xref: /dragonfly/sys/vm/vm_object.c (revision e8c03636)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #define EASY_SCAN_FACTOR	8
93 
94 static void	vm_object_qcollapse(vm_object_t object,
95 				    vm_object_t backing_object);
96 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
97 					     int pagerflags);
98 static void	vm_object_lock_init(vm_object_t);
99 
100 
101 /*
102  *	Virtual memory objects maintain the actual data
103  *	associated with allocated virtual memory.  A given
104  *	page of memory exists within exactly one object.
105  *
106  *	An object is only deallocated when all "references"
107  *	are given up.  Only one "reference" to a given
108  *	region of an object should be writeable.
109  *
110  *	Associated with each object is a list of all resident
111  *	memory pages belonging to that object; this list is
112  *	maintained by the "vm_page" module, and locked by the object's
113  *	lock.
114  *
115  *	Each object also records a "pager" routine which is
116  *	used to retrieve (and store) pages to the proper backing
117  *	storage.  In addition, objects may be backed by other
118  *	objects from which they were virtual-copied.
119  *
120  *	The only items within the object structure which are
121  *	modified after time of creation are:
122  *		reference count		locked by object's lock
123  *		pager routine		locked by object's lock
124  *
125  */
126 
127 struct object_q vm_object_list;		/* locked by vmobj_token */
128 struct vm_object kernel_object;
129 
130 static long vm_object_count;		/* locked by vmobj_token */
131 extern int vm_pageout_page_count;
132 
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 #define VM_OBJECTS_INIT 256
139 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
140 
141 /*
142  * Misc low level routines
143  */
144 static void
145 vm_object_lock_init(vm_object_t obj)
146 {
147 #if defined(DEBUG_LOCKS)
148 	int i;
149 
150 	obj->debug_hold_bitmap = 0;
151 	obj->debug_hold_ovfl = 0;
152 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
153 		obj->debug_hold_thrs[i] = NULL;
154 		obj->debug_hold_file[i] = NULL;
155 		obj->debug_hold_line[i] = 0;
156 	}
157 #endif
158 }
159 
160 void
161 vm_object_lock_swap(void)
162 {
163 	lwkt_token_swap();
164 }
165 
166 void
167 vm_object_lock(vm_object_t obj)
168 {
169 	lwkt_gettoken(&obj->token);
170 }
171 
172 /*
173  * Returns TRUE on sucesss
174  */
175 static int
176 vm_object_lock_try(vm_object_t obj)
177 {
178 	return(lwkt_trytoken(&obj->token));
179 }
180 
181 void
182 vm_object_lock_shared(vm_object_t obj)
183 {
184 	lwkt_gettoken_shared(&obj->token);
185 }
186 
187 void
188 vm_object_unlock(vm_object_t obj)
189 {
190 	lwkt_reltoken(&obj->token);
191 }
192 
193 static __inline void
194 vm_object_assert_held(vm_object_t obj)
195 {
196 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
197 }
198 
199 void
200 #ifndef DEBUG_LOCKS
201 vm_object_hold(vm_object_t obj)
202 #else
203 debugvm_object_hold(vm_object_t obj, char *file, int line)
204 #endif
205 {
206 	KKASSERT(obj != NULL);
207 
208 	/*
209 	 * Object must be held (object allocation is stable due to callers
210 	 * context, typically already holding the token on a parent object)
211 	 * prior to potentially blocking on the lock, otherwise the object
212 	 * can get ripped away from us.
213 	 */
214 	refcount_acquire(&obj->hold_count);
215 	vm_object_lock(obj);
216 
217 #if defined(DEBUG_LOCKS)
218 	int i;
219 	u_int mask;
220 
221 	for (;;) {
222 		mask = ~obj->debug_hold_bitmap;
223 		cpu_ccfence();
224 		if (mask == 0xFFFFFFFFU) {
225 			if (obj->debug_hold_ovfl == 0)
226 				obj->debug_hold_ovfl = 1;
227 			break;
228 		}
229 		i = ffs(mask) - 1;
230 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
231 				      ~mask | (1 << i))) {
232 			obj->debug_hold_bitmap |= (1 << i);
233 			obj->debug_hold_thrs[i] = curthread;
234 			obj->debug_hold_file[i] = file;
235 			obj->debug_hold_line[i] = line;
236 			break;
237 		}
238 	}
239 #endif
240 }
241 
242 int
243 #ifndef DEBUG_LOCKS
244 vm_object_hold_try(vm_object_t obj)
245 #else
246 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
247 #endif
248 {
249 	KKASSERT(obj != NULL);
250 
251 	/*
252 	 * Object must be held (object allocation is stable due to callers
253 	 * context, typically already holding the token on a parent object)
254 	 * prior to potentially blocking on the lock, otherwise the object
255 	 * can get ripped away from us.
256 	 */
257 	refcount_acquire(&obj->hold_count);
258 	if (vm_object_lock_try(obj) == 0) {
259 		if (refcount_release(&obj->hold_count)) {
260 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
261 				zfree(obj_zone, obj);
262 		}
263 		return(0);
264 	}
265 
266 #if defined(DEBUG_LOCKS)
267 	int i;
268 	u_int mask;
269 
270 	for (;;) {
271 		mask = ~obj->debug_hold_bitmap;
272 		cpu_ccfence();
273 		if (mask == 0xFFFFFFFFU) {
274 			if (obj->debug_hold_ovfl == 0)
275 				obj->debug_hold_ovfl = 1;
276 			break;
277 		}
278 		i = ffs(mask) - 1;
279 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
280 				      ~mask | (1 << i))) {
281 			obj->debug_hold_bitmap |= (1 << i);
282 			obj->debug_hold_thrs[i] = curthread;
283 			obj->debug_hold_file[i] = file;
284 			obj->debug_hold_line[i] = line;
285 			break;
286 		}
287 	}
288 #endif
289 	return(1);
290 }
291 
292 void
293 #ifndef DEBUG_LOCKS
294 vm_object_hold_shared(vm_object_t obj)
295 #else
296 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
297 #endif
298 {
299 	KKASSERT(obj != NULL);
300 
301 	/*
302 	 * Object must be held (object allocation is stable due to callers
303 	 * context, typically already holding the token on a parent object)
304 	 * prior to potentially blocking on the lock, otherwise the object
305 	 * can get ripped away from us.
306 	 */
307 	refcount_acquire(&obj->hold_count);
308 	vm_object_lock_shared(obj);
309 
310 #if defined(DEBUG_LOCKS)
311 	int i;
312 	u_int mask;
313 
314 	for (;;) {
315 		mask = ~obj->debug_hold_bitmap;
316 		cpu_ccfence();
317 		if (mask == 0xFFFFFFFFU) {
318 			if (obj->debug_hold_ovfl == 0)
319 				obj->debug_hold_ovfl = 1;
320 			break;
321 		}
322 		i = ffs(mask) - 1;
323 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
324 				      ~mask | (1 << i))) {
325 			obj->debug_hold_bitmap |= (1 << i);
326 			obj->debug_hold_thrs[i] = curthread;
327 			obj->debug_hold_file[i] = file;
328 			obj->debug_hold_line[i] = line;
329 			break;
330 		}
331 	}
332 #endif
333 }
334 
335 /*
336  * Obtain either a shared or exclusive lock on VM object
337  * based on whether this is a terminal vnode object or not.
338  */
339 int
340 #ifndef DEBUG_LOCKS
341 vm_object_hold_maybe_shared(vm_object_t obj)
342 #else
343 debugvm_object_hold_maybe_shared(vm_object_t obj, char *file, int line)
344 #endif
345 {
346 	if (vm_shared_fault &&
347 	    obj->type == OBJT_VNODE &&
348 	    obj->backing_object == NULL) {
349 		vm_object_hold_shared(obj);
350 		return(1);
351 	} else {
352 		vm_object_hold(obj);
353 		return(0);
354 	}
355 }
356 
357 /*
358  * Drop the token and hold_count on the object.
359  */
360 void
361 vm_object_drop(vm_object_t obj)
362 {
363 	if (obj == NULL)
364 		return;
365 
366 #if defined(DEBUG_LOCKS)
367 	int found = 0;
368 	int i;
369 
370 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
371 		if ((obj->debug_hold_bitmap & (1 << i)) &&
372 		    (obj->debug_hold_thrs[i] == curthread)) {
373 			obj->debug_hold_bitmap &= ~(1 << i);
374 			obj->debug_hold_thrs[i] = NULL;
375 			obj->debug_hold_file[i] = NULL;
376 			obj->debug_hold_line[i] = 0;
377 			found = 1;
378 			break;
379 		}
380 	}
381 
382 	if (found == 0 && obj->debug_hold_ovfl == 0)
383 		panic("vm_object: attempt to drop hold on non-self-held obj");
384 #endif
385 
386 	/*
387 	 * No new holders should be possible once we drop hold_count 1->0 as
388 	 * there is no longer any way to reference the object.
389 	 */
390 	KKASSERT(obj->hold_count > 0);
391 	if (refcount_release(&obj->hold_count)) {
392 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
393 			vm_object_unlock(obj);
394 			zfree(obj_zone, obj);
395 		} else {
396 			vm_object_unlock(obj);
397 		}
398 	} else {
399 		vm_object_unlock(obj);
400 	}
401 }
402 
403 /*
404  * Initialize a freshly allocated object, returning a held object.
405  *
406  * Used only by vm_object_allocate() and zinitna().
407  *
408  * No requirements.
409  */
410 void
411 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
412 {
413 	int incr;
414 
415 	RB_INIT(&object->rb_memq);
416 	LIST_INIT(&object->shadow_head);
417 	lwkt_token_init(&object->token, "vmobj");
418 
419 	object->type = type;
420 	object->size = size;
421 	object->ref_count = 1;
422 	object->hold_count = 0;
423 	object->flags = 0;
424 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
425 		vm_object_set_flag(object, OBJ_ONEMAPPING);
426 	object->paging_in_progress = 0;
427 	object->resident_page_count = 0;
428 	object->agg_pv_list_count = 0;
429 	object->shadow_count = 0;
430 	/* cpu localization twist */
431 	object->pg_color = (int)(intptr_t)curthread;
432 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
433 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
434 	else
435 		incr = size;
436 	next_index = (next_index + incr) & PQ_L2_MASK;
437 	object->handle = NULL;
438 	object->backing_object = NULL;
439 	object->backing_object_offset = (vm_ooffset_t)0;
440 
441 	object->generation++;
442 	object->swblock_count = 0;
443 	RB_INIT(&object->swblock_root);
444 	vm_object_lock_init(object);
445 	pmap_object_init(object);
446 
447 	vm_object_hold(object);
448 	lwkt_gettoken(&vmobj_token);
449 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
450 	vm_object_count++;
451 	lwkt_reltoken(&vmobj_token);
452 }
453 
454 /*
455  * Initialize the VM objects module.
