xref: /dragonfly/sys/vm/vm_object.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 
105 /*
106  *	Virtual memory objects maintain the actual data
107  *	associated with allocated virtual memory.  A given
108  *	page of memory exists within exactly one object.
109  *
110  *	An object is only deallocated when all "references"
111  *	are given up.  Only one "reference" to a given
112  *	region of an object should be writeable.
113  *
114  *	Associated with each object is a list of all resident
115  *	memory pages belonging to that object; this list is
116  *	maintained by the "vm_page" module, and locked by the object's
117  *	lock.
118  *
119  *	Each object also records a "pager" routine which is
120  *	used to retrieve (and store) pages to the proper backing
121  *	storage.  In addition, objects may be backed by other
122  *	objects from which they were virtual-copied.
123  *
124  *	The only items within the object structure which are
125  *	modified after time of creation are:
126  *		reference count		locked by object's lock
127  *		pager routine		locked by object's lock
128  *
129  */
130 
131 struct vm_object kernel_object;
132 
133 static long vm_object_count;
134 
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 #define VM_OBJECTS_INIT 256
141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 
143 struct object_q vm_object_lists[VMOBJ_HSIZE];
144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145 
146 /*
147  * Misc low level routines
148  */
149 static void
150 vm_object_lock_init(vm_object_t obj)
151 {
152 #if defined(DEBUG_LOCKS)
153 	int i;
154 
155 	obj->debug_hold_bitmap = 0;
156 	obj->debug_hold_ovfl = 0;
157 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
158 		obj->debug_hold_thrs[i] = NULL;
159 		obj->debug_hold_file[i] = NULL;
160 		obj->debug_hold_line[i] = 0;
161 	}
162 #endif
163 }
164 
165 void
166 vm_object_lock_swap(void)
167 {
168 	lwkt_token_swap();
169 }
170 
171 void
172 vm_object_lock(vm_object_t obj)
173 {
174 	lwkt_gettoken(&obj->token);
175 }
176 
177 /*
178  * Returns TRUE on sucesss
179  */
180 static int
181 vm_object_lock_try(vm_object_t obj)
182 {
183 	return(lwkt_trytoken(&obj->token));
184 }
185 
186 void
187 vm_object_lock_shared(vm_object_t obj)
188 {
189 	lwkt_gettoken_shared(&obj->token);
190 }
191 
192 void
193 vm_object_unlock(vm_object_t obj)
194 {
195 	lwkt_reltoken(&obj->token);
196 }
197 
198 void
199 vm_object_upgrade(vm_object_t obj)
200 {
201 	lwkt_reltoken(&obj->token);
202 	lwkt_gettoken(&obj->token);
203 }
204 
205 void
206 vm_object_downgrade(vm_object_t obj)
207 {
208 	lwkt_reltoken(&obj->token);
209 	lwkt_gettoken_shared(&obj->token);
210 }
211 
212 static __inline void
213 vm_object_assert_held(vm_object_t obj)
214 {
215 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
216 }
217 
218 void
219 #ifndef DEBUG_LOCKS
220 vm_object_hold(vm_object_t obj)
221 #else
222 debugvm_object_hold(vm_object_t obj, char *file, int line)
223 #endif
224 {
225 	KKASSERT(obj != NULL);
226 
227 	/*
228 	 * Object must be held (object allocation is stable due to callers
229 	 * context, typically already holding the token on a parent object)
230 	 * prior to potentially blocking on the lock, otherwise the object
231 	 * can get ripped away from us.
232 	 */
233 	refcount_acquire(&obj->hold_count);
234 	vm_object_lock(obj);
235 
236 #if defined(DEBUG_LOCKS)
237 	int i;
238 	u_int mask;
239 
240 	for (;;) {
241 		mask = ~obj->debug_hold_bitmap;
242 		cpu_ccfence();
243 		if (mask == 0xFFFFFFFFU) {
244 			if (obj->debug_hold_ovfl == 0)
245 				obj->debug_hold_ovfl = 1;
246 			break;
247 		}
248 		i = ffs(mask) - 1;
249 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
250 				      ~mask | (1 << i))) {
251 			obj->debug_hold_bitmap |= (1 << i);
252 			obj->debug_hold_thrs[i] = curthread;
253 			obj->debug_hold_file[i] = file;
254 			obj->debug_hold_line[i] = line;
255 			break;
256 		}
257 	}
258 #endif
259 }
260 
261 int
262 #ifndef DEBUG_LOCKS
263 vm_object_hold_try(vm_object_t obj)
264 #else
265 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
266 #endif
267 {
268 	KKASSERT(obj != NULL);
269 
270 	/*
271 	 * Object must be held (object allocation is stable due to callers
272 	 * context, typically already holding the token on a parent object)
273 	 * prior to potentially blocking on the lock, otherwise the object
274 	 * can get ripped away from us.
275 	 */
276 	refcount_acquire(&obj->hold_count);
277 	if (vm_object_lock_try(obj) == 0) {
278 		if (refcount_release(&obj->hold_count)) {
279 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
280 				zfree(obj_zone, obj);
281 		}
282 		return(0);
283 	}
284 
285 #if defined(DEBUG_LOCKS)
286 	int i;
287 	u_int mask;
288 
289 	for (;;) {
290 		mask = ~obj->debug_hold_bitmap;
291 		cpu_ccfence();
292 		if (mask == 0xFFFFFFFFU) {
293 			if (obj->debug_hold_ovfl == 0)
294 				obj->debug_hold_ovfl = 1;
295 			break;
296 		}
297 		i = ffs(mask) - 1;
298 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
299 				      ~mask | (1 << i))) {
300 			obj->debug_hold_bitmap |= (1 << i);
301 			obj->debug_hold_thrs[i] = curthread;
302 			obj->debug_hold_file[i] = file;
303 			obj->debug_hold_line[i] = line;
304 			break;
305 		}
306 	}
307 #endif
308 	return(1);
309 }
310 
311 void
312 #ifndef DEBUG_LOCKS
313 vm_object_hold_shared(vm_object_t obj)
314 #else
315 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
316 #endif
317 {
318 	KKASSERT(obj != NULL);
319 
320 	/*
321 	 * Object must be held (object allocation is stable due to callers
322 	 * context, typically already holding the token on a parent object)
323 	 * prior to potentially blocking on the lock, otherwise the object
324 	 * can get ripped away from us.
325 	 */
326 	refcount_acquire(&obj->hold_count);
327 	vm_object_lock_shared(obj);
328 
329 #if defined(DEBUG_LOCKS)
330 	int i;
331 	u_int mask;
332 
333 	for (;;) {
334 		mask = ~obj->debug_hold_bitmap;
335 		cpu_ccfence();
336 		if (mask == 0xFFFFFFFFU) {
337 			if (obj->debug_hold_ovfl == 0)
338 				obj->debug_hold_ovfl = 1;
339 			break;
340 		}
341 		i = ffs(mask) - 1;
342 		if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
343 				      ~mask | (1 << i))) {
344 			obj->debug_hold_bitmap |= (1 << i);
345 			obj->debug_hold_thrs[i] = curthread;
346 			obj->debug_hold_file[i] = file;
347 			obj->debug_hold_line[i] = line;
348 			break;
349 		}
350 	}
351 #endif
352 }
353 
354 /*
355  * Drop the token and hold_count on the object.
356  *
357  * WARNING! Token might be shared.
358  */
359 void
360 vm_object_drop(vm_object_t obj)
361 {
362 	if (obj == NULL)
363 		return;
364 
365 #if defined(DEBUG_LOCKS)
366 	int found = 0;
367 	int i;
368 
369 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
370 		if ((obj->debug_hold_bitmap & (1 << i)) &&
371 		    (obj->debug_hold_thrs[i] == curthread)) {
372 			obj->debug_hold_bitmap &= ~(1 << i);
373 			obj->debug_hold_thrs[i] = NULL;
374 			obj->debug_hold_file[i] = NULL;
375 			obj->debug_hold_line[i] = 0;
376 			found = 1;
377 			break;
378 		}
379 	}
380 
381 	if (found == 0 && obj->debug_hold_ovfl == 0)
382 		panic("vm_object: attempt to drop hold on non-self-held obj");
383 #endif
384 
385 	/*
386 	 * No new holders should be possible once we drop hold_count 1->0 as
387 	 * there is no longer any way to reference the object.
388 	 */
389 	KKASSERT(obj->hold_count > 0);
390 	if (refcount_release(&obj->hold_count)) {
391 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
392 			vm_object_unlock(obj);
393 			zfree(obj_zone, obj);
394 		} else {
395 			vm_object_unlock(obj);
396 		}
397 	} else {
398 		vm_object_unlock(obj);
399 	}
400 }
401 
402 /*
403  * Initialize a freshly allocated object, returning a held object.
404  *
405  * Used only by vm_object_allocate() and zinitna().
406  *
407  * No requirements.
408  */
409 void
410 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
411 {
412 	int incr;
413 	int n;
414 
415 	RB_INIT(&object->rb_memq);
416 	LIST_INIT(&object->shadow_head);
417 	lwkt_token_init(&object->token, "vmobj");
418 
419 	object->type = type;
420 	object->size = size;
421 	object->ref_count = 1;
422 	object->memattr = VM_MEMATTR_DEFAULT;
423 	object->hold_count = 0;
424 	object->flags = 0;
425 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
426 		vm_object_set_flag(object, OBJ_ONEMAPPING);
427 	object->paging_in_progress = 0;
428 	object->resident_page_count = 0;
429 	object->agg_pv_list_count = 0;
430 	object->shadow_count = 0;
431 	/* cpu localization twist */
432 	object->pg_color = (int)(intptr_t)curthread;
433 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
434 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
435 	else
436 		incr = size;
437 	next_index = (next_index + incr) & PQ_L2_MASK;
438 	object->handle = NULL;
439 	object->backing_object = NULL;
440 	object->backing_object_offset = (vm_ooffset_t)0;
441 
442 	object->generation++;
443 	object->swblock_count = 0;
444 	RB_INIT(&object->swblock_root);
445 	vm_object_lock_init(object);
446 	pmap_object_init(object);
447 
448 	vm_object_hold(object);
449 
450 	n = VMOBJ_HASH(object);
451 	atomic_add_long(&vm_object_count, 1);
452 	lwkt_gettoken(&vmobj_tokens[n]);
453 	TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
454 	lwkt_reltoken(&vmobj_tokens[n]);
455 }
456 
457 /*
458  * Initialize the VM objects module.
459  *
460  * Called from the low level boot code only.
461  */
462 void
463 vm_object_init(void)
464 {
465 	int i;
466 
467 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
468 		TAILQ_INIT(&vm_object_lists[i]);
469 		lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
470 	}
471 
472 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
473 			    &kernel_object);
474 	vm_object_drop(&kernel_object);
475 
476 	obj_zone = &obj_zone_store;
477 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
478 		vm_objects_init, VM_OBJECTS_INIT);
479 }
480 
481 void
482 vm_object_init2(void)
483 {
484 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
485 }
486 
487 /*
488  * Allocate and return a new object of the specified type and size.
489  *
490  * No requirements.
491  */
492 vm_object_t
493 vm_object_allocate(objtype_t type, vm_pindex_t size)
494 {
495 	vm_object_t result;
496 
497 	result = (vm_object_t) zalloc(obj_zone);
498 
499 	_vm_object_allocate(type, size, result);
500 	vm_object_drop(result);
501 
502 	return (result);
503 }
504 
505 /*
506  * This version returns a held object, allowing further atomic initialization
507  * of the object.
508  */
509 vm_object_t
510 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
511 {
512 	vm_object_t result;
513 
514 	result = (vm_object_t) zalloc(obj_zone);
515 
516 	_vm_object_allocate(type, size, result);
517 
518 	return (result);
519 }
520 
521 /*
522  * Add an additional reference to a vm_object.  The object must already be
523  * held.  The original non-lock version is no longer supported.  The object
524  * must NOT be chain locked by anyone at the time the reference is added.
