xref: /dragonfly/sys/vm/vm_object.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.25 2006/05/25 07:36:37 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103 
104 static void	vm_object_qcollapse (vm_object_t object);
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;
134 static long vm_object_count;		/* count of all objects */
135 vm_object_t kernel_object;
136 vm_object_t kmem_object;
137 static struct vm_object kernel_object_store;
138 static struct vm_object kmem_object_store;
139 extern int vm_pageout_page_count;
140 
141 static long object_collapses;
142 static long object_bypasses;
143 static int next_index;
144 static vm_zone_t obj_zone;
145 static struct vm_zone obj_zone_store;
146 static int object_hash_rand;
147 #define VM_OBJECTS_INIT 256
148 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
149 
150 void
151 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
152 {
153 	int incr;
154 	TAILQ_INIT(&object->memq);
155 	LIST_INIT(&object->shadow_head);
156 
157 	object->type = type;
158 	object->size = size;
159 	object->ref_count = 1;
160 	object->flags = 0;
161 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
162 		vm_object_set_flag(object, OBJ_ONEMAPPING);
163 	object->paging_in_progress = 0;
164 	object->resident_page_count = 0;
165 	object->shadow_count = 0;
166 	object->pg_color = next_index;
167 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
168 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
169 	else
170 		incr = size;
171 	next_index = (next_index + incr) & PQ_L2_MASK;
172 	object->handle = NULL;
173 	object->backing_object = NULL;
174 	object->backing_object_offset = (vm_ooffset_t) 0;
175 	/*
176 	 * Try to generate a number that will spread objects out in the
177 	 * hash table.  We 'wipe' new objects across the hash in 128 page
178 	 * increments plus 1 more to offset it a little more by the time
179 	 * it wraps around.
180 	 */
181 	object->hash_rand = object_hash_rand - 129;
182 
183 	object->generation++;
184 
185 	crit_enter();
186 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187 	vm_object_count++;
188 	object_hash_rand = object->hash_rand;
189 	crit_exit();
190 }
191 
192 /*
193  *	vm_object_init:
194  *
195  *	Initialize the VM objects module.
196  */
197 void
198 vm_object_init(void)
199 {
200 	TAILQ_INIT(&vm_object_list);
201 
202 	kernel_object = &kernel_object_store;
203 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
204 	    kernel_object);
205 
206 	kmem_object = &kmem_object_store;
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208 	    kmem_object);
209 
210 	obj_zone = &obj_zone_store;
211 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 		vm_objects_init, VM_OBJECTS_INIT);
213 }
214 
215 void
216 vm_object_init2(void)
217 {
218 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220 
221 /*
222  *	vm_object_allocate:
223  *
224  *	Returns a new object with the given size.
225  */
226 
227 vm_object_t
228 vm_object_allocate(objtype_t type, vm_size_t size)
229 {
230 	vm_object_t result;
231 
232 	result = (vm_object_t) zalloc(obj_zone);
233 
234 	_vm_object_allocate(type, size, result);
235 
236 	return (result);
237 }
238 
239 
240 /*
241  *	vm_object_reference:
242  *
243  *	Gets another reference to the given object.
244  */
245 void
246 vm_object_reference(vm_object_t object)
247 {
248 	if (object == NULL)
249 		return;
250 
251 	object->ref_count++;
252 	if (object->type == OBJT_VNODE) {
253 		vref(object->handle);
254 		/* XXX what if the vnode is being destroyed? */
255 	}
256 }
257 
258 static void
259 vm_object_vndeallocate(vm_object_t object)
260 {
261 	struct vnode *vp = (struct vnode *) object->handle;
262 
263 	KASSERT(object->type == OBJT_VNODE,
264 	    ("vm_object_vndeallocate: not a vnode object"));
265 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
266 #ifdef INVARIANTS
267 	if (object->ref_count == 0) {
268 		vprint("vm_object_vndeallocate", vp);
269 		panic("vm_object_vndeallocate: bad object reference count");
270 	}
271 #endif
272 
273 	object->ref_count--;
274 	if (object->ref_count == 0)
275 		vp->v_flag &= ~VTEXT;
276 	vrele(vp);
277 }
278 
279 /*
280  *	vm_object_deallocate:
281  *
282  *	Release a reference to the specified object,
283  *	gained either through a vm_object_allocate
284  *	or a vm_object_reference call.  When all references
285  *	are gone, storage associated with this object
286  *	may be relinquished.
287  *
288  *	No object may be locked.
289  */
290 void
291 vm_object_deallocate(vm_object_t object)
292 {
293 	vm_object_t temp;
294 
295 	while (object != NULL) {
296 		if (object->type == OBJT_VNODE) {
297 			vm_object_vndeallocate(object);
298 			return;
299 		}
300 
301 		if (object->ref_count == 0) {
302 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
303 		} else if (object->ref_count > 2) {
304 			object->ref_count--;
305 			return;
306 		}
307 
308 		/*
309 		 * Here on ref_count of one or two, which are special cases for
310 		 * objects.
311 		 */
312 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
313 			vm_object_set_flag(object, OBJ_ONEMAPPING);
314 			object->ref_count--;
315 			return;
316 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
317 			object->ref_count--;
318 			if ((object->handle == NULL) &&
319 			    (object->type == OBJT_DEFAULT ||
320 			     object->type == OBJT_SWAP)) {
321 				vm_object_t robject;
322 
323 				robject = LIST_FIRST(&object->shadow_head);
324 				KASSERT(robject != NULL,
325 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
326 					 object->ref_count,
327 					 object->shadow_count));
328 				if ((robject->handle == NULL) &&
329 				    (robject->type == OBJT_DEFAULT ||
330 				     robject->type == OBJT_SWAP)) {
331 
332 					robject->ref_count++;
333 
334 					while (
335 						robject->paging_in_progress ||
336 						object->paging_in_progress
337 					) {
338 						vm_object_pip_sleep(robject, "objde1");
339 						vm_object_pip_sleep(object, "objde2");
340 					}
341 
342 					if (robject->ref_count == 1) {
343 						robject->ref_count--;
344 						object = robject;
345 						goto doterm;
346 					}
347 
348 					object = robject;
349 					vm_object_collapse(object);
350 					continue;
351 				}
352 			}
353 
354 			return;
355 
356 		} else {
357 			object->ref_count--;
358 			if (object->ref_count != 0)
359 				return;
360 		}
361 
362 doterm:
363 
364 		temp = object->backing_object;
365 		if (temp) {
366 			LIST_REMOVE(object, shadow_list);
367 			temp->shadow_count--;
368 			temp->generation++;
369 			object->backing_object = NULL;
370 		}
371 
372 		/*
373 		 * Don't double-terminate, we could be in a termination
374 		 * recursion due to the terminate having to sync data
375 		 * to disk.
376 		 */
377 		if ((object->flags & OBJ_DEAD) == 0)
378 			vm_object_terminate(object);
379 		object = temp;
380 	}
381 }
382 
383 /*
384  *	vm_object_terminate actually destroys the specified object, freeing
385  *	up all previously used resources.
