xref: /dragonfly/sys/vm/vm_object.c (revision bd611623)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68 
69 /*
70  *	Virtual memory object module.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>		/* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97 
98 #define EASY_SCAN_FACTOR	8
99 
100 static void	vm_object_qcollapse(vm_object_t object,
101 				    vm_object_t backing_object);
102 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103 					     int pagerflags);
104 static void	vm_object_lock_init(vm_object_t);
105 
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;		/* locked by vmobj_token */
134 struct vm_object kernel_object;
135 
136 static long vm_object_count;		/* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138 
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146 
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154 	int i;
155 
156 	obj->debug_hold_bitmap = 0;
157 	obj->debug_hold_ovfl = 0;
158 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159 		obj->debug_hold_thrs[i] = NULL;
160 		obj->debug_hold_file[i] = NULL;
161 		obj->debug_hold_line[i] = 0;
162 	}
163 #endif
164 }
165 
166 void
167 vm_object_lock_swap(void)
168 {
169 	lwkt_token_swap();
170 }
171 
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175 	lwkt_gettoken(&obj->token);
176 }
177 
178 /*
179  * Returns TRUE on sucesss
180  */
181 static int
182 vm_object_lock_try(vm_object_t obj)
183 {
184 	return(lwkt_trytoken(&obj->token));
185 }
186 
187 void
188 vm_object_lock_shared(vm_object_t obj)
189 {
190 	lwkt_gettoken_shared(&obj->token);
191 }
192 
193 void
194 vm_object_unlock(vm_object_t obj)
195 {
196 	lwkt_reltoken(&obj->token);
197 }
198 
199 static __inline void
200 vm_object_assert_held(vm_object_t obj)
201 {
202 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
203 }
204 
205 void
206 #ifndef DEBUG_LOCKS
207 vm_object_hold(vm_object_t obj)
208 #else
209 debugvm_object_hold(vm_object_t obj, char *file, int line)
210 #endif
211 {
212 	KKASSERT(obj != NULL);
213 
214 	/*
215 	 * Object must be held (object allocation is stable due to callers
216 	 * context, typically already holding the token on a parent object)
217 	 * prior to potentially blocking on the lock, otherwise the object
218 	 * can get ripped away from us.
219 	 */
220 	refcount_acquire(&obj->hold_count);
221 	vm_object_lock(obj);
222 
223 #if defined(DEBUG_LOCKS)
224 	int i;
225 	u_int mask;
226 
227 	for (;;) {
228 		mask = ~obj->debug_hold_bitmap;
229 		cpu_ccfence();
230 		if (mask == 0xFFFFFFFFU) {
231 			if (obj->debug_hold_ovfl == 0)
232 				obj->debug_hold_ovfl = 1;
233 			break;
234 		}
235 		i = ffs(mask) - 1;
236 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
237 				      ~mask | (1 << i))) {
238 			obj->debug_hold_bitmap |= (1 << i);
239 			obj->debug_hold_thrs[i] = curthread;
240 			obj->debug_hold_file[i] = file;
241 			obj->debug_hold_line[i] = line;
242 			break;
243 		}
244 	}
245 #endif
246 }
247 
248 int
249 #ifndef DEBUG_LOCKS
250 vm_object_hold_try(vm_object_t obj)
251 #else
252 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
253 #endif
254 {
255 	KKASSERT(obj != NULL);
256 
257 	/*
258 	 * Object must be held (object allocation is stable due to callers
259 	 * context, typically already holding the token on a parent object)
260 	 * prior to potentially blocking on the lock, otherwise the object
261 	 * can get ripped away from us.
262 	 */
263 	refcount_acquire(&obj->hold_count);
264 	if (vm_object_lock_try(obj) == 0) {
265 		if (refcount_release(&obj->hold_count)) {
266 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
267 				zfree(obj_zone, obj);
268 		}
269 		return(0);
270 	}
271 
272 #if defined(DEBUG_LOCKS)
273 	int i;
274 	u_int mask;
275 
276 	for (;;) {
277 		mask = ~obj->debug_hold_bitmap;
278 		cpu_ccfence();
279 		if (mask == 0xFFFFFFFFU) {
280 			if (obj->debug_hold_ovfl == 0)
281 				obj->debug_hold_ovfl = 1;
282 			break;
283 		}
284 		i = ffs(mask) - 1;
285 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
286 				      ~mask | (1 << i))) {
287 			obj->debug_hold_bitmap |= (1 << i);
288 			obj->debug_hold_thrs[i] = curthread;
289 			obj->debug_hold_file[i] = file;
290 			obj->debug_hold_line[i] = line;
291 			break;
292 		}
293 	}
294 #endif
295 	return(1);
296 }
297 
298 void
299 #ifndef DEBUG_LOCKS
300 vm_object_hold_shared(vm_object_t obj)
301 #else
302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
303 #endif
304 {
305 	KKASSERT(obj != NULL);
306 
307 	/*
308 	 * Object must be held (object allocation is stable due to callers
309 	 * context, typically already holding the token on a parent object)
310 	 * prior to potentially blocking on the lock, otherwise the object
311 	 * can get ripped away from us.
312 	 */
313 	refcount_acquire(&obj->hold_count);
314 	vm_object_lock_shared(obj);
315 
316 #if defined(DEBUG_LOCKS)
317 	int i;
318 	u_int mask;
319 
320 	for (;;) {
321 		mask = ~obj->debug_hold_bitmap;
322 		cpu_ccfence();
323 		if (mask == 0xFFFFFFFFU) {
324 			if (obj->debug_hold_ovfl == 0)
325 				obj->debug_hold_ovfl = 1;
326 			break;
327 		}
328 		i = ffs(mask) - 1;
329 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
330 				      ~mask | (1 << i))) {
331 			obj->debug_hold_bitmap |= (1 << i);
332 			obj->debug_hold_thrs[i] = curthread;
333 			obj->debug_hold_file[i] = file;
334 			obj->debug_hold_line[i] = line;
335 			break;
336 		}
337 	}
338 #endif
339 }
340 
341 /*
342  * Drop the token and hold_count on the object.
343  */
344 void
345 vm_object_drop(vm_object_t obj)
346 {
347 	if (obj == NULL)
348 		return;
349 
350 #if defined(DEBUG_LOCKS)
351 	int found = 0;
352 	int i;
353 
354 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
355 		if ((obj->debug_hold_bitmap & (1 << i)) &&
356 		    (obj->debug_hold_thrs[i] == curthread)) {
357 			obj->debug_hold_bitmap &= ~(1 << i);
358 			obj->debug_hold_thrs[i] = NULL;
359 			obj->debug_hold_file[i] = NULL;
360 			obj->debug_hold_line[i] = 0;
361 			found = 1;
362 			break;
363 		}
364 	}
365 
366 	if (found == 0 && obj->debug_hold_ovfl == 0)
367 		panic("vm_object: attempt to drop hold on non-self-held obj");
368 #endif
369 
370 	/*
371 	 * No new holders should be possible once we drop hold_count 1->0 as
372 	 * there is no longer any way to reference the object.
373 	 */
374 	KKASSERT(obj->hold_count > 0);
375 	if (refcount_release(&obj->hold_count)) {
376 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
377 			vm_object_unlock(obj);
378 			zfree(obj_zone, obj);
379 		} else {
380 			vm_object_unlock(obj);
381 		}
382 	} else {
383 		vm_object_unlock(obj);
384 	}
385 }
386 
387 /*
388  * Initialize a freshly allocated object, returning a held object.
389  *
390  * Used only by vm_object_allocate() and zinitna().
391  *
392  * No requirements.
393  */
394 void
395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
396 {
397 	int incr;
398 
399 	RB_INIT(&object->rb_memq);
400 	LIST_INIT(&object->shadow_head);
401 	lwkt_token_init(&object->token, "vmobj");
402 
403 	object->type = type;
404 	object->size = size;
405 	object->ref_count = 1;
406 	object->hold_count = 0;
407 	object->flags = 0;
408 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
409 		vm_object_set_flag(object, OBJ_ONEMAPPING);
410 	object->paging_in_progress = 0;
411 	object->resident_page_count = 0;
412 	object->agg_pv_list_count = 0;
413 	object->shadow_count = 0;
414 	/* cpu localization twist */
415 	object->pg_color = (int)(intptr_t)curthread;
416 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
417 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
418 	else
419 		incr = size;
420 	next_index = (next_index + incr) & PQ_L2_MASK;
421 	object->handle = NULL;
422 	object->backing_object = NULL;
423 	object->backing_object_offset = (vm_ooffset_t)0;
424 
425 	object->generation++;
426 	object->swblock_count = 0;
427 	RB_INIT(&object->swblock_root);
428 	vm_object_lock_init(object);
429 	pmap_object_init(object);
430 
431 	vm_object_hold(object);
432 	lwkt_gettoken(&vmobj_token);
433 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
434 	vm_object_count++;
435 	lwkt_reltoken(&vmobj_token);
436 }
437 
438 /*
439  * Initialize the VM objects module.
440  *
441  * Called from the low level boot code only.
442  */
443 void
444 vm_object_init(void)
445 {
446 	TAILQ_INIT(&vm_object_list);
447 
448 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449 			    &kernel_object);
450 	vm_object_drop(&kernel_object);
451 
452 	obj_zone = &obj_zone_store;
453 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
454 		vm_objects_init, VM_OBJECTS_INIT);
455 }
456 
457 void
458 vm_object_init2(void)
459 {
460 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
461 }
462 
463 /*
464  * Allocate and return a new object of the specified type and size.
465  *
466  * No requirements.
467  */
468 vm_object_t
469 vm_object_allocate(objtype_t type, vm_pindex_t size)
470 {
471 	vm_object_t result;
472 
473 	result = (vm_object_t) zalloc(obj_zone);
474 
475 	_vm_object_allocate(type, size, result);
476 	vm_object_drop(result);
477 
478 	return (result);
479 }
480 
481 /*
482  * This version returns a held object, allowing further atomic initialization
483  * of the object.
484  */
485 vm_object_t
486 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
487 {
488 	vm_object_t result;
489 
490 	result = (vm_object_t) zalloc(obj_zone);
491 
492 	_vm_object_allocate(type, size, result);
493 
494 	return (result);
495 }
496 
497 /*
498  * Add an additional reference to a vm_object.  The object must already be
499  * held.  The original non-lock version is no longer supported.  The object
500  * must NOT be chain locked by anyone at the time the reference is added.
