xref: /dragonfly/sys/vm/vm_object.c (revision e98bdfd3)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct vm_object kernel_object;
132 
133 static long vm_object_count;
134 
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 #define VM_OBJECTS_INIT 256
141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 
143 struct object_q vm_object_lists[VMOBJ_HSIZE];
144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145 
146 #if defined(DEBUG_LOCKS)
147 
148 #define vm_object_vndeallocate(obj, vpp)	\
149                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
150 
151 /*
152  * Debug helper to track hold/drop/ref/deallocate calls.
153  */
154 static void
155 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
156 {
157 	int i;
158 
159 	i = atomic_fetchadd_int(&obj->debug_index, 1);
160 	i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
161 	ksnprintf(obj->debug_hold_thrs[i],
162 		  sizeof(obj->debug_hold_thrs[i]),
163 		  "%c%d:(%d):%s",
164 		  (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
165 		  (curthread->td_proc ? curthread->td_proc->p_pid : -1),
166 		  obj->ref_count,
167 		  curthread->td_comm);
168 	obj->debug_hold_file[i] = file;
169 	obj->debug_hold_line[i] = line;
170 #if 0
171 	/* Uncomment for debugging obj refs/derefs in reproducable cases */
172 	if (strcmp(curthread->td_comm, "sshd") == 0) {
173 		kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
174 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
175 			obj, obj->ref_count, addrem, file, line);
176 	}
177 #endif
178 }
179 
180 #endif
181 
182 /*
183  * Misc low level routines
184  */
185 static void
186 vm_object_lock_init(vm_object_t obj)
187 {
188 #if defined(DEBUG_LOCKS)
189 	int i;
190 
191 	obj->debug_index = 0;
192 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
193 		obj->debug_hold_thrs[i][0] = 0;
194 		obj->debug_hold_file[i] = NULL;
195 		obj->debug_hold_line[i] = 0;
196 	}
197 #endif
198 }
199 
200 void
201 vm_object_lock_swap(void)
202 {
203 	lwkt_token_swap();
204 }
205 
206 void
207 vm_object_lock(vm_object_t obj)
208 {
209 	lwkt_gettoken(&obj->token);
210 }
211 
212 /*
213  * Returns TRUE on sucesss
214  */
215 static int
216 vm_object_lock_try(vm_object_t obj)
217 {
218 	return(lwkt_trytoken(&obj->token));
219 }
220 
221 void
222 vm_object_lock_shared(vm_object_t obj)
223 {
224 	lwkt_gettoken_shared(&obj->token);
225 }
226 
227 void
228 vm_object_unlock(vm_object_t obj)
229 {
230 	lwkt_reltoken(&obj->token);
231 }
232 
233 void
234 vm_object_upgrade(vm_object_t obj)
235 {
236 	lwkt_reltoken(&obj->token);
237 	lwkt_gettoken(&obj->token);
238 }
239 
240 void
241 vm_object_downgrade(vm_object_t obj)
242 {
243 	lwkt_reltoken(&obj->token);
244 	lwkt_gettoken_shared(&obj->token);
245 }
246 
247 static __inline void
248 vm_object_assert_held(vm_object_t obj)
249 {
250 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
251 }
252 
253 void
254 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
255 {
256 	KKASSERT(obj != NULL);
257 
258 	/*
259 	 * Object must be held (object allocation is stable due to callers
260 	 * context, typically already holding the token on a parent object)
261 	 * prior to potentially blocking on the lock, otherwise the object
262 	 * can get ripped away from us.
263 	 */
264 	refcount_acquire(&obj->hold_count);
265 	vm_object_lock(obj);
266 
267 #if defined(DEBUG_LOCKS)
268 	debugvm_object_add(obj, file, line, 1);
269 #endif
270 }
271 
272 int
273 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
274 {
275 	KKASSERT(obj != NULL);
276 
277 	/*
278 	 * Object must be held (object allocation is stable due to callers
279 	 * context, typically already holding the token on a parent object)
280 	 * prior to potentially blocking on the lock, otherwise the object
281 	 * can get ripped away from us.
282 	 */
283 	refcount_acquire(&obj->hold_count);
284 	if (vm_object_lock_try(obj) == 0) {
285 		if (refcount_release(&obj->hold_count)) {
286 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
287 				zfree(obj_zone, obj);
288 		}
289 		return(0);
290 	}
291 
292 #if defined(DEBUG_LOCKS)
293 	debugvm_object_add(obj, file, line, 1);
294 #endif
295 	return(1);
296 }
297 
298 void
299 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
300 {
301 	KKASSERT(obj != NULL);
302 
303 	/*
304 	 * Object must be held (object allocation is stable due to callers
305 	 * context, typically already holding the token on a parent object)
306 	 * prior to potentially blocking on the lock, otherwise the object
307 	 * can get ripped away from us.
308 	 */
309 	refcount_acquire(&obj->hold_count);
310 	vm_object_lock_shared(obj);
311 
312 #if defined(DEBUG_LOCKS)
313 	debugvm_object_add(obj, file, line, 1);
314 #endif
315 }
316 
317 /*
318  * Drop the token and hold_count on the object.
319  *
320  * WARNING! Token might be shared.
321  */
322 void
323 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
324 {
325 	if (obj == NULL)
326 		return;
327 
328 	/*
329 	 * No new holders should be possible once we drop hold_count 1->0 as
330 	 * there is no longer any way to reference the object.
331 	 */
332 	KKASSERT(obj->hold_count > 0);
333 	if (refcount_release(&obj->hold_count)) {
334 #if defined(DEBUG_LOCKS)
335 		debugvm_object_add(obj, file, line, -1);
336 #endif
337 
338 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
339 			vm_object_unlock(obj);
340 			zfree(obj_zone, obj);
341 		} else {
342 			vm_object_unlock(obj);
343 		}
344 	} else {
345 #if defined(DEBUG_LOCKS)
346 		debugvm_object_add(obj, file, line, -1);
347 #endif
348 		vm_object_unlock(obj);
349 	}
350 }
351 
352 /*
353  * Initialize a freshly allocated object, returning a held object.
354  *
355  * Used only by vm_object_allocate() and zinitna().
356  *
357  * No requirements.
358  */
359 void
360 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
361 {
362 	int incr;
363 	int n;
364 
365 	RB_INIT(&object->rb_memq);
366 	LIST_INIT(&object->shadow_head);
367 	lwkt_token_init(&object->token, "vmobj");
368 
369 	object->type = type;
370 	object->size = size;
371 	object->ref_count = 1;
372 	object->memattr = VM_MEMATTR_DEFAULT;
373 	object->hold_count = 0;
374 	object->flags = 0;
375 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
376 		vm_object_set_flag(object, OBJ_ONEMAPPING);
377 	object->paging_in_progress = 0;
378 	object->resident_page_count = 0;
379 	object->agg_pv_list_count = 0;
380 	object->shadow_count = 0;
381 	/* cpu localization twist */
382 	object->pg_color = (int)(intptr_t)curthread;
383 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
384 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
385 	else
386 		incr = size;
387 	next_index = (next_index + incr) & PQ_L2_MASK;
388 	object->handle = NULL;
389 	object->backing_object = NULL;
390 	object->backing_object_offset = (vm_ooffset_t)0;
391 
392 	object->generation++;
393 	object->swblock_count = 0;
394 	RB_INIT(&object->swblock_root);
395 	vm_object_lock_init(object);
396 	pmap_object_init(object);
397 
398 	vm_object_hold(object);
399 
400 	n = VMOBJ_HASH(object);
401 	atomic_add_long(&vm_object_count, 1);
402 	lwkt_gettoken(&vmobj_tokens[n]);
403 	TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
404 	lwkt_reltoken(&vmobj_tokens[n]);
405 }
406 
407 /*
408  * Initialize the VM objects module.
409  *
410  * Called from the low level boot code only.
411  */
412 void
413 vm_object_init(void)
414 {
415 	int i;
416 
417 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
418 		TAILQ_INIT(&vm_object_lists[i]);
419 		lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
420 	}
421 
422 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
423 			    &kernel_object);
424 	vm_object_drop(&kernel_object);
425 
426 	obj_zone = &obj_zone_store;
427 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
428 		vm_objects_init, VM_OBJECTS_INIT);
429 }
430 
431 void
432 vm_object_init2(void)
433 {
434 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
435 }
436 
437 /*
438  * Allocate and return a new object of the specified type and size.
439  *
440  * No requirements.
441  */
442 vm_object_t
443 vm_object_allocate(objtype_t type, vm_pindex_t size)
444 {
445 	vm_object_t result;
446 
447 	result = (vm_object_t) zalloc(obj_zone);
448 
449 	_vm_object_allocate(type, size, result);
450 	vm_object_drop(result);
451 
452 	return (result);
453 }
454 
455 /*
456  * This version returns a held object, allowing further atomic initialization
457  * of the object.
458  */
459 vm_object_t
460 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
461 {
462 	vm_object_t result;
463 
464 	result = (vm_object_t) zalloc(obj_zone);
465 
466 	_vm_object_allocate(type, size, result);
467 
468 	return (result);
469 }
470 
471 /*
472  * Add an additional reference to a vm_object.  The object must already be
473  * held.  The original non-lock version is no longer supported.  The object
474  * must NOT be chain locked by anyone at the time the reference is added.
475  *
476  * Referencing a chain-locked object can blow up the fairly sensitive
477  * ref_count and shadow_count tests in the deallocator.  Most callers
478  * will call vm_object_chain_wait() prior to calling
479  * vm_object_reference_locked() to avoid the case.
480  *
481  * The object must be held, but may be held shared if desired (hence why
482  * we use an atomic op).
483  */
484 void
485 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
486 {
487 	KKASSERT(object != NULL);
488 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
489 	KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
490 	atomic_add_int(&object->ref_count, 1);
491 	if (object->type == OBJT_VNODE) {
492 		vref(object->handle);
493 		/* XXX what if the vnode is being destroyed? */
494 	}
495 #if defined(DEBUG_LOCKS)
496 	debugvm_object_add(object, file, line, 1);
497 #endif
498 }
499 
500 /*
501  * This version is only allowed for vnode objects.
502  */
503 void
504 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
505 {
506 	KKASSERT(object->type == OBJT_VNODE);
507 	atomic_add_int(&object->ref_count, 1);
508 	vref(object->handle);
509 #if defined(DEBUG_LOCKS)
510 	debugvm_object_add(object, file, line, 1);
511 #endif
512 }
513 
514 /*
515  * Object OBJ_CHAINLOCK lock handling.
516  *
517  * The caller can chain-lock backing objects recursively and then
518  * use vm_object_chain_release_all() to undo the whole chain.
519  *
520  * Chain locks are used to prevent collapses and are only applicable
521  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
522  * on other object types are ignored.  This is also important because
523  * it allows e.g. the vnode underlying a memory mapping to take concurrent
524  * faults.
525  *
526  * The object must usually be held on entry, though intermediate
527  * objects need not be held on release.  The object must be held exclusively,
528  * NOT shared.  Note that the prefault path checks the shared state and
529  * avoids using the chain functions.
