xref: /dragonfly/sys/vm/vm_object.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/malloc.h>
77 #include <sys/sysctl.h>
78 #include <sys/refcount.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/swap_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_zone.h>
92 
93 #include <vm/vm_page2.h>
94 
95 #include <machine/specialreg.h>
96 
97 #define EASY_SCAN_FACTOR	8
98 
99 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
100 					     int pagerflags);
101 static void	vm_object_lock_init(vm_object_t);
102 
103 /*
104  *	Virtual memory objects maintain the actual data
105  *	associated with allocated virtual memory.  A given
106  *	page of memory exists within exactly one object.
107  *
108  *	An object is only deallocated when all "references"
109  *	are given up.  Only one "reference" to a given
110  *	region of an object should be writeable.
111  *
112  *	Associated with each object is a list of all resident
113  *	memory pages belonging to that object; this list is
114  *	maintained by the "vm_page" module, and locked by the object's
115  *	lock.
116  *
117  *	Each object also records a "pager" routine which is
118  *	used to retrieve (and store) pages to the proper backing
119  *	storage.  In addition, objects may be backed by other
120  *	objects from which they were virtual-copied.
121  *
122  *	The only items within the object structure which are
123  *	modified after time of creation are:
124  *		reference count		locked by object's lock
125  *		pager routine		locked by object's lock
126  *
127  */
128 
129 struct vm_object kernel_object;
130 
131 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
132 
133 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
134 
135 #define VMOBJ_HASH_PRIME1	66555444443333333ULL
136 #define VMOBJ_HASH_PRIME2	989042931893ULL
137 
138 int vm_object_debug;
139 SYSCTL_INT(_vm, OID_AUTO, object_debug, CTLFLAG_RW, &vm_object_debug, 0, "");
140 
141 static __inline
142 struct vm_object_hash *
143 vmobj_hash(vm_object_t obj)
144 {
145 	uintptr_t hash1;
146 	uintptr_t hash2;
147 
148 	hash1 = (uintptr_t)obj + ((uintptr_t)obj >> 18);
149 	hash1 %= VMOBJ_HASH_PRIME1;
150 	hash2 = ((uintptr_t)obj >> 8) + ((uintptr_t)obj >> 24);
151 	hash2 %= VMOBJ_HASH_PRIME2;
152 	return (&vm_object_hash[(hash1 ^ hash2) & VMOBJ_HMASK]);
153 }
154 
155 #if defined(DEBUG_LOCKS)
156 
157 #define vm_object_vndeallocate(obj, vpp)	\
158                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
159 
160 /*
161  * Debug helper to track hold/drop/ref/deallocate calls.
162  */
163 static void
164 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
165 {
166 	int i;
167 
168 	i = atomic_fetchadd_int(&obj->debug_index, 1);
169 	i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
170 	ksnprintf(obj->debug_hold_thrs[i],
171 		  sizeof(obj->debug_hold_thrs[i]),
172 		  "%c%d:(%d):%s",
173 		  (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
174 		  (curthread->td_proc ? curthread->td_proc->p_pid : -1),
175 		  obj->ref_count,
176 		  curthread->td_comm);
177 	obj->debug_hold_file[i] = file;
178 	obj->debug_hold_line[i] = line;
179 #if 0
180 	/* Uncomment for debugging obj refs/derefs in reproducable cases */
181 	if (strcmp(curthread->td_comm, "sshd") == 0) {
182 		kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
183 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
184 			obj, obj->ref_count, addrem, file, line);
185 	}
186 #endif
187 }
188 
189 #endif
190 
191 /*
192  * Misc low level routines
193  */
194 static void
195 vm_object_lock_init(vm_object_t obj)
196 {
197 #if defined(DEBUG_LOCKS)
198 	int i;
199 
200 	obj->debug_index = 0;
201 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
202 		obj->debug_hold_thrs[i][0] = 0;
203 		obj->debug_hold_file[i] = NULL;
204 		obj->debug_hold_line[i] = 0;
205 	}
206 #endif
207 }
208 
209 void
210 vm_object_lock_swap(void)
211 {
212 	lwkt_token_swap();
213 }
214 
215 void
216 vm_object_lock(vm_object_t obj)
217 {
218 	lwkt_gettoken(&obj->token);
219 }
220 
221 /*
222  * Returns TRUE on sucesss
223  */
224 static int
225 vm_object_lock_try(vm_object_t obj)
226 {
227 	return(lwkt_trytoken(&obj->token));
228 }
229 
230 void
231 vm_object_lock_shared(vm_object_t obj)
232 {
233 	lwkt_gettoken_shared(&obj->token);
234 }
235 
236 void
237 vm_object_unlock(vm_object_t obj)
238 {
239 	lwkt_reltoken(&obj->token);
240 }
241 
242 void
243 vm_object_upgrade(vm_object_t obj)
244 {
245 	lwkt_reltoken(&obj->token);
246 	lwkt_gettoken(&obj->token);
247 }
248 
249 void
250 vm_object_downgrade(vm_object_t obj)
251 {
252 	lwkt_reltoken(&obj->token);
253 	lwkt_gettoken_shared(&obj->token);
254 }
255 
256 static __inline void
257 vm_object_assert_held(vm_object_t obj)
258 {
259 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
260 }
261 
262 int
263 vm_quickcolor(void)
264 {
265 	globaldata_t gd = mycpu;
266 	int pg_color;
267 
268 	pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
269 	pg_color += gd->gd_quick_color;
270 	gd->gd_quick_color += PQ_PRIME2;
271 
272 	return pg_color;
273 }
274 
275 void
276 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
277 {
278 	KKASSERT(obj != NULL);
279 
280 	/*
281 	 * Object must be held (object allocation is stable due to callers
282 	 * context, typically already holding the token on a parent object)
283 	 * prior to potentially blocking on the lock, otherwise the object
284 	 * can get ripped away from us.
285 	 */
286 	refcount_acquire(&obj->hold_count);
287 	vm_object_lock(obj);
288 
289 #if defined(DEBUG_LOCKS)
290 	debugvm_object_add(obj, file, line, 1);
291 #endif
292 }
293 
294 int
295 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
296 {
297 	KKASSERT(obj != NULL);
298 
299 	/*
300 	 * Object must be held (object allocation is stable due to callers
301 	 * context, typically already holding the token on a parent object)
302 	 * prior to potentially blocking on the lock, otherwise the object
303 	 * can get ripped away from us.
304 	 */
305 	refcount_acquire(&obj->hold_count);
306 	if (vm_object_lock_try(obj) == 0) {
307 		if (refcount_release(&obj->hold_count)) {
308 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
309 				kfree(obj, M_VM_OBJECT);
310 		}
311 		return(0);
312 	}
313 
314 #if defined(DEBUG_LOCKS)
315 	debugvm_object_add(obj, file, line, 1);
316 #endif
317 	return(1);
318 }
319 
320 void
321 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
322 {
323 	KKASSERT(obj != NULL);
324 
325 	/*
326 	 * Object must be held (object allocation is stable due to callers
327 	 * context, typically already holding the token on a parent object)
328 	 * prior to potentially blocking on the lock, otherwise the object
329 	 * can get ripped away from us.
330 	 */
331 	refcount_acquire(&obj->hold_count);
332 	vm_object_lock_shared(obj);
333 
334 #if defined(DEBUG_LOCKS)
335 	debugvm_object_add(obj, file, line, 1);
336 #endif
337 }
338 
339 /*
340  * Drop the token and hold_count on the object.
341  *
342  * WARNING! Token might be shared.
343  */
344 void
345 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
346 {
347 	if (obj == NULL)
348 		return;
349 
350 	/*
351 	 * No new holders should be possible once we drop hold_count 1->0 as
352 	 * there is no longer any way to reference the object.
