xref: /dragonfly/sys/vm/vm_object.c (revision e7d467f4)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory object module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>		/* for curproc, pageproc */
74 #include <sys/thread.h>
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/refcount.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_zone.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct object_q vm_object_list;		/* locked by vmobj_token */
132 struct vm_object kernel_object;
133 
134 static long vm_object_count;		/* locked by vmobj_token */
135 extern int vm_pageout_page_count;
136 
137 static long object_collapses;
138 static long object_bypasses;
139 static int next_index;
140 static vm_zone_t obj_zone;
141 static struct vm_zone obj_zone_store;
142 #define VM_OBJECTS_INIT 256
143 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
144 
145 /*
146  * Misc low level routines
147  */
148 static void
149 vm_object_lock_init(vm_object_t obj)
150 {
151 #if defined(DEBUG_LOCKS)
152 	int i;
153 
154 	obj->debug_hold_bitmap = 0;
155 	obj->debug_hold_ovfl = 0;
156 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
157 		obj->debug_hold_thrs[i] = NULL;
158 		obj->debug_hold_file[i] = NULL;
159 		obj->debug_hold_line[i] = 0;
160 	}
161 #endif
162 }
163 
164 void
165 vm_object_lock_swap(void)
166 {
167 	lwkt_token_swap();
168 }
169 
170 void
171 vm_object_lock(vm_object_t obj)
172 {
173 	lwkt_gettoken(&obj->token);
174 }
175 
176 /*
177  * Returns TRUE on sucesss
178  */
179 static int
180 vm_object_lock_try(vm_object_t obj)
181 {
182 	return(lwkt_trytoken(&obj->token));
183 }
184 
185 void
186 vm_object_lock_shared(vm_object_t obj)
187 {
188 	lwkt_gettoken_shared(&obj->token);
189 }
190 
191 void
192 vm_object_unlock(vm_object_t obj)
193 {
194 	lwkt_reltoken(&obj->token);
195 }
196 
197 static __inline void
198 vm_object_assert_held(vm_object_t obj)
199 {
200 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
201 }
202 
203 void
204 #ifndef DEBUG_LOCKS
205 vm_object_hold(vm_object_t obj)
206 #else
207 debugvm_object_hold(vm_object_t obj, char *file, int line)
208 #endif
209 {
210 	KKASSERT(obj != NULL);
211 
212 	/*
213 	 * Object must be held (object allocation is stable due to callers
214 	 * context, typically already holding the token on a parent object)
215 	 * prior to potentially blocking on the lock, otherwise the object
216 	 * can get ripped away from us.
217 	 */
218 	refcount_acquire(&obj->hold_count);
219 	vm_object_lock(obj);
220 
221 #if defined(DEBUG_LOCKS)
222 	int i;
223 	u_int mask;
224 
225 	for (;;) {
226 		mask = ~obj->debug_hold_bitmap;
227 		cpu_ccfence();
228 		if (mask == 0xFFFFFFFFU) {
229 			if (obj->debug_hold_ovfl == 0)
230 				obj->debug_hold_ovfl = 1;
231 			break;
232 		}
233 		i = ffs(mask) - 1;
234 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
235 				      ~mask | (1 << i))) {
236 			obj->debug_hold_bitmap |= (1 << i);
237 			obj->debug_hold_thrs[i] = curthread;
238 			obj->debug_hold_file[i] = file;
239 			obj->debug_hold_line[i] = line;
240 			break;
241 		}
242 	}
243 #endif
244 }
245 
246 int
247 #ifndef DEBUG_LOCKS
248 vm_object_hold_try(vm_object_t obj)
249 #else
250 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
251 #endif
252 {
253 	KKASSERT(obj != NULL);
254 
255 	/*
256 	 * Object must be held (object allocation is stable due to callers
257 	 * context, typically already holding the token on a parent object)
258 	 * prior to potentially blocking on the lock, otherwise the object
259 	 * can get ripped away from us.
260 	 */
261 	refcount_acquire(&obj->hold_count);
262 	if (vm_object_lock_try(obj) == 0) {
263 		if (refcount_release(&obj->hold_count)) {
264 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
265 				zfree(obj_zone, obj);
266 		}
267 		return(0);
268 	}
269 
270 #if defined(DEBUG_LOCKS)
271 	int i;
272 	u_int mask;
273 
274 	for (;;) {
275 		mask = ~obj->debug_hold_bitmap;
276 		cpu_ccfence();
277 		if (mask == 0xFFFFFFFFU) {
278 			if (obj->debug_hold_ovfl == 0)
279 				obj->debug_hold_ovfl = 1;
280 			break;
281 		}
282 		i = ffs(mask) - 1;
283 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
284 				      ~mask | (1 << i))) {
285 			obj->debug_hold_bitmap |= (1 << i);
286 			obj->debug_hold_thrs[i] = curthread;
287 			obj->debug_hold_file[i] = file;
288 			obj->debug_hold_line[i] = line;
289 			break;
290 		}
291 	}
292 #endif
293 	return(1);
294 }
295 
296 void
297 #ifndef DEBUG_LOCKS
298 vm_object_hold_shared(vm_object_t obj)
299 #else
300 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
301 #endif
302 {
303 	KKASSERT(obj != NULL);
304 
305 	/*
306 	 * Object must be held (object allocation is stable due to callers
307 	 * context, typically already holding the token on a parent object)
308 	 * prior to potentially blocking on the lock, otherwise the object
309 	 * can get ripped away from us.
310 	 */
311 	refcount_acquire(&obj->hold_count);
312 	vm_object_lock_shared(obj);
313 
314 #if defined(DEBUG_LOCKS)
315 	int i;
316 	u_int mask;
317 
318 	for (;;) {
319 		mask = ~obj->debug_hold_bitmap;
320 		cpu_ccfence();
321 		if (mask == 0xFFFFFFFFU) {
322 			if (obj->debug_hold_ovfl == 0)
323 				obj->debug_hold_ovfl = 1;
324 			break;
325 		}
326 		i = ffs(mask) - 1;
327 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
328 				      ~mask | (1 << i))) {
329 			obj->debug_hold_bitmap |= (1 << i);
330 			obj->debug_hold_thrs[i] = curthread;
331 			obj->debug_hold_file[i] = file;
332 			obj->debug_hold_line[i] = line;
333 			break;
334 		}
335 	}
336 #endif
337 }
338 
339 /*
340  * Obtain either a shared or exclusive lock on VM object
341  * based on whether this is a terminal vnode object or not.
342  */
343 int
344 #ifndef DEBUG_LOCKS
345 vm_object_hold_maybe_shared(vm_object_t obj)
346 #else
347 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
348 #endif
349 {
350 	if (vm_shared_fault &&
351 	    obj->type == OBJT_VNODE &&
352 	    obj->backing_object == NULL) {
353 		vm_object_hold_shared(obj);
354 		return(1);
355 	} else {
356 		vm_object_hold(obj);
357 		return(0);
358 	}
359 }
360 
361 /*
362  * Drop the token and hold_count on the object.
363  */
364 void
365 vm_object_drop(vm_object_t obj)
366 {
367 	if (obj == NULL)
368 		return;
369 
370 #if defined(DEBUG_LOCKS)
371 	int found = 0;
372 	int i;
373 
374 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
375 		if ((obj->debug_hold_bitmap & (1 << i)) &&
376 		    (obj->debug_hold_thrs[i] == curthread)) {
377 			obj->debug_hold_bitmap &= ~(1 << i);
378 			obj->debug_hold_thrs[i] = NULL;
379 			obj->debug_hold_file[i] = NULL;
380 			obj->debug_hold_line[i] = 0;
381 			found = 1;
382 			break;
383 		}
384 	}
385 
386 	if (found == 0 && obj->debug_hold_ovfl == 0)
387 		panic("vm_object: attempt to drop hold on non-self-held obj");
388 #endif
389 
390 	/*
391 	 * No new holders should be possible once we drop hold_count 1->0 as
392 	 * there is no longer any way to reference the object.
393 	 */
394 	KKASSERT(obj->hold_count > 0);
395 	if (refcount_release(&obj->hold_count)) {
396 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
397 			vm_object_unlock(obj);
398 			zfree(obj_zone, obj);
399 		} else {
400 			vm_object_unlock(obj);
401 		}
402 	} else {
403 		vm_object_unlock(obj);
404 	}
405 }
406 
407 /*
408  * Initialize a freshly allocated object, returning a held object.
409  *
410  * Used only by vm_object_allocate() and zinitna().
411  *
412  * No requirements.
413  */
414 void
415 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
416 {
417 	int incr;
418 
419 	RB_INIT(&object->rb_memq);
420 	LIST_INIT(&object->shadow_head);
421 	lwkt_token_init(&object->token, "vmobj");
422 
423 	object->type = type;
424 	object->size = size;
425 	object->ref_count = 1;
426 	object->hold_count = 0;
427 	object->flags = 0;
428 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
429 		vm_object_set_flag(object, OBJ_ONEMAPPING);
430 	object->paging_in_progress = 0;
431 	object->resident_page_count = 0;
432 	object->agg_pv_list_count = 0;
433 	object->shadow_count = 0;
434 	/* cpu localization twist */
435 	object->pg_color = (int)(intptr_t)curthread;
436 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
437 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
438 	else
439 		incr = size;
440 	next_index = (next_index + incr) & PQ_L2_MASK;
441 	object->handle = NULL;
442 	object->backing_object = NULL;
443 	object->backing_object_offset = (vm_ooffset_t)0;
444 
445 	object->generation++;
446 	object->swblock_count = 0;
447 	RB_INIT(&object->swblock_root);
448 	vm_object_lock_init(object);
449 	pmap_object_init(object);
450 
451 	vm_object_hold(object);
452 	lwkt_gettoken(&vmobj_token);
453 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
454 	vm_object_count++;
455 	lwkt_reltoken(&vmobj_token);
456 }
457 
458 /*
459  * Initialize the VM objects module.
460  *
461  * Called from the low level boot code only.
462  */
463 void
464 vm_object_init(void)
465 {
466 	TAILQ_INIT(&vm_object_list);
467 
468 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
469 			    &kernel_object);
470 	vm_object_drop(&kernel_object);
471 
472 	obj_zone = &obj_zone_store;
473 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
474 		vm_objects_init, VM_OBJECTS_INIT);
475 }
476 
477 void
478 vm_object_init2(void)
479 {
480 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
481 }
482 
483 /*
484  * Allocate and return a new object of the specified type and size.
485  *
486  * No requirements.