386  *
387  *	The object must be locked.
388  *	This routine may block.
389  */
390 void
391 vm_object_terminate(vm_object_t object)
392 {
393 	vm_page_t p;
394 
395 	/*
396 	 * Make sure no one uses us.
397 	 */
398 	vm_object_set_flag(object, OBJ_DEAD);
399 
400 	/*
401 	 * wait for the pageout daemon to be done with the object
402 	 */
403 	vm_object_pip_wait(object, "objtrm");
404 
405 	KASSERT(!object->paging_in_progress,
406 		("vm_object_terminate: pageout in progress"));
407 
408 	/*
409 	 * Clean and free the pages, as appropriate. All references to the
410 	 * object are gone, so we don't need to lock it.
411 	 */
412 	if (object->type == OBJT_VNODE) {
413 		struct vnode *vp;
414 
415 		/*
416 		 * Clean pages and flush buffers.
417 		 */
418 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
419 
420 		vp = (struct vnode *) object->handle;
421 		vinvalbuf(vp, V_SAVE, 0, 0);
422 	}
423 
424 	/*
425 	 * Wait for any I/O to complete, after which there had better not
426 	 * be any references left on the object.
427 	 */
428 	vm_object_pip_wait(object, "objtrm");
429 
430 	if (object->ref_count != 0)
431 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
432 
433 	/*
434 	 * Now free any remaining pages. For internal objects, this also
435 	 * removes them from paging queues. Don't free wired pages, just
436 	 * remove them from the object.
437 	 */
438 	crit_enter();
439 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
440 		if (p->busy || (p->flags & PG_BUSY))
441 			panic("vm_object_terminate: freeing busy page %p", p);
442 		if (p->wire_count == 0) {
443 			vm_page_busy(p);
444 			vm_page_free(p);
445 			mycpu->gd_cnt.v_pfree++;
446 		} else {
447 			vm_page_busy(p);
448 			vm_page_remove(p);
449 			vm_page_wakeup(p);
450 		}
451 	}
452 	crit_exit();
453 
454 	/*
455 	 * Let the pager know object is dead.
456 	 */
457 	vm_pager_deallocate(object);
458 
459 	/*
460 	 * Remove the object from the global object list.
461 	 */
462 	crit_enter();
463 	TAILQ_REMOVE(&vm_object_list, object, object_list);
464 	vm_object_count--;
465 	crit_exit();
466 
467 	wakeup(object);
468 	if (object->ref_count != 0)
469 		panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
470 
471 	/*
472 	 * Free the space for the object.
473 	 */
474 	zfree(obj_zone, object);
475 }
476 
477 /*
478  *	vm_object_page_clean
479  *
480  *	Clean all dirty pages in the specified range of object.  Leaves page
481  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
482  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
483  *	leaving the object dirty.
484  *
485  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
486  *	synchronous clustering mode implementation.
487  *
488  *	Odd semantics: if start == end, we clean everything.
489  */
490 
491 void
492 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
493     int flags)
494 {
495 	vm_page_t p, np;
496 	vm_offset_t tstart, tend;
497 	vm_pindex_t pi;
498 	struct vnode *vp;
499 	int clearobjflags;
500 	int pagerflags;
501 	int curgeneration;
502 
503 	if (object->type != OBJT_VNODE ||
504 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
505 		return;
506 
507 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
508 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
509 
510 	vp = object->handle;
511 
512 	vm_object_set_flag(object, OBJ_CLEANING);
513 
514 	/*
515 	 * Handle 'entire object' case
516 	 */
517 	tstart = start;
518 	if (end == 0) {
519 		tend = object->size;
520 	} else {
521 		tend = end;
522 	}
523 
524 	/*
525 	 * If the caller is smart and only msync()s a range he knows is
526 	 * dirty, we may be able to avoid an object scan.  This results in
527 	 * a phenominal improvement in performance.  We cannot do this
528 	 * as a matter of course because the object may be huge - e.g.
529 	 * the size might be in the gigabytes or terrabytes.
530 	 */
531 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
532 		vm_offset_t tscan;
533 		int scanlimit;
534 		int scanreset;
535 
536 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
537 		if (scanreset < 16)
538 			scanreset = 16;
539 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
540 
541 		scanlimit = scanreset;
542 		tscan = tstart;
543 
544 		/*
545 		 * spl protection is required despite the obj generation
546 		 * tracking because we cannot safely call vm_page_test_dirty()
547 		 * or avoid page field tests against an interrupt unbusy/free
548 		 * race that might occur prior to the busy check in
549 		 * vm_object_page_collect_flush().
550 		 */
551 		crit_enter();
552 		while (tscan < tend) {
553 			curgeneration = object->generation;
554 			p = vm_page_lookup(object, tscan);
555 			if (p == NULL || p->valid == 0 ||
556 			    (p->queue - p->pc) == PQ_CACHE) {
557 				if (--scanlimit == 0)
558 					break;
559 				++tscan;
560 				continue;
561 			}
562 			vm_page_test_dirty(p);
563 			if ((p->dirty & p->valid) == 0) {
564 				if (--scanlimit == 0)
565 					break;
566 				++tscan;
567 				continue;
568 			}
569 			/*
570 			 * If we have been asked to skip nosync pages and
571 			 * this is a nosync page, we can't continue.
572 			 */
573 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
574 				if (--scanlimit == 0)
575 					break;
576 				++tscan;
577 				continue;
578 			}
579 			scanlimit = scanreset;
580 
581 			/*
582 			 * This returns 0 if it was unable to busy the first
583 			 * page (i.e. had to sleep).
584 			 */
585 			tscan += vm_object_page_collect_flush(object, p,
586 						curgeneration, pagerflags);
587 		}
588 		crit_exit();
589 
590 		/*
591 		 * If everything was dirty and we flushed it successfully,
592 		 * and the requested range is not the entire object, we
593 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
594 		 * return immediately.
595 		 */
596 		if (tscan >= tend && (tstart || tend < object->size)) {
597 			vm_object_clear_flag(object, OBJ_CLEANING);
598 			return;
599 		}
600 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
601 	}
602 
603 	/*
604 	 * Generally set CLEANCHK interlock and make the page read-only so
605 	 * we can then clear the object flags.
606 	 *
607 	 * However, if this is a nosync mmap then the object is likely to
608 	 * stay dirty so do not mess with the page and do not clear the
609 	 * object flags.
610 	 *
611 	 * spl protection is required because an interrupt can remove page
612 	 * from the object.
613 	 */
614 	clearobjflags = 1;
615 
616 	crit_enter();
617 	for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
618 		vm_page_flag_set(p, PG_CLEANCHK);
619 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
620 			clearobjflags = 0;
621 		else
622 			vm_page_protect(p, VM_PROT_READ);
623 	}
624 	crit_exit();
625 
626 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
627 		struct vnode *vp;
628 
629 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
630                 if (object->type == OBJT_VNODE &&
631                     (vp = (struct vnode *)object->handle) != NULL) {
632                         if (vp->v_flag & VOBJDIRTY)
633 				vclrflags(vp, VOBJDIRTY);
634                 }
635 	}
636 
637 	/*
638 	 * spl protection is required both to avoid an interrupt unbusy/free
639 	 * race against a vm_page_lookup(), and also to ensure that the
640 	 * memq is consistent.  We do not want a busy page to be ripped out
641 	 * from under us.
