xref: /dragonfly/sys/vm/vm_page.c (revision 0cfebe3d)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.36 2007/12/06 22:25:49 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
96 
97 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
98 
99 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
100 
101 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
102 	     vm_pindex_t, pindex);
103 
104 static void
105 vm_page_queue_init(void)
106 {
107 	int i;
108 
109 	for (i = 0; i < PQ_L2_SIZE; i++)
110 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
111 	for (i = 0; i < PQ_L2_SIZE; i++)
112 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
113 
114 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
115 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
116 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
117 	/* PQ_NONE has no queue */
118 
119 	for (i = 0; i < PQ_COUNT; i++)
120 		TAILQ_INIT(&vm_page_queues[i].pl);
121 }
122 
123 /*
124  * note: place in initialized data section?  Is this necessary?
125  */
126 long first_page = 0;
127 int vm_page_array_size = 0;
128 int vm_page_zero_count = 0;
129 vm_page_t vm_page_array = 0;
130 
131 /*
132  * (low level boot)
133  *
134  * Sets the page size, perhaps based upon the memory size.
135  * Must be called before any use of page-size dependent functions.
136  */
137 void
138 vm_set_page_size(void)
139 {
140 	if (vmstats.v_page_size == 0)
141 		vmstats.v_page_size = PAGE_SIZE;
142 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
143 		panic("vm_set_page_size: page size not a power of two");
144 }
145 
146 /*
147  * (low level boot)
148  *
149  * Add a new page to the freelist for use by the system.  New pages
150  * are added to both the head and tail of the associated free page
151  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
152  * requests pull 'recent' adds (higher physical addresses) first.
153  *
154  * Must be called in a critical section.
155  */
156 vm_page_t
157 vm_add_new_page(vm_paddr_t pa)
158 {
159 	struct vpgqueues *vpq;
160 	vm_page_t m;
161 
162 	++vmstats.v_page_count;
163 	++vmstats.v_free_count;
164 	m = PHYS_TO_VM_PAGE(pa);
165 	m->phys_addr = pa;
166 	m->flags = 0;
167 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
168 	m->queue = m->pc + PQ_FREE;
169 	KKASSERT(m->dirty == 0);
170 
171 	vpq = &vm_page_queues[m->queue];
172 	if (vpq->flipflop)
173 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
174 	else
175 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
176 	vpq->flipflop = 1 - vpq->flipflop;
177 
178 	vm_page_queues[m->queue].lcnt++;
179 	return (m);
180 }
181 
182 /*
183  * (low level boot)
184  *
185  * Initializes the resident memory module.
186  *
187  * Allocates memory for the page cells, and for the object/offset-to-page
188  * hash table headers.  Each page cell is initialized and placed on the
189  * free list.
190  *
191  * starta/enda represents the range of physical memory addresses available
192  * for use (skipping memory already used by the kernel), subject to
193  * phys_avail[].  Note that phys_avail[] has already mapped out memory
194  * already in use by the kernel.
195  */
196 vm_offset_t
197 vm_page_startup(vm_offset_t vaddr)
198 {
199 	vm_offset_t mapped;
200 	vm_size_t npages;
201 	vm_paddr_t page_range;
202 	vm_paddr_t new_end;
203 	int i;
204 	vm_paddr_t pa;
205 	int nblocks;
206 	vm_paddr_t last_pa;
207 	vm_paddr_t end;
208 	vm_paddr_t biggestone, biggestsize;
209 	vm_paddr_t total;
210 
211 	total = 0;
212 	biggestsize = 0;
213 	biggestone = 0;
214 	nblocks = 0;
215 	vaddr = round_page(vaddr);
216 
217 	for (i = 0; phys_avail[i + 1]; i += 2) {
218 		phys_avail[i] = round_page(phys_avail[i]);
219 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
220 	}
221 
222 	for (i = 0; phys_avail[i + 1]; i += 2) {
223 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
224 
225 		if (size > biggestsize) {
226 			biggestone = i;
227 			biggestsize = size;
228 		}
229 		++nblocks;
230 		total += size;
231 	}
232 
233 	end = phys_avail[biggestone+1];
234 	end = trunc_page(end);
235 
236 	/*
237 	 * Initialize the queue headers for the free queue, the active queue
238 	 * and the inactive queue.
239 	 */
240 
241 	vm_page_queue_init();
242 
243 	/*
244 	 * Compute the number of pages of memory that will be available for
245 	 * use (taking into account the overhead of a page structure per
246 	 * page).
247 	 */
248 	first_page = phys_avail[0] / PAGE_SIZE;
249 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
250 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
251 
252 	/*
253 	 * Initialize the mem entry structures now, and put them in the free
254 	 * queue.
255 	 */
256 	vm_page_array = (vm_page_t) vaddr;
257 	mapped = vaddr;
258 
259 	/*
260 	 * Validate these addresses.
261 	 */
262 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
263 	mapped = pmap_map(mapped, new_end, end,
264 	    VM_PROT_READ | VM_PROT_WRITE);
265 
266 	/*
267 	 * Clear all of the page structures
268 	 */
269 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
270 	vm_page_array_size = page_range;
271 
272 	/*
273 	 * Construct the free queue(s) in ascending order (by physical
274 	 * address) so that the first 16MB of physical memory is allocated
275 	 * last rather than first.  On large-memory machines, this avoids
276 	 * the exhaustion of low physical memory before isa_dmainit has run.