530  */
531 void
532 vm_object_chain_wait(vm_object_t object, int shared)
533 {
534 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
535 	for (;;) {
536 		uint32_t chainlk = object->chainlk;
537 
538 		cpu_ccfence();
539 		if (shared) {
540 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
541 				tsleep_interlock(object, 0);
542 				if (atomic_cmpset_int(&object->chainlk,
543 						      chainlk,
544 						      chainlk | CHAINLK_WAIT)) {
545 					tsleep(object, PINTERLOCKED,
546 					       "objchns", 0);
547 				}
548 				/* retry */
549 			} else {
550 				break;
551 			}
552 			/* retry */
553 		} else {
554 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
555 				tsleep_interlock(object, 0);
556 				if (atomic_cmpset_int(&object->chainlk,
557 						      chainlk,
558 						      chainlk | CHAINLK_WAIT))
559 				{
560 					tsleep(object, PINTERLOCKED,
561 					       "objchnx", 0);
562 				}
563 				/* retry */
564 			} else {
565 				if (atomic_cmpset_int(&object->chainlk,
566 						      chainlk,
567 						      chainlk & ~CHAINLK_WAIT))
568 				{
569 					if (chainlk & CHAINLK_WAIT)
570 						wakeup(object);
571 					break;
572 				}
573 				/* retry */
574 			}
575 		}
576 		/* retry */
577 	}
578 }
579 
580 void
581 vm_object_chain_acquire(vm_object_t object, int shared)
582 {
583 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
584 		return;
585 	if (vm_shared_fault == 0)
586 		shared = 0;
587 
588 	for (;;) {
589 		uint32_t chainlk = object->chainlk;
590 
591 		cpu_ccfence();
592 		if (shared) {
593 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
594 				tsleep_interlock(object, 0);
595 				if (atomic_cmpset_int(&object->chainlk,
596 						      chainlk,
597 						      chainlk | CHAINLK_WAIT)) {
598 					tsleep(object, PINTERLOCKED,
599 					       "objchns", 0);
600 				}
601 				/* retry */
602 			} else if (atomic_cmpset_int(&object->chainlk,
603 					      chainlk, chainlk + 1)) {
604 				break;
605 			}
606 			/* retry */
607 		} else {
608 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
609 				tsleep_interlock(object, 0);
610 				if (atomic_cmpset_int(&object->chainlk,
611 						      chainlk,
612 						      chainlk |
613 						       CHAINLK_WAIT |
614 						       CHAINLK_EXCLREQ)) {
615 					tsleep(object, PINTERLOCKED,
616 					       "objchnx", 0);
617 				}
618 				/* retry */
619 			} else {
620 				if (atomic_cmpset_int(&object->chainlk,
621 						      chainlk,
622 						      (chainlk | CHAINLK_EXCL) &
623 						      ~(CHAINLK_EXCLREQ |
624 							CHAINLK_WAIT))) {
625 					if (chainlk & CHAINLK_WAIT)
626 						wakeup(object);
627 					break;
628 				}
629 				/* retry */
630 			}
631 		}
632 		/* retry */
633 	}
634 }
635 
636 void
637 vm_object_chain_release(vm_object_t object)
638 {
639 	/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
640 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
641 		return;
642 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
643 	for (;;) {
644 		uint32_t chainlk = object->chainlk;
645 
646 		cpu_ccfence();
647 		if (chainlk & CHAINLK_MASK) {
648 			if ((chainlk & CHAINLK_MASK) == 1 &&
649 			    atomic_cmpset_int(&object->chainlk,
650 					      chainlk,
651 					      (chainlk - 1) & ~CHAINLK_WAIT)) {
652 				if (chainlk & CHAINLK_WAIT)
653 					wakeup(object);
654 				break;
655 			}
656 			if ((chainlk & CHAINLK_MASK) > 1 &&
657 			    atomic_cmpset_int(&object->chainlk,
658 					      chainlk, chainlk - 1)) {
659 				break;
660 			}
661 			/* retry */
662 		} else {
663 			KKASSERT(chainlk & CHAINLK_EXCL);
664 			if (atomic_cmpset_int(&object->chainlk,
665 					      chainlk,
666 					      chainlk & ~(CHAINLK_EXCL |
667 							  CHAINLK_WAIT))) {
668 				if (chainlk & CHAINLK_WAIT)
669 					wakeup(object);
670 				break;
671 			}
672 		}
673 	}
674 }
675 
676 /*
677  * Release the chain from first_object through and including stopobj.
678  * The caller is typically holding the first and last object locked
679  * (shared or exclusive) to prevent destruction races.
680  *
681  * We release stopobj first as an optimization as this object is most
682  * likely to be shared across multiple processes.
683  */
684 void
685 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
686 {
687 	vm_object_t backing_object;
688 	vm_object_t object;
689 
690 	vm_object_chain_release(stopobj);
691 	object = first_object;
692 
693 	while (object != stopobj) {
694 		KKASSERT(object);
695 		backing_object = object->backing_object;
696 		vm_object_chain_release(object);
697 		object = backing_object;
698 	}
699 }
700 
701 /*
702  * Dereference an object and its underlying vnode.  The object may be
703  * held shared.  On return the object will remain held.
704  *
705  * This function may return a vnode in *vpp which the caller must release
706  * after the caller drops its own lock.  If vpp is NULL, we assume that
707  * the caller was holding an exclusive lock on the object and we vrele()
708  * the vp ourselves.
709  */
710 static void
711 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
712 				   VMOBJDBARGS)
713 {
714 	struct vnode *vp = (struct vnode *) object->handle;
715 
716 	KASSERT(object->type == OBJT_VNODE,
717 	    ("vm_object_vndeallocate: not a vnode object"));
718 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
719 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
720 #ifdef INVARIANTS
721 	if (object->ref_count == 0) {
722 		vprint("vm_object_vndeallocate", vp);
723 		panic("vm_object_vndeallocate: bad object reference count");
724 	}
725 #endif
726 	for (;;) {
727 		int count = object->ref_count;
728 		cpu_ccfence();
729 		if (count == 1) {
730 			vm_object_upgrade(object);
731 			if (atomic_cmpset_int(&object->ref_count, count, 0)) {
732 				vclrflags(vp, VTEXT);
733 				break;
734 			}
735 		} else {
736 			if (atomic_cmpset_int(&object->ref_count,
737 					      count, count - 1)) {
738 				break;
739 			}
740 		}
741 		/* retry */
742 	}
743 #if defined(DEBUG_LOCKS)
744 	debugvm_object_add(object, file, line, -1);
745 #endif
746 
747 	/*
748 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
749 	 * if the object was locked exclusively.  But there are two races
750 	 * here.
751 	 *
752 	 * We had to upgrade the object above to safely clear VTEXT
753 	 * but the alternative path where the shared lock is retained
754 	 * can STILL race to 0 in other paths and cause our own vrele()
755 	 * to terminate the vnode.  We can't allow that if the VM object
756 	 * is still locked shared.
757 	 */
758 	if (vpp)
759 		*vpp = vp;
760 	else
761 		vrele(vp);
762 }
763 
764 /*
765  * Release a reference to the specified object, gained either through a
766  * vm_object_allocate or a vm_object_reference call.  When all references
767  * are gone, storage associated with this object may be relinquished.
768  *
769  * The caller does not have to hold the object locked but must have control
770  * over the reference in question in order to guarantee that the object
771  * does not get ripped out from under us.
772  *
773  * XXX Currently all deallocations require an exclusive lock.
774  */
775 void
776 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
777 {
778 	struct vnode *vp;
779 	int count;
780 
781 	if (object == NULL)
782 		return;
783 
784 	for (;;) {
785 		count = object->ref_count;
786 		cpu_ccfence();
787 
788 		/*
789 		 * If decrementing the count enters into special handling
790 		 * territory (0, 1, or 2) we have to do it the hard way.
791 		 * Fortunate though, objects with only a few refs like this
792 		 * are not likely to be heavily contended anyway.
793 		 *
794 		 * For vnode objects we only care about 1->0 transitions.
795 		 */
796 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
797 #if defined(DEBUG_LOCKS)
798 			debugvm_object_add(object, file, line, 0);
799 #endif
800 			vm_object_hold(object);
801 			vm_object_deallocate_locked(object);
802 			vm_object_drop(object);
803 			break;
804 		}
805 
806 		/*
807 		 * Try to decrement ref_count without acquiring a hold on
808 		 * the object.  This is particularly important for the exec*()
809 		 * and exit*() code paths because the program binary may
810 		 * have a great deal of sharing and an exclusive lock will
811 		 * crowbar performance in those circumstances.
812 		 */
813 		if (object->type == OBJT_VNODE) {
814 			vp = (struct vnode *)object->handle;
815 			if (atomic_cmpset_int(&object->ref_count,
816 					      count, count - 1)) {
817 #if defined(DEBUG_LOCKS)
818 				debugvm_object_add(object, file, line, -1);
819 #endif
820 
821 				vrele(vp);
822 				break;
823 			}
824 			/* retry */
825 		} else {
826 			if (atomic_cmpset_int(&object->ref_count,
827 					      count, count - 1)) {
828 #if defined(DEBUG_LOCKS)
829 				debugvm_object_add(object, file, line, -1);
830 #endif
831 				break;
832 			}
833 			/* retry */
834 		}
835 		/* retry */
836 	}
837 }
838 
839 void
840 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
841 {
842 	struct vm_object_dealloc_list *dlist = NULL;
843 	struct vm_object_dealloc_list *dtmp;
844 	vm_object_t temp;
845 	int must_drop = 0;
846 
847 	/*
848 	 * We may chain deallocate object, but additional objects may
849 	 * collect on the dlist which also have to be deallocated.  We
850 	 * must avoid a recursion, vm_object chains can get deep.
851 	 */
852 
853 again:
854 	while (object != NULL) {
855 		/*
856 		 * vnode case, caller either locked the object exclusively
857 		 * or this is a recursion with must_drop != 0 and the vnode
858 		 * object will be locked shared.
859 		 *
860 		 * If locked shared we have to drop the object before we can
861 		 * call vrele() or risk a shared/exclusive livelock.
862 		 */
863 		if (object->type == OBJT_VNODE) {
864 			ASSERT_LWKT_TOKEN_HELD(&object->token);
865 			if (must_drop) {
866 				struct vnode *tmp_vp;
867 
868 				vm_object_vndeallocate(object, &tmp_vp);
869 				vm_object_drop(object);
870 				must_drop = 0;
871 				object = NULL;
872 				vrele(tmp_vp);
873 			} else {
874 				vm_object_vndeallocate(object, NULL);
875 			}
876 			break;
877 		}
878 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
879 
880 		/*
881 		 * Normal case (object is locked exclusively)
882 		 */
883 		if (object->ref_count == 0) {
884 			panic("vm_object_deallocate: object deallocated "
885 			      "too many times: %d", object->type);
886 		}
887 		if (object->ref_count > 2) {
888 			atomic_add_int(&object->ref_count, -1);
889 #if defined(DEBUG_LOCKS)
890 			debugvm_object_add(object, file, line, -1);
891 #endif
892 			break;
893 		}
894 
895 		/*
896 		 * Here on ref_count of one or two, which are special cases for
897 		 * objects.
898 		 *
899 		 * Nominal ref_count > 1 case if the second ref is not from
900 		 * a shadow.
901 		 *
902 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
903 		 */
904 		if (object->ref_count == 2 && object->shadow_count == 0) {
905 			if (object->type == OBJT_DEFAULT ||
906 			    object->type == OBJT_SWAP) {
907 				vm_object_set_flag(object, OBJ_ONEMAPPING);
908 			}
909 			atomic_add_int(&object->ref_count, -1);
910 #if defined(DEBUG_LOCKS)
911 			debugvm_object_add(object, file, line, -1);
912 #endif
913 			break;
914 		}
915 
916 		/*
917 		 * If the second ref is from a shadow we chain along it
918 		 * upwards if object's handle is exhausted.
919 		 *
920 		 * We have to decrement object->ref_count before potentially
921 		 * collapsing the first shadow object or the collapse code
922 		 * will not be able to handle the degenerate case to remove
923 		 * object.  However, if we do it too early the object can
924 		 * get ripped out from under us.
925 		 */
926 		if (object->ref_count == 2 && object->shadow_count == 1 &&
927 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
928 					       object->type == OBJT_SWAP)) {
929 			temp = LIST_FIRST(&object->shadow_head);
930 			KKASSERT(temp != NULL);
931 			vm_object_hold(temp);
932 
933 			/*
934 			 * Wait for any paging to complete so the collapse
935 			 * doesn't (or isn't likely to) qcollapse.  pip
936 			 * waiting must occur before we acquire the
937 			 * chainlock.
938 			 */
939 			while (
940 				temp->paging_in_progress ||
941 				object->paging_in_progress
942 			) {
943 				vm_object_pip_wait(temp, "objde1");
944 				vm_object_pip_wait(object, "objde2");
945 			}
946 
947 			/*
948 			 * If the parent is locked we have to give up, as
949 			 * otherwise we would be acquiring locks in the
950 			 * wrong order and potentially deadlock.