501  *
502  * Referencing a chain-locked object can blow up the fairly sensitive
503  * ref_count and shadow_count tests in the deallocator.  Most callers
504  * will call vm_object_chain_wait() prior to calling
505  * vm_object_reference_locked() to avoid the case.
506  *
507  * The object must be held.
508  */
509 void
510 vm_object_reference_locked(vm_object_t object)
511 {
512 	KKASSERT(object != NULL);
513 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
514 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
515 	object->ref_count++;
516 	if (object->type == OBJT_VNODE) {
517 		vref(object->handle);
518 		/* XXX what if the vnode is being destroyed? */
519 	}
520 }
521 
522 /*
523  * Object OBJ_CHAINLOCK lock handling.
524  *
525  * The caller can chain-lock backing objects recursively and then
526  * use vm_object_chain_release_all() to undo the whole chain.
527  *
528  * Chain locks are used to prevent collapses and are only applicable
529  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
530  * on other object types are ignored.  This is also important because
531  * it allows e.g. the vnode underlying a memory mapping to take concurrent
532  * faults.
533  *
534  * The object must usually be held on entry, though intermediate
535  * objects need not be held on release.
536  */
537 void
538 vm_object_chain_wait(vm_object_t object)
539 {
540 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541 	while (object->flags & OBJ_CHAINLOCK) {
542 		vm_object_set_flag(object, OBJ_CHAINWANT);
543 		tsleep(object, 0, "objchain", 0);
544 	}
545 }
546 
547 void
548 vm_object_chain_acquire(vm_object_t object)
549 {
550 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
551 		vm_object_chain_wait(object);
552 		vm_object_set_flag(object, OBJ_CHAINLOCK);
553 	}
554 }
555 
556 void
557 vm_object_chain_release(vm_object_t object)
558 {
559 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
560 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
561 		KKASSERT(object->flags & OBJ_CHAINLOCK);
562 		if (object->flags & OBJ_CHAINWANT) {
563 			vm_object_clear_flag(object,
564 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
565 			wakeup(object);
566 		} else {
567 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
568 		}
569 	}
570 }
571 
572 /*
573  * This releases the entire chain of objects from first_object to and
574  * including stopobj, flowing through object->backing_object.
575  *
576  * We release stopobj first as an optimization as this object is most
577  * likely to be shared across multiple processes.
578  */
579 void
580 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
581 {
582 	vm_object_t backing_object;
583 	vm_object_t object;
584 
585 	vm_object_chain_release(stopobj);
586 	object = first_object;
587 
588 	while (object != stopobj) {
589 		KKASSERT(object);
590 		if (object != first_object)
591 			vm_object_hold(object);
592 		backing_object = object->backing_object;
593 		vm_object_chain_release(object);
594 		if (object != first_object)
595 			vm_object_drop(object);
596 		object = backing_object;
597 	}
598 }
599 
600 /*
601  * Dereference an object and its underlying vnode.
602  *
603  * The object must be held and will be held on return.
604  */
605 static void
606 vm_object_vndeallocate(vm_object_t object)
607 {
608 	struct vnode *vp = (struct vnode *) object->handle;
609 
610 	KASSERT(object->type == OBJT_VNODE,
611 	    ("vm_object_vndeallocate: not a vnode object"));
612 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
613 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
614 #ifdef INVARIANTS
615 	if (object->ref_count == 0) {
616 		vprint("vm_object_vndeallocate", vp);
617 		panic("vm_object_vndeallocate: bad object reference count");
618 	}
619 #endif
620 	object->ref_count--;
621 	if (object->ref_count == 0)
622 		vclrflags(vp, VTEXT);
623 	vrele(vp);
624 }
625 
626 /*
627  * Release a reference to the specified object, gained either through a
628  * vm_object_allocate or a vm_object_reference call.  When all references
629  * are gone, storage associated with this object may be relinquished.
630  *
631  * The caller does not have to hold the object locked but must have control
632  * over the reference in question in order to guarantee that the object
633  * does not get ripped out from under us.
634  */
635 void
636 vm_object_deallocate(vm_object_t object)
637 {
638 	if (object) {
639 		vm_object_hold(object);
640 		vm_object_deallocate_locked(object);
641 		vm_object_drop(object);
642 	}
643 }
644 
645 void
646 vm_object_deallocate_locked(vm_object_t object)
647 {
648 	struct vm_object_dealloc_list *dlist = NULL;
649 	struct vm_object_dealloc_list *dtmp;
650 	vm_object_t temp;
651 	int must_drop = 0;
652 
653 	/*
654 	 * We may chain deallocate object, but additional objects may
655 	 * collect on the dlist which also have to be deallocated.  We
656 	 * must avoid a recursion, vm_object chains can get deep.
657 	 */
658 again:
659 	while (object != NULL) {
660 #if 0
661 		/*
662 		 * Don't rip a ref_count out from under an object undergoing
663 		 * collapse, it will confuse the collapse code.
664 		 */
665 		vm_object_chain_wait(object);
666 #endif
667 		if (object->type == OBJT_VNODE) {
668 			vm_object_vndeallocate(object);
669 			break;
670 		}
671 
672 		if (object->ref_count == 0) {
673 			panic("vm_object_deallocate: object deallocated "
674 			      "too many times: %d", object->type);
675 		}
676 		if (object->ref_count > 2) {
677 			object->ref_count--;
678 			break;
679 		}
680 
681 		/*
682 		 * Here on ref_count of one or two, which are special cases for
683 		 * objects.
684 		 *
685 		 * Nominal ref_count > 1 case if the second ref is not from
686 		 * a shadow.
687 		 */
688 		if (object->ref_count == 2 && object->shadow_count == 0) {
689 			vm_object_set_flag(object, OBJ_ONEMAPPING);
690 			object->ref_count--;
691 			break;
692 		}
693 
694 		/*
695 		 * If the second ref is from a shadow we chain along it
696 		 * upwards if object's handle is exhausted.
697 		 *
698 		 * We have to decrement object->ref_count before potentially
699 		 * collapsing the first shadow object or the collapse code
700 		 * will not be able to handle the degenerate case to remove
701 		 * object.  However, if we do it too early the object can
702 		 * get ripped out from under us.
703 		 */
704 		if (object->ref_count == 2 && object->shadow_count == 1 &&
705 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
706 					       object->type == OBJT_SWAP)) {
707 			temp = LIST_FIRST(&object->shadow_head);
708 			KKASSERT(temp != NULL);
709 			vm_object_hold(temp);
710 
711 			/*
712 			 * Wait for any paging to complete so the collapse
713 			 * doesn't (or isn't likely to) qcollapse.  pip
714 			 * waiting must occur before we acquire the
715 			 * chainlock.
716 			 */
717 			while (
718 				temp->paging_in_progress ||
719 				object->paging_in_progress
720 			) {
721 				vm_object_pip_wait(temp, "objde1");
722 				vm_object_pip_wait(object, "objde2");
723 			}
724 
725 			/*
726 			 * If the parent is locked we have to give up, as
727 			 * otherwise we would be acquiring locks in the
728 			 * wrong order and potentially deadlock.
729 			 */
730 			if (temp->flags & OBJ_CHAINLOCK) {
731 				vm_object_drop(temp);
732 				goto skip;
733 			}
734 			vm_object_chain_acquire(temp);
735 
736 			/*
737 			 * Recheck/retry after the hold and the paging
738 			 * wait, both of which can block us.
739 			 */
740 			if (object->ref_count != 2 ||
741 			    object->shadow_count != 1 ||
742 			    object->handle ||
743 			    LIST_FIRST(&object->shadow_head) != temp ||
744 			    (object->type != OBJT_DEFAULT &&
745 			     object->type != OBJT_SWAP)) {
746 				vm_object_chain_release(temp);
747 				vm_object_drop(temp);
748 				continue;
749 			}
750 
751 			/*
752 			 * We can safely drop object's ref_count now.
753 			 */
754 			KKASSERT(object->ref_count == 2);
755 			object->ref_count--;
756 
757 			/*
758 			 * If our single parent is not collapseable just
759 			 * decrement ref_count (2->1) and stop.
760 			 */
761 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
762 					     temp->type != OBJT_SWAP)) {
763 				vm_object_chain_release(temp);
764 				vm_object_drop(temp);
765 				break;
766 			}
767 
768 			/*
769 			 * At this point we have already dropped object's
770 			 * ref_count so it is possible for a race to
771 			 * deallocate obj out from under us.  Any collapse
772 			 * will re-check the situation.  We must not block
773 			 * until we are able to collapse.
774 			 *
775 			 * Bump temp's ref_count to avoid an unwanted
776 			 * degenerate recursion (can't call
777 			 * vm_object_reference_locked() because it asserts
778 			 * that CHAINLOCK is not set).
779 			 */
780 			temp->ref_count++;
781 			KKASSERT(temp->ref_count > 1);
782 
783 			/*
784 			 * Collapse temp, then deallocate the extra ref
785 			 * formally.
786 			 */
787 			vm_object_collapse(temp, &dlist);
788 			vm_object_chain_release(temp);
789 			if (must_drop) {
790 				vm_object_lock_swap();
791 				vm_object_drop(object);
792 			}
793 			object = temp;
794 			must_drop = 1;
795 			continue;
796 		}
797 
798 		/*
799 		 * Drop the ref and handle termination on the 1->0 transition.
800 		 * We may have blocked above so we have to recheck.
801 		 */
802 skip:
803 		KKASSERT(object->ref_count != 0);
804 		if (object->ref_count >= 2) {
805 			object->ref_count--;
806 			break;
807 		}
808 		KKASSERT(object->ref_count == 1);
809 
810 		/*
811 		 * 1->0 transition.  Chain through the backing_object.
812 		 * Maintain the ref until we've located the backing object,
813 		 * then re-check.
814 		 */
815 		while ((temp = object->backing_object) != NULL) {
816 			vm_object_hold(temp);
817 			if (temp == object->backing_object)
818 				break;
819 			vm_object_drop(temp);
820 		}
821 
822 		/*
823 		 * 1->0 transition verified, retry if ref_count is no longer
824 		 * 1.  Otherwise disconnect the backing_object (temp) and
825 		 * clean up.
826 		 */
827 		if (object->ref_count != 1) {
828 			vm_object_drop(temp);
829 			continue;
830 		}
831 
832 		/*
833 		 * It shouldn't be possible for the object to be chain locked
834 		 * if we're removing the last ref on it.
