xref: /dragonfly/sys/vm/vm_page.c (revision 0dace59e)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
107 
108 /*
109  * Array of tailq lists
110  */
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
112 
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list	action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
116 
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
120 
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 	    "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
127 
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
130 
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 	     vm_pindex_t, pindex);
133 
134 static void
135 vm_page_queue_init(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 	for (i = 0; i < PQ_L2_SIZE; i++)
146 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 	for (i = 0; i < PQ_L2_SIZE; i++)
148 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 	/* PQ_NONE has no queue */
150 
151 	for (i = 0; i < PQ_COUNT; i++) {
152 		TAILQ_INIT(&vm_page_queues[i].pl);
153 		spin_init(&vm_page_queues[i].spin);
154 	}
155 
156 	for (i = 0; i < VMACTION_HSIZE; i++)
157 		LIST_INIT(&action_list[i]);
158 }
159 
160 /*
161  * note: place in initialized data section?  Is this necessary?
162  */
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
168 
169 /*
170  * (low level boot)
171  *
172  * Sets the page size, perhaps based upon the memory size.
173  * Must be called before any use of page-size dependent functions.
174  */
175 void
176 vm_set_page_size(void)
177 {
178 	if (vmstats.v_page_size == 0)
179 		vmstats.v_page_size = PAGE_SIZE;
180 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 		panic("vm_set_page_size: page size not a power of two");
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Add a new page to the freelist for use by the system.  New pages
188  * are added to both the head and tail of the associated free page
189  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190  * requests pull 'recent' adds (higher physical addresses) first.
191  *
192  * Beware that the page zeroing daemon will also be running soon after
193  * boot, moving pages from the head to the tail of the PQ_FREE queues.
194  *
195  * Must be called in a critical section.
196  */
197 static void
198 vm_add_new_page(vm_paddr_t pa)
199 {
200 	struct vpgqueues *vpq;
201 	vm_page_t m;
202 
203 	m = PHYS_TO_VM_PAGE(pa);
204 	m->phys_addr = pa;
205 	m->flags = 0;
206 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 	m->pat_mode = PAT_WRITE_BACK;
208 	/*
209 	 * Twist for cpu localization in addition to page coloring, so
210 	 * different cpus selecting by m->queue get different page colors.
211 	 */
212 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
214 	/*
215 	 * Reserve a certain number of contiguous low memory pages for
216 	 * contigmalloc() to use.
217 	 */
218 	if (pa < vm_low_phys_reserved) {
219 		atomic_add_int(&vmstats.v_page_count, 1);
220 		atomic_add_int(&vmstats.v_dma_pages, 1);
221 		m->queue = PQ_NONE;
222 		m->wire_count = 1;
223 		atomic_add_int(&vmstats.v_wire_count, 1);
224 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 		return;
226 	}
227 
228 	/*
229 	 * General page
230 	 */
231 	m->queue = m->pc + PQ_FREE;
232 	KKASSERT(m->dirty == 0);
233 
234 	atomic_add_int(&vmstats.v_page_count, 1);
235 	atomic_add_int(&vmstats.v_free_count, 1);
236 	vpq = &vm_page_queues[m->queue];
237 	if ((vpq->flipflop & 15) == 0) {
238 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 		m->flags |= PG_ZERO;
240 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 		atomic_add_int(&vm_page_zero_count, 1);
242 	} else {
243 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
244 	}
245 	++vpq->flipflop;
246 	++vpq->lcnt;
247 }
248 
249 /*
250  * (low level boot)
251  *
252  * Initializes the resident memory module.
253  *
254  * Preallocates memory for critical VM structures and arrays prior to
255  * kernel_map becoming available.
256  *
257  * Memory is allocated from (virtual2_start, virtual2_end) if available,
258  * otherwise memory is allocated from (virtual_start, virtual_end).
259  *
260  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261  * large enough to hold vm_page_array & other structures for machines with
262  * large amounts of ram, so we want to use virtual2* when available.
