			 */
1517 
1518 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1519 				break;
1520 			}
1521 
1522 			/*
1523 			 * Make the parent shadow the next object in the
1524 			 * chain.  Deallocating backing_object will not remove
1525 			 * it, since its reference count is at least 2.
1526 			 */
1527 
1528 			LIST_REMOVE(object, shadow_list);
1529 			backing_object->shadow_count--;
1530 			backing_object->generation++;
1531 
1532 			new_backing_object = backing_object->backing_object;
1533 			if ((object->backing_object = new_backing_object) != NULL) {
1534 				vm_object_reference(new_backing_object);
1535 				LIST_INSERT_HEAD(
1536 				    &new_backing_object->shadow_head,
1537 				    object,
1538 				    shadow_list
1539 				);
1540 				new_backing_object->shadow_count++;
1541 				new_backing_object->generation++;
1542 				object->backing_object_offset +=
1543 					backing_object->backing_object_offset;
1544 			}
1545 
1546 			/*
1547 			 * Drop the reference count on backing_object. Since
1548 			 * its ref_count was at least 2, it will not vanish;
1549 			 * so we don't need to call vm_object_deallocate, but
1550 			 * we do anyway.
1551 			 */
1552 			vm_object_deallocate(backing_object);
1553 			object_bypasses++;
1554 		}
1555 
1556 		/*
1557 		 * Try again with this object's new backing object.
1558 		 */
1559 	}
1560 }
1561 
1562 /*
1563  *	vm_object_page_remove: [internal]
1564  *
1565  *	Removes all physical pages in the specified
1566  *	object range from the object's list of pages.
1567  */
1568 void
1569 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1570     boolean_t clean_only)
1571 {
1572 	vm_page_t p, next;
1573 	unsigned int size;
1574 	int all;
1575 
1576 	if (object == NULL || object->resident_page_count == 0)
1577 		return;
1578 
1579 	all = ((end == 0) && (start == 0));
1580 
1581 	/*
1582 	 * Since physically-backed objects do not use managed pages, we can't
1583 	 * remove pages from the object (we must instead remove the page
1584 	 * references, and then destroy the object).
1585 	 */
1586 	KASSERT(object->type != OBJT_PHYS,
1587 		("attempt to remove pages from a physical object"));
1588 
1589 	/*
1590 	 * Indicating that the object is undergoing paging.
1591 	 *
1592 	 * spl protection is required to avoid a race between the memq scan,
1593 	 * an interrupt unbusy/free, and the busy check.
1594 	 */
1595 	vm_object_pip_add(object, 1);
1596 	crit_enter();
1597 again:
1598 	size = end - start;
1599 	if (all || size > object->resident_page_count / 4) {
1600 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1601 			next = TAILQ_NEXT(p, listq);
1602 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1603 				if (p->wire_count != 0) {
1604 					vm_page_protect(p, VM_PROT_NONE);
1605 					if (!clean_only)
1606 						p->valid = 0;
1607 					continue;
1608 				}
1609 
1610 				/*
1611 				 * The busy flags are only cleared at
1612 				 * interrupt -- minimize the spl transitions
1613 				 */
1614 
1615  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1616  					goto again;
1617 
1618 				if (clean_only && p->valid) {
1619 					vm_page_test_dirty(p);
1620 					if (p->valid & p->dirty)
1621 						continue;
1622 				}
1623 
1624 				vm_page_busy(p);
1625 				vm_page_protect(p, VM_PROT_NONE);
1626 				vm_page_free(p);
1627 			}
1628 		}
1629 	} else {
1630 		while (size > 0) {
1631 			if ((p = vm_page_lookup(object, start)) != 0) {
1632 				if (p->wire_count != 0) {
1633 					vm_page_protect(p, VM_PROT_NONE);
1634 					if (!clean_only)
1635 						p->valid = 0;
1636 					start += 1;
1637 					size -= 1;
1638 					continue;
1639 				}
1640 
1641 				/*
1642 				 * The busy flags are only cleared at
1643 				 * interrupt -- minimize the spl transitions
1644 				 */
1645  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1646 					goto again;
1647 
1648 				if (clean_only && p->valid) {
1649 					vm_page_test_dirty(p);
1650 					if (p->valid & p->dirty) {
1651 						start += 1;
1652 						size -= 1;
1653 						continue;
1654 					}
1655 				}
1656 
1657 				vm_page_busy(p);
1658 				vm_page_protect(p, VM_PROT_NONE);
1659 				vm_page_free(p);
1660 			}
1661 			start += 1;
1662 			size -= 1;
1663 		}
1664 	}
1665 	crit_exit();
1666 	vm_object_pip_wakeup(object);
1667 }
1668 
1669 /*
1670  *	Routine:	vm_object_coalesce
1671  *	Function:	Coalesces two objects backing up adjoining
1672  *			regions of memory into a single object.