835 		 */
836 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
837 
838 		if (temp) {
839 			LIST_REMOVE(object, shadow_list);
840 			temp->shadow_count--;
841 			temp->generation++;
842 			object->backing_object = NULL;
843 		}
844 
845 		--object->ref_count;
846 		if ((object->flags & OBJ_DEAD) == 0)
847 			vm_object_terminate(object);
848 		if (must_drop && temp)
849 			vm_object_lock_swap();
850 		if (must_drop)
851 			vm_object_drop(object);
852 		object = temp;
853 		must_drop = 1;
854 	}
855 	if (must_drop && object)
856 		vm_object_drop(object);
857 
858 	/*
859 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
860 	 * on the dlist have a hold count but are not locked.
861 	 */
862 	if ((dtmp = dlist) != NULL) {
863 		dlist = dtmp->next;
864 		object = dtmp->object;
865 		kfree(dtmp, M_TEMP);
866 
867 		vm_object_lock(object);	/* already held, add lock */
868 		must_drop = 1;		/* and we're responsible for it */
869 		goto again;
870 	}
871 }
872 
873 /*
874  * Destroy the specified object, freeing up related resources.
875  *
876  * The object must have zero references.
877  *
878  * The object must held.  The caller is responsible for dropping the object
879  * after terminate returns.  Terminate does NOT drop the object.
880  */
881 static int vm_object_terminate_callback(vm_page_t p, void *data);
882 
883 void
884 vm_object_terminate(vm_object_t object)
885 {
886 	/*
887 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
888 	 * able to safely block.
889 	 */
890 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
891 	KKASSERT((object->flags & OBJ_DEAD) == 0);
892 	vm_object_set_flag(object, OBJ_DEAD);
893 
894 	/*
895 	 * Wait for the pageout daemon to be done with the object
896 	 */
897 	vm_object_pip_wait(object, "objtrm1");
898 
899 	KASSERT(!object->paging_in_progress,
900 		("vm_object_terminate: pageout in progress"));
901 
902 	/*
903 	 * Clean and free the pages, as appropriate. All references to the
904 	 * object are gone, so we don't need to lock it.
905 	 */
906 	if (object->type == OBJT_VNODE) {
907 		struct vnode *vp;
908 
909 		/*
910 		 * Clean pages and flush buffers.
911 		 *
912 		 * NOTE!  TMPFS buffer flushes do not typically flush the
913 		 *	  actual page to swap as this would be highly
914 		 *	  inefficient, and normal filesystems usually wrap
915 		 *	  page flushes with buffer cache buffers.
916 		 *
917 		 *	  To deal with this we have to call vinvalbuf() both
918 		 *	  before and after the vm_object_page_clean().
919 		 */
920 		vp = (struct vnode *) object->handle;
921 		vinvalbuf(vp, V_SAVE, 0, 0);
922 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
923 		vinvalbuf(vp, V_SAVE, 0, 0);
924 	}
925 
926 	/*
927 	 * Wait for any I/O to complete, after which there had better not
928 	 * be any references left on the object.
929 	 */
930 	vm_object_pip_wait(object, "objtrm2");
931 
932 	if (object->ref_count != 0) {
933 		panic("vm_object_terminate: object with references, "
934 		      "ref_count=%d", object->ref_count);
935 	}
936 
937 	/*
938 	 * Cleanup any shared pmaps associated with this object.
939 	 */
940 	pmap_object_free(object);
941 
942 	/*
943 	 * Now free any remaining pages. For internal objects, this also
944 	 * removes them from paging queues. Don't free wired pages, just
945 	 * remove them from the object.
946 	 */
947 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
948 				vm_object_terminate_callback, NULL);
949 
950 	/*
951 	 * Let the pager know object is dead.
952 	 */
953 	vm_pager_deallocate(object);
954 
955 	/*
956 	 * Wait for the object hold count to hit 1, clean out pages as
957 	 * we go.  vmobj_token interlocks any race conditions that might
958 	 * pick the object up from the vm_object_list after we have cleared
959 	 * rb_memq.
960 	 */
961 	for (;;) {
962 		if (RB_ROOT(&object->rb_memq) == NULL)
963 			break;
964 		kprintf("vm_object_terminate: Warning, object %p "
965 			"still has %d pages\n",
966 			object, object->resident_page_count);
967 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
968 					vm_object_terminate_callback, NULL);
969 	}
970 
971 	/*
972 	 * There had better not be any pages left
973 	 */
974 	KKASSERT(object->resident_page_count == 0);
975 
976 	/*
977 	 * Remove the object from the global object list.
978 	 */
979 	lwkt_gettoken(&vmobj_token);
980 	TAILQ_REMOVE(&vm_object_list, object, object_list);
981 	vm_object_count--;
982 	lwkt_reltoken(&vmobj_token);
983 	vm_object_dead_wakeup(object);
984 
985 	if (object->ref_count != 0) {
986 		panic("vm_object_terminate2: object with references, "
987 		      "ref_count=%d", object->ref_count);
988 	}
989 
990 	/*
991 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
992 	 *	 the object here.  See vm_object_drop().
993 	 */
994 }
995 
996 /*
997  * The caller must hold the object.
998  */
999 static int
1000 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1001 {
1002 	vm_object_t object;
1003 
1004 	object = p->object;
1005 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1006 	if (object != p->object) {
1007 		kprintf("vm_object_terminate: Warning: Encountered "
1008 			"busied page %p on queue %d\n", p, p->queue);
1009 		vm_page_wakeup(p);
1010 	} else if (p->wire_count == 0) {
1011 		/*
1012 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1013 		 */
1014 		vm_page_free(p);
1015 		mycpu->gd_cnt.v_pfree++;
1016 	} else {
1017 		if (p->queue != PQ_NONE)
1018 			kprintf("vm_object_terminate: Warning: Encountered "
1019 				"wired page %p on queue %d\n", p, p->queue);
1020 		vm_page_remove(p);
1021 		vm_page_wakeup(p);
1022 	}
1023 	lwkt_yield();
1024 	return(0);
1025 }
1026 
1027 /*
1028  * The object is dead but still has an object<->pager association.  Sleep
1029  * and return.  The caller typically retests the association in a loop.
1030  *
1031  * The caller must hold the object.
1032  */
1033 void
1034 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1035 {
1036 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1037 	if (object->handle) {
1038 		vm_object_set_flag(object, OBJ_DEADWNT);
1039 		tsleep(object, 0, wmesg, 0);
1040 		/* object may be invalid after this point */
1041 	}
1042 }
1043 
1044 /*
1045  * Wakeup anyone waiting for the object<->pager disassociation on
1046  * a dead object.
1047  *
1048  * The caller must hold the object.
1049  */
1050 void
1051 vm_object_dead_wakeup(vm_object_t object)
1052 {
1053 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1054 	if (object->flags & OBJ_DEADWNT) {
1055 		vm_object_clear_flag(object, OBJ_DEADWNT);
1056 		wakeup(object);
1057 	}
1058 }
1059 
1060 /*
1061  * Clean all dirty pages in the specified range of object.  Leaves page
1062  * on whatever queue it is currently on.   If NOSYNC is set then do not
1063  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1064  * leaving the object dirty.
1065  *
1066  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1067  * synchronous clustering mode implementation.
1068  *
1069  * Odd semantics: if start == end, we clean everything.
1070  *
1071  * The object must be locked? XXX
1072  */
1073 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1074 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1075 
1076 void
1077 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1078 		     int flags)
1079 {
1080 	struct rb_vm_page_scan_info info;
1081 	struct vnode *vp;
1082 	int wholescan;
1083 	int pagerflags;
1084 	int generation;
1085 
1086 	vm_object_hold(object);
1087 	if (object->type != OBJT_VNODE ||
1088 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1089 		vm_object_drop(object);
1090 		return;
1091 	}
1092 
1093 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1094 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1095 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1096 
1097 	vp = object->handle;
1098 
1099 	/*
1100 	 * Interlock other major object operations.  This allows us to
1101 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1102 	 */
1103 	vm_object_set_flag(object, OBJ_CLEANING);
1104 
1105 	/*
1106 	 * Handle 'entire object' case
1107 	 */
1108 	info.start_pindex = start;
1109 	if (end == 0) {
1110 		info.end_pindex = object->size - 1;
1111 	} else {
1112 		info.end_pindex = end - 1;
1113 	}
1114 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1115 	info.limit = flags;
1116 	info.pagerflags = pagerflags;
1117 	info.object = object;
1118 
1119 	/*
1120 	 * If cleaning the entire object do a pass to mark the pages read-only.
1121 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1122 	 * OBJ_MIGHTBEDIRTY.
1123 	 */
1124 	if (wholescan) {
1125 		info.error = 0;
1126 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1127 					vm_object_page_clean_pass1, &info);
1128 		if (info.error == 0) {
1129 			vm_object_clear_flag(object,
1130 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1131 			if (object->type == OBJT_VNODE &&
1132 			    (vp = (struct vnode *)object->handle) != NULL) {
1133 				if (vp->v_flag & VOBJDIRTY)
1134 					vclrflags(vp, VOBJDIRTY);
1135 			}
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * Do a pass to clean all the dirty pages we find.
1141 	 */
1142 	do {
1143 		info.error = 0;
1144 		generation = object->generation;
1145 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1146 					vm_object_page_clean_pass2, &info);
1147 	} while (info.error || generation != object->generation);
1148 
1149 	vm_object_clear_flag(object, OBJ_CLEANING);
1150 	vm_object_drop(object);
1151 }
1152 
1153 /*
1154  * The caller must hold the object.
1155  */
1156 static
1157 int
1158 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1159 {
1160 	struct rb_vm_page_scan_info *info = data;
1161 
1162 	vm_page_flag_set(p, PG_CLEANCHK);
1163 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1164 		info->error = 1;
1165 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1166 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1167 		vm_page_wakeup(p);
1168 	} else {
1169 		info->error = 1;
1170 	}
1171 	lwkt_yield();
1172 	return(0);
1173 }
1174 
1175 /*
1176  * The caller must hold the object
1177  */
1178 static
1179 int
1180 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1181 {
1182 	struct rb_vm_page_scan_info *info = data;
1183 	int generation;
1184 
1185 	/*
1186 	 * Do not mess with pages that were inserted after we started
1187 	 * the cleaning pass.
1188 	 */
1189 	if ((p->flags & PG_CLEANCHK) == 0)
1190 		goto done;
1191 
1192 	generation = info->object->generation;
1193 	vm_page_busy_wait(p, TRUE, "vpcwai");
1194 	if (p->object != info->object ||
1195 	    info->object->generation != generation) {
1196 		info->error = 1;
1197 		vm_page_wakeup(p);
1198 		goto done;
1199 	}
1200 
1201 	/*
1202 	 * Before wasting time traversing the pmaps, check for trivial
1203 	 * cases where the page cannot be dirty.