525  *
526  * Referencing a chain-locked object can blow up the fairly sensitive
527  * ref_count and shadow_count tests in the deallocator.  Most callers
528  * will call vm_object_chain_wait() prior to calling
529  * vm_object_reference_locked() to avoid the case.
530  *
531  * The object must be held, but may be held shared if desired (hence why
532  * we use an atomic op).
533  */
534 void
535 vm_object_reference_locked(vm_object_t object)
536 {
537 	KKASSERT(object != NULL);
538 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539 	KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
540 	atomic_add_int(&object->ref_count, 1);
541 	if (object->type == OBJT_VNODE) {
542 		vref(object->handle);
543 		/* XXX what if the vnode is being destroyed? */
544 	}
545 }
546 
547 /*
548  * This version is only allowed for vnode objects.
549  */
550 void
551 vm_object_reference_quick(vm_object_t object)
552 {
553 	KKASSERT(object->type == OBJT_VNODE);
554 	atomic_add_int(&object->ref_count, 1);
555 	vref(object->handle);
556 }
557 
558 /*
559  * Object OBJ_CHAINLOCK lock handling.
560  *
561  * The caller can chain-lock backing objects recursively and then
562  * use vm_object_chain_release_all() to undo the whole chain.
563  *
564  * Chain locks are used to prevent collapses and are only applicable
565  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
566  * on other object types are ignored.  This is also important because
567  * it allows e.g. the vnode underlying a memory mapping to take concurrent
568  * faults.
569  *
570  * The object must usually be held on entry, though intermediate
571  * objects need not be held on release.  The object must be held exclusively,
572  * NOT shared.  Note that the prefault path checks the shared state and
573  * avoids using the chain functions.
574  */
575 void
576 vm_object_chain_wait(vm_object_t object, int shared)
577 {
578 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
579 	for (;;) {
580 		uint32_t chainlk = object->chainlk;
581 
582 		cpu_ccfence();
583 		if (shared) {
584 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
585 				tsleep_interlock(object, 0);
586 				if (atomic_cmpset_int(&object->chainlk,
587 						      chainlk,
588 						      chainlk | CHAINLK_WAIT)) {
589 					tsleep(object, PINTERLOCKED,
590 					       "objchns", 0);
591 				}
592 				/* retry */
593 			} else {
594 				break;
595 			}
596 			/* retry */
597 		} else {
598 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
599 				tsleep_interlock(object, 0);
600 				if (atomic_cmpset_int(&object->chainlk,
601 						      chainlk,
602 						      chainlk | CHAINLK_WAIT))
603 				{
604 					tsleep(object, PINTERLOCKED,
605 					       "objchnx", 0);
606 				}
607 				/* retry */
608 			} else {
609 				if (atomic_cmpset_int(&object->chainlk,
610 						      chainlk,
611 						      chainlk & ~CHAINLK_WAIT))
612 				{
613 					if (chainlk & CHAINLK_WAIT)
614 						wakeup(object);
615 					break;
616 				}
617 				/* retry */
618 			}
619 		}
620 		/* retry */
621 	}
622 }
623 
624 void
625 vm_object_chain_acquire(vm_object_t object, int shared)
626 {
627 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
628 		return;
629 	if (vm_shared_fault == 0)
630 		shared = 0;
631 
632 	for (;;) {
633 		uint32_t chainlk = object->chainlk;
634 
635 		cpu_ccfence();
636 		if (shared) {
637 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
638 				tsleep_interlock(object, 0);
639 				if (atomic_cmpset_int(&object->chainlk,
640 						      chainlk,
641 						      chainlk | CHAINLK_WAIT)) {
642 					tsleep(object, PINTERLOCKED,
643 					       "objchns", 0);
644 				}
645 				/* retry */
646 			} else if (atomic_cmpset_int(&object->chainlk,
647 					      chainlk, chainlk + 1)) {
648 				break;
649 			}
650 			/* retry */
651 		} else {
652 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
653 				tsleep_interlock(object, 0);
654 				if (atomic_cmpset_int(&object->chainlk,
655 						      chainlk,
656 						      chainlk |
657 						       CHAINLK_WAIT |
658 						       CHAINLK_EXCLREQ)) {
659 					tsleep(object, PINTERLOCKED,
660 					       "objchnx", 0);
661 				}
662 				/* retry */
663 			} else {
664 				if (atomic_cmpset_int(&object->chainlk,
665 						      chainlk,
666 						      (chainlk | CHAINLK_EXCL) &
667 						      ~(CHAINLK_EXCLREQ |
668 							CHAINLK_WAIT))) {
669 					if (chainlk & CHAINLK_WAIT)
670 						wakeup(object);
671 					break;
672 				}
673 				/* retry */
674 			}
675 		}
676 		/* retry */
677 	}
678 }
679 
680 void
681 vm_object_chain_release(vm_object_t object)
682 {
683 	/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
684 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
685 		return;
686 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
687 	for (;;) {
688 		uint32_t chainlk = object->chainlk;
689 
690 		cpu_ccfence();
691 		if (chainlk & CHAINLK_MASK) {
692 			if ((chainlk & CHAINLK_MASK) == 1 &&
693 			    atomic_cmpset_int(&object->chainlk,
694 					      chainlk,
695 					      (chainlk - 1) & ~CHAINLK_WAIT)) {
696 				if (chainlk & CHAINLK_WAIT)
697 					wakeup(object);
698 				break;
699 			}
700 			if ((chainlk & CHAINLK_MASK) > 1 &&
701 			    atomic_cmpset_int(&object->chainlk,
702 					      chainlk, chainlk - 1)) {
703 				break;
704 			}
705 			/* retry */
706 		} else {
707 			KKASSERT(chainlk & CHAINLK_EXCL);
708 			if (atomic_cmpset_int(&object->chainlk,
709 					      chainlk,
710 					      chainlk & ~(CHAINLK_EXCL |
711 							  CHAINLK_WAIT))) {
712 				if (chainlk & CHAINLK_WAIT)
713 					wakeup(object);
714 				break;
715 			}
716 		}
717 	}
718 }
719 
720 /*
721  * Release the chain from first_object through and including stopobj.
722  * The caller is typically holding the first and last object locked
723  * (shared or exclusive) to prevent destruction races.
724  *
725  * We release stopobj first as an optimization as this object is most
726  * likely to be shared across multiple processes.
727  */
728 void
729 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
730 {
731 	vm_object_t backing_object;
732 	vm_object_t object;
733 
734 	vm_object_chain_release(stopobj);
735 	object = first_object;
736 
737 	while (object != stopobj) {
738 		KKASSERT(object);
739 		backing_object = object->backing_object;
740 		vm_object_chain_release(object);
741 		object = backing_object;
742 	}
743 }
744 
745 /*
746  * Dereference an object and its underlying vnode.  The object may be
747  * held shared.  On return the object will remain held.
748  *
749  * This function may return a vnode in *vpp which the caller must release
750  * after the caller drops its own lock.  If vpp is NULL, we assume that
751  * the caller was holding an exclusive lock on the object and we vrele()
752  * the vp ourselves.
753  */
754 static void
755 vm_object_vndeallocate(vm_object_t object, struct vnode **vpp)
756 {
757 	struct vnode *vp = (struct vnode *) object->handle;
758 
759 	KASSERT(object->type == OBJT_VNODE,
760 	    ("vm_object_vndeallocate: not a vnode object"));
761 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
762 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
763 #ifdef INVARIANTS
764 	if (object->ref_count == 0) {
765 		vprint("vm_object_vndeallocate", vp);
766 		panic("vm_object_vndeallocate: bad object reference count");
767 	}
768 #endif
769 	for (;;) {
770 		int count = object->ref_count;
771 		cpu_ccfence();
772 		if (count == 1) {
773 			vm_object_upgrade(object);
774 			if (atomic_cmpset_int(&object->ref_count, count, 0)) {
775 				vclrflags(vp, VTEXT);
776 				break;
777 			}
778 		} else {
779 			if (atomic_cmpset_int(&object->ref_count,
780 					      count, count - 1)) {
781 				break;
782 			}
783 		}
784 		/* retry */
785 	}
786 
787 	/*
788 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
789 	 * if the object was locked exclusively.  But there are two races
790 	 * here.
791 	 *
792 	 * We had to upgrade the object above to safely clear VTEXT
793 	 * but the alternative path where the shared lock is retained
794 	 * can STILL race to 0 in other paths and cause our own vrele()
795 	 * to terminate the vnode.  We can't allow that if the VM object
796 	 * is still locked shared.
797 	 */
798 	if (vpp)
799 		*vpp = vp;
800 	else
801 		vrele(vp);
802 }
803 
804 /*
805  * Release a reference to the specified object, gained either through a
806  * vm_object_allocate or a vm_object_reference call.  When all references
807  * are gone, storage associated with this object may be relinquished.
808  *
809  * The caller does not have to hold the object locked but must have control
810  * over the reference in question in order to guarantee that the object
811  * does not get ripped out from under us.
812  *
813  * XXX Currently all deallocations require an exclusive lock.
814  */
815 void
816 vm_object_deallocate(vm_object_t object)
817 {
818 	struct vnode *vp;
819 	int count;
820 
821 	if (object == NULL)
822 		return;
823 	for (;;) {
824 		count = object->ref_count;
825 		cpu_ccfence();
826 
827 		/*
828 		 * If decrementing the count enters into special handling
829 		 * territory (0, 1, or 2) we have to do it the hard way.
830 		 * Fortunate though, objects with only a few refs like this
831 		 * are not likely to be heavily contended anyway.
832 		 *
833 		 * For vnode objects we only care about 1->0 transitions.
834 		 */
835 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
836 			vm_object_hold(object);
837 			vm_object_deallocate_locked(object);
838 			vm_object_drop(object);
839 			break;
840 		}
841 
842 		/*
843 		 * Try to decrement ref_count without acquiring a hold on
844 		 * the object.  This is particularly important for the exec*()
845 		 * and exit*() code paths because the program binary may
846 		 * have a great deal of sharing and an exclusive lock will
847 		 * crowbar performance in those circumstances.
848 		 */
849 		if (object->type == OBJT_VNODE) {
850 			vp = (struct vnode *)object->handle;
851 			if (atomic_cmpset_int(&object->ref_count,
852 					      count, count - 1)) {
853 				vrele(vp);
854 				break;
855 			}
856 			/* retry */
857 		} else {
858 			if (atomic_cmpset_int(&object->ref_count,
859 					      count, count - 1)) {
860 				break;
861 			}
862 			/* retry */
863 		}
864 		/* retry */
865 	}
866 }
867 
868 void
869 vm_object_deallocate_locked(vm_object_t object)
870 {
871 	struct vm_object_dealloc_list *dlist = NULL;
872 	struct vm_object_dealloc_list *dtmp;
873 	vm_object_t temp;
874 	int must_drop = 0;
875 
876 	/*
877 	 * We may chain deallocate object, but additional objects may
878 	 * collect on the dlist which also have to be deallocated.  We
879 	 * must avoid a recursion, vm_object chains can get deep.
880 	 */
881 
882 again:
883 	while (object != NULL) {
884 		/*
885 		 * vnode case, caller either locked the object exclusively
886 		 * or this is a recursion with must_drop != 0 and the vnode
887 		 * object will be locked shared.
888 		 *
889 		 * If locked shared we have to drop the object before we can
890 		 * call vrele() or risk a shared/exclusive livelock.
891 		 */
892 		if (object->type == OBJT_VNODE) {
893 			ASSERT_LWKT_TOKEN_HELD(&object->token);
894 			if (must_drop) {
895 				struct vnode *tmp_vp;
896 
897 				vm_object_vndeallocate(object, &tmp_vp);
898 				vm_object_drop(object);
899 				must_drop = 0;
900 				object = NULL;
901 				vrele(tmp_vp);
902 			} else {
903 				vm_object_vndeallocate(object, NULL);
904 			}
905 			break;
906 		}
907 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
908 
909 		/*
910 		 * Normal case (object is locked exclusively)
911 		 */
912 		if (object->ref_count == 0) {
913 			panic("vm_object_deallocate: object deallocated "
914 			      "too many times: %d", object->type);
915 		}
916 		if (object->ref_count > 2) {
917 			atomic_add_int(&object->ref_count, -1);
918 			break;
919 		}
920 
921 		/*
922 		 * Here on ref_count of one or two, which are special cases for
923 		 * objects.