642 	 */
643 	crit_enter();
644 rescan:
645 	crit_exit();
646 	crit_enter();
647 	curgeneration = object->generation;
648 
649 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
650 		int n;
651 
652 		np = TAILQ_NEXT(p, listq);
653 
654 again:
655 		pi = p->pindex;
656 		if (((p->flags & PG_CLEANCHK) == 0) ||
657 			(pi < tstart) || (pi >= tend) ||
658 			(p->valid == 0) ||
659 			((p->queue - p->pc) == PQ_CACHE)) {
660 			vm_page_flag_clear(p, PG_CLEANCHK);
661 			continue;
662 		}
663 
664 		vm_page_test_dirty(p);
665 		if ((p->dirty & p->valid) == 0) {
666 			vm_page_flag_clear(p, PG_CLEANCHK);
667 			continue;
668 		}
669 
670 		/*
671 		 * If we have been asked to skip nosync pages and this is a
672 		 * nosync page, skip it.  Note that the object flags were
673 		 * not cleared in this case so we do not have to set them.
674 		 */
675 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
676 			vm_page_flag_clear(p, PG_CLEANCHK);
677 			continue;
678 		}
679 
680 		n = vm_object_page_collect_flush(object, p,
681 			curgeneration, pagerflags);
682 		if (n == 0)
683 			goto rescan;
684 		if (object->generation != curgeneration)
685 			goto rescan;
686 
687 		/*
688 		 * Try to optimize the next page.  If we can't we pick up
689 		 * our (random) scan where we left off.
690 		 */
691 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
692 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
693 				goto again;
694 		}
695 	}
696 	crit_exit();
697 
698 	vm_object_clear_flag(object, OBJ_CLEANING);
699 	return;
700 }
701 
702 /*
703  * This routine must be called within a critical section to properly avoid
704  * an interrupt unbusy/free race that can occur prior to the busy check.
705  *
706  * Using the object generation number here to detect page ripout is not
707  * the best idea in the world. XXX
708  *
709  * NOTE: we operate under the assumption that a page found to not be busy
710  * will not be ripped out from under us by an interrupt.  XXX we should
711  * recode this to explicitly busy the pages.
712  */
713 static int
714 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
715 {
716 	int runlen;
717 	int maxf;
718 	int chkb;
719 	int maxb;
720 	int i;
721 	vm_pindex_t pi;
722 	vm_page_t maf[vm_pageout_page_count];
723 	vm_page_t mab[vm_pageout_page_count];
724 	vm_page_t ma[vm_pageout_page_count];
725 
726 	pi = p->pindex;
727 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
728 		if (object->generation != curgeneration) {
729 			return(0);
730 		}
731 	}
732 
733 	maxf = 0;
734 	for(i = 1; i < vm_pageout_page_count; i++) {
735 		vm_page_t tp;
736 
737 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
738 			if ((tp->flags & PG_BUSY) ||
739 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
740 				 (tp->flags & PG_CLEANCHK) == 0) ||
741 				(tp->busy != 0))
742 				break;
743 			if((tp->queue - tp->pc) == PQ_CACHE) {
744 				vm_page_flag_clear(tp, PG_CLEANCHK);
745 				break;
746 			}
747 			vm_page_test_dirty(tp);
748 			if ((tp->dirty & tp->valid) == 0) {
749 				vm_page_flag_clear(tp, PG_CLEANCHK);
750 				break;
751 			}
752 			maf[ i - 1 ] = tp;
753 			maxf++;
754 			continue;
755 		}
756 		break;
757 	}
758 
759 	maxb = 0;
760 	chkb = vm_pageout_page_count -  maxf;
761 	if (chkb) {
762 		for(i = 1; i < chkb;i++) {
763 			vm_page_t tp;
764 
765 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
766 				if ((tp->flags & PG_BUSY) ||
767 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
768 					 (tp->flags & PG_CLEANCHK) == 0) ||
769 					(tp->busy != 0))
770 					break;
771 				if((tp->queue - tp->pc) == PQ_CACHE) {
772 					vm_page_flag_clear(tp, PG_CLEANCHK);
773 					break;
774 				}
775 				vm_page_test_dirty(tp);
776 				if ((tp->dirty & tp->valid) == 0) {
777 					vm_page_flag_clear(tp, PG_CLEANCHK);
778 					break;
779 				}
780 				mab[ i - 1 ] = tp;
781 				maxb++;
782 				continue;
783 			}
784 			break;
785 		}
786 	}
787 
788 	for(i = 0; i < maxb; i++) {
789 		int index = (maxb - i) - 1;
790 		ma[index] = mab[i];
791 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
792 	}
793 	vm_page_flag_clear(p, PG_CLEANCHK);
794 	ma[maxb] = p;
795 	for(i = 0; i < maxf; i++) {
796 		int index = (maxb + i) + 1;
797 		ma[index] = maf[i];
798 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
799 	}
800 	runlen = maxb + maxf + 1;
801 
802 	vm_pageout_flush(ma, runlen, pagerflags);
803 	for (i = 0; i < runlen; i++) {
804 		if (ma[i]->valid & ma[i]->dirty) {
805 			vm_page_protect(ma[i], VM_PROT_READ);
806 			vm_page_flag_set(ma[i], PG_CLEANCHK);
807 
808 			/*
809 			 * maxf will end up being the actual number of pages
810 			 * we wrote out contiguously, non-inclusive of the
811 			 * first page.  We do not count look-behind pages.
812 			 */
813 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
814 				maxf = i - maxb - 1;
815 		}
816 	}
817 	return(maxf + 1);
818 }
819 
820 #ifdef not_used
821 /* XXX I cannot tell if this should be an exported symbol */
822 /*
823  *	vm_object_deactivate_pages
824  *
825  *	Deactivate all pages in the specified object.  (Keep its pages
826  *	in memory even though it is no longer referenced.)
827  *
828  *	The object must be locked.
829  */
830 static void
831 vm_object_deactivate_pages(vm_object_t object)
832 {
833 	vm_page_t p, next;
834 
835 	crit_enter();
836 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
837 		next = TAILQ_NEXT(p, listq);
838 		vm_page_deactivate(p);
839 	}
840 	crit_exit();
841 }
842 #endif
843 
844 /*
845  * Same as vm_object_pmap_copy, except range checking really
846  * works, and is meant for small sections of an object.
847  *
848  * This code protects resident pages by making them read-only
849  * and is typically called on a fork or split when a page
850  * is converted to copy-on-write.
851  *
852  * NOTE: If the page is already at VM_PROT_NONE, calling
853  * vm_page_protect will have no effect.