1673  *
1674  *	returns TRUE if objects were combined.
1675  *
1676  *	NOTE:	Only works at the moment if the second object is NULL -
1677  *		if it's not, which object do we lock first?
1678  *
1679  *	Parameters:
1680  *		prev_object	First object to coalesce
1681  *		prev_offset	Offset into prev_object
1682  *		next_object	Second object into coalesce
1683  *		next_offset	Offset into next_object
1684  *
1685  *		prev_size	Size of reference to prev_object
1686  *		next_size	Size of reference to next_object
1687  *
1688  *	Conditions:
1689  *	The object must *not* be locked.
1690  */
1691 boolean_t
1692 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1693     vm_size_t prev_size, vm_size_t next_size)
1694 {
1695 	vm_pindex_t next_pindex;
1696 
1697 	if (prev_object == NULL) {
1698 		return (TRUE);
1699 	}
1700 
1701 	if (prev_object->type != OBJT_DEFAULT &&
1702 	    prev_object->type != OBJT_SWAP) {
1703 		return (FALSE);
1704 	}
1705 
1706 	/*
1707 	 * Try to collapse the object first
1708 	 */
1709 	vm_object_collapse(prev_object);
1710 
1711 	/*
1712 	 * Can't coalesce if: . more than one reference . paged out . shadows
1713 	 * another object . has a copy elsewhere (any of which mean that the
1714 	 * pages not mapped to prev_entry may be in use anyway)
1715 	 */
1716 
1717 	if (prev_object->backing_object != NULL) {
1718 		return (FALSE);
1719 	}
1720 
1721 	prev_size >>= PAGE_SHIFT;
1722 	next_size >>= PAGE_SHIFT;
1723 	next_pindex = prev_pindex + prev_size;
1724 
1725 	if ((prev_object->ref_count > 1) &&
1726 	    (prev_object->size != next_pindex)) {
1727 		return (FALSE);
1728 	}
1729 
1730 	/*
1731 	 * Remove any pages that may still be in the object from a previous
1732 	 * deallocation.
1733 	 */
1734 	if (next_pindex < prev_object->size) {
1735 		vm_object_page_remove(prev_object,
1736 				      next_pindex,
1737 				      next_pindex + next_size, FALSE);
1738 		if (prev_object->type == OBJT_SWAP)
1739 			swap_pager_freespace(prev_object,
1740 					     next_pindex, next_size);
1741 	}
1742 
1743 	/*
1744 	 * Extend the object if necessary.