277 	 */
278 	vmstats.v_page_count = 0;
279 	vmstats.v_free_count = 0;
280 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
281 		pa = phys_avail[i];
282 		if (i == biggestone)
283 			last_pa = new_end;
284 		else
285 			last_pa = phys_avail[i + 1];
286 		while (pa < last_pa && npages-- > 0) {
287 			vm_add_new_page(pa);
288 			pa += PAGE_SIZE;
289 		}
290 	}
291 	return (mapped);
292 }
293 
294 /*
295  * Scan comparison function for Red-Black tree scans.  An inclusive
296  * (start,end) is expected.  Other fields are not used.
297  */
298 int
299 rb_vm_page_scancmp(struct vm_page *p, void *data)
300 {
301 	struct rb_vm_page_scan_info *info = data;
302 
303 	if (p->pindex < info->start_pindex)
304 		return(-1);
305 	if (p->pindex > info->end_pindex)
306 		return(1);
307 	return(0);
308 }
309 
310 int
311 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
312 {
313 	if (p1->pindex < p2->pindex)
314 		return(-1);
315 	if (p1->pindex > p2->pindex)
316 		return(1);
317 	return(0);
318 }
319 
320 /*
321  * The opposite of vm_page_hold().  A page can be freed while being held,
322  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
323  * in this case to actually free it once the hold count drops to 0.
324  *
325  * This routine must be called at splvm().
326  */
327 void
328 vm_page_unhold(vm_page_t mem)
329 {
330 	--mem->hold_count;
331 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
332 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
333 		vm_page_busy(mem);
334 		vm_page_free_toq(mem);
335 	}
336 }
337 
338 /*
339  * Inserts the given mem entry into the object and object list.
340  *
341  * The pagetables are not updated but will presumably fault the page
342  * in if necessary, or if a kernel page the caller will at some point
343  * enter the page into the kernel's pmap.  We are not allowed to block
344  * here so we *can't* do this anyway.
345  *
346  * This routine may not block.
347  * This routine must be called with a critical section held.
348  */
349 void
350 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
351 {
352 	ASSERT_IN_CRIT_SECTION();
353 	if (m->object != NULL)
354 		panic("vm_page_insert: already inserted");
355 
356 	/*
357 	 * Record the object/offset pair in this page
358 	 */
359 	m->object = object;
360 	m->pindex = pindex;
361 
362 	/*
363 	 * Insert it into the object.
364 	 */
365 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
366 	object->generation++;
367 
368 	/*
369 	 * show that the object has one more resident page.
370 	 */
371 	object->resident_page_count++;
372 
373 	/*
374 	 * Since we are inserting a new and possibly dirty page,
375 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
376 	 */
377 	if (m->flags & PG_WRITEABLE)
378 		vm_object_set_writeable_dirty(object);
379 }
380 
381 /*
382  * Removes the given vm_page_t from the global (object,index) hash table
383  * and from the object's memq.
384  *
385  * The underlying pmap entry (if any) is NOT removed here.
386  * This routine may not block.
387  *
388  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
389  * held on call to this routine.
390  *
391  * note: FreeBSD side effect was to unbusy the page on return.  We leave
392  * it busy.
393  */
394 void
395 vm_page_remove(vm_page_t m)
396 {
397 	vm_object_t object;
398 
399 	crit_enter();
400 	if (m->object == NULL) {
401 		crit_exit();
402 		return;
403 	}
404 
405 	if ((m->flags & PG_BUSY) == 0)
406 		panic("vm_page_remove: page not busy");
407 
408 	object = m->object;
409 
410 	/*
411 	 * Remove the page from the object and update the object.
412 	 */
413 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
414 	object->resident_page_count--;
415 	object->generation++;
416 	m->object = NULL;
417 
418 	crit_exit();
419 }
420 
421 /*
422  * Locate and return the page at (object, pindex), or NULL if the
423  * page could not be found.
424  *
425  * This routine will operate properly without spl protection, but
426  * the returned page could be in flux if it is busy.  Because an
427  * interrupt can race a caller's busy check (unbusying and freeing the
428  * page we return before the caller is able to check the busy bit),
429  * the caller should generally call this routine with a critical
430  * section held.
431  *
432  * Callers may call this routine without spl protection if they know
433  * 'for sure' that the page will not be ripped out from under them
434  * by an interrupt.
435  */
436 vm_page_t
437 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
438 {
439 	vm_page_t m;
440 
441 	/*
442 	 * Search the hash table for this object/offset pair
443 	 */
444 	crit_enter();
445 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
446 	crit_exit();
447 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
448 	return(m);
449 }
450 
451 /*
452  * vm_page_rename()
453  *
454  * Move the given memory entry from its current object to the specified
455  * target object/offset.
456  *
457  * The object must be locked.
458  * This routine may not block.
459  *
460  * Note: This routine will raise itself to splvm(), the caller need not.
461  *
462  * Note: Swap associated with the page must be invalidated by the move.  We
463  *       have to do this for several reasons:  (1) we aren't freeing the
464  *       page, (2) we are dirtying the page, (3) the VM system is probably
465  *       moving the page from object A to B, and will then later move
466  *       the backing store from A to B and we can't have a conflict.
467  *
468  * Note: We *always* dirty the page.  It is necessary both for the
469  *       fact that we moved it, and because we may be invalidating
470  *	 swap.  If the page is on the cache, we have to deactivate it
471  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
472  *	 on the cache.
473  */
474 void
475 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
476 {
477 	crit_enter();
478 	vm_page_remove(m);
479 	vm_page_insert(m, new_object, new_pindex);
480 	if (m->queue - m->pc == PQ_CACHE)
481 		vm_page_deactivate(m);
482 	vm_page_dirty(m);
483 	vm_page_wakeup(m);
484 	crit_exit();
485 }
486 
487 /*
488  * vm_page_unqueue() without any wakeup.  This routine is used when a page
489  * is being moved between queues or otherwise is to remain BUSYied by the
490  * caller.