353 	 */
354 	KKASSERT(obj->hold_count > 0);
355 	if (refcount_release(&obj->hold_count)) {
356 #if defined(DEBUG_LOCKS)
357 		debugvm_object_add(obj, file, line, -1);
358 #endif
359 
360 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
361 			vm_object_unlock(obj);
362 			kfree(obj, M_VM_OBJECT);
363 		} else {
364 			vm_object_unlock(obj);
365 		}
366 	} else {
367 #if defined(DEBUG_LOCKS)
368 		debugvm_object_add(obj, file, line, -1);
369 #endif
370 		vm_object_unlock(obj);
371 	}
372 }
373 
374 /*
375  * Initialize a freshly allocated object, returning a held object.
376  *
377  * Used only by vm_object_allocate(), zinitna() and vm_object_init().
378  *
379  * No requirements.
380  */
381 void
382 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object,
383 		    const char *ident)
384 {
385 	struct vm_object_hash *hash;
386 
387 	RB_INIT(&object->rb_memq);
388 	lwkt_token_init(&object->token, ident);
389 
390 	TAILQ_INIT(&object->backing_list);
391 	lockinit(&object->backing_lk, "baclk", 0, 0);
392 
393 	object->type = type;
394 	object->size = size;
395 	object->ref_count = 1;
396 	object->memattr = VM_MEMATTR_DEFAULT;
397 	object->hold_count = 0;
398 	object->flags = 0;
399 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
400 		vm_object_set_flag(object, OBJ_ONEMAPPING);
401 	object->paging_in_progress = 0;
402 	object->resident_page_count = 0;
403 	/* cpu localization twist */
404 	object->pg_color = vm_quickcolor();
405 	object->handle = NULL;
406 
407 	atomic_add_int(&object->generation, 1);
408 	object->swblock_count = 0;
409 	RB_INIT(&object->swblock_root);
410 	vm_object_lock_init(object);
411 	pmap_object_init(object);
412 
413 	vm_object_hold(object);
414 
415 	hash = vmobj_hash(object);
416 	lwkt_gettoken(&hash->token);
417 	TAILQ_INSERT_TAIL(&hash->list, object, object_entry);
418 	lwkt_reltoken(&hash->token);
419 }
420 
421 /*
422  * Initialize a VM object.
423  */
424 void
425 vm_object_init(vm_object_t object, vm_pindex_t size)
426 {
427 	_vm_object_allocate(OBJT_DEFAULT, size, object, "vmobj");
428 	vm_object_drop(object);
429 }
430 
431 /*
432  * Initialize the VM objects module.
433  *
434  * Called from the low level boot code only.  Note that this occurs before
435  * kmalloc is initialized so we cannot allocate any VM objects.
436  */
437 void
438 vm_object_init1(void)
439 {
440 	int i;
441 
442 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
443 		TAILQ_INIT(&vm_object_hash[i].list);
444 		lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
445 	}
446 
447 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
448 			    &kernel_object, "kobj");
449 	vm_object_drop(&kernel_object);
450 }
451 
452 void
453 vm_object_init2(void)
454 {
455 	kmalloc_set_unlimited(M_VM_OBJECT);
456 }
457 
458 /*
459  * Allocate and return a new object of the specified type and size.
460  *
461  * No requirements.
462  */
463 vm_object_t
464 vm_object_allocate(objtype_t type, vm_pindex_t size)
465 {
466 	vm_object_t obj;
467 
468 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
469 	_vm_object_allocate(type, size, obj, "vmobj");
470 	vm_object_drop(obj);
471 
472 	return (obj);
473 }
474 
475 /*
476  * This version returns a held object, allowing further atomic initialization
477  * of the object.
478  */
479 vm_object_t
480 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
481 {
482 	vm_object_t obj;
483 
484 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
485 	_vm_object_allocate(type, size, obj, "vmobj");
486 
487 	return (obj);
488 }
489 
490 /*
491  * Add an additional reference to a vm_object.  The object must already be
492  * held.  The original non-lock version is no longer supported.  The object
493  * must NOT be chain locked by anyone at the time the reference is added.
494  *
495  * The object must be held, but may be held shared if desired (hence why
496  * we use an atomic op).
497  */
498 void
499 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
500 {
501 	KKASSERT(object != NULL);
502 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
503 	atomic_add_int(&object->ref_count, 1);
504 	if (object->type == OBJT_VNODE) {
505 		vref(object->handle);
506 		/* XXX what if the vnode is being destroyed? */
507 	}
508 #if defined(DEBUG_LOCKS)
509 	debugvm_object_add(object, file, line, 1);
510 #endif
511 }
512 
513 /*
514  * This version is only allowed in situations where the caller
515  * already knows that the object is deterministically referenced
516  * (usually because its taken from a ref'd vnode, or during a map_entry
517  * replication).
518  */
519 void
520 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
521 {
522 	KKASSERT(object->type == OBJT_VNODE || object->ref_count > 0);
523 	atomic_add_int(&object->ref_count, 1);
524 	if (object->type == OBJT_VNODE)
525 		vref(object->handle);
526 #if defined(DEBUG_LOCKS)
527 	debugvm_object_add(object, file, line, 1);
528 #endif
529 }
530 
531 /*
532  * Dereference an object and its underlying vnode.  The object may be
533  * held shared.  On return the object will remain held.
534  *
535  * This function may return a vnode in *vpp which the caller must release
536  * after the caller drops its own lock.  If vpp is NULL, we assume that
537  * the caller was holding an exclusive lock on the object and we vrele()
538  * the vp ourselves.
539  */
540 static void
541 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
542 				   VMOBJDBARGS)
543 {
544 	struct vnode *vp = (struct vnode *) object->handle;
545 	int count;
546 
547 	KASSERT(object->type == OBJT_VNODE,
548 	    ("vm_object_vndeallocate: not a vnode object"));
549 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
550 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
551 #ifdef INVARIANTS
552 	if (object->ref_count == 0) {
553 		vprint("vm_object_vndeallocate", vp);
554 		panic("vm_object_vndeallocate: bad object reference count");
555 	}
556 #endif
557 	count = object->ref_count;
558 	cpu_ccfence();
559 	for (;;) {
560 		if (count == 1) {
561 			vm_object_upgrade(object);
562 			if (atomic_fcmpset_int(&object->ref_count, &count, 0)) {
563 				vclrflags(vp, VTEXT);
564 				break;
565 			}
566 		} else {
567 			if (atomic_fcmpset_int(&object->ref_count,
568 					       &count, count - 1)) {
569 				break;
570 			}
571 		}
572 		cpu_pause();
573 		/* retry */
574 	}
575 #if defined(DEBUG_LOCKS)
576 	debugvm_object_add(object, file, line, -1);
577 #endif
578 
579 	/*
580 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
581 	 * if the object was locked exclusively.  But there are two races
582 	 * here.
583 	 *
584 	 * We had to upgrade the object above to safely clear VTEXT
585 	 * but the alternative path where the shared lock is retained
586 	 * can STILL race to 0 in other paths and cause our own vrele()
587 	 * to terminate the vnode.  We can't allow that if the VM object
588 	 * is still locked shared.
589 	 */
590 	if (vpp)
591 		*vpp = vp;
592 	else
593 		vrele(vp);
594 }
595 
596 /*
597  * Release a reference to the specified object, gained either through a
598  * vm_object_allocate or a vm_object_reference call.  When all references
599  * are gone, storage associated with this object may be relinquished.
600  *
601  * The caller does not have to hold the object locked but must have control
602  * over the reference in question in order to guarantee that the object
603  * does not get ripped out from under us.