487  */
488 vm_object_t
489 vm_object_allocate(objtype_t type, vm_pindex_t size)
490 {
491 	vm_object_t result;
492 
493 	result = (vm_object_t) zalloc(obj_zone);
494 
495 	_vm_object_allocate(type, size, result);
496 	vm_object_drop(result);
497 
498 	return (result);
499 }
500 
501 /*
502  * This version returns a held object, allowing further atomic initialization
503  * of the object.
504  */
505 vm_object_t
506 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
507 {
508 	vm_object_t result;
509 
510 	result = (vm_object_t) zalloc(obj_zone);
511 
512 	_vm_object_allocate(type, size, result);
513 
514 	return (result);
515 }
516 
517 /*
518  * Add an additional reference to a vm_object.  The object must already be
519  * held.  The original non-lock version is no longer supported.  The object
520  * must NOT be chain locked by anyone at the time the reference is added.
521  *
522  * Referencing a chain-locked object can blow up the fairly sensitive
523  * ref_count and shadow_count tests in the deallocator.  Most callers
524  * will call vm_object_chain_wait() prior to calling
525  * vm_object_reference_locked() to avoid the case.
526  *
527  * The object must be held, but may be held shared if desired (hence why
528  * we use an atomic op).
529  */
530 void
531 vm_object_reference_locked(vm_object_t object)
532 {
533 	KKASSERT(object != NULL);
534 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
535 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
536 	atomic_add_int(&object->ref_count, 1);
537 	if (object->type == OBJT_VNODE) {
538 		vref(object->handle);
539 		/* XXX what if the vnode is being destroyed? */
540 	}
541 }
542 
543 /*
544  * Object OBJ_CHAINLOCK lock handling.
545  *
546  * The caller can chain-lock backing objects recursively and then
547  * use vm_object_chain_release_all() to undo the whole chain.
548  *
549  * Chain locks are used to prevent collapses and are only applicable
550  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
551  * on other object types are ignored.  This is also important because
552  * it allows e.g. the vnode underlying a memory mapping to take concurrent
553  * faults.
554  *
555  * The object must usually be held on entry, though intermediate
556  * objects need not be held on release.
557  */
558 void
559 vm_object_chain_wait(vm_object_t object)
560 {
561 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
562 	while (object->flags & OBJ_CHAINLOCK) {
563 		vm_object_set_flag(object, OBJ_CHAINWANT);
564 		tsleep(object, 0, "objchain", 0);
565 	}
566 }
567 
568 void
569 vm_object_chain_acquire(vm_object_t object)
570 {
571 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
572 		vm_object_chain_wait(object);
573 		vm_object_set_flag(object, OBJ_CHAINLOCK);
574 	}
575 }
576 
577 void
578 vm_object_chain_release(vm_object_t object)
579 {
580 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
581 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
582 		KKASSERT(object->flags & OBJ_CHAINLOCK);
583 		if (object->flags & OBJ_CHAINWANT) {
584 			vm_object_clear_flag(object,
585 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
586 			wakeup(object);
587 		} else {
588 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
589 		}
590 	}
591 }
592 
593 /*
594  * This releases the entire chain of objects from first_object to and
595  * including stopobj, flowing through object->backing_object.
596  *
597  * We release stopobj first as an optimization as this object is most
598  * likely to be shared across multiple processes.
599  */
600 void
601 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
602 {
603 	vm_object_t backing_object;
604 	vm_object_t object;
605 
606 	vm_object_chain_release(stopobj);
607 	object = first_object;
608 
609 	while (object != stopobj) {
610 		KKASSERT(object);
611 		if (object != first_object)
612 			vm_object_hold(object);
613 		backing_object = object->backing_object;
614 		vm_object_chain_release(object);
615 		if (object != first_object)
616 			vm_object_drop(object);
617 		object = backing_object;
618 	}
619 }
620 
621 /*
622  * Dereference an object and its underlying vnode.
623  *
624  * The object must be held exclusively and will remain held on return.
625  * (We don't need an atomic op due to the exclusivity).
626  */
627 static void
628 vm_object_vndeallocate(vm_object_t object)
629 {
630 	struct vnode *vp = (struct vnode *) object->handle;
631 
632 	KASSERT(object->type == OBJT_VNODE,
633 	    ("vm_object_vndeallocate: not a vnode object"));
634 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
635 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
636 #ifdef INVARIANTS
637 	if (object->ref_count == 0) {
638 		vprint("vm_object_vndeallocate", vp);
639 		panic("vm_object_vndeallocate: bad object reference count");
640 	}
641 #endif
642 	object->ref_count--;
643 	if (object->ref_count == 0)
644 		vclrflags(vp, VTEXT);
645 	vrele(vp);
646 }
647 
648 /*
649  * Release a reference to the specified object, gained either through a
650  * vm_object_allocate or a vm_object_reference call.  When all references
651  * are gone, storage associated with this object may be relinquished.
652  *
653  * The caller does not have to hold the object locked but must have control
654  * over the reference in question in order to guarantee that the object
655  * does not get ripped out from under us.
656  *
657  * XXX Currently all deallocations require an exclusive lock.
658  */
659 void
660 vm_object_deallocate(vm_object_t object)
661 {
662 	if (object) {
663 		vm_object_hold(object);
664 		vm_object_deallocate_locked(object);
665 		vm_object_drop(object);
666 	}
667 }
668 
669 void
670 vm_object_deallocate_locked(vm_object_t object)
671 {
672 	struct vm_object_dealloc_list *dlist = NULL;
673 	struct vm_object_dealloc_list *dtmp;
674 	vm_object_t temp;
675 	int must_drop = 0;
676 
677 	/*
678 	 * We may chain deallocate object, but additional objects may
679 	 * collect on the dlist which also have to be deallocated.  We
680 	 * must avoid a recursion, vm_object chains can get deep.
681 	 */
682 again:
683 	while (object != NULL) {
684 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
685 #if 0
686 		/*
687 		 * Don't rip a ref_count out from under an object undergoing
688 		 * collapse, it will confuse the collapse code.
689 		 */
690 		vm_object_chain_wait(object);
691 #endif
692 		if (object->type == OBJT_VNODE) {
693 			vm_object_vndeallocate(object);
694 			break;
695 		}
696 
697 		if (object->ref_count == 0) {
698 			panic("vm_object_deallocate: object deallocated "
699 			      "too many times: %d", object->type);
700 		}
701 		if (object->ref_count > 2) {
702 			object->ref_count--;
703 			break;
704 		}
705 
706 		/*
707 		 * Here on ref_count of one or two, which are special cases for
708 		 * objects.
709 		 *
710 		 * Nominal ref_count > 1 case if the second ref is not from
711 		 * a shadow.
712 		 *
713 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
714 		 */
715 		if (object->ref_count == 2 && object->shadow_count == 0) {
716 			if (object->type == OBJT_DEFAULT ||
717 			    object->type == OBJT_SWAP) {
718 				vm_object_set_flag(object, OBJ_ONEMAPPING);
719 			}
720 			object->ref_count--;
721 			break;
722 		}
723 
724 		/*
725 		 * If the second ref is from a shadow we chain along it
726 		 * upwards if object's handle is exhausted.
727 		 *
728 		 * We have to decrement object->ref_count before potentially
729 		 * collapsing the first shadow object or the collapse code
730 		 * will not be able to handle the degenerate case to remove
731 		 * object.  However, if we do it too early the object can
732 		 * get ripped out from under us.
733 		 */
734 		if (object->ref_count == 2 && object->shadow_count == 1 &&
735 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
736 					       object->type == OBJT_SWAP)) {
737 			temp = LIST_FIRST(&object->shadow_head);
738 			KKASSERT(temp != NULL);
739 			vm_object_hold(temp);
740 
741 			/*
742 			 * Wait for any paging to complete so the collapse
743 			 * doesn't (or isn't likely to) qcollapse.  pip
744 			 * waiting must occur before we acquire the
745 			 * chainlock.
746 			 */
747 			while (
748 				temp->paging_in_progress ||
749 				object->paging_in_progress
750 			) {
751 				vm_object_pip_wait(temp, "objde1");
752 				vm_object_pip_wait(object, "objde2");
753 			}
754 
755 			/*
756 			 * If the parent is locked we have to give up, as
757 			 * otherwise we would be acquiring locks in the
758 			 * wrong order and potentially deadlock.
759 			 */
760 			if (temp->flags & OBJ_CHAINLOCK) {
761 				vm_object_drop(temp);
762 				goto skip;
763 			}
764 			vm_object_chain_acquire(temp);
765 
766 			/*
767 			 * Recheck/retry after the hold and the paging
768 			 * wait, both of which can block us.
769 			 */
770 			if (object->ref_count != 2 ||
771 			    object->shadow_count != 1 ||
772 			    object->handle ||
773 			    LIST_FIRST(&object->shadow_head) != temp ||
774 			    (object->type != OBJT_DEFAULT &&
775 			     object->type != OBJT_SWAP)) {
776 				vm_object_chain_release(temp);
777 				vm_object_drop(temp);
778 				continue;
779 			}
780 
781 			/*
782 			 * We can safely drop object's ref_count now.
783 			 */
784 			KKASSERT(object->ref_count == 2);
785 			object->ref_count--;
786 
787 			/*
788 			 * If our single parent is not collapseable just
789 			 * decrement ref_count (2->1) and stop.
790 			 */
791 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
792 					     temp->type != OBJT_SWAP)) {
793 				vm_object_chain_release(temp);
794 				vm_object_drop(temp);
795 				break;
796 			}
797 
798 			/*
799 			 * At this point we have already dropped object's
800 			 * ref_count so it is possible for a race to
801 			 * deallocate obj out from under us.  Any collapse
802 			 * will re-check the situation.  We must not block
803 			 * until we are able to collapse.
804 			 *
805 			 * Bump temp's ref_count to avoid an unwanted
806 			 * degenerate recursion (can't call
807 			 * vm_object_reference_locked() because it asserts
808 			 * that CHAINLOCK is not set).
809 			 */
810 			temp->ref_count++;
811 			KKASSERT(temp->ref_count > 1);
812 
813 			/*
814 			 * Collapse temp, then deallocate the extra ref
815 			 * formally.
816 			 */
817 			vm_object_collapse(temp, &dlist);
818 			vm_object_chain_release(temp);
819 			if (must_drop) {
820 				vm_object_lock_swap();
821 				vm_object_drop(object);
822 			}
823 			object = temp;
824 			must_drop = 1;
825 			continue;
826 		}
827 
828 		/*
829 		 * Drop the ref and handle termination on the 1->0 transition.
830 		 * We may have blocked above so we have to recheck.
831 		 */
832 skip:
833 		KKASSERT(object->ref_count != 0);
834 		if (object->ref_count >= 2) {
835 			object->ref_count--;
836 			break;
837 		}
838 		KKASSERT(object->ref_count == 1);
839 
840 		/*
841 		 * 1->0 transition.  Chain through the backing_object.