491  *
492  * This routine must be called at splhigh().
493  * This routine may not block.
494  */
495 void
496 vm_page_unqueue_nowakeup(vm_page_t m)
497 {
498 	int queue = m->queue;
499 	struct vpgqueues *pq;
500 
501 	if (queue != PQ_NONE) {
502 		pq = &vm_page_queues[queue];
503 		m->queue = PQ_NONE;
504 		TAILQ_REMOVE(&pq->pl, m, pageq);
505 		(*pq->cnt)--;
506 		pq->lcnt--;
507 	}
508 }
509 
510 /*
511  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
512  * if necessary.
513  *
514  * This routine must be called at splhigh().
515  * This routine may not block.
516  */
517 void
518 vm_page_unqueue(vm_page_t m)
519 {
520 	int queue = m->queue;
521 	struct vpgqueues *pq;
522 
523 	if (queue != PQ_NONE) {
524 		m->queue = PQ_NONE;
525 		pq = &vm_page_queues[queue];
526 		TAILQ_REMOVE(&pq->pl, m, pageq);
527 		(*pq->cnt)--;
528 		pq->lcnt--;
529 		if ((queue - m->pc) == PQ_CACHE) {
530 			if (vm_paging_needed())
531 				pagedaemon_wakeup();
532 		}
533 	}
534 }
535 
536 /*
537  * vm_page_list_find()
538  *
539  * Find a page on the specified queue with color optimization.
540  *
541  * The page coloring optimization attempts to locate a page that does
542  * not overload other nearby pages in the object in the cpu's L1 or L2
543  * caches.  We need this optimization because cpu caches tend to be
544  * physical caches, while object spaces tend to be virtual.
545  *
546  * This routine must be called at splvm().
547  * This routine may not block.
548  *
549  * Note that this routine is carefully inlined.  A non-inlined version
550  * is available for outside callers but the only critical path is
551  * from within this source file.
552  */
553 static __inline
554 vm_page_t
555 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
556 {
557 	vm_page_t m;
558 
559 	if (prefer_zero)
560 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
561 	else
562 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
563 	if (m == NULL)
564 		m = _vm_page_list_find2(basequeue, index);
565 	return(m);
566 }
567 
568 static vm_page_t
569 _vm_page_list_find2(int basequeue, int index)
570 {
571 	int i;
572 	vm_page_t m = NULL;
573 	struct vpgqueues *pq;
574 
575 	pq = &vm_page_queues[basequeue];
576 
577 	/*
578 	 * Note that for the first loop, index+i and index-i wind up at the
579 	 * same place.  Even though this is not totally optimal, we've already
580 	 * blown it by missing the cache case so we do not care.
581 	 */
582 
583 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
584 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
585 			break;
586 
587 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
588 			break;
589 	}
590 	return(m);
591 }
592 
593 vm_page_t
594 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
595 {
596 	return(_vm_page_list_find(basequeue, index, prefer_zero));
597 }
598 
599 /*
600  * Find a page on the cache queue with color optimization.  As pages
601  * might be found, but not applicable, they are deactivated.  This
602  * keeps us from using potentially busy cached pages.
603  *
604  * This routine must be called with a critical section held.
605  * This routine may not block.
606  */
607 vm_page_t
608 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
609 {
610 	vm_page_t m;
611 
612 	while (TRUE) {
613 		m = _vm_page_list_find(
614 		    PQ_CACHE,
615 		    (pindex + object->pg_color) & PQ_L2_MASK,
616 		    FALSE
617 		);
618 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
619 			       m->hold_count || m->wire_count)) {
620 			vm_page_deactivate(m);
621 			continue;
622 		}
623 		return m;
624 	}
625 	/* not reached */
626 }
627 
628 /*
629  * Find a free or zero page, with specified preference.  We attempt to
630  * inline the nominal case and fall back to _vm_page_select_free()
631  * otherwise.
632  *
633  * This routine must be called with a critical section held.
634  * This routine may not block.
635  */
636 static __inline vm_page_t
637 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
638 {
639 	vm_page_t m;
640 
641 	m = _vm_page_list_find(
642 		PQ_FREE,
643 		(pindex + object->pg_color) & PQ_L2_MASK,
644 		prefer_zero
645 	);
646 	return(m);
647 }
648 
649 /*
650  * vm_page_alloc()
651  *
652  * Allocate and return a memory cell associated with this VM object/offset
653  * pair.
654  *
655  *	page_req classes:
656  *
657  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
658  *	VM_ALLOC_SYSTEM		greater free drain
659  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
660  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
661  *
662  * The object must be locked.
663  * This routine may not block.
664  * The returned page will be marked PG_BUSY
665  *
666  * Additional special handling is required when called from an interrupt
667  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
668  * in this case.
669  */
670 vm_page_t
671 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
672 {
673 	vm_page_t m = NULL;
674 
675 	KASSERT(!vm_page_lookup(object, pindex),
676 		("vm_page_alloc: page already allocated"));
677 	KKASSERT(page_req &
678 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
679 
680 	/*
681 	 * The pager is allowed to eat deeper into the free page list.
682 	 */
683 	if (curthread == pagethread)
684 		page_req |= VM_ALLOC_SYSTEM;
685 
686 	crit_enter();
687 loop:
688 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
689 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
690 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
691 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
692 	) {
693 		/*
694 		 * The free queue has sufficient free pages to take one out.
695 		 */
696 		if (page_req & VM_ALLOC_ZERO)
697 			m = vm_page_select_free(object, pindex, TRUE);
698 		else
699 			m = vm_page_select_free(object, pindex, FALSE);
700 	} else if (page_req & VM_ALLOC_NORMAL) {
701 		/*
702 		 * Allocatable from the cache (non-interrupt only).  On
703 		 * success, we must free the page and try again, thus
704 		 * ensuring that vmstats.v_*_free_min counters are replenished.