604  *
605  * XXX Currently all deallocations require an exclusive lock.
606  */
607 void
608 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
609 {
610 	struct vnode *vp;
611 	int count;
612 
613 	if (object == NULL)
614 		return;
615 
616 	count = object->ref_count;
617 	cpu_ccfence();
618 	for (;;) {
619 		/*
620 		 * If decrementing the count enters into special handling
621 		 * territory (0, 1, or 2) we have to do it the hard way.
622 		 * Fortunate though, objects with only a few refs like this
623 		 * are not likely to be heavily contended anyway.
624 		 *
625 		 * For vnode objects we only care about 1->0 transitions.
626 		 */
627 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
628 #if defined(DEBUG_LOCKS)
629 			debugvm_object_add(object, file, line, 0);
630 #endif
631 			vm_object_hold(object);
632 			vm_object_deallocate_locked(object);
633 			vm_object_drop(object);
634 			break;
635 		}
636 
637 		/*
638 		 * Try to decrement ref_count without acquiring a hold on
639 		 * the object.  This is particularly important for the exec*()
640 		 * and exit*() code paths because the program binary may
641 		 * have a great deal of sharing and an exclusive lock will
642 		 * crowbar performance in those circumstances.
643 		 */
644 		if (object->type == OBJT_VNODE) {
645 			vp = (struct vnode *)object->handle;
646 			if (atomic_fcmpset_int(&object->ref_count,
647 					       &count, count - 1)) {
648 #if defined(DEBUG_LOCKS)
649 				debugvm_object_add(object, file, line, -1);
650 #endif
651 
652 				vrele(vp);
653 				break;
654 			}
655 			/* retry */
656 		} else {
657 			if (atomic_fcmpset_int(&object->ref_count,
658 					       &count, count - 1)) {
659 #if defined(DEBUG_LOCKS)
660 				debugvm_object_add(object, file, line, -1);
661 #endif
662 				break;
663 			}
664 			/* retry */
665 		}
666 		cpu_pause();
667 		/* retry */
668 	}
669 }
670 
671 void
672 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
673 {
674 	/*
675 	 * Degenerate case
676 	 */
677 	if (object == NULL)
678 		return;
679 
680 	/*
681 	 * vnode case, caller either locked the object exclusively
682 	 * or this is a recursion with must_drop != 0 and the vnode
683 	 * object will be locked shared.
684 	 *
685 	 * If locked shared we have to drop the object before we can
686 	 * call vrele() or risk a shared/exclusive livelock.
687 	 */
688 	if (object->type == OBJT_VNODE) {
689 		ASSERT_LWKT_TOKEN_HELD(&object->token);
690 		vm_object_vndeallocate(object, NULL);
691 		return;
692 	}
693 	ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
694 
695 	/*
696 	 * Normal case (object is locked exclusively)
697 	 */
698 	if (object->ref_count == 0) {
699 		panic("vm_object_deallocate: object deallocated "
700 		      "too many times: %d", object->type);
701 	}
702 	if (object->ref_count > 2) {
703 		atomic_add_int(&object->ref_count, -1);
704 #if defined(DEBUG_LOCKS)
705 		debugvm_object_add(object, file, line, -1);
706 #endif
707 		return;
708 	}
709 
710 	/*
711 	 * Drop the ref and handle termination on the 1->0 transition.
712 	 * We may have blocked above so we have to recheck.
713 	 */
714 	KKASSERT(object->ref_count != 0);
715 	if (object->ref_count >= 2) {
716 		atomic_add_int(&object->ref_count, -1);
717 #if defined(DEBUG_LOCKS)
718 		debugvm_object_add(object, file, line, -1);
719 #endif
720 		return;
721 	}
722 
723 	atomic_add_int(&object->ref_count, -1);
724 	if ((object->flags & OBJ_DEAD) == 0)
725 		vm_object_terminate(object);
726 }
727 
728 /*
729  * Destroy the specified object, freeing up related resources.
730  *
731  * The object must have zero references.
732  *
733  * The object must held.  The caller is responsible for dropping the object
734  * after terminate returns.  Terminate does NOT drop the object.
735  */
736 static int vm_object_terminate_callback(vm_page_t p, void *data);
737 
738 void
739 vm_object_terminate(vm_object_t object)
740 {
741 	struct rb_vm_page_scan_info info;
742 	struct vm_object_hash *hash;
743 
744 	/*
745 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
746 	 * able to safely block.
747 	 */
748 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
749 	KKASSERT((object->flags & OBJ_DEAD) == 0);
750 	vm_object_set_flag(object, OBJ_DEAD);
751 
752 	/*
753 	 * Wait for the pageout daemon to be done with the object
754 	 */
755 	vm_object_pip_wait(object, "objtrm1");
756 
757 	KASSERT(!object->paging_in_progress,
758 		("vm_object_terminate: pageout in progress"));
759 
760 	/*
761 	 * Clean and free the pages, as appropriate. All references to the
762 	 * object are gone, so we don't need to lock it.
763 	 */
764 	if (object->type == OBJT_VNODE) {
765 		struct vnode *vp;
766 
767 		/*
768 		 * Clean pages and flush buffers.
769 		 *
770 		 * NOTE!  TMPFS buffer flushes do not typically flush the
771 		 *	  actual page to swap as this would be highly
772 		 *	  inefficient, and normal filesystems usually wrap
773 		 *	  page flushes with buffer cache buffers.
774 		 *
775 		 *	  To deal with this we have to call vinvalbuf() both
776 		 *	  before and after the vm_object_page_clean().
777 		 */
778 		vp = (struct vnode *) object->handle;
779 		vinvalbuf(vp, V_SAVE, 0, 0);
780 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
781 		vinvalbuf(vp, V_SAVE, 0, 0);
782 	}
783 
784 	/*
785 	 * Wait for any I/O to complete, after which there had better not
786 	 * be any references left on the object.
787 	 */
788 	vm_object_pip_wait(object, "objtrm2");
789 
790 	if (object->ref_count != 0) {
791 		panic("vm_object_terminate: object with references, "
792 		      "ref_count=%d", object->ref_count);
793 	}
794 
795 	/*
796 	 * Cleanup any shared pmaps associated with this object.
797 	 */
798 	pmap_object_free(object);
799 
800 	/*
801 	 * Now free any remaining pages. For internal objects, this also
802 	 * removes them from paging queues. Don't free wired pages, just
803 	 * remove them from the object.
804 	 */
805 	info.count = 0;
806 	info.object = object;
807 	do {
808 		info.error = 0;
809 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
810 					vm_object_terminate_callback, &info);
811 	} while (info.error);
812 
813 	/*
814 	 * Let the pager know object is dead.
815 	 */
816 	vm_pager_deallocate(object);
817 
818 	/*
819 	 * Wait for the object hold count to hit 1, clean out pages as
820 	 * we go.  vmobj_token interlocks any race conditions that might
821 	 * pick the object up from the vm_object_list after we have cleared
822 	 * rb_memq.
823 	 */
824 	for (;;) {
825 		if (RB_ROOT(&object->rb_memq) == NULL)
826 			break;
827 		kprintf("vm_object_terminate: Warning, object %p "
828 			"still has %ld pages\n",
829 			object, object->resident_page_count);
830 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
831 					vm_object_terminate_callback, &info);
832 	}
833 
834 	/*
835 	 * There had better not be any pages left
836 	 */
837 	KKASSERT(object->resident_page_count == 0);
838 
839 	/*
840 	 * Remove the object from the global object list.