263  */
264 void
265 vm_page_startup(void)
266 {
267 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 	vm_offset_t mapped;
269 	vm_size_t npages;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	int nblocks;
275 	vm_paddr_t last_pa;
276 	vm_paddr_t end;
277 	vm_paddr_t biggestone, biggestsize;
278 	vm_paddr_t total;
279 
280 	total = 0;
281 	biggestsize = 0;
282 	biggestone = 0;
283 	nblocks = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page64(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
289 	}
290 
291 	for (i = 0; phys_avail[i + 1]; i += 2) {
292 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
293 
294 		if (size > biggestsize) {
295 			biggestone = i;
296 			biggestsize = size;
297 		}
298 		++nblocks;
299 		total += size;
300 	}
301 
302 	end = phys_avail[biggestone+1];
303 	end = trunc_page(end);
304 
305 	/*
306 	 * Initialize the queue headers for the free queue, the active queue
307 	 * and the inactive queue.
308 	 */
309 	vm_page_queue_init();
310 
311 #if !defined(_KERNEL_VIRTUAL)
312 	/*
313 	 * VKERNELs don't support minidumps and as such don't need
314 	 * vm_page_dump
315 	 *
316 	 * Allocate a bitmap to indicate that a random physical page
317 	 * needs to be included in a minidump.
318 	 *
319 	 * The amd64 port needs this to indicate which direct map pages
320 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
321 	 *
322 	 * However, i386 still needs this workspace internally within the
323 	 * minidump code.  In theory, they are not needed on i386, but are
324 	 * included should the sf_buf code decide to use them.
325 	 */
326 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 	end -= vm_page_dump_size;
329 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 	    VM_PROT_READ | VM_PROT_WRITE);
331 	bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
333 	/*
334 	 * Compute the number of pages of memory that will be available for
335 	 * use (taking into account the overhead of a page structure per
336 	 * page).
337 	 */
338 	first_page = phys_avail[0] / PAGE_SIZE;
339 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
341 
342 #ifndef _KERNEL_VIRTUAL
343 	/*
344 	 * (only applies to real kernels)
345 	 *
346 	 * Initialize the contiguous reserve map.  We initially reserve up
347 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
348 	 * is lower.
349 	 *
350 	 * Once device initialization is complete we return most of the
351 	 * reserved memory back to the normal page queues but leave some
352 	 * in reserve for things like usb attachments.
353 	 */
354 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 	if (vm_low_phys_reserved > total / 4)
356 		vm_low_phys_reserved = total / 4;
357 	if (vm_dma_reserved == 0) {
358 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
359 		if (vm_dma_reserved > total / 16)
360 			vm_dma_reserved = total / 16;
361 	}
362 #endif
363 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 		   ALIST_RECORDS_65536);
365 
366 	/*
367 	 * Initialize the mem entry structures now, and put them in the free
368 	 * queue.
369 	 */
370 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 	vm_page_array = (vm_page_t)mapped;
373 
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
375 	/*
376 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 	 * we have to manually add these pages to the minidump tracking so
378 	 * that they can be dumped, including the vm_page_array.
379 	 */
380 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 		dump_add_page(pa);
382 #endif
383 
384 	/*
385 	 * Clear all of the page structures
386 	 */
387 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 	vm_page_array_size = page_range;
389 
390 	/*
391 	 * Construct the free queue(s) in ascending order (by physical
392 	 * address) so that the first 16MB of physical memory is allocated
393 	 * last rather than first.  On large-memory machines, this avoids
394 	 * the exhaustion of low physical memory before isa_dmainit has run.
395 	 */
396 	vmstats.v_page_count = 0;
397 	vmstats.v_free_count = 0;
398 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 		pa = phys_avail[i];
400 		if (i == biggestone)
401 			last_pa = new_end;
402 		else
403 			last_pa = phys_avail[i + 1];
404 		while (pa < last_pa && npages-- > 0) {
405 			vm_add_new_page(pa);
406 			pa += PAGE_SIZE;
407 		}
408 	}
409 	if (virtual2_start)
410 		virtual2_start = vaddr;
411 	else
412 		virtual_start = vaddr;
413 }
414 
415 /*
416  * We tended to reserve a ton of memory for contigmalloc().  Now that most
417  * drivers have initialized we want to return most the remaining free
418  * reserve back to the VM page queues so they can be used for normal
419  * allocations.