924 		 *
925 		 * Nominal ref_count > 1 case if the second ref is not from
926 		 * a shadow.
927 		 *
928 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
929 		 */
930 		if (object->ref_count == 2 && object->shadow_count == 0) {
931 			if (object->type == OBJT_DEFAULT ||
932 			    object->type == OBJT_SWAP) {
933 				vm_object_set_flag(object, OBJ_ONEMAPPING);
934 			}
935 			atomic_add_int(&object->ref_count, -1);
936 			break;
937 		}
938 
939 		/*
940 		 * If the second ref is from a shadow we chain along it
941 		 * upwards if object's handle is exhausted.
942 		 *
943 		 * We have to decrement object->ref_count before potentially
944 		 * collapsing the first shadow object or the collapse code
945 		 * will not be able to handle the degenerate case to remove
946 		 * object.  However, if we do it too early the object can
947 		 * get ripped out from under us.
948 		 */
949 		if (object->ref_count == 2 && object->shadow_count == 1 &&
950 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
951 					       object->type == OBJT_SWAP)) {
952 			temp = LIST_FIRST(&object->shadow_head);
953 			KKASSERT(temp != NULL);
954 			vm_object_hold(temp);
955 
956 			/*
957 			 * Wait for any paging to complete so the collapse
958 			 * doesn't (or isn't likely to) qcollapse.  pip
959 			 * waiting must occur before we acquire the
960 			 * chainlock.
961 			 */
962 			while (
963 				temp->paging_in_progress ||
964 				object->paging_in_progress
965 			) {
966 				vm_object_pip_wait(temp, "objde1");
967 				vm_object_pip_wait(object, "objde2");
968 			}
969 
970 			/*
971 			 * If the parent is locked we have to give up, as
972 			 * otherwise we would be acquiring locks in the
973 			 * wrong order and potentially deadlock.
974 			 */
975 			if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
976 				vm_object_drop(temp);
977 				goto skip;
978 			}
979 			vm_object_chain_acquire(temp, 0);
980 
981 			/*
982 			 * Recheck/retry after the hold and the paging
983 			 * wait, both of which can block us.
984 			 */
985 			if (object->ref_count != 2 ||
986 			    object->shadow_count != 1 ||
987 			    object->handle ||
988 			    LIST_FIRST(&object->shadow_head) != temp ||
989 			    (object->type != OBJT_DEFAULT &&
990 			     object->type != OBJT_SWAP)) {
991 				vm_object_chain_release(temp);
992 				vm_object_drop(temp);
993 				continue;
994 			}
995 
996 			/*
997 			 * We can safely drop object's ref_count now.
998 			 */
999 			KKASSERT(object->ref_count == 2);
1000 			atomic_add_int(&object->ref_count, -1);
1001 
1002 			/*
1003 			 * If our single parent is not collapseable just
1004 			 * decrement ref_count (2->1) and stop.
1005 			 */
1006 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
1007 					     temp->type != OBJT_SWAP)) {
1008 				vm_object_chain_release(temp);
1009 				vm_object_drop(temp);
1010 				break;
1011 			}
1012 
1013 			/*
1014 			 * At this point we have already dropped object's
1015 			 * ref_count so it is possible for a race to
1016 			 * deallocate obj out from under us.  Any collapse
1017 			 * will re-check the situation.  We must not block
1018 			 * until we are able to collapse.
1019 			 *
1020 			 * Bump temp's ref_count to avoid an unwanted
1021 			 * degenerate recursion (can't call
1022 			 * vm_object_reference_locked() because it asserts
1023 			 * that CHAINLOCK is not set).
1024 			 */
1025 			atomic_add_int(&temp->ref_count, 1);
1026 			KKASSERT(temp->ref_count > 1);
1027 
1028 			/*
1029 			 * Collapse temp, then deallocate the extra ref
1030 			 * formally.
1031 			 */
1032 			vm_object_collapse(temp, &dlist);
1033 			vm_object_chain_release(temp);
1034 			if (must_drop) {
1035 				vm_object_lock_swap();
1036 				vm_object_drop(object);
1037 			}
1038 			object = temp;
1039 			must_drop = 1;
1040 			continue;
1041 		}
1042 
1043 		/*
1044 		 * Drop the ref and handle termination on the 1->0 transition.
1045 		 * We may have blocked above so we have to recheck.
1046 		 */
1047 skip:
1048 		KKASSERT(object->ref_count != 0);
1049 		if (object->ref_count >= 2) {
1050 			atomic_add_int(&object->ref_count, -1);
1051 			break;
1052 		}
1053 		KKASSERT(object->ref_count == 1);
1054 
1055 		/*
1056 		 * 1->0 transition.  Chain through the backing_object.
1057 		 * Maintain the ref until we've located the backing object,
1058 		 * then re-check.
1059 		 */
1060 		while ((temp = object->backing_object) != NULL) {
1061 			if (temp->type == OBJT_VNODE)
1062 				vm_object_hold_shared(temp);
1063 			else
1064 				vm_object_hold(temp);
1065 			if (temp == object->backing_object)
1066 				break;
1067 			vm_object_drop(temp);
1068 		}
1069 
1070 		/*
1071 		 * 1->0 transition verified, retry if ref_count is no longer
1072 		 * 1.  Otherwise disconnect the backing_object (temp) and
1073 		 * clean up.
1074 		 */
1075 		if (object->ref_count != 1) {
1076 			vm_object_drop(temp);
1077 			continue;
1078 		}
1079 
1080 		/*
1081 		 * It shouldn't be possible for the object to be chain locked
1082 		 * if we're removing the last ref on it.
1083 		 */
1084 		KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1085 
1086 		if (temp) {
1087 			if (object->flags & OBJ_ONSHADOW) {
1088 				LIST_REMOVE(object, shadow_list);
1089 				temp->shadow_count--;
1090 				temp->generation++;
1091 				vm_object_clear_flag(object, OBJ_ONSHADOW);
1092 			}
1093 			object->backing_object = NULL;
1094 		}
1095 
1096 		atomic_add_int(&object->ref_count, -1);
1097 		if ((object->flags & OBJ_DEAD) == 0)
1098 			vm_object_terminate(object);
1099 		if (must_drop && temp)
1100 			vm_object_lock_swap();
1101 		if (must_drop)
1102 			vm_object_drop(object);
1103 		object = temp;
1104 		must_drop = 1;
1105 	}
1106 
1107 	if (must_drop && object)
1108 		vm_object_drop(object);
1109 
1110 	/*
1111 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1112 	 * on the dlist have a hold count but are not locked.
1113 	 */
1114 	if ((dtmp = dlist) != NULL) {
1115 		dlist = dtmp->next;
1116 		object = dtmp->object;
1117 		kfree(dtmp, M_TEMP);
1118 
1119 		vm_object_lock(object);	/* already held, add lock */
1120 		must_drop = 1;		/* and we're responsible for it */
1121 		goto again;
1122 	}
1123 }
1124 
1125 /*
1126  * Destroy the specified object, freeing up related resources.
1127  *
1128  * The object must have zero references.
1129  *
1130  * The object must held.  The caller is responsible for dropping the object
1131  * after terminate returns.  Terminate does NOT drop the object.
1132  */
1133 static int vm_object_terminate_callback(vm_page_t p, void *data);
1134 
1135 void
1136 vm_object_terminate(vm_object_t object)
1137 {
1138 	int n;
1139 
1140 	/*
1141 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1142 	 * able to safely block.
1143 	 */
1144 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1145 	KKASSERT((object->flags & OBJ_DEAD) == 0);
1146 	vm_object_set_flag(object, OBJ_DEAD);
1147 
1148 	/*
1149 	 * Wait for the pageout daemon to be done with the object
1150 	 */
1151 	vm_object_pip_wait(object, "objtrm1");
1152 
1153 	KASSERT(!object->paging_in_progress,
1154 		("vm_object_terminate: pageout in progress"));
1155 
1156 	/*
1157 	 * Clean and free the pages, as appropriate. All references to the
1158 	 * object are gone, so we don't need to lock it.
1159 	 */
1160 	if (object->type == OBJT_VNODE) {
1161 		struct vnode *vp;
1162 
1163 		/*
1164 		 * Clean pages and flush buffers.
1165 		 *
1166 		 * NOTE!  TMPFS buffer flushes do not typically flush the
1167 		 *	  actual page to swap as this would be highly
1168 		 *	  inefficient, and normal filesystems usually wrap
1169 		 *	  page flushes with buffer cache buffers.
1170 		 *
1171 		 *	  To deal with this we have to call vinvalbuf() both
1172 		 *	  before and after the vm_object_page_clean().
1173 		 */
1174 		vp = (struct vnode *) object->handle;
1175 		vinvalbuf(vp, V_SAVE, 0, 0);
1176 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1177 		vinvalbuf(vp, V_SAVE, 0, 0);
1178 	}
1179 
1180 	/*
1181 	 * Wait for any I/O to complete, after which there had better not
1182 	 * be any references left on the object.
1183 	 */
1184 	vm_object_pip_wait(object, "objtrm2");
1185 
1186 	if (object->ref_count != 0) {
1187 		panic("vm_object_terminate: object with references, "
1188 		      "ref_count=%d", object->ref_count);
1189 	}
1190 
1191 	/*
1192 	 * Cleanup any shared pmaps associated with this object.
1193 	 */
1194 	pmap_object_free(object);
1195 
1196 	/*
1197 	 * Now free any remaining pages. For internal objects, this also
1198 	 * removes them from paging queues. Don't free wired pages, just
1199 	 * remove them from the object.
1200 	 */
1201 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1202 				vm_object_terminate_callback, NULL);
1203 
1204 	/*
1205 	 * Let the pager know object is dead.
1206 	 */
1207 	vm_pager_deallocate(object);
1208 
1209 	/*
1210 	 * Wait for the object hold count to hit 1, clean out pages as
1211 	 * we go.  vmobj_token interlocks any race conditions that might
1212 	 * pick the object up from the vm_object_list after we have cleared
1213 	 * rb_memq.
1214 	 */
1215 	for (;;) {
1216 		if (RB_ROOT(&object->rb_memq) == NULL)
1217 			break;
1218 		kprintf("vm_object_terminate: Warning, object %p "
1219 			"still has %d pages\n",
1220 			object, object->resident_page_count);
1221 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1222 					vm_object_terminate_callback, NULL);
1223 	}
1224 
1225 	/*
1226 	 * There had better not be any pages left
1227 	 */
1228 	KKASSERT(object->resident_page_count == 0);
1229 
1230 	/*
1231 	 * Remove the object from the global object list.
1232 	 */
1233 	n = VMOBJ_HASH(object);
1234 	lwkt_gettoken(&vmobj_tokens[n]);
1235 	TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1236 	lwkt_reltoken(&vmobj_tokens[n]);
1237 	atomic_add_long(&vm_object_count, -1);
1238 
1239 	if (object->ref_count != 0) {
1240 		panic("vm_object_terminate2: object with references, "
1241 		      "ref_count=%d", object->ref_count);
1242 	}
1243 
1244 	/*
1245 	 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1246 	 *	 the object here.  See vm_object_drop().
1247 	 */
1248 }
1249 
1250 /*
1251  * The caller must hold the object.