1204 	 */
1205 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1206 		KKASSERT((p->dirty & p->valid) == 0 &&
1207 			 (p->flags & PG_NEED_COMMIT) == 0);
1208 		vm_page_wakeup(p);
1209 		goto done;
1210 	}
1211 
1212 	/*
1213 	 * Check whether the page is dirty or not.  The page has been set
1214 	 * to be read-only so the check will not race a user dirtying the
1215 	 * page.
1216 	 */
1217 	vm_page_test_dirty(p);
1218 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1219 		vm_page_flag_clear(p, PG_CLEANCHK);
1220 		vm_page_wakeup(p);
1221 		goto done;
1222 	}
1223 
1224 	/*
1225 	 * If we have been asked to skip nosync pages and this is a
1226 	 * nosync page, skip it.  Note that the object flags were
1227 	 * not cleared in this case (because pass1 will have returned an
1228 	 * error), so we do not have to set them.
1229 	 */
1230 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1231 		vm_page_flag_clear(p, PG_CLEANCHK);
1232 		vm_page_wakeup(p);
1233 		goto done;
1234 	}
1235 
1236 	/*
1237 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1238 	 * the pages that get successfully flushed.  Set info->error if
1239 	 * we raced an object modification.
1240 	 */
1241 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1242 	vm_wait_nominal();
1243 done:
1244 	lwkt_yield();
1245 	return(0);
1246 }
1247 
1248 /*
1249  * Collect the specified page and nearby pages and flush them out.
1250  * The number of pages flushed is returned.  The passed page is busied
1251  * by the caller and we are responsible for its disposition.
1252  *
1253  * The caller must hold the object.
1254  */
1255 static void
1256 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1257 {
1258 	int runlen;
1259 	int error;
1260 	int maxf;
1261 	int chkb;
1262 	int maxb;
1263 	int i;
1264 	vm_pindex_t pi;
1265 	vm_page_t maf[vm_pageout_page_count];
1266 	vm_page_t mab[vm_pageout_page_count];
1267 	vm_page_t ma[vm_pageout_page_count];
1268 
1269 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1270 
1271 	pi = p->pindex;
1272 
1273 	maxf = 0;
1274 	for(i = 1; i < vm_pageout_page_count; i++) {
1275 		vm_page_t tp;
1276 
1277 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1278 		if (error)
1279 			break;
1280 		if (tp == NULL)
1281 			break;
1282 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1283 		    (tp->flags & PG_CLEANCHK) == 0) {
1284 			vm_page_wakeup(tp);
1285 			break;
1286 		}
1287 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1288 			vm_page_flag_clear(tp, PG_CLEANCHK);
1289 			vm_page_wakeup(tp);
1290 			break;
1291 		}
1292 		vm_page_test_dirty(tp);
1293 		if ((tp->dirty & tp->valid) == 0 &&
1294 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1295 			vm_page_flag_clear(tp, PG_CLEANCHK);
1296 			vm_page_wakeup(tp);
1297 			break;
1298 		}
1299 		maf[i - 1] = tp;
1300 		maxf++;
1301 	}
1302 
1303 	maxb = 0;
1304 	chkb = vm_pageout_page_count -  maxf;
1305 	/*
1306 	 * NOTE: chkb can be 0
1307 	 */
1308 	for(i = 1; chkb && i < chkb; i++) {
1309 		vm_page_t tp;
1310 
1311 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1312 		if (error)
1313 			break;
1314 		if (tp == NULL)
1315 			break;
1316 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1317 		    (tp->flags & PG_CLEANCHK) == 0) {
1318 			vm_page_wakeup(tp);
1319 			break;
1320 		}
1321 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1322 			vm_page_flag_clear(tp, PG_CLEANCHK);
1323 			vm_page_wakeup(tp);
1324 			break;
1325 		}
1326 		vm_page_test_dirty(tp);
1327 		if ((tp->dirty & tp->valid) == 0 &&
1328 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1329 			vm_page_flag_clear(tp, PG_CLEANCHK);
1330 			vm_page_wakeup(tp);
1331 			break;
1332 		}
1333 		mab[i - 1] = tp;
1334 		maxb++;
1335 	}
1336 
1337 	/*
1338 	 * All pages in the maf[] and mab[] array are busied.
1339 	 */
1340 	for (i = 0; i < maxb; i++) {
1341 		int index = (maxb - i) - 1;
1342 		ma[index] = mab[i];
1343 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1344 	}
1345 	vm_page_flag_clear(p, PG_CLEANCHK);
1346 	ma[maxb] = p;
1347 	for(i = 0; i < maxf; i++) {
1348 		int index = (maxb + i) + 1;
1349 		ma[index] = maf[i];
1350 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1351 	}
1352 	runlen = maxb + maxf + 1;
1353 
1354 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1355 		vm_page_hold(ma[i]);
1356 
1357 	vm_pageout_flush(ma, runlen, pagerflags);
1358 
1359 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1360 		vm_page_unhold(ma[i]);
1361 }
1362 
1363 /*
1364  * Same as vm_object_pmap_copy, except range checking really
1365  * works, and is meant for small sections of an object.
1366  *
1367  * This code protects resident pages by making them read-only
1368  * and is typically called on a fork or split when a page
1369  * is converted to copy-on-write.
1370  *
1371  * NOTE: If the page is already at VM_PROT_NONE, calling
1372  * vm_page_protect will have no effect.
1373  */
1374 void
1375 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1376 {
1377 	vm_pindex_t idx;
1378 	vm_page_t p;
1379 
1380 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1381 		return;
1382 
1383 	vm_object_hold(object);
1384 	for (idx = start; idx < end; idx++) {
1385 		p = vm_page_lookup(object, idx);
1386 		if (p == NULL)
1387 			continue;
1388 		vm_page_protect(p, VM_PROT_READ);
1389 	}
1390 	vm_object_drop(object);
1391 }
1392 
1393 /*
1394  * Removes all physical pages in the specified object range from all
1395  * physical maps.
1396  *
1397  * The object must *not* be locked.
1398  */
1399 
1400 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1401 
1402 void
1403 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1404 {
1405 	struct rb_vm_page_scan_info info;
1406 
1407 	if (object == NULL)
1408 		return;
1409 	info.start_pindex = start;
1410 	info.end_pindex = end - 1;
1411 
1412 	vm_object_hold(object);
1413 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1414 				vm_object_pmap_remove_callback, &info);
1415 	if (start == 0 && end == object->size)
1416 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1417 	vm_object_drop(object);
1418 }
1419 
1420 /*
1421  * The caller must hold the object
1422  */
1423 static int
1424 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1425 {
1426 	vm_page_protect(p, VM_PROT_NONE);
1427 	return(0);
1428 }
1429 
1430 /*
1431  * Implements the madvise function at the object/page level.
1432  *
1433  * MADV_WILLNEED	(any object)
1434  *
1435  *	Activate the specified pages if they are resident.
1436  *
1437  * MADV_DONTNEED	(any object)
1438  *
1439  *	Deactivate the specified pages if they are resident.
1440  *
1441  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1442  *
1443  *	Deactivate and clean the specified pages if they are
1444  *	resident.  This permits the process to reuse the pages
1445  *	without faulting or the kernel to reclaim the pages
1446  *	without I/O.
1447  *
1448  * No requirements.
1449  */
1450 void
1451 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1452 {
1453 	vm_pindex_t end, tpindex;
1454 	vm_object_t tobject;
1455 	vm_object_t xobj;
1456 	vm_page_t m;
1457 	int error;
1458 
1459 	if (object == NULL)
1460 		return;
1461 
1462 	end = pindex + count;
1463 
1464 	vm_object_hold(object);
1465 	tobject = object;
1466 
1467 	/*
1468 	 * Locate and adjust resident pages
1469 	 */
1470 	for (; pindex < end; pindex += 1) {
1471 relookup:
1472 		if (tobject != object)
1473 			vm_object_drop(tobject);
1474 		tobject = object;
1475 		tpindex = pindex;
1476 shadowlookup:
1477 		/*
1478 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1479 		 * and those pages must be OBJ_ONEMAPPING.
1480 		 */
1481 		if (advise == MADV_FREE) {
1482 			if ((tobject->type != OBJT_DEFAULT &&
1483 			     tobject->type != OBJT_SWAP) ||
1484 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1485 				continue;
1486 			}
1487 		}
1488 
1489 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1490 
1491 		if (error) {
1492 			vm_page_sleep_busy(m, TRUE, "madvpo");
1493 			goto relookup;
1494 		}
1495 		if (m == NULL) {
1496 			/*
1497 			 * There may be swap even if there is no backing page
1498 			 */
1499 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1500 				swap_pager_freespace(tobject, tpindex, 1);
1501 
1502 			/*
1503 			 * next object
1504 			 */
1505 			while ((xobj = tobject->backing_object) != NULL) {
1506 				KKASSERT(xobj != object);
1507 				vm_object_hold(xobj);
1508 				if (xobj == tobject->backing_object)
1509 					break;
1510 				vm_object_drop(xobj);
1511 			}
1512 			if (xobj == NULL)
1513 				continue;
1514 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1515 			if (tobject != object) {
1516 				vm_object_lock_swap();
1517 				vm_object_drop(tobject);
1518 			}
1519 			tobject = xobj;
1520 			goto shadowlookup;
1521 		}
1522 
1523 		/*
1524 		 * If the page is not in a normal active state, we skip it.
1525 		 * If the page is not managed there are no page queues to
1526 		 * mess with.  Things can break if we mess with pages in
1527 		 * any of the below states.
1528 		 */
1529 		if (m->wire_count ||
1530 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1531 		    m->valid != VM_PAGE_BITS_ALL
1532 		) {
1533 			vm_page_wakeup(m);
1534 			continue;
1535 		}
1536 
1537 		/*
1538 		 * Theoretically once a page is known not to be busy, an
1539 		 * interrupt cannot come along and rip it out from under us.
1540 		 */
1541 
1542 		if (advise == MADV_WILLNEED) {
1543 			vm_page_activate(m);
1544 		} else if (advise == MADV_DONTNEED) {
1545 			vm_page_dontneed(m);
1546 		} else if (advise == MADV_FREE) {
1547 			/*
1548 			 * Mark the page clean.  This will allow the page
1549 			 * to be freed up by the system.  However, such pages
1550 			 * are often reused quickly by malloc()/free()
1551 			 * so we do not do anything that would cause
1552 			 * a page fault if we can help it.