842 		 * Maintain the ref until we've located the backing object,
843 		 * then re-check.
844 		 */
845 		while ((temp = object->backing_object) != NULL) {
846 			vm_object_hold(temp);
847 			if (temp == object->backing_object)
848 				break;
849 			vm_object_drop(temp);
850 		}
851 
852 		/*
853 		 * 1->0 transition verified, retry if ref_count is no longer
854 		 * 1.  Otherwise disconnect the backing_object (temp) and
855 		 * clean up.
856 		 */
857 		if (object->ref_count != 1) {
858 			vm_object_drop(temp);
859 			continue;
860 		}
861 
862 		/*
863 		 * It shouldn't be possible for the object to be chain locked
864 		 * if we're removing the last ref on it.
865 		 */
866 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
867 
868 		if (temp) {
869 			LIST_REMOVE(object, shadow_list);
870 			temp->shadow_count--;
871 			temp->generation++;
872 			object->backing_object = NULL;
873 		}
874 
875 		--object->ref_count;
876 		if ((object->flags & OBJ_DEAD) == 0)
877 			vm_object_terminate(object);
878 		if (must_drop && temp)
879 			vm_object_lock_swap();
880 		if (must_drop)
881 			vm_object_drop(object);
882 		object = temp;
883 		must_drop = 1;
884 	}
885 	if (must_drop && object)
886 		vm_object_drop(object);
887 
888 	/*
889 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
890 	 * on the dlist have a hold count but are not locked.
891 	 */
892 	if ((dtmp = dlist) != NULL) {
893 		dlist = dtmp->next;
894 		object = dtmp->object;
895 		kfree(dtmp, M_TEMP);
896 
897 		vm_object_lock(object);	/* already held, add lock */
898 		must_drop = 1;		/* and we're responsible for it */
899 		goto again;
900 	}
901 }
902 
903 /*
904  * Destroy the specified object, freeing up related resources.
905  *
906  * The object must have zero references.
907  *
908  * The object must held.  The caller is responsible for dropping the object
909  * after terminate returns.  Terminate does NOT drop the object.
910  */
911 static int vm_object_terminate_callback(vm_page_t p, void *data);
912 
913 void
914 vm_object_terminate(vm_object_t object)
915 {
916 	/*
917 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
918 	 * able to safely block.
919 	 */
920 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
921 	KKASSERT((object->flags & OBJ_DEAD) == 0);
922 	vm_object_set_flag(object, OBJ_DEAD);
923 
924 	/*
925 	 * Wait for the pageout daemon to be done with the object
926 	 */
927 	vm_object_pip_wait(object, "objtrm1");
928 
929 	KASSERT(!object->paging_in_progress,
930 		("vm_object_terminate: pageout in progress"));
931 
932 	/*
933 	 * Clean and free the pages, as appropriate. All references to the
934 	 * object are gone, so we don't need to lock it.
935 	 */
936 	if (object->type == OBJT_VNODE) {
937 		struct vnode *vp;
938 
939 		/*
940 		 * Clean pages and flush buffers.
941 		 *
942 		 * NOTE!  TMPFS buffer flushes do not typically flush the
943 		 *	  actual page to swap as this would be highly
944 		 *	  inefficient, and normal filesystems usually wrap
945 		 *	  page flushes with buffer cache buffers.
946 		 *
947 		 *	  To deal with this we have to call vinvalbuf() both
948 		 *	  before and after the vm_object_page_clean().
949 		 */
950 		vp = (struct vnode *) object->handle;
951 		vinvalbuf(vp, V_SAVE, 0, 0);
952 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
953 		vinvalbuf(vp, V_SAVE, 0, 0);
954 	}
955 
956 	/*
957 	 * Wait for any I/O to complete, after which there had better not
958 	 * be any references left on the object.
959 	 */
960 	vm_object_pip_wait(object, "objtrm2");
961 
962 	if (object->ref_count != 0) {
963 		panic("vm_object_terminate: object with references, "
964 		      "ref_count=%d", object->ref_count);
965 	}
966 
967 	/*
968 	 * Cleanup any shared pmaps associated with this object.
969 	 */
970 	pmap_object_free(object);
971 
972 	/*
973 	 * Now free any remaining pages. For internal objects, this also
974 	 * removes them from paging queues. Don't free wired pages, just
975 	 * remove them from the object.
976 	 */
977 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
978 				vm_object_terminate_callback, NULL);
979 
980 	/*
981 	 * Let the pager know object is dead.
982 	 */
983 	vm_pager_deallocate(object);
984 
985 	/*
986 	 * Wait for the object hold count to hit 1, clean out pages as
987 	 * we go.  vmobj_token interlocks any race conditions that might
988 	 * pick the object up from the vm_object_list after we have cleared
989 	 * rb_memq.
990 	 */
991 	for (;;) {
992 		if (RB_ROOT(&object->rb_memq) == NULL)
993 			break;
994 		kprintf("vm_object_terminate: Warning, object %p "
995 			"still has %d pages\n",
996 			object, object->resident_page_count);
997 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
998 					vm_object_terminate_callback, NULL);
999 	}
1000 
1001 	/*
1002 	 * There had better not be any pages left
1003 	 */
1004 	KKASSERT(object->resident_page_count == 0);
1005 
1006 	/*
1007 	 * Remove the object from the global object list.
1008 	 */
1009 	lwkt_gettoken(&vmobj_token);
1010 	TAILQ_REMOVE(&vm_object_list, object, object_list);
1011 	vm_object_count--;
1012 	lwkt_reltoken(&vmobj_token);
1013 	vm_object_dead_wakeup(object);
1014 
1015 	if (object->ref_count != 0) {
1016 		panic("vm_object_terminate2: object with references, "
1017 		      "ref_count=%d", object->ref_count);
1018 	}
1019 
1020 	/*
1021 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1022 	 *	 the object here.  See vm_object_drop().
1023 	 */
1024 }
1025 
1026 /*
1027  * The caller must hold the object.
1028  */
1029 static int
1030 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1031 {
1032 	vm_object_t object;
1033 
1034 	object = p->object;
1035 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1036 	if (object != p->object) {
1037 		kprintf("vm_object_terminate: Warning: Encountered "
1038 			"busied page %p on queue %d\n", p, p->queue);
1039 		vm_page_wakeup(p);
1040 	} else if (p->wire_count == 0) {
1041 		/*
1042 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1043 		 */
1044 		vm_page_free(p);
1045 		mycpu->gd_cnt.v_pfree++;
1046 	} else {
1047 		if (p->queue != PQ_NONE)
1048 			kprintf("vm_object_terminate: Warning: Encountered "
1049 				"wired page %p on queue %d\n", p, p->queue);
1050 		vm_page_remove(p);
1051 		vm_page_wakeup(p);
1052 	}
1053 	lwkt_yield();
1054 	return(0);
1055 }
1056 
1057 /*
1058  * The object is dead but still has an object<->pager association.  Sleep
1059  * and return.  The caller typically retests the association in a loop.
1060  *
1061  * The caller must hold the object.
1062  */
1063 void
1064 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1065 {
1066 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1067 	if (object->handle) {
1068 		vm_object_set_flag(object, OBJ_DEADWNT);
1069 		tsleep(object, 0, wmesg, 0);
1070 		/* object may be invalid after this point */
1071 	}
1072 }
1073 
1074 /*
1075  * Wakeup anyone waiting for the object<->pager disassociation on
1076  * a dead object.
1077  *
1078  * The caller must hold the object.
1079  */
1080 void
1081 vm_object_dead_wakeup(vm_object_t object)
1082 {
1083 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1084 	if (object->flags & OBJ_DEADWNT) {
1085 		vm_object_clear_flag(object, OBJ_DEADWNT);
1086 		wakeup(object);
1087 	}
1088 }
1089 
1090 /*
1091  * Clean all dirty pages in the specified range of object.  Leaves page
1092  * on whatever queue it is currently on.   If NOSYNC is set then do not
1093  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1094  * leaving the object dirty.
1095  *
1096  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1097  * synchronous clustering mode implementation.
1098  *
1099  * Odd semantics: if start == end, we clean everything.
1100  *
1101  * The object must be locked? XXX
1102  */
1103 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1104 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1105 
1106 void
1107 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1108 		     int flags)
1109 {
1110 	struct rb_vm_page_scan_info info;
1111 	struct vnode *vp;
1112 	int wholescan;
1113 	int pagerflags;
1114 	int generation;
1115 
1116 	vm_object_hold(object);
1117 	if (object->type != OBJT_VNODE ||
1118 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1119 		vm_object_drop(object);
1120 		return;
1121 	}
1122 
1123 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1124 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1125 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1126 
1127 	vp = object->handle;
1128 
1129 	/*
1130 	 * Interlock other major object operations.  This allows us to
1131 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1132 	 */
1133 	vm_object_set_flag(object, OBJ_CLEANING);
1134 
1135 	/*
1136 	 * Handle 'entire object' case
1137 	 */
1138 	info.start_pindex = start;
1139 	if (end == 0) {
1140 		info.end_pindex = object->size - 1;
1141 	} else {
1142 		info.end_pindex = end - 1;
1143 	}
1144 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1145 	info.limit = flags;
1146 	info.pagerflags = pagerflags;
1147 	info.object = object;
1148 
1149 	/*
1150 	 * If cleaning the entire object do a pass to mark the pages read-only.
1151 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1152 	 * OBJ_MIGHTBEDIRTY.
1153 	 */
1154 	if (wholescan) {
1155 		info.error = 0;
1156 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1157 					vm_object_page_clean_pass1, &info);
1158 		if (info.error == 0) {
1159 			vm_object_clear_flag(object,
1160 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1161 			if (object->type == OBJT_VNODE &&
1162 			    (vp = (struct vnode *)object->handle) != NULL) {
1163 				if (vp->v_flag & VOBJDIRTY)
1164 					vclrflags(vp, VOBJDIRTY);
1165 			}
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Do a pass to clean all the dirty pages we find.
1171 	 */
1172 	do {
1173 		info.error = 0;
1174 		generation = object->generation;
1175 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1176 					vm_object_page_clean_pass2, &info);
1177 	} while (info.error || generation != object->generation);
1178 
1179 	vm_object_clear_flag(object, OBJ_CLEANING);
1180 	vm_object_drop(object);
1181 }
1182 
1183 /*
1184  * The caller must hold the object.