841 	 */
842 	hash = vmobj_hash(object);
843 	lwkt_gettoken(&hash->token);
844 	TAILQ_REMOVE(&hash->list, object, object_entry);
845 	lwkt_reltoken(&hash->token);
846 
847 	if (object->ref_count != 0) {
848 		panic("vm_object_terminate2: object with references, "
849 		      "ref_count=%d", object->ref_count);
850 	}
851 
852 	/*
853 	 * NOTE: The object hold_count is at least 1, so we cannot kfree()
854 	 *	 the object here.  See vm_object_drop().
855 	 */
856 }
857 
858 /*
859  * The caller must hold the object.
860  *
861  * NOTE: It is possible for vm_page's to remain flagged PG_MAPPED
862  *	 or PG_MAPPED|PG_WRITEABLE, even after pmap_mapped_sync()
863  *	 is called, due to normal pmap operations.  This is because only
864  *	 global pmap operations on the vm_page can clear the bits and not
865  *	 just local operations on individual pmaps.
866  *
867  *	 Most interactions that necessitate the clearing of these bits
868  *	 proactively call vm_page_protect(), and we must do so here as well.
869  */
870 static int
871 vm_object_terminate_callback(vm_page_t p, void *data)
872 {
873 	struct rb_vm_page_scan_info *info = data;
874 	vm_object_t object;
875 
876 	object = p->object;
877 	KKASSERT(object == info->object);
878 	if (vm_page_busy_try(p, TRUE)) {
879 		vm_page_sleep_busy(p, TRUE, "vmotrm");
880 		info->error = 1;
881 		return 0;
882 	}
883 	if (object != p->object) {
884 		/* XXX remove once we determine it can't happen */
885 		kprintf("vm_object_terminate: Warning: Encountered "
886 			"busied page %p on queue %d\n", p, p->queue);
887 		vm_page_wakeup(p);
888 		info->error = 1;
889 	} else if (p->wire_count == 0) {
890 		/*
891 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
892 		 */
893 		if (pmap_mapped_sync(p) & (PG_MAPPED | PG_WRITEABLE))
894 			vm_page_protect(p, VM_PROT_NONE);
895 		vm_page_free(p);
896 		mycpu->gd_cnt.v_pfree++;
897 	} else {
898 		if (p->queue != PQ_NONE) {
899 			kprintf("vm_object_terminate: Warning: Encountered "
900 				"wired page %p on queue %d\n", p, p->queue);
901 			if (vm_object_debug > 0) {
902 				--vm_object_debug;
903 				print_backtrace(10);
904 			}
905 		}
906 		if (pmap_mapped_sync(p) & (PG_MAPPED | PG_WRITEABLE))
907 			vm_page_protect(p, VM_PROT_NONE);
908 		vm_page_remove(p);
909 		vm_page_wakeup(p);
910 	}
911 
912 	/*
913 	 * Must be at end to avoid SMP races, caller holds object token
914 	 */
915 	if ((++info->count & 63) == 0)
916 		lwkt_user_yield();
917 	return(0);
918 }
919 
920 /*
921  * Clean all dirty pages in the specified range of object.  Leaves page
922  * on whatever queue it is currently on.   If NOSYNC is set then do not
923  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
924  * leaving the object dirty.
925  *
926  * When stuffing pages asynchronously, allow clustering.  XXX we need a
927  * synchronous clustering mode implementation.
928  *
929  * Odd semantics: if start == end, we clean everything.
930  *
931  * The object must be locked? XXX
932  */
933 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
934 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
935 
936 void
937 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
938 		     int flags)
939 {
940 	struct rb_vm_page_scan_info info;
941 	struct vnode *vp;
942 	int wholescan;
943 	int pagerflags;
944 	int generation;
945 
946 	vm_object_hold(object);
947 	if (object->type != OBJT_VNODE ||
948 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
949 		vm_object_drop(object);
950 		return;
951 	}
952 
953 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
954 			OBJPC_SYNC : OBJPC_CLUSTER_OK;
955 	pagerflags |= (flags & OBJPC_INVAL) ? OBJPC_INVAL : 0;
956 
957 	vp = object->handle;
958 
959 	/*
960 	 * Interlock other major object operations.  This allows us to
961 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
962 	 */
963 	vm_object_set_flag(object, OBJ_CLEANING);
964 
965 	/*
966 	 * Handle 'entire object' case
967 	 */
968 	info.start_pindex = start;
969 	if (end == 0) {
970 		info.end_pindex = object->size - 1;
971 	} else {
972 		info.end_pindex = end - 1;
973 	}
974 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
975 	info.limit = flags;
976 	info.pagerflags = pagerflags;
977 	info.object = object;
978 
979 	/*
980 	 * If cleaning the entire object do a pass to mark the pages read-only.
981 	 * If everything worked out ok, clear OBJ_WRITEABLE and
982 	 * OBJ_MIGHTBEDIRTY.
983 	 */
984 	if (wholescan) {
985 		info.error = 0;
986 		info.count = 0;
987 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
988 					vm_object_page_clean_pass1, &info);
989 		if (info.error == 0) {
990 			vm_object_clear_flag(object,
991 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
992 			if (object->type == OBJT_VNODE &&
993 			    (vp = (struct vnode *)object->handle) != NULL) {
994 				/*
995 				 * Use new-style interface to clear VISDIRTY
996 				 * because the vnode is not necessarily removed
997 				 * from the syncer list(s) as often as it was
998 				 * under the old interface, which can leave
999 				 * the vnode on the syncer list after reclaim.
1000 				 */
1001 				vclrobjdirty(vp);
1002 			}
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Do a pass to clean all the dirty pages we find.
1008 	 */
1009 	do {
1010 		info.error = 0;
1011 		info.count = 0;
1012 		generation = object->generation;
1013 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1014 					vm_object_page_clean_pass2, &info);
1015 	} while (info.error || generation != object->generation);
1016 
1017 	vm_object_clear_flag(object, OBJ_CLEANING);
1018 	vm_object_drop(object);
1019 }
1020 
1021 /*
1022  * The caller must hold the object.
1023  */
1024 static
1025 int
1026 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1027 {
1028 	struct rb_vm_page_scan_info *info = data;
1029 
1030 	KKASSERT(p->object == info->object);
1031 
1032 	vm_page_flag_set(p, PG_CLEANCHK);
1033 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1034 		info->error = 1;
1035 	} else if (vm_page_busy_try(p, FALSE)) {
1036 		info->error = 1;
1037 	} else {
1038 		KKASSERT(p->object == info->object);
1039 		vm_page_protect(p, VM_PROT_READ);
1040 		vm_page_wakeup(p);
1041 	}
1042 
1043 	/*
1044 	 * Must be at end to avoid SMP races, caller holds object token
1045 	 */
1046 	if ((++info->count & 63) == 0)
1047 		lwkt_user_yield();
1048 	return(0);
1049 }
1050 
1051 /*
1052  * The caller must hold the object
1053  */
1054 static
1055 int
1056 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1057 {
1058 	struct rb_vm_page_scan_info *info = data;
1059 	int generation;
1060 
1061 	KKASSERT(p->object == info->object);
1062 
1063 	/*
1064 	 * Do not mess with pages that were inserted after we started
1065 	 * the cleaning pass.
1066 	 */
1067 	if ((p->flags & PG_CLEANCHK) == 0)
1068 		goto done;
1069 
1070 	generation = info->object->generation;
1071 
1072 	if (vm_page_busy_try(p, TRUE)) {
1073 		vm_page_sleep_busy(p, TRUE, "vpcwai");
1074 		info->error = 1;
1075 		goto done;
1076 	}
1077 
1078 	KKASSERT(p->object == info->object &&
1079 		 info->object->generation == generation);
1080 
1081 	/*
1082 	 * Before wasting time traversing the pmaps, check for trivial
1083 	 * cases where the page cannot be dirty.