1745 	 */
1746 	if (next_pindex + next_size > prev_object->size)
1747 		prev_object->size = next_pindex + next_size;
1748 
1749 	return (TRUE);
1750 }
1751 
1752 void
1753 vm_object_set_writeable_dirty(vm_object_t object)
1754 {
1755 	struct vnode *vp;
1756 
1757 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1758 	if (object->type == OBJT_VNODE &&
1759 	    (vp = (struct vnode *)object->handle) != NULL) {
1760 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1761 			vsetflags(vp, VOBJDIRTY);
1762 		}
1763 	}
1764 }
1765 
1766 
1767 
1768 #include "opt_ddb.h"
1769 #ifdef DDB
1770 #include <sys/kernel.h>
1771 
1772 #include <sys/cons.h>
1773 
1774 #include <ddb/ddb.h>
1775 
1776 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1777 				       vm_map_entry_t entry);
1778 static int	vm_object_in_map (vm_object_t object);
1779 
1780 static int
1781 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1782 {
1783 	vm_map_t tmpm;
1784 	vm_map_entry_t tmpe;
1785 	vm_object_t obj;
1786 	int entcount;
1787 
1788 	if (map == 0)
1789 		return 0;
1790 
1791 	if (entry == 0) {
1792 		tmpe = map->header.next;
1793 		entcount = map->nentries;
1794 		while (entcount-- && (tmpe != &map->header)) {
1795 			if( _vm_object_in_map(map, object, tmpe)) {
1796 				return 1;
1797 			}
1798 			tmpe = tmpe->next;
1799 		}
1800 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1801 		tmpm = entry->object.sub_map;
1802 		tmpe = tmpm->header.next;
1803 		entcount = tmpm->nentries;
1804 		while (entcount-- && tmpe != &tmpm->header) {
1805 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1806 				return 1;
1807 			}
1808 			tmpe = tmpe->next;
1809 		}
1810 	} else if ((obj = entry->object.vm_object) != NULL) {
1811 		for(; obj; obj=obj->backing_object)
1812 			if( obj == object) {
1813 				return 1;
1814 			}
1815 	}
1816 	return 0;
1817 }
1818 
1819 static int
1820 vm_object_in_map(vm_object_t object)
1821 {
1822 	struct proc *p;
1823 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1824 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1825 			continue;
1826 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1827 			return 1;
1828 	}
1829 	if( _vm_object_in_map( kernel_map, object, 0))
1830 		return 1;
1831 	if( _vm_object_in_map( pager_map, object, 0))
1832 		return 1;
1833 	if( _vm_object_in_map( buffer_map, object, 0))
1834 		return 1;
1835 	return 0;
1836 }
1837 
1838 DB_SHOW_COMMAND(vmochk, vm_object_check)
1839 {
1840 	vm_object_t object;
1841 
1842 	/*
1843 	 * make sure that internal objs are in a map somewhere
1844 	 * and none have zero ref counts.
1845 	 */
1846 	for (object = TAILQ_FIRST(&vm_object_list);
1847 			object != NULL;
1848 			object = TAILQ_NEXT(object, object_list)) {
1849 		if (object->handle == NULL &&
1850 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1851 			if (object->ref_count == 0) {
1852 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1853 					(long)object->size);
1854 			}
1855 			if (!vm_object_in_map(object)) {
1856 				db_printf(
1857 			"vmochk: internal obj is not in a map: "
1858 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1859 				    object->ref_count, (u_long)object->size,
1860 				    (u_long)object->size,
1861 				    (void *)object->backing_object);
1862 			}
1863 		}
1864 	}
1865 }
1866 
1867 /*
1868  *	vm_object_print:	[ debug ]
1869  */
1870 DB_SHOW_COMMAND(object, vm_object_print_static)
1871 {
1872 	/* XXX convert args. */
1873 	vm_object_t object = (vm_object_t)addr;
1874 	boolean_t full = have_addr;
1875 
1876 	vm_page_t p;
1877 
1878 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1879 #define	count	was_count
1880 