1185  */
1186 static
1187 int
1188 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1189 {
1190 	struct rb_vm_page_scan_info *info = data;
1191 
1192 	vm_page_flag_set(p, PG_CLEANCHK);
1193 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1194 		info->error = 1;
1195 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1196 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1197 		vm_page_wakeup(p);
1198 	} else {
1199 		info->error = 1;
1200 	}
1201 	lwkt_yield();
1202 	return(0);
1203 }
1204 
1205 /*
1206  * The caller must hold the object
1207  */
1208 static
1209 int
1210 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1211 {
1212 	struct rb_vm_page_scan_info *info = data;
1213 	int generation;
1214 
1215 	/*
1216 	 * Do not mess with pages that were inserted after we started
1217 	 * the cleaning pass.
1218 	 */
1219 	if ((p->flags & PG_CLEANCHK) == 0)
1220 		goto done;
1221 
1222 	generation = info->object->generation;
1223 	vm_page_busy_wait(p, TRUE, "vpcwai");
1224 	if (p->object != info->object ||
1225 	    info->object->generation != generation) {
1226 		info->error = 1;
1227 		vm_page_wakeup(p);
1228 		goto done;
1229 	}
1230 
1231 	/*
1232 	 * Before wasting time traversing the pmaps, check for trivial
1233 	 * cases where the page cannot be dirty.
1234 	 */
1235 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1236 		KKASSERT((p->dirty & p->valid) == 0 &&
1237 			 (p->flags & PG_NEED_COMMIT) == 0);
1238 		vm_page_wakeup(p);
1239 		goto done;
1240 	}
1241 
1242 	/*
1243 	 * Check whether the page is dirty or not.  The page has been set
1244 	 * to be read-only so the check will not race a user dirtying the
1245 	 * page.
1246 	 */
1247 	vm_page_test_dirty(p);
1248 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1249 		vm_page_flag_clear(p, PG_CLEANCHK);
1250 		vm_page_wakeup(p);
1251 		goto done;
1252 	}
1253 
1254 	/*
1255 	 * If we have been asked to skip nosync pages and this is a
1256 	 * nosync page, skip it.  Note that the object flags were
1257 	 * not cleared in this case (because pass1 will have returned an
1258 	 * error), so we do not have to set them.
1259 	 */
1260 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1261 		vm_page_flag_clear(p, PG_CLEANCHK);
1262 		vm_page_wakeup(p);
1263 		goto done;
1264 	}
1265 
1266 	/*
1267 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1268 	 * the pages that get successfully flushed.  Set info->error if
1269 	 * we raced an object modification.
1270 	 */
1271 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1272 	vm_wait_nominal();
1273 done:
1274 	lwkt_yield();
1275 	return(0);
1276 }
1277 
1278 /*
1279  * Collect the specified page and nearby pages and flush them out.
1280  * The number of pages flushed is returned.  The passed page is busied
1281  * by the caller and we are responsible for its disposition.
1282  *
1283  * The caller must hold the object.
1284  */
1285 static void
1286 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1287 {
1288 	int runlen;
1289 	int error;
1290 	int maxf;
1291 	int chkb;
1292 	int maxb;
1293 	int i;
1294 	vm_pindex_t pi;
1295 	vm_page_t maf[vm_pageout_page_count];
1296 	vm_page_t mab[vm_pageout_page_count];
1297 	vm_page_t ma[vm_pageout_page_count];
1298 
1299 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1300 
1301 	pi = p->pindex;
1302 
1303 	maxf = 0;
1304 	for(i = 1; i < vm_pageout_page_count; i++) {
1305 		vm_page_t tp;
1306 
1307 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1308 		if (error)
1309 			break;
1310 		if (tp == NULL)
1311 			break;
1312 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1313 		    (tp->flags & PG_CLEANCHK) == 0) {
1314 			vm_page_wakeup(tp);
1315 			break;
1316 		}
1317 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1318 			vm_page_flag_clear(tp, PG_CLEANCHK);
1319 			vm_page_wakeup(tp);
1320 			break;
1321 		}
1322 		vm_page_test_dirty(tp);
1323 		if ((tp->dirty & tp->valid) == 0 &&
1324 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1325 			vm_page_flag_clear(tp, PG_CLEANCHK);
1326 			vm_page_wakeup(tp);
1327 			break;
1328 		}
1329 		maf[i - 1] = tp;
1330 		maxf++;
1331 	}
1332 
1333 	maxb = 0;
1334 	chkb = vm_pageout_page_count -  maxf;
1335 	/*
1336 	 * NOTE: chkb can be 0
1337 	 */
1338 	for(i = 1; chkb && i < chkb; i++) {
1339 		vm_page_t tp;
1340 
1341 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1342 		if (error)
1343 			break;
1344 		if (tp == NULL)
1345 			break;
1346 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1347 		    (tp->flags & PG_CLEANCHK) == 0) {
1348 			vm_page_wakeup(tp);
1349 			break;
1350 		}
1351 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1352 			vm_page_flag_clear(tp, PG_CLEANCHK);
1353 			vm_page_wakeup(tp);
1354 			break;
1355 		}
1356 		vm_page_test_dirty(tp);
1357 		if ((tp->dirty & tp->valid) == 0 &&
1358 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1359 			vm_page_flag_clear(tp, PG_CLEANCHK);
1360 			vm_page_wakeup(tp);
1361 			break;
1362 		}
1363 		mab[i - 1] = tp;
1364 		maxb++;
1365 	}
1366 
1367 	/*
1368 	 * All pages in the maf[] and mab[] array are busied.
1369 	 */
1370 	for (i = 0; i < maxb; i++) {
1371 		int index = (maxb - i) - 1;
1372 		ma[index] = mab[i];
1373 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1374 	}
1375 	vm_page_flag_clear(p, PG_CLEANCHK);
1376 	ma[maxb] = p;
1377 	for(i = 0; i < maxf; i++) {
1378 		int index = (maxb + i) + 1;
1379 		ma[index] = maf[i];
1380 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1381 	}
1382 	runlen = maxb + maxf + 1;
1383 
1384 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1385 		vm_page_hold(ma[i]);
1386 
1387 	vm_pageout_flush(ma, runlen, pagerflags);
1388 
1389 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1390 		vm_page_unhold(ma[i]);
1391 }
1392 
1393 /*
1394  * Same as vm_object_pmap_copy, except range checking really
1395  * works, and is meant for small sections of an object.
1396  *
1397  * This code protects resident pages by making them read-only
1398  * and is typically called on a fork or split when a page
1399  * is converted to copy-on-write.
1400  *
1401  * NOTE: If the page is already at VM_PROT_NONE, calling
1402  * vm_page_protect will have no effect.
1403  */
1404 void
1405 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1406 {
1407 	vm_pindex_t idx;
1408 	vm_page_t p;
1409 
1410 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1411 		return;
1412 
1413 	vm_object_hold(object);
1414 	for (idx = start; idx < end; idx++) {
1415 		p = vm_page_lookup(object, idx);
1416 		if (p == NULL)
1417 			continue;
1418 		vm_page_protect(p, VM_PROT_READ);
1419 	}
1420 	vm_object_drop(object);
1421 }
1422 
1423 /*
1424  * Removes all physical pages in the specified object range from all
1425  * physical maps.
1426  *
1427  * The object must *not* be locked.
1428  */
1429 
1430 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1431 
1432 void
1433 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1434 {
1435 	struct rb_vm_page_scan_info info;
1436 
1437 	if (object == NULL)
1438 		return;
1439 	info.start_pindex = start;
1440 	info.end_pindex = end - 1;
1441 
1442 	vm_object_hold(object);
1443 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1444 				vm_object_pmap_remove_callback, &info);
1445 	if (start == 0 && end == object->size)
1446 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1447 	vm_object_drop(object);
1448 }
1449 
1450 /*
1451  * The caller must hold the object
1452  */
1453 static int
1454 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1455 {
1456 	vm_page_protect(p, VM_PROT_NONE);
1457 	return(0);
1458 }
1459 
1460 /*
1461  * Implements the madvise function at the object/page level.
1462  *
1463  * MADV_WILLNEED	(any object)
1464  *
1465  *	Activate the specified pages if they are resident.
1466  *
1467  * MADV_DONTNEED	(any object)
1468  *
1469  *	Deactivate the specified pages if they are resident.
1470  *
1471  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1472  *
1473  *	Deactivate and clean the specified pages if they are
1474  *	resident.  This permits the process to reuse the pages
1475  *	without faulting or the kernel to reclaim the pages
1476  *	without I/O.
1477  *
1478  * No requirements.
1479  */
1480 void
1481 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1482 {
1483 	vm_pindex_t end, tpindex;
1484 	vm_object_t tobject;
1485 	vm_object_t xobj;
1486 	vm_page_t m;
1487 	int error;
1488 
1489 	if (object == NULL)
1490 		return;
1491 
1492 	end = pindex + count;
1493 
1494 	vm_object_hold(object);
1495 	tobject = object;
1496 
1497 	/*
1498 	 * Locate and adjust resident pages
1499 	 */
1500 	for (; pindex < end; pindex += 1) {
1501 relookup:
1502 		if (tobject != object)
1503 			vm_object_drop(tobject);
1504 		tobject = object;
1505 		tpindex = pindex;
1506 shadowlookup:
1507 		/*
1508 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1509 		 * and those pages must be OBJ_ONEMAPPING.
1510 		 */
1511 		if (advise == MADV_FREE) {
1512 			if ((tobject->type != OBJT_DEFAULT &&
1513 			     tobject->type != OBJT_SWAP) ||
1514 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1515 				continue;
1516 			}
1517 		}
1518 
1519 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1520 
1521 		if (error) {
1522 			vm_page_sleep_busy(m, TRUE, "madvpo");
1523 			goto relookup;
1524 		}
1525 		if (m == NULL) {
1526 			/*
1527 			 * There may be swap even if there is no backing page
1528 			 */
1529 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1530 				swap_pager_freespace(tobject, tpindex, 1);
1531 
1532 			/*
1533 			 * next object
1534 			 */
1535 			while ((xobj = tobject->backing_object) != NULL) {
1536 				KKASSERT(xobj != object);
1537 				vm_object_hold(xobj);
1538 				if (xobj == tobject->backing_object)
1539 					break;
1540 				vm_object_drop(xobj);
1541 			}
1542 			if (xobj == NULL)
1543 				continue;
1544 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1545 			if (tobject != object) {
1546 				vm_object_lock_swap();
1547 				vm_object_drop(tobject);
1548 			}
1549 			tobject = xobj;
1550 			goto shadowlookup;
1551 		}
1552 
1553 		/*
1554 		 * If the page is not in a normal active state, we skip it.
1555 		 * If the page is not managed there are no page queues to
1556 		 * mess with.  Things can break if we mess with pages in
1557 		 * any of the below states.
1558 		 */
1559 		if (m->wire_count ||
1560 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1561 		    m->valid != VM_PAGE_BITS_ALL
1562 		) {
1563 			vm_page_wakeup(m);
1564 			continue;
1565 		}
1566 
1567 		/*
1568 		 * Theoretically once a page is known not to be busy, an
1569 		 * interrupt cannot come along and rip it out from under us.