705 		 */
706 #ifdef INVARIANTS
707 		if (curthread->td_preempted) {
708 			kprintf("vm_page_alloc(): warning, attempt to allocate"
709 				" cache page from preempting interrupt\n");
710 			m = NULL;
711 		} else {
712 			m = vm_page_select_cache(object, pindex);
713 		}
714 #else
715 		m = vm_page_select_cache(object, pindex);
716 #endif
717 		/*
718 		 * On success move the page into the free queue and loop.
719 		 */
720 		if (m != NULL) {
721 			KASSERT(m->dirty == 0,
722 			    ("Found dirty cache page %p", m));
723 			vm_page_busy(m);
724 			vm_page_protect(m, VM_PROT_NONE);
725 			vm_page_free(m);
726 			goto loop;
727 		}
728 
729 		/*
730 		 * On failure return NULL
731 		 */
732 		crit_exit();
733 #if defined(DIAGNOSTIC)
734 		if (vmstats.v_cache_count > 0)
735 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
736 #endif
737 		vm_pageout_deficit++;
738 		pagedaemon_wakeup();
739 		return (NULL);
740 	} else {
741 		/*
742 		 * No pages available, wakeup the pageout daemon and give up.
743 		 */
744 		crit_exit();
745 		vm_pageout_deficit++;
746 		pagedaemon_wakeup();
747 		return (NULL);
748 	}
749 
750 	/*
751 	 * Good page found.  The page has not yet been busied.  We are in
752 	 * a critical section.
753 	 */
754 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
755 	KASSERT(m->dirty == 0,
756 		("vm_page_alloc: free/cache page %p was dirty", m));
757 
758 	/*
759 	 * Remove from free queue
760 	 */
761 	vm_page_unqueue_nowakeup(m);
762 
763 	/*
764 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
765 	 * the page PG_BUSY
766 	 */
767 	if (m->flags & PG_ZERO) {
768 		vm_page_zero_count--;
769 		m->flags = PG_ZERO | PG_BUSY;
770 	} else {
771 		m->flags = PG_BUSY;
772 	}
773 	m->wire_count = 0;
774 	m->hold_count = 0;
775 	m->act_count = 0;
776 	m->busy = 0;
777 	m->valid = 0;
778 
779 	/*
780 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
781 	 * inserting a page here does not insert it into the pmap (which
782 	 * could cause us to block allocating memory).  We cannot block
783 	 * anywhere.
784 	 */
785 	vm_page_insert(m, object, pindex);
786 
787 	/*
788 	 * Don't wakeup too often - wakeup the pageout daemon when
789 	 * we would be nearly out of memory.
790 	 */
791 	if (vm_paging_needed())
792 		pagedaemon_wakeup();
793 
794 	crit_exit();
795 
796 	/*
797 	 * A PG_BUSY page is returned.
798 	 */
799 	return (m);
800 }
801 
802 /*
803  * Block until free pages are available for allocation, called in various
804  * places before memory allocations.
805  */
806 void
807 vm_wait(void)
808 {
809 	crit_enter();
810 	if (curthread == pagethread) {
811 		vm_pageout_pages_needed = 1;
812 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
813 	} else {
814 		if (!vm_pages_needed) {
815 			vm_pages_needed = 1;
816 			wakeup(&vm_pages_needed);
817 		}
818 		tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
819 	}
820 	crit_exit();
821 }
822 
823 /*
824  * Block until free pages are available for allocation
825  *
826  * Called only in vm_fault so that processes page faulting can be
827  * easily tracked.
828  *
829  * Sleeps at a lower priority than vm_wait() so that vm_wait()ing
830  * processes will be able to grab memory first.  Do not change
831  * this balance without careful testing first.
832  */
833 void
834 vm_waitpfault(void)
835 {
836 	crit_enter();
837 	if (!vm_pages_needed) {
838 		vm_pages_needed = 1;
839 		wakeup(&vm_pages_needed);
840 	}
841 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
842 	crit_exit();
843 }
844 
845 /*
846  * Put the specified page on the active list (if appropriate).  Ensure
847  * that act_count is at least ACT_INIT but do not otherwise mess with it.
848  *
849  * The page queues must be locked.
850  * This routine may not block.
851  */
852 void
853 vm_page_activate(vm_page_t m)
854 {
855 	crit_enter();
856 	if (m->queue != PQ_ACTIVE) {
857 		if ((m->queue - m->pc) == PQ_CACHE)
858 			mycpu->gd_cnt.v_reactivated++;
859 
860 		vm_page_unqueue(m);
861 
862 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
863 			m->queue = PQ_ACTIVE;
864 			vm_page_queues[PQ_ACTIVE].lcnt++;
865 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
866 					    m, pageq);
867 			if (m->act_count < ACT_INIT)
868 				m->act_count = ACT_INIT;
869 			vmstats.v_active_count++;
870 		}
871 	} else {
872 		if (m->act_count < ACT_INIT)
873 			m->act_count = ACT_INIT;
874 	}
875 	crit_exit();
876 }
877 
878 /*
879  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
880  * routine is called when a page has been added to the cache or free
881  * queues.
882  *
883  * This routine may not block.
884  * This routine must be called at splvm()
885  */
886 static __inline void
887 vm_page_free_wakeup(void)
888 {
889 	/*
890 	 * if pageout daemon needs pages, then tell it that there are
891 	 * some free.