951 			 */
952 			if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
953 				vm_object_drop(temp);
954 				goto skip;
955 			}
956 			vm_object_chain_acquire(temp, 0);
957 
958 			/*
959 			 * Recheck/retry after the hold and the paging
960 			 * wait, both of which can block us.
961 			 */
962 			if (object->ref_count != 2 ||
963 			    object->shadow_count != 1 ||
964 			    object->handle ||
965 			    LIST_FIRST(&object->shadow_head) != temp ||
966 			    (object->type != OBJT_DEFAULT &&
967 			     object->type != OBJT_SWAP)) {
968 				vm_object_chain_release(temp);
969 				vm_object_drop(temp);
970 				continue;
971 			}
972 
973 			/*
974 			 * We can safely drop object's ref_count now.
975 			 */
976 			KKASSERT(object->ref_count == 2);
977 			atomic_add_int(&object->ref_count, -1);
978 #if defined(DEBUG_LOCKS)
979 			debugvm_object_add(object, file, line, -1);
980 #endif
981 
982 			/*
983 			 * If our single parent is not collapseable just
984 			 * decrement ref_count (2->1) and stop.
985 			 */
986 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
987 					     temp->type != OBJT_SWAP)) {
988 				vm_object_chain_release(temp);
989 				vm_object_drop(temp);
990 				break;
991 			}
992 
993 			/*
994 			 * At this point we have already dropped object's
995 			 * ref_count so it is possible for a race to
996 			 * deallocate obj out from under us.  Any collapse
997 			 * will re-check the situation.  We must not block
998 			 * until we are able to collapse.
999 			 *
1000 			 * Bump temp's ref_count to avoid an unwanted
1001 			 * degenerate recursion (can't call
1002 			 * vm_object_reference_locked() because it asserts
1003 			 * that CHAINLOCK is not set).
1004 			 */
1005 			atomic_add_int(&temp->ref_count, 1);
1006 			KKASSERT(temp->ref_count > 1);
1007 
1008 			/*
1009 			 * Collapse temp, then deallocate the extra ref
1010 			 * formally.
1011 			 */
1012 			vm_object_collapse(temp, &dlist);
1013 			vm_object_chain_release(temp);
1014 			if (must_drop) {
1015 				vm_object_lock_swap();
1016 				vm_object_drop(object);
1017 			}
1018 			object = temp;
1019 			must_drop = 1;
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * Drop the ref and handle termination on the 1->0 transition.
1025 		 * We may have blocked above so we have to recheck.
1026 		 */
1027 skip:
1028 		KKASSERT(object->ref_count != 0);
1029 		if (object->ref_count >= 2) {
1030 			atomic_add_int(&object->ref_count, -1);
1031 #if defined(DEBUG_LOCKS)
1032 			debugvm_object_add(object, file, line, -1);
1033 #endif
1034 			break;
1035 		}
1036 		KKASSERT(object->ref_count == 1);
1037 
1038 		/*
1039 		 * 1->0 transition.  Chain through the backing_object.
1040 		 * Maintain the ref until we've located the backing object,
1041 		 * then re-check.
1042 		 */
1043 		while ((temp = object->backing_object) != NULL) {
1044 			if (temp->type == OBJT_VNODE)
1045 				vm_object_hold_shared(temp);
1046 			else
1047 				vm_object_hold(temp);
1048 			if (temp == object->backing_object)
1049 				break;
1050 			vm_object_drop(temp);
1051 		}
1052 
1053 		/*
1054 		 * 1->0 transition verified, retry if ref_count is no longer
1055 		 * 1.  Otherwise disconnect the backing_object (temp) and
1056 		 * clean up.
1057 		 */
1058 		if (object->ref_count != 1) {
1059 			vm_object_drop(temp);
1060 			continue;
1061 		}
1062 
1063 		/*
1064 		 * It shouldn't be possible for the object to be chain locked
1065 		 * if we're removing the last ref on it.
1066 		 *
1067 		 * Removing object from temp's shadow list requires dropping
1068 		 * temp, which we will do on loop.
1069 		 *
1070 		 * NOTE! vnodes do not use the shadow list, but still have
1071 		 *	 the backing_object reference.
1072 		 */
1073 		KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1074 
1075 		if (temp) {
1076 			if (object->flags & OBJ_ONSHADOW) {
1077 				LIST_REMOVE(object, shadow_list);
1078 				temp->shadow_count--;
1079 				temp->generation++;
1080 				vm_object_clear_flag(object, OBJ_ONSHADOW);
1081 			}
1082 			object->backing_object = NULL;
1083 		}
1084 
1085 		atomic_add_int(&object->ref_count, -1);
1086 		if ((object->flags & OBJ_DEAD) == 0)
1087 			vm_object_terminate(object);
1088 		if (must_drop && temp)
1089 			vm_object_lock_swap();
1090 		if (must_drop)
1091 			vm_object_drop(object);
1092 		object = temp;
1093 		must_drop = 1;
1094 	}
1095 
1096 	if (must_drop && object)
1097 		vm_object_drop(object);
1098 
1099 	/*
1100 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1101 	 * on the dlist have a hold count but are not locked.
1102 	 */
1103 	if ((dtmp = dlist) != NULL) {
1104 		dlist = dtmp->next;
1105 		object = dtmp->object;
1106 		kfree(dtmp, M_TEMP);
1107 
1108 		vm_object_lock(object);	/* already held, add lock */
1109 		must_drop = 1;		/* and we're responsible for it */
1110 		goto again;
1111 	}
1112 }
1113 
1114 /*
1115  * Destroy the specified object, freeing up related resources.
1116  *
1117  * The object must have zero references.
1118  *
1119  * The object must held.  The caller is responsible for dropping the object
1120  * after terminate returns.  Terminate does NOT drop the object.
1121  */
1122 static int vm_object_terminate_callback(vm_page_t p, void *data);
1123 
1124 void
1125 vm_object_terminate(vm_object_t object)
1126 {
1127 	int n;
1128 
1129 	/*
1130 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1131 	 * able to safely block.
1132 	 */
1133 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1134 	KKASSERT((object->flags & OBJ_DEAD) == 0);
1135 	vm_object_set_flag(object, OBJ_DEAD);
1136 
1137 	/*
1138 	 * Wait for the pageout daemon to be done with the object
1139 	 */
1140 	vm_object_pip_wait(object, "objtrm1");
1141 
1142 	KASSERT(!object->paging_in_progress,
1143 		("vm_object_terminate: pageout in progress"));
1144 
1145 	/*
1146 	 * Clean and free the pages, as appropriate. All references to the
1147 	 * object are gone, so we don't need to lock it.
1148 	 */
1149 	if (object->type == OBJT_VNODE) {
1150 		struct vnode *vp;
1151 
1152 		/*
1153 		 * Clean pages and flush buffers.
1154 		 *
1155 		 * NOTE!  TMPFS buffer flushes do not typically flush the
1156 		 *	  actual page to swap as this would be highly
1157 		 *	  inefficient, and normal filesystems usually wrap
1158 		 *	  page flushes with buffer cache buffers.
1159 		 *
1160 		 *	  To deal with this we have to call vinvalbuf() both
1161 		 *	  before and after the vm_object_page_clean().
1162 		 */
1163 		vp = (struct vnode *) object->handle;
1164 		vinvalbuf(vp, V_SAVE, 0, 0);
1165 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1166 		vinvalbuf(vp, V_SAVE, 0, 0);
1167 	}
1168 
1169 	/*
1170 	 * Wait for any I/O to complete, after which there had better not
1171 	 * be any references left on the object.
1172 	 */
1173 	vm_object_pip_wait(object, "objtrm2");
1174 
1175 	if (object->ref_count != 0) {
1176 		panic("vm_object_terminate: object with references, "
1177 		      "ref_count=%d", object->ref_count);
1178 	}
1179 
1180 	/*
1181 	 * Cleanup any shared pmaps associated with this object.
1182 	 */
1183 	pmap_object_free(object);
1184 
1185 	/*
1186 	 * Now free any remaining pages. For internal objects, this also
1187 	 * removes them from paging queues. Don't free wired pages, just
1188 	 * remove them from the object.
1189 	 */
1190 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1191 				vm_object_terminate_callback, NULL);
1192 
1193 	/*
1194 	 * Let the pager know object is dead.
1195 	 */
1196 	vm_pager_deallocate(object);
1197 
1198 	/*
1199 	 * Wait for the object hold count to hit 1, clean out pages as
1200 	 * we go.  vmobj_token interlocks any race conditions that might
1201 	 * pick the object up from the vm_object_list after we have cleared
1202 	 * rb_memq.
1203 	 */
1204 	for (;;) {
1205 		if (RB_ROOT(&object->rb_memq) == NULL)
1206 			break;
1207 		kprintf("vm_object_terminate: Warning, object %p "
1208 			"still has %d pages\n",
1209 			object, object->resident_page_count);
1210 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1211 					vm_object_terminate_callback, NULL);
1212 	}
1213 
1214 	/*
1215 	 * There had better not be any pages left
1216 	 */
1217 	KKASSERT(object->resident_page_count == 0);
1218 
1219 	/*
1220 	 * Remove the object from the global object list.
1221 	 */
1222 	n = VMOBJ_HASH(object);
1223 	lwkt_gettoken(&vmobj_tokens[n]);
1224 	TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1225 	lwkt_reltoken(&vmobj_tokens[n]);
1226 	atomic_add_long(&vm_object_count, -1);
1227 
1228 	if (object->ref_count != 0) {
1229 		panic("vm_object_terminate2: object with references, "
1230 		      "ref_count=%d", object->ref_count);
1231 	}
1232 
1233 	/*
1234 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1235 	 *	 the object here.  See vm_object_drop().
1236 	 */
1237 }
1238 
1239 /*
1240  * The caller must hold the object.
1241  */
1242 static int
1243 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1244 {
1245 	vm_object_t object;
1246 
1247 	object = p->object;
1248 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1249 	if (object != p->object) {
1250 		kprintf("vm_object_terminate: Warning: Encountered "
1251 			"busied page %p on queue %d\n", p, p->queue);
1252 		vm_page_wakeup(p);
1253 	} else if (p->wire_count == 0) {
1254 		/*
1255 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1256 		 */
1257 		vm_page_free(p);
1258 		mycpu->gd_cnt.v_pfree++;
1259 	} else {
1260 		if (p->queue != PQ_NONE)
1261 			kprintf("vm_object_terminate: Warning: Encountered "
1262 				"wired page %p on queue %d\n", p, p->queue);
1263 		vm_page_remove(p);
1264 		vm_page_wakeup(p);
1265 	}
1266 	lwkt_yield();
1267 	return(0);
1268 }
1269 
1270 /*
1271  * Clean all dirty pages in the specified range of object.  Leaves page
1272  * on whatever queue it is currently on.   If NOSYNC is set then do not
1273  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1274  * leaving the object dirty.
1275  *
1276  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1277  * synchronous clustering mode implementation.
1278  *
1279  * Odd semantics: if start == end, we clean everything.
1280  *
1281  * The object must be locked? XXX
1282  */
1283 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1284 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1285 
1286 void
1287 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1288 		     int flags)
1289 {
1290 	struct rb_vm_page_scan_info info;
1291 	struct vnode *vp;
1292 	int wholescan;
1293 	int pagerflags;
1294 	int generation;
1295 
1296 	vm_object_hold(object);
1297 	if (object->type != OBJT_VNODE ||
1298 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1299 		vm_object_drop(object);
1300 		return;
1301 	}
1302 
1303 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1304 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1305 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1306 
1307 	vp = object->handle;
1308 
1309 	/*
1310 	 * Interlock other major object operations.  This allows us to
1311 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1312 	 */
1313 	vm_object_set_flag(object, OBJ_CLEANING);
1314 
1315 	/*
1316 	 * Handle 'entire object' case
1317 	 */
1318 	info.start_pindex = start;
1319 	if (end == 0) {
1320 		info.end_pindex = object->size - 1;
1321 	} else {
1322 		info.end_pindex = end - 1;
1323 	}
1324 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1325 	info.limit = flags;
1326 	info.pagerflags = pagerflags;
1327 	info.object = object;
1328 
1329 	/*
1330 	 * If cleaning the entire object do a pass to mark the pages read-only.