854  */
855 void
856 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
857 {
858 	vm_pindex_t idx;
859 	vm_page_t p;
860 
861 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
862 		return;
863 
864 	/*
865 	 * spl protection needed to prevent races between the lookup,
866 	 * an interrupt unbusy/free, and our protect call.
867 	 */
868 	crit_enter();
869 	for (idx = start; idx < end; idx++) {
870 		p = vm_page_lookup(object, idx);
871 		if (p == NULL)
872 			continue;
873 		vm_page_protect(p, VM_PROT_READ);
874 	}
875 	crit_exit();
876 }
877 
878 /*
879  *	vm_object_pmap_remove:
880  *
881  *	Removes all physical pages in the specified
882  *	object range from all physical maps.
883  *
884  *	The object must *not* be locked.
885  */
886 void
887 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
888 {
889 	vm_page_t p;
890 
891 	if (object == NULL)
892 		return;
893 
894 	/*
895 	 * spl protection is required because an interrupt can unbusy/free
896 	 * a page.
897 	 */
898 	crit_enter();
899 	for (p = TAILQ_FIRST(&object->memq);
900 	    p != NULL;
901 	    p = TAILQ_NEXT(p, listq)
902 	) {
903 		if (p->pindex >= start && p->pindex < end)
904 			vm_page_protect(p, VM_PROT_NONE);
905 	}
906 	crit_exit();
907 	if ((start == 0) && (object->size == end))
908 		vm_object_clear_flag(object, OBJ_WRITEABLE);
909 }
910 
911 /*
912  *	vm_object_madvise:
913  *
914  *	Implements the madvise function at the object/page level.
915  *
916  *	MADV_WILLNEED	(any object)
917  *
918  *	    Activate the specified pages if they are resident.
919  *
920  *	MADV_DONTNEED	(any object)
921  *
922  *	    Deactivate the specified pages if they are resident.
923  *
924  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
925  *			 OBJ_ONEMAPPING only)
926  *
927  *	    Deactivate and clean the specified pages if they are
928  *	    resident.  This permits the process to reuse the pages
929  *	    without faulting or the kernel to reclaim the pages
930  *	    without I/O.
931  */
932 void
933 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
934 {
935 	vm_pindex_t end, tpindex;
936 	vm_object_t tobject;
937 	vm_page_t m;
938 
939 	if (object == NULL)
940 		return;
941 
942 	end = pindex + count;
943 
944 	/*
945 	 * Locate and adjust resident pages
946 	 */
947 
948 	for (; pindex < end; pindex += 1) {
949 relookup:
950 		tobject = object;
951 		tpindex = pindex;
952 shadowlookup:
953 		/*
954 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
955 		 * and those pages must be OBJ_ONEMAPPING.
956 		 */
957 		if (advise == MADV_FREE) {
958 			if ((tobject->type != OBJT_DEFAULT &&
959 			     tobject->type != OBJT_SWAP) ||
960 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
961 				continue;
962 			}
963 		}
964 
965 		/*
966 		 * spl protection is required to avoid a race between the
967 		 * lookup, an interrupt unbusy/free, and our busy check.
968 		 */
969 
970 		crit_enter();
971 		m = vm_page_lookup(tobject, tpindex);
972 
973 		if (m == NULL) {
974 			/*
975 			 * There may be swap even if there is no backing page
976 			 */
977 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
978 				swap_pager_freespace(tobject, tpindex, 1);
979 
980 			/*
981 			 * next object
982 			 */
983 			crit_exit();
984 			if (tobject->backing_object == NULL)
985 				continue;
986 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
987 			tobject = tobject->backing_object;
988 			goto shadowlookup;
989 		}
990 
991 		/*
992 		 * If the page is busy or not in a normal active state,
993 		 * we skip it.  If the page is not managed there are no
994 		 * page queues to mess with.  Things can break if we mess
995 		 * with pages in any of the below states.
996 		 */
997 		if (
998 		    m->hold_count ||
999 		    m->wire_count ||
1000 		    (m->flags & PG_UNMANAGED) ||
1001 		    m->valid != VM_PAGE_BITS_ALL
1002 		) {
1003 			crit_exit();
1004 			continue;
1005 		}
1006 
1007  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1008 			crit_exit();
1009   			goto relookup;
1010 		}
1011 		crit_exit();
1012 
1013 		/*
1014 		 * Theoretically once a page is known not to be busy, an
1015 		 * interrupt cannot come along and rip it out from under us.
1016 		 */
1017 
1018 		if (advise == MADV_WILLNEED) {
1019 			vm_page_activate(m);
1020 		} else if (advise == MADV_DONTNEED) {
1021 			vm_page_dontneed(m);
1022 		} else if (advise == MADV_FREE) {
1023 			/*
1024 			 * Mark the page clean.  This will allow the page
1025 			 * to be freed up by the system.  However, such pages
1026 			 * are often reused quickly by malloc()/free()
1027 			 * so we do not do anything that would cause
1028 			 * a page fault if we can help it.
1029 			 *
1030 			 * Specifically, we do not try to actually free
1031 			 * the page now nor do we try to put it in the
1032 			 * cache (which would cause a page fault on reuse).
1033 			 *
1034 			 * But we do make the page is freeable as we
1035 			 * can without actually taking the step of unmapping
1036 			 * it.
1037 			 */
1038 			pmap_clear_modify(m);
1039 			m->dirty = 0;
1040 			m->act_count = 0;
1041 			vm_page_dontneed(m);
1042 			if (tobject->type == OBJT_SWAP)
1043 				swap_pager_freespace(tobject, tpindex, 1);
1044 		}
1045 	}
1046 }
1047 
1048 /*
1049  *	vm_object_shadow:
1050  *
1051  *	Create a new object which is backed by the
1052  *	specified existing object range.  The source
1053  *	object reference is deallocated.
1054  *
1055  *	The new object and offset into that object
1056  *	are returned in the source parameters.
1057  */
1058 
1059 void
1060 vm_object_shadow(vm_object_t *object,	/* IN/OUT */
1061 		 vm_ooffset_t *offset,	/* IN/OUT */
1062 		 vm_size_t length)
1063 {
1064 	vm_object_t source;
1065 	vm_object_t result;
1066 
1067 	source = *object;
1068 
1069 	/*
1070 	 * Don't create the new object if the old object isn't shared.
1071 	 */
1072 
1073 	if (source != NULL &&
1074 	    source->ref_count == 1 &&
1075 	    source->handle == NULL &&
1076 	    (source->type == OBJT_DEFAULT ||
1077 	     source->type == OBJT_SWAP))
1078 		return;
1079 
1080 	/*
1081 	 * Allocate a new object with the given length
1082 	 */
1083 
1084 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1085 		panic("vm_object_shadow: no object for shadowing");
1086 
1087 	/*
1088 	 * The new object shadows the source object, adding a reference to it.
1089 	 * Our caller changes his reference to point to the new object,
1090 	 * removing a reference to the source object.  Net result: no change
1091 	 * of reference count.