892 	 */
893 	if (vm_pageout_pages_needed &&
894 	    vmstats.v_cache_count + vmstats.v_free_count >=
895 	    vmstats.v_pageout_free_min
896 	) {
897 		wakeup(&vm_pageout_pages_needed);
898 		vm_pageout_pages_needed = 0;
899 	}
900 
901 	/*
902 	 * wakeup processes that are waiting on memory if we hit a
903 	 * high water mark. And wakeup scheduler process if we have
904 	 * lots of memory. this process will swapin processes.
905 	 */
906 	if (vm_pages_needed && !vm_page_count_min()) {
907 		vm_pages_needed = 0;
908 		wakeup(&vmstats.v_free_count);
909 	}
910 }
911 
912 /*
913  *	vm_page_free_toq:
914  *
915  *	Returns the given page to the PQ_FREE list, disassociating it with
916  *	any VM object.
917  *
918  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
919  *	return (the page will have been freed).  No particular spl is required
920  *	on entry.
921  *
922  *	This routine may not block.
923  */
924 void
925 vm_page_free_toq(vm_page_t m)
926 {
927 	struct vpgqueues *pq;
928 
929 	crit_enter();
930 	mycpu->gd_cnt.v_tfree++;
931 
932 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
933 		kprintf(
934 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
935 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
936 		    m->hold_count);
937 		if ((m->queue - m->pc) == PQ_FREE)
938 			panic("vm_page_free: freeing free page");
939 		else
940 			panic("vm_page_free: freeing busy page");
941 	}
942 
943 	/*
944 	 * unqueue, then remove page.  Note that we cannot destroy
945 	 * the page here because we do not want to call the pager's
946 	 * callback routine until after we've put the page on the
947 	 * appropriate free queue.
948 	 */
949 	vm_page_unqueue_nowakeup(m);
950 	vm_page_remove(m);
951 
952 	/*
953 	 * No further management of fictitious pages occurs beyond object
954 	 * and queue removal.
955 	 */
956 	if ((m->flags & PG_FICTITIOUS) != 0) {
957 		vm_page_wakeup(m);
958 		crit_exit();
959 		return;
960 	}
961 
962 	m->valid = 0;
963 	vm_page_undirty(m);
964 
965 	if (m->wire_count != 0) {
966 		if (m->wire_count > 1) {
967 		    panic(
968 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
969 			m->wire_count, (long)m->pindex);
970 		}
971 		panic("vm_page_free: freeing wired page");
972 	}
973 
974 	/*
975 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
976 	 */
977 	if (m->flags & PG_UNMANAGED) {
978 	    m->flags &= ~PG_UNMANAGED;
979 	}
980 
981 	if (m->hold_count != 0) {
982 		m->flags &= ~PG_ZERO;
983 		m->queue = PQ_HOLD;
984 	} else {
985 		m->queue = PQ_FREE + m->pc;
986 	}
987 	pq = &vm_page_queues[m->queue];
988 	pq->lcnt++;
989 	++(*pq->cnt);
990 
991 	/*
992 	 * Put zero'd pages on the end ( where we look for zero'd pages
993 	 * first ) and non-zerod pages at the head.
994 	 */
995 	if (m->flags & PG_ZERO) {
996 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
997 		++vm_page_zero_count;
998 	} else {
999 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1000 	}
1001 	vm_page_wakeup(m);
1002 	vm_page_free_wakeup();
1003 	crit_exit();
1004 }
1005 
1006 /*
1007  * vm_page_unmanage()
1008  *
1009  * Prevent PV management from being done on the page.  The page is
1010  * removed from the paging queues as if it were wired, and as a
1011  * consequence of no longer being managed the pageout daemon will not
1012  * touch it (since there is no way to locate the pte mappings for the
1013  * page).  madvise() calls that mess with the pmap will also no longer
1014  * operate on the page.
1015  *
1016  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1017  * will clear the flag.
1018  *
1019  * This routine is used by OBJT_PHYS objects - objects using unswappable
1020  * physical memory as backing store rather then swap-backed memory and
1021  * will eventually be extended to support 4MB unmanaged physical
1022  * mappings.
1023  *
1024  * Must be called with a critical section held.
1025  */
1026 void
1027 vm_page_unmanage(vm_page_t m)
1028 {
1029 	ASSERT_IN_CRIT_SECTION();
1030 	if ((m->flags & PG_UNMANAGED) == 0) {
1031 		if (m->wire_count == 0)
1032 			vm_page_unqueue(m);
1033 	}
1034 	vm_page_flag_set(m, PG_UNMANAGED);
1035 }
1036 
1037 /*
1038  * Mark this page as wired down by yet another map, removing it from
1039  * paging queues as necessary.
1040  *
1041  * The page queues must be locked.
1042  * This routine may not block.
1043  */
1044 void
1045 vm_page_wire(vm_page_t m)
1046 {
1047 	/*
1048 	 * Only bump the wire statistics if the page is not already wired,
1049 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1050 	 * it is already off the queues).  Don't do anything with fictitious
1051 	 * pages because they are always wired.
1052 	 */
1053 	crit_enter();
1054 	if ((m->flags & PG_FICTITIOUS) == 0) {
1055 		if (m->wire_count == 0) {
1056 			if ((m->flags & PG_UNMANAGED) == 0)
1057 				vm_page_unqueue(m);
1058 			vmstats.v_wire_count++;
1059 		}
1060 		m->wire_count++;
1061 		KASSERT(m->wire_count != 0,
1062 		    ("vm_page_wire: wire_count overflow m=%p", m));
1063 	}
1064 	vm_page_flag_set(m, PG_MAPPED);
1065 	crit_exit();
1066 }
1067 
1068 /*
1069  * Release one wiring of this page, potentially enabling it to be paged again.
1070  *
1071  * Many pages placed on the inactive queue should actually go
1072  * into the cache, but it is difficult to figure out which.  What
1073  * we do instead, if the inactive target is well met, is to put
1074  * clean pages at the head of the inactive queue instead of the tail.