420  *
421  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
422  */
423 static void
424 vm_page_startup_finish(void *dummy __unused)
425 {
426 	alist_blk_t blk;
427 	alist_blk_t rblk;
428 	alist_blk_t count;
429 	alist_blk_t xcount;
430 	alist_blk_t bfree;
431 	vm_page_t m;
432 
433 	spin_lock(&vm_contig_spin);
434 	for (;;) {
435 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 			break;
438 		if (count == 0)
439 			break;
440 
441 		/*
442 		 * Figure out how much of the initial reserve we have to
443 		 * free in order to reach our target.
444 		 */
445 		bfree -= vm_dma_reserved / PAGE_SIZE;
446 		if (count > bfree) {
447 			blk += count - bfree;
448 			count = bfree;
449 		}
450 
451 		/*
452 		 * Calculate the nearest power of 2 <= count.
453 		 */
454 		for (xcount = 1; xcount <= count; xcount <<= 1)
455 			;
456 		xcount >>= 1;
457 		blk += count - xcount;
458 		count = xcount;
459 
460 		/*
461 		 * Allocate the pages from the alist, then free them to
462 		 * the normal VM page queues.
463 		 *
464 		 * Pages allocated from the alist are wired.  We have to
465 		 * busy, unwire, and free them.  We must also adjust
466 		 * vm_low_phys_reserved before freeing any pages to prevent
467 		 * confusion.
468 		 */
469 		rblk = alist_alloc(&vm_contig_alist, blk, count);
470 		if (rblk != blk) {
471 			kprintf("vm_page_startup_finish: Unable to return "
472 				"dma space @0x%08x/%d -> 0x%08x\n",
473 				blk, count, rblk);
474 			break;
475 		}
476 		atomic_add_int(&vmstats.v_dma_pages, -count);
477 		spin_unlock(&vm_contig_spin);
478 
479 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 		while (count) {
482 			vm_page_busy_wait(m, FALSE, "cpgfr");
483 			vm_page_unwire(m, 0);
484 			vm_page_free(m);
485 			--count;
486 			++m;
487 		}
488 		spin_lock(&vm_contig_spin);
489 	}
490 	spin_unlock(&vm_contig_spin);
491 
492 	/*
493 	 * Print out how much DMA space drivers have already allocated and
494 	 * how much is left over.
495 	 */
496 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 		(PAGE_SIZE / 1024),
499 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
500 }
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 	vm_page_startup_finish, NULL)
503 
504 
505 /*
506  * Scan comparison function for Red-Black tree scans.  An inclusive
507  * (start,end) is expected.  Other fields are not used.
508  */
509 int
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
511 {
512 	struct rb_vm_page_scan_info *info = data;
513 
514 	if (p->pindex < info->start_pindex)
515 		return(-1);
516 	if (p->pindex > info->end_pindex)
517 		return(1);
518 	return(0);
519 }
520 
521 int
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
523 {
524 	if (p1->pindex < p2->pindex)
525 		return(-1);
526 	if (p1->pindex > p2->pindex)
527 		return(1);
528 	return(0);
529 }
530 
531 void
532 vm_page_init(vm_page_t m)
533 {
534 	/* do nothing for now.  Called from pmap_page_init() */
535 }
536 
537 /*
538  * Each page queue has its own spin lock, which is fairly optimal for
539  * allocating and freeing pages at least.
540  *
541  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542  * queue spinlock via this function.  Also note that m->queue cannot change
543  * unless both the page and queue are locked.
544  */
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
548 {
549 	u_short queue;
550 
551 	queue = m->queue;
552 	if (queue != PQ_NONE) {
553 		spin_lock(&vm_page_queues[queue].spin);
554 		KKASSERT(queue == m->queue);
555 	}
556 }
557 
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
561 {
562 	u_short queue;
563 
564 	queue = m->queue;
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_unlock(&vm_page_queues[queue].spin);
568 }
569 
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
573 {
574 	cpu_ccfence();
575 	if (queue != PQ_NONE)
576 		spin_lock(&vm_page_queues[queue].spin);
577 }
578 
579 
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
583 {
584 	cpu_ccfence();
585 	if (queue != PQ_NONE)
586 		spin_unlock(&vm_page_queues[queue].spin);
587 }
588 
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
591 {
592 	_vm_page_queue_spin_lock(m);
593 }
594 
595 void
596 vm_page_queues_spin_lock(u_short queue)
597 {
598 	_vm_page_queues_spin_lock(queue);
599 }
600 
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
603 {
604 	_vm_page_queue_spin_unlock(m);
605 }
606 
607 void
608 vm_page_queues_spin_unlock(u_short queue)
609 {
610 	_vm_page_queues_spin_unlock(queue);
611 }
612 
613 /*
614  * This locks the specified vm_page and its queue in the proper order
615  * (page first, then queue).  The queue may change so the caller must
616  * recheck on return.