1553 			 *
1554 			 * Specifically, we do not try to actually free
1555 			 * the page now nor do we try to put it in the
1556 			 * cache (which would cause a page fault on reuse).
1557 			 *
1558 			 * But we do make the page is freeable as we
1559 			 * can without actually taking the step of unmapping
1560 			 * it.
1561 			 */
1562 			pmap_clear_modify(m);
1563 			m->dirty = 0;
1564 			m->act_count = 0;
1565 			vm_page_dontneed(m);
1566 			if (tobject->type == OBJT_SWAP)
1567 				swap_pager_freespace(tobject, tpindex, 1);
1568 		}
1569 		vm_page_wakeup(m);
1570 	}
1571 	if (tobject != object)
1572 		vm_object_drop(tobject);
1573 	vm_object_drop(object);
1574 }
1575 
1576 /*
1577  * Create a new object which is backed by the specified existing object
1578  * range.  Replace the pointer and offset that was pointing at the existing
1579  * object with the pointer/offset for the new object.
1580  *
1581  * No other requirements.
1582  */
1583 void
1584 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1585 		 int addref)
1586 {
1587 	vm_object_t source;
1588 	vm_object_t result;
1589 
1590 	source = *objectp;
1591 
1592 	/*
1593 	 * Don't create the new object if the old object isn't shared.
1594 	 * We have to chain wait before adding the reference to avoid
1595 	 * racing a collapse or deallocation.
1596 	 *
1597 	 * Add the additional ref to source here to avoid racing a later
1598 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1599 	 * addref is TRUE or not in this case because the original object
1600 	 * will be shadowed.
1601 	 */
1602 	if (source) {
1603 		vm_object_hold(source);
1604 		vm_object_chain_wait(source);
1605 		if (source->ref_count == 1 &&
1606 		    source->handle == NULL &&
1607 		    (source->type == OBJT_DEFAULT ||
1608 		     source->type == OBJT_SWAP)) {
1609 			vm_object_drop(source);
1610 			if (addref) {
1611 				vm_object_reference_locked(source);
1612 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1613 			}
1614 			return;
1615 		}
1616 		vm_object_reference_locked(source);
1617 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1618 	}
1619 
1620 	/*
1621 	 * Allocate a new object with the given length.  The new object
1622 	 * is returned referenced but we may have to add another one.
1623 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1624 	 * (typically because the caller is about to clone a vm_map_entry).
1625 	 *
1626 	 * The source object currently has an extra reference to prevent
1627 	 * collapses into it while we mess with its shadow list, which
1628 	 * we will remove later in this routine.
1629 	 */
1630 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1631 		panic("vm_object_shadow: no object for shadowing");
1632 	vm_object_hold(result);
1633 	if (addref) {
1634 		vm_object_reference_locked(result);
1635 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1636 	}
1637 
1638 	/*
1639 	 * The new object shadows the source object.  Chain wait before
1640 	 * adjusting shadow_count or the shadow list to avoid races.
1641 	 *
1642 	 * Try to optimize the result object's page color when shadowing
1643 	 * in order to maintain page coloring consistency in the combined
1644 	 * shadowed object.
1645 	 */
1646 	KKASSERT(result->backing_object == NULL);
1647 	result->backing_object = source;
1648 	if (source) {
1649 		vm_object_chain_wait(source);
1650 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1651 		source->shadow_count++;
1652 		source->generation++;
1653 		/* cpu localization twist */
1654 		result->pg_color = (int)(intptr_t)curthread;
1655 	}
1656 
1657 	/*
1658 	 * Adjust the return storage.  Drop the ref on source before
1659 	 * returning.
1660 	 */
1661 	result->backing_object_offset = *offset;
1662 	vm_object_drop(result);
1663 	*offset = 0;
1664 	if (source) {
1665 		vm_object_deallocate_locked(source);
1666 		vm_object_drop(source);
1667 	}
1668 
1669 	/*
1670 	 * Return the new things
1671 	 */
1672 	*objectp = result;
1673 }
1674 
1675 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1676 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1677 #define	OBSC_COLLAPSE_WAIT	0x0004
1678 
1679 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1680 
1681 /*
1682  * The caller must hold the object.
1683  */
1684 static __inline int
1685 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1686 {
1687 	struct rb_vm_page_scan_info info;
1688 
1689 	vm_object_assert_held(object);
1690 	vm_object_assert_held(backing_object);
1691 
1692 	KKASSERT(backing_object == object->backing_object);
1693 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1694 
1695 	/*
1696 	 * Initial conditions
1697 	 */
1698 	if (op & OBSC_TEST_ALL_SHADOWED) {
1699 		/*
1700 		 * We do not want to have to test for the existence of
1701 		 * swap pages in the backing object.  XXX but with the
1702 		 * new swapper this would be pretty easy to do.
1703 		 *
1704 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1705 		 * been ZFOD faulted yet?  If we do not test for this, the
1706 		 * shadow test may succeed! XXX
1707 		 */
1708 		if (backing_object->type != OBJT_DEFAULT)
1709 			return(0);
1710 	}
1711 	if (op & OBSC_COLLAPSE_WAIT) {
1712 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1713 		vm_object_set_flag(backing_object, OBJ_DEAD);
1714 		lwkt_gettoken(&vmobj_token);
1715 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1716 		vm_object_count--;
1717 		lwkt_reltoken(&vmobj_token);
1718 		vm_object_dead_wakeup(backing_object);
1719 	}
1720 
1721 	/*
1722 	 * Our scan.   We have to retry if a negative error code is returned,
1723 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1724 	 * the scan had to be stopped because the parent does not completely
1725 	 * shadow the child.
1726 	 */
1727 	info.object = object;
1728 	info.backing_object = backing_object;
1729 	info.limit = op;
1730 	do {
1731 		info.error = 1;
1732 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1733 					vm_object_backing_scan_callback,
1734 					&info);
1735 	} while (info.error < 0);
1736 
1737 	return(info.error);
1738 }
1739 
1740 /*
1741  * The caller must hold the object.
1742  */
1743 static int
1744 vm_object_backing_scan_callback(vm_page_t p, void *data)
1745 {
1746 	struct rb_vm_page_scan_info *info = data;
1747 	vm_object_t backing_object;
1748 	vm_object_t object;
1749 	vm_pindex_t pindex;
1750 	vm_pindex_t new_pindex;
1751 	vm_pindex_t backing_offset_index;
1752 	int op;
1753 
1754 	pindex = p->pindex;
1755 	new_pindex = pindex - info->backing_offset_index;
1756 	op = info->limit;
1757 	object = info->object;
1758 	backing_object = info->backing_object;
1759 	backing_offset_index = info->backing_offset_index;
1760 
1761 	if (op & OBSC_TEST_ALL_SHADOWED) {
1762 		vm_page_t pp;
1763 
1764 		/*
1765 		 * Ignore pages outside the parent object's range
1766 		 * and outside the parent object's mapping of the
1767 		 * backing object.
1768 		 *
1769 		 * note that we do not busy the backing object's
1770 		 * page.
1771 		 */
1772 		if (pindex < backing_offset_index ||
1773 		    new_pindex >= object->size
1774 		) {
1775 			return(0);
1776 		}
1777 
1778 		/*
1779 		 * See if the parent has the page or if the parent's
1780 		 * object pager has the page.  If the parent has the
1781 		 * page but the page is not valid, the parent's
1782 		 * object pager must have the page.
1783 		 *
1784 		 * If this fails, the parent does not completely shadow
1785 		 * the object and we might as well give up now.
1786 		 */
1787 		pp = vm_page_lookup(object, new_pindex);
1788 		if ((pp == NULL || pp->valid == 0) &&
1789 		    !vm_pager_has_page(object, new_pindex)
1790 		) {
1791 			info->error = 0;	/* problemo */
1792 			return(-1);		/* stop the scan */
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Check for busy page.  Note that we may have lost (p) when we
1798 	 * possibly blocked above.
1799 	 */
1800 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1801 		vm_page_t pp;
1802 
1803 		if (vm_page_busy_try(p, TRUE)) {
1804 			if (op & OBSC_COLLAPSE_NOWAIT) {
1805 				return(0);
1806 			} else {
1807 				/*
1808 				 * If we slept, anything could have
1809 				 * happened.   Ask that the scan be restarted.
1810 				 *
1811 				 * Since the object is marked dead, the
1812 				 * backing offset should not have changed.
1813 				 */
1814 				vm_page_sleep_busy(p, TRUE, "vmocol");
1815 				info->error = -1;
1816 				return(-1);
1817 			}
1818 		}
1819 
1820 		/*
1821 		 * If (p) is no longer valid restart the scan.
1822 		 */
1823 		if (p->object != backing_object || p->pindex != pindex) {
1824 			kprintf("vm_object_backing_scan: Warning: page "
1825 				"%p ripped out from under us\n", p);
1826 			vm_page_wakeup(p);
1827 			info->error = -1;
1828 			return(-1);
1829 		}
1830 
1831 		if (op & OBSC_COLLAPSE_NOWAIT) {
1832 			if (p->valid == 0 ||
1833 			    p->wire_count ||
1834 			    (p->flags & PG_NEED_COMMIT)) {
1835 				vm_page_wakeup(p);
1836 				return(0);
1837 			}
1838 		} else {
1839 			/* XXX what if p->valid == 0 , hold_count, etc? */
1840 		}
1841 
1842 		KASSERT(
1843 		    p->object == backing_object,
1844 		    ("vm_object_qcollapse(): object mismatch")
1845 		);
1846 
1847 		/*
1848 		 * Destroy any associated swap
1849 		 */
1850 		if (backing_object->type == OBJT_SWAP)
1851 			swap_pager_freespace(backing_object, p->pindex, 1);
1852 
1853 		if (
1854 		    p->pindex < backing_offset_index ||
1855 		    new_pindex >= object->size
1856 		) {
1857 			/*
1858 			 * Page is out of the parent object's range, we
1859 			 * can simply destroy it.
1860 			 */
1861 			vm_page_protect(p, VM_PROT_NONE);
1862 			vm_page_free(p);
1863 			return(0);
1864 		}
1865 
1866 		pp = vm_page_lookup(object, new_pindex);
1867 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1868 			/*
1869 			 * page already exists in parent OR swap exists
1870 			 * for this location in the parent.  Destroy
1871 			 * the original page from the backing object.
1872 			 *
1873 			 * Leave the parent's page alone
1874 			 */
1875 			vm_page_protect(p, VM_PROT_NONE);
1876 			vm_page_free(p);
1877 			return(0);
1878 		}
1879 
1880 		/*
1881 		 * Page does not exist in parent, rename the
1882 		 * page from the backing object to the main object.