456  *
457  * Called from the low level boot code only.
458  */
459 void
460 vm_object_init(void)
461 {
462 	TAILQ_INIT(&vm_object_list);
463 
464 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
465 			    &kernel_object);
466 	vm_object_drop(&kernel_object);
467 
468 	obj_zone = &obj_zone_store;
469 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
470 		vm_objects_init, VM_OBJECTS_INIT);
471 }
472 
473 void
474 vm_object_init2(void)
475 {
476 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
477 }
478 
479 /*
480  * Allocate and return a new object of the specified type and size.
481  *
482  * No requirements.
483  */
484 vm_object_t
485 vm_object_allocate(objtype_t type, vm_pindex_t size)
486 {
487 	vm_object_t result;
488 
489 	result = (vm_object_t) zalloc(obj_zone);
490 
491 	_vm_object_allocate(type, size, result);
492 	vm_object_drop(result);
493 
494 	return (result);
495 }
496 
497 /*
498  * This version returns a held object, allowing further atomic initialization
499  * of the object.
500  */
501 vm_object_t
502 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
503 {
504 	vm_object_t result;
505 
506 	result = (vm_object_t) zalloc(obj_zone);
507 
508 	_vm_object_allocate(type, size, result);
509 
510 	return (result);
511 }
512 
513 /*
514  * Add an additional reference to a vm_object.  The object must already be
515  * held.  The original non-lock version is no longer supported.  The object
516  * must NOT be chain locked by anyone at the time the reference is added.
517  *
518  * Referencing a chain-locked object can blow up the fairly sensitive
519  * ref_count and shadow_count tests in the deallocator.  Most callers
520  * will call vm_object_chain_wait() prior to calling
521  * vm_object_reference_locked() to avoid the case.
522  *
523  * The object must be held, but may be held shared if desired (hence why
524  * we use an atomic op).
525  */
526 void
527 vm_object_reference_locked(vm_object_t object)
528 {
529 	KKASSERT(object != NULL);
530 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
531 	KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
532 	atomic_add_int(&object->ref_count, 1);
533 	if (object->type == OBJT_VNODE) {
534 		vref(object->handle);
535 		/* XXX what if the vnode is being destroyed? */
536 	}
537 }
538 
539 /*
540  * Object OBJ_CHAINLOCK lock handling.
541  *
542  * The caller can chain-lock backing objects recursively and then
543  * use vm_object_chain_release_all() to undo the whole chain.
544  *
545  * Chain locks are used to prevent collapses and are only applicable
546  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
547  * on other object types are ignored.  This is also important because
548  * it allows e.g. the vnode underlying a memory mapping to take concurrent
549  * faults.
550  *
551  * The object must usually be held on entry, though intermediate
552  * objects need not be held on release.
553  */
554 void
555 vm_object_chain_wait(vm_object_t object)
556 {
557 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
558 	while (object->flags & OBJ_CHAINLOCK) {
559 		vm_object_set_flag(object, OBJ_CHAINWANT);
560 		tsleep(object, 0, "objchain", 0);
561 	}
562 }
563 
564 void
565 vm_object_chain_acquire(vm_object_t object)
566 {
567 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
568 		vm_object_chain_wait(object);
569 		vm_object_set_flag(object, OBJ_CHAINLOCK);
570 	}
571 }
572 
573 void
574 vm_object_chain_release(vm_object_t object)
575 {
576 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
577 	if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
578 		KKASSERT(object->flags & OBJ_CHAINLOCK);
579 		if (object->flags & OBJ_CHAINWANT) {
580 			vm_object_clear_flag(object,
581 					     OBJ_CHAINLOCK | OBJ_CHAINWANT);
582 			wakeup(object);
583 		} else {
584 			vm_object_clear_flag(object, OBJ_CHAINLOCK);
585 		}
586 	}
587 }
588 
589 /*
590  * This releases the entire chain of objects from first_object to and
591  * including stopobj, flowing through object->backing_object.
592  *
593  * We release stopobj first as an optimization as this object is most
594  * likely to be shared across multiple processes.
595  */
596 void
597 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
598 {
599 	vm_object_t backing_object;
600 	vm_object_t object;
601 
602 	vm_object_chain_release(stopobj);
603 	object = first_object;
604 
605 	while (object != stopobj) {
606 		KKASSERT(object);
607 		if (object != first_object)
608 			vm_object_hold(object);
609 		backing_object = object->backing_object;
610 		vm_object_chain_release(object);
611 		if (object != first_object)
612 			vm_object_drop(object);
613 		object = backing_object;
614 	}
615 }
616 
617 /*
618  * Dereference an object and its underlying vnode.
619  *
620  * The object must be held exclusively and will remain held on return.
621  * (We don't need an atomic op due to the exclusivity).
622  */
623 static void
624 vm_object_vndeallocate(vm_object_t object)
625 {
626 	struct vnode *vp = (struct vnode *) object->handle;
627 
628 	KASSERT(object->type == OBJT_VNODE,
629 	    ("vm_object_vndeallocate: not a vnode object"));
630 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
631 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
632 #ifdef INVARIANTS
633 	if (object->ref_count == 0) {
634 		vprint("vm_object_vndeallocate", vp);
635 		panic("vm_object_vndeallocate: bad object reference count");
636 	}
637 #endif
638 	object->ref_count--;
639 	if (object->ref_count == 0)
640 		vclrflags(vp, VTEXT);
641 	vrele(vp);
642 }
643 
644 /*
645  * Release a reference to the specified object, gained either through a
646  * vm_object_allocate or a vm_object_reference call.  When all references
647  * are gone, storage associated with this object may be relinquished.
648  *
649  * The caller does not have to hold the object locked but must have control
650  * over the reference in question in order to guarantee that the object
651  * does not get ripped out from under us.
652  *
653  * XXX Currently all deallocations require an exclusive lock.
654  */
655 void
656 vm_object_deallocate(vm_object_t object)
657 {
658 	if (object) {
659 		vm_object_hold(object);
660 		vm_object_deallocate_locked(object);
661 		vm_object_drop(object);
662 	}
663 }
664 
665 void
666 vm_object_deallocate_locked(vm_object_t object)
667 {
668 	struct vm_object_dealloc_list *dlist = NULL;
669 	struct vm_object_dealloc_list *dtmp;
670 	vm_object_t temp;
671 	int must_drop = 0;
672 
673 	/*
674 	 * We may chain deallocate object, but additional objects may
675 	 * collect on the dlist which also have to be deallocated.  We
676 	 * must avoid a recursion, vm_object chains can get deep.
677 	 */
678 again:
679 	while (object != NULL) {
680 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
681 #if 0
682 		/*
683 		 * Don't rip a ref_count out from under an object undergoing
684 		 * collapse, it will confuse the collapse code.
685 		 */
686 		vm_object_chain_wait(object);
687 #endif
688 		if (object->type == OBJT_VNODE) {
689 			vm_object_vndeallocate(object);
690 			break;
691 		}
692 
693 		if (object->ref_count == 0) {
694 			panic("vm_object_deallocate: object deallocated "
695 			      "too many times: %d", object->type);
696 		}
697 		if (object->ref_count > 2) {
698 			object->ref_count--;
699 			break;
700 		}
701 
702 		/*
703 		 * Here on ref_count of one or two, which are special cases for
704 		 * objects.
705 		 *
706 		 * Nominal ref_count > 1 case if the second ref is not from
707 		 * a shadow.
708 		 *
709 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
710 		 */
711 		if (object->ref_count == 2 && object->shadow_count == 0) {
712 			if (object->type == OBJT_DEFAULT ||
713 			    object->type == OBJT_SWAP) {
714 				vm_object_set_flag(object, OBJ_ONEMAPPING);
715 			}
716 			object->ref_count--;
717 			break;
718 		}
719 
720 		/*
721 		 * If the second ref is from a shadow we chain along it
722 		 * upwards if object's handle is exhausted.
723 		 *
724 		 * We have to decrement object->ref_count before potentially
725 		 * collapsing the first shadow object or the collapse code
726 		 * will not be able to handle the degenerate case to remove
727 		 * object.  However, if we do it too early the object can
728 		 * get ripped out from under us.
729 		 */
730 		if (object->ref_count == 2 && object->shadow_count == 1 &&
731 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
732 					       object->type == OBJT_SWAP)) {
733 			temp = LIST_FIRST(&object->shadow_head);
734 			KKASSERT(temp != NULL);
735 			vm_object_hold(temp);
736 
737 			/*
738 			 * Wait for any paging to complete so the collapse
739 			 * doesn't (or isn't likely to) qcollapse.  pip
740 			 * waiting must occur before we acquire the
741 			 * chainlock.
742 			 */
743 			while (
744 				temp->paging_in_progress ||
745 				object->paging_in_progress
746 			) {
747 				vm_object_pip_wait(temp, "objde1");
748 				vm_object_pip_wait(object, "objde2");
749 			}
750 
751 			/*
752 			 * If the parent is locked we have to give up, as
753 			 * otherwise we would be acquiring locks in the
754 			 * wrong order and potentially deadlock.
755 			 */
756 			if (temp->flags & OBJ_CHAINLOCK) {
757 				vm_object_drop(temp);
758 				goto skip;
759 			}
760 			vm_object_chain_acquire(temp);
761 
762 			/*
763 			 * Recheck/retry after the hold and the paging
764 			 * wait, both of which can block us.
765 			 */
766 			if (object->ref_count != 2 ||
767 			    object->shadow_count != 1 ||
768 			    object->handle ||
769 			    LIST_FIRST(&object->shadow_head) != temp ||
770 			    (object->type != OBJT_DEFAULT &&
771 			     object->type != OBJT_SWAP)) {
772 				vm_object_chain_release(temp);
773 				vm_object_drop(temp);
774 				continue;
775 			}
776 
777 			/*
778 			 * We can safely drop object's ref_count now.
779 			 */
780 			KKASSERT(object->ref_count == 2);
781 			object->ref_count--;
782 
783 			/*
784 			 * If our single parent is not collapseable just
785 			 * decrement ref_count (2->1) and stop.
786 			 */
787 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
788 					     temp->type != OBJT_SWAP)) {
789 				vm_object_chain_release(temp);
790 				vm_object_drop(temp);
791 				break;
792 			}
793 
794 			/*
795 			 * At this point we have already dropped object's
796 			 * ref_count so it is possible for a race to
797 			 * deallocate obj out from under us.  Any collapse
798 			 * will re-check the situation.  We must not block
799 			 * until we are able to collapse.
800 			 *
801 			 * Bump temp's ref_count to avoid an unwanted
802 			 * degenerate recursion (can't call
803 			 * vm_object_reference_locked() because it asserts
804 			 * that CHAINLOCK is not set).
805 			 */
806 			temp->ref_count++;
807 			KKASSERT(temp->ref_count > 1);
808 
809 			/*
810 			 * Collapse temp, then deallocate the extra ref
811 			 * formally.