1075  * This will cause them to be moved to the cache more quickly and
1076  * if not actively re-referenced, freed more quickly.  If we just
1077  * stick these pages at the end of the inactive queue, heavy filesystem
1078  * meta-data accesses can cause an unnecessary paging load on memory bound
1079  * processes.  This optimization causes one-time-use metadata to be
1080  * reused more quickly.
1081  *
1082  * BUT, if we are in a low-memory situation we have no choice but to
1083  * put clean pages on the cache queue.
1084  *
1085  * A number of routines use vm_page_unwire() to guarantee that the page
1086  * will go into either the inactive or active queues, and will NEVER
1087  * be placed in the cache - for example, just after dirtying a page.
1088  * dirty pages in the cache are not allowed.
1089  *
1090  * The page queues must be locked.
1091  * This routine may not block.
1092  */
1093 void
1094 vm_page_unwire(vm_page_t m, int activate)
1095 {
1096 	crit_enter();
1097 	if (m->flags & PG_FICTITIOUS) {
1098 		/* do nothing */
1099 	} else if (m->wire_count <= 0) {
1100 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1101 	} else {
1102 		if (--m->wire_count == 0) {
1103 			--vmstats.v_wire_count;
1104 			if (m->flags & PG_UNMANAGED) {
1105 				;
1106 			} else if (activate) {
1107 				TAILQ_INSERT_TAIL(
1108 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1109 				m->queue = PQ_ACTIVE;
1110 				vm_page_queues[PQ_ACTIVE].lcnt++;
1111 				vmstats.v_active_count++;
1112 			} else {
1113 				vm_page_flag_clear(m, PG_WINATCFLS);
1114 				TAILQ_INSERT_TAIL(
1115 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1116 				m->queue = PQ_INACTIVE;
1117 				vm_page_queues[PQ_INACTIVE].lcnt++;
1118 				vmstats.v_inactive_count++;
1119 			}
1120 		}
1121 	}
1122 	crit_exit();
1123 }
1124 
1125 
1126 /*
1127  * Move the specified page to the inactive queue.  If the page has
1128  * any associated swap, the swap is deallocated.
1129  *
1130  * Normally athead is 0 resulting in LRU operation.  athead is set
1131  * to 1 if we want this page to be 'as if it were placed in the cache',
1132  * except without unmapping it from the process address space.
1133  *
1134  * This routine may not block.
1135  */
1136 static __inline void
1137 _vm_page_deactivate(vm_page_t m, int athead)
1138 {
1139 	/*
1140 	 * Ignore if already inactive.
1141 	 */
1142 	if (m->queue == PQ_INACTIVE)
1143 		return;
1144 
1145 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1146 		if ((m->queue - m->pc) == PQ_CACHE)
1147 			mycpu->gd_cnt.v_reactivated++;
1148 		vm_page_flag_clear(m, PG_WINATCFLS);
1149 		vm_page_unqueue(m);
1150 		if (athead)
1151 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1152 		else
1153 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1154 		m->queue = PQ_INACTIVE;
1155 		vm_page_queues[PQ_INACTIVE].lcnt++;
1156 		vmstats.v_inactive_count++;
1157 	}
1158 }
1159 
1160 void
1161 vm_page_deactivate(vm_page_t m)
1162 {
1163     crit_enter();
1164     _vm_page_deactivate(m, 0);
1165     crit_exit();
1166 }
1167 
1168 /*
1169  * vm_page_try_to_cache:
1170  *
1171  * Returns 0 on failure, 1 on success
1172  */
1173 int
1174 vm_page_try_to_cache(vm_page_t m)
1175 {
1176 	crit_enter();
1177 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1178 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1179 		crit_exit();
1180 		return(0);
1181 	}
1182 	vm_page_test_dirty(m);
1183 	if (m->dirty) {
1184 		crit_exit();
1185 		return(0);
1186 	}
1187 	vm_page_cache(m);
1188 	crit_exit();
1189 	return(1);
1190 }
1191 
1192 /*
1193  * Attempt to free the page.  If we cannot free it, we do nothing.
1194  * 1 is returned on success, 0 on failure.
1195  */
1196 int
1197 vm_page_try_to_free(vm_page_t m)
1198 {
1199 	crit_enter();
1200 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1201 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1202 		crit_exit();
1203 		return(0);
1204 	}
1205 	vm_page_test_dirty(m);
1206 	if (m->dirty) {
1207 		crit_exit();
1208 		return(0);
1209 	}
1210 	vm_page_busy(m);
1211 	vm_page_protect(m, VM_PROT_NONE);
1212 	vm_page_free(m);
1213 	crit_exit();
1214 	return(1);
1215 }
1216 
1217 /*
1218  * vm_page_cache
1219  *
1220  * Put the specified page onto the page cache queue (if appropriate).
1221  *
1222  * This routine may not block.
1223  */
1224 void
1225 vm_page_cache(vm_page_t m)
1226 {
1227 	ASSERT_IN_CRIT_SECTION();
1228 
1229 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1230 			m->wire_count || m->hold_count) {
1231 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1232 		return;
1233 	}
1234 
1235 	/*
1236 	 * Already in the cache (and thus not mapped)
1237 	 */
1238 	if ((m->queue - m->pc) == PQ_CACHE)
1239 		return;
1240 
1241 	/*
1242 	 * Caller is required to test m->dirty, but note that the act of
1243 	 * removing the page from its maps can cause it to become dirty
1244 	 * on an SMP system due to another cpu running in usermode.