1092 	 *
1093 	 * Try to optimize the result object's page color when shadowing
1094 	 * in order to maintain page coloring consistency in the combined
1095 	 * shadowed object.
1096 	 */
1097 	result->backing_object = source;
1098 	if (source) {
1099 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1100 		source->shadow_count++;
1101 		source->generation++;
1102 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1103 	}
1104 
1105 	/*
1106 	 * Store the offset into the source object, and fix up the offset into
1107 	 * the new object.
1108 	 */
1109 
1110 	result->backing_object_offset = *offset;
1111 
1112 	/*
1113 	 * Return the new things
1114 	 */
1115 
1116 	*offset = 0;
1117 	*object = result;
1118 }
1119 
1120 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1121 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1122 #define	OBSC_COLLAPSE_WAIT	0x0004
1123 
1124 static __inline int
1125 vm_object_backing_scan(vm_object_t object, int op)
1126 {
1127 	int r = 1;
1128 	vm_page_t p;
1129 	vm_object_t backing_object;
1130 	vm_pindex_t backing_offset_index;
1131 
1132 	/*
1133 	 * spl protection is required to avoid races between the memq/lookup,
1134 	 * an interrupt doing an unbusy/free, and our busy check.  Amoung
1135 	 * other things.
1136 	 */
1137 	crit_enter();
1138 
1139 	backing_object = object->backing_object;
1140 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1141 
1142 	/*
1143 	 * Initial conditions
1144 	 */
1145 
1146 	if (op & OBSC_TEST_ALL_SHADOWED) {
1147 		/*
1148 		 * We do not want to have to test for the existence of
1149 		 * swap pages in the backing object.  XXX but with the
1150 		 * new swapper this would be pretty easy to do.
1151 		 *
1152 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1153 		 * been ZFOD faulted yet?  If we do not test for this, the
1154 		 * shadow test may succeed! XXX
1155 		 */
1156 		if (backing_object->type != OBJT_DEFAULT) {
1157 			crit_exit();
1158 			return(0);
1159 		}
1160 	}
1161 	if (op & OBSC_COLLAPSE_WAIT) {
1162 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1163 		vm_object_set_flag(backing_object, OBJ_DEAD);
1164 	}
1165 
1166 	/*
1167 	 * Our scan
1168 	 */
1169 
1170 	p = TAILQ_FIRST(&backing_object->memq);
1171 	while (p) {
1172 		vm_page_t next = TAILQ_NEXT(p, listq);
1173 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1174 
1175 		if (op & OBSC_TEST_ALL_SHADOWED) {
1176 			vm_page_t pp;
1177 
1178 			/*
1179 			 * Ignore pages outside the parent object's range
1180 			 * and outside the parent object's mapping of the
1181 			 * backing object.
1182 			 *
1183 			 * note that we do not busy the backing object's
1184 			 * page.
1185 			 */
1186 
1187 			if (
1188 			    p->pindex < backing_offset_index ||
1189 			    new_pindex >= object->size
1190 			) {
1191 				p = next;
1192 				continue;
1193 			}
1194 
1195 			/*
1196 			 * See if the parent has the page or if the parent's
1197 			 * object pager has the page.  If the parent has the
1198 			 * page but the page is not valid, the parent's
1199 			 * object pager must have the page.
1200 			 *
1201 			 * If this fails, the parent does not completely shadow
1202 			 * the object and we might as well give up now.
1203 			 */
1204 
1205 			pp = vm_page_lookup(object, new_pindex);
1206 			if (
1207 			    (pp == NULL || pp->valid == 0) &&
1208 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1209 			) {
1210 				r = 0;
1211 				break;
1212 			}
1213 		}
1214 
1215 		/*
1216 		 * Check for busy page
1217 		 */
1218 
1219 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1220 			vm_page_t pp;
1221 
1222 			if (op & OBSC_COLLAPSE_NOWAIT) {
1223 				if (
1224 				    (p->flags & PG_BUSY) ||
1225 				    !p->valid ||
1226 				    p->hold_count ||
1227 				    p->wire_count ||
1228 				    p->busy
1229 				) {
1230 					p = next;
1231 					continue;
1232 				}
1233 			} else if (op & OBSC_COLLAPSE_WAIT) {
1234 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1235 					/*
1236 					 * If we slept, anything could have
1237 					 * happened.  Since the object is
1238 					 * marked dead, the backing offset
1239 					 * should not have changed so we
1240 					 * just restart our scan.
1241 					 */
1242 					p = TAILQ_FIRST(&backing_object->memq);
1243 					continue;
1244 				}
1245 			}
1246 
1247 			/*
1248 			 * Busy the page
1249 			 */
1250 			vm_page_busy(p);
1251 
1252 			KASSERT(
1253 			    p->object == backing_object,
1254 			    ("vm_object_qcollapse(): object mismatch")
1255 			);
1256 
1257 			/*
1258 			 * Destroy any associated swap
1259 			 */
1260 			if (backing_object->type == OBJT_SWAP) {
1261 				swap_pager_freespace(
1262 				    backing_object,
1263 				    p->pindex,
1264 				    1
1265 				);
1266 			}
1267 
1268 			if (
1269 			    p->pindex < backing_offset_index ||
1270 			    new_pindex >= object->size
1271 			) {
1272 				/*
1273 				 * Page is out of the parent object's range, we
1274 				 * can simply destroy it.
1275 				 */
1276 				vm_page_protect(p, VM_PROT_NONE);
1277 				vm_page_free(p);
1278 				p = next;
1279 				continue;
1280 			}
1281 
1282 			pp = vm_page_lookup(object, new_pindex);
1283 			if (
1284 			    pp != NULL ||
1285 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1286 			) {
1287 				/*
1288 				 * page already exists in parent OR swap exists
1289 				 * for this location in the parent.  Destroy
1290 				 * the original page from the backing object.
1291 				 *
1292 				 * Leave the parent's page alone
1293 				 */
1294 				vm_page_protect(p, VM_PROT_NONE);
1295 				vm_page_free(p);
1296 				p = next;
1297 				continue;
1298 			}
1299 
1300 			/*
1301 			 * Page does not exist in parent, rename the
1302 			 * page from the backing object to the main object.
1303 			 *
1304 			 * If the page was mapped to a process, it can remain
1305 			 * mapped through the rename.
1306 			 */
1307 			if ((p->queue - p->pc) == PQ_CACHE)
1308 				vm_page_deactivate(p);
1309 
1310 			vm_page_rename(p, object, new_pindex);
1311 			/* page automatically made dirty by rename */
1312 		}
1313 		p = next;
1314 	}
1315 	crit_exit();
1316 	return(r);
1317 }
1318 
1319 
1320 /*
1321  * this version of collapse allows the operation to occur earlier and
1322  * when paging_in_progress is true for an object...  This is not a complete
1323  * operation, but should plug 99.9% of the rest of the leaks.