1881 	int count;
1882 
1883 	if (object == NULL)
1884 		return;
1885 
1886 	db_iprintf(
1887 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1888 	    object, (int)object->type, (u_long)object->size,
1889 	    object->resident_page_count, object->ref_count, object->flags);
1890 	/*
1891 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1892 	 */
1893 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1894 	    object->shadow_count,
1895 	    object->backing_object ? object->backing_object->ref_count : 0,
1896 	    object->backing_object, (long)object->backing_object_offset);
1897 
1898 	if (!full)
1899 		return;
1900 
1901 	db_indent += 2;
1902 	count = 0;
1903 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1904 		if (count == 0)
1905 			db_iprintf("memory:=");
1906 		else if (count == 6) {
1907 			db_printf("\n");
1908 			db_iprintf(" ...");
1909 			count = 0;
1910 		} else
1911 			db_printf(",");
1912 		count++;
1913 
1914 		db_printf("(off=0x%lx,page=0x%lx)",
1915 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1916 	}
1917 	if (count != 0)
1918 		db_printf("\n");
1919 	db_indent -= 2;
1920 }
1921 
1922 /* XXX. */
1923 #undef count
1924 
1925 /* XXX need this non-static entry for calling from vm_map_print. */
1926 void
1927 vm_object_print(/* db_expr_t */ long addr,
1928 		boolean_t have_addr,
1929 		/* db_expr_t */ long count,
1930 		char *modif)
1931 {
1932 	vm_object_print_static(addr, have_addr, count, modif);
1933 }
1934 
1935 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1936 {
1937 	vm_object_t object;
1938 	int nl = 0;
1939 	int c;
1940 	for (object = TAILQ_FIRST(&vm_object_list);
1941 			object != NULL;
1942 			object = TAILQ_NEXT(object, object_list)) {
1943 		vm_pindex_t idx, fidx;
1944 		vm_pindex_t osize;
1945 		vm_paddr_t pa = -1, padiff;
1946 		int rcount;
1947 		vm_page_t m;
1948 
1949 		db_printf("new object: %p\n", (void *)object);
1950 		if ( nl > 18) {
1951 			c = cngetc();
1952 			if (c != ' ')
1953 				return;
1954 			nl = 0;
1955 		}
1956 		nl++;
1957 		rcount = 0;
1958 		fidx = 0;
1959 		osize = object->size;
1960 		if (osize > 128)
1961 			osize = 128;
1962 		for (idx = 0; idx < osize; idx++) {
1963 			m = vm_page_lookup(object, idx);
1964 			if (m == NULL) {
1965 				if (rcount) {
1966 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1967 						(long)fidx, rcount, (long)pa);
1968 					if ( nl > 18) {
1969 						c = cngetc();
1970 						if (c != ' ')
1971 							return;
1972 						nl = 0;
1973 					}
1974 					nl++;
1975 					rcount = 0;
1976 				}
1977 				continue;
1978 			}
1979 
1980 
1981 			if (rcount &&
1982 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1983 				++rcount;
1984 				continue;
1985 			}
1986 			if (rcount) {
1987 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1988 				padiff >>= PAGE_SHIFT;
1989 				padiff &= PQ_L2_MASK;
1990 				if (padiff == 0) {
1991 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1992 					++rcount;
1993 					continue;
1994 				}
1995 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1996 					(long)fidx, rcount, (long)pa);
1997 				db_printf("pd(%ld)\n", (long)padiff);
1998 				if ( nl > 18) {
1999 					c = cngetc();
2000 					if (c != ' ')
2001 						return;
2002 					nl = 0;
2003 				}
2004 				nl++;
2005 			}
2006 			fidx = idx;
2007 			pa = VM_PAGE_TO_PHYS(m);
2008 			rcount = 1;
2009 		}
2010 		if (rcount) {
2011 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2012 				(long)fidx, rcount, (long)pa);
2013 			if ( nl > 18) {
2014 				c = cngetc();
2015 				if (c != ' ')
2016 					return;
2017 				nl = 0;
2018 			}
2019 			nl++;
2020 		}
2021 	}
2022 }
2023 #endif /* DDB */
2024