1331 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1332 	 * OBJ_MIGHTBEDIRTY.
1333 	 */
1334 	if (wholescan) {
1335 		info.error = 0;
1336 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1337 					vm_object_page_clean_pass1, &info);
1338 		if (info.error == 0) {
1339 			vm_object_clear_flag(object,
1340 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1341 			if (object->type == OBJT_VNODE &&
1342 			    (vp = (struct vnode *)object->handle) != NULL) {
1343 				/*
1344 				 * Use new-style interface to clear VISDIRTY
1345 				 * because the vnode is not necessarily removed
1346 				 * from the syncer list(s) as often as it was
1347 				 * under the old interface, which can leave
1348 				 * the vnode on the syncer list after reclaim.
1349 				 */
1350 				vclrobjdirty(vp);
1351 			}
1352 		}
1353 	}
1354 
1355 	/*
1356 	 * Do a pass to clean all the dirty pages we find.
1357 	 */
1358 	do {
1359 		info.error = 0;
1360 		generation = object->generation;
1361 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1362 					vm_object_page_clean_pass2, &info);
1363 	} while (info.error || generation != object->generation);
1364 
1365 	vm_object_clear_flag(object, OBJ_CLEANING);
1366 	vm_object_drop(object);
1367 }
1368 
1369 /*
1370  * The caller must hold the object.
1371  */
1372 static
1373 int
1374 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1375 {
1376 	struct rb_vm_page_scan_info *info = data;
1377 
1378 	vm_page_flag_set(p, PG_CLEANCHK);
1379 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1380 		info->error = 1;
1381 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1382 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1383 		vm_page_wakeup(p);
1384 	} else {
1385 		info->error = 1;
1386 	}
1387 	lwkt_yield();
1388 	return(0);
1389 }
1390 
1391 /*
1392  * The caller must hold the object
1393  */
1394 static
1395 int
1396 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1397 {
1398 	struct rb_vm_page_scan_info *info = data;
1399 	int generation;
1400 
1401 	/*
1402 	 * Do not mess with pages that were inserted after we started
1403 	 * the cleaning pass.
1404 	 */
1405 	if ((p->flags & PG_CLEANCHK) == 0)
1406 		goto done;
1407 
1408 	generation = info->object->generation;
1409 	vm_page_busy_wait(p, TRUE, "vpcwai");
1410 	if (p->object != info->object ||
1411 	    info->object->generation != generation) {
1412 		info->error = 1;
1413 		vm_page_wakeup(p);
1414 		goto done;
1415 	}
1416 
1417 	/*
1418 	 * Before wasting time traversing the pmaps, check for trivial
1419 	 * cases where the page cannot be dirty.
1420 	 */
1421 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1422 		KKASSERT((p->dirty & p->valid) == 0 &&
1423 			 (p->flags & PG_NEED_COMMIT) == 0);
1424 		vm_page_wakeup(p);
1425 		goto done;
1426 	}
1427 
1428 	/*
1429 	 * Check whether the page is dirty or not.  The page has been set
1430 	 * to be read-only so the check will not race a user dirtying the
1431 	 * page.
1432 	 */
1433 	vm_page_test_dirty(p);
1434 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1435 		vm_page_flag_clear(p, PG_CLEANCHK);
1436 		vm_page_wakeup(p);
1437 		goto done;
1438 	}
1439 
1440 	/*
1441 	 * If we have been asked to skip nosync pages and this is a
1442 	 * nosync page, skip it.  Note that the object flags were
1443 	 * not cleared in this case (because pass1 will have returned an
1444 	 * error), so we do not have to set them.
1445 	 */
1446 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1447 		vm_page_flag_clear(p, PG_CLEANCHK);
1448 		vm_page_wakeup(p);
1449 		goto done;
1450 	}
1451 
1452 	/*
1453 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1454 	 * the pages that get successfully flushed.  Set info->error if
1455 	 * we raced an object modification.
1456 	 */
1457 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1458 	/* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1459 done:
1460 	lwkt_yield();
1461 	return(0);
1462 }
1463 
1464 /*
1465  * Collect the specified page and nearby pages and flush them out.
1466  * The number of pages flushed is returned.  The passed page is busied
1467  * by the caller and we are responsible for its disposition.
1468  *
1469  * The caller must hold the object.
1470  */
1471 static void
1472 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1473 {
1474 	int error;
1475 	int is;
1476 	int ib;
1477 	int i;
1478 	int page_base;
1479 	vm_pindex_t pi;
1480 	vm_page_t ma[BLIST_MAX_ALLOC];
1481 
1482 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1483 
1484 	pi = p->pindex;
1485 	page_base = pi % BLIST_MAX_ALLOC;
1486 	ma[page_base] = p;
1487 	ib = page_base - 1;
1488 	is = page_base + 1;
1489 
1490 	while (ib >= 0) {
1491 		vm_page_t tp;
1492 
1493 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1494 					     TRUE, &error);
1495 		if (error)
1496 			break;
1497 		if (tp == NULL)
1498 			break;
1499 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1500 		    (tp->flags & PG_CLEANCHK) == 0) {
1501 			vm_page_wakeup(tp);
1502 			break;
1503 		}
1504 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1505 			vm_page_flag_clear(tp, PG_CLEANCHK);
1506 			vm_page_wakeup(tp);
1507 			break;
1508 		}
1509 		vm_page_test_dirty(tp);
1510 		if ((tp->dirty & tp->valid) == 0 &&
1511 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1512 			vm_page_flag_clear(tp, PG_CLEANCHK);
1513 			vm_page_wakeup(tp);
1514 			break;
1515 		}
1516 		ma[ib] = tp;
1517 		--ib;
1518 	}
1519 	++ib;	/* fixup */
1520 
1521 	while (is < BLIST_MAX_ALLOC &&
1522 	       pi - page_base + is < object->size) {
1523 		vm_page_t tp;
1524 
1525 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1526 					     TRUE, &error);
1527 		if (error)
1528 			break;
1529 		if (tp == NULL)
1530 			break;
1531 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1532 		    (tp->flags & PG_CLEANCHK) == 0) {
1533 			vm_page_wakeup(tp);
1534 			break;
1535 		}
1536 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1537 			vm_page_flag_clear(tp, PG_CLEANCHK);
1538 			vm_page_wakeup(tp);
1539 			break;
1540 		}
1541 		vm_page_test_dirty(tp);
1542 		if ((tp->dirty & tp->valid) == 0 &&
1543 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1544 			vm_page_flag_clear(tp, PG_CLEANCHK);
1545 			vm_page_wakeup(tp);
1546 			break;
1547 		}
1548 		ma[is] = tp;
1549 		++is;
1550 	}
1551 
1552 	/*
1553 	 * All pages in the ma[] array are busied now
1554 	 */
1555 	for (i = ib; i < is; ++i) {
1556 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1557 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1558 	}
1559 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1560 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1561 		vm_page_unhold(ma[i]);
1562 }
1563 
1564 /*
1565  * Same as vm_object_pmap_copy, except range checking really
1566  * works, and is meant for small sections of an object.
1567  *
1568  * This code protects resident pages by making them read-only
1569  * and is typically called on a fork or split when a page
1570  * is converted to copy-on-write.
1571  *
1572  * NOTE: If the page is already at VM_PROT_NONE, calling
1573  * vm_page_protect will have no effect.
1574  */
1575 void
1576 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1577 {
1578 	vm_pindex_t idx;
1579 	vm_page_t p;
1580 
1581 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1582 		return;
1583 
1584 	vm_object_hold(object);
1585 	for (idx = start; idx < end; idx++) {
1586 		p = vm_page_lookup(object, idx);
1587 		if (p == NULL)
1588 			continue;
1589 		vm_page_protect(p, VM_PROT_READ);
1590 	}
1591 	vm_object_drop(object);
1592 }
1593 
1594 /*
1595  * Removes all physical pages in the specified object range from all
1596  * physical maps.
1597  *
1598  * The object must *not* be locked.
1599  */
1600 
1601 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1602 
1603 void
1604 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1605 {
1606 	struct rb_vm_page_scan_info info;
1607 
1608 	if (object == NULL)
1609 		return;
1610 	info.start_pindex = start;
1611 	info.end_pindex = end - 1;
1612 
1613 	vm_object_hold(object);
1614 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1615 				vm_object_pmap_remove_callback, &info);
1616 	if (start == 0 && end == object->size)
1617 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1618 	vm_object_drop(object);
1619 }
1620 
1621 /*
1622  * The caller must hold the object
1623  */
1624 static int
1625 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1626 {
1627 	vm_page_protect(p, VM_PROT_NONE);
1628 	return(0);
1629 }
1630 
1631 /*
1632  * Implements the madvise function at the object/page level.
1633  *
1634  * MADV_WILLNEED	(any object)
1635  *
1636  *	Activate the specified pages if they are resident.
1637  *
1638  * MADV_DONTNEED	(any object)
1639  *
1640  *	Deactivate the specified pages if they are resident.
1641  *
1642  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1643  *
1644  *	Deactivate and clean the specified pages if they are
1645  *	resident.  This permits the process to reuse the pages
1646  *	without faulting or the kernel to reclaim the pages
1647  *	without I/O.
1648  *
1649  * No requirements.
1650  */
1651 void
1652 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1653 {
1654 	vm_pindex_t end, tpindex;
1655 	vm_object_t tobject;
1656 	vm_object_t xobj;
1657 	vm_page_t m;
1658 	int error;
1659 
1660 	if (object == NULL)
1661 		return;
1662 
1663 	end = pindex + count;
1664 
1665 	vm_object_hold(object);
1666 	tobject = object;
1667 
1668 	/*
1669 	 * Locate and adjust resident pages
1670 	 */
1671 	for (; pindex < end; pindex += 1) {
1672 relookup:
1673 		if (tobject != object)
1674 			vm_object_drop(tobject);
1675 		tobject = object;
1676 		tpindex = pindex;
1677 shadowlookup:
1678 		/*
1679 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1680 		 * and those pages must be OBJ_ONEMAPPING.
1681 		 */
1682 		if (advise == MADV_FREE) {
1683 			if ((tobject->type != OBJT_DEFAULT &&
1684 			     tobject->type != OBJT_SWAP) ||
1685 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1686 				continue;
1687 			}
1688 		}
1689 
1690 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1691 
1692 		if (error) {
1693 			vm_page_sleep_busy(m, TRUE, "madvpo");
1694 			goto relookup;
1695 		}
1696 		if (m == NULL) {
1697 			/*
1698 			 * There may be swap even if there is no backing page
1699 			 */
1700 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1701 				swap_pager_freespace(tobject, tpindex, 1);
1702 
1703 			/*
1704 			 * next object
1705 			 */
1706 			while ((xobj = tobject->backing_object) != NULL) {
1707 				KKASSERT(xobj != object);
1708 				vm_object_hold(xobj);
1709 				if (xobj == tobject->backing_object)
1710 					break;
1711 				vm_object_drop(xobj);
1712 			}
1713 			if (xobj == NULL)
1714 				continue;
1715 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1716 			if (tobject != object) {
1717 				vm_object_lock_swap();
1718 				vm_object_drop(tobject);
1719 			}
1720 			tobject = xobj;
1721 			goto shadowlookup;
1722 		}
1723 
1724 		/*
1725 		 * If the page is not in a normal active state, we skip it.
1726 		 * If the page is not managed there are no page queues to
1727 		 * mess with.  Things can break if we mess with pages in
1728 		 * any of the below states.