1084 	 */
1085 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1086 		KKASSERT((p->dirty & p->valid) == 0 &&
1087 			 (p->flags & PG_NEED_COMMIT) == 0);
1088 		vm_page_wakeup(p);
1089 		goto done;
1090 	}
1091 
1092 	/*
1093 	 * Check whether the page is dirty or not.  The page has been set
1094 	 * to be read-only so the check will not race a user dirtying the
1095 	 * page.
1096 	 */
1097 	vm_page_test_dirty(p);
1098 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1099 		vm_page_flag_clear(p, PG_CLEANCHK);
1100 		vm_page_wakeup(p);
1101 		goto done;
1102 	}
1103 
1104 	/*
1105 	 * If we have been asked to skip nosync pages and this is a
1106 	 * nosync page, skip it.  Note that the object flags were
1107 	 * not cleared in this case (because pass1 will have returned an
1108 	 * error), so we do not have to set them.
1109 	 */
1110 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1111 		vm_page_flag_clear(p, PG_CLEANCHK);
1112 		vm_page_wakeup(p);
1113 		goto done;
1114 	}
1115 
1116 	/*
1117 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1118 	 * the pages that get successfully flushed.  Set info->error if
1119 	 * we raced an object modification.
1120 	 */
1121 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1122 	/* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1123 
1124 	/*
1125 	 * Must be at end to avoid SMP races, caller holds object token
1126 	 */
1127 done:
1128 	if ((++info->count & 63) == 0)
1129 		lwkt_user_yield();
1130 	return(0);
1131 }
1132 
1133 /*
1134  * Collect the specified page and nearby pages and flush them out.
1135  * The number of pages flushed is returned.  The passed page is busied
1136  * by the caller and we are responsible for its disposition.
1137  *
1138  * The caller must hold the object.
1139  */
1140 static void
1141 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1142 {
1143 	int error;
1144 	int is;
1145 	int ib;
1146 	int i;
1147 	int page_base;
1148 	vm_pindex_t pi;
1149 	vm_page_t ma[BLIST_MAX_ALLOC];
1150 
1151 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1152 
1153 	pi = p->pindex;
1154 	page_base = pi % BLIST_MAX_ALLOC;
1155 	ma[page_base] = p;
1156 	ib = page_base - 1;
1157 	is = page_base + 1;
1158 
1159 	while (ib >= 0) {
1160 		vm_page_t tp;
1161 
1162 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1163 					     TRUE, &error);
1164 		if (error)
1165 			break;
1166 		if (tp == NULL)
1167 			break;
1168 		if ((pagerflags & OBJPC_IGNORE_CLEANCHK) == 0 &&
1169 		    (tp->flags & PG_CLEANCHK) == 0) {
1170 			vm_page_wakeup(tp);
1171 			break;
1172 		}
1173 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1174 			vm_page_flag_clear(tp, PG_CLEANCHK);
1175 			vm_page_wakeup(tp);
1176 			break;
1177 		}
1178 		vm_page_test_dirty(tp);
1179 		if ((tp->dirty & tp->valid) == 0 &&
1180 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1181 			vm_page_flag_clear(tp, PG_CLEANCHK);
1182 			vm_page_wakeup(tp);
1183 			break;
1184 		}
1185 		ma[ib] = tp;
1186 		--ib;
1187 	}
1188 	++ib;	/* fixup */
1189 
1190 	while (is < BLIST_MAX_ALLOC &&
1191 	       pi - page_base + is < object->size) {
1192 		vm_page_t tp;
1193 
1194 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1195 					     TRUE, &error);
1196 		if (error)
1197 			break;
1198 		if (tp == NULL)
1199 			break;
1200 		if ((pagerflags & OBJPC_IGNORE_CLEANCHK) == 0 &&
1201 		    (tp->flags & PG_CLEANCHK) == 0) {
1202 			vm_page_wakeup(tp);
1203 			break;
1204 		}
1205 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1206 			vm_page_flag_clear(tp, PG_CLEANCHK);
1207 			vm_page_wakeup(tp);
1208 			break;
1209 		}
1210 		vm_page_test_dirty(tp);
1211 		if ((tp->dirty & tp->valid) == 0 &&
1212 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1213 			vm_page_flag_clear(tp, PG_CLEANCHK);
1214 			vm_page_wakeup(tp);
1215 			break;
1216 		}
1217 		ma[is] = tp;
1218 		++is;
1219 	}
1220 
1221 	/*
1222 	 * All pages in the ma[] array are busied now
1223 	 */
1224 	for (i = ib; i < is; ++i) {
1225 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1226 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1227 	}
1228 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1229 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1230 		vm_page_unhold(ma[i]);
1231 }
1232 
1233 /*
1234  * Implements the madvise function at the object/page level.
1235  *
1236  * MADV_WILLNEED	(any object)
1237  *
1238  *	Activate the specified pages if they are resident.
1239  *
1240  * MADV_DONTNEED	(any object)
1241  *
1242  *	Deactivate the specified pages if they are resident.
1243  *
1244  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1245  *
1246  *	Deactivate and clean the specified pages if they are
1247  *	resident.  This permits the process to reuse the pages
1248  *	without faulting or the kernel to reclaim the pages
1249  *	without I/O.
1250  *
1251  * No requirements.
1252  */
1253 void
1254 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1255 		  vm_pindex_t count, int advise)
1256 {
1257 	vm_pindex_t end;
1258 	vm_page_t m;
1259 	int error;
1260 
1261 	if (object == NULL)
1262 		return;
1263 
1264 	end = pindex + count;
1265 
1266 	vm_object_hold(object);
1267 
1268 	/*
1269 	 * Locate and adjust resident pages.  This only applies to the
1270 	 * primary object in the mapping.
1271 	 */
1272 	for (; pindex < end; pindex += 1) {
1273 relookup:
1274 		/*
1275 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1276 		 * and those pages must be OBJ_ONEMAPPING.
1277 		 */
1278 		if (advise == MADV_FREE) {
1279 			if ((object->type != OBJT_DEFAULT &&
1280 			     object->type != OBJT_SWAP) ||
1281 			    (object->flags & OBJ_ONEMAPPING) == 0) {
1282 				continue;
1283 			}
1284 		}
1285 
1286 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
1287 
1288 		if (error) {
1289 			vm_page_sleep_busy(m, TRUE, "madvpo");
1290 			goto relookup;
1291 		}
1292 		if (m == NULL) {
1293 			/*
1294 			 * There may be swap even if there is no backing page
1295 			 */
1296 			if (advise == MADV_FREE && object->type == OBJT_SWAP)
1297 				swap_pager_freespace(object, pindex, 1);
1298 			continue;
1299 		}
1300 
1301 		/*
1302 		 * If the page is not in a normal active state, we skip it.
1303 		 * If the page is not managed there are no page queues to
1304 		 * mess with.  Things can break if we mess with pages in
1305 		 * any of the below states.
1306 		 */
1307 		if (m->wire_count ||
1308 		    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED |
1309 				 PG_NEED_COMMIT)) ||
1310 		    m->valid != VM_PAGE_BITS_ALL
1311 		) {
1312 			vm_page_wakeup(m);
1313 			continue;
1314 		}
1315 
1316 		/*
1317 		 * Theoretically once a page is known not to be busy, an
1318 		 * interrupt cannot come along and rip it out from under us.