1252  */
1253 static int
1254 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1255 {
1256 	vm_object_t object;
1257 
1258 	object = p->object;
1259 	vm_page_busy_wait(p, TRUE, "vmpgtrm");
1260 	if (object != p->object) {
1261 		kprintf("vm_object_terminate: Warning: Encountered "
1262 			"busied page %p on queue %d\n", p, p->queue);
1263 		vm_page_wakeup(p);
1264 	} else if (p->wire_count == 0) {
1265 		/*
1266 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1267 		 */
1268 		vm_page_free(p);
1269 		mycpu->gd_cnt.v_pfree++;
1270 	} else {
1271 		if (p->queue != PQ_NONE)
1272 			kprintf("vm_object_terminate: Warning: Encountered "
1273 				"wired page %p on queue %d\n", p, p->queue);
1274 		vm_page_remove(p);
1275 		vm_page_wakeup(p);
1276 	}
1277 	lwkt_yield();
1278 	return(0);
1279 }
1280 
1281 /*
1282  * Clean all dirty pages in the specified range of object.  Leaves page
1283  * on whatever queue it is currently on.   If NOSYNC is set then do not
1284  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1285  * leaving the object dirty.
1286  *
1287  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1288  * synchronous clustering mode implementation.
1289  *
1290  * Odd semantics: if start == end, we clean everything.
1291  *
1292  * The object must be locked? XXX
1293  */
1294 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1295 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1296 
1297 void
1298 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1299 		     int flags)
1300 {
1301 	struct rb_vm_page_scan_info info;
1302 	struct vnode *vp;
1303 	int wholescan;
1304 	int pagerflags;
1305 	int generation;
1306 
1307 	vm_object_hold(object);
1308 	if (object->type != OBJT_VNODE ||
1309 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1310 		vm_object_drop(object);
1311 		return;
1312 	}
1313 
1314 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1315 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1316 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1317 
1318 	vp = object->handle;
1319 
1320 	/*
1321 	 * Interlock other major object operations.  This allows us to
1322 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1323 	 */
1324 	vm_object_set_flag(object, OBJ_CLEANING);
1325 
1326 	/*
1327 	 * Handle 'entire object' case
1328 	 */
1329 	info.start_pindex = start;
1330 	if (end == 0) {
1331 		info.end_pindex = object->size - 1;
1332 	} else {
1333 		info.end_pindex = end - 1;
1334 	}
1335 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1336 	info.limit = flags;
1337 	info.pagerflags = pagerflags;
1338 	info.object = object;
1339 
1340 	/*
1341 	 * If cleaning the entire object do a pass to mark the pages read-only.
1342 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1343 	 * OBJ_MIGHTBEDIRTY.
1344 	 */
1345 	if (wholescan) {
1346 		info.error = 0;
1347 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1348 					vm_object_page_clean_pass1, &info);
1349 		if (info.error == 0) {
1350 			vm_object_clear_flag(object,
1351 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1352 			if (object->type == OBJT_VNODE &&
1353 			    (vp = (struct vnode *)object->handle) != NULL) {
1354 				/*
1355 				 * Use new-style interface to clear VISDIRTY
1356 				 * because the vnode is not necessarily removed
1357 				 * from the syncer list(s) as often as it was
1358 				 * under the old interface, which can leave
1359 				 * the vnode on the syncer list after reclaim.
1360 				 */
1361 				vclrobjdirty(vp);
1362 			}
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Do a pass to clean all the dirty pages we find.
1368 	 */
1369 	do {
1370 		info.error = 0;
1371 		generation = object->generation;
1372 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1373 					vm_object_page_clean_pass2, &info);
1374 	} while (info.error || generation != object->generation);
1375 
1376 	vm_object_clear_flag(object, OBJ_CLEANING);
1377 	vm_object_drop(object);
1378 }
1379 
1380 /*
1381  * The caller must hold the object.
1382  */
1383 static
1384 int
1385 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1386 {
1387 	struct rb_vm_page_scan_info *info = data;
1388 
1389 	vm_page_flag_set(p, PG_CLEANCHK);
1390 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1391 		info->error = 1;
1392 	} else if (vm_page_busy_try(p, FALSE) == 0) {
1393 		vm_page_protect(p, VM_PROT_READ);	/* must not block */
1394 		vm_page_wakeup(p);
1395 	} else {
1396 		info->error = 1;
1397 	}
1398 	lwkt_yield();
1399 	return(0);
1400 }
1401 
1402 /*
1403  * The caller must hold the object
1404  */
1405 static
1406 int
1407 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1408 {
1409 	struct rb_vm_page_scan_info *info = data;
1410 	int generation;
1411 
1412 	/*
1413 	 * Do not mess with pages that were inserted after we started
1414 	 * the cleaning pass.
1415 	 */
1416 	if ((p->flags & PG_CLEANCHK) == 0)
1417 		goto done;
1418 
1419 	generation = info->object->generation;
1420 	vm_page_busy_wait(p, TRUE, "vpcwai");
1421 	if (p->object != info->object ||
1422 	    info->object->generation != generation) {
1423 		info->error = 1;
1424 		vm_page_wakeup(p);
1425 		goto done;
1426 	}
1427 
1428 	/*
1429 	 * Before wasting time traversing the pmaps, check for trivial
1430 	 * cases where the page cannot be dirty.
1431 	 */
1432 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1433 		KKASSERT((p->dirty & p->valid) == 0 &&
1434 			 (p->flags & PG_NEED_COMMIT) == 0);
1435 		vm_page_wakeup(p);
1436 		goto done;
1437 	}
1438 
1439 	/*
1440 	 * Check whether the page is dirty or not.  The page has been set
1441 	 * to be read-only so the check will not race a user dirtying the
1442 	 * page.
1443 	 */
1444 	vm_page_test_dirty(p);
1445 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1446 		vm_page_flag_clear(p, PG_CLEANCHK);
1447 		vm_page_wakeup(p);
1448 		goto done;
1449 	}
1450 
1451 	/*
1452 	 * If we have been asked to skip nosync pages and this is a
1453 	 * nosync page, skip it.  Note that the object flags were
1454 	 * not cleared in this case (because pass1 will have returned an
1455 	 * error), so we do not have to set them.
1456 	 */
1457 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1458 		vm_page_flag_clear(p, PG_CLEANCHK);
1459 		vm_page_wakeup(p);
1460 		goto done;
1461 	}
1462 
1463 	/*
1464 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1465 	 * the pages that get successfully flushed.  Set info->error if
1466 	 * we raced an object modification.
1467 	 */
1468 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1469 	vm_wait_nominal();
1470 done:
1471 	lwkt_yield();
1472 	return(0);
1473 }
1474 
1475 /*
1476  * Collect the specified page and nearby pages and flush them out.
1477  * The number of pages flushed is returned.  The passed page is busied
1478  * by the caller and we are responsible for its disposition.
1479  *
1480  * The caller must hold the object.
1481  */
1482 static void
1483 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1484 {
1485 	int error;
1486 	int is;
1487 	int ib;
1488 	int i;
1489 	int page_base;
1490 	vm_pindex_t pi;
1491 	vm_page_t ma[BLIST_MAX_ALLOC];
1492 
1493 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1494 
1495 	pi = p->pindex;
1496 	page_base = pi % BLIST_MAX_ALLOC;
1497 	ma[page_base] = p;
1498 	ib = page_base - 1;
1499 	is = page_base + 1;
1500 
1501 	while (ib >= 0) {
1502 		vm_page_t tp;
1503 
1504 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1505 					     TRUE, &error);
1506 		if (error)
1507 			break;
1508 		if (tp == NULL)
1509 			break;
1510 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1511 		    (tp->flags & PG_CLEANCHK) == 0) {
1512 			vm_page_wakeup(tp);
1513 			break;
1514 		}
1515 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1516 			vm_page_flag_clear(tp, PG_CLEANCHK);
1517 			vm_page_wakeup(tp);
1518 			break;
1519 		}
1520 		vm_page_test_dirty(tp);
1521 		if ((tp->dirty & tp->valid) == 0 &&
1522 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1523 			vm_page_flag_clear(tp, PG_CLEANCHK);
1524 			vm_page_wakeup(tp);
1525 			break;
1526 		}
1527 		ma[ib] = tp;
1528 		--ib;
1529 	}
1530 	++ib;	/* fixup */
1531 
1532 	while (is < BLIST_MAX_ALLOC &&
1533 	       pi - page_base + is < object->size) {
1534 		vm_page_t tp;
1535 
1536 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1537 					     TRUE, &error);
1538 		if (error)
1539 			break;
1540 		if (tp == NULL)
1541 			break;
1542 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1543 		    (tp->flags & PG_CLEANCHK) == 0) {
1544 			vm_page_wakeup(tp);
1545 			break;
1546 		}
1547 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1548 			vm_page_flag_clear(tp, PG_CLEANCHK);
1549 			vm_page_wakeup(tp);
1550 			break;
1551 		}
1552 		vm_page_test_dirty(tp);
1553 		if ((tp->dirty & tp->valid) == 0 &&
1554 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1555 			vm_page_flag_clear(tp, PG_CLEANCHK);
1556 			vm_page_wakeup(tp);
1557 			break;
1558 		}
1559 		ma[is] = tp;
1560 		++is;
1561 	}
1562 
1563 	/*
1564 	 * All pages in the ma[] array are busied now
1565 	 */
1566 	for (i = ib; i < is; ++i) {
1567 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1568 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1569 	}
1570 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1571 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1572 		vm_page_unhold(ma[i]);
1573 }
1574 
1575 /*
1576  * Same as vm_object_pmap_copy, except range checking really
1577  * works, and is meant for small sections of an object.
1578  *
1579  * This code protects resident pages by making them read-only
1580  * and is typically called on a fork or split when a page
1581  * is converted to copy-on-write.
1582  *
1583  * NOTE: If the page is already at VM_PROT_NONE, calling
1584  * vm_page_protect will have no effect.
1585  */
1586 void
1587 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1588 {
1589 	vm_pindex_t idx;
1590 	vm_page_t p;
1591 
1592 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1593 		return;
1594 
1595 	vm_object_hold(object);
1596 	for (idx = start; idx < end; idx++) {
1597 		p = vm_page_lookup(object, idx);
1598 		if (p == NULL)
1599 			continue;
1600 		vm_page_protect(p, VM_PROT_READ);
1601 	}
1602 	vm_object_drop(object);
1603 }
1604 
1605 /*
1606  * Removes all physical pages in the specified object range from all
1607  * physical maps.
1608  *
1609  * The object must *not* be locked.
1610  */
1611 
1612 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1613 
1614 void
1615 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1616 {
1617 	struct rb_vm_page_scan_info info;
1618 
1619 	if (object == NULL)
1620 		return;
1621 	info.start_pindex = start;
1622 	info.end_pindex = end - 1;
1623 
1624 	vm_object_hold(object);
1625 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1626 				vm_object_pmap_remove_callback, &info);
1627 	if (start == 0 && end == object->size)
1628 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1629 	vm_object_drop(object);
1630 }
1631 
1632 /*
1633  * The caller must hold the object
1634  */
1635 static int
1636 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1637 {
1638 	vm_page_protect(p, VM_PROT_NONE);
1639 	return(0);
1640 }
1641 
1642 /*
1643  * Implements the madvise function at the object/page level.
1644  *
1645  * MADV_WILLNEED	(any object)
1646  *
1647  *	Activate the specified pages if they are resident.
1648  *
1649  * MADV_DONTNEED	(any object)
1650  *
1651  *	Deactivate the specified pages if they are resident.
1652  *
1653  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1654  *
1655  *	Deactivate and clean the specified pages if they are
1656  *	resident.  This permits the process to reuse the pages
1657  *	without faulting or the kernel to reclaim the pages
1658  *	without I/O.
1659  *
1660  * No requirements.
1661  */
1662 void
1663 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1664 {
1665 	vm_pindex_t end, tpindex;
1666 	vm_object_t tobject;
1667 	vm_object_t xobj;
1668 	vm_page_t m;
1669 	int error;
1670 
1671 	if (object == NULL)
1672 		return;
1673 
1674 	end = pindex + count;
1675 
1676 	vm_object_hold(object);
1677 	tobject = object;
1678 
1679 	/*
1680 	 * Locate and adjust resident pages
1681 	 */
1682 	for (; pindex < end; pindex += 1) {
1683 relookup:
1684 		if (tobject != object)
1685 			vm_object_drop(tobject);
1686 		tobject = object;
1687 		tpindex = pindex;
1688 shadowlookup:
1689 		/*
1690 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1691 		 * and those pages must be OBJ_ONEMAPPING.