812 			 */
813 			vm_object_collapse(temp, &dlist);
814 			vm_object_chain_release(temp);
815 			if (must_drop) {
816 				vm_object_lock_swap();
817 				vm_object_drop(object);
818 			}
819 			object = temp;
820 			must_drop = 1;
821 			continue;
822 		}
823 
824 		/*
825 		 * Drop the ref and handle termination on the 1->0 transition.
826 		 * We may have blocked above so we have to recheck.
827 		 */
828 skip:
829 		KKASSERT(object->ref_count != 0);
830 		if (object->ref_count >= 2) {
831 			object->ref_count--;
832 			break;
833 		}
834 		KKASSERT(object->ref_count == 1);
835 
836 		/*
837 		 * 1->0 transition.  Chain through the backing_object.
838 		 * Maintain the ref until we've located the backing object,
839 		 * then re-check.
840 		 */
841 		while ((temp = object->backing_object) != NULL) {
842 			vm_object_hold(temp);
843 			if (temp == object->backing_object)
844 				break;
845 			vm_object_drop(temp);
846 		}
847 
848 		/*
849 		 * 1->0 transition verified, retry if ref_count is no longer
850 		 * 1.  Otherwise disconnect the backing_object (temp) and
851 		 * clean up.
852 		 */
853 		if (object->ref_count != 1) {
854 			vm_object_drop(temp);
855 			continue;
856 		}
857 
858 		/*
859 		 * It shouldn't be possible for the object to be chain locked
860 		 * if we're removing the last ref on it.
861 		 */
862 		KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
863 
864 		if (temp) {
865 			LIST_REMOVE(object, shadow_list);
866 			temp->shadow_count--;
867 			temp->generation++;
868 			object->backing_object = NULL;
869 		}
870 
871 		--object->ref_count;
872 		if ((object->flags & OBJ_DEAD) == 0)
873 			vm_object_terminate(object);
874 		if (must_drop && temp)
875 			vm_object_lock_swap();
876 		if (must_drop)
877 			vm_object_drop(object);
878 		object = temp;
879 		must_drop = 1;
880 	}
881 	if (must_drop && object)
882 		vm_object_drop(object);
883 
884 	/*
885 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
886 	 * on the dlist have a hold count but are not locked.
887 	 */
888 	if ((dtmp = dlist) != NULL) {
889 		dlist = dtmp->next;
890 		object = dtmp->object;
891 		kfree(dtmp, M_TEMP);
892 
893 		vm_object_lock(object);	/* already held, add lock */
894 		must_drop = 1;		/* and we're responsible for it */
895 		goto again;
896 	}
897 }
898 
899 /*
900  * Destroy the specified object, freeing up related resources.
901  *
902  * The object must have zero references.
903  *
904  * The object must held.  The caller is responsible for dropping the object
905  * after terminate returns.  Terminate does NOT drop the object.
906  */
907 static int vm_object_terminate_callback(vm_page_t p, void *data);
908 
909 void
910 vm_object_terminate(vm_object_t object)
911 {
912 	/*
913 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
914 	 * able to safely block.
915 	 */
916 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
917 	KKASSERT((object->flags & OBJ_DEAD) == 0);
918 	vm_object_set_flag(object, OBJ_DEAD);
919 
920 	/*
921 	 * Wait for the pageout daemon to be done with the object
922 	 */
923 	vm_object_pip_wait(object, "objtrm1");
924 
925 	KASSERT(!object->paging_in_progress,
926 		("vm_object_terminate: pageout in progress"));
927 
928 	/*
929 	 * Clean and free the pages, as appropriate. All references to the
930 	 * object are gone, so we don't need to lock it.
931 	 */
932 	if (object->type == OBJT_VNODE) {
933 		struct vnode *vp;
934 
935 		/*
936 		 * Clean pages and flush buffers.
937 		 *
938 		 * NOTE!  TMPFS buffer flushes do not typically flush the
939 		 *	  actual page to swap as this would be highly
940 		 *	  inefficient, and normal filesystems usually wrap
941 		 *	  page flushes with buffer cache buffers.
942 		 *
943 		 *	  To deal with this we have to call vinvalbuf() both
944 		 *	  before and after the vm_object_page_clean().
945 		 */
946 		vp = (struct vnode *) object->handle;
947 		vinvalbuf(vp, V_SAVE, 0, 0);
948 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
949 		vinvalbuf(vp, V_SAVE, 0, 0);
950 	}
951 
952 	/*
953 	 * Wait for any I/O to complete, after which there had better not
954 	 * be any references left on the object.
955 	 */
956 	vm_object_pip_wait(object, "objtrm2");
957 
958 	if (object->ref_count != 0) {
959 		panic("vm_object_terminate: object with references, "
960 		      "ref_count=%d", object->ref_count);
961 	}
962 
963 	/*
964 	 * Cleanup any shared pmaps associated with this object.
965 	 */
966 	pmap_object_free(object);
967 
968 	/*
969 	 * Now free any remaining pages. For internal objects, this also
970 	 * removes them from paging queues. Don't free wired pages, just
971 	 * remove them from the object.
972 	 */
973 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
974 				vm_object_terminate_callback, NULL);
975 
976 	/*
977 	 * Let the pager know object is dead.
978 	 */
979 	vm_pager_deallocate(object);
980 
981 	/*
982 	 * Wait for the object hold count to hit 1, clean out pages as
983 	 * we go.  vmobj_token interlocks any race conditions that might
984 	 * pick the object up from the vm_object_list after we have cleared
985 	 * rb_memq.
986 	 */
987 	for (;;) {
988 		if (RB_ROOT(&object->rb_memq) == NULL)
989 			break;
990 		kprintf("vm_object_terminate: Warning, object %p "
991 			"still has %d pages\n",
992 			object, object->resident_page_count);
993 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
994 					vm_object_terminate_callback, NULL);
995 	}
996 
997 	/*
998 	 * There had better not be any pages left
999 	 */
1000 	KKASSERT(object->resident_page_count == 0);
1001 
1002 	/*
1003 	 * Remove the object from the global object list.
1004 	 */
1005 	lwkt_gettoken(&vmobj_token);
1006 	TAILQ_REMOVE(&vm_object_list, object, object_list);
1007 	vm_object_count--;
1008 	lwkt_reltoken(&vmobj_token);
1009 	vm_object_dead_wakeup(object);
1010 
1011 	if (object->ref_count != 0) {
1012 		panic("vm_object_terminate2: object with references, "
1013 		      "ref_count=%d", object->ref_count);
1014 	}
1015 
1016 	/*
1017 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1018 	 *	 the object here.  See vm_object_drop().
1019 	 */
1020 }
1021 
1022 /*
1023  * The caller must hold the object.
1024  */
1025 static int
1026 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1027 {
1028 	vm_object_t object;
1029 
1030 	object = p->object;
1031 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1032 	if (object != p->object) {
1033 		kprintf("vm_object_terminate: Warning: Encountered "
1034 			"busied page %p on queue %d\n", p, p->queue);
1035 		vm_page_wakeup(p);
1036 	} else if (p->wire_count == 0) {
1037 		/*
1038 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1039 		 */
1040 		vm_page_free(p);
1041 		mycpu->gd_cnt.v_pfree++;
1042 	} else {
1043 		if (p->queue != PQ_NONE)
1044 			kprintf("vm_object_terminate: Warning: Encountered "
1045 				"wired page %p on queue %d\n", p, p->queue);
1046 		vm_page_remove(p);
1047 		vm_page_wakeup(p);
1048 	}
1049 	lwkt_yield();
1050 	return(0);
1051 }
1052 
1053 /*
1054  * The object is dead but still has an object<->pager association.  Sleep
1055  * and return.  The caller typically retests the association in a loop.
1056  *
1057  * The caller must hold the object.
1058  */
1059 void
1060 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1061 {
1062 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1063 	if (object->handle) {
1064 		vm_object_set_flag(object, OBJ_DEADWNT);
1065 		tsleep(object, 0, wmesg, 0);
1066 		/* object may be invalid after this point */
1067 	}
1068 }
1069 
1070 /*
1071  * Wakeup anyone waiting for the object<->pager disassociation on
1072  * a dead object.
1073  *
1074  * The caller must hold the object.
1075  */
1076 void
1077 vm_object_dead_wakeup(vm_object_t object)
1078 {
1079 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1080 	if (object->flags & OBJ_DEADWNT) {
1081 		vm_object_clear_flag(object, OBJ_DEADWNT);
1082 		wakeup(object);
1083 	}
1084 }
1085 
1086 /*
1087  * Clean all dirty pages in the specified range of object.  Leaves page
1088  * on whatever queue it is currently on.   If NOSYNC is set then do not
1089  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1090  * leaving the object dirty.
1091  *
1092  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1093  * synchronous clustering mode implementation.
1094  *
1095  * Odd semantics: if start == end, we clean everything.
1096  *
1097  * The object must be locked? XXX
1098  */
1099 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1100 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1101 
1102 void
1103 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1104 		     int flags)
1105 {
1106 	struct rb_vm_page_scan_info info;
1107 	struct vnode *vp;
1108 	int wholescan;
1109 	int pagerflags;
1110 	int generation;
1111 
1112 	vm_object_hold(object);
1113 	if (object->type != OBJT_VNODE ||
1114 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1115 		vm_object_drop(object);
1116 		return;
1117 	}
1118 
1119 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1120 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1121 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1122 
1123 	vp = object->handle;
1124 
1125 	/*
1126 	 * Interlock other major object operations.  This allows us to
1127 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1128 	 */
1129 	vm_object_set_flag(object, OBJ_CLEANING);
1130 
1131 	/*
1132 	 * Handle 'entire object' case
1133 	 */
1134 	info.start_pindex = start;
1135 	if (end == 0) {
1136 		info.end_pindex = object->size - 1;
1137 	} else {
1138 		info.end_pindex = end - 1;
1139 	}
1140 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1141 	info.limit = flags;
1142 	info.pagerflags = pagerflags;
1143 	info.object = object;
1144 
1145 	/*
1146 	 * If cleaning the entire object do a pass to mark the pages read-only.
1147 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1148 	 * OBJ_MIGHTBEDIRTY.
1149 	 */
1150 	if (wholescan) {
1151 		info.error = 0;
1152 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1153 					vm_object_page_clean_pass1, &info);
1154 		if (info.error == 0) {
1155 			vm_object_clear_flag(object,
1156 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1157 			if (object->type == OBJT_VNODE &&
1158 			    (vp = (struct vnode *)object->handle) != NULL) {
1159 				if (vp->v_flag & VOBJDIRTY)
1160 					vclrflags(vp, VOBJDIRTY);
1161 			}
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * Do a pass to clean all the dirty pages we find.