1319 		 */
1320 		if (advise == MADV_WILLNEED) {
1321 			vm_page_activate(m);
1322 		} else if (advise == MADV_DONTNEED) {
1323 			vm_page_dontneed(m);
1324 		} else if (advise == MADV_FREE) {
1325 			/*
1326 			 * Mark the page clean.  This will allow the page
1327 			 * to be freed up by the system.  However, such pages
1328 			 * are often reused quickly by malloc()/free()
1329 			 * so we do not do anything that would cause
1330 			 * a page fault if we can help it.
1331 			 *
1332 			 * Specifically, we do not try to actually free
1333 			 * the page now nor do we try to put it in the
1334 			 * cache (which would cause a page fault on reuse).
1335 			 *
1336 			 * But we do make the page is freeable as we
1337 			 * can without actually taking the step of unmapping
1338 			 * it.
1339 			 */
1340 			pmap_clear_modify(m);
1341 			m->dirty = 0;
1342 			m->act_count = 0;
1343 			vm_page_dontneed(m);
1344 			if (object->type == OBJT_SWAP)
1345 				swap_pager_freespace(object, pindex, 1);
1346 		}
1347 		vm_page_wakeup(m);
1348 	}
1349 	vm_object_drop(object);
1350 }
1351 
1352 /*
1353  * Removes all physical pages in the specified object range from the
1354  * object's list of pages.
1355  *
1356  * No requirements.
1357  */
1358 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1359 
1360 void
1361 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1362 		      boolean_t clean_only)
1363 {
1364 	struct rb_vm_page_scan_info info;
1365 	int all;
1366 
1367 	/*
1368 	 * Degenerate cases and assertions.
1369 	 *
1370 	 * NOTE: Don't shortcut on resident_page_count for MGTDEVICE objects.
1371 	 *	 These objects do not have to have their pages entered into
1372 	 *	 them and are handled via their vm_map_backing lists.
1373 	 */
1374 	vm_object_hold(object);
1375 	if (object == NULL ||
1376 	    (object->type != OBJT_MGTDEVICE &&
1377 	     object->resident_page_count == 0 && object->swblock_count == 0)) {
1378 		vm_object_drop(object);
1379 		return;
1380 	}
1381 	KASSERT(object->type != OBJT_PHYS,
1382 		("attempt to remove pages from a physical object"));
1383 
1384 	/*
1385 	 * Indicate that paging is occuring on the object
1386 	 */
1387 	vm_object_pip_add(object, 1);
1388 
1389 	/*
1390 	 * Figure out the actual removal range and whether we are removing
1391 	 * the entire contents of the object or not.  If removing the entire
1392 	 * contents, be sure to get all pages, even those that might be
1393 	 * beyond the end of the object.
1394 	 *
1395 	 * NOTE: end is non-inclusive, but info.end_pindex is inclusive.
1396 	 */
1397 	info.object = object;
1398 	info.start_pindex = start;
1399 	if (end == 0 || end == (vm_pindex_t)-1) {
1400 		info.end_pindex = (vm_pindex_t)-1;
1401 		end = object->size;
1402 	} else {
1403 		info.end_pindex = end - 1;
1404 	}
1405 	info.limit = clean_only;
1406 	info.count = 0;
1407 	all = (start == 0 && info.end_pindex >= object->size - 1);
1408 
1409 	/*
1410 	 * Efficiently remove pages from the pmap via a backing scan.
1411 	 *
1412 	 * NOTE: This is the only way pages can be removed and unwired
1413 	 *	 from OBJT_MGTDEVICE devices which typically do not enter
1414 	 *	 their pages into the vm_object's RB tree.  And possibly
1415 	 *	 other OBJT_* types in the future.
1416 	 */
1417 	{
1418 		vm_map_backing_t ba;
1419 		vm_pindex_t sba, eba;
1420 		vm_offset_t sva, eva;
1421 
1422 		lockmgr(&object->backing_lk, LK_EXCLUSIVE);
1423 		TAILQ_FOREACH(ba, &object->backing_list, entry) {
1424 			/*
1425 			 * object offset range within the ba, intersectioned
1426 			 * with the page range specified for the object
1427 			 */
1428 			sba = OFF_TO_IDX(ba->offset);
1429 			eba = sba + OFF_TO_IDX(ba->end - ba->start);
1430 			if (sba < start)
1431 				sba = start;
1432 			if (eba > end)
1433 				eba = end;
1434 
1435 			/*
1436 			 * If the intersection is valid, remove the related
1437 			 * pages.
1438 			 *
1439 			 * NOTE! This may also remove other incidental pages
1440 			 *	 in the pmap, as the backing area may be
1441 			 *	 overloaded.
1442 			 *
1443 			 * NOTE! pages for MGTDEVICE objects are only removed
1444 			 *	 here, they aren't entered into rb_memq, so
1445 			 *	 we must use pmap_remove() instead of
1446 			 *	 the non-TLB-invalidating pmap_remove_pages().
1447 			 */
1448 			if (sba < eba) {
1449 				sva = ba->start + IDX_TO_OFF(sba) - ba->offset;
1450 				eva = sva + IDX_TO_OFF(eba - sba);
1451 #if 0
1452 				kprintf("VM_OBJECT_PAGE_REMOVE "
1453 					"%p[%016jx] %016jx-%016jx\n",
1454 					ba->pmap, ba->start, sva, eva);
1455 #endif
1456 				pmap_remove(ba->pmap, sva, eva);
1457 			}
1458 		}
1459 		lockmgr(&object->backing_lk, LK_RELEASE);
1460 	}
1461 
1462 	/*
1463 	 * Remove and free pages entered onto the object list.  Note that
1464 	 * for OBJT_MGTDEVICE objects, there are typically no pages entered.
1465 	 *
1466 	 * Loop until we are sure we have gotten them all.
1467 	 */
1468 	do {
1469 		info.error = 0;
1470 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1471 					vm_object_page_remove_callback, &info);
1472 	} while (info.error);
1473 
1474 	/*
1475 	 * Remove any related swap if throwing away pages, or for
1476 	 * non-swap objects (the swap is a clean copy in that case).
1477 	 */
1478 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
1479 		if (all)
1480 			swap_pager_freespace_all(object);
1481 		else
1482 			swap_pager_freespace(object, info.start_pindex,
1483 			     info.end_pindex - info.start_pindex + 1);
1484 	}
1485 
1486 	/*
1487 	 * Cleanup
1488 	 */
1489 	vm_object_pip_wakeup(object);
1490 	vm_object_drop(object);
1491 }
1492 
1493 /*
1494  * The caller must hold the object.
1495  *
1496  * NOTE: User yields are allowed when removing more than one page, but not
1497  *	 allowed if only removing one page (the path for single page removals
1498  *	 might hold a spinlock).
1499  */
1500 static int
1501 vm_object_page_remove_callback(vm_page_t p, void *data)
1502 {
1503 	struct rb_vm_page_scan_info *info = data;
1504 
1505 	if (info->object != p->object ||
1506 	    p->pindex < info->start_pindex ||
1507 	    p->pindex > info->end_pindex) {
1508 		kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
1509 			info->object, p);
1510 		return(0);
1511 	}
1512 	if (vm_page_busy_try(p, TRUE)) {
1513 		vm_page_sleep_busy(p, TRUE, "vmopar");
1514 		info->error = 1;
1515 		return(0);
1516 	}
1517 	if (info->object != p->object) {
1518 		/* this should never happen */
1519 		kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
1520 			info->object, p);
1521 		vm_page_wakeup(p);
1522 		return(0);
1523 	}
1524 
1525 	/*
1526 	 * Wired pages cannot be destroyed, but they can be invalidated
1527 	 * and we do so if clean_only (limit) is not set.
1528 	 *
1529 	 * WARNING!  The page may be wired due to being part of a buffer
1530 	 *	     cache buffer, and the buffer might be marked B_CACHE.