1692 		 */
1693 		if (advise == MADV_FREE) {
1694 			if ((tobject->type != OBJT_DEFAULT &&
1695 			     tobject->type != OBJT_SWAP) ||
1696 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1697 				continue;
1698 			}
1699 		}
1700 
1701 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1702 
1703 		if (error) {
1704 			vm_page_sleep_busy(m, TRUE, "madvpo");
1705 			goto relookup;
1706 		}
1707 		if (m == NULL) {
1708 			/*
1709 			 * There may be swap even if there is no backing page
1710 			 */
1711 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1712 				swap_pager_freespace(tobject, tpindex, 1);
1713 
1714 			/*
1715 			 * next object
1716 			 */
1717 			while ((xobj = tobject->backing_object) != NULL) {
1718 				KKASSERT(xobj != object);
1719 				vm_object_hold(xobj);
1720 				if (xobj == tobject->backing_object)
1721 					break;
1722 				vm_object_drop(xobj);
1723 			}
1724 			if (xobj == NULL)
1725 				continue;
1726 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1727 			if (tobject != object) {
1728 				vm_object_lock_swap();
1729 				vm_object_drop(tobject);
1730 			}
1731 			tobject = xobj;
1732 			goto shadowlookup;
1733 		}
1734 
1735 		/*
1736 		 * If the page is not in a normal active state, we skip it.
1737 		 * If the page is not managed there are no page queues to
1738 		 * mess with.  Things can break if we mess with pages in
1739 		 * any of the below states.
1740 		 */
1741 		if (m->wire_count ||
1742 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1743 		    m->valid != VM_PAGE_BITS_ALL
1744 		) {
1745 			vm_page_wakeup(m);
1746 			continue;
1747 		}
1748 
1749 		/*
1750 		 * Theoretically once a page is known not to be busy, an
1751 		 * interrupt cannot come along and rip it out from under us.
1752 		 */
1753 
1754 		if (advise == MADV_WILLNEED) {
1755 			vm_page_activate(m);
1756 		} else if (advise == MADV_DONTNEED) {
1757 			vm_page_dontneed(m);
1758 		} else if (advise == MADV_FREE) {
1759 			/*
1760 			 * Mark the page clean.  This will allow the page
1761 			 * to be freed up by the system.  However, such pages
1762 			 * are often reused quickly by malloc()/free()
1763 			 * so we do not do anything that would cause
1764 			 * a page fault if we can help it.
1765 			 *
1766 			 * Specifically, we do not try to actually free
1767 			 * the page now nor do we try to put it in the
1768 			 * cache (which would cause a page fault on reuse).
1769 			 *
1770 			 * But we do make the page is freeable as we
1771 			 * can without actually taking the step of unmapping
1772 			 * it.
1773 			 */
1774 			pmap_clear_modify(m);
1775 			m->dirty = 0;
1776 			m->act_count = 0;
1777 			vm_page_dontneed(m);
1778 			if (tobject->type == OBJT_SWAP)
1779 				swap_pager_freespace(tobject, tpindex, 1);
1780 		}
1781 		vm_page_wakeup(m);
1782 	}
1783 	if (tobject != object)
1784 		vm_object_drop(tobject);
1785 	vm_object_drop(object);
1786 }
1787 
1788 /*
1789  * Create a new object which is backed by the specified existing object
1790  * range.  Replace the pointer and offset that was pointing at the existing
1791  * object with the pointer/offset for the new object.
1792  *
1793  * No other requirements.
1794  */
1795 void
1796 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1797 		 int addref)
1798 {
1799 	vm_object_t source;
1800 	vm_object_t result;
1801 	int useshadowlist;
1802 
1803 	source = *objectp;
1804 
1805 	/*
1806 	 * Don't create the new object if the old object isn't shared.
1807 	 * We have to chain wait before adding the reference to avoid
1808 	 * racing a collapse or deallocation.
1809 	 *
1810 	 * Add the additional ref to source here to avoid racing a later
1811 	 * collapse or deallocation. Clear the ONEMAPPING flag whether
1812 	 * addref is TRUE or not in this case because the original object
1813 	 * will be shadowed.
1814 	 */
1815 	useshadowlist = 0;
1816 	if (source) {
1817 		if (source->type != OBJT_VNODE) {
1818 			useshadowlist = 1;
1819 			vm_object_hold(source);
1820 			vm_object_chain_wait(source, 0);
1821 			if (source->ref_count == 1 &&
1822 			    source->handle == NULL &&
1823 			    (source->type == OBJT_DEFAULT ||
1824 			     source->type == OBJT_SWAP)) {
1825 				if (addref) {
1826 					vm_object_reference_locked(source);
1827 					vm_object_clear_flag(source, OBJ_ONEMAPPING);
1828 				}
1829 				vm_object_drop(source);
1830 				return;
1831 			}
1832 			vm_object_reference_locked(source);
1833 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1834 		} else {
1835 			vm_object_reference_quick(source);
1836 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1837 		}
1838 	}
1839 
1840 	/*
1841 	 * Allocate a new object with the given length.  The new object
1842 	 * is returned referenced but we may have to add another one.
1843 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1844 	 * (typically because the caller is about to clone a vm_map_entry).
1845 	 *
1846 	 * The source object currently has an extra reference to prevent
1847 	 * collapses into it while we mess with its shadow list, which
1848 	 * we will remove later in this routine.
1849 	 */
1850 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1851 		panic("vm_object_shadow: no object for shadowing");
1852 	vm_object_hold(result);
1853 	if (addref) {
1854 		vm_object_reference_locked(result);
1855 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1856 	}
1857 
1858 	/*
1859 	 * The new object shadows the source object.  Chain wait before
1860 	 * adjusting shadow_count or the shadow list to avoid races.
1861 	 *
1862 	 * Try to optimize the result object's page color when shadowing
1863 	 * in order to maintain page coloring consistency in the combined
1864 	 * shadowed object.
1865 	 *
1866 	 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1867 	 */
1868 	KKASSERT(result->backing_object == NULL);
1869 	result->backing_object = source;
1870 	if (source) {
1871 		if (useshadowlist) {
1872 			vm_object_chain_wait(source, 0);
1873 			LIST_INSERT_HEAD(&source->shadow_head,
1874 					 result, shadow_list);
1875 			source->shadow_count++;
1876 			source->generation++;
1877 			vm_object_set_flag(result, OBJ_ONSHADOW);
1878 		}
1879 		/* cpu localization twist */
1880 		result->pg_color = (int)(intptr_t)curthread;
1881 	}
1882 
1883 	/*
1884 	 * Adjust the return storage.  Drop the ref on source before
1885 	 * returning.
1886 	 */
1887 	result->backing_object_offset = *offset;
1888 	vm_object_drop(result);
1889 	*offset = 0;
1890 	if (source) {
1891 		if (useshadowlist) {
1892 			vm_object_deallocate_locked(source);
1893 			vm_object_drop(source);
1894 		} else {
1895 			vm_object_deallocate(source);
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Return the new things
1901 	 */
1902 	*objectp = result;
1903 }
1904 
1905 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1906 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1907 #define	OBSC_COLLAPSE_WAIT	0x0004
1908 
1909 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1910 
1911 /*
1912  * The caller must hold the object.
1913  */
1914 static __inline int
1915 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1916 {
1917 	struct rb_vm_page_scan_info info;
1918 	int n;
1919 
1920 	vm_object_assert_held(object);
1921 	vm_object_assert_held(backing_object);
1922 
1923 	KKASSERT(backing_object == object->backing_object);
1924 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1925 
1926 	/*
1927 	 * Initial conditions
1928 	 */
1929 	if (op & OBSC_TEST_ALL_SHADOWED) {
1930 		/*
1931 		 * We do not want to have to test for the existence of
1932 		 * swap pages in the backing object.  XXX but with the
1933 		 * new swapper this would be pretty easy to do.
1934 		 *
1935 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1936 		 * been ZFOD faulted yet?  If we do not test for this, the
1937 		 * shadow test may succeed! XXX
1938 		 */
1939 		if (backing_object->type != OBJT_DEFAULT)
1940 			return(0);
1941 	}
1942 	if (op & OBSC_COLLAPSE_WAIT) {
1943 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1944 		vm_object_set_flag(backing_object, OBJ_DEAD);
1945 
1946 		n = VMOBJ_HASH(backing_object);
1947 		lwkt_gettoken(&vmobj_tokens[n]);
1948 		TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
1949 		lwkt_reltoken(&vmobj_tokens[n]);
1950 		atomic_add_long(&vm_object_count, -1);
1951 	}
1952 
1953 	/*
1954 	 * Our scan.   We have to retry if a negative error code is returned,
1955 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1956 	 * the scan had to be stopped because the parent does not completely
1957 	 * shadow the child.
1958 	 */
1959 	info.object = object;
1960 	info.backing_object = backing_object;
1961 	info.limit = op;
1962 	do {
1963 		info.error = 1;
1964 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1965 					vm_object_backing_scan_callback,
1966 					&info);
1967 	} while (info.error < 0);
1968 
1969 	return(info.error);
1970 }
1971 
1972 /*
1973  * The caller must hold the object.
1974  */
1975 static int
1976 vm_object_backing_scan_callback(vm_page_t p, void *data)
1977 {
1978 	struct rb_vm_page_scan_info *info = data;
1979 	vm_object_t backing_object;
1980 	vm_object_t object;
1981 	vm_pindex_t pindex;
1982 	vm_pindex_t new_pindex;
1983 	vm_pindex_t backing_offset_index;
1984 	int op;
1985 
1986 	pindex = p->pindex;
1987 	new_pindex = pindex - info->backing_offset_index;
1988 	op = info->limit;
1989 	object = info->object;
1990 	backing_object = info->backing_object;
1991 	backing_offset_index = info->backing_offset_index;
1992 
1993 	if (op & OBSC_TEST_ALL_SHADOWED) {
1994 		vm_page_t pp;
1995 
1996 		/*
1997 		 * Ignore pages outside the parent object's range
1998 		 * and outside the parent object's mapping of the
1999 		 * backing object.
2000 		 *
2001 		 * note that we do not busy the backing object's
2002 		 * page.
2003 		 */
2004 		if (pindex < backing_offset_index ||
2005 		    new_pindex >= object->size
2006 		) {
2007 			return(0);
2008 		}
2009 
2010 		/*
2011 		 * See if the parent has the page or if the parent's
2012 		 * object pager has the page.  If the parent has the
2013 		 * page but the page is not valid, the parent's
2014 		 * object pager must have the page.
2015 		 *
2016 		 * If this fails, the parent does not completely shadow
2017 		 * the object and we might as well give up now.
2018 		 */
2019 		pp = vm_page_lookup(object, new_pindex);
2020 		if ((pp == NULL || pp->valid == 0) &&
2021 		    !vm_pager_has_page(object, new_pindex)
2022 		) {
2023 			info->error = 0;	/* problemo */
2024 			return(-1);		/* stop the scan */
2025 		}
2026 	}
2027 
2028 	/*
2029 	 * Check for busy page.  Note that we may have lost (p) when we
2030 	 * possibly blocked above.
2031 	 */
2032 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2033 		vm_page_t pp;
2034 
2035 		if (vm_page_busy_try(p, TRUE)) {
2036 			if (op & OBSC_COLLAPSE_NOWAIT) {
2037 				return(0);
2038 			} else {
2039 				/*
2040 				 * If we slept, anything could have
2041 				 * happened.   Ask that the scan be restarted.
2042 				 *
2043 				 * Since the object is marked dead, the
2044 				 * backing offset should not have changed.
2045 				 */
2046 				vm_page_sleep_busy(p, TRUE, "vmocol");
2047 				info->error = -1;
2048 				return(-1);
2049 			}
2050 		}
2051 
2052 		/*
2053 		 * If (p) is no longer valid restart the scan.