1570 		 */
1571 
1572 		if (advise == MADV_WILLNEED) {
1573 			vm_page_activate(m);
1574 		} else if (advise == MADV_DONTNEED) {
1575 			vm_page_dontneed(m);
1576 		} else if (advise == MADV_FREE) {
1577 			/*
1578 			 * Mark the page clean.  This will allow the page
1579 			 * to be freed up by the system.  However, such pages
1580 			 * are often reused quickly by malloc()/free()
1581 			 * so we do not do anything that would cause
1582 			 * a page fault if we can help it.
1583 			 *
1584 			 * Specifically, we do not try to actually free
1585 			 * the page now nor do we try to put it in the
1586 			 * cache (which would cause a page fault on reuse).
1587 			 *
1588 			 * But we do make the page is freeable as we
1589 			 * can without actually taking the step of unmapping
1590 			 * it.
1591 			 */
1592 			pmap_clear_modify(m);
1593 			m->dirty = 0;
1594 			m->act_count = 0;
1595 			vm_page_dontneed(m);
1596 			if (tobject->type == OBJT_SWAP)
1597 				swap_pager_freespace(tobject, tpindex, 1);
1598 		}
1599 		vm_page_wakeup(m);
1600 	}
1601 	if (tobject != object)
1602 		vm_object_drop(tobject);
1603 	vm_object_drop(object);
1604 }
1605 
1606 /*
1607  * Create a new object which is backed by the specified existing object
1608  * range.  Replace the pointer and offset that was pointing at the existing
1609  * object with the pointer/offset for the new object.
1610  *
1611  * No other requirements.
1612  */
1613 void
1614 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1615 		 int addref)
1616 {
1617 	vm_object_t source;
1618 	vm_object_t result;
1619 
1620 	source = *objectp;
1621 
1622 	/*
1623 	 * Don't create the new object if the old object isn't shared.
1624 	 * We have to chain wait before adding the reference to avoid
1625 	 * racing a collapse or deallocation.
1626 	 *
1627 	 * Add the additional ref to source here to avoid racing a later
1628 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1629 	 * addref is TRUE or not in this case because the original object
1630 	 * will be shadowed.
1631 	 */
1632 	if (source) {
1633 		vm_object_hold(source);
1634 		vm_object_chain_wait(source);
1635 		if (source->ref_count == 1 &&
1636 		    source->handle == NULL &&
1637 		    (source->type == OBJT_DEFAULT ||
1638 		     source->type == OBJT_SWAP)) {
1639 			vm_object_drop(source);
1640 			if (addref) {
1641 				vm_object_reference_locked(source);
1642 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1643 			}
1644 			return;
1645 		}
1646 		vm_object_reference_locked(source);
1647 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1648 	}
1649 
1650 	/*
1651 	 * Allocate a new object with the given length.  The new object
1652 	 * is returned referenced but we may have to add another one.
1653 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1654 	 * (typically because the caller is about to clone a vm_map_entry).
1655 	 *
1656 	 * The source object currently has an extra reference to prevent
1657 	 * collapses into it while we mess with its shadow list, which
1658 	 * we will remove later in this routine.
1659 	 */
1660 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1661 		panic("vm_object_shadow: no object for shadowing");
1662 	vm_object_hold(result);
1663 	if (addref) {
1664 		vm_object_reference_locked(result);
1665 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1666 	}
1667 
1668 	/*
1669 	 * The new object shadows the source object.  Chain wait before
1670 	 * adjusting shadow_count or the shadow list to avoid races.
1671 	 *
1672 	 * Try to optimize the result object's page color when shadowing
1673 	 * in order to maintain page coloring consistency in the combined
1674 	 * shadowed object.
1675 	 */
1676 	KKASSERT(result->backing_object == NULL);
1677 	result->backing_object = source;
1678 	if (source) {
1679 		vm_object_chain_wait(source);
1680 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1681 		source->shadow_count++;
1682 		source->generation++;
1683 		/* cpu localization twist */
1684 		result->pg_color = (int)(intptr_t)curthread;
1685 	}
1686 
1687 	/*
1688 	 * Adjust the return storage.  Drop the ref on source before
1689 	 * returning.
1690 	 */
1691 	result->backing_object_offset = *offset;
1692 	vm_object_drop(result);
1693 	*offset = 0;
1694 	if (source) {
1695 		vm_object_deallocate_locked(source);
1696 		vm_object_drop(source);
1697 	}
1698 
1699 	/*
1700 	 * Return the new things
1701 	 */
1702 	*objectp = result;
1703 }
1704 
1705 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1706 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1707 #define	OBSC_COLLAPSE_WAIT	0x0004
1708 
1709 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1710 
1711 /*
1712  * The caller must hold the object.
1713  */
1714 static __inline int
1715 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1716 {
1717 	struct rb_vm_page_scan_info info;
1718 
1719 	vm_object_assert_held(object);
1720 	vm_object_assert_held(backing_object);
1721 
1722 	KKASSERT(backing_object == object->backing_object);
1723 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1724 
1725 	/*
1726 	 * Initial conditions
1727 	 */
1728 	if (op & OBSC_TEST_ALL_SHADOWED) {
1729 		/*
1730 		 * We do not want to have to test for the existence of
1731 		 * swap pages in the backing object.  XXX but with the
1732 		 * new swapper this would be pretty easy to do.
1733 		 *
1734 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1735 		 * been ZFOD faulted yet?  If we do not test for this, the
1736 		 * shadow test may succeed! XXX
1737 		 */
1738 		if (backing_object->type != OBJT_DEFAULT)
1739 			return(0);
1740 	}
1741 	if (op & OBSC_COLLAPSE_WAIT) {
1742 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1743 		vm_object_set_flag(backing_object, OBJ_DEAD);
1744 		lwkt_gettoken(&vmobj_token);
1745 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1746 		vm_object_count--;
1747 		lwkt_reltoken(&vmobj_token);
1748 		vm_object_dead_wakeup(backing_object);
1749 	}
1750 
1751 	/*
1752 	 * Our scan.   We have to retry if a negative error code is returned,
1753 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1754 	 * the scan had to be stopped because the parent does not completely
1755 	 * shadow the child.
1756 	 */
1757 	info.object = object;
1758 	info.backing_object = backing_object;
1759 	info.limit = op;
1760 	do {
1761 		info.error = 1;
1762 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1763 					vm_object_backing_scan_callback,
1764 					&info);
1765 	} while (info.error < 0);
1766 
1767 	return(info.error);
1768 }
1769 
1770 /*
1771  * The caller must hold the object.
1772  */
1773 static int
1774 vm_object_backing_scan_callback(vm_page_t p, void *data)
1775 {
1776 	struct rb_vm_page_scan_info *info = data;
1777 	vm_object_t backing_object;
1778 	vm_object_t object;
1779 	vm_pindex_t pindex;
1780 	vm_pindex_t new_pindex;
1781 	vm_pindex_t backing_offset_index;
1782 	int op;
1783 
1784 	pindex = p->pindex;
1785 	new_pindex = pindex - info->backing_offset_index;
1786 	op = info->limit;
1787 	object = info->object;
1788 	backing_object = info->backing_object;
1789 	backing_offset_index = info->backing_offset_index;
1790 
1791 	if (op & OBSC_TEST_ALL_SHADOWED) {
1792 		vm_page_t pp;
1793 
1794 		/*
1795 		 * Ignore pages outside the parent object's range
1796 		 * and outside the parent object's mapping of the
1797 		 * backing object.
1798 		 *
1799 		 * note that we do not busy the backing object's
1800 		 * page.
1801 		 */
1802 		if (pindex < backing_offset_index ||
1803 		    new_pindex >= object->size
1804 		) {
1805 			return(0);
1806 		}
1807 
1808 		/*
1809 		 * See if the parent has the page or if the parent's
1810 		 * object pager has the page.  If the parent has the
1811 		 * page but the page is not valid, the parent's
1812 		 * object pager must have the page.
1813 		 *
1814 		 * If this fails, the parent does not completely shadow
1815 		 * the object and we might as well give up now.
1816 		 */
1817 		pp = vm_page_lookup(object, new_pindex);
1818 		if ((pp == NULL || pp->valid == 0) &&
1819 		    !vm_pager_has_page(object, new_pindex)
1820 		) {
1821 			info->error = 0;	/* problemo */
1822 			return(-1);		/* stop the scan */
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * Check for busy page.  Note that we may have lost (p) when we
1828 	 * possibly blocked above.
1829 	 */
1830 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1831 		vm_page_t pp;
1832 
1833 		if (vm_page_busy_try(p, TRUE)) {
1834 			if (op & OBSC_COLLAPSE_NOWAIT) {
1835 				return(0);
1836 			} else {
1837 				/*
1838 				 * If we slept, anything could have
1839 				 * happened.   Ask that the scan be restarted.
1840 				 *
1841 				 * Since the object is marked dead, the
1842 				 * backing offset should not have changed.
1843 				 */
1844 				vm_page_sleep_busy(p, TRUE, "vmocol");
1845 				info->error = -1;
1846 				return(-1);
1847 			}
1848 		}
1849 
1850 		/*
1851 		 * If (p) is no longer valid restart the scan.
1852 		 */
1853 		if (p->object != backing_object || p->pindex != pindex) {
1854 			kprintf("vm_object_backing_scan: Warning: page "
1855 				"%p ripped out from under us\n", p);
1856 			vm_page_wakeup(p);
1857 			info->error = -1;
1858 			return(-1);
1859 		}
1860 
1861 		if (op & OBSC_COLLAPSE_NOWAIT) {
1862 			if (p->valid == 0 ||
1863 			    p->wire_count ||
1864 			    (p->flags & PG_NEED_COMMIT)) {
1865 				vm_page_wakeup(p);
1866 				return(0);
1867 			}
1868 		} else {
1869 			/* XXX what if p->valid == 0 , hold_count, etc? */
1870 		}
1871 
1872 		KASSERT(
1873 		    p->object == backing_object,
1874 		    ("vm_object_qcollapse(): object mismatch")
1875 		);
1876 
1877 		/*
1878 		 * Destroy any associated swap
1879 		 */
1880 		if (backing_object->type == OBJT_SWAP)
1881 			swap_pager_freespace(backing_object, p->pindex, 1);
1882 
1883 		if (
1884 		    p->pindex < backing_offset_index ||
1885 		    new_pindex >= object->size
1886 		) {
1887 			/*
1888 			 * Page is out of the parent object's range, we
1889 			 * can simply destroy it.