1729 		 */
1730 		if (m->wire_count ||
1731 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1732 		    m->valid != VM_PAGE_BITS_ALL
1733 		) {
1734 			vm_page_wakeup(m);
1735 			continue;
1736 		}
1737 
1738 		/*
1739 		 * Theoretically once a page is known not to be busy, an
1740 		 * interrupt cannot come along and rip it out from under us.
1741 		 */
1742 
1743 		if (advise == MADV_WILLNEED) {
1744 			vm_page_activate(m);
1745 		} else if (advise == MADV_DONTNEED) {
1746 			vm_page_dontneed(m);
1747 		} else if (advise == MADV_FREE) {
1748 			/*
1749 			 * Mark the page clean.  This will allow the page
1750 			 * to be freed up by the system.  However, such pages
1751 			 * are often reused quickly by malloc()/free()
1752 			 * so we do not do anything that would cause
1753 			 * a page fault if we can help it.
1754 			 *
1755 			 * Specifically, we do not try to actually free
1756 			 * the page now nor do we try to put it in the
1757 			 * cache (which would cause a page fault on reuse).
1758 			 *
1759 			 * But we do make the page is freeable as we
1760 			 * can without actually taking the step of unmapping
1761 			 * it.
1762 			 */
1763 			pmap_clear_modify(m);
1764 			m->dirty = 0;
1765 			m->act_count = 0;
1766 			vm_page_dontneed(m);
1767 			if (tobject->type == OBJT_SWAP)
1768 				swap_pager_freespace(tobject, tpindex, 1);
1769 		}
1770 		vm_page_wakeup(m);
1771 	}
1772 	if (tobject != object)
1773 		vm_object_drop(tobject);
1774 	vm_object_drop(object);
1775 }
1776 
1777 /*
1778  * Create a new object which is backed by the specified existing object
1779  * range.  Replace the pointer and offset that was pointing at the existing
1780  * object with the pointer/offset for the new object.
1781  *
1782  * If addref is non-zero the returned object is given an additional reference.
1783  * This mechanic exists to avoid the situation where refs might be 1 and
1784  * race against a collapse when the caller intends to bump it.  So the
1785  * caller cannot add the ref after the fact.  Used when the caller is
1786  * duplicating a vm_map_entry.
1787  *
1788  * No other requirements.
1789  */
1790 void
1791 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1792 		 int addref)
1793 {
1794 	vm_object_t source;
1795 	vm_object_t result;
1796 	int useshadowlist;
1797 
1798 	source = *objectp;
1799 
1800 	/*
1801 	 * Don't create the new object if the old object isn't shared.
1802 	 * We have to chain wait before adding the reference to avoid
1803 	 * racing a collapse or deallocation.
1804 	 *
1805 	 * Clear OBJ_ONEMAPPING flag when shadowing.
1806 	 *
1807 	 * The caller owns a ref on source via *objectp which we are going
1808 	 * to replace.  This ref is inherited by the backing_object assignment.
1809 	 * from nobject and does not need to be incremented here.
1810 	 *
1811 	 * However, we add a temporary extra reference to the original source
1812 	 * prior to holding nobject in case we block, to avoid races where
1813 	 * someone else might believe that the source can be collapsed.
1814 	 */
1815 	useshadowlist = 0;
1816 	if (source) {
1817 		if (source->type != OBJT_VNODE) {
1818 			useshadowlist = 1;
1819 			vm_object_hold(source);
1820 			vm_object_chain_wait(source, 0);
1821 			if (source->ref_count == 1 &&
1822 			    source->handle == NULL &&
1823 			    (source->type == OBJT_DEFAULT ||
1824 			     source->type == OBJT_SWAP)) {
1825 				if (addref) {
1826 					vm_object_reference_locked(source);
1827 					vm_object_clear_flag(source,
1828 							     OBJ_ONEMAPPING);
1829 				}
1830 				vm_object_drop(source);
1831 				return;
1832 			}
1833 			vm_object_reference_locked(source);
1834 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1835 		} else {
1836 			vm_object_reference_quick(source);
1837 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * Allocate a new object with the given length.  The new object
1843 	 * is returned referenced but we may have to add another one.
1844 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1845 	 * (typically because the caller is about to clone a vm_map_entry).
1846 	 *
1847 	 * The source object currently has an extra reference to prevent
1848 	 * collapses into it while we mess with its shadow list, which
1849 	 * we will remove later in this routine.
1850 	 *
1851 	 * The target object may require a second reference if asked for one
1852 	 * by the caller.
1853 	 */
1854 	result = vm_object_allocate(OBJT_DEFAULT, length);
1855 	if (result == NULL)
1856 		panic("vm_object_shadow: no object for shadowing");
1857 	vm_object_hold(result);
1858 	if (addref) {
1859 		vm_object_reference_locked(result);
1860 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1861 	}
1862 
1863 	/*
1864 	 * The new object shadows the source object.  Chain wait before
1865 	 * adjusting shadow_count or the shadow list to avoid races.
1866 	 *
1867 	 * Try to optimize the result object's page color when shadowing
1868 	 * in order to maintain page coloring consistency in the combined
1869 	 * shadowed object.
1870 	 *
1871 	 * The backing_object reference to source requires adding a ref to
1872 	 * source.  We simply inherit the ref from the original *objectp
1873 	 * (which we are replacing) so no additional refs need to be added.
1874 	 * (we must still clean up the extra ref we had to prevent collapse
1875 	 * races).
1876 	 *
1877 	 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1878 	 */
1879 	KKASSERT(result->backing_object == NULL);
1880 	result->backing_object = source;
1881 	if (source) {
1882 		if (useshadowlist) {
1883 			vm_object_chain_wait(source, 0);
1884 			LIST_INSERT_HEAD(&source->shadow_head,
1885 					 result, shadow_list);
1886 			source->shadow_count++;
1887 			source->generation++;
1888 			vm_object_set_flag(result, OBJ_ONSHADOW);
1889 		}
1890 		/* cpu localization twist */
1891 		result->pg_color = (int)(intptr_t)curthread;
1892 	}
1893 
1894 	/*
1895 	 * Adjust the return storage.  Drop the ref on source before
1896 	 * returning.
1897 	 */
1898 	result->backing_object_offset = *offset;
1899 	vm_object_drop(result);
1900 	*offset = 0;
1901 	if (source) {
1902 		if (useshadowlist) {
1903 			vm_object_deallocate_locked(source);
1904 			vm_object_drop(source);
1905 		} else {
1906 			vm_object_deallocate(source);
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * Return the new things
1912 	 */
1913 	*objectp = result;
1914 }
1915 
1916 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1917 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1918 #define	OBSC_COLLAPSE_WAIT	0x0004
1919 
1920 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1921 
1922 /*
1923  * The caller must hold the object.
1924  */
1925 static __inline int
1926 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1927 {
1928 	struct rb_vm_page_scan_info info;
1929 	int n;
1930 
1931 	vm_object_assert_held(object);
1932 	vm_object_assert_held(backing_object);
1933 
1934 	KKASSERT(backing_object == object->backing_object);
1935 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1936 
1937 	/*
1938 	 * Initial conditions
1939 	 */
1940 	if (op & OBSC_TEST_ALL_SHADOWED) {
1941 		/*
1942 		 * We do not want to have to test for the existence of
1943 		 * swap pages in the backing object.  XXX but with the
1944 		 * new swapper this would be pretty easy to do.
1945 		 *
1946 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1947 		 * been ZFOD faulted yet?  If we do not test for this, the
1948 		 * shadow test may succeed! XXX
1949 		 */
1950 		if (backing_object->type != OBJT_DEFAULT)
1951 			return(0);
1952 	}
1953 	if (op & OBSC_COLLAPSE_WAIT) {
1954 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1955 		vm_object_set_flag(backing_object, OBJ_DEAD);
1956 
1957 		n = VMOBJ_HASH(backing_object);
1958 		lwkt_gettoken(&vmobj_tokens[n]);
1959 		TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
1960 		lwkt_reltoken(&vmobj_tokens[n]);
1961 		atomic_add_long(&vm_object_count, -1);
1962 	}
1963 
1964 	/*
1965 	 * Our scan.   We have to retry if a negative error code is returned,
1966 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1967 	 * the scan had to be stopped because the parent does not completely
1968 	 * shadow the child.
1969 	 */
1970 	info.object = object;
1971 	info.backing_object = backing_object;
1972 	info.limit = op;
1973 	do {
1974 		info.error = 1;
1975 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1976 					vm_object_backing_scan_callback,
1977 					&info);
1978 	} while (info.error < 0);
1979 
1980 	return(info.error);
1981 }
1982 
1983 /*
1984  * The caller must hold the object.
1985  */
1986 static int
1987 vm_object_backing_scan_callback(vm_page_t p, void *data)
1988 {
1989 	struct rb_vm_page_scan_info *info = data;
1990 	vm_object_t backing_object;
1991 	vm_object_t object;
1992 	vm_pindex_t pindex;
1993 	vm_pindex_t new_pindex;
1994 	vm_pindex_t backing_offset_index;
1995 	int op;
1996 
1997 	pindex = p->pindex;
1998 	new_pindex = pindex - info->backing_offset_index;
1999 	op = info->limit;
2000 	object = info->object;
2001 	backing_object = info->backing_object;
2002 	backing_offset_index = info->backing_offset_index;
2003 
2004 	if (op & OBSC_TEST_ALL_SHADOWED) {
2005 		vm_page_t pp;
2006 
2007 		/*
2008 		 * Ignore pages outside the parent object's range
2009 		 * and outside the parent object's mapping of the
2010 		 * backing object.
2011 		 *
2012 		 * note that we do not busy the backing object's
2013 		 * page.
2014 		 */
2015 		if (pindex < backing_offset_index ||
2016 		    new_pindex >= object->size
2017 		) {
2018 			return(0);
2019 		}
2020 
2021 		/*
2022 		 * See if the parent has the page or if the parent's
2023 		 * object pager has the page.  If the parent has the
2024 		 * page but the page is not valid, the parent's
2025 		 * object pager must have the page.
2026 		 *
2027 		 * If this fails, the parent does not completely shadow
2028 		 * the object and we might as well give up now.
2029 		 */
2030 		pp = vm_page_lookup(object, new_pindex);
2031 		if ((pp == NULL || pp->valid == 0) &&
2032 		    !vm_pager_has_page(object, new_pindex)
2033 		) {
2034 			info->error = 0;	/* problemo */
2035 			return(-1);		/* stop the scan */
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * Check for busy page.  Note that we may have lost (p) when we
2041 	 * possibly blocked above.
2042 	 */
2043 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2044 		vm_page_t pp;
2045 
2046 		if (vm_page_busy_try(p, TRUE)) {
2047 			if (op & OBSC_COLLAPSE_NOWAIT) {
2048 				return(0);
2049 			} else {
2050 				/*
2051 				 * If we slept, anything could have
2052 				 * happened.   Ask that the scan be restarted.
2053 				 *
2054 				 * Since the object is marked dead, the
2055 				 * backing offset should not have changed.
2056 				 */
2057 				vm_page_sleep_busy(p, TRUE, "vmocol");
2058 				info->error = -1;
2059 				return(-1);
2060 			}
2061 		}
2062 
2063 		/*
2064 		 * If (p) is no longer valid restart the scan.
2065 		 */
2066 		if (p->object != backing_object || p->pindex != pindex) {
2067 			kprintf("vm_object_backing_scan: Warning: page "
2068 				"%p ripped out from under us\n", p);
2069 			vm_page_wakeup(p);
2070 			info->error = -1;
2071 			return(-1);
2072 		}
2073 
2074 		if (op & OBSC_COLLAPSE_NOWAIT) {
2075 			if (p->valid == 0 ||
2076 			    p->wire_count ||
2077 			    (p->flags & PG_NEED_COMMIT)) {
2078 				vm_page_wakeup(p);
2079 				return(0);
2080 			}
2081 		} else {
2082 			/* XXX what if p->valid == 0 , hold_count, etc? */
2083 		}
2084 
2085 		KASSERT(
2086 		    p->object == backing_object,
2087 		    ("vm_object_qcollapse(): object mismatch")
2088 		);
2089 
2090 		/*
2091 		 * Destroy any associated swap
2092 		 */
2093 		if (backing_object->type == OBJT_SWAP)
2094 			swap_pager_freespace(backing_object, p->pindex, 1);
2095 
2096 		if (
2097 		    p->pindex < backing_offset_index ||
2098 		    new_pindex >= object->size
2099 		) {
2100 			/*
2101 			 * Page is out of the parent object's range, we
2102 			 * can simply destroy it.