2054 		 */
2055 		if (p->object != backing_object || p->pindex != pindex) {
2056 			kprintf("vm_object_backing_scan: Warning: page "
2057 				"%p ripped out from under us\n", p);
2058 			vm_page_wakeup(p);
2059 			info->error = -1;
2060 			return(-1);
2061 		}
2062 
2063 		if (op & OBSC_COLLAPSE_NOWAIT) {
2064 			if (p->valid == 0 ||
2065 			    p->wire_count ||
2066 			    (p->flags & PG_NEED_COMMIT)) {
2067 				vm_page_wakeup(p);
2068 				return(0);
2069 			}
2070 		} else {
2071 			/* XXX what if p->valid == 0 , hold_count, etc? */
2072 		}
2073 
2074 		KASSERT(
2075 		    p->object == backing_object,
2076 		    ("vm_object_qcollapse(): object mismatch")
2077 		);
2078 
2079 		/*
2080 		 * Destroy any associated swap
2081 		 */
2082 		if (backing_object->type == OBJT_SWAP)
2083 			swap_pager_freespace(backing_object, p->pindex, 1);
2084 
2085 		if (
2086 		    p->pindex < backing_offset_index ||
2087 		    new_pindex >= object->size
2088 		) {
2089 			/*
2090 			 * Page is out of the parent object's range, we
2091 			 * can simply destroy it.
2092 			 */
2093 			vm_page_protect(p, VM_PROT_NONE);
2094 			vm_page_free(p);
2095 			return(0);
2096 		}
2097 
2098 		pp = vm_page_lookup(object, new_pindex);
2099 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2100 			/*
2101 			 * page already exists in parent OR swap exists
2102 			 * for this location in the parent.  Destroy
2103 			 * the original page from the backing object.
2104 			 *
2105 			 * Leave the parent's page alone
2106 			 */
2107 			vm_page_protect(p, VM_PROT_NONE);
2108 			vm_page_free(p);
2109 			return(0);
2110 		}
2111 
2112 		/*
2113 		 * Page does not exist in parent, rename the
2114 		 * page from the backing object to the main object.
2115 		 *
2116 		 * If the page was mapped to a process, it can remain
2117 		 * mapped through the rename.
2118 		 */
2119 		if ((p->queue - p->pc) == PQ_CACHE)
2120 			vm_page_deactivate(p);
2121 
2122 		vm_page_rename(p, object, new_pindex);
2123 		vm_page_wakeup(p);
2124 		/* page automatically made dirty by rename */
2125 	}
2126 	return(0);
2127 }
2128 
2129 /*
2130  * This version of collapse allows the operation to occur earlier and
2131  * when paging_in_progress is true for an object...  This is not a complete
2132  * operation, but should plug 99.9% of the rest of the leaks.
2133  *
2134  * The caller must hold the object and backing_object and both must be
2135  * chainlocked.
2136  *
2137  * (only called from vm_object_collapse)
2138  */
2139 static void
2140 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2141 {
2142 	if (backing_object->ref_count == 1) {
2143 		atomic_add_int(&backing_object->ref_count, 2);
2144 		vm_object_backing_scan(object, backing_object,
2145 				       OBSC_COLLAPSE_NOWAIT);
2146 		atomic_add_int(&backing_object->ref_count, -2);
2147 	}
2148 }
2149 
2150 /*
2151  * Collapse an object with the object backing it.  Pages in the backing
2152  * object are moved into the parent, and the backing object is deallocated.
2153  * Any conflict is resolved in favor of the parent's existing pages.
2154  *
2155  * object must be held and chain-locked on call.
2156  *
2157  * The caller must have an extra ref on object to prevent a race from
2158  * destroying it during the collapse.
2159  */
2160 void
2161 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2162 {
2163 	struct vm_object_dealloc_list *dlist = NULL;
2164 	vm_object_t backing_object;
2165 
2166 	/*
2167 	 * Only one thread is attempting a collapse at any given moment.
2168 	 * There are few restrictions for (object) that callers of this
2169 	 * function check so reentrancy is likely.
2170 	 */
2171 	KKASSERT(object != NULL);
2172 	vm_object_assert_held(object);
2173 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2174 
2175 	for (;;) {
2176 		vm_object_t bbobj;
2177 		int dodealloc;
2178 
2179 		/*
2180 		 * We can only collapse a DEFAULT/SWAP object with a
2181 		 * DEFAULT/SWAP object.
2182 		 */
2183 		if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2184 			backing_object = NULL;
2185 			break;
2186 		}
2187 
2188 		backing_object = object->backing_object;
2189 		if (backing_object == NULL)
2190 			break;
2191 		if (backing_object->type != OBJT_DEFAULT &&
2192 		    backing_object->type != OBJT_SWAP) {
2193 			backing_object = NULL;
2194 			break;
2195 		}
2196 
2197 		/*
2198 		 * Hold the backing_object and check for races
2199 		 */
2200 		vm_object_hold(backing_object);
2201 		if (backing_object != object->backing_object ||
2202 		    (backing_object->type != OBJT_DEFAULT &&
2203 		     backing_object->type != OBJT_SWAP)) {
2204 			vm_object_drop(backing_object);
2205 			continue;
2206 		}
2207 
2208 		/*
2209 		 * Chain-lock the backing object too because if we
2210 		 * successfully merge its pages into the top object we
2211 		 * will collapse backing_object->backing_object as the
2212 		 * new backing_object.  Re-check that it is still our
2213 		 * backing object.
2214 		 */
2215 		vm_object_chain_acquire(backing_object, 0);
2216 		if (backing_object != object->backing_object) {
2217 			vm_object_chain_release(backing_object);
2218 			vm_object_drop(backing_object);
2219 			continue;
2220 		}
2221 
2222 		/*
2223 		 * we check the backing object first, because it is most likely
2224 		 * not collapsable.
2225 		 */
2226 		if (backing_object->handle != NULL ||
2227 		    (backing_object->type != OBJT_DEFAULT &&
2228 		     backing_object->type != OBJT_SWAP) ||
2229 		    (backing_object->flags & OBJ_DEAD) ||
2230 		    object->handle != NULL ||
2231 		    (object->type != OBJT_DEFAULT &&
2232 		     object->type != OBJT_SWAP) ||
2233 		    (object->flags & OBJ_DEAD)) {
2234 			break;
2235 		}
2236 
2237 		/*
2238 		 * If paging is in progress we can't do a normal collapse.
2239 		 */
2240 		if (
2241 		    object->paging_in_progress != 0 ||
2242 		    backing_object->paging_in_progress != 0
2243 		) {
2244 			vm_object_qcollapse(object, backing_object);
2245 			break;
2246 		}
2247 
2248 		/*
2249 		 * We know that we can either collapse the backing object (if
2250 		 * the parent is the only reference to it) or (perhaps) have
2251 		 * the parent bypass the object if the parent happens to shadow
2252 		 * all the resident pages in the entire backing object.
2253 		 *
2254 		 * This is ignoring pager-backed pages such as swap pages.
2255 		 * vm_object_backing_scan fails the shadowing test in this
2256 		 * case.
2257 		 */
2258 		if (backing_object->ref_count == 1) {
2259 			/*
2260 			 * If there is exactly one reference to the backing
2261 			 * object, we can collapse it into the parent.
2262 			 */
2263 			KKASSERT(object->backing_object == backing_object);
2264 			vm_object_backing_scan(object, backing_object,
2265 					       OBSC_COLLAPSE_WAIT);
2266 
2267 			/*
2268 			 * Move the pager from backing_object to object.
2269 			 */
2270 			if (backing_object->type == OBJT_SWAP) {
2271 				vm_object_pip_add(backing_object, 1);
2272 
2273 				/*
2274 				 * scrap the paging_offset junk and do a
2275 				 * discrete copy.  This also removes major
2276 				 * assumptions about how the swap-pager
2277 				 * works from where it doesn't belong.  The
2278 				 * new swapper is able to optimize the
2279 				 * destroy-source case.
2280 				 */
2281 				vm_object_pip_add(object, 1);
2282 				swap_pager_copy(backing_object, object,
2283 				    OFF_TO_IDX(object->backing_object_offset),
2284 				    TRUE);
2285 				vm_object_pip_wakeup(object);
2286 				vm_object_pip_wakeup(backing_object);
2287 			}
2288 
2289 			/*
2290 			 * Object now shadows whatever backing_object did.
2291 			 * Remove object from backing_object's shadow_list.
2292 			 */
2293 			KKASSERT(object->backing_object == backing_object);
2294 			if (object->flags & OBJ_ONSHADOW) {
2295 				LIST_REMOVE(object, shadow_list);
2296 				backing_object->shadow_count--;
2297 				backing_object->generation++;
2298 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2299 			}
2300 
2301 			/*
2302 			 * backing_object->backing_object moves from within
2303 			 * backing_object to within object.
2304 			 *
2305 			 * OBJT_VNODE bbobj's should have empty shadow lists.
2306 			 */
2307 			while ((bbobj = backing_object->backing_object) != NULL) {
2308 				if (bbobj->type == OBJT_VNODE)
2309 					vm_object_hold_shared(bbobj);
2310 				else
2311 					vm_object_hold(bbobj);
2312 				if (bbobj == backing_object->backing_object)
2313 					break;
2314 				vm_object_drop(bbobj);
2315 			}
2316 			if (bbobj) {
2317 				if (backing_object->flags & OBJ_ONSHADOW) {
2318 					/* not locked exclusively if vnode */
2319 					KKASSERT(bbobj->type != OBJT_VNODE);
2320 					LIST_REMOVE(backing_object,
2321 						    shadow_list);
2322 					bbobj->shadow_count--;
2323 					bbobj->generation++;
2324 					vm_object_clear_flag(backing_object,
2325 							     OBJ_ONSHADOW);
2326 				}
2327 				backing_object->backing_object = NULL;
2328 			}
2329 			object->backing_object = bbobj;
2330 			if (bbobj) {
2331 				if (bbobj->type != OBJT_VNODE) {
2332 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2333 							 object, shadow_list);
2334 					bbobj->shadow_count++;
2335 					bbobj->generation++;
2336 					vm_object_set_flag(object,
2337 							   OBJ_ONSHADOW);
2338 				}
2339 			}
2340 
2341 			object->backing_object_offset +=
2342 				backing_object->backing_object_offset;
2343 
2344 			vm_object_drop(bbobj);
2345 
2346 			/*
2347 			 * Discard the old backing_object.  Nothing should be
2348 			 * able to ref it, other than a vm_map_split(),
2349 			 * and vm_map_split() will stall on our chain lock.
2350 			 * And we control the parent so it shouldn't be
2351 			 * possible for it to go away either.
2352 			 *
2353 			 * Since the backing object has no pages, no pager
2354 			 * left, and no object references within it, all
2355 			 * that is necessary is to dispose of it.
2356 			 */
2357 			KASSERT(backing_object->ref_count == 1,
2358 				("backing_object %p was somehow "
2359 				 "re-referenced during collapse!",
2360 				 backing_object));
2361 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2362 				("backing_object %p somehow has left "
2363 				 "over pages during collapse!",
2364 				 backing_object));
2365 
2366 			/*
2367 			 * The object can be destroyed.
2368 			 *
2369 			 * XXX just fall through and dodealloc instead
2370 			 *     of forcing destruction?
2371 			 */
2372 			atomic_add_int(&backing_object->ref_count, -1);
2373 			if ((backing_object->flags & OBJ_DEAD) == 0)
2374 				vm_object_terminate(backing_object);
2375 			object_collapses++;
2376 			dodealloc = 0;
2377 		} else {
2378 			/*
2379 			 * If we do not entirely shadow the backing object,
2380 			 * there is nothing we can do so we give up.
2381 			 */
2382 			if (vm_object_backing_scan(object, backing_object,
2383 						OBSC_TEST_ALL_SHADOWED) == 0) {
2384 				break;
2385 			}
2386 
2387 			/*
2388 			 * bbobj is backing_object->backing_object.  Since
2389 			 * object completely shadows backing_object we can
2390 			 * bypass it and become backed by bbobj instead.