1890 			 */
1891 			vm_page_protect(p, VM_PROT_NONE);
1892 			vm_page_free(p);
1893 			return(0);
1894 		}
1895 
1896 		pp = vm_page_lookup(object, new_pindex);
1897 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1898 			/*
1899 			 * page already exists in parent OR swap exists
1900 			 * for this location in the parent.  Destroy
1901 			 * the original page from the backing object.
1902 			 *
1903 			 * Leave the parent's page alone
1904 			 */
1905 			vm_page_protect(p, VM_PROT_NONE);
1906 			vm_page_free(p);
1907 			return(0);
1908 		}
1909 
1910 		/*
1911 		 * Page does not exist in parent, rename the
1912 		 * page from the backing object to the main object.
1913 		 *
1914 		 * If the page was mapped to a process, it can remain
1915 		 * mapped through the rename.
1916 		 */
1917 		if ((p->queue - p->pc) == PQ_CACHE)
1918 			vm_page_deactivate(p);
1919 
1920 		vm_page_rename(p, object, new_pindex);
1921 		vm_page_wakeup(p);
1922 		/* page automatically made dirty by rename */
1923 	}
1924 	return(0);
1925 }
1926 
1927 /*
1928  * This version of collapse allows the operation to occur earlier and
1929  * when paging_in_progress is true for an object...  This is not a complete
1930  * operation, but should plug 99.9% of the rest of the leaks.
1931  *
1932  * The caller must hold the object and backing_object and both must be
1933  * chainlocked.
1934  *
1935  * (only called from vm_object_collapse)
1936  */
1937 static void
1938 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1939 {
1940 	if (backing_object->ref_count == 1) {
1941 		backing_object->ref_count += 2;
1942 		vm_object_backing_scan(object, backing_object,
1943 				       OBSC_COLLAPSE_NOWAIT);
1944 		backing_object->ref_count -= 2;
1945 	}
1946 }
1947 
1948 /*
1949  * Collapse an object with the object backing it.  Pages in the backing
1950  * object are moved into the parent, and the backing object is deallocated.
1951  * Any conflict is resolved in favor of the parent's existing pages.
1952  *
1953  * object must be held and chain-locked on call.
1954  *
1955  * The caller must have an extra ref on object to prevent a race from
1956  * destroying it during the collapse.
1957  */
1958 void
1959 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1960 {
1961 	struct vm_object_dealloc_list *dlist = NULL;
1962 	vm_object_t backing_object;
1963 
1964 	/*
1965 	 * Only one thread is attempting a collapse at any given moment.
1966 	 * There are few restrictions for (object) that callers of this
1967 	 * function check so reentrancy is likely.
1968 	 */
1969 	KKASSERT(object != NULL);
1970 	vm_object_assert_held(object);
1971 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1972 
1973 	for (;;) {
1974 		vm_object_t bbobj;
1975 		int dodealloc;
1976 
1977 		/*
1978 		 * We have to hold the backing object, check races.
1979 		 */
1980 		while ((backing_object = object->backing_object) != NULL) {
1981 			vm_object_hold(backing_object);
1982 			if (backing_object == object->backing_object)
1983 				break;
1984 			vm_object_drop(backing_object);
1985 		}
1986 
1987 		/*
1988 		 * No backing object?  Nothing to collapse then.
1989 		 */
1990 		if (backing_object == NULL)
1991 			break;
1992 
1993 		/*
1994 		 * You can't collapse with a non-default/non-swap object.
1995 		 */
1996 		if (backing_object->type != OBJT_DEFAULT &&
1997 		    backing_object->type != OBJT_SWAP) {
1998 			vm_object_drop(backing_object);
1999 			backing_object = NULL;
2000 			break;
2001 		}
2002 
2003 		/*
2004 		 * Chain-lock the backing object too because if we
2005 		 * successfully merge its pages into the top object we
2006 		 * will collapse backing_object->backing_object as the
2007 		 * new backing_object.  Re-check that it is still our
2008 		 * backing object.
2009 		 */
2010 		vm_object_chain_acquire(backing_object);
2011 		if (backing_object != object->backing_object) {
2012 			vm_object_chain_release(backing_object);
2013 			vm_object_drop(backing_object);
2014 			continue;
2015 		}
2016 
2017 		/*
2018 		 * we check the backing object first, because it is most likely
2019 		 * not collapsable.
2020 		 */
2021 		if (backing_object->handle != NULL ||
2022 		    (backing_object->type != OBJT_DEFAULT &&
2023 		     backing_object->type != OBJT_SWAP) ||
2024 		    (backing_object->flags & OBJ_DEAD) ||
2025 		    object->handle != NULL ||
2026 		    (object->type != OBJT_DEFAULT &&
2027 		     object->type != OBJT_SWAP) ||
2028 		    (object->flags & OBJ_DEAD)) {
2029 			break;
2030 		}
2031 
2032 		/*
2033 		 * If paging is in progress we can't do a normal collapse.
2034 		 */
2035 		if (
2036 		    object->paging_in_progress != 0 ||
2037 		    backing_object->paging_in_progress != 0
2038 		) {
2039 			vm_object_qcollapse(object, backing_object);
2040 			break;
2041 		}
2042 
2043 		/*
2044 		 * We know that we can either collapse the backing object (if
2045 		 * the parent is the only reference to it) or (perhaps) have
2046 		 * the parent bypass the object if the parent happens to shadow
2047 		 * all the resident pages in the entire backing object.
2048 		 *
2049 		 * This is ignoring pager-backed pages such as swap pages.
2050 		 * vm_object_backing_scan fails the shadowing test in this
2051 		 * case.
2052 		 */
2053 		if (backing_object->ref_count == 1) {
2054 			/*
2055 			 * If there is exactly one reference to the backing
2056 			 * object, we can collapse it into the parent.
2057 			 */
2058 			KKASSERT(object->backing_object == backing_object);
2059 			vm_object_backing_scan(object, backing_object,
2060 					       OBSC_COLLAPSE_WAIT);
2061 
2062 			/*
2063 			 * Move the pager from backing_object to object.
2064 			 */
2065 			if (backing_object->type == OBJT_SWAP) {
2066 				vm_object_pip_add(backing_object, 1);
2067 
2068 				/*
2069 				 * scrap the paging_offset junk and do a
2070 				 * discrete copy.  This also removes major
2071 				 * assumptions about how the swap-pager
2072 				 * works from where it doesn't belong.  The
2073 				 * new swapper is able to optimize the
2074 				 * destroy-source case.
2075 				 */
2076 				vm_object_pip_add(object, 1);
2077 				swap_pager_copy(backing_object, object,
2078 				    OFF_TO_IDX(object->backing_object_offset),
2079 				    TRUE);
2080 				vm_object_pip_wakeup(object);
2081 				vm_object_pip_wakeup(backing_object);
2082 			}
2083 
2084 			/*
2085 			 * Object now shadows whatever backing_object did.
2086 			 * Remove object from backing_object's shadow_list.
2087 			 */
2088 			LIST_REMOVE(object, shadow_list);
2089 			KKASSERT(object->backing_object == backing_object);
2090 			backing_object->shadow_count--;
2091 			backing_object->generation++;
2092 
2093 			/*
2094 			 * backing_object->backing_object moves from within
2095 			 * backing_object to within object.
2096 			 */
2097 			while ((bbobj = backing_object->backing_object) != NULL) {
2098 				vm_object_hold(bbobj);
2099 				if (bbobj == backing_object->backing_object)
2100 					break;
2101 				vm_object_drop(bbobj);
2102 			}
2103 			if (bbobj) {
2104 				LIST_REMOVE(backing_object, shadow_list);
2105 				bbobj->shadow_count--;
2106 				bbobj->generation++;
2107 				backing_object->backing_object = NULL;
2108 			}
2109 			object->backing_object = bbobj;
2110 			if (bbobj) {
2111 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2112 						 object, shadow_list);
2113 				bbobj->shadow_count++;
2114 				bbobj->generation++;
2115 			}
2116 
2117 			object->backing_object_offset +=
2118 				backing_object->backing_object_offset;
2119 
2120 			vm_object_drop(bbobj);
2121 
2122 			/*
2123 			 * Discard the old backing_object.  Nothing should be
2124 			 * able to ref it, other than a vm_map_split(),
2125 			 * and vm_map_split() will stall on our chain lock.
2126 			 * And we control the parent so it shouldn't be
2127 			 * possible for it to go away either.
2128 			 *
2129 			 * Since the backing object has no pages, no pager
2130 			 * left, and no object references within it, all
2131 			 * that is necessary is to dispose of it.
2132 			 */
2133 			KASSERT(backing_object->ref_count == 1,
2134 				("backing_object %p was somehow "
2135 				 "re-referenced during collapse!",
2136 				 backing_object));
2137 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2138 				("backing_object %p somehow has left "
2139 				 "over pages during collapse!",
2140 				 backing_object));
2141 
2142 			/*
2143 			 * The object can be destroyed.
2144 			 *
2145 			 * XXX just fall through and dodealloc instead
2146 			 *     of forcing destruction?
2147 			 */
2148 			--backing_object->ref_count;
2149 			if ((backing_object->flags & OBJ_DEAD) == 0)
2150 				vm_object_terminate(backing_object);
2151 			object_collapses++;
2152 			dodealloc = 0;
2153 		} else {
2154 			/*
2155 			 * If we do not entirely shadow the backing object,
2156 			 * there is nothing we can do so we give up.
2157 			 */
2158 			if (vm_object_backing_scan(object, backing_object,
2159 						OBSC_TEST_ALL_SHADOWED) == 0) {
2160 				break;
2161 			}
2162 
2163 			/*
2164 			 * bbobj is backing_object->backing_object.  Since
2165 			 * object completely shadows backing_object we can
2166 			 * bypass it and become backed by bbobj instead.
2167 			 */
2168 			while ((bbobj = backing_object->backing_object) != NULL) {
2169 				vm_object_hold(bbobj);
2170 				if (bbobj == backing_object->backing_object)
2171 					break;
2172 				vm_object_drop(bbobj);
2173 			}
2174 
2175 			/*
2176 			 * Make object shadow bbobj instead of backing_object.
2177 			 * Remove object from backing_object's shadow list.
2178 			 *
2179 			 * Deallocating backing_object will not remove
2180 			 * it, since its reference count is at least 2.
2181 			 */
2182 			KKASSERT(object->backing_object == backing_object);
2183 			LIST_REMOVE(object, shadow_list);
2184 			backing_object->shadow_count--;
2185 			backing_object->generation++;
2186 
2187 			/*
2188 			 * Add a ref to bbobj, bbobj now shadows object.