1167 	 */
1168 	do {
1169 		info.error = 0;
1170 		generation = object->generation;
1171 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1172 					vm_object_page_clean_pass2, &info);
1173 	} while (info.error || generation != object->generation);
1174 
1175 	vm_object_clear_flag(object, OBJ_CLEANING);
1176 	vm_object_drop(object);
1177 }
1178 
1179 /*
1180  * The caller must hold the object.
1181  */
1182 static
1183 int
1184 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1185 {
1186 	struct rb_vm_page_scan_info *info = data;
1187 
1188 	vm_page_flag_set(p, PG_CLEANCHK);
1189 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1190 		info->error = 1;
1191 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1192 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1193 		vm_page_wakeup(p);
1194 	} else {
1195 		info->error = 1;
1196 	}
1197 	lwkt_yield();
1198 	return(0);
1199 }
1200 
1201 /*
1202  * The caller must hold the object
1203  */
1204 static
1205 int
1206 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1207 {
1208 	struct rb_vm_page_scan_info *info = data;
1209 	int generation;
1210 
1211 	/*
1212 	 * Do not mess with pages that were inserted after we started
1213 	 * the cleaning pass.
1214 	 */
1215 	if ((p->flags & PG_CLEANCHK) == 0)
1216 		goto done;
1217 
1218 	generation = info->object->generation;
1219 	vm_page_busy_wait(p, TRUE, "vpcwai");
1220 	if (p->object != info->object ||
1221 	    info->object->generation != generation) {
1222 		info->error = 1;
1223 		vm_page_wakeup(p);
1224 		goto done;
1225 	}
1226 
1227 	/*
1228 	 * Before wasting time traversing the pmaps, check for trivial
1229 	 * cases where the page cannot be dirty.
1230 	 */
1231 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1232 		KKASSERT((p->dirty & p->valid) == 0 &&
1233 			 (p->flags & PG_NEED_COMMIT) == 0);
1234 		vm_page_wakeup(p);
1235 		goto done;
1236 	}
1237 
1238 	/*
1239 	 * Check whether the page is dirty or not.  The page has been set
1240 	 * to be read-only so the check will not race a user dirtying the
1241 	 * page.
1242 	 */
1243 	vm_page_test_dirty(p);
1244 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1245 		vm_page_flag_clear(p, PG_CLEANCHK);
1246 		vm_page_wakeup(p);
1247 		goto done;
1248 	}
1249 
1250 	/*
1251 	 * If we have been asked to skip nosync pages and this is a
1252 	 * nosync page, skip it.  Note that the object flags were
1253 	 * not cleared in this case (because pass1 will have returned an
1254 	 * error), so we do not have to set them.
1255 	 */
1256 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1257 		vm_page_flag_clear(p, PG_CLEANCHK);
1258 		vm_page_wakeup(p);
1259 		goto done;
1260 	}
1261 
1262 	/*
1263 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1264 	 * the pages that get successfully flushed.  Set info->error if
1265 	 * we raced an object modification.
1266 	 */
1267 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1268 	vm_wait_nominal();
1269 done:
1270 	lwkt_yield();
1271 	return(0);
1272 }
1273 
1274 /*
1275  * Collect the specified page and nearby pages and flush them out.
1276  * The number of pages flushed is returned.  The passed page is busied
1277  * by the caller and we are responsible for its disposition.
1278  *
1279  * The caller must hold the object.
1280  */
1281 static void
1282 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1283 {
1284 	int runlen;
1285 	int error;
1286 	int maxf;
1287 	int chkb;
1288 	int maxb;
1289 	int i;
1290 	vm_pindex_t pi;
1291 	vm_page_t maf[vm_pageout_page_count];
1292 	vm_page_t mab[vm_pageout_page_count];
1293 	vm_page_t ma[vm_pageout_page_count];
1294 
1295 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1296 
1297 	pi = p->pindex;
1298 
1299 	maxf = 0;
1300 	for(i = 1; i < vm_pageout_page_count; i++) {
1301 		vm_page_t tp;
1302 
1303 		tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1304 		if (error)
1305 			break;
1306 		if (tp == NULL)
1307 			break;
1308 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1309 		    (tp->flags & PG_CLEANCHK) == 0) {
1310 			vm_page_wakeup(tp);
1311 			break;
1312 		}
1313 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1314 			vm_page_flag_clear(tp, PG_CLEANCHK);
1315 			vm_page_wakeup(tp);
1316 			break;
1317 		}
1318 		vm_page_test_dirty(tp);
1319 		if ((tp->dirty & tp->valid) == 0 &&
1320 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1321 			vm_page_flag_clear(tp, PG_CLEANCHK);
1322 			vm_page_wakeup(tp);
1323 			break;
1324 		}
1325 		maf[i - 1] = tp;
1326 		maxf++;
1327 	}
1328 
1329 	maxb = 0;
1330 	chkb = vm_pageout_page_count -  maxf;
1331 	/*
1332 	 * NOTE: chkb can be 0
1333 	 */
1334 	for(i = 1; chkb && i < chkb; i++) {
1335 		vm_page_t tp;
1336 
1337 		tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1338 		if (error)
1339 			break;
1340 		if (tp == NULL)
1341 			break;
1342 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1343 		    (tp->flags & PG_CLEANCHK) == 0) {
1344 			vm_page_wakeup(tp);
1345 			break;
1346 		}
1347 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1348 			vm_page_flag_clear(tp, PG_CLEANCHK);
1349 			vm_page_wakeup(tp);
1350 			break;
1351 		}
1352 		vm_page_test_dirty(tp);
1353 		if ((tp->dirty & tp->valid) == 0 &&
1354 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1355 			vm_page_flag_clear(tp, PG_CLEANCHK);
1356 			vm_page_wakeup(tp);
1357 			break;
1358 		}
1359 		mab[i - 1] = tp;
1360 		maxb++;
1361 	}
1362 
1363 	/*
1364 	 * All pages in the maf[] and mab[] array are busied.
1365 	 */
1366 	for (i = 0; i < maxb; i++) {
1367 		int index = (maxb - i) - 1;
1368 		ma[index] = mab[i];
1369 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1370 	}
1371 	vm_page_flag_clear(p, PG_CLEANCHK);
1372 	ma[maxb] = p;
1373 	for(i = 0; i < maxf; i++) {
1374 		int index = (maxb + i) + 1;
1375 		ma[index] = maf[i];
1376 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
1377 	}
1378 	runlen = maxb + maxf + 1;
1379 
1380 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1381 		vm_page_hold(ma[i]);
1382 
1383 	vm_pageout_flush(ma, runlen, pagerflags);
1384 
1385 	for (i = 0; i < runlen; i++)	/* XXX need this any more? */
1386 		vm_page_unhold(ma[i]);
1387 }
1388 
1389 /*
1390  * Same as vm_object_pmap_copy, except range checking really
1391  * works, and is meant for small sections of an object.
1392  *
1393  * This code protects resident pages by making them read-only
1394  * and is typically called on a fork or split when a page
1395  * is converted to copy-on-write.
1396  *
1397  * NOTE: If the page is already at VM_PROT_NONE, calling
1398  * vm_page_protect will have no effect.
1399  */
1400 void
1401 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1402 {
1403 	vm_pindex_t idx;
1404 	vm_page_t p;
1405 
1406 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1407 		return;
1408 
1409 	vm_object_hold(object);
1410 	for (idx = start; idx < end; idx++) {
1411 		p = vm_page_lookup(object, idx);
1412 		if (p == NULL)
1413 			continue;
1414 		vm_page_protect(p, VM_PROT_READ);
1415 	}
1416 	vm_object_drop(object);
1417 }
1418 
1419 /*
1420  * Removes all physical pages in the specified object range from all
1421  * physical maps.
1422  *
1423  * The object must *not* be locked.
1424  */
1425 
1426 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1427 
1428 void
1429 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1430 {
1431 	struct rb_vm_page_scan_info info;
1432 
1433 	if (object == NULL)
1434 		return;
1435 	info.start_pindex = start;
1436 	info.end_pindex = end - 1;
1437 
1438 	vm_object_hold(object);
1439 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1440 				vm_object_pmap_remove_callback, &info);
1441 	if (start == 0 && end == object->size)
1442 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1443 	vm_object_drop(object);
1444 }
1445 
1446 /*
1447  * The caller must hold the object
1448  */
1449 static int
1450 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1451 {
1452 	vm_page_protect(p, VM_PROT_NONE);
1453 	return(0);
1454 }
1455 
1456 /*
1457  * Implements the madvise function at the object/page level.
1458  *
1459  * MADV_WILLNEED	(any object)
1460  *
1461  *	Activate the specified pages if they are resident.
1462  *
1463  * MADV_DONTNEED	(any object)
1464  *
1465  *	Deactivate the specified pages if they are resident.
1466  *
1467  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1468  *
1469  *	Deactivate and clean the specified pages if they are
1470  *	resident.  This permits the process to reuse the pages
1471  *	without faulting or the kernel to reclaim the pages
1472  *	without I/O.
1473  *
1474  * No requirements.
1475  */
1476 void
1477 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1478 {
1479 	vm_pindex_t end, tpindex;
1480 	vm_object_t tobject;
1481 	vm_object_t xobj;
1482 	vm_page_t m;
1483 	int error;
1484 
1485 	if (object == NULL)
1486 		return;
1487 
1488 	end = pindex + count;
1489 
1490 	vm_object_hold(object);
1491 	tobject = object;
1492 
1493 	/*
1494 	 * Locate and adjust resident pages
1495 	 */
1496 	for (; pindex < end; pindex += 1) {
1497 relookup:
1498 		if (tobject != object)
1499 			vm_object_drop(tobject);
1500 		tobject = object;
1501 		tpindex = pindex;
1502 shadowlookup:
1503 		/*
1504 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1505 		 * and those pages must be OBJ_ONEMAPPING.
1506 		 */
1507 		if (advise == MADV_FREE) {
1508 			if ((tobject->type != OBJT_DEFAULT &&
1509 			     tobject->type != OBJT_SWAP) ||
1510 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1511 				continue;
1512 			}
1513 		}
1514 
1515 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1516 
1517 		if (error) {
1518 			vm_page_sleep_busy(m, TRUE, "madvpo");
1519 			goto relookup;
1520 		}
1521 		if (m == NULL) {
1522 			/*
1523 			 * There may be swap even if there is no backing page
1524 			 */
1525 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1526 				swap_pager_freespace(tobject, tpindex, 1);
1527 
1528 			/*
1529 			 * next object
1530 			 */
1531 			while ((xobj = tobject->backing_object) != NULL) {
1532 				KKASSERT(xobj != object);
1533 				vm_object_hold(xobj);
1534 				if (xobj == tobject->backing_object)
1535 					break;
1536 				vm_object_drop(xobj);
1537 			}
1538 			if (xobj == NULL)
1539 				continue;
1540 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1541 			if (tobject != object) {
1542 				vm_object_lock_swap();
1543 				vm_object_drop(tobject);
1544 			}
1545 			tobject = xobj;
1546 			goto shadowlookup;
1547 		}
1548 
1549 		/*
1550 		 * If the page is not in a normal active state, we skip it.