1245 	 */
1246 	if (m->dirty) {
1247 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1248 			(long)m->pindex);
1249 	}
1250 
1251 	/*
1252 	 * Remove all pmaps and indicate that the page is not
1253 	 * writeable or mapped.  Deal with the case where the page
1254 	 * may have become dirty via a race.
1255 	 */
1256 	vm_page_protect(m, VM_PROT_NONE);
1257 	if (m->dirty) {
1258 		vm_page_deactivate(m);
1259 	} else {
1260 		vm_page_unqueue_nowakeup(m);
1261 		m->queue = PQ_CACHE + m->pc;
1262 		vm_page_queues[m->queue].lcnt++;
1263 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1264 		vmstats.v_cache_count++;
1265 		vm_page_free_wakeup();
1266 	}
1267 }
1268 
1269 /*
1270  * vm_page_dontneed()
1271  *
1272  * Cache, deactivate, or do nothing as appropriate.  This routine
1273  * is typically used by madvise() MADV_DONTNEED.
1274  *
1275  * Generally speaking we want to move the page into the cache so
1276  * it gets reused quickly.  However, this can result in a silly syndrome
1277  * due to the page recycling too quickly.  Small objects will not be
1278  * fully cached.  On the otherhand, if we move the page to the inactive
1279  * queue we wind up with a problem whereby very large objects
1280  * unnecessarily blow away our inactive and cache queues.
1281  *
1282  * The solution is to move the pages based on a fixed weighting.  We
1283  * either leave them alone, deactivate them, or move them to the cache,
1284  * where moving them to the cache has the highest weighting.
1285  * By forcing some pages into other queues we eventually force the
1286  * system to balance the queues, potentially recovering other unrelated
1287  * space from active.  The idea is to not force this to happen too
1288  * often.
1289  */
1290 void
1291 vm_page_dontneed(vm_page_t m)
1292 {
1293 	static int dnweight;
1294 	int dnw;
1295 	int head;
1296 
1297 	dnw = ++dnweight;
1298 
1299 	/*
1300 	 * occassionally leave the page alone
1301 	 */
1302 	crit_enter();
1303 	if ((dnw & 0x01F0) == 0 ||
1304 	    m->queue == PQ_INACTIVE ||
1305 	    m->queue - m->pc == PQ_CACHE
1306 	) {
1307 		if (m->act_count >= ACT_INIT)
1308 			--m->act_count;
1309 		crit_exit();
1310 		return;
1311 	}
1312 
1313 	if (m->dirty == 0)
1314 		vm_page_test_dirty(m);
1315 
1316 	if (m->dirty || (dnw & 0x0070) == 0) {
1317 		/*
1318 		 * Deactivate the page 3 times out of 32.
1319 		 */
1320 		head = 0;
1321 	} else {
1322 		/*
1323 		 * Cache the page 28 times out of every 32.  Note that
1324 		 * the page is deactivated instead of cached, but placed
1325 		 * at the head of the queue instead of the tail.
1326 		 */
1327 		head = 1;
1328 	}
1329 	_vm_page_deactivate(m, head);
1330 	crit_exit();
1331 }
1332 
1333 /*
1334  * Grab a page, blocking if it is busy and allocating a page if necessary.
1335  * A busy page is returned or NULL.
1336  *
1337  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1338  * If VM_ALLOC_RETRY is not specified
1339  *
1340  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1341  * always returned if we had blocked.
1342  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1343  * This routine may not be called from an interrupt.
1344  * The returned page may not be entirely valid.
1345  *
1346  * This routine may be called from mainline code without spl protection and
1347  * be guarenteed a busied page associated with the object at the specified
1348  * index.
1349  */
1350 vm_page_t
1351 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1352 {
1353 	vm_page_t m;
1354 	int generation;
1355 
1356 	KKASSERT(allocflags &
1357 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1358 	crit_enter();
1359 retrylookup:
1360 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1361 		if (m->busy || (m->flags & PG_BUSY)) {
1362 			generation = object->generation;
1363 
1364 			while ((object->generation == generation) &&
1365 					(m->busy || (m->flags & PG_BUSY))) {
1366 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1367 				tsleep(m, 0, "pgrbwt", 0);
1368 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1369 					m = NULL;
1370 					goto done;
1371 				}
1372 			}
1373 			goto retrylookup;
1374 		} else {
1375 			vm_page_busy(m);
1376 			goto done;
1377 		}
1378 	}
1379 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1380 	if (m == NULL) {
1381 		vm_wait();
1382 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1383 			goto done;
1384 		goto retrylookup;
1385 	}
1386 done:
1387 	crit_exit();
1388 	return(m);
1389 }
1390 
1391 /*
1392  * Mapping function for valid bits or for dirty bits in
1393  * a page.  May not block.
1394  *
1395  * Inputs are required to range within a page.
1396  */
1397 __inline int
1398 vm_page_bits(int base, int size)
1399 {
1400 	int first_bit;
1401 	int last_bit;
1402 
1403 	KASSERT(
1404 	    base + size <= PAGE_SIZE,
1405 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1406 	);
1407 
1408 	if (size == 0)		/* handle degenerate case */
1409 		return(0);
1410 
1411 	first_bit = base >> DEV_BSHIFT;
1412 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1413 
1414 	return ((2 << last_bit) - (1 << first_bit));
1415 }
1416 
1417 /*
1418  * Sets portions of a page valid and clean.  The arguments are expected
1419  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1420  * of any partial chunks touched by the range.  The invalid portion of
1421  * such chunks will be zero'd.
1422  *
1423  * This routine may not block.
1424  *
1425  * (base + size) must be less then or equal to PAGE_SIZE.