1324  */
1325 static void
1326 vm_object_qcollapse(vm_object_t object)
1327 {
1328 	vm_object_t backing_object = object->backing_object;
1329 
1330 	if (backing_object->ref_count != 1)
1331 		return;
1332 
1333 	backing_object->ref_count += 2;
1334 
1335 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1336 
1337 	backing_object->ref_count -= 2;
1338 }
1339 
1340 /*
1341  *	vm_object_collapse:
1342  *
1343  *	Collapse an object with the object backing it.
1344  *	Pages in the backing object are moved into the
1345  *	parent, and the backing object is deallocated.
1346  */
1347 void
1348 vm_object_collapse(vm_object_t object)
1349 {
1350 	while (TRUE) {
1351 		vm_object_t backing_object;
1352 
1353 		/*
1354 		 * Verify that the conditions are right for collapse:
1355 		 *
1356 		 * The object exists and the backing object exists.
1357 		 */
1358 		if (object == NULL)
1359 			break;
1360 
1361 		if ((backing_object = object->backing_object) == NULL)
1362 			break;
1363 
1364 		/*
1365 		 * we check the backing object first, because it is most likely
1366 		 * not collapsable.
1367 		 */
1368 		if (backing_object->handle != NULL ||
1369 		    (backing_object->type != OBJT_DEFAULT &&
1370 		     backing_object->type != OBJT_SWAP) ||
1371 		    (backing_object->flags & OBJ_DEAD) ||
1372 		    object->handle != NULL ||
1373 		    (object->type != OBJT_DEFAULT &&
1374 		     object->type != OBJT_SWAP) ||
1375 		    (object->flags & OBJ_DEAD)) {
1376 			break;
1377 		}
1378 
1379 		if (
1380 		    object->paging_in_progress != 0 ||
1381 		    backing_object->paging_in_progress != 0
1382 		) {
1383 			vm_object_qcollapse(object);
1384 			break;
1385 		}
1386 
1387 		/*
1388 		 * We know that we can either collapse the backing object (if
1389 		 * the parent is the only reference to it) or (perhaps) have
1390 		 * the parent bypass the object if the parent happens to shadow
1391 		 * all the resident pages in the entire backing object.
1392 		 *
1393 		 * This is ignoring pager-backed pages such as swap pages.
1394 		 * vm_object_backing_scan fails the shadowing test in this
1395 		 * case.
1396 		 */
1397 
1398 		if (backing_object->ref_count == 1) {
1399 			/*
1400 			 * If there is exactly one reference to the backing
1401 			 * object, we can collapse it into the parent.
1402 			 */
1403 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1404 
1405 			/*
1406 			 * Move the pager from backing_object to object.
1407 			 */
1408 
1409 			if (backing_object->type == OBJT_SWAP) {
1410 				vm_object_pip_add(backing_object, 1);
1411 
1412 				/*
1413 				 * scrap the paging_offset junk and do a
1414 				 * discrete copy.  This also removes major
1415 				 * assumptions about how the swap-pager
1416 				 * works from where it doesn't belong.  The
1417 				 * new swapper is able to optimize the
1418 				 * destroy-source case.
1419 				 */
1420 
1421 				vm_object_pip_add(object, 1);
1422 				swap_pager_copy(
1423 				    backing_object,
1424 				    object,
1425 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1426 				vm_object_pip_wakeup(object);
1427 
1428 				vm_object_pip_wakeup(backing_object);
1429 			}
1430 			/*
1431 			 * Object now shadows whatever backing_object did.
1432 			 * Note that the reference to
1433 			 * backing_object->backing_object moves from within
1434 			 * backing_object to within object.
1435 			 */
1436 
1437 			LIST_REMOVE(object, shadow_list);
1438 			object->backing_object->shadow_count--;
1439 			object->backing_object->generation++;
1440 			if (backing_object->backing_object) {
1441 				LIST_REMOVE(backing_object, shadow_list);
1442 				backing_object->backing_object->shadow_count--;
1443 				backing_object->backing_object->generation++;
1444 			}
1445 			object->backing_object = backing_object->backing_object;
1446 			if (object->backing_object) {
1447 				LIST_INSERT_HEAD(
1448 				    &object->backing_object->shadow_head,
1449 				    object,
1450 				    shadow_list
1451 				);
1452 				object->backing_object->shadow_count++;
1453 				object->backing_object->generation++;
1454 			}
1455 
1456 			object->backing_object_offset +=
1457 			    backing_object->backing_object_offset;
1458 
1459 			/*
1460 			 * Discard backing_object.
1461 			 *
1462 			 * Since the backing object has no pages, no pager left,
1463 			 * and no object references within it, all that is
1464 			 * necessary is to dispose of it.
1465 			 */
1466 
1467 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1468 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1469 			crit_enter();
1470 			TAILQ_REMOVE(
1471 			    &vm_object_list,
1472 			    backing_object,
1473 			    object_list
1474 			);
1475 			vm_object_count--;
1476 			crit_exit();
1477 
1478 			zfree(obj_zone, backing_object);
1479 
1480 			object_collapses++;
1481 		} else {
1482 			vm_object_t new_backing_object;
1483 
1484 			/*
1485 			 * If we do not entirely shadow the backing object,
1486 			 * there is nothing we can do so we give up.
1487 			 */
1488 
1489 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1490 				break;
1491 			}
1492 
1493 			/*
1494 			 * Make the parent shadow the next object in the
1495 			 * chain.  Deallocating backing_object will not remove
1496 			 * it, since its reference count is at least 2.
1497 			 */
1498 
1499 			LIST_REMOVE(object, shadow_list);
1500 			backing_object->shadow_count--;
1501 			backing_object->generation++;
1502 
1503 			new_backing_object = backing_object->backing_object;
1504 			if ((object->backing_object = new_backing_object) != NULL) {
1505 				vm_object_reference(new_backing_object);
1506 				LIST_INSERT_HEAD(
1507 				    &new_backing_object->shadow_head,
1508 				    object,
1509 				    shadow_list
1510 				);
1511 				new_backing_object->shadow_count++;
1512 				new_backing_object->generation++;
1513 				object->backing_object_offset +=
1514 					backing_object->backing_object_offset;
1515 			}
1516 
1517 			/*
1518 			 * Drop the reference count on backing_object. Since
1519 			 * its ref_count was at least 2, it will not vanish;
1520 			 * so we don't need to call vm_object_deallocate, but
1521 			 * we do anyway.
1522 			 */
1523 			vm_object_deallocate(backing_object);
1524 			object_bypasses++;
1525 		}
1526 
1527 		/*
1528 		 * Try again with this object's new backing object.
1529 		 */
1530 	}
1531 }
1532 
1533 /*
1534  *	vm_object_page_remove: [internal]
1535  *
1536  *	Removes all physical pages in the specified
1537  *	object range from the object's list of pages.
1538  */
1539 void
1540 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1541     boolean_t clean_only)
1542 {
1543 	vm_page_t p, next;
1544 	unsigned int size;
1545 	int all;
1546 
1547 	if (object == NULL || object->resident_page_count == 0)
1548 		return;
1549 
1550 	all = ((end == 0) && (start == 0));
1551 
1552 	/*
1553 	 * Since physically-backed objects do not use managed pages, we can't
1554 	 * remove pages from the object (we must instead remove the page
1555 	 * references, and then destroy the object).