2103 			 */
2104 			vm_page_protect(p, VM_PROT_NONE);
2105 			vm_page_free(p);
2106 			return(0);
2107 		}
2108 
2109 		pp = vm_page_lookup(object, new_pindex);
2110 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2111 			/*
2112 			 * page already exists in parent OR swap exists
2113 			 * for this location in the parent.  Destroy
2114 			 * the original page from the backing object.
2115 			 *
2116 			 * Leave the parent's page alone
2117 			 */
2118 			vm_page_protect(p, VM_PROT_NONE);
2119 			vm_page_free(p);
2120 			return(0);
2121 		}
2122 
2123 		/*
2124 		 * Page does not exist in parent, rename the
2125 		 * page from the backing object to the main object.
2126 		 *
2127 		 * If the page was mapped to a process, it can remain
2128 		 * mapped through the rename.
2129 		 */
2130 		if ((p->queue - p->pc) == PQ_CACHE)
2131 			vm_page_deactivate(p);
2132 
2133 		vm_page_rename(p, object, new_pindex);
2134 		vm_page_wakeup(p);
2135 		/* page automatically made dirty by rename */
2136 	}
2137 	return(0);
2138 }
2139 
2140 /*
2141  * This version of collapse allows the operation to occur earlier and
2142  * when paging_in_progress is true for an object...  This is not a complete
2143  * operation, but should plug 99.9% of the rest of the leaks.
2144  *
2145  * The caller must hold the object and backing_object and both must be
2146  * chainlocked.
2147  *
2148  * (only called from vm_object_collapse)
2149  */
2150 static void
2151 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2152 {
2153 	if (backing_object->ref_count == 1) {
2154 		atomic_add_int(&backing_object->ref_count, 2);
2155 #if defined(DEBUG_LOCKS)
2156 		debugvm_object_add(backing_object, "qcollapse", 1, 2);
2157 #endif
2158 		vm_object_backing_scan(object, backing_object,
2159 				       OBSC_COLLAPSE_NOWAIT);
2160 		atomic_add_int(&backing_object->ref_count, -2);
2161 #if defined(DEBUG_LOCKS)
2162 		debugvm_object_add(backing_object, "qcollapse", 2, -2);
2163 #endif
2164 	}
2165 }
2166 
2167 /*
2168  * Collapse an object with the object backing it.  Pages in the backing
2169  * object are moved into the parent, and the backing object is deallocated.
2170  * Any conflict is resolved in favor of the parent's existing pages.
2171  *
2172  * object must be held and chain-locked on call.
2173  *
2174  * The caller must have an extra ref on object to prevent a race from
2175  * destroying it during the collapse.
2176  */
2177 void
2178 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2179 {
2180 	struct vm_object_dealloc_list *dlist = NULL;
2181 	vm_object_t backing_object;
2182 
2183 	/*
2184 	 * Only one thread is attempting a collapse at any given moment.
2185 	 * There are few restrictions for (object) that callers of this
2186 	 * function check so reentrancy is likely.
2187 	 */
2188 	KKASSERT(object != NULL);
2189 	vm_object_assert_held(object);
2190 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2191 
2192 	for (;;) {
2193 		vm_object_t bbobj;
2194 		int dodealloc;
2195 
2196 		/*
2197 		 * We can only collapse a DEFAULT/SWAP object with a
2198 		 * DEFAULT/SWAP object.
2199 		 */
2200 		if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2201 			backing_object = NULL;
2202 			break;
2203 		}
2204 
2205 		backing_object = object->backing_object;
2206 		if (backing_object == NULL)
2207 			break;
2208 		if (backing_object->type != OBJT_DEFAULT &&
2209 		    backing_object->type != OBJT_SWAP) {
2210 			backing_object = NULL;
2211 			break;
2212 		}
2213 
2214 		/*
2215 		 * Hold the backing_object and check for races
2216 		 */
2217 		vm_object_hold(backing_object);
2218 		if (backing_object != object->backing_object ||
2219 		    (backing_object->type != OBJT_DEFAULT &&
2220 		     backing_object->type != OBJT_SWAP)) {
2221 			vm_object_drop(backing_object);
2222 			continue;
2223 		}
2224 
2225 		/*
2226 		 * Chain-lock the backing object too because if we
2227 		 * successfully merge its pages into the top object we
2228 		 * will collapse backing_object->backing_object as the
2229 		 * new backing_object.  Re-check that it is still our
2230 		 * backing object.
2231 		 */
2232 		vm_object_chain_acquire(backing_object, 0);
2233 		if (backing_object != object->backing_object) {
2234 			vm_object_chain_release(backing_object);
2235 			vm_object_drop(backing_object);
2236 			continue;
2237 		}
2238 
2239 		/*
2240 		 * we check the backing object first, because it is most likely
2241 		 * not collapsable.
2242 		 */
2243 		if (backing_object->handle != NULL ||
2244 		    (backing_object->type != OBJT_DEFAULT &&
2245 		     backing_object->type != OBJT_SWAP) ||
2246 		    (backing_object->flags & OBJ_DEAD) ||
2247 		    object->handle != NULL ||
2248 		    (object->type != OBJT_DEFAULT &&
2249 		     object->type != OBJT_SWAP) ||
2250 		    (object->flags & OBJ_DEAD)) {
2251 			break;
2252 		}
2253 
2254 		/*
2255 		 * If paging is in progress we can't do a normal collapse.
2256 		 */
2257 		if (
2258 		    object->paging_in_progress != 0 ||
2259 		    backing_object->paging_in_progress != 0
2260 		) {
2261 			vm_object_qcollapse(object, backing_object);
2262 			break;
2263 		}
2264 
2265 		/*
2266 		 * We know that we can either collapse the backing object (if
2267 		 * the parent is the only reference to it) or (perhaps) have
2268 		 * the parent bypass the object if the parent happens to shadow
2269 		 * all the resident pages in the entire backing object.
2270 		 *
2271 		 * This is ignoring pager-backed pages such as swap pages.
2272 		 * vm_object_backing_scan fails the shadowing test in this
2273 		 * case.
2274 		 */
2275 		if (backing_object->ref_count == 1) {
2276 			/*
2277 			 * If there is exactly one reference to the backing
2278 			 * object, we can collapse it into the parent.
2279 			 */
2280 			KKASSERT(object->backing_object == backing_object);
2281 			vm_object_backing_scan(object, backing_object,
2282 					       OBSC_COLLAPSE_WAIT);
2283 
2284 			/*
2285 			 * Move the pager from backing_object to object.
2286 			 */
2287 			if (backing_object->type == OBJT_SWAP) {
2288 				vm_object_pip_add(backing_object, 1);
2289 
2290 				/*
2291 				 * scrap the paging_offset junk and do a
2292 				 * discrete copy.  This also removes major
2293 				 * assumptions about how the swap-pager
2294 				 * works from where it doesn't belong.  The
2295 				 * new swapper is able to optimize the
2296 				 * destroy-source case.
2297 				 */
2298 				vm_object_pip_add(object, 1);
2299 				swap_pager_copy(backing_object, object,
2300 				    OFF_TO_IDX(object->backing_object_offset),
2301 				    TRUE);
2302 				vm_object_pip_wakeup(object);
2303 				vm_object_pip_wakeup(backing_object);
2304 			}
2305 
2306 			/*
2307 			 * Object now shadows whatever backing_object did.
2308 			 * Remove object from backing_object's shadow_list.
2309 			 *
2310 			 * Removing object from backing_objects shadow list
2311 			 * requires releasing object, which we will do below.
2312 			 */
2313 			KKASSERT(object->backing_object == backing_object);
2314 			if (object->flags & OBJ_ONSHADOW) {
2315 				LIST_REMOVE(object, shadow_list);
2316 				backing_object->shadow_count--;
2317 				backing_object->generation++;
2318 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2319 			}
2320 
2321 			/*
2322 			 * backing_object->backing_object moves from within
2323 			 * backing_object to within object.
2324 			 *
2325 			 * OBJT_VNODE bbobj's should have empty shadow lists.
2326 			 */
2327 			while ((bbobj = backing_object->backing_object) != NULL) {
2328 				if (bbobj->type == OBJT_VNODE)
2329 					vm_object_hold_shared(bbobj);
2330 				else
2331 					vm_object_hold(bbobj);
2332 				if (bbobj == backing_object->backing_object)
2333 					break;
2334 				vm_object_drop(bbobj);
2335 			}
2336 
2337 			/*
2338 			 * We are removing backing_object from bbobj's
2339 			 * shadow list and adding object to bbobj's shadow
2340 			 * list, so the ref_count on bbobj is unchanged.
2341 			 */
2342 			if (bbobj) {
2343 				if (backing_object->flags & OBJ_ONSHADOW) {
2344 					/* not locked exclusively if vnode */
2345 					KKASSERT(bbobj->type != OBJT_VNODE);
2346 					LIST_REMOVE(backing_object,
2347 						    shadow_list);
2348 					bbobj->shadow_count--;
2349 					bbobj->generation++;
2350 					vm_object_clear_flag(backing_object,
2351 							     OBJ_ONSHADOW);
2352 				}
2353 				backing_object->backing_object = NULL;
2354 			}
2355 			object->backing_object = bbobj;
2356 			if (bbobj) {
2357 				if (bbobj->type != OBJT_VNODE) {
2358 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2359 							 object, shadow_list);
2360 					bbobj->shadow_count++;
2361 					bbobj->generation++;
2362 					vm_object_set_flag(object,
2363 							   OBJ_ONSHADOW);
2364 				}
2365 			}
2366 
2367 			object->backing_object_offset +=
2368 				backing_object->backing_object_offset;
2369 
2370 			vm_object_drop(bbobj);
2371 
2372 			/*
2373 			 * Discard the old backing_object.  Nothing should be
2374 			 * able to ref it, other than a vm_map_split(),
2375 			 * and vm_map_split() will stall on our chain lock.
2376 			 * And we control the parent so it shouldn't be
2377 			 * possible for it to go away either.
2378 			 *
2379 			 * Since the backing object has no pages, no pager
2380 			 * left, and no object references within it, all
2381 			 * that is necessary is to dispose of it.
2382 			 */
2383 			KASSERT(backing_object->ref_count == 1,
2384 				("backing_object %p was somehow "
2385 				 "re-referenced during collapse!",
2386 				 backing_object));
2387 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2388 				("backing_object %p somehow has left "
2389 				 "over pages during collapse!",
2390 				 backing_object));
2391 
2392 			/*
2393 			 * The object can be destroyed.
2394 			 *
2395 			 * XXX just fall through and dodealloc instead
2396 			 *     of forcing destruction?
2397 			 */
2398 			atomic_add_int(&backing_object->ref_count, -1);
2399 #if defined(DEBUG_LOCKS)
2400 			debugvm_object_add(backing_object, "collapse", 1, -1);
2401 #endif
2402 			if ((backing_object->flags & OBJ_DEAD) == 0)
2403 				vm_object_terminate(backing_object);
2404 			object_collapses++;
2405 			dodealloc = 0;
2406 		} else {
2407 			/*
2408 			 * If we do not entirely shadow the backing object,
2409 			 * there is nothing we can do so we give up.
2410 			 */
2411 			if (vm_object_backing_scan(object, backing_object,
2412 						OBSC_TEST_ALL_SHADOWED) == 0) {
2413 				break;
2414 			}
2415 
2416 			/*
2417 			 * bbobj is backing_object->backing_object.  Since
2418 			 * object completely shadows backing_object we can
2419 			 * bypass it and become backed by bbobj instead.