1883 		 *
1884 		 * If the page was mapped to a process, it can remain
1885 		 * mapped through the rename.
1886 		 */
1887 		if ((p->queue - p->pc) == PQ_CACHE)
1888 			vm_page_deactivate(p);
1889 
1890 		vm_page_rename(p, object, new_pindex);
1891 		vm_page_wakeup(p);
1892 		/* page automatically made dirty by rename */
1893 	}
1894 	return(0);
1895 }
1896 
1897 /*
1898  * This version of collapse allows the operation to occur earlier and
1899  * when paging_in_progress is true for an object...  This is not a complete
1900  * operation, but should plug 99.9% of the rest of the leaks.
1901  *
1902  * The caller must hold the object and backing_object and both must be
1903  * chainlocked.
1904  *
1905  * (only called from vm_object_collapse)
1906  */
1907 static void
1908 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1909 {
1910 	if (backing_object->ref_count == 1) {
1911 		backing_object->ref_count += 2;
1912 		vm_object_backing_scan(object, backing_object,
1913 				       OBSC_COLLAPSE_NOWAIT);
1914 		backing_object->ref_count -= 2;
1915 	}
1916 }
1917 
1918 /*
1919  * Collapse an object with the object backing it.  Pages in the backing
1920  * object are moved into the parent, and the backing object is deallocated.
1921  * Any conflict is resolved in favor of the parent's existing pages.
1922  *
1923  * object must be held and chain-locked on call.
1924  *
1925  * The caller must have an extra ref on object to prevent a race from
1926  * destroying it during the collapse.
1927  */
1928 void
1929 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1930 {
1931 	struct vm_object_dealloc_list *dlist = NULL;
1932 	vm_object_t backing_object;
1933 
1934 	/*
1935 	 * Only one thread is attempting a collapse at any given moment.
1936 	 * There are few restrictions for (object) that callers of this
1937 	 * function check so reentrancy is likely.
1938 	 */
1939 	KKASSERT(object != NULL);
1940 	vm_object_assert_held(object);
1941 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1942 
1943 	for (;;) {
1944 		vm_object_t bbobj;
1945 		int dodealloc;
1946 
1947 		/*
1948 		 * We have to hold the backing object, check races.
1949 		 */
1950 		while ((backing_object = object->backing_object) != NULL) {
1951 			vm_object_hold(backing_object);
1952 			if (backing_object == object->backing_object)
1953 				break;
1954 			vm_object_drop(backing_object);
1955 		}
1956 
1957 		/*
1958 		 * No backing object?  Nothing to collapse then.
1959 		 */
1960 		if (backing_object == NULL)
1961 			break;
1962 
1963 		/*
1964 		 * You can't collapse with a non-default/non-swap object.
1965 		 */
1966 		if (backing_object->type != OBJT_DEFAULT &&
1967 		    backing_object->type != OBJT_SWAP) {
1968 			vm_object_drop(backing_object);
1969 			backing_object = NULL;
1970 			break;
1971 		}
1972 
1973 		/*
1974 		 * Chain-lock the backing object too because if we
1975 		 * successfully merge its pages into the top object we
1976 		 * will collapse backing_object->backing_object as the
1977 		 * new backing_object.  Re-check that it is still our
1978 		 * backing object.
1979 		 */
1980 		vm_object_chain_acquire(backing_object);
1981 		if (backing_object != object->backing_object) {
1982 			vm_object_chain_release(backing_object);
1983 			vm_object_drop(backing_object);
1984 			continue;
1985 		}
1986 
1987 		/*
1988 		 * we check the backing object first, because it is most likely
1989 		 * not collapsable.
1990 		 */
1991 		if (backing_object->handle != NULL ||
1992 		    (backing_object->type != OBJT_DEFAULT &&
1993 		     backing_object->type != OBJT_SWAP) ||
1994 		    (backing_object->flags & OBJ_DEAD) ||
1995 		    object->handle != NULL ||
1996 		    (object->type != OBJT_DEFAULT &&
1997 		     object->type != OBJT_SWAP) ||
1998 		    (object->flags & OBJ_DEAD)) {
1999 			break;
2000 		}
2001 
2002 		/*
2003 		 * If paging is in progress we can't do a normal collapse.
2004 		 */
2005 		if (
2006 		    object->paging_in_progress != 0 ||
2007 		    backing_object->paging_in_progress != 0
2008 		) {
2009 			vm_object_qcollapse(object, backing_object);
2010 			break;
2011 		}
2012 
2013 		/*
2014 		 * We know that we can either collapse the backing object (if
2015 		 * the parent is the only reference to it) or (perhaps) have
2016 		 * the parent bypass the object if the parent happens to shadow
2017 		 * all the resident pages in the entire backing object.
2018 		 *
2019 		 * This is ignoring pager-backed pages such as swap pages.
2020 		 * vm_object_backing_scan fails the shadowing test in this
2021 		 * case.
2022 		 */
2023 		if (backing_object->ref_count == 1) {
2024 			/*
2025 			 * If there is exactly one reference to the backing
2026 			 * object, we can collapse it into the parent.
2027 			 */
2028 			KKASSERT(object->backing_object == backing_object);
2029 			vm_object_backing_scan(object, backing_object,
2030 					       OBSC_COLLAPSE_WAIT);
2031 
2032 			/*
2033 			 * Move the pager from backing_object to object.
2034 			 */
2035 			if (backing_object->type == OBJT_SWAP) {
2036 				vm_object_pip_add(backing_object, 1);
2037 
2038 				/*
2039 				 * scrap the paging_offset junk and do a
2040 				 * discrete copy.  This also removes major
2041 				 * assumptions about how the swap-pager
2042 				 * works from where it doesn't belong.  The
2043 				 * new swapper is able to optimize the
2044 				 * destroy-source case.
2045 				 */
2046 				vm_object_pip_add(object, 1);
2047 				swap_pager_copy(backing_object, object,
2048 				    OFF_TO_IDX(object->backing_object_offset),
2049 				    TRUE);
2050 				vm_object_pip_wakeup(object);
2051 				vm_object_pip_wakeup(backing_object);
2052 			}
2053 
2054 			/*
2055 			 * Object now shadows whatever backing_object did.
2056 			 * Remove object from backing_object's shadow_list.
2057 			 */
2058 			LIST_REMOVE(object, shadow_list);
2059 			KKASSERT(object->backing_object == backing_object);
2060 			backing_object->shadow_count--;
2061 			backing_object->generation++;
2062 
2063 			/*
2064 			 * backing_object->backing_object moves from within
2065 			 * backing_object to within object.
2066 			 */
2067 			while ((bbobj = backing_object->backing_object) != NULL) {
2068 				vm_object_hold(bbobj);
2069 				if (bbobj == backing_object->backing_object)
2070 					break;
2071 				vm_object_drop(bbobj);
2072 			}
2073 			if (bbobj) {
2074 				LIST_REMOVE(backing_object, shadow_list);
2075 				bbobj->shadow_count--;
2076 				bbobj->generation++;
2077 				backing_object->backing_object = NULL;
2078 			}
2079 			object->backing_object = bbobj;
2080 			if (bbobj) {
2081 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2082 						 object, shadow_list);
2083 				bbobj->shadow_count++;
2084 				bbobj->generation++;
2085 			}
2086 
2087 			object->backing_object_offset +=
2088 				backing_object->backing_object_offset;
2089 
2090 			vm_object_drop(bbobj);
2091 
2092 			/*
2093 			 * Discard the old backing_object.  Nothing should be
2094 			 * able to ref it, other than a vm_map_split(),
2095 			 * and vm_map_split() will stall on our chain lock.
2096 			 * And we control the parent so it shouldn't be
2097 			 * possible for it to go away either.
2098 			 *
2099 			 * Since the backing object has no pages, no pager
2100 			 * left, and no object references within it, all
2101 			 * that is necessary is to dispose of it.
2102 			 */
2103 			KASSERT(backing_object->ref_count == 1,
2104 				("backing_object %p was somehow "
2105 				 "re-referenced during collapse!",
2106 				 backing_object));
2107 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2108 				("backing_object %p somehow has left "
2109 				 "over pages during collapse!",
2110 				 backing_object));
2111 
2112 			/*
2113 			 * The object can be destroyed.
2114 			 *
2115 			 * XXX just fall through and dodealloc instead
2116 			 *     of forcing destruction?
2117 			 */
2118 			--backing_object->ref_count;
2119 			if ((backing_object->flags & OBJ_DEAD) == 0)
2120 				vm_object_terminate(backing_object);
2121 			object_collapses++;
2122 			dodealloc = 0;
2123 		} else {
2124 			/*
2125 			 * If we do not entirely shadow the backing object,
2126 			 * there is nothing we can do so we give up.
2127 			 */
2128 			if (vm_object_backing_scan(object, backing_object,
2129 						OBSC_TEST_ALL_SHADOWED) == 0) {
2130 				break;
2131 			}
2132 
2133 			/*
2134 			 * bbobj is backing_object->backing_object.  Since
2135 			 * object completely shadows backing_object we can
2136 			 * bypass it and become backed by bbobj instead.
2137 			 */
2138 			while ((bbobj = backing_object->backing_object) != NULL) {
2139 				vm_object_hold(bbobj);
2140 				if (bbobj == backing_object->backing_object)
2141 					break;
2142 				vm_object_drop(bbobj);
2143 			}
2144 
2145 			/*
2146 			 * Make object shadow bbobj instead of backing_object.
2147 			 * Remove object from backing_object's shadow list.
2148 			 *
2149 			 * Deallocating backing_object will not remove
2150 			 * it, since its reference count is at least 2.
2151 			 */
2152 			KKASSERT(object->backing_object == backing_object);
2153 			LIST_REMOVE(object, shadow_list);
2154 			backing_object->shadow_count--;
2155 			backing_object->generation++;
2156 
2157 			/*
2158 			 * Add a ref to bbobj, bbobj now shadows object.
2159 			 *
2160 			 * NOTE: backing_object->backing_object still points
2161 			 *	 to bbobj.  That relationship remains intact
2162 			 *	 because backing_object has > 1 ref, so
2163 			 *	 someone else is pointing to it (hence why
2164 			 *	 we can't collapse it into object and can
2165 			 *	 only handle the all-shadowed bypass case).