1556 	 */
1557 	KASSERT(object->type != OBJT_PHYS,
1558 		("attempt to remove pages from a physical object"));
1559 
1560 	/*
1561 	 * Indicating that the object is undergoing paging.
1562 	 *
1563 	 * spl protection is required to avoid a race between the memq scan,
1564 	 * an interrupt unbusy/free, and the busy check.
1565 	 */
1566 	vm_object_pip_add(object, 1);
1567 	crit_enter();
1568 again:
1569 	size = end - start;
1570 	if (all || size > object->resident_page_count / 4) {
1571 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1572 			next = TAILQ_NEXT(p, listq);
1573 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1574 				if (p->wire_count != 0) {
1575 					vm_page_protect(p, VM_PROT_NONE);
1576 					if (!clean_only)
1577 						p->valid = 0;
1578 					continue;
1579 				}
1580 
1581 				/*
1582 				 * The busy flags are only cleared at
1583 				 * interrupt -- minimize the spl transitions
1584 				 */
1585 
1586  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1587  					goto again;
1588 
1589 				if (clean_only && p->valid) {
1590 					vm_page_test_dirty(p);
1591 					if (p->valid & p->dirty)
1592 						continue;
1593 				}
1594 
1595 				vm_page_busy(p);
1596 				vm_page_protect(p, VM_PROT_NONE);
1597 				vm_page_free(p);
1598 			}
1599 		}
1600 	} else {
1601 		while (size > 0) {
1602 			if ((p = vm_page_lookup(object, start)) != 0) {
1603 				if (p->wire_count != 0) {
1604 					vm_page_protect(p, VM_PROT_NONE);
1605 					if (!clean_only)
1606 						p->valid = 0;
1607 					start += 1;
1608 					size -= 1;
1609 					continue;
1610 				}
1611 
1612 				/*
1613 				 * The busy flags are only cleared at
1614 				 * interrupt -- minimize the spl transitions
1615 				 */
1616  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1617 					goto again;
1618 
1619 				if (clean_only && p->valid) {
1620 					vm_page_test_dirty(p);
1621 					if (p->valid & p->dirty) {
1622 						start += 1;
1623 						size -= 1;
1624 						continue;
1625 					}
1626 				}
1627 
1628 				vm_page_busy(p);
1629 				vm_page_protect(p, VM_PROT_NONE);
1630 				vm_page_free(p);
1631 			}
1632 			start += 1;
1633 			size -= 1;
1634 		}
1635 	}
1636 	crit_exit();
1637 	vm_object_pip_wakeup(object);
1638 }
1639 
1640 /*
1641  *	Routine:	vm_object_coalesce
1642  *	Function:	Coalesces two objects backing up adjoining
1643  *			regions of memory into a single object.
1644  *
1645  *	returns TRUE if objects were combined.
1646  *
1647  *	NOTE:	Only works at the moment if the second object is NULL -
1648  *		if it's not, which object do we lock first?
1649  *
1650  *	Parameters:
1651  *		prev_object	First object to coalesce
1652  *		prev_offset	Offset into prev_object
1653  *		next_object	Second object into coalesce
1654  *		next_offset	Offset into next_object
1655  *
1656  *		prev_size	Size of reference to prev_object
1657  *		next_size	Size of reference to next_object
1658  *
1659  *	Conditions:
1660  *	The object must *not* be locked.
1661  */
1662 boolean_t
1663 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1664     vm_size_t prev_size, vm_size_t next_size)
1665 {
1666 	vm_pindex_t next_pindex;
1667 
1668 	if (prev_object == NULL) {
1669 		return (TRUE);
1670 	}
1671 
1672 	if (prev_object->type != OBJT_DEFAULT &&
1673 	    prev_object->type != OBJT_SWAP) {
1674 		return (FALSE);
1675 	}
1676 
1677 	/*
1678 	 * Try to collapse the object first
1679 	 */
1680 	vm_object_collapse(prev_object);
1681 
1682 	/*
1683 	 * Can't coalesce if: . more than one reference . paged out . shadows
1684 	 * another object . has a copy elsewhere (any of which mean that the
1685 	 * pages not mapped to prev_entry may be in use anyway)
1686 	 */
1687 
1688 	if (prev_object->backing_object != NULL) {
1689 		return (FALSE);
1690 	}
1691 
1692 	prev_size >>= PAGE_SHIFT;
1693 	next_size >>= PAGE_SHIFT;
1694 	next_pindex = prev_pindex + prev_size;
1695 
1696 	if ((prev_object->ref_count > 1) &&
1697 	    (prev_object->size != next_pindex)) {
1698 		return (FALSE);
1699 	}
1700 
1701 	/*
1702 	 * Remove any pages that may still be in the object from a previous
1703 	 * deallocation.
1704 	 */
1705 	if (next_pindex < prev_object->size) {
1706 		vm_object_page_remove(prev_object,
1707 				      next_pindex,
1708 				      next_pindex + next_size, FALSE);
1709 		if (prev_object->type == OBJT_SWAP)
1710 			swap_pager_freespace(prev_object,
1711 					     next_pindex, next_size);
1712 	}
1713 
1714 	/*
1715 	 * Extend the object if necessary.