1531 	 *	     This is fine as part of a truncation but VFSs must be
1532 	 *	     sure to fix the buffer up when re-extending the file.
1533 	 *
1534 	 * NOTE!     PG_NEED_COMMIT is ignored.
1535 	 */
1536 	if (p->wire_count != 0) {
1537 		vm_page_protect(p, VM_PROT_NONE);
1538 		if (info->limit == 0)
1539 			p->valid = 0;
1540 		vm_page_wakeup(p);
1541 		goto done;
1542 	}
1543 
1544 	/*
1545 	 * limit is our clean_only flag.  If set and the page is dirty or
1546 	 * requires a commit, do not free it.  If set and the page is being
1547 	 * held by someone, do not free it.
1548 	 */
1549 	if (info->limit && p->valid) {
1550 		vm_page_test_dirty(p);
1551 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
1552 			vm_page_wakeup(p);
1553 			goto done;
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Destroy the page.  But we have to re-test whether its dirty after
1559 	 * removing it from its pmaps.
1560 	 */
1561 	vm_page_protect(p, VM_PROT_NONE);
1562 	if (info->limit && p->valid) {
1563 		vm_page_test_dirty(p);
1564 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
1565 			vm_page_wakeup(p);
1566 			goto done;
1567 		}
1568 	}
1569 	vm_page_free(p);
1570 
1571 	/*
1572 	 * Must be at end to avoid SMP races, caller holds object token
1573 	 */
1574 done:
1575 	if ((++info->count & 63) == 0)
1576 		lwkt_user_yield();
1577 
1578 	return(0);
1579 }
1580 
1581 /*
1582  * Try to extend prev_object into an adjoining region of virtual
1583  * memory, return TRUE on success.
1584  *
1585  * The caller does not need to hold (prev_object) but must have a stable
1586  * pointer to it (typically by holding the vm_map locked).
1587  *
1588  * This function only works for anonymous memory objects which either
1589  * have (a) one reference or (b) we are extending the object's size.
1590  * Otherwise the related VM pages we want to use for the object might
1591  * be in use by another mapping.
1592  */
1593 boolean_t
1594 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1595 		   vm_size_t prev_size, vm_size_t next_size)
1596 {
1597 	vm_pindex_t next_pindex;
1598 
1599 	if (prev_object == NULL)
1600 		return (TRUE);
1601 
1602 	vm_object_hold(prev_object);
1603 
1604 	if (prev_object->type != OBJT_DEFAULT &&
1605 	    prev_object->type != OBJT_SWAP) {
1606 		vm_object_drop(prev_object);
1607 		return (FALSE);
1608 	}
1609 
1610 #if 0
1611 	/* caller now checks this */
1612 	/*
1613 	 * Try to collapse the object first
1614 	 */
1615 	vm_object_collapse(prev_object, NULL);
1616 #endif
1617 
1618 #if 0
1619 	/* caller now checks this */
1620 	/*
1621 	 * We can't coalesce if we shadow another object (figuring out the
1622 	 * relationships become too complex).
1623 	 */
1624 	if (prev_object->backing_object != NULL) {
1625 		vm_object_chain_release(prev_object);
1626 		vm_object_drop(prev_object);
1627 		return (FALSE);
1628 	}
1629 #endif
1630 
1631 	prev_size >>= PAGE_SHIFT;
1632 	next_size >>= PAGE_SHIFT;
1633 	next_pindex = prev_pindex + prev_size;
1634 
1635 	/*
1636 	 * We can't if the object has more than one ref count unless we
1637 	 * are extending it into newly minted space.
1638 	 */
1639 	if (prev_object->ref_count > 1 &&
1640 	    prev_object->size != next_pindex) {
1641 		vm_object_drop(prev_object);
1642 		return (FALSE);
1643 	}
1644 
1645 	/*
1646 	 * Remove any pages that may still be in the object from a previous
1647 	 * deallocation.
1648 	 */
1649 	if (next_pindex < prev_object->size) {
1650 		vm_object_page_remove(prev_object,
1651 				      next_pindex,
1652 				      next_pindex + next_size, FALSE);
1653 		if (prev_object->type == OBJT_SWAP)
1654 			swap_pager_freespace(prev_object,
1655 					     next_pindex, next_size);
1656 	}
1657 
1658 	/*
1659 	 * Extend the object if necessary.
1660 	 */
1661 	if (next_pindex + next_size > prev_object->size)
1662 		prev_object->size = next_pindex + next_size;
1663 	vm_object_drop(prev_object);
1664 
1665 	return (TRUE);
1666 }
1667 
1668 /*
1669  * Make the object writable and flag is being possibly dirty.
1670  *
1671  * The object might not be held (or might be held but held shared),
1672  * the related vnode is probably not held either.  Object and vnode are
1673  * stable by virtue of the vm_page busied by the caller preventing
1674  * destruction.
1675  *
1676  * If the related mount is flagged MNTK_THR_SYNC we need to call
1677  * vsetobjdirty().  Filesystems using this option usually shortcut
1678  * synchronization by only scanning the syncer list.
1679  */
1680 void
1681 vm_object_set_writeable_dirty(vm_object_t object)
1682 {
1683 	struct vnode *vp;
1684 
1685 	/*vm_object_assert_held(object);*/
1686 	/*
1687 	 * Avoid contention in vm fault path by checking the state before
1688 	 * issuing an atomic op on it.
1689 	 */
1690 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
1691 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
1692 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1693 	}
1694 	if (object->type == OBJT_VNODE &&
1695 	    (vp = (struct vnode *)object->handle) != NULL) {
1696 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1697 			if (vp->v_mount &&
1698 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
1699 				/*
1700 				 * New style THR_SYNC places vnodes on the
1701 				 * syncer list more deterministically.
1702 				 */
1703 				vsetobjdirty(vp);
1704 			} else {
1705 				/*
1706 				 * Old style scan would not necessarily place
1707 				 * a vnode on the syncer list when possibly
1708 				 * modified via mmap.
1709 				 */
1710 				vsetflags(vp, VOBJDIRTY);
1711 			}
1712 		}
1713 	}
1714 }
1715 
1716 #include "opt_ddb.h"
1717 #ifdef DDB
1718 #include <sys/cons.h>
1719 
1720 #include <ddb/ddb.h>
1721 
1722 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1723 				       vm_map_entry_t entry);
1724 static int	vm_object_in_map (vm_object_t object);
1725 
1726 /*
1727  * The caller must hold the object.