617  */
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
621 {
622 	vm_page_spin_lock(m);
623 	_vm_page_queue_spin_lock(m);
624 }
625 
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
629 {
630 	_vm_page_queues_spin_unlock(m->queue);
631 	vm_page_spin_unlock(m);
632 }
633 
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
636 {
637 	_vm_page_and_queue_spin_unlock(m);
638 }
639 
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
642 {
643 	_vm_page_and_queue_spin_lock(m);
644 }
645 
646 /*
647  * Helper function removes vm_page from its current queue.
648  * Returns the base queue the page used to be on.
649  *
650  * The vm_page and the queue must be spinlocked.
651  * This function will unlock the queue but leave the page spinlocked.
652  */
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
655 {
656 	struct vpgqueues *pq;
657 	u_short queue;
658 
659 	queue = m->queue;
660 	if (queue != PQ_NONE) {
661 		pq = &vm_page_queues[queue];
662 		TAILQ_REMOVE(&pq->pl, m, pageq);
663 		atomic_add_int(pq->cnt, -1);
664 		pq->lcnt--;
665 		m->queue = PQ_NONE;
666 		vm_page_queues_spin_unlock(queue);
667 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 			atomic_subtract_int(&vm_page_zero_count, 1);
669 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 			return (queue - m->pc);
671 	}
672 	return queue;
673 }
674 
675 /*
676  * Helper function places the vm_page on the specified queue.
677  *
678  * The vm_page must be spinlocked.
679  * This function will return with both the page and the queue locked.
680  */
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
683 {
684 	struct vpgqueues *pq;
685 
686 	KKASSERT(m->queue == PQ_NONE);
687 
688 	if (queue != PQ_NONE) {
689 		vm_page_queues_spin_lock(queue);
690 		pq = &vm_page_queues[queue];
691 		++pq->lcnt;
692 		atomic_add_int(pq->cnt, 1);
693 		m->queue = queue;
694 
695 		/*
696 		 * Put zero'd pages on the end ( where we look for zero'd pages
697 		 * first ) and non-zerod pages at the head.
698 		 */
699 		if (queue - m->pc == PQ_FREE) {
700 			if (m->flags & PG_ZERO) {
701 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 				atomic_add_int(&vm_page_zero_count, 1);
703 			} else {
704 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
705 			}
706 		} else if (athead) {
707 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 		} else {
709 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
710 		}
711 		/* leave the queue spinlocked */
712 	}
713 }
714 
715 /*
716  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
718  * did not.  Only one sleep call will be made before returning.
719  *
720  * This function does NOT busy the page and on return the page is not
721  * guaranteed to be available.
722  */
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
725 {
726 	u_int32_t flags;
727 
728 	for (;;) {
729 		flags = m->flags;
730 		cpu_ccfence();
731 
732 		if ((flags & PG_BUSY) == 0 &&
733 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 			break;
735 		}
736 		tsleep_interlock(m, 0);
737 		if (atomic_cmpset_int(&m->flags, flags,
738 				      flags | PG_WANTED | PG_REFERENCED)) {
739 			tsleep(m, PINTERLOCKED, msg, 0);
740 			break;
741 		}
742 	}
743 }
744 
745 /*
746  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
747  * also wait for m->busy to become 0 before setting PG_BUSY.
748  */
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 				     int also_m_busy, const char *msg
752 				     VM_PAGE_DEBUG_ARGS)
753 {
754 	u_int32_t flags;
755 
756 	for (;;) {
757 		flags = m->flags;
758 		cpu_ccfence();
759 		if (flags & PG_BUSY) {
760 			tsleep_interlock(m, 0);
761 			if (atomic_cmpset_int(&m->flags, flags,
762 					  flags | PG_WANTED | PG_REFERENCED)) {
763 				tsleep(m, PINTERLOCKED, msg, 0);
764 			}
765 		} else if (also_m_busy && (flags & PG_SBUSY)) {
766 			tsleep_interlock(m, 0);
767 			if (atomic_cmpset_int(&m->flags, flags,
768 					  flags | PG_WANTED | PG_REFERENCED)) {
769 				tsleep(m, PINTERLOCKED, msg, 0);
770 			}
771 		} else {
772 			if (atomic_cmpset_int(&m->flags, flags,
773 					      flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 				m->busy_func = func;
776 				m->busy_line = lineno;
777 #endif
778 				break;
779 			}
780 		}
781 	}
782 }
783 
784 /*
785  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
786  * is also 0.