1551 		 * If the page is not managed there are no page queues to
1552 		 * mess with.  Things can break if we mess with pages in
1553 		 * any of the below states.
1554 		 */
1555 		if (m->wire_count ||
1556 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1557 		    m->valid != VM_PAGE_BITS_ALL
1558 		) {
1559 			vm_page_wakeup(m);
1560 			continue;
1561 		}
1562 
1563 		/*
1564 		 * Theoretically once a page is known not to be busy, an
1565 		 * interrupt cannot come along and rip it out from under us.
1566 		 */
1567 
1568 		if (advise == MADV_WILLNEED) {
1569 			vm_page_activate(m);
1570 		} else if (advise == MADV_DONTNEED) {
1571 			vm_page_dontneed(m);
1572 		} else if (advise == MADV_FREE) {
1573 			/*
1574 			 * Mark the page clean.  This will allow the page
1575 			 * to be freed up by the system.  However, such pages
1576 			 * are often reused quickly by malloc()/free()
1577 			 * so we do not do anything that would cause
1578 			 * a page fault if we can help it.
1579 			 *
1580 			 * Specifically, we do not try to actually free
1581 			 * the page now nor do we try to put it in the
1582 			 * cache (which would cause a page fault on reuse).
1583 			 *
1584 			 * But we do make the page is freeable as we
1585 			 * can without actually taking the step of unmapping
1586 			 * it.
1587 			 */
1588 			pmap_clear_modify(m);
1589 			m->dirty = 0;
1590 			m->act_count = 0;
1591 			vm_page_dontneed(m);
1592 			if (tobject->type == OBJT_SWAP)
1593 				swap_pager_freespace(tobject, tpindex, 1);
1594 		}
1595 		vm_page_wakeup(m);
1596 	}
1597 	if (tobject != object)
1598 		vm_object_drop(tobject);
1599 	vm_object_drop(object);
1600 }
1601 
1602 /*
1603  * Create a new object which is backed by the specified existing object
1604  * range.  Replace the pointer and offset that was pointing at the existing
1605  * object with the pointer/offset for the new object.
1606  *
1607  * No other requirements.
1608  */
1609 void
1610 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1611 		 int addref)
1612 {
1613 	vm_object_t source;
1614 	vm_object_t result;
1615 
1616 	source = *objectp;
1617 
1618 	/*
1619 	 * Don't create the new object if the old object isn't shared.
1620 	 * We have to chain wait before adding the reference to avoid
1621 	 * racing a collapse or deallocation.
1622 	 *
1623 	 * Add the additional ref to source here to avoid racing a later
1624 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1625 	 * addref is TRUE or not in this case because the original object
1626 	 * will be shadowed.
1627 	 */
1628 	if (source) {
1629 		vm_object_hold(source);
1630 		vm_object_chain_wait(source);
1631 		if (source->ref_count == 1 &&
1632 		    source->handle == NULL &&
1633 		    (source->type == OBJT_DEFAULT ||
1634 		     source->type == OBJT_SWAP)) {
1635 			vm_object_drop(source);
1636 			if (addref) {
1637 				vm_object_reference_locked(source);
1638 				vm_object_clear_flag(source, OBJ_ONEMAPPING);
1639 			}
1640 			return;
1641 		}
1642 		vm_object_reference_locked(source);
1643 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1644 	}
1645 
1646 	/*
1647 	 * Allocate a new object with the given length.  The new object
1648 	 * is returned referenced but we may have to add another one.
1649 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1650 	 * (typically because the caller is about to clone a vm_map_entry).
1651 	 *
1652 	 * The source object currently has an extra reference to prevent
1653 	 * collapses into it while we mess with its shadow list, which
1654 	 * we will remove later in this routine.
1655 	 */
1656 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1657 		panic("vm_object_shadow: no object for shadowing");
1658 	vm_object_hold(result);
1659 	if (addref) {
1660 		vm_object_reference_locked(result);
1661 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1662 	}
1663 
1664 	/*
1665 	 * The new object shadows the source object.  Chain wait before
1666 	 * adjusting shadow_count or the shadow list to avoid races.
1667 	 *
1668 	 * Try to optimize the result object's page color when shadowing
1669 	 * in order to maintain page coloring consistency in the combined
1670 	 * shadowed object.
1671 	 */
1672 	KKASSERT(result->backing_object == NULL);
1673 	result->backing_object = source;
1674 	if (source) {
1675 		vm_object_chain_wait(source);
1676 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1677 		source->shadow_count++;
1678 		source->generation++;
1679 		/* cpu localization twist */
1680 		result->pg_color = (int)(intptr_t)curthread;
1681 	}
1682 
1683 	/*
1684 	 * Adjust the return storage.  Drop the ref on source before
1685 	 * returning.
1686 	 */
1687 	result->backing_object_offset = *offset;
1688 	vm_object_drop(result);
1689 	*offset = 0;
1690 	if (source) {
1691 		vm_object_deallocate_locked(source);
1692 		vm_object_drop(source);
1693 	}
1694 
1695 	/*
1696 	 * Return the new things
1697 	 */
1698 	*objectp = result;
1699 }
1700 
1701 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1702 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1703 #define	OBSC_COLLAPSE_WAIT	0x0004
1704 
1705 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1706 
1707 /*
1708  * The caller must hold the object.
1709  */
1710 static __inline int
1711 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1712 {
1713 	struct rb_vm_page_scan_info info;
1714 
1715 	vm_object_assert_held(object);
1716 	vm_object_assert_held(backing_object);
1717 
1718 	KKASSERT(backing_object == object->backing_object);
1719 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1720 
1721 	/*
1722 	 * Initial conditions
1723 	 */
1724 	if (op & OBSC_TEST_ALL_SHADOWED) {
1725 		/*
1726 		 * We do not want to have to test for the existence of
1727 		 * swap pages in the backing object.  XXX but with the
1728 		 * new swapper this would be pretty easy to do.
1729 		 *
1730 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1731 		 * been ZFOD faulted yet?  If we do not test for this, the
1732 		 * shadow test may succeed! XXX
1733 		 */
1734 		if (backing_object->type != OBJT_DEFAULT)
1735 			return(0);
1736 	}
1737 	if (op & OBSC_COLLAPSE_WAIT) {
1738 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1739 		vm_object_set_flag(backing_object, OBJ_DEAD);
1740 		lwkt_gettoken(&vmobj_token);
1741 		TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1742 		vm_object_count--;
1743 		lwkt_reltoken(&vmobj_token);
1744 		vm_object_dead_wakeup(backing_object);
1745 	}
1746 
1747 	/*
1748 	 * Our scan.   We have to retry if a negative error code is returned,
1749 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1750 	 * the scan had to be stopped because the parent does not completely
1751 	 * shadow the child.
1752 	 */
1753 	info.object = object;
1754 	info.backing_object = backing_object;
1755 	info.limit = op;
1756 	do {
1757 		info.error = 1;
1758 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1759 					vm_object_backing_scan_callback,
1760 					&info);
1761 	} while (info.error < 0);
1762 
1763 	return(info.error);
1764 }
1765 
1766 /*
1767  * The caller must hold the object.
1768  */
1769 static int
1770 vm_object_backing_scan_callback(vm_page_t p, void *data)
1771 {
1772 	struct rb_vm_page_scan_info *info = data;
1773 	vm_object_t backing_object;
1774 	vm_object_t object;
1775 	vm_pindex_t pindex;
1776 	vm_pindex_t new_pindex;
1777 	vm_pindex_t backing_offset_index;
1778 	int op;
1779 
1780 	pindex = p->pindex;
1781 	new_pindex = pindex - info->backing_offset_index;
1782 	op = info->limit;
1783 	object = info->object;
1784 	backing_object = info->backing_object;
1785 	backing_offset_index = info->backing_offset_index;
1786 
1787 	if (op & OBSC_TEST_ALL_SHADOWED) {
1788 		vm_page_t pp;
1789 
1790 		/*
1791 		 * Ignore pages outside the parent object's range
1792 		 * and outside the parent object's mapping of the
1793 		 * backing object.
1794 		 *
1795 		 * note that we do not busy the backing object's
1796 		 * page.
1797 		 */
1798 		if (pindex < backing_offset_index ||
1799 		    new_pindex >= object->size
1800 		) {
1801 			return(0);
1802 		}
1803 
1804 		/*
1805 		 * See if the parent has the page or if the parent's
1806 		 * object pager has the page.  If the parent has the
1807 		 * page but the page is not valid, the parent's
1808 		 * object pager must have the page.
1809 		 *
1810 		 * If this fails, the parent does not completely shadow
1811 		 * the object and we might as well give up now.
1812 		 */
1813 		pp = vm_page_lookup(object, new_pindex);
1814 		if ((pp == NULL || pp->valid == 0) &&
1815 		    !vm_pager_has_page(object, new_pindex)
1816 		) {
1817 			info->error = 0;	/* problemo */
1818 			return(-1);		/* stop the scan */
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * Check for busy page.  Note that we may have lost (p) when we
1824 	 * possibly blocked above.
1825 	 */
1826 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1827 		vm_page_t pp;
1828 
1829 		if (vm_page_busy_try(p, TRUE)) {
1830 			if (op & OBSC_COLLAPSE_NOWAIT) {
1831 				return(0);
1832 			} else {
1833 				/*
1834 				 * If we slept, anything could have
1835 				 * happened.   Ask that the scan be restarted.
1836 				 *
1837 				 * Since the object is marked dead, the
1838 				 * backing offset should not have changed.
1839 				 */
1840 				vm_page_sleep_busy(p, TRUE, "vmocol");
1841 				info->error = -1;
1842 				return(-1);
1843 			}
1844 		}
1845 
1846 		/*
1847 		 * If (p) is no longer valid restart the scan.
1848 		 */
1849 		if (p->object != backing_object || p->pindex != pindex) {
1850 			kprintf("vm_object_backing_scan: Warning: page "
1851 				"%p ripped out from under us\n", p);
1852 			vm_page_wakeup(p);
1853 			info->error = -1;
1854 			return(-1);
1855 		}
1856 
1857 		if (op & OBSC_COLLAPSE_NOWAIT) {
1858 			if (p->valid == 0 ||
1859 			    p->wire_count ||
1860 			    (p->flags & PG_NEED_COMMIT)) {
1861 				vm_page_wakeup(p);
1862 				return(0);
1863 			}
1864 		} else {
1865 			/* XXX what if p->valid == 0 , hold_count, etc? */
1866 		}
1867 
1868 		KASSERT(
1869 		    p->object == backing_object,
1870 		    ("vm_object_qcollapse(): object mismatch")
1871 		);
1872 
1873 		/*
1874 		 * Destroy any associated swap
1875 		 */
1876 		if (backing_object->type == OBJT_SWAP)
1877 			swap_pager_freespace(backing_object, p->pindex, 1);
1878 
1879 		if (
1880 		    p->pindex < backing_offset_index ||
1881 		    new_pindex >= object->size
1882 		) {
1883 			/*
1884 			 * Page is out of the parent object's range, we
1885 			 * can simply destroy it.