2189 			 *
2190 			 * NOTE: backing_object->backing_object still points
2191 			 *	 to bbobj.  That relationship remains intact
2192 			 *	 because backing_object has > 1 ref, so
2193 			 *	 someone else is pointing to it (hence why
2194 			 *	 we can't collapse it into object and can
2195 			 *	 only handle the all-shadowed bypass case).
2196 			 */
2197 			if (bbobj) {
2198 				vm_object_chain_wait(bbobj);
2199 				vm_object_reference_locked(bbobj);
2200 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2201 						 object, shadow_list);
2202 				bbobj->shadow_count++;
2203 				bbobj->generation++;
2204 				object->backing_object_offset +=
2205 					backing_object->backing_object_offset;
2206 				object->backing_object = bbobj;
2207 				vm_object_drop(bbobj);
2208 			} else {
2209 				object->backing_object = NULL;
2210 			}
2211 
2212 			/*
2213 			 * Drop the reference count on backing_object.  To
2214 			 * handle ref_count races properly we can't assume
2215 			 * that the ref_count is still at least 2 so we
2216 			 * have to actually call vm_object_deallocate()
2217 			 * (after clearing the chainlock).
2218 			 */
2219 			object_bypasses++;
2220 			dodealloc = 1;
2221 		}
2222 
2223 		/*
2224 		 * Ok, we want to loop on the new object->bbobj association,
2225 		 * possibly collapsing it further.  However if dodealloc is
2226 		 * non-zero we have to deallocate the backing_object which
2227 		 * itself can potentially undergo a collapse, creating a
2228 		 * recursion depth issue with the LWKT token subsystem.
2229 		 *
2230 		 * In the case where we must deallocate the backing_object
2231 		 * it is possible now that the backing_object has a single
2232 		 * shadow count on some other object (not represented here
2233 		 * as yet), since it no longer shadows us.  Thus when we
2234 		 * call vm_object_deallocate() it may attempt to collapse
2235 		 * itself into its remaining parent.
2236 		 */
2237 		if (dodealloc) {
2238 			struct vm_object_dealloc_list *dtmp;
2239 
2240 			vm_object_chain_release(backing_object);
2241 			vm_object_unlock(backing_object);
2242 			/* backing_object remains held */
2243 
2244 			/*
2245 			 * Auto-deallocation list for caller convenience.
2246 			 */
2247 			if (dlistp == NULL)
2248 				dlistp = &dlist;
2249 
2250 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2251 			dtmp->object = backing_object;
2252 			dtmp->next = *dlistp;
2253 			*dlistp = dtmp;
2254 		} else {
2255 			vm_object_chain_release(backing_object);
2256 			vm_object_drop(backing_object);
2257 		}
2258 		/* backing_object = NULL; not needed */
2259 		/* loop */
2260 	}
2261 
2262 	/*
2263 	 * Clean up any left over backing_object
2264 	 */
2265 	if (backing_object) {
2266 		vm_object_chain_release(backing_object);
2267 		vm_object_drop(backing_object);
2268 	}
2269 
2270 	/*
2271 	 * Clean up any auto-deallocation list.  This is a convenience
2272 	 * for top-level callers so they don't have to pass &dlist.
2273 	 * Do not clean up any caller-passed dlistp, the caller will
2274 	 * do that.
2275 	 */
2276 	if (dlist)
2277 		vm_object_deallocate_list(&dlist);
2278 
2279 }
2280 
2281 /*
2282  * vm_object_collapse() may collect additional objects in need of
2283  * deallocation.  This routine deallocates these objects.  The
2284  * deallocation itself can trigger additional collapses (which the
2285  * deallocate function takes care of).  This procedure is used to
2286  * reduce procedural recursion since these vm_object shadow chains
2287  * can become quite long.
2288  */
2289 void
2290 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2291 {
2292 	struct vm_object_dealloc_list *dlist;
2293 
2294 	while ((dlist = *dlistp) != NULL) {
2295 		*dlistp = dlist->next;
2296 		vm_object_lock(dlist->object);
2297 		vm_object_deallocate_locked(dlist->object);
2298 		vm_object_drop(dlist->object);
2299 		kfree(dlist, M_TEMP);
2300 	}
2301 }
2302 
2303 /*
2304  * Removes all physical pages in the specified object range from the
2305  * object's list of pages.
2306  *
2307  * No requirements.
2308  */
2309 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2310 
2311 void
2312 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2313 		      boolean_t clean_only)
2314 {
2315 	struct rb_vm_page_scan_info info;
2316 	int all;
2317 
2318 	/*
2319 	 * Degenerate cases and assertions
2320 	 */
2321 	vm_object_hold(object);
2322 	if (object == NULL ||
2323 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2324 		vm_object_drop(object);
2325 		return;
2326 	}
2327 	KASSERT(object->type != OBJT_PHYS,
2328 		("attempt to remove pages from a physical object"));
2329 
2330 	/*
2331 	 * Indicate that paging is occuring on the object
2332 	 */
2333 	vm_object_pip_add(object, 1);
2334 
2335 	/*
2336 	 * Figure out the actual removal range and whether we are removing
2337 	 * the entire contents of the object or not.  If removing the entire
2338 	 * contents, be sure to get all pages, even those that might be
2339 	 * beyond the end of the object.
2340 	 */
2341 	info.start_pindex = start;
2342 	if (end == 0)
2343 		info.end_pindex = (vm_pindex_t)-1;
2344 	else
2345 		info.end_pindex = end - 1;
2346 	info.limit = clean_only;
2347 	all = (start == 0 && info.end_pindex >= object->size - 1);
2348 
2349 	/*
2350 	 * Loop until we are sure we have gotten them all.
2351 	 */
2352 	do {
2353 		info.error = 0;
2354 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2355 					vm_object_page_remove_callback, &info);
2356 	} while (info.error);
2357 
2358 	/*
2359 	 * Remove any related swap if throwing away pages, or for
2360 	 * non-swap objects (the swap is a clean copy in that case).
2361 	 */
2362 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2363 		if (all)
2364 			swap_pager_freespace_all(object);
2365 		else
2366 			swap_pager_freespace(object, info.start_pindex,
2367 			     info.end_pindex - info.start_pindex + 1);
2368 	}
2369 
2370 	/*
2371 	 * Cleanup
2372 	 */
2373 	vm_object_pip_wakeup(object);
2374 	vm_object_drop(object);
2375 }
2376 
2377 /*
2378  * The caller must hold the object
2379  */
2380 static int
2381 vm_object_page_remove_callback(vm_page_t p, void *data)
2382 {
2383 	struct rb_vm_page_scan_info *info = data;
2384 
2385 	if (vm_page_busy_try(p, TRUE)) {
2386 		vm_page_sleep_busy(p, TRUE, "vmopar");
2387 		info->error = 1;
2388 		return(0);
2389 	}
2390 
2391 	/*
2392 	 * Wired pages cannot be destroyed, but they can be invalidated
2393 	 * and we do so if clean_only (limit) is not set.
2394 	 *
2395 	 * WARNING!  The page may be wired due to being part of a buffer
2396 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2397 	 *	     This is fine as part of a truncation but VFSs must be
2398 	 *	     sure to fix the buffer up when re-extending the file.
2399 	 *
2400 	 * NOTE!     PG_NEED_COMMIT is ignored.
2401 	 */
2402 	if (p->wire_count != 0) {
2403 		vm_page_protect(p, VM_PROT_NONE);
2404 		if (info->limit == 0)
2405 			p->valid = 0;
2406 		vm_page_wakeup(p);
2407 		return(0);
2408 	}
2409 
2410 	/*
2411 	 * limit is our clean_only flag.  If set and the page is dirty or
2412 	 * requires a commit, do not free it.  If set and the page is being
2413 	 * held by someone, do not free it.
2414 	 */
2415 	if (info->limit && p->valid) {
2416 		vm_page_test_dirty(p);
2417 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2418 			vm_page_wakeup(p);
2419 			return(0);
2420 		}
2421 #if 0
2422 		if (p->hold_count) {
2423 			vm_page_wakeup(p);
2424 			return(0);
2425 		}
2426 #endif
2427 	}
2428 
2429 	/*
2430 	 * Destroy the page
2431 	 */
2432 	vm_page_protect(p, VM_PROT_NONE);
2433 	vm_page_free(p);
2434 	return(0);
2435 }
2436 
2437 /*
2438  * Coalesces two objects backing up adjoining regions of memory into a
2439  * single object.
2440  *
2441  * returns TRUE if objects were combined.
2442  *
2443  * NOTE: Only works at the moment if the second object is NULL -
2444  *	 if it's not, which object do we lock first?
2445  *
2446  * Parameters:
2447  *	prev_object	First object to coalesce
2448  *	prev_offset	Offset into prev_object
2449  *	next_object	Second object into coalesce
2450  *	next_offset	Offset into next_object
2451  *
2452  *	prev_size	Size of reference to prev_object
2453  *	next_size	Size of reference to next_object
2454  *
2455  * The caller does not need to hold (prev_object) but must have a stable
2456  * pointer to it (typically by holding the vm_map locked).
2457  */
2458 boolean_t
2459 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2460 		   vm_size_t prev_size, vm_size_t next_size)
2461 {
2462 	vm_pindex_t next_pindex;
2463 
2464 	if (prev_object == NULL)
2465 		return (TRUE);
2466 
2467 	vm_object_hold(prev_object);
2468 
2469 	if (prev_object->type != OBJT_DEFAULT &&
2470 	    prev_object->type != OBJT_SWAP) {
2471 		vm_object_drop(prev_object);
2472 		return (FALSE);
2473 	}
2474 
2475 	/*
2476 	 * Try to collapse the object first
2477 	 */
2478 	vm_object_chain_acquire(prev_object);
2479 	vm_object_collapse(prev_object, NULL);
2480 
2481 	/*
2482 	 * Can't coalesce if: . more than one reference . paged out . shadows
2483 	 * another object . has a copy elsewhere (any of which mean that the
2484 	 * pages not mapped to prev_entry may be in use anyway)
2485 	 */
2486 
2487 	if (prev_object->backing_object != NULL) {
2488 		vm_object_chain_release(prev_object);
2489 		vm_object_drop(prev_object);
2490 		return (FALSE);
2491 	}
2492 
2493 	prev_size >>= PAGE_SHIFT;
2494 	next_size >>= PAGE_SHIFT;
2495 	next_pindex = prev_pindex + prev_size;
2496 
2497 	if ((prev_object->ref_count > 1) &&
2498 	    (prev_object->size != next_pindex)) {
2499 		vm_object_chain_release(prev_object);
2500 		vm_object_drop(prev_object);
2501 		return (FALSE);
2502 	}
2503 
2504 	/*
2505 	 * Remove any pages that may still be in the object from a previous
2506 	 * deallocation.