1716 	 */
1717 	if (next_pindex + next_size > prev_object->size)
1718 		prev_object->size = next_pindex + next_size;
1719 
1720 	return (TRUE);
1721 }
1722 
1723 void
1724 vm_object_set_writeable_dirty(vm_object_t object)
1725 {
1726 	struct vnode *vp;
1727 
1728 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1729 	if (object->type == OBJT_VNODE &&
1730 	    (vp = (struct vnode *)object->handle) != NULL) {
1731 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1732 			vsetflags(vp, VOBJDIRTY);
1733 		}
1734 	}
1735 }
1736 
1737 
1738 
1739 #include "opt_ddb.h"
1740 #ifdef DDB
1741 #include <sys/kernel.h>
1742 
1743 #include <sys/cons.h>
1744 
1745 #include <ddb/ddb.h>
1746 
1747 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1748 				       vm_map_entry_t entry);
1749 static int	vm_object_in_map (vm_object_t object);
1750 
1751 static int
1752 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1753 {
1754 	vm_map_t tmpm;
1755 	vm_map_entry_t tmpe;
1756 	vm_object_t obj;
1757 	int entcount;
1758 
1759 	if (map == 0)
1760 		return 0;
1761 
1762 	if (entry == 0) {
1763 		tmpe = map->header.next;
1764 		entcount = map->nentries;
1765 		while (entcount-- && (tmpe != &map->header)) {
1766 			if( _vm_object_in_map(map, object, tmpe)) {
1767 				return 1;
1768 			}
1769 			tmpe = tmpe->next;
1770 		}
1771 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1772 		tmpm = entry->object.sub_map;
1773 		tmpe = tmpm->header.next;
1774 		entcount = tmpm->nentries;
1775 		while (entcount-- && tmpe != &tmpm->header) {
1776 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1777 				return 1;
1778 			}
1779 			tmpe = tmpe->next;
1780 		}
1781 	} else if ((obj = entry->object.vm_object) != NULL) {
1782 		for(; obj; obj=obj->backing_object)
1783 			if( obj == object) {
1784 				return 1;
1785 			}
1786 	}
1787 	return 0;
1788 }
1789 
1790 static int vm_object_in_map_callback(struct proc *p, void *data);
1791 
1792 struct vm_object_in_map_info {
1793 	vm_object_t object;
1794 	int rv;
1795 };
1796 
1797 static int
1798 vm_object_in_map(vm_object_t object)
1799 {
1800 	struct vm_object_in_map_info info;
1801 
1802 	info.rv = 0;
1803 	info.object = object;
1804 
1805 	allproc_scan(vm_object_in_map_callback, &info);
1806 	if (info.rv)
1807 		return 1;
1808 	if( _vm_object_in_map( kernel_map, object, 0))
1809 		return 1;
1810 	if( _vm_object_in_map( pager_map, object, 0))
1811 		return 1;
1812 	if( _vm_object_in_map( buffer_map, object, 0))
1813 		return 1;
1814 	return 0;
1815 }
1816 
1817 static int
1818 vm_object_in_map_callback(struct proc *p, void *data)
1819 {
1820 	struct vm_object_in_map_info *info = data;
1821 
1822 	if (p->p_vmspace) {
1823 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1824 			info->rv = 1;
1825 			return -1;
1826 		}
1827 	}
1828 	return (0);
1829 }
1830 
1831 DB_SHOW_COMMAND(vmochk, vm_object_check)
1832 {
1833 	vm_object_t object;
1834 
1835 	/*
1836 	 * make sure that internal objs are in a map somewhere
1837 	 * and none have zero ref counts.
1838 	 */
1839 	for (object = TAILQ_FIRST(&vm_object_list);
1840 			object != NULL;
1841 			object = TAILQ_NEXT(object, object_list)) {
1842 		if (object->handle == NULL &&
1843 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1844 			if (object->ref_count == 0) {
1845 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1846 					(long)object->size);
1847 			}
1848 			if (!vm_object_in_map(object)) {
1849 				db_printf(
1850 			"vmochk: internal obj is not in a map: "
1851 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1852 				    object->ref_count, (u_long)object->size,
1853 				    (u_long)object->size,
1854 				    (void *)object->backing_object);
1855 			}
1856 		}
1857 	}
1858 }
1859 
1860 /*
1861  *	vm_object_print:	[ debug ]
1862  */
1863 DB_SHOW_COMMAND(object, vm_object_print_static)
1864 {
1865 	/* XXX convert args. */
1866 	vm_object_t object = (vm_object_t)addr;
1867 	boolean_t full = have_addr;
1868 
1869 	vm_page_t p;
1870 
1871 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1872 #define	count	was_count
1873 
1874 	int count;
1875 
1876 	if (object == NULL)
1877 		return;
1878 
1879 	db_iprintf(
1880 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1881 	    object, (int)object->type, (u_long)object->size,
1882 	    object->resident_page_count, object->ref_count, object->flags);
1883 	/*
1884 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1885 	 */
1886 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1887 	    object->shadow_count,
1888 	    object->backing_object ? object->backing_object->ref_count : 0,
1889 	    object->backing_object, (long)object->backing_object_offset);
1890 
1891 	if (!full)
1892 		return;
1893 
1894 	db_indent += 2;
1895 	count = 0;
1896 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1897 		if (count == 0)
1898 			db_iprintf("memory:=");
1899 		else if (count == 6) {
1900 			db_printf("\n");
1901 			db_iprintf(" ...");
1902 			count = 0;
1903 		} else
1904 			db_printf(",");
1905 		count++;
1906 
1907 		db_printf("(off=0x%lx,page=0x%lx)",
1908 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1909 	}
1910 	if (count != 0)
1911 		db_printf("\n");
1912 	db_indent -= 2;
1913 }
1914 
1915 /* XXX. */
1916 #undef count
1917 
1918 /* XXX need this non-static entry for calling from vm_map_print. */
1919 void
1920 vm_object_print(/* db_expr_t */ long addr,
1921 		boolean_t have_addr,
1922 		/* db_expr_t */ long count,
1923 		char *modif)
1924 {
1925 	vm_object_print_static(addr, have_addr, count, modif);
1926 }
1927 
1928 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1929 {
1930 	vm_object_t object;
1931 	int nl = 0;
1932 	int c;
1933 	for (object = TAILQ_FIRST(&vm_object_list);
1934 			object != NULL;
1935 			object = TAILQ_NEXT(object, object_list)) {
1936 		vm_pindex_t idx, fidx;
1937 		vm_pindex_t osize;
1938 		vm_paddr_t pa = -1, padiff;
1939 		int rcount;
1940 		vm_page_t m;
1941 
1942 		db_printf("new object: %p\n", (void *)object);
1943 		if ( nl > 18) {
1944 			c = cngetc();
1945 			if (c != ' ')
1946 				return;
1947 			nl = 0;
1948 		}
1949 		nl++;
1950 		rcount = 0;
1951 		fidx = 0;
1952 		osize = object->size;
1953 		if (osize > 128)
1954 			osize = 128;
1955 		for (idx = 0; idx < osize; idx++) {
1956 			m = vm_page_lookup(object, idx);
1957 			if (m == NULL) {
1958 				if (rcount) {
1959 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1960 						(long)fidx, rcount, (long)pa);
1961 					if ( nl > 18) {
1962 						c = cngetc();
1963 						if (c != ' ')
1964 							return;
1965 						nl = 0;
1966 					}
1967 					nl++;
1968 					rcount = 0;
1969 				}
1970 				continue;
1971 			}
1972 
1973 
1974 			if (rcount &&
1975 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1976 				++rcount;
1977 				continue;
1978 			}
1979 			if (rcount) {
1980 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1981 				padiff >>= PAGE_SHIFT;
1982 				padiff &= PQ_L2_MASK;
1983 				if (padiff == 0) {
1984 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1985 					++rcount;
1986 					continue;
1987 				}
1988 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1989 					(long)fidx, rcount, (long)pa);
1990 				db_printf("pd(%ld)\n", (long)padiff);
1991 				if ( nl > 18) {
1992 					c = cngetc();
1993 					if (c != ' ')
1994 						return;
1995 					nl = 0;
1996 				}
1997 				nl++;
1998 			}
1999 			fidx = idx;
2000 			pa = VM_PAGE_TO_PHYS(m);
2001 			rcount = 1;
2002 		}
2003 		if (rcount) {
2004 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2005 				(long)fidx, rcount, (long)pa);
2006 			if ( nl > 18) {
2007 				c = cngetc();
2008 				if (c != ' ')
2009 					return;
2010 				nl = 0;
2011 			}
2012 			nl++;
2013 		}
2014 	}
2015 }
2016 #endif /* DDB */
2017