2166 			 */
2167 			if (bbobj) {
2168 				vm_object_chain_wait(bbobj);
2169 				vm_object_reference_locked(bbobj);
2170 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2171 						 object, shadow_list);
2172 				bbobj->shadow_count++;
2173 				bbobj->generation++;
2174 				object->backing_object_offset +=
2175 					backing_object->backing_object_offset;
2176 				object->backing_object = bbobj;
2177 				vm_object_drop(bbobj);
2178 			} else {
2179 				object->backing_object = NULL;
2180 			}
2181 
2182 			/*
2183 			 * Drop the reference count on backing_object.  To
2184 			 * handle ref_count races properly we can't assume
2185 			 * that the ref_count is still at least 2 so we
2186 			 * have to actually call vm_object_deallocate()
2187 			 * (after clearing the chainlock).
2188 			 */
2189 			object_bypasses++;
2190 			dodealloc = 1;
2191 		}
2192 
2193 		/*
2194 		 * Ok, we want to loop on the new object->bbobj association,
2195 		 * possibly collapsing it further.  However if dodealloc is
2196 		 * non-zero we have to deallocate the backing_object which
2197 		 * itself can potentially undergo a collapse, creating a
2198 		 * recursion depth issue with the LWKT token subsystem.
2199 		 *
2200 		 * In the case where we must deallocate the backing_object
2201 		 * it is possible now that the backing_object has a single
2202 		 * shadow count on some other object (not represented here
2203 		 * as yet), since it no longer shadows us.  Thus when we
2204 		 * call vm_object_deallocate() it may attempt to collapse
2205 		 * itself into its remaining parent.
2206 		 */
2207 		if (dodealloc) {
2208 			struct vm_object_dealloc_list *dtmp;
2209 
2210 			vm_object_chain_release(backing_object);
2211 			vm_object_unlock(backing_object);
2212 			/* backing_object remains held */
2213 
2214 			/*
2215 			 * Auto-deallocation list for caller convenience.
2216 			 */
2217 			if (dlistp == NULL)
2218 				dlistp = &dlist;
2219 
2220 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2221 			dtmp->object = backing_object;
2222 			dtmp->next = *dlistp;
2223 			*dlistp = dtmp;
2224 		} else {
2225 			vm_object_chain_release(backing_object);
2226 			vm_object_drop(backing_object);
2227 		}
2228 		/* backing_object = NULL; not needed */
2229 		/* loop */
2230 	}
2231 
2232 	/*
2233 	 * Clean up any left over backing_object
2234 	 */
2235 	if (backing_object) {
2236 		vm_object_chain_release(backing_object);
2237 		vm_object_drop(backing_object);
2238 	}
2239 
2240 	/*
2241 	 * Clean up any auto-deallocation list.  This is a convenience
2242 	 * for top-level callers so they don't have to pass &dlist.
2243 	 * Do not clean up any caller-passed dlistp, the caller will
2244 	 * do that.
2245 	 */
2246 	if (dlist)
2247 		vm_object_deallocate_list(&dlist);
2248 
2249 }
2250 
2251 /*
2252  * vm_object_collapse() may collect additional objects in need of
2253  * deallocation.  This routine deallocates these objects.  The
2254  * deallocation itself can trigger additional collapses (which the
2255  * deallocate function takes care of).  This procedure is used to
2256  * reduce procedural recursion since these vm_object shadow chains
2257  * can become quite long.
2258  */
2259 void
2260 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2261 {
2262 	struct vm_object_dealloc_list *dlist;
2263 
2264 	while ((dlist = *dlistp) != NULL) {
2265 		*dlistp = dlist->next;
2266 		vm_object_lock(dlist->object);
2267 		vm_object_deallocate_locked(dlist->object);
2268 		vm_object_drop(dlist->object);
2269 		kfree(dlist, M_TEMP);
2270 	}
2271 }
2272 
2273 /*
2274  * Removes all physical pages in the specified object range from the
2275  * object's list of pages.
2276  *
2277  * No requirements.
2278  */
2279 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2280 
2281 void
2282 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2283 		      boolean_t clean_only)
2284 {
2285 	struct rb_vm_page_scan_info info;
2286 	int all;
2287 
2288 	/*
2289 	 * Degenerate cases and assertions
2290 	 */
2291 	vm_object_hold(object);
2292 	if (object == NULL ||
2293 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2294 		vm_object_drop(object);
2295 		return;
2296 	}
2297 	KASSERT(object->type != OBJT_PHYS,
2298 		("attempt to remove pages from a physical object"));
2299 
2300 	/*
2301 	 * Indicate that paging is occuring on the object
2302 	 */
2303 	vm_object_pip_add(object, 1);
2304 
2305 	/*
2306 	 * Figure out the actual removal range and whether we are removing
2307 	 * the entire contents of the object or not.  If removing the entire
2308 	 * contents, be sure to get all pages, even those that might be
2309 	 * beyond the end of the object.
2310 	 */
2311 	info.start_pindex = start;
2312 	if (end == 0)
2313 		info.end_pindex = (vm_pindex_t)-1;
2314 	else
2315 		info.end_pindex = end - 1;
2316 	info.limit = clean_only;
2317 	all = (start == 0 && info.end_pindex >= object->size - 1);
2318 
2319 	/*
2320 	 * Loop until we are sure we have gotten them all.
2321 	 */
2322 	do {
2323 		info.error = 0;
2324 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2325 					vm_object_page_remove_callback, &info);
2326 	} while (info.error);
2327 
2328 	/*
2329 	 * Remove any related swap if throwing away pages, or for
2330 	 * non-swap objects (the swap is a clean copy in that case).
2331 	 */
2332 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2333 		if (all)
2334 			swap_pager_freespace_all(object);
2335 		else
2336 			swap_pager_freespace(object, info.start_pindex,
2337 			     info.end_pindex - info.start_pindex + 1);
2338 	}
2339 
2340 	/*
2341 	 * Cleanup
2342 	 */
2343 	vm_object_pip_wakeup(object);
2344 	vm_object_drop(object);
2345 }
2346 
2347 /*
2348  * The caller must hold the object
2349  */
2350 static int
2351 vm_object_page_remove_callback(vm_page_t p, void *data)
2352 {
2353 	struct rb_vm_page_scan_info *info = data;
2354 
2355 	if (vm_page_busy_try(p, TRUE)) {
2356 		vm_page_sleep_busy(p, TRUE, "vmopar");
2357 		info->error = 1;
2358 		return(0);
2359 	}
2360 
2361 	/*
2362 	 * Wired pages cannot be destroyed, but they can be invalidated
2363 	 * and we do so if clean_only (limit) is not set.
2364 	 *
2365 	 * WARNING!  The page may be wired due to being part of a buffer
2366 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2367 	 *	     This is fine as part of a truncation but VFSs must be
2368 	 *	     sure to fix the buffer up when re-extending the file.
2369 	 *
2370 	 * NOTE!     PG_NEED_COMMIT is ignored.
2371 	 */
2372 	if (p->wire_count != 0) {
2373 		vm_page_protect(p, VM_PROT_NONE);
2374 		if (info->limit == 0)
2375 			p->valid = 0;
2376 		vm_page_wakeup(p);
2377 		return(0);
2378 	}
2379 
2380 	/*
2381 	 * limit is our clean_only flag.  If set and the page is dirty or
2382 	 * requires a commit, do not free it.  If set and the page is being
2383 	 * held by someone, do not free it.
2384 	 */
2385 	if (info->limit && p->valid) {
2386 		vm_page_test_dirty(p);
2387 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2388 			vm_page_wakeup(p);
2389 			return(0);
2390 		}
2391 #if 0
2392 		if (p->hold_count) {
2393 			vm_page_wakeup(p);
2394 			return(0);
2395 		}
2396 #endif
2397 	}
2398 
2399 	/*
2400 	 * Destroy the page
2401 	 */
2402 	vm_page_protect(p, VM_PROT_NONE);
2403 	vm_page_free(p);
2404 	return(0);
2405 }
2406 
2407 /*
2408  * Coalesces two objects backing up adjoining regions of memory into a
2409  * single object.
2410  *
2411  * returns TRUE if objects were combined.
2412  *
2413  * NOTE: Only works at the moment if the second object is NULL -
2414  *	 if it's not, which object do we lock first?
2415  *
2416  * Parameters:
2417  *	prev_object	First object to coalesce
2418  *	prev_offset	Offset into prev_object
2419  *	next_object	Second object into coalesce
2420  *	next_offset	Offset into next_object
2421  *
2422  *	prev_size	Size of reference to prev_object
2423  *	next_size	Size of reference to next_object
2424  *
2425  * The caller does not need to hold (prev_object) but must have a stable
2426  * pointer to it (typically by holding the vm_map locked).
2427  */
2428 boolean_t
2429 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2430 		   vm_size_t prev_size, vm_size_t next_size)
2431 {
2432 	vm_pindex_t next_pindex;
2433 
2434 	if (prev_object == NULL)
2435 		return (TRUE);
2436 
2437 	vm_object_hold(prev_object);
2438 
2439 	if (prev_object->type != OBJT_DEFAULT &&
2440 	    prev_object->type != OBJT_SWAP) {
2441 		vm_object_drop(prev_object);
2442 		return (FALSE);
2443 	}
2444 
2445 	/*
2446 	 * Try to collapse the object first
2447 	 */
2448 	vm_object_chain_acquire(prev_object);
2449 	vm_object_collapse(prev_object, NULL);
2450 
2451 	/*
2452 	 * Can't coalesce if: . more than one reference . paged out . shadows
2453 	 * another object . has a copy elsewhere (any of which mean that the
2454 	 * pages not mapped to prev_entry may be in use anyway)
2455 	 */
2456 
2457 	if (prev_object->backing_object != NULL) {
2458 		vm_object_chain_release(prev_object);
2459 		vm_object_drop(prev_object);
2460 		return (FALSE);
2461 	}
2462 
2463 	prev_size >>= PAGE_SHIFT;
2464 	next_size >>= PAGE_SHIFT;
2465 	next_pindex = prev_pindex + prev_size;
2466 
2467 	if ((prev_object->ref_count > 1) &&
2468 	    (prev_object->size != next_pindex)) {
2469 		vm_object_chain_release(prev_object);
2470 		vm_object_drop(prev_object);
2471 		return (FALSE);
2472 	}
2473 
2474 	/*
2475 	 * Remove any pages that may still be in the object from a previous
2476 	 * deallocation.
2477 	 */
2478 	if (next_pindex < prev_object->size) {
2479 		vm_object_page_remove(prev_object,
2480 				      next_pindex,
2481 				      next_pindex + next_size, FALSE);
2482 		if (prev_object->type == OBJT_SWAP)
2483 			swap_pager_freespace(prev_object,
2484 					     next_pindex, next_size);
2485 	}
2486 
2487 	/*
2488 	 * Extend the object if necessary.