1728  */
1729 static int
1730 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1731 {
1732 	vm_map_backing_t ba;
1733 	vm_map_t tmpm;
1734 	vm_map_entry_t tmpe;
1735 	int entcount;
1736 
1737 	if (map == NULL)
1738 		return 0;
1739 	if (entry == NULL) {
1740 		tmpe = RB_MIN(vm_map_rb_tree, &map->rb_root);
1741 		entcount = map->nentries;
1742 		while (entcount-- && tmpe) {
1743 			if( _vm_object_in_map(map, object, tmpe)) {
1744 				return 1;
1745 			}
1746 			tmpe = vm_map_rb_tree_RB_NEXT(tmpe);
1747 		}
1748 		return (0);
1749 	}
1750 	switch(entry->maptype) {
1751 	case VM_MAPTYPE_SUBMAP:
1752 		tmpm = entry->ba.sub_map;
1753 		tmpe = RB_MIN(vm_map_rb_tree, &tmpm->rb_root);
1754 		entcount = tmpm->nentries;
1755 		while (entcount-- && tmpe) {
1756 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1757 				return 1;
1758 			}
1759 			tmpe = vm_map_rb_tree_RB_NEXT(tmpe);
1760 		}
1761 		break;
1762 	case VM_MAPTYPE_NORMAL:
1763 	case VM_MAPTYPE_VPAGETABLE:
1764 		ba = &entry->ba;
1765 		while (ba) {
1766 			if (ba->object == object)
1767 				return TRUE;
1768 			ba = ba->backing_ba;
1769 		}
1770 		break;
1771 	default:
1772 		break;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static int vm_object_in_map_callback(struct proc *p, void *data);
1778 
1779 struct vm_object_in_map_info {
1780 	vm_object_t object;
1781 	int rv;
1782 };
1783 
1784 /*
1785  * Debugging only
1786  */
1787 static int
1788 vm_object_in_map(vm_object_t object)
1789 {
1790 	struct vm_object_in_map_info info;
1791 
1792 	info.rv = 0;
1793 	info.object = object;
1794 
1795 	allproc_scan(vm_object_in_map_callback, &info, 0);
1796 	if (info.rv)
1797 		return 1;
1798 	if( _vm_object_in_map(&kernel_map, object, 0))
1799 		return 1;
1800 	if( _vm_object_in_map(&pager_map, object, 0))
1801 		return 1;
1802 	if( _vm_object_in_map(&buffer_map, object, 0))
1803 		return 1;
1804 	return 0;
1805 }
1806 
1807 /*
1808  * Debugging only
1809  */
1810 static int
1811 vm_object_in_map_callback(struct proc *p, void *data)
1812 {
1813 	struct vm_object_in_map_info *info = data;
1814 
1815 	if (p->p_vmspace) {
1816 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1817 			info->rv = 1;
1818 			return -1;
1819 		}
1820 	}
1821 	return (0);
1822 }
1823 
1824 DB_SHOW_COMMAND(vmochk, vm_object_check)
1825 {
1826 	struct vm_object_hash *hash;
1827 	vm_object_t object;
1828 	int n;
1829 
1830 	/*
1831 	 * make sure that internal objs are in a map somewhere
1832 	 * and none have zero ref counts.
1833 	 */
1834 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
1835 		hash = &vm_object_hash[n];
1836 		for (object = TAILQ_FIRST(&hash->list);
1837 				object != NULL;
1838 				object = TAILQ_NEXT(object, object_entry)) {
1839 			if (object->type == OBJT_MARKER)
1840 				continue;
1841 			if (object->handle != NULL ||
1842 			    (object->type != OBJT_DEFAULT &&
1843 			     object->type != OBJT_SWAP)) {
1844 				continue;
1845 			}
1846 			if (object->ref_count == 0) {
1847 				db_printf("vmochk: internal obj has "
1848 					  "zero ref count: %ld\n",
1849 					  (long)object->size);
1850 			}
1851 			if (vm_object_in_map(object))
1852 				continue;
1853 			db_printf("vmochk: internal obj is not in a map: "
1854 				  "ref: %d, size: %lu: 0x%lx\n",
1855 				  object->ref_count, (u_long)object->size,
1856 				  (u_long)object->size);
1857 		}
1858 	}
1859 }
1860 
1861 /*
1862  * Debugging only
1863  */
1864 DB_SHOW_COMMAND(object, vm_object_print_static)
1865 {
1866 	/* XXX convert args. */
1867 	vm_object_t object = (vm_object_t)addr;
1868 	boolean_t full = have_addr;
1869 
1870 	vm_page_t p;
1871 
1872 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1873 #define	count	was_count
1874 
1875 	int count;
1876 
1877 	if (object == NULL)
1878 		return;
1879 
1880 	db_iprintf(
1881 	    "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
1882 	    object, (int)object->type, (u_long)object->size,
1883 	    object->resident_page_count, object->ref_count, object->flags);
1884 	/*
1885 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1886 	 */
1887 	db_iprintf("\n");
1888 
1889 	if (!full)
1890 		return;
1891 
1892 	db_indent += 2;
1893 	count = 0;
1894 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1895 		if (count == 0)
1896 			db_iprintf("memory:=");
1897 		else if (count == 6) {
1898 			db_printf("\n");
1899 			db_iprintf(" ...");
1900 			count = 0;
1901 		} else
1902 			db_printf(",");
1903 		count++;
1904 
1905 		db_printf("(off=0x%lx,page=0x%lx)",
1906 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1907 	}
1908 	if (count != 0)
1909 		db_printf("\n");
1910 	db_indent -= 2;
1911 }
1912 
1913 /* XXX. */
1914 #undef count
1915 
1916 /*
1917  * XXX need this non-static entry for calling from vm_map_print.
1918  *
1919  * Debugging only
1920  */
1921 void
1922 vm_object_print(/* db_expr_t */ long addr,
1923 		boolean_t have_addr,
1924 		/* db_expr_t */ long count,
1925 		char *modif)
1926 {
1927 	vm_object_print_static(addr, have_addr, count, modif);
1928 }
1929 
1930 /*
1931  * Debugging only
1932  */
1933 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1934 {
1935 	struct vm_object_hash *hash;
1936 	vm_object_t object;
1937 	int nl = 0;
1938 	int c;
1939 	int n;
1940 
1941 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
1942 		hash = &vm_object_hash[n];
1943 		for (object = TAILQ_FIRST(&hash->list);
1944 				object != NULL;
1945 				object = TAILQ_NEXT(object, object_entry)) {
1946 			vm_pindex_t idx, fidx;
1947 			vm_pindex_t osize;
1948 			vm_paddr_t pa = -1, padiff;
1949 			int rcount;
1950 			vm_page_t m;
1951 
1952 			if (object->type == OBJT_MARKER)
1953 				continue;
1954 			db_printf("new object: %p\n", (void *)object);
1955 			if ( nl > 18) {
1956 				c = cngetc();
1957 				if (c != ' ')
1958 					return;
1959 				nl = 0;
1960 			}
1961 			nl++;
1962 			rcount = 0;
1963 			fidx = 0;
1964 			osize = object->size;
1965 			if (osize > 128)
1966 				osize = 128;
1967 			for (idx = 0; idx < osize; idx++) {
1968 				m = vm_page_lookup(object, idx);
1969 				if (m == NULL) {
1970 					if (rcount) {
1971 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1972 							(long)fidx, rcount, (long)pa);
1973 						if ( nl > 18) {
1974 							c = cngetc();
1975 							if (c != ' ')
1976 								return;
1977 							nl = 0;
1978 						}
1979 						nl++;
1980 						rcount = 0;
1981 					}
1982 					continue;
1983 				}
1984 
1985 				if (rcount &&
1986 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1987 					++rcount;
1988 					continue;
1989 				}
1990 				if (rcount) {
1991 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1992 					padiff >>= PAGE_SHIFT;
1993 					padiff &= PQ_L2_MASK;
1994 					if (padiff == 0) {
1995 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1996 						++rcount;
1997 						continue;
1998 					}
1999 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
2000 						(long)fidx, rcount, (long)pa);
2001 					db_printf("pd(%ld)\n", (long)padiff);
2002 					if ( nl > 18) {
2003 						c = cngetc();
2004 						if (c != ' ')
2005 							return;
2006 						nl = 0;
2007 					}
2008 					nl++;
2009 				}
2010 				fidx = idx;
2011 				pa = VM_PAGE_TO_PHYS(m);
2012 				rcount = 1;
2013 			}
2014 			if (rcount) {
2015 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2016 					(long)fidx, rcount, (long)pa);
2017 				if ( nl > 18) {
2018 					c = cngetc();
2019 					if (c != ' ')
2020 						return;
2021 					nl = 0;
2022 				}
2023 				nl++;
2024 			}
2025 		}
2026 	}
2027 }
2028 #endif /* DDB */
2029