1886 			 */
1887 			vm_page_protect(p, VM_PROT_NONE);
1888 			vm_page_free(p);
1889 			return(0);
1890 		}
1891 
1892 		pp = vm_page_lookup(object, new_pindex);
1893 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1894 			/*
1895 			 * page already exists in parent OR swap exists
1896 			 * for this location in the parent.  Destroy
1897 			 * the original page from the backing object.
1898 			 *
1899 			 * Leave the parent's page alone
1900 			 */
1901 			vm_page_protect(p, VM_PROT_NONE);
1902 			vm_page_free(p);
1903 			return(0);
1904 		}
1905 
1906 		/*
1907 		 * Page does not exist in parent, rename the
1908 		 * page from the backing object to the main object.
1909 		 *
1910 		 * If the page was mapped to a process, it can remain
1911 		 * mapped through the rename.
1912 		 */
1913 		if ((p->queue - p->pc) == PQ_CACHE)
1914 			vm_page_deactivate(p);
1915 
1916 		vm_page_rename(p, object, new_pindex);
1917 		vm_page_wakeup(p);
1918 		/* page automatically made dirty by rename */
1919 	}
1920 	return(0);
1921 }
1922 
1923 /*
1924  * This version of collapse allows the operation to occur earlier and
1925  * when paging_in_progress is true for an object...  This is not a complete
1926  * operation, but should plug 99.9% of the rest of the leaks.
1927  *
1928  * The caller must hold the object and backing_object and both must be
1929  * chainlocked.
1930  *
1931  * (only called from vm_object_collapse)
1932  */
1933 static void
1934 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1935 {
1936 	if (backing_object->ref_count == 1) {
1937 		backing_object->ref_count += 2;
1938 		vm_object_backing_scan(object, backing_object,
1939 				       OBSC_COLLAPSE_NOWAIT);
1940 		backing_object->ref_count -= 2;
1941 	}
1942 }
1943 
1944 /*
1945  * Collapse an object with the object backing it.  Pages in the backing
1946  * object are moved into the parent, and the backing object is deallocated.
1947  * Any conflict is resolved in favor of the parent's existing pages.
1948  *
1949  * object must be held and chain-locked on call.
1950  *
1951  * The caller must have an extra ref on object to prevent a race from
1952  * destroying it during the collapse.
1953  */
1954 void
1955 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1956 {
1957 	struct vm_object_dealloc_list *dlist = NULL;
1958 	vm_object_t backing_object;
1959 
1960 	/*
1961 	 * Only one thread is attempting a collapse at any given moment.
1962 	 * There are few restrictions for (object) that callers of this
1963 	 * function check so reentrancy is likely.
1964 	 */
1965 	KKASSERT(object != NULL);
1966 	vm_object_assert_held(object);
1967 	KKASSERT(object->flags & OBJ_CHAINLOCK);
1968 
1969 	for (;;) {
1970 		vm_object_t bbobj;
1971 		int dodealloc;
1972 
1973 		/*
1974 		 * We have to hold the backing object, check races.
1975 		 */
1976 		while ((backing_object = object->backing_object) != NULL) {
1977 			vm_object_hold(backing_object);
1978 			if (backing_object == object->backing_object)
1979 				break;
1980 			vm_object_drop(backing_object);
1981 		}
1982 
1983 		/*
1984 		 * No backing object?  Nothing to collapse then.
1985 		 */
1986 		if (backing_object == NULL)
1987 			break;
1988 
1989 		/*
1990 		 * You can't collapse with a non-default/non-swap object.
1991 		 */
1992 		if (backing_object->type != OBJT_DEFAULT &&
1993 		    backing_object->type != OBJT_SWAP) {
1994 			vm_object_drop(backing_object);
1995 			backing_object = NULL;
1996 			break;
1997 		}
1998 
1999 		/*
2000 		 * Chain-lock the backing object too because if we
2001 		 * successfully merge its pages into the top object we
2002 		 * will collapse backing_object->backing_object as the
2003 		 * new backing_object.  Re-check that it is still our
2004 		 * backing object.
2005 		 */
2006 		vm_object_chain_acquire(backing_object);
2007 		if (backing_object != object->backing_object) {
2008 			vm_object_chain_release(backing_object);
2009 			vm_object_drop(backing_object);
2010 			continue;
2011 		}
2012 
2013 		/*
2014 		 * we check the backing object first, because it is most likely
2015 		 * not collapsable.
2016 		 */
2017 		if (backing_object->handle != NULL ||
2018 		    (backing_object->type != OBJT_DEFAULT &&
2019 		     backing_object->type != OBJT_SWAP) ||
2020 		    (backing_object->flags & OBJ_DEAD) ||
2021 		    object->handle != NULL ||
2022 		    (object->type != OBJT_DEFAULT &&
2023 		     object->type != OBJT_SWAP) ||
2024 		    (object->flags & OBJ_DEAD)) {
2025 			break;
2026 		}
2027 
2028 		/*
2029 		 * If paging is in progress we can't do a normal collapse.
2030 		 */
2031 		if (
2032 		    object->paging_in_progress != 0 ||
2033 		    backing_object->paging_in_progress != 0
2034 		) {
2035 			vm_object_qcollapse(object, backing_object);
2036 			break;
2037 		}
2038 
2039 		/*
2040 		 * We know that we can either collapse the backing object (if
2041 		 * the parent is the only reference to it) or (perhaps) have
2042 		 * the parent bypass the object if the parent happens to shadow
2043 		 * all the resident pages in the entire backing object.
2044 		 *
2045 		 * This is ignoring pager-backed pages such as swap pages.
2046 		 * vm_object_backing_scan fails the shadowing test in this
2047 		 * case.
2048 		 */
2049 		if (backing_object->ref_count == 1) {
2050 			/*
2051 			 * If there is exactly one reference to the backing
2052 			 * object, we can collapse it into the parent.
2053 			 */
2054 			KKASSERT(object->backing_object == backing_object);
2055 			vm_object_backing_scan(object, backing_object,
2056 					       OBSC_COLLAPSE_WAIT);
2057 
2058 			/*
2059 			 * Move the pager from backing_object to object.
2060 			 */
2061 			if (backing_object->type == OBJT_SWAP) {
2062 				vm_object_pip_add(backing_object, 1);
2063 
2064 				/*
2065 				 * scrap the paging_offset junk and do a
2066 				 * discrete copy.  This also removes major
2067 				 * assumptions about how the swap-pager
2068 				 * works from where it doesn't belong.  The
2069 				 * new swapper is able to optimize the
2070 				 * destroy-source case.
2071 				 */
2072 				vm_object_pip_add(object, 1);
2073 				swap_pager_copy(backing_object, object,
2074 				    OFF_TO_IDX(object->backing_object_offset),
2075 				    TRUE);
2076 				vm_object_pip_wakeup(object);
2077 				vm_object_pip_wakeup(backing_object);
2078 			}
2079 
2080 			/*
2081 			 * Object now shadows whatever backing_object did.
2082 			 * Remove object from backing_object's shadow_list.
2083 			 */
2084 			LIST_REMOVE(object, shadow_list);
2085 			KKASSERT(object->backing_object == backing_object);
2086 			backing_object->shadow_count--;
2087 			backing_object->generation++;
2088 
2089 			/*
2090 			 * backing_object->backing_object moves from within
2091 			 * backing_object to within object.
2092 			 */
2093 			while ((bbobj = backing_object->backing_object) != NULL) {
2094 				vm_object_hold(bbobj);
2095 				if (bbobj == backing_object->backing_object)
2096 					break;
2097 				vm_object_drop(bbobj);
2098 			}
2099 			if (bbobj) {
2100 				LIST_REMOVE(backing_object, shadow_list);
2101 				bbobj->shadow_count--;
2102 				bbobj->generation++;
2103 				backing_object->backing_object = NULL;
2104 			}
2105 			object->backing_object = bbobj;
2106 			if (bbobj) {
2107 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2108 						 object, shadow_list);
2109 				bbobj->shadow_count++;
2110 				bbobj->generation++;
2111 			}
2112 
2113 			object->backing_object_offset +=
2114 				backing_object->backing_object_offset;
2115 
2116 			vm_object_drop(bbobj);
2117 
2118 			/*
2119 			 * Discard the old backing_object.  Nothing should be
2120 			 * able to ref it, other than a vm_map_split(),
2121 			 * and vm_map_split() will stall on our chain lock.
2122 			 * And we control the parent so it shouldn't be
2123 			 * possible for it to go away either.
2124 			 *
2125 			 * Since the backing object has no pages, no pager
2126 			 * left, and no object references within it, all
2127 			 * that is necessary is to dispose of it.
2128 			 */
2129 			KASSERT(backing_object->ref_count == 1,
2130 				("backing_object %p was somehow "
2131 				 "re-referenced during collapse!",
2132 				 backing_object));
2133 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2134 				("backing_object %p somehow has left "
2135 				 "over pages during collapse!",
2136 				 backing_object));
2137 
2138 			/*
2139 			 * The object can be destroyed.
2140 			 *
2141 			 * XXX just fall through and dodealloc instead
2142 			 *     of forcing destruction?
2143 			 */
2144 			--backing_object->ref_count;
2145 			if ((backing_object->flags & OBJ_DEAD) == 0)
2146 				vm_object_terminate(backing_object);
2147 			object_collapses++;
2148 			dodealloc = 0;
2149 		} else {
2150 			/*
2151 			 * If we do not entirely shadow the backing object,
2152 			 * there is nothing we can do so we give up.
2153 			 */
2154 			if (vm_object_backing_scan(object, backing_object,
2155 						OBSC_TEST_ALL_SHADOWED) == 0) {
2156 				break;
2157 			}
2158 
2159 			/*
2160 			 * bbobj is backing_object->backing_object.  Since
2161 			 * object completely shadows backing_object we can
2162 			 * bypass it and become backed by bbobj instead.
2163 			 */
2164 			while ((bbobj = backing_object->backing_object) != NULL) {
2165 				vm_object_hold(bbobj);
2166 				if (bbobj == backing_object->backing_object)
2167 					break;
2168 				vm_object_drop(bbobj);
2169 			}
2170 
2171 			/*
2172 			 * Make object shadow bbobj instead of backing_object.
2173 			 * Remove object from backing_object's shadow list.
2174 			 *
2175 			 * Deallocating backing_object will not remove
2176 			 * it, since its reference count is at least 2.
2177 			 */
2178 			KKASSERT(object->backing_object == backing_object);
2179 			LIST_REMOVE(object, shadow_list);
2180 			backing_object->shadow_count--;
2181 			backing_object->generation++;
2182 
2183 			/*
2184 			 * Add a ref to bbobj, bbobj now shadows object.