2420 			 *
2421 			 * The shadow list for vnode backing objects is not
2422 			 * used and a shared hold is allowed.
2423 			 */
2424 			while ((bbobj = backing_object->backing_object) != NULL) {
2425 				if (bbobj->type == OBJT_VNODE)
2426 					vm_object_hold_shared(bbobj);
2427 				else
2428 					vm_object_hold(bbobj);
2429 				if (bbobj == backing_object->backing_object)
2430 					break;
2431 				vm_object_drop(bbobj);
2432 			}
2433 
2434 			/*
2435 			 * Make object shadow bbobj instead of backing_object.
2436 			 * Remove object from backing_object's shadow list.
2437 			 *
2438 			 * Deallocating backing_object will not remove
2439 			 * it, since its reference count is at least 2.
2440 			 *
2441 			 * Removing object from backing_object's shadow
2442 			 * list requires releasing a ref, which we do
2443 			 * below by setting dodealloc to 1.
2444 			 */
2445 			KKASSERT(object->backing_object == backing_object);
2446 			if (object->flags & OBJ_ONSHADOW) {
2447 				LIST_REMOVE(object, shadow_list);
2448 				backing_object->shadow_count--;
2449 				backing_object->generation++;
2450 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2451 			}
2452 
2453 			/*
2454 			 * Add a ref to bbobj, bbobj now shadows object.
2455 			 *
2456 			 * NOTE: backing_object->backing_object still points
2457 			 *	 to bbobj.  That relationship remains intact
2458 			 *	 because backing_object has > 1 ref, so
2459 			 *	 someone else is pointing to it (hence why
2460 			 *	 we can't collapse it into object and can
2461 			 *	 only handle the all-shadowed bypass case).
2462 			 */
2463 			if (bbobj) {
2464 				if (bbobj->type != OBJT_VNODE) {
2465 					vm_object_chain_wait(bbobj, 0);
2466 					vm_object_reference_locked(bbobj);
2467 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2468 							 object, shadow_list);
2469 					bbobj->shadow_count++;
2470 					bbobj->generation++;
2471 					vm_object_set_flag(object,
2472 							   OBJ_ONSHADOW);
2473 				} else {
2474 					vm_object_reference_quick(bbobj);
2475 				}
2476 				object->backing_object_offset +=
2477 					backing_object->backing_object_offset;
2478 				object->backing_object = bbobj;
2479 				vm_object_drop(bbobj);
2480 			} else {
2481 				object->backing_object = NULL;
2482 			}
2483 
2484 			/*
2485 			 * Drop the reference count on backing_object.  To
2486 			 * handle ref_count races properly we can't assume
2487 			 * that the ref_count is still at least 2 so we
2488 			 * have to actually call vm_object_deallocate()
2489 			 * (after clearing the chainlock).
2490 			 */
2491 			object_bypasses++;
2492 			dodealloc = 1;
2493 		}
2494 
2495 		/*
2496 		 * Ok, we want to loop on the new object->bbobj association,
2497 		 * possibly collapsing it further.  However if dodealloc is
2498 		 * non-zero we have to deallocate the backing_object which
2499 		 * itself can potentially undergo a collapse, creating a
2500 		 * recursion depth issue with the LWKT token subsystem.
2501 		 *
2502 		 * In the case where we must deallocate the backing_object
2503 		 * it is possible now that the backing_object has a single
2504 		 * shadow count on some other object (not represented here
2505 		 * as yet), since it no longer shadows us.  Thus when we
2506 		 * call vm_object_deallocate() it may attempt to collapse
2507 		 * itself into its remaining parent.
2508 		 */
2509 		if (dodealloc) {
2510 			struct vm_object_dealloc_list *dtmp;
2511 
2512 			vm_object_chain_release(backing_object);
2513 			vm_object_unlock(backing_object);
2514 			/* backing_object remains held */
2515 
2516 			/*
2517 			 * Auto-deallocation list for caller convenience.
2518 			 */
2519 			if (dlistp == NULL)
2520 				dlistp = &dlist;
2521 
2522 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2523 			dtmp->object = backing_object;
2524 			dtmp->next = *dlistp;
2525 			*dlistp = dtmp;
2526 		} else {
2527 			vm_object_chain_release(backing_object);
2528 			vm_object_drop(backing_object);
2529 		}
2530 		/* backing_object = NULL; not needed */
2531 		/* loop */
2532 	}
2533 
2534 	/*
2535 	 * Clean up any left over backing_object
2536 	 */
2537 	if (backing_object) {
2538 		vm_object_chain_release(backing_object);
2539 		vm_object_drop(backing_object);
2540 	}
2541 
2542 	/*
2543 	 * Clean up any auto-deallocation list.  This is a convenience
2544 	 * for top-level callers so they don't have to pass &dlist.
2545 	 * Do not clean up any caller-passed dlistp, the caller will
2546 	 * do that.
2547 	 */
2548 	if (dlist)
2549 		vm_object_deallocate_list(&dlist);
2550 
2551 }
2552 
2553 /*
2554  * vm_object_collapse() may collect additional objects in need of
2555  * deallocation.  This routine deallocates these objects.  The
2556  * deallocation itself can trigger additional collapses (which the
2557  * deallocate function takes care of).  This procedure is used to
2558  * reduce procedural recursion since these vm_object shadow chains
2559  * can become quite long.
2560  */
2561 void
2562 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2563 {
2564 	struct vm_object_dealloc_list *dlist;
2565 
2566 	while ((dlist = *dlistp) != NULL) {
2567 		*dlistp = dlist->next;
2568 		vm_object_lock(dlist->object);
2569 		vm_object_deallocate_locked(dlist->object);
2570 		vm_object_drop(dlist->object);
2571 		kfree(dlist, M_TEMP);
2572 	}
2573 }
2574 
2575 /*
2576  * Removes all physical pages in the specified object range from the
2577  * object's list of pages.
2578  *
2579  * No requirements.
2580  */
2581 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2582 
2583 void
2584 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2585 		      boolean_t clean_only)
2586 {
2587 	struct rb_vm_page_scan_info info;
2588 	int all;
2589 
2590 	/*
2591 	 * Degenerate cases and assertions
2592 	 */
2593 	vm_object_hold(object);
2594 	if (object == NULL ||
2595 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2596 		vm_object_drop(object);
2597 		return;
2598 	}
2599 	KASSERT(object->type != OBJT_PHYS,
2600 		("attempt to remove pages from a physical object"));
2601 
2602 	/*
2603 	 * Indicate that paging is occuring on the object
2604 	 */
2605 	vm_object_pip_add(object, 1);
2606 
2607 	/*
2608 	 * Figure out the actual removal range and whether we are removing
2609 	 * the entire contents of the object or not.  If removing the entire
2610 	 * contents, be sure to get all pages, even those that might be
2611 	 * beyond the end of the object.
2612 	 */
2613 	info.start_pindex = start;
2614 	if (end == 0)
2615 		info.end_pindex = (vm_pindex_t)-1;
2616 	else
2617 		info.end_pindex = end - 1;
2618 	info.limit = clean_only;
2619 	all = (start == 0 && info.end_pindex >= object->size - 1);
2620 
2621 	/*
2622 	 * Loop until we are sure we have gotten them all.
2623 	 */
2624 	do {
2625 		info.error = 0;
2626 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2627 					vm_object_page_remove_callback, &info);
2628 	} while (info.error);
2629 
2630 	/*
2631 	 * Remove any related swap if throwing away pages, or for
2632 	 * non-swap objects (the swap is a clean copy in that case).
2633 	 */
2634 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2635 		if (all)
2636 			swap_pager_freespace_all(object);
2637 		else
2638 			swap_pager_freespace(object, info.start_pindex,
2639 			     info.end_pindex - info.start_pindex + 1);
2640 	}
2641 
2642 	/*
2643 	 * Cleanup
2644 	 */
2645 	vm_object_pip_wakeup(object);
2646 	vm_object_drop(object);
2647 }
2648 
2649 /*
2650  * The caller must hold the object
2651  */
2652 static int
2653 vm_object_page_remove_callback(vm_page_t p, void *data)
2654 {
2655 	struct rb_vm_page_scan_info *info = data;
2656 
2657 	if (vm_page_busy_try(p, TRUE)) {
2658 		vm_page_sleep_busy(p, TRUE, "vmopar");
2659 		info->error = 1;
2660 		return(0);
2661 	}
2662 
2663 	/*
2664 	 * Wired pages cannot be destroyed, but they can be invalidated
2665 	 * and we do so if clean_only (limit) is not set.
2666 	 *
2667 	 * WARNING!  The page may be wired due to being part of a buffer
2668 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2669 	 *	     This is fine as part of a truncation but VFSs must be
2670 	 *	     sure to fix the buffer up when re-extending the file.
2671 	 *
2672 	 * NOTE!     PG_NEED_COMMIT is ignored.
2673 	 */
2674 	if (p->wire_count != 0) {
2675 		vm_page_protect(p, VM_PROT_NONE);
2676 		if (info->limit == 0)
2677 			p->valid = 0;
2678 		vm_page_wakeup(p);
2679 		return(0);
2680 	}
2681 
2682 	/*
2683 	 * limit is our clean_only flag.  If set and the page is dirty or
2684 	 * requires a commit, do not free it.  If set and the page is being
2685 	 * held by someone, do not free it.
2686 	 */
2687 	if (info->limit && p->valid) {
2688 		vm_page_test_dirty(p);
2689 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2690 			vm_page_wakeup(p);
2691 			return(0);
2692 		}
2693 	}
2694 
2695 	/*
2696 	 * Destroy the page
2697 	 */
2698 	vm_page_protect(p, VM_PROT_NONE);
2699 	vm_page_free(p);
2700 	return(0);
2701 }
2702 
2703 /*
2704  * Coalesces two objects backing up adjoining regions of memory into a
2705  * single object.
2706  *
2707  * returns TRUE if objects were combined.
2708  *
2709  * NOTE: Only works at the moment if the second object is NULL -
2710  *	 if it's not, which object do we lock first?
2711  *
2712  * Parameters:
2713  *	prev_object	First object to coalesce
2714  *	prev_offset	Offset into prev_object
2715  *	next_object	Second object into coalesce
2716  *	next_offset	Offset into next_object
2717  *
2718  *	prev_size	Size of reference to prev_object
2719  *	next_size	Size of reference to next_object
2720  *
2721  * The caller does not need to hold (prev_object) but must have a stable
2722  * pointer to it (typically by holding the vm_map locked).
2723  */
2724 boolean_t
2725 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2726 		   vm_size_t prev_size, vm_size_t next_size)
2727 {
2728 	vm_pindex_t next_pindex;
2729 
2730 	if (prev_object == NULL)
2731 		return (TRUE);
2732 
2733 	vm_object_hold(prev_object);
2734 
2735 	if (prev_object->type != OBJT_DEFAULT &&
2736 	    prev_object->type != OBJT_SWAP) {
2737 		vm_object_drop(prev_object);
2738 		return (FALSE);
2739 	}
2740 
2741 	/*
2742 	 * Try to collapse the object first
2743 	 */
2744 	vm_object_chain_acquire(prev_object, 0);
2745 	vm_object_collapse(prev_object, NULL);
2746 
2747 	/*
2748 	 * Can't coalesce if: . more than one reference . paged out . shadows
2749 	 * another object . has a copy elsewhere (any of which mean that the
2750 	 * pages not mapped to prev_entry may be in use anyway)
2751 	 */
2752 
2753 	if (prev_object->backing_object != NULL) {
2754 		vm_object_chain_release(prev_object);
2755 		vm_object_drop(prev_object);
2756 		return (FALSE);
2757 	}
2758 
2759 	prev_size >>= PAGE_SHIFT;
2760 	next_size >>= PAGE_SHIFT;
2761 	next_pindex = prev_pindex + prev_size;
2762 
2763 	if ((prev_object->ref_count > 1) &&
2764 	    (prev_object->size != next_pindex)) {
2765 		vm_object_chain_release(prev_object);
2766 		vm_object_drop(prev_object);
2767 		return (FALSE);
2768 	}
2769 
2770 	/*
2771 	 * Remove any pages that may still be in the object from a previous
2772 	 * deallocation.