2489 	 */
2490 	if (next_pindex + next_size > prev_object->size)
2491 		prev_object->size = next_pindex + next_size;
2492 
2493 	vm_object_chain_release(prev_object);
2494 	vm_object_drop(prev_object);
2495 	return (TRUE);
2496 }
2497 
2498 /*
2499  * Make the object writable and flag is being possibly dirty.
2500  *
2501  * The caller must hold the object. XXX called from vm_page_dirty(),
2502  * There is currently no requirement to hold the object.
2503  */
2504 void
2505 vm_object_set_writeable_dirty(vm_object_t object)
2506 {
2507 	struct vnode *vp;
2508 
2509 	/*vm_object_assert_held(object);*/
2510 	/*
2511 	 * Avoid contention in vm fault path by checking the state before
2512 	 * issuing an atomic op on it.
2513 	 */
2514 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2515 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2516 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2517 	}
2518 	if (object->type == OBJT_VNODE &&
2519 	    (vp = (struct vnode *)object->handle) != NULL) {
2520 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2521 			vsetflags(vp, VOBJDIRTY);
2522 		}
2523 	}
2524 }
2525 
2526 #include "opt_ddb.h"
2527 #ifdef DDB
2528 #include <sys/kernel.h>
2529 
2530 #include <sys/cons.h>
2531 
2532 #include <ddb/ddb.h>
2533 
2534 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2535 				       vm_map_entry_t entry);
2536 static int	vm_object_in_map (vm_object_t object);
2537 
2538 /*
2539  * The caller must hold the object.
2540  */
2541 static int
2542 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2543 {
2544 	vm_map_t tmpm;
2545 	vm_map_entry_t tmpe;
2546 	vm_object_t obj, nobj;
2547 	int entcount;
2548 
2549 	if (map == 0)
2550 		return 0;
2551 	if (entry == 0) {
2552 		tmpe = map->header.next;
2553 		entcount = map->nentries;
2554 		while (entcount-- && (tmpe != &map->header)) {
2555 			if( _vm_object_in_map(map, object, tmpe)) {
2556 				return 1;
2557 			}
2558 			tmpe = tmpe->next;
2559 		}
2560 		return (0);
2561 	}
2562 	switch(entry->maptype) {
2563 	case VM_MAPTYPE_SUBMAP:
2564 		tmpm = entry->object.sub_map;
2565 		tmpe = tmpm->header.next;
2566 		entcount = tmpm->nentries;
2567 		while (entcount-- && tmpe != &tmpm->header) {
2568 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2569 				return 1;
2570 			}
2571 			tmpe = tmpe->next;
2572 		}
2573 		break;
2574 	case VM_MAPTYPE_NORMAL:
2575 	case VM_MAPTYPE_VPAGETABLE:
2576 		obj = entry->object.vm_object;
2577 		while (obj) {
2578 			if (obj == object) {
2579 				if (obj != entry->object.vm_object)
2580 					vm_object_drop(obj);
2581 				return 1;
2582 			}
2583 			while ((nobj = obj->backing_object) != NULL) {
2584 				vm_object_hold(nobj);
2585 				if (nobj == obj->backing_object)
2586 					break;
2587 				vm_object_drop(nobj);
2588 			}
2589 			if (obj != entry->object.vm_object) {
2590 				if (nobj)
2591 					vm_object_lock_swap();
2592 				vm_object_drop(obj);
2593 			}
2594 			obj = nobj;
2595 		}
2596 		break;
2597 	default:
2598 		break;
2599 	}
2600 	return 0;
2601 }
2602 
2603 static int vm_object_in_map_callback(struct proc *p, void *data);
2604 
2605 struct vm_object_in_map_info {
2606 	vm_object_t object;
2607 	int rv;
2608 };
2609 
2610 /*
2611  * Debugging only
2612  */
2613 static int
2614 vm_object_in_map(vm_object_t object)
2615 {
2616 	struct vm_object_in_map_info info;
2617 
2618 	info.rv = 0;
2619 	info.object = object;
2620 
2621 	allproc_scan(vm_object_in_map_callback, &info);
2622 	if (info.rv)
2623 		return 1;
2624 	if( _vm_object_in_map(&kernel_map, object, 0))
2625 		return 1;
2626 	if( _vm_object_in_map(&pager_map, object, 0))
2627 		return 1;
2628 	if( _vm_object_in_map(&buffer_map, object, 0))
2629 		return 1;
2630 	return 0;
2631 }
2632 
2633 /*
2634  * Debugging only
2635  */
2636 static int
2637 vm_object_in_map_callback(struct proc *p, void *data)
2638 {
2639 	struct vm_object_in_map_info *info = data;
2640 
2641 	if (p->p_vmspace) {
2642 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2643 			info->rv = 1;
2644 			return -1;
2645 		}
2646 	}
2647 	return (0);
2648 }
2649 
2650 DB_SHOW_COMMAND(vmochk, vm_object_check)
2651 {
2652 	vm_object_t object;
2653 
2654 	/*
2655 	 * make sure that internal objs are in a map somewhere
2656 	 * and none have zero ref counts.
2657 	 */
2658 	for (object = TAILQ_FIRST(&vm_object_list);
2659 			object != NULL;
2660 			object = TAILQ_NEXT(object, object_list)) {
2661 		if (object->type == OBJT_MARKER)
2662 			continue;
2663 		if (object->handle == NULL &&
2664 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2665 			if (object->ref_count == 0) {
2666 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2667 					(long)object->size);
2668 			}
2669 			if (!vm_object_in_map(object)) {
2670 				db_printf(
2671 			"vmochk: internal obj is not in a map: "
2672 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2673 				    object->ref_count, (u_long)object->size,
2674 				    (u_long)object->size,
2675 				    (void *)object->backing_object);
2676 			}
2677 		}
2678 	}
2679 }
2680 
2681 /*
2682  * Debugging only
2683  */
2684 DB_SHOW_COMMAND(object, vm_object_print_static)
2685 {
2686 	/* XXX convert args. */
2687 	vm_object_t object = (vm_object_t)addr;
2688 	boolean_t full = have_addr;
2689 
2690 	vm_page_t p;
2691 
2692 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2693 #define	count	was_count
2694 
2695 	int count;
2696 
2697 	if (object == NULL)
2698 		return;
2699 
2700 	db_iprintf(
2701 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2702 	    object, (int)object->type, (u_long)object->size,
2703 	    object->resident_page_count, object->ref_count, object->flags);
2704 	/*
2705 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2706 	 */
2707 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2708 	    object->shadow_count,
2709 	    object->backing_object ? object->backing_object->ref_count : 0,
2710 	    object->backing_object, (long)object->backing_object_offset);
2711 
2712 	if (!full)
2713 		return;
2714 
2715 	db_indent += 2;
2716 	count = 0;
2717 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2718 		if (count == 0)
2719 			db_iprintf("memory:=");
2720 		else if (count == 6) {
2721 			db_printf("\n");
2722 			db_iprintf(" ...");
2723 			count = 0;
2724 		} else
2725 			db_printf(",");
2726 		count++;
2727 
2728 		db_printf("(off=0x%lx,page=0x%lx)",
2729 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2730 	}
2731 	if (count != 0)
2732 		db_printf("\n");
2733 	db_indent -= 2;
2734 }
2735 
2736 /* XXX. */
2737 #undef count
2738 
2739 /*
2740  * XXX need this non-static entry for calling from vm_map_print.
2741  *
2742  * Debugging only
2743  */
2744 void
2745 vm_object_print(/* db_expr_t */ long addr,
2746 		boolean_t have_addr,
2747 		/* db_expr_t */ long count,
2748 		char *modif)
2749 {
2750 	vm_object_print_static(addr, have_addr, count, modif);
2751 }
2752 
2753 /*
2754  * Debugging only
2755  */
2756 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2757 {
2758 	vm_object_t object;
2759 	int nl = 0;
2760 	int c;
2761 	for (object = TAILQ_FIRST(&vm_object_list);
2762 			object != NULL;
2763 			object = TAILQ_NEXT(object, object_list)) {
2764 		vm_pindex_t idx, fidx;
2765 		vm_pindex_t osize;
2766 		vm_paddr_t pa = -1, padiff;
2767 		int rcount;
2768 		vm_page_t m;
2769 
2770 		if (object->type == OBJT_MARKER)
2771 			continue;
2772 		db_printf("new object: %p\n", (void *)object);
2773 		if ( nl > 18) {
2774 			c = cngetc();
2775 			if (c != ' ')
2776 				return;
2777 			nl = 0;
2778 		}
2779 		nl++;
2780 		rcount = 0;
2781 		fidx = 0;
2782 		osize = object->size;
2783 		if (osize > 128)
2784 			osize = 128;
2785 		for (idx = 0; idx < osize; idx++) {
2786 			m = vm_page_lookup(object, idx);
2787 			if (m == NULL) {
2788 				if (rcount) {
2789 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2790 						(long)fidx, rcount, (long)pa);
2791 					if ( nl > 18) {
2792 						c = cngetc();
2793 						if (c != ' ')
2794 							return;
2795 						nl = 0;
2796 					}
2797 					nl++;
2798 					rcount = 0;
2799 				}
2800 				continue;
2801 			}
2802 
2803 
2804 			if (rcount &&
2805 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2806 				++rcount;
2807 				continue;
2808 			}
2809 			if (rcount) {
2810 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2811 				padiff >>= PAGE_SHIFT;
2812 				padiff &= PQ_L2_MASK;
2813 				if (padiff == 0) {
2814 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2815 					++rcount;
2816 					continue;
2817 				}
2818 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2819 					(long)fidx, rcount, (long)pa);
2820 				db_printf("pd(%ld)\n", (long)padiff);
2821 				if ( nl > 18) {
2822 					c = cngetc();
2823 					if (c != ' ')
2824 						return;
2825 					nl = 0;
2826 				}
2827 				nl++;
2828 			}
2829 			fidx = idx;
2830 			pa = VM_PAGE_TO_PHYS(m);
2831 			rcount = 1;
2832 		}
2833 		if (rcount) {
2834 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2835 				(long)fidx, rcount, (long)pa);
2836 			if ( nl > 18) {
2837 				c = cngetc();
2838 				if (c != ' ')
2839 					return;
2840 				nl = 0;
2841 			}
2842 			nl++;
2843 		}
2844 	}
2845 }
2846 #endif /* DDB */
2847