2185 			 *
2186 			 * NOTE: backing_object->backing_object still points
2187 			 *	 to bbobj.  That relationship remains intact
2188 			 *	 because backing_object has > 1 ref, so
2189 			 *	 someone else is pointing to it (hence why
2190 			 *	 we can't collapse it into object and can
2191 			 *	 only handle the all-shadowed bypass case).
2192 			 */
2193 			if (bbobj) {
2194 				vm_object_chain_wait(bbobj);
2195 				vm_object_reference_locked(bbobj);
2196 				LIST_INSERT_HEAD(&bbobj->shadow_head,
2197 						 object, shadow_list);
2198 				bbobj->shadow_count++;
2199 				bbobj->generation++;
2200 				object->backing_object_offset +=
2201 					backing_object->backing_object_offset;
2202 				object->backing_object = bbobj;
2203 				vm_object_drop(bbobj);
2204 			} else {
2205 				object->backing_object = NULL;
2206 			}
2207 
2208 			/*
2209 			 * Drop the reference count on backing_object.  To
2210 			 * handle ref_count races properly we can't assume
2211 			 * that the ref_count is still at least 2 so we
2212 			 * have to actually call vm_object_deallocate()
2213 			 * (after clearing the chainlock).
2214 			 */
2215 			object_bypasses++;
2216 			dodealloc = 1;
2217 		}
2218 
2219 		/*
2220 		 * Ok, we want to loop on the new object->bbobj association,
2221 		 * possibly collapsing it further.  However if dodealloc is
2222 		 * non-zero we have to deallocate the backing_object which
2223 		 * itself can potentially undergo a collapse, creating a
2224 		 * recursion depth issue with the LWKT token subsystem.
2225 		 *
2226 		 * In the case where we must deallocate the backing_object
2227 		 * it is possible now that the backing_object has a single
2228 		 * shadow count on some other object (not represented here
2229 		 * as yet), since it no longer shadows us.  Thus when we
2230 		 * call vm_object_deallocate() it may attempt to collapse
2231 		 * itself into its remaining parent.
2232 		 */
2233 		if (dodealloc) {
2234 			struct vm_object_dealloc_list *dtmp;
2235 
2236 			vm_object_chain_release(backing_object);
2237 			vm_object_unlock(backing_object);
2238 			/* backing_object remains held */
2239 
2240 			/*
2241 			 * Auto-deallocation list for caller convenience.
2242 			 */
2243 			if (dlistp == NULL)
2244 				dlistp = &dlist;
2245 
2246 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2247 			dtmp->object = backing_object;
2248 			dtmp->next = *dlistp;
2249 			*dlistp = dtmp;
2250 		} else {
2251 			vm_object_chain_release(backing_object);
2252 			vm_object_drop(backing_object);
2253 		}
2254 		/* backing_object = NULL; not needed */
2255 		/* loop */
2256 	}
2257 
2258 	/*
2259 	 * Clean up any left over backing_object
2260 	 */
2261 	if (backing_object) {
2262 		vm_object_chain_release(backing_object);
2263 		vm_object_drop(backing_object);
2264 	}
2265 
2266 	/*
2267 	 * Clean up any auto-deallocation list.  This is a convenience
2268 	 * for top-level callers so they don't have to pass &dlist.
2269 	 * Do not clean up any caller-passed dlistp, the caller will
2270 	 * do that.
2271 	 */
2272 	if (dlist)
2273 		vm_object_deallocate_list(&dlist);
2274 
2275 }
2276 
2277 /*
2278  * vm_object_collapse() may collect additional objects in need of
2279  * deallocation.  This routine deallocates these objects.  The
2280  * deallocation itself can trigger additional collapses (which the
2281  * deallocate function takes care of).  This procedure is used to
2282  * reduce procedural recursion since these vm_object shadow chains
2283  * can become quite long.
2284  */
2285 void
2286 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2287 {
2288 	struct vm_object_dealloc_list *dlist;
2289 
2290 	while ((dlist = *dlistp) != NULL) {
2291 		*dlistp = dlist->next;
2292 		vm_object_lock(dlist->object);
2293 		vm_object_deallocate_locked(dlist->object);
2294 		vm_object_drop(dlist->object);
2295 		kfree(dlist, M_TEMP);
2296 	}
2297 }
2298 
2299 /*
2300  * Removes all physical pages in the specified object range from the
2301  * object's list of pages.
2302  *
2303  * No requirements.
2304  */
2305 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2306 
2307 void
2308 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2309 		      boolean_t clean_only)
2310 {
2311 	struct rb_vm_page_scan_info info;
2312 	int all;
2313 
2314 	/*
2315 	 * Degenerate cases and assertions
2316 	 */
2317 	vm_object_hold(object);
2318 	if (object == NULL ||
2319 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2320 		vm_object_drop(object);
2321 		return;
2322 	}
2323 	KASSERT(object->type != OBJT_PHYS,
2324 		("attempt to remove pages from a physical object"));
2325 
2326 	/*
2327 	 * Indicate that paging is occuring on the object
2328 	 */
2329 	vm_object_pip_add(object, 1);
2330 
2331 	/*
2332 	 * Figure out the actual removal range and whether we are removing
2333 	 * the entire contents of the object or not.  If removing the entire
2334 	 * contents, be sure to get all pages, even those that might be
2335 	 * beyond the end of the object.
2336 	 */
2337 	info.start_pindex = start;
2338 	if (end == 0)
2339 		info.end_pindex = (vm_pindex_t)-1;
2340 	else
2341 		info.end_pindex = end - 1;
2342 	info.limit = clean_only;
2343 	all = (start == 0 && info.end_pindex >= object->size - 1);
2344 
2345 	/*
2346 	 * Loop until we are sure we have gotten them all.
2347 	 */
2348 	do {
2349 		info.error = 0;
2350 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2351 					vm_object_page_remove_callback, &info);
2352 	} while (info.error);
2353 
2354 	/*
2355 	 * Remove any related swap if throwing away pages, or for
2356 	 * non-swap objects (the swap is a clean copy in that case).
2357 	 */
2358 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2359 		if (all)
2360 			swap_pager_freespace_all(object);
2361 		else
2362 			swap_pager_freespace(object, info.start_pindex,
2363 			     info.end_pindex - info.start_pindex + 1);
2364 	}
2365 
2366 	/*
2367 	 * Cleanup
2368 	 */
2369 	vm_object_pip_wakeup(object);
2370 	vm_object_drop(object);
2371 }
2372 
2373 /*
2374  * The caller must hold the object
2375  */
2376 static int
2377 vm_object_page_remove_callback(vm_page_t p, void *data)
2378 {
2379 	struct rb_vm_page_scan_info *info = data;
2380 
2381 	if (vm_page_busy_try(p, TRUE)) {
2382 		vm_page_sleep_busy(p, TRUE, "vmopar");
2383 		info->error = 1;
2384 		return(0);
2385 	}
2386 
2387 	/*
2388 	 * Wired pages cannot be destroyed, but they can be invalidated
2389 	 * and we do so if clean_only (limit) is not set.
2390 	 *
2391 	 * WARNING!  The page may be wired due to being part of a buffer
2392 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2393 	 *	     This is fine as part of a truncation but VFSs must be
2394 	 *	     sure to fix the buffer up when re-extending the file.
2395 	 *
2396 	 * NOTE!     PG_NEED_COMMIT is ignored.
2397 	 */
2398 	if (p->wire_count != 0) {
2399 		vm_page_protect(p, VM_PROT_NONE);
2400 		if (info->limit == 0)
2401 			p->valid = 0;
2402 		vm_page_wakeup(p);
2403 		return(0);
2404 	}
2405 
2406 	/*
2407 	 * limit is our clean_only flag.  If set and the page is dirty or
2408 	 * requires a commit, do not free it.  If set and the page is being
2409 	 * held by someone, do not free it.
2410 	 */
2411 	if (info->limit && p->valid) {
2412 		vm_page_test_dirty(p);
2413 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2414 			vm_page_wakeup(p);
2415 			return(0);
2416 		}
2417 #if 0
2418 		if (p->hold_count) {
2419 			vm_page_wakeup(p);
2420 			return(0);
2421 		}
2422 #endif
2423 	}
2424 
2425 	/*
2426 	 * Destroy the page
2427 	 */
2428 	vm_page_protect(p, VM_PROT_NONE);
2429 	vm_page_free(p);
2430 	return(0);
2431 }
2432 
2433 /*
2434  * Coalesces two objects backing up adjoining regions of memory into a
2435  * single object.
2436  *
2437  * returns TRUE if objects were combined.
2438  *
2439  * NOTE: Only works at the moment if the second object is NULL -
2440  *	 if it's not, which object do we lock first?
2441  *
2442  * Parameters:
2443  *	prev_object	First object to coalesce
2444  *	prev_offset	Offset into prev_object
2445  *	next_object	Second object into coalesce
2446  *	next_offset	Offset into next_object
2447  *
2448  *	prev_size	Size of reference to prev_object
2449  *	next_size	Size of reference to next_object
2450  *
2451  * The caller does not need to hold (prev_object) but must have a stable
2452  * pointer to it (typically by holding the vm_map locked).
2453  */
2454 boolean_t
2455 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2456 		   vm_size_t prev_size, vm_size_t next_size)
2457 {
2458 	vm_pindex_t next_pindex;
2459 
2460 	if (prev_object == NULL)
2461 		return (TRUE);
2462 
2463 	vm_object_hold(prev_object);
2464 
2465 	if (prev_object->type != OBJT_DEFAULT &&
2466 	    prev_object->type != OBJT_SWAP) {
2467 		vm_object_drop(prev_object);
2468 		return (FALSE);
2469 	}
2470 
2471 	/*
2472 	 * Try to collapse the object first
2473 	 */
2474 	vm_object_chain_acquire(prev_object);
2475 	vm_object_collapse(prev_object, NULL);
2476 
2477 	/*
2478 	 * Can't coalesce if: . more than one reference . paged out . shadows
2479 	 * another object . has a copy elsewhere (any of which mean that the
2480 	 * pages not mapped to prev_entry may be in use anyway)
2481 	 */
2482 
2483 	if (prev_object->backing_object != NULL) {
2484 		vm_object_chain_release(prev_object);
2485 		vm_object_drop(prev_object);
2486 		return (FALSE);
2487 	}
2488 
2489 	prev_size >>= PAGE_SHIFT;
2490 	next_size >>= PAGE_SHIFT;
2491 	next_pindex = prev_pindex + prev_size;
2492 
2493 	if ((prev_object->ref_count > 1) &&
2494 	    (prev_object->size != next_pindex)) {
2495 		vm_object_chain_release(prev_object);
2496 		vm_object_drop(prev_object);
2497 		return (FALSE);
2498 	}
2499 
2500 	/*
2501 	 * Remove any pages that may still be in the object from a previous
2502 	 * deallocation.