2773 	 */
2774 	if (next_pindex < prev_object->size) {
2775 		vm_object_page_remove(prev_object,
2776 				      next_pindex,
2777 				      next_pindex + next_size, FALSE);
2778 		if (prev_object->type == OBJT_SWAP)
2779 			swap_pager_freespace(prev_object,
2780 					     next_pindex, next_size);
2781 	}
2782 
2783 	/*
2784 	 * Extend the object if necessary.
2785 	 */
2786 	if (next_pindex + next_size > prev_object->size)
2787 		prev_object->size = next_pindex + next_size;
2788 
2789 	vm_object_chain_release(prev_object);
2790 	vm_object_drop(prev_object);
2791 	return (TRUE);
2792 }
2793 
2794 /*
2795  * Make the object writable and flag is being possibly dirty.
2796  *
2797  * The object might not be held (or might be held but held shared),
2798  * the related vnode is probably not held either.  Object and vnode are
2799  * stable by virtue of the vm_page busied by the caller preventing
2800  * destruction.
2801  *
2802  * If the related mount is flagged MNTK_THR_SYNC we need to call
2803  * vsetobjdirty().  Filesystems using this option usually shortcut
2804  * synchronization by only scanning the syncer list.
2805  */
2806 void
2807 vm_object_set_writeable_dirty(vm_object_t object)
2808 {
2809 	struct vnode *vp;
2810 
2811 	/*vm_object_assert_held(object);*/
2812 	/*
2813 	 * Avoid contention in vm fault path by checking the state before
2814 	 * issuing an atomic op on it.
2815 	 */
2816 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2817 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2818 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2819 	}
2820 	if (object->type == OBJT_VNODE &&
2821 	    (vp = (struct vnode *)object->handle) != NULL) {
2822 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2823 			if (vp->v_mount &&
2824 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2825 				/*
2826 				 * New style THR_SYNC places vnodes on the
2827 				 * syncer list more deterministically.
2828 				 */
2829 				vsetobjdirty(vp);
2830 			} else {
2831 				/*
2832 				 * Old style scan would not necessarily place
2833 				 * a vnode on the syncer list when possibly
2834 				 * modified via mmap.
2835 				 */
2836 				vsetflags(vp, VOBJDIRTY);
2837 			}
2838 		}
2839 	}
2840 }
2841 
2842 #include "opt_ddb.h"
2843 #ifdef DDB
2844 #include <sys/kernel.h>
2845 
2846 #include <sys/cons.h>
2847 
2848 #include <ddb/ddb.h>
2849 
2850 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2851 				       vm_map_entry_t entry);
2852 static int	vm_object_in_map (vm_object_t object);
2853 
2854 /*
2855  * The caller must hold the object.
2856  */
2857 static int
2858 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2859 {
2860 	vm_map_t tmpm;
2861 	vm_map_entry_t tmpe;
2862 	vm_object_t obj, nobj;
2863 	int entcount;
2864 
2865 	if (map == 0)
2866 		return 0;
2867 	if (entry == 0) {
2868 		tmpe = map->header.next;
2869 		entcount = map->nentries;
2870 		while (entcount-- && (tmpe != &map->header)) {
2871 			if( _vm_object_in_map(map, object, tmpe)) {
2872 				return 1;
2873 			}
2874 			tmpe = tmpe->next;
2875 		}
2876 		return (0);
2877 	}
2878 	switch(entry->maptype) {
2879 	case VM_MAPTYPE_SUBMAP:
2880 		tmpm = entry->object.sub_map;
2881 		tmpe = tmpm->header.next;
2882 		entcount = tmpm->nentries;
2883 		while (entcount-- && tmpe != &tmpm->header) {
2884 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2885 				return 1;
2886 			}
2887 			tmpe = tmpe->next;
2888 		}
2889 		break;
2890 	case VM_MAPTYPE_NORMAL:
2891 	case VM_MAPTYPE_VPAGETABLE:
2892 		obj = entry->object.vm_object;
2893 		while (obj) {
2894 			if (obj == object) {
2895 				if (obj != entry->object.vm_object)
2896 					vm_object_drop(obj);
2897 				return 1;
2898 			}
2899 			while ((nobj = obj->backing_object) != NULL) {
2900 				vm_object_hold(nobj);
2901 				if (nobj == obj->backing_object)
2902 					break;
2903 				vm_object_drop(nobj);
2904 			}
2905 			if (obj != entry->object.vm_object) {
2906 				if (nobj)
2907 					vm_object_lock_swap();
2908 				vm_object_drop(obj);
2909 			}
2910 			obj = nobj;
2911 		}
2912 		break;
2913 	default:
2914 		break;
2915 	}
2916 	return 0;
2917 }
2918 
2919 static int vm_object_in_map_callback(struct proc *p, void *data);
2920 
2921 struct vm_object_in_map_info {
2922 	vm_object_t object;
2923 	int rv;
2924 };
2925 
2926 /*
2927  * Debugging only
2928  */
2929 static int
2930 vm_object_in_map(vm_object_t object)
2931 {
2932 	struct vm_object_in_map_info info;
2933 
2934 	info.rv = 0;
2935 	info.object = object;
2936 
2937 	allproc_scan(vm_object_in_map_callback, &info);
2938 	if (info.rv)
2939 		return 1;
2940 	if( _vm_object_in_map(&kernel_map, object, 0))
2941 		return 1;
2942 	if( _vm_object_in_map(&pager_map, object, 0))
2943 		return 1;
2944 	if( _vm_object_in_map(&buffer_map, object, 0))
2945 		return 1;
2946 	return 0;
2947 }
2948 
2949 /*
2950  * Debugging only
2951  */
2952 static int
2953 vm_object_in_map_callback(struct proc *p, void *data)
2954 {
2955 	struct vm_object_in_map_info *info = data;
2956 
2957 	if (p->p_vmspace) {
2958 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2959 			info->rv = 1;
2960 			return -1;
2961 		}
2962 	}
2963 	return (0);
2964 }
2965 
2966 DB_SHOW_COMMAND(vmochk, vm_object_check)
2967 {
2968 	vm_object_t object;
2969 	int n;
2970 
2971 	/*
2972 	 * make sure that internal objs are in a map somewhere
2973 	 * and none have zero ref counts.
2974 	 */
2975 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2976 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
2977 				object != NULL;
2978 				object = TAILQ_NEXT(object, object_list)) {
2979 			if (object->type == OBJT_MARKER)
2980 				continue;
2981 			if (object->handle != NULL ||
2982 			    (object->type != OBJT_DEFAULT &&
2983 			     object->type != OBJT_SWAP)) {
2984 				continue;
2985 			}
2986 			if (object->ref_count == 0) {
2987 				db_printf("vmochk: internal obj has "
2988 					  "zero ref count: %ld\n",
2989 					  (long)object->size);
2990 			}
2991 			if (vm_object_in_map(object))
2992 				continue;
2993 			db_printf("vmochk: internal obj is not in a map: "
2994 				  "ref: %d, size: %lu: 0x%lx, "
2995 				  "backing_object: %p\n",
2996 				  object->ref_count, (u_long)object->size,
2997 				  (u_long)object->size,
2998 				  (void *)object->backing_object);
2999 		}
3000 	}
3001 }
3002 
3003 /*
3004  * Debugging only
3005  */
3006 DB_SHOW_COMMAND(object, vm_object_print_static)
3007 {
3008 	/* XXX convert args. */
3009 	vm_object_t object = (vm_object_t)addr;
3010 	boolean_t full = have_addr;
3011 
3012 	vm_page_t p;
3013 
3014 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
3015 #define	count	was_count
3016 
3017 	int count;
3018 
3019 	if (object == NULL)
3020 		return;
3021 
3022 	db_iprintf(
3023 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
3024 	    object, (int)object->type, (u_long)object->size,
3025 	    object->resident_page_count, object->ref_count, object->flags);
3026 	/*
3027 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3028 	 */
3029 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3030 	    object->shadow_count,
3031 	    object->backing_object ? object->backing_object->ref_count : 0,
3032 	    object->backing_object, (long)object->backing_object_offset);
3033 
3034 	if (!full)
3035 		return;
3036 
3037 	db_indent += 2;
3038 	count = 0;
3039 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3040 		if (count == 0)
3041 			db_iprintf("memory:=");
3042 		else if (count == 6) {
3043 			db_printf("\n");
3044 			db_iprintf(" ...");
3045 			count = 0;
3046 		} else
3047 			db_printf(",");
3048 		count++;
3049 
3050 		db_printf("(off=0x%lx,page=0x%lx)",
3051 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3052 	}
3053 	if (count != 0)
3054 		db_printf("\n");
3055 	db_indent -= 2;
3056 }
3057 
3058 /* XXX. */
3059 #undef count
3060 
3061 /*
3062  * XXX need this non-static entry for calling from vm_map_print.
3063  *
3064  * Debugging only
3065  */
3066 void
3067 vm_object_print(/* db_expr_t */ long addr,
3068 		boolean_t have_addr,
3069 		/* db_expr_t */ long count,
3070 		char *modif)
3071 {
3072 	vm_object_print_static(addr, have_addr, count, modif);
3073 }
3074 
3075 /*
3076  * Debugging only
3077  */
3078 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3079 {
3080 	vm_object_t object;
3081 	int nl = 0;
3082 	int c;
3083 	int n;
3084 
3085 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3086 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
3087 				object != NULL;
3088 				object = TAILQ_NEXT(object, object_list)) {
3089 			vm_pindex_t idx, fidx;
3090 			vm_pindex_t osize;
3091 			vm_paddr_t pa = -1, padiff;
3092 			int rcount;
3093 			vm_page_t m;
3094 
3095 			if (object->type == OBJT_MARKER)
3096 				continue;
3097 			db_printf("new object: %p\n", (void *)object);
3098 			if ( nl > 18) {
3099 				c = cngetc();
3100 				if (c != ' ')
3101 					return;
3102 				nl = 0;
3103 			}
3104 			nl++;
3105 			rcount = 0;
3106 			fidx = 0;
3107 			osize = object->size;
3108 			if (osize > 128)
3109 				osize = 128;
3110 			for (idx = 0; idx < osize; idx++) {
3111 				m = vm_page_lookup(object, idx);
3112 				if (m == NULL) {
3113 					if (rcount) {
3114 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3115 							(long)fidx, rcount, (long)pa);
3116 						if ( nl > 18) {
3117 							c = cngetc();
3118 							if (c != ' ')
3119 								return;
3120 							nl = 0;
3121 						}
3122 						nl++;
3123 						rcount = 0;
3124 					}
3125 					continue;
3126 				}
3127 
3128 				if (rcount &&
3129 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3130 					++rcount;
3131 					continue;
3132 				}
3133 				if (rcount) {
3134 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3135 					padiff >>= PAGE_SHIFT;
3136 					padiff &= PQ_L2_MASK;
3137 					if (padiff == 0) {
3138 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3139 						++rcount;
3140 						continue;
3141 					}
3142 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
3143 						(long)fidx, rcount, (long)pa);
3144 					db_printf("pd(%ld)\n", (long)padiff);
3145 					if ( nl > 18) {
3146 						c = cngetc();
3147 						if (c != ' ')
3148 							return;
3149 						nl = 0;
3150 					}
3151 					nl++;
3152 				}
3153 				fidx = idx;
3154 				pa = VM_PAGE_TO_PHYS(m);
3155 				rcount = 1;
3156 			}
3157 			if (rcount) {
3158 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3159 					(long)fidx, rcount, (long)pa);
3160 				if ( nl > 18) {
3161 					c = cngetc();
3162 					if (c != ' ')
3163 						return;
3164 					nl = 0;
3165 				}
3166 				nl++;
3167 			}
3168 		}
3169 	}
3170 }
3171 #endif /* DDB */
3172