2391 			 *
2392 			 * The shadow list for vnode backing objects is not
2393 			 * used and a shared hold is allowed.
2394 			 */
2395 			while ((bbobj = backing_object->backing_object) != NULL) {
2396 				if (bbobj->type == OBJT_VNODE)
2397 					vm_object_hold_shared(bbobj);
2398 				else
2399 					vm_object_hold(bbobj);
2400 				if (bbobj == backing_object->backing_object)
2401 					break;
2402 				vm_object_drop(bbobj);
2403 			}
2404 
2405 			/*
2406 			 * Make object shadow bbobj instead of backing_object.
2407 			 * Remove object from backing_object's shadow list.
2408 			 *
2409 			 * Deallocating backing_object will not remove
2410 			 * it, since its reference count is at least 2.
2411 			 */
2412 			KKASSERT(object->backing_object == backing_object);
2413 			if (object->flags & OBJ_ONSHADOW) {
2414 				LIST_REMOVE(object, shadow_list);
2415 				backing_object->shadow_count--;
2416 				backing_object->generation++;
2417 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2418 			}
2419 
2420 			/*
2421 			 * Add a ref to bbobj, bbobj now shadows object.
2422 			 *
2423 			 * NOTE: backing_object->backing_object still points
2424 			 *	 to bbobj.  That relationship remains intact
2425 			 *	 because backing_object has > 1 ref, so
2426 			 *	 someone else is pointing to it (hence why
2427 			 *	 we can't collapse it into object and can
2428 			 *	 only handle the all-shadowed bypass case).
2429 			 */
2430 			if (bbobj) {
2431 				if (bbobj->type != OBJT_VNODE) {
2432 					vm_object_chain_wait(bbobj, 0);
2433 					vm_object_reference_locked(bbobj);
2434 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2435 							 object, shadow_list);
2436 					bbobj->shadow_count++;
2437 					bbobj->generation++;
2438 					vm_object_set_flag(object,
2439 							   OBJ_ONSHADOW);
2440 				} else {
2441 					vm_object_reference_quick(bbobj);
2442 				}
2443 				object->backing_object_offset +=
2444 					backing_object->backing_object_offset;
2445 				object->backing_object = bbobj;
2446 				vm_object_drop(bbobj);
2447 			} else {
2448 				object->backing_object = NULL;
2449 			}
2450 
2451 			/*
2452 			 * Drop the reference count on backing_object.  To
2453 			 * handle ref_count races properly we can't assume
2454 			 * that the ref_count is still at least 2 so we
2455 			 * have to actually call vm_object_deallocate()
2456 			 * (after clearing the chainlock).
2457 			 */
2458 			object_bypasses++;
2459 			dodealloc = 1;
2460 		}
2461 
2462 		/*
2463 		 * Ok, we want to loop on the new object->bbobj association,
2464 		 * possibly collapsing it further.  However if dodealloc is
2465 		 * non-zero we have to deallocate the backing_object which
2466 		 * itself can potentially undergo a collapse, creating a
2467 		 * recursion depth issue with the LWKT token subsystem.
2468 		 *
2469 		 * In the case where we must deallocate the backing_object
2470 		 * it is possible now that the backing_object has a single
2471 		 * shadow count on some other object (not represented here
2472 		 * as yet), since it no longer shadows us.  Thus when we
2473 		 * call vm_object_deallocate() it may attempt to collapse
2474 		 * itself into its remaining parent.
2475 		 */
2476 		if (dodealloc) {
2477 			struct vm_object_dealloc_list *dtmp;
2478 
2479 			vm_object_chain_release(backing_object);
2480 			vm_object_unlock(backing_object);
2481 			/* backing_object remains held */
2482 
2483 			/*
2484 			 * Auto-deallocation list for caller convenience.
2485 			 */
2486 			if (dlistp == NULL)
2487 				dlistp = &dlist;
2488 
2489 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2490 			dtmp->object = backing_object;
2491 			dtmp->next = *dlistp;
2492 			*dlistp = dtmp;
2493 		} else {
2494 			vm_object_chain_release(backing_object);
2495 			vm_object_drop(backing_object);
2496 		}
2497 		/* backing_object = NULL; not needed */
2498 		/* loop */
2499 	}
2500 
2501 	/*
2502 	 * Clean up any left over backing_object
2503 	 */
2504 	if (backing_object) {
2505 		vm_object_chain_release(backing_object);
2506 		vm_object_drop(backing_object);
2507 	}
2508 
2509 	/*
2510 	 * Clean up any auto-deallocation list.  This is a convenience
2511 	 * for top-level callers so they don't have to pass &dlist.
2512 	 * Do not clean up any caller-passed dlistp, the caller will
2513 	 * do that.
2514 	 */
2515 	if (dlist)
2516 		vm_object_deallocate_list(&dlist);
2517 
2518 }
2519 
2520 /*
2521  * vm_object_collapse() may collect additional objects in need of
2522  * deallocation.  This routine deallocates these objects.  The
2523  * deallocation itself can trigger additional collapses (which the
2524  * deallocate function takes care of).  This procedure is used to
2525  * reduce procedural recursion since these vm_object shadow chains
2526  * can become quite long.
2527  */
2528 void
2529 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2530 {
2531 	struct vm_object_dealloc_list *dlist;
2532 
2533 	while ((dlist = *dlistp) != NULL) {
2534 		*dlistp = dlist->next;
2535 		vm_object_lock(dlist->object);
2536 		vm_object_deallocate_locked(dlist->object);
2537 		vm_object_drop(dlist->object);
2538 		kfree(dlist, M_TEMP);
2539 	}
2540 }
2541 
2542 /*
2543  * Removes all physical pages in the specified object range from the
2544  * object's list of pages.
2545  *
2546  * No requirements.
2547  */
2548 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2549 
2550 void
2551 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2552 		      boolean_t clean_only)
2553 {
2554 	struct rb_vm_page_scan_info info;
2555 	int all;
2556 
2557 	/*
2558 	 * Degenerate cases and assertions
2559 	 */
2560 	vm_object_hold(object);
2561 	if (object == NULL ||
2562 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2563 		vm_object_drop(object);
2564 		return;
2565 	}
2566 	KASSERT(object->type != OBJT_PHYS,
2567 		("attempt to remove pages from a physical object"));
2568 
2569 	/*
2570 	 * Indicate that paging is occuring on the object
2571 	 */
2572 	vm_object_pip_add(object, 1);
2573 
2574 	/*
2575 	 * Figure out the actual removal range and whether we are removing
2576 	 * the entire contents of the object or not.  If removing the entire
2577 	 * contents, be sure to get all pages, even those that might be
2578 	 * beyond the end of the object.
2579 	 */
2580 	info.start_pindex = start;
2581 	if (end == 0)
2582 		info.end_pindex = (vm_pindex_t)-1;
2583 	else
2584 		info.end_pindex = end - 1;
2585 	info.limit = clean_only;
2586 	all = (start == 0 && info.end_pindex >= object->size - 1);
2587 
2588 	/*
2589 	 * Loop until we are sure we have gotten them all.
2590 	 */
2591 	do {
2592 		info.error = 0;
2593 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2594 					vm_object_page_remove_callback, &info);
2595 	} while (info.error);
2596 
2597 	/*
2598 	 * Remove any related swap if throwing away pages, or for
2599 	 * non-swap objects (the swap is a clean copy in that case).
2600 	 */
2601 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2602 		if (all)
2603 			swap_pager_freespace_all(object);
2604 		else
2605 			swap_pager_freespace(object, info.start_pindex,
2606 			     info.end_pindex - info.start_pindex + 1);
2607 	}
2608 
2609 	/*
2610 	 * Cleanup
2611 	 */
2612 	vm_object_pip_wakeup(object);
2613 	vm_object_drop(object);
2614 }
2615 
2616 /*
2617  * The caller must hold the object
2618  */
2619 static int
2620 vm_object_page_remove_callback(vm_page_t p, void *data)
2621 {
2622 	struct rb_vm_page_scan_info *info = data;
2623 
2624 	if (vm_page_busy_try(p, TRUE)) {
2625 		vm_page_sleep_busy(p, TRUE, "vmopar");
2626 		info->error = 1;
2627 		return(0);
2628 	}
2629 
2630 	/*
2631 	 * Wired pages cannot be destroyed, but they can be invalidated
2632 	 * and we do so if clean_only (limit) is not set.
2633 	 *
2634 	 * WARNING!  The page may be wired due to being part of a buffer
2635 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2636 	 *	     This is fine as part of a truncation but VFSs must be
2637 	 *	     sure to fix the buffer up when re-extending the file.
2638 	 *
2639 	 * NOTE!     PG_NEED_COMMIT is ignored.
2640 	 */
2641 	if (p->wire_count != 0) {
2642 		vm_page_protect(p, VM_PROT_NONE);
2643 		if (info->limit == 0)
2644 			p->valid = 0;
2645 		vm_page_wakeup(p);
2646 		return(0);
2647 	}
2648 
2649 	/*
2650 	 * limit is our clean_only flag.  If set and the page is dirty or
2651 	 * requires a commit, do not free it.  If set and the page is being
2652 	 * held by someone, do not free it.
2653 	 */
2654 	if (info->limit && p->valid) {
2655 		vm_page_test_dirty(p);
2656 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2657 			vm_page_wakeup(p);
2658 			return(0);
2659 		}
2660 	}
2661 
2662 	/*
2663 	 * Destroy the page
2664 	 */
2665 	vm_page_protect(p, VM_PROT_NONE);
2666 	vm_page_free(p);
2667 	return(0);
2668 }
2669 
2670 /*
2671  * Coalesces two objects backing up adjoining regions of memory into a
2672  * single object.
2673  *
2674  * returns TRUE if objects were combined.
2675  *
2676  * NOTE: Only works at the moment if the second object is NULL -
2677  *	 if it's not, which object do we lock first?
2678  *
2679  * Parameters:
2680  *	prev_object	First object to coalesce
2681  *	prev_offset	Offset into prev_object
2682  *	next_object	Second object into coalesce
2683  *	next_offset	Offset into next_object
2684  *
2685  *	prev_size	Size of reference to prev_object
2686  *	next_size	Size of reference to next_object
2687  *
2688  * The caller does not need to hold (prev_object) but must have a stable
2689  * pointer to it (typically by holding the vm_map locked).
2690  */
2691 boolean_t
2692 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2693 		   vm_size_t prev_size, vm_size_t next_size)
2694 {
2695 	vm_pindex_t next_pindex;
2696 
2697 	if (prev_object == NULL)
2698 		return (TRUE);
2699 
2700 	vm_object_hold(prev_object);
2701 
2702 	if (prev_object->type != OBJT_DEFAULT &&
2703 	    prev_object->type != OBJT_SWAP) {
2704 		vm_object_drop(prev_object);
2705 		return (FALSE);
2706 	}
2707 
2708 	/*
2709 	 * Try to collapse the object first
2710 	 */
2711 	vm_object_chain_acquire(prev_object, 0);
2712 	vm_object_collapse(prev_object, NULL);
2713 
2714 	/*
2715 	 * Can't coalesce if: . more than one reference . paged out . shadows
2716 	 * another object . has a copy elsewhere (any of which mean that the
2717 	 * pages not mapped to prev_entry may be in use anyway)
2718 	 */
2719 
2720 	if (prev_object->backing_object != NULL) {
2721 		vm_object_chain_release(prev_object);
2722 		vm_object_drop(prev_object);
2723 		return (FALSE);
2724 	}
2725 
2726 	prev_size >>= PAGE_SHIFT;
2727 	next_size >>= PAGE_SHIFT;
2728 	next_pindex = prev_pindex + prev_size;
2729 
2730 	if ((prev_object->ref_count > 1) &&
2731 	    (prev_object->size != next_pindex)) {
2732 		vm_object_chain_release(prev_object);
2733 		vm_object_drop(prev_object);
2734 		return (FALSE);
2735 	}
2736 
2737 	/*
2738 	 * Remove any pages that may still be in the object from a previous
2739 	 * deallocation.