2503 	 */
2504 	if (next_pindex < prev_object->size) {
2505 		vm_object_page_remove(prev_object,
2506 				      next_pindex,
2507 				      next_pindex + next_size, FALSE);
2508 		if (prev_object->type == OBJT_SWAP)
2509 			swap_pager_freespace(prev_object,
2510 					     next_pindex, next_size);
2511 	}
2512 
2513 	/*
2514 	 * Extend the object if necessary.
2515 	 */
2516 	if (next_pindex + next_size > prev_object->size)
2517 		prev_object->size = next_pindex + next_size;
2518 
2519 	vm_object_chain_release(prev_object);
2520 	vm_object_drop(prev_object);
2521 	return (TRUE);
2522 }
2523 
2524 /*
2525  * Make the object writable and flag is being possibly dirty.
2526  *
2527  * The caller must hold the object. XXX called from vm_page_dirty(),
2528  * There is currently no requirement to hold the object.
2529  */
2530 void
2531 vm_object_set_writeable_dirty(vm_object_t object)
2532 {
2533 	struct vnode *vp;
2534 
2535 	/*vm_object_assert_held(object);*/
2536 	/*
2537 	 * Avoid contention in vm fault path by checking the state before
2538 	 * issuing an atomic op on it.
2539 	 */
2540 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2541 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2542 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2543 	}
2544 	if (object->type == OBJT_VNODE &&
2545 	    (vp = (struct vnode *)object->handle) != NULL) {
2546 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2547 			vsetflags(vp, VOBJDIRTY);
2548 		}
2549 	}
2550 }
2551 
2552 #include "opt_ddb.h"
2553 #ifdef DDB
2554 #include <sys/kernel.h>
2555 
2556 #include <sys/cons.h>
2557 
2558 #include <ddb/ddb.h>
2559 
2560 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2561 				       vm_map_entry_t entry);
2562 static int	vm_object_in_map (vm_object_t object);
2563 
2564 /*
2565  * The caller must hold the object.
2566  */
2567 static int
2568 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2569 {
2570 	vm_map_t tmpm;
2571 	vm_map_entry_t tmpe;
2572 	vm_object_t obj, nobj;
2573 	int entcount;
2574 
2575 	if (map == 0)
2576 		return 0;
2577 	if (entry == 0) {
2578 		tmpe = map->header.next;
2579 		entcount = map->nentries;
2580 		while (entcount-- && (tmpe != &map->header)) {
2581 			if( _vm_object_in_map(map, object, tmpe)) {
2582 				return 1;
2583 			}
2584 			tmpe = tmpe->next;
2585 		}
2586 		return (0);
2587 	}
2588 	switch(entry->maptype) {
2589 	case VM_MAPTYPE_SUBMAP:
2590 		tmpm = entry->object.sub_map;
2591 		tmpe = tmpm->header.next;
2592 		entcount = tmpm->nentries;
2593 		while (entcount-- && tmpe != &tmpm->header) {
2594 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2595 				return 1;
2596 			}
2597 			tmpe = tmpe->next;
2598 		}
2599 		break;
2600 	case VM_MAPTYPE_NORMAL:
2601 	case VM_MAPTYPE_VPAGETABLE:
2602 		obj = entry->object.vm_object;
2603 		while (obj) {
2604 			if (obj == object) {
2605 				if (obj != entry->object.vm_object)
2606 					vm_object_drop(obj);
2607 				return 1;
2608 			}
2609 			while ((nobj = obj->backing_object) != NULL) {
2610 				vm_object_hold(nobj);
2611 				if (nobj == obj->backing_object)
2612 					break;
2613 				vm_object_drop(nobj);
2614 			}
2615 			if (obj != entry->object.vm_object) {
2616 				if (nobj)
2617 					vm_object_lock_swap();
2618 				vm_object_drop(obj);
2619 			}
2620 			obj = nobj;
2621 		}
2622 		break;
2623 	default:
2624 		break;
2625 	}
2626 	return 0;
2627 }
2628 
2629 static int vm_object_in_map_callback(struct proc *p, void *data);
2630 
2631 struct vm_object_in_map_info {
2632 	vm_object_t object;
2633 	int rv;
2634 };
2635 
2636 /*
2637  * Debugging only
2638  */
2639 static int
2640 vm_object_in_map(vm_object_t object)
2641 {
2642 	struct vm_object_in_map_info info;
2643 
2644 	info.rv = 0;
2645 	info.object = object;
2646 
2647 	allproc_scan(vm_object_in_map_callback, &info);
2648 	if (info.rv)
2649 		return 1;
2650 	if( _vm_object_in_map(&kernel_map, object, 0))
2651 		return 1;
2652 	if( _vm_object_in_map(&pager_map, object, 0))
2653 		return 1;
2654 	if( _vm_object_in_map(&buffer_map, object, 0))
2655 		return 1;
2656 	return 0;
2657 }
2658 
2659 /*
2660  * Debugging only
2661  */
2662 static int
2663 vm_object_in_map_callback(struct proc *p, void *data)
2664 {
2665 	struct vm_object_in_map_info *info = data;
2666 
2667 	if (p->p_vmspace) {
2668 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2669 			info->rv = 1;
2670 			return -1;
2671 		}
2672 	}
2673 	return (0);
2674 }
2675 
2676 DB_SHOW_COMMAND(vmochk, vm_object_check)
2677 {
2678 	vm_object_t object;
2679 
2680 	/*
2681 	 * make sure that internal objs are in a map somewhere
2682 	 * and none have zero ref counts.
2683 	 */
2684 	for (object = TAILQ_FIRST(&vm_object_list);
2685 			object != NULL;
2686 			object = TAILQ_NEXT(object, object_list)) {
2687 		if (object->type == OBJT_MARKER)
2688 			continue;
2689 		if (object->handle == NULL &&
2690 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2691 			if (object->ref_count == 0) {
2692 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2693 					(long)object->size);
2694 			}
2695 			if (!vm_object_in_map(object)) {
2696 				db_printf(
2697 			"vmochk: internal obj is not in a map: "
2698 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2699 				    object->ref_count, (u_long)object->size,
2700 				    (u_long)object->size,
2701 				    (void *)object->backing_object);
2702 			}
2703 		}
2704 	}
2705 }
2706 
2707 /*
2708  * Debugging only
2709  */
2710 DB_SHOW_COMMAND(object, vm_object_print_static)
2711 {
2712 	/* XXX convert args. */
2713 	vm_object_t object = (vm_object_t)addr;
2714 	boolean_t full = have_addr;
2715 
2716 	vm_page_t p;
2717 
2718 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2719 #define	count	was_count
2720 
2721 	int count;
2722 
2723 	if (object == NULL)
2724 		return;
2725 
2726 	db_iprintf(
2727 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2728 	    object, (int)object->type, (u_long)object->size,
2729 	    object->resident_page_count, object->ref_count, object->flags);
2730 	/*
2731 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2732 	 */
2733 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2734 	    object->shadow_count,
2735 	    object->backing_object ? object->backing_object->ref_count : 0,
2736 	    object->backing_object, (long)object->backing_object_offset);
2737 
2738 	if (!full)
2739 		return;
2740 
2741 	db_indent += 2;
2742 	count = 0;
2743 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2744 		if (count == 0)
2745 			db_iprintf("memory:=");
2746 		else if (count == 6) {
2747 			db_printf("\n");
2748 			db_iprintf(" ...");
2749 			count = 0;
2750 		} else
2751 			db_printf(",");
2752 		count++;
2753 
2754 		db_printf("(off=0x%lx,page=0x%lx)",
2755 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2756 	}
2757 	if (count != 0)
2758 		db_printf("\n");
2759 	db_indent -= 2;
2760 }
2761 
2762 /* XXX. */
2763 #undef count
2764 
2765 /*
2766  * XXX need this non-static entry for calling from vm_map_print.
2767  *
2768  * Debugging only
2769  */
2770 void
2771 vm_object_print(/* db_expr_t */ long addr,
2772 		boolean_t have_addr,
2773 		/* db_expr_t */ long count,
2774 		char *modif)
2775 {
2776 	vm_object_print_static(addr, have_addr, count, modif);
2777 }
2778 
2779 /*
2780  * Debugging only
2781  */
2782 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2783 {
2784 	vm_object_t object;
2785 	int nl = 0;
2786 	int c;
2787 	for (object = TAILQ_FIRST(&vm_object_list);
2788 			object != NULL;
2789 			object = TAILQ_NEXT(object, object_list)) {
2790 		vm_pindex_t idx, fidx;
2791 		vm_pindex_t osize;
2792 		vm_paddr_t pa = -1, padiff;
2793 		int rcount;
2794 		vm_page_t m;
2795 
2796 		if (object->type == OBJT_MARKER)
2797 			continue;
2798 		db_printf("new object: %p\n", (void *)object);
2799 		if ( nl > 18) {
2800 			c = cngetc();
2801 			if (c != ' ')
2802 				return;
2803 			nl = 0;
2804 		}
2805 		nl++;
2806 		rcount = 0;
2807 		fidx = 0;
2808 		osize = object->size;
2809 		if (osize > 128)
2810 			osize = 128;
2811 		for (idx = 0; idx < osize; idx++) {
2812 			m = vm_page_lookup(object, idx);
2813 			if (m == NULL) {
2814 				if (rcount) {
2815 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2816 						(long)fidx, rcount, (long)pa);
2817 					if ( nl > 18) {
2818 						c = cngetc();
2819 						if (c != ' ')
2820 							return;
2821 						nl = 0;
2822 					}
2823 					nl++;
2824 					rcount = 0;
2825 				}
2826 				continue;
2827 			}
2828 
2829 
2830 			if (rcount &&
2831 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2832 				++rcount;
2833 				continue;
2834 			}
2835 			if (rcount) {
2836 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2837 				padiff >>= PAGE_SHIFT;
2838 				padiff &= PQ_L2_MASK;
2839 				if (padiff == 0) {
2840 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2841 					++rcount;
2842 					continue;
2843 				}
2844 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
2845 					(long)fidx, rcount, (long)pa);
2846 				db_printf("pd(%ld)\n", (long)padiff);
2847 				if ( nl > 18) {
2848 					c = cngetc();
2849 					if (c != ' ')
2850 						return;
2851 					nl = 0;
2852 				}
2853 				nl++;
2854 			}
2855 			fidx = idx;
2856 			pa = VM_PAGE_TO_PHYS(m);
2857 			rcount = 1;
2858 		}
2859 		if (rcount) {
2860 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2861 				(long)fidx, rcount, (long)pa);
2862 			if ( nl > 18) {
2863 				c = cngetc();
2864 				if (c != ' ')
2865 					return;
2866 				nl = 0;
2867 			}
2868 			nl++;
2869 		}
2870 	}
2871 }
2872 #endif /* DDB */
2873