2507 	 */
2508 	if (next_pindex < prev_object->size) {
2509 		vm_object_page_remove(prev_object,
2510 				      next_pindex,
2511 				      next_pindex + next_size, FALSE);
2512 		if (prev_object->type == OBJT_SWAP)
2513 			swap_pager_freespace(prev_object,
2514 					     next_pindex, next_size);
2515 	}
2516 
2517 	/*
2518 	 * Extend the object if necessary.
2519 	 */
2520 	if (next_pindex + next_size > prev_object->size)
2521 		prev_object->size = next_pindex + next_size;
2522 
2523 	vm_object_chain_release(prev_object);
2524 	vm_object_drop(prev_object);
2525 	return (TRUE);
2526 }
2527 
2528 /*
2529  * Make the object writable and flag is being possibly dirty.
2530  *
2531  * The caller must hold the object. XXX called from vm_page_dirty(),
2532  * There is currently no requirement to hold the object.
2533  */
2534 void
2535 vm_object_set_writeable_dirty(vm_object_t object)
2536 {
2537 	struct vnode *vp;
2538 
2539 	/*vm_object_assert_held(object);*/
2540 	/*
2541 	 * Avoid contention in vm fault path by checking the state before
2542 	 * issuing an atomic op on it.
2543 	 */
2544 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2545 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2546 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2547 	}
2548 	if (object->type == OBJT_VNODE &&
2549 	    (vp = (struct vnode *)object->handle) != NULL) {
2550 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2551 			vsetflags(vp, VOBJDIRTY);
2552 		}
2553 	}
2554 }
2555 
2556 #include "opt_ddb.h"
2557 #ifdef DDB
2558 #include <sys/kernel.h>
2559 
2560 #include <sys/cons.h>
2561 
2562 #include <ddb/ddb.h>
2563 
2564 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2565 				       vm_map_entry_t entry);
2566 static int	vm_object_in_map (vm_object_t object);
2567 
2568 /*
2569  * The caller must hold the object.
2570  */
2571 static int
2572 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2573 {
2574 	vm_map_t tmpm;
2575 	vm_map_entry_t tmpe;
2576 	vm_object_t obj, nobj;
2577 	int entcount;
2578 
2579 	if (map == 0)
2580 		return 0;
2581 	if (entry == 0) {
2582 		tmpe = map->header.next;
2583 		entcount = map->nentries;
2584 		while (entcount-- && (tmpe != &map->header)) {
2585 			if( _vm_object_in_map(map, object, tmpe)) {
2586 				return 1;
2587 			}
2588 			tmpe = tmpe->next;
2589 		}
2590 		return (0);
2591 	}
2592 	switch(entry->maptype) {
2593 	case VM_MAPTYPE_SUBMAP:
2594 		tmpm = entry->object.sub_map;
2595 		tmpe = tmpm->header.next;
2596 		entcount = tmpm->nentries;
2597 		while (entcount-- && tmpe != &tmpm->header) {
2598 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2599 				return 1;
2600 			}
2601 			tmpe = tmpe->next;
2602 		}
2603 		break;
2604 	case VM_MAPTYPE_NORMAL:
2605 	case VM_MAPTYPE_VPAGETABLE:
2606 		obj = entry->object.vm_object;
2607 		while (obj) {
2608 			if (obj == object) {
2609 				if (obj != entry->object.vm_object)
2610 					vm_object_drop(obj);
2611 				return 1;
2612 			}
2613 			while ((nobj = obj->backing_object) != NULL) {
2614 				vm_object_hold(nobj);
2615 				if (nobj == obj->backing_object)
2616 					break;
2617 				vm_object_drop(nobj);
2618 			}
2619 			if (obj != entry->object.vm_object) {
2620 				if (nobj)
2621 					vm_object_lock_swap();
2622 				vm_object_drop(obj);
2623 			}
2624 			obj = nobj;
2625 		}
2626 		break;
2627 	default:
2628 		break;
2629 	}
2630 	return 0;
2631 }
2632 
2633 static int vm_object_in_map_callback(struct proc *p, void *data);
2634 
2635 struct vm_object_in_map_info {
2636 	vm_object_t object;
2637 	int rv;
2638 };
2639 
2640 /*
2641  * Debugging only
2642  */
2643 static int
2644 vm_object_in_map(vm_object_t object)
2645 {
2646 	struct vm_object_in_map_info info;
2647 
2648 	info.rv = 0;
2649 	info.object = object;
2650 
2651 	allproc_scan(vm_object_in_map_callback, &info);
2652 	if (info.rv)
2653 		return 1;
2654 	if( _vm_object_in_map(&kernel_map, object, 0))
2655 		return 1;
2656 	if( _vm_object_in_map(&pager_map, object, 0))
2657 		return 1;
2658 	if( _vm_object_in_map(&buffer_map, object, 0))
2659 		return 1;
2660 	return 0;
2661 }
2662 
2663 /*
2664  * Debugging only
2665  */
2666 static int
2667 vm_object_in_map_callback(struct proc *p, void *data)
2668 {
2669 	struct vm_object_in_map_info *info = data;
2670 
2671 	if (p->p_vmspace) {
2672 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2673 			info->rv = 1;
2674 			return -1;
2675 		}
2676 	}
2677 	return (0);
2678 }
2679 
2680 DB_SHOW_COMMAND(vmochk, vm_object_check)
2681 {
2682 	vm_object_t object;
2683 
2684 	/*
2685 	 * make sure that internal objs are in a map somewhere
2686 	 * and none have zero ref counts.
2687 	 */
2688 	for (object = TAILQ_FIRST(&vm_object_list);
2689 			object != NULL;
2690 			object = TAILQ_NEXT(object, object_list)) {
2691 		if (object->type == OBJT_MARKER)
2692 			continue;
2693 		if (object->handle == NULL &&
2694 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2695 			if (object->ref_count == 0) {
2696 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2697 					(long)object->size);
2698 			}
2699 			if (!vm_object_in_map(object)) {
2700 				db_printf(
2701 			"vmochk: internal obj is not in a map: "
2702 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2703 				    object->ref_count, (u_long)object->size,
2704 				    (u_long)object->size,
2705 				    (void *)object->backing_object);
2706 			}
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Debugging only
2713  */
2714 DB_SHOW_COMMAND(object, vm_object_print_static)
2715 {
2716 	/* XXX convert args. */
2717 	vm_object_t object = (vm_object_t)addr;
2718 	boolean_t full = have_addr;
2719 
2720 	vm_page_t p;
2721 
2722 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2723 #define	count	was_count
2724 
2725 	int count;
2726 
2727 	if (object == NULL)
2728 		return;
2729 
2730 	db_iprintf(
2731 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2732 	    object, (int)object->type, (u_long)object->size,
2733 	    object->resident_page_count, object->ref_count, object->flags);
2734 	/*
2735 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2736 	 */
2737 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2738 	    object->shadow_count,
2739 	    object->backing_object ? object->backing_object->ref_count : 0,
2740 	    object->backing_object, (long)object->backing_object_offset);
2741 
2742 	if (!full)
2743 		return;
2744 
2745 	db_indent += 2;
2746 	count = 0;
2747 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2748 		if (count == 0)
2749 			db_iprintf("memory:=");
2750 		else if (count == 6) {
2751 			db_printf("\n");
2752 			db_iprintf(" ...");
2753 			count = 0;
2754 		} else
2755 			db_printf(",");
2756 		count++;
2757 
2758 		db_printf("(off=0x%lx,page=0x%lx)",
2759 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2760 	}
2761 	if (count != 0)
2762 		db_printf("\n");
2763 	db_indent -= 2;
2764 }
2765 
2766 /* XXX. */
2767 #undef count
2768 
2769 /*
2770  * XXX need this non-static entry for calling from vm_map_print.
2771  *
2772  * Debugging only
2773  */
2774 void
2775 vm_object_print(/* db_expr_t */ long addr,
2776 		boolean_t have_addr,
2777 		/* db_expr_t */ long count,
2778 		char *modif)
2779 {
2780 	vm_object_print_static(addr, have_addr, count, modif);
2781 }
2782 
2783 /*
2784  * Debugging only
2785  */
2786 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2787 {
2788 	vm_object_t object;
2789 	int nl = 0;
2790 	int c;
2791 	for (object = TAILQ_FIRST(&vm_object_list);
2792 			object != NULL;
2793 			object = TAILQ_NEXT(object, object_list)) {
2794 		vm_pindex_t idx, fidx;
2795 		vm_pindex_t osize;
2796 		vm_paddr_t pa = -1, padiff;
2797 		int rcount;
2798 		vm_page_t m;
2799 
2800 		if (object->type == OBJT_MARKER)
2801 			continue;
2802 		db_printf("new object: %p\n", (void *)object);
2803 		if ( nl > 18) {
2804 			c = cngetc();
2805 			if (c != ' ')
2806 				return;
2807 			nl = 0;
2808 		}
2809 		nl++;
2810 		rcount = 0;
2811 		fidx = 0;
2812 		osize = object->size;
2813 		if (osize > 128)
2814 			osize = 128;
2815 		for (idx = 0; idx < osize; idx++) {
2816 			m = vm_page_lookup(object, idx);
2817 			if (m == NULL) {
2818 				if (rcount) {
2819 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2820 						(long)fidx, rcount, (long)pa);
2821 					if ( nl > 18) {
2822 						c = cngetc();
2823 						if (c != ' ')
2824 							return;
2825 						nl = 0;
2826 					}
2827 					nl++;
2828 					rcount = 0;
2829 				}
2830 				continue;
2831 			}
2832 
2833 
2834 			if (rcount &&
2835 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2836 				++rcount;
2837 				continue;
2838 			}
2839 			if (rcount) {
2840 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2841 				padiff >>= PAGE_SHIFT;
2842 				padiff &= PQ_L2_MASK;
2843 				if (padiff == 0) {
2844 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2845 					++rcount;
2846 					continue;
2847 				}
2848 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2849 					(long)fidx, rcount, (long)pa);
2850 				db_printf("pd(%ld)\n", (long)padiff);
2851 				if ( nl > 18) {
2852 					c = cngetc();
2853 					if (c != ' ')
2854 						return;
2855 					nl = 0;
2856 				}
2857 				nl++;
2858 			}
2859 			fidx = idx;
2860 			pa = VM_PAGE_TO_PHYS(m);
2861 			rcount = 1;
2862 		}
2863 		if (rcount) {
2864 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2865 				(long)fidx, rcount, (long)pa);
2866 			if ( nl > 18) {
2867 				c = cngetc();
2868 				if (c != ' ')
2869 					return;
2870 				nl = 0;
2871 			}
2872 			nl++;
2873 		}
2874 	}
2875 }
2876 #endif /* DDB */
2877