1426  */
1427 void
1428 vm_page_set_validclean(vm_page_t m, int base, int size)
1429 {
1430 	int pagebits;
1431 	int frag;
1432 	int endoff;
1433 
1434 	if (size == 0)	/* handle degenerate case */
1435 		return;
1436 
1437 	/*
1438 	 * If the base is not DEV_BSIZE aligned and the valid
1439 	 * bit is clear, we have to zero out a portion of the
1440 	 * first block.
1441 	 */
1442 
1443 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1444 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1445 	) {
1446 		pmap_zero_page_area(
1447 		    VM_PAGE_TO_PHYS(m),
1448 		    frag,
1449 		    base - frag
1450 		);
1451 	}
1452 
1453 	/*
1454 	 * If the ending offset is not DEV_BSIZE aligned and the
1455 	 * valid bit is clear, we have to zero out a portion of
1456 	 * the last block.
1457 	 */
1458 
1459 	endoff = base + size;
1460 
1461 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1462 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1463 	) {
1464 		pmap_zero_page_area(
1465 		    VM_PAGE_TO_PHYS(m),
1466 		    endoff,
1467 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1468 		);
1469 	}
1470 
1471 	/*
1472 	 * Set valid, clear dirty bits.  If validating the entire
1473 	 * page we can safely clear the pmap modify bit.  We also
1474 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1475 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1476 	 * be set again.
1477 	 *
1478 	 * We set valid bits inclusive of any overlap, but we can only
1479 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1480 	 * the range.
1481 	 */
1482 
1483 	pagebits = vm_page_bits(base, size);
1484 	m->valid |= pagebits;
1485 #if 0	/* NOT YET */
1486 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1487 		frag = DEV_BSIZE - frag;
1488 		base += frag;
1489 		size -= frag;
1490 		if (size < 0)
1491 		    size = 0;
1492 	}
1493 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1494 #endif
1495 	m->dirty &= ~pagebits;
1496 	if (base == 0 && size == PAGE_SIZE) {
1497 		pmap_clear_modify(m);
1498 		vm_page_flag_clear(m, PG_NOSYNC);
1499 	}
1500 }
1501 
1502 void
1503 vm_page_clear_dirty(vm_page_t m, int base, int size)
1504 {
1505 	m->dirty &= ~vm_page_bits(base, size);
1506 }
1507 
1508 /*
1509  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1510  * valid and dirty bits for the effected areas are cleared.
1511  *
1512  * May not block.
1513  */
1514 void
1515 vm_page_set_invalid(vm_page_t m, int base, int size)
1516 {
1517 	int bits;
1518 
1519 	bits = vm_page_bits(base, size);
1520 	m->valid &= ~bits;
1521 	m->dirty &= ~bits;
1522 	m->object->generation++;
1523 }
1524 
1525 /*
1526  * The kernel assumes that the invalid portions of a page contain
1527  * garbage, but such pages can be mapped into memory by user code.
1528  * When this occurs, we must zero out the non-valid portions of the
1529  * page so user code sees what it expects.
1530  *
1531  * Pages are most often semi-valid when the end of a file is mapped
1532  * into memory and the file's size is not page aligned.
1533  */
1534 void
1535 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1536 {
1537 	int b;
1538 	int i;
1539 
1540 	/*
1541 	 * Scan the valid bits looking for invalid sections that
1542 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1543 	 * valid bit may be set ) have already been zerod by
1544 	 * vm_page_set_validclean().
1545 	 */
1546 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1547 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1548 		    (m->valid & (1 << i))
1549 		) {
1550 			if (i > b) {
1551 				pmap_zero_page_area(
1552 				    VM_PAGE_TO_PHYS(m),
1553 				    b << DEV_BSHIFT,
1554 				    (i - b) << DEV_BSHIFT
1555 				);
1556 			}
1557 			b = i + 1;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * setvalid is TRUE when we can safely set the zero'd areas
1563 	 * as being valid.  We can do this if there are no cache consistency
1564 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1565 	 */
1566 	if (setvalid)
1567 		m->valid = VM_PAGE_BITS_ALL;
1568 }
1569 
1570 /*
1571  * Is a (partial) page valid?  Note that the case where size == 0
1572  * will return FALSE in the degenerate case where the page is entirely
1573  * invalid, and TRUE otherwise.
1574  *
1575  * May not block.
1576  */
1577 int
1578 vm_page_is_valid(vm_page_t m, int base, int size)
1579 {
1580 	int bits = vm_page_bits(base, size);
1581 
1582 	if (m->valid && ((m->valid & bits) == bits))
1583 		return 1;
1584 	else
1585 		return 0;
1586 }
1587 
1588 /*
1589  * update dirty bits from pmap/mmu.  May not block.
1590  */
1591 void
1592 vm_page_test_dirty(vm_page_t m)
1593 {
1594 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1595 		vm_page_dirty(m);
1596 	}
1597 }
1598 
1599 #include "opt_ddb.h"
1600 #ifdef DDB
1601 #include <sys/kernel.h>
1602 
1603 #include <ddb/ddb.h>
1604 
1605 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1606 {
1607 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1608 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1609 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1610 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1611 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1612 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1613 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1614 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1615 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1616 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1617 }
1618 
1619 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1620 {
1621 	int i;
1622 	db_printf("PQ_FREE:");
1623 	for(i=0;i<PQ_L2_SIZE;i++) {
1624 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1625 	}
1626 	db_printf("\n");
1627 
1628 	db_printf("PQ_CACHE:");
1629 	for(i=0;i<PQ_L2_SIZE;i++) {
1630 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1631 	}
1632 	db_printf("\n");
1633 
1634 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1635 		vm_page_queues[PQ_ACTIVE].lcnt,
1636 		vm_page_queues[PQ_INACTIVE].lcnt);
1637 }
1638 #endif /* DDB */
1639