2740 	 */
2741 	if (next_pindex < prev_object->size) {
2742 		vm_object_page_remove(prev_object,
2743 				      next_pindex,
2744 				      next_pindex + next_size, FALSE);
2745 		if (prev_object->type == OBJT_SWAP)
2746 			swap_pager_freespace(prev_object,
2747 					     next_pindex, next_size);
2748 	}
2749 
2750 	/*
2751 	 * Extend the object if necessary.
2752 	 */
2753 	if (next_pindex + next_size > prev_object->size)
2754 		prev_object->size = next_pindex + next_size;
2755 
2756 	vm_object_chain_release(prev_object);
2757 	vm_object_drop(prev_object);
2758 	return (TRUE);
2759 }
2760 
2761 /*
2762  * Make the object writable and flag is being possibly dirty.
2763  *
2764  * The object might not be held (or might be held but held shared),
2765  * the related vnode is probably not held either.  Object and vnode are
2766  * stable by virtue of the vm_page busied by the caller preventing
2767  * destruction.
2768  *
2769  * If the related mount is flagged MNTK_THR_SYNC we need to call
2770  * vsetobjdirty().  Filesystems using this option usually shortcut
2771  * synchronization by only scanning the syncer list.
2772  */
2773 void
2774 vm_object_set_writeable_dirty(vm_object_t object)
2775 {
2776 	struct vnode *vp;
2777 
2778 	/*vm_object_assert_held(object);*/
2779 	/*
2780 	 * Avoid contention in vm fault path by checking the state before
2781 	 * issuing an atomic op on it.
2782 	 */
2783 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2784 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2785 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2786 	}
2787 	if (object->type == OBJT_VNODE &&
2788 	    (vp = (struct vnode *)object->handle) != NULL) {
2789 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2790 			if (vp->v_mount &&
2791 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2792 				/*
2793 				 * New style THR_SYNC places vnodes on the
2794 				 * syncer list more deterministically.
2795 				 */
2796 				vsetobjdirty(vp);
2797 			} else {
2798 				/*
2799 				 * Old style scan would not necessarily place
2800 				 * a vnode on the syncer list when possibly
2801 				 * modified via mmap.
2802 				 */
2803 				vsetflags(vp, VOBJDIRTY);
2804 			}
2805 		}
2806 	}
2807 }
2808 
2809 #include "opt_ddb.h"
2810 #ifdef DDB
2811 #include <sys/kernel.h>
2812 
2813 #include <sys/cons.h>
2814 
2815 #include <ddb/ddb.h>
2816 
2817 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2818 				       vm_map_entry_t entry);
2819 static int	vm_object_in_map (vm_object_t object);
2820 
2821 /*
2822  * The caller must hold the object.
2823  */
2824 static int
2825 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2826 {
2827 	vm_map_t tmpm;
2828 	vm_map_entry_t tmpe;
2829 	vm_object_t obj, nobj;
2830 	int entcount;
2831 
2832 	if (map == 0)
2833 		return 0;
2834 	if (entry == 0) {
2835 		tmpe = map->header.next;
2836 		entcount = map->nentries;
2837 		while (entcount-- && (tmpe != &map->header)) {
2838 			if( _vm_object_in_map(map, object, tmpe)) {
2839 				return 1;
2840 			}
2841 			tmpe = tmpe->next;
2842 		}
2843 		return (0);
2844 	}
2845 	switch(entry->maptype) {
2846 	case VM_MAPTYPE_SUBMAP:
2847 		tmpm = entry->object.sub_map;
2848 		tmpe = tmpm->header.next;
2849 		entcount = tmpm->nentries;
2850 		while (entcount-- && tmpe != &tmpm->header) {
2851 			if( _vm_object_in_map(tmpm, object, tmpe)) {
2852 				return 1;
2853 			}
2854 			tmpe = tmpe->next;
2855 		}
2856 		break;
2857 	case VM_MAPTYPE_NORMAL:
2858 	case VM_MAPTYPE_VPAGETABLE:
2859 		obj = entry->object.vm_object;
2860 		while (obj) {
2861 			if (obj == object) {
2862 				if (obj != entry->object.vm_object)
2863 					vm_object_drop(obj);
2864 				return 1;
2865 			}
2866 			while ((nobj = obj->backing_object) != NULL) {
2867 				vm_object_hold(nobj);
2868 				if (nobj == obj->backing_object)
2869 					break;
2870 				vm_object_drop(nobj);
2871 			}
2872 			if (obj != entry->object.vm_object) {
2873 				if (nobj)
2874 					vm_object_lock_swap();
2875 				vm_object_drop(obj);
2876 			}
2877 			obj = nobj;
2878 		}
2879 		break;
2880 	default:
2881 		break;
2882 	}
2883 	return 0;
2884 }
2885 
2886 static int vm_object_in_map_callback(struct proc *p, void *data);
2887 
2888 struct vm_object_in_map_info {
2889 	vm_object_t object;
2890 	int rv;
2891 };
2892 
2893 /*
2894  * Debugging only
2895  */
2896 static int
2897 vm_object_in_map(vm_object_t object)
2898 {
2899 	struct vm_object_in_map_info info;
2900 
2901 	info.rv = 0;
2902 	info.object = object;
2903 
2904 	allproc_scan(vm_object_in_map_callback, &info);
2905 	if (info.rv)
2906 		return 1;
2907 	if( _vm_object_in_map(&kernel_map, object, 0))
2908 		return 1;
2909 	if( _vm_object_in_map(&pager_map, object, 0))
2910 		return 1;
2911 	if( _vm_object_in_map(&buffer_map, object, 0))
2912 		return 1;
2913 	return 0;
2914 }
2915 
2916 /*
2917  * Debugging only
2918  */
2919 static int
2920 vm_object_in_map_callback(struct proc *p, void *data)
2921 {
2922 	struct vm_object_in_map_info *info = data;
2923 
2924 	if (p->p_vmspace) {
2925 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2926 			info->rv = 1;
2927 			return -1;
2928 		}
2929 	}
2930 	return (0);
2931 }
2932 
2933 DB_SHOW_COMMAND(vmochk, vm_object_check)
2934 {
2935 	vm_object_t object;
2936 	int n;
2937 
2938 	/*
2939 	 * make sure that internal objs are in a map somewhere
2940 	 * and none have zero ref counts.
2941 	 */
2942 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2943 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
2944 				object != NULL;
2945 				object = TAILQ_NEXT(object, object_list)) {
2946 			if (object->type == OBJT_MARKER)
2947 				continue;
2948 			if (object->handle != NULL ||
2949 			    (object->type != OBJT_DEFAULT &&
2950 			     object->type != OBJT_SWAP)) {
2951 				continue;
2952 			}
2953 			if (object->ref_count == 0) {
2954 				db_printf("vmochk: internal obj has "
2955 					  "zero ref count: %ld\n",
2956 					  (long)object->size);
2957 			}
2958 			if (vm_object_in_map(object))
2959 				continue;
2960 			db_printf("vmochk: internal obj is not in a map: "
2961 				  "ref: %d, size: %lu: 0x%lx, "
2962 				  "backing_object: %p\n",
2963 				  object->ref_count, (u_long)object->size,
2964 				  (u_long)object->size,
2965 				  (void *)object->backing_object);
2966 		}
2967 	}
2968 }
2969 
2970 /*
2971  * Debugging only
2972  */
2973 DB_SHOW_COMMAND(object, vm_object_print_static)
2974 {
2975 	/* XXX convert args. */
2976 	vm_object_t object = (vm_object_t)addr;
2977 	boolean_t full = have_addr;
2978 
2979 	vm_page_t p;
2980 
2981 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2982 #define	count	was_count
2983 
2984 	int count;
2985 
2986 	if (object == NULL)
2987 		return;
2988 
2989 	db_iprintf(
2990 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2991 	    object, (int)object->type, (u_long)object->size,
2992 	    object->resident_page_count, object->ref_count, object->flags);
2993 	/*
2994 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2995 	 */
2996 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2997 	    object->shadow_count,
2998 	    object->backing_object ? object->backing_object->ref_count : 0,
2999 	    object->backing_object, (long)object->backing_object_offset);
3000 
3001 	if (!full)
3002 		return;
3003 
3004 	db_indent += 2;
3005 	count = 0;
3006 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3007 		if (count == 0)
3008 			db_iprintf("memory:=");
3009 		else if (count == 6) {
3010 			db_printf("\n");
3011 			db_iprintf(" ...");
3012 			count = 0;
3013 		} else
3014 			db_printf(",");
3015 		count++;
3016 
3017 		db_printf("(off=0x%lx,page=0x%lx)",
3018 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3019 	}
3020 	if (count != 0)
3021 		db_printf("\n");
3022 	db_indent -= 2;
3023 }
3024 
3025 /* XXX. */
3026 #undef count
3027 
3028 /*
3029  * XXX need this non-static entry for calling from vm_map_print.
3030  *
3031  * Debugging only
3032  */
3033 void
3034 vm_object_print(/* db_expr_t */ long addr,
3035 		boolean_t have_addr,
3036 		/* db_expr_t */ long count,
3037 		char *modif)
3038 {
3039 	vm_object_print_static(addr, have_addr, count, modif);
3040 }
3041 
3042 /*
3043  * Debugging only
3044  */
3045 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3046 {
3047 	vm_object_t object;
3048 	int nl = 0;
3049 	int c;
3050 	int n;
3051 
3052 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3053 		for (object = TAILQ_FIRST(&vm_object_lists[n]);
3054 				object != NULL;
3055 				object = TAILQ_NEXT(object, object_list)) {
3056 			vm_pindex_t idx, fidx;
3057 			vm_pindex_t osize;
3058 			vm_paddr_t pa = -1, padiff;
3059 			int rcount;
3060 			vm_page_t m;
3061 
3062 			if (object->type == OBJT_MARKER)
3063 				continue;
3064 			db_printf("new object: %p\n", (void *)object);
3065 			if ( nl > 18) {
3066 				c = cngetc();
3067 				if (c != ' ')
3068 					return;
3069 				nl = 0;
3070 			}
3071 			nl++;
3072 			rcount = 0;
3073 			fidx = 0;
3074 			osize = object->size;
3075 			if (osize > 128)
3076 				osize = 128;
3077 			for (idx = 0; idx < osize; idx++) {
3078 				m = vm_page_lookup(object, idx);
3079 				if (m == NULL) {
3080 					if (rcount) {
3081 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3082 							(long)fidx, rcount, (long)pa);
3083 						if ( nl > 18) {
3084 							c = cngetc();
3085 							if (c != ' ')
3086 								return;
3087 							nl = 0;
3088 						}
3089 						nl++;
3090 						rcount = 0;
3091 					}
3092 					continue;
3093 				}
3094 
3095 				if (rcount &&
3096 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3097 					++rcount;
3098 					continue;
3099 				}
3100 				if (rcount) {
3101 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3102 					padiff >>= PAGE_SHIFT;
3103 					padiff &= PQ_L2_MASK;
3104 					if (padiff == 0) {
3105 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3106 						++rcount;
3107 						continue;
3108 					}
3109 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
3110 						(long)fidx, rcount, (long)pa);
3111 					db_printf("pd(%ld)\n", (long)padiff);
3112 					if ( nl > 18) {
3113 						c = cngetc();
3114 						if (c != ' ')
3115 							return;
3116 						nl = 0;
3117 					}
3118 					nl++;
3119 				}
3120 				fidx = idx;
3121 				pa = VM_PAGE_TO_PHYS(m);
3122 				rcount = 1;
3123 			}
3124 			if (rcount) {
3125 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3126 					(long)fidx, rcount, (long)pa);
3127 				if ( nl > 18) {
3128 					c = cngetc();
3129 					if (c != ' ')
3130 						return;
3131 					nl = 0;
3132 				}
3133 				nl++;
3134 			}
3135 		}
3136 	}
3137 }
3138 #endif /* DDB */
3139