787  *
788  * Returns non-zero on failure.
789  */
790 int
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 				    VM_PAGE_DEBUG_ARGS)
793 {
794 	u_int32_t flags;
795 
796 	for (;;) {
797 		flags = m->flags;
798 		cpu_ccfence();
799 		if (flags & PG_BUSY)
800 			return TRUE;
801 		if (also_m_busy && (flags & PG_SBUSY))
802 			return TRUE;
803 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 				m->busy_func = func;
806 				m->busy_line = lineno;
807 #endif
808 			return FALSE;
809 		}
810 	}
811 }
812 
813 /*
814  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815  * that a wakeup() should be performed.
816  *
817  * The vm_page must be spinlocked and will remain spinlocked on return.
818  * The related queue must NOT be spinlocked (which could deadlock us).
819  *
820  * (inline version)
821  */
822 static __inline
823 int
824 _vm_page_wakeup(vm_page_t m)
825 {
826 	u_int32_t flags;
827 
828 	for (;;) {
829 		flags = m->flags;
830 		cpu_ccfence();
831 		if (atomic_cmpset_int(&m->flags, flags,
832 				      flags & ~(PG_BUSY | PG_WANTED))) {
833 			break;
834 		}
835 	}
836 	return(flags & PG_WANTED);
837 }
838 
839 /*
840  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
841  * is typically the last call you make on a page before moving onto
842  * other things.
843  */
844 void
845 vm_page_wakeup(vm_page_t m)
846 {
847         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 	vm_page_spin_lock(m);
849 	if (_vm_page_wakeup(m)) {
850 		vm_page_spin_unlock(m);
851 		wakeup(m);
852 	} else {
853 		vm_page_spin_unlock(m);
854 	}
855 }
856 
857 /*
858  * Holding a page keeps it from being reused.  Other parts of the system
859  * can still disassociate the page from its current object and free it, or
860  * perform read or write I/O on it and/or otherwise manipulate the page,
861  * but if the page is held the VM system will leave the page and its data
862  * intact and not reuse the page for other purposes until the last hold
863  * reference is released.  (see vm_page_wire() if you want to prevent the
864  * page from being disassociated from its object too).
865  *
866  * The caller must still validate the contents of the page and, if necessary,
867  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868  * before manipulating the page.
869  *
870  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
871  */
872 void
873 vm_page_hold(vm_page_t m)
874 {
875 	vm_page_spin_lock(m);
876 	atomic_add_int(&m->hold_count, 1);
877 	if (m->queue - m->pc == PQ_FREE) {
878 		_vm_page_queue_spin_lock(m);
879 		_vm_page_rem_queue_spinlocked(m);
880 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 		_vm_page_queue_spin_unlock(m);
882 	}
883 	vm_page_spin_unlock(m);
884 }
885 
886 /*
887  * The opposite of vm_page_hold().  A page can be freed while being held,
888  * which places it on the PQ_HOLD queue.  If we are able to busy the page
889  * after the hold count drops to zero we will move the page to the
890  * appropriate PQ_FREE queue by calling vm_page_free_toq().
891  */
892 void
893 vm_page_unhold(vm_page_t m)
894 {
895 	vm_page_spin_lock(m);
896 	atomic_add_int(&m->hold_count, -1);
897 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
898 		_vm_page_queue_spin_lock(m);
899 		_vm_page_rem_queue_spinlocked(m);
900 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
901 		_vm_page_queue_spin_unlock(m);
902 	}
903 	vm_page_spin_unlock(m);
904 }
905 
906 /*
907  *	vm_page_getfake:
908  *
909  *	Create a fictitious page with the specified physical address and
910  *	memory attribute.  The memory attribute is the only the machine-
911  *	dependent aspect of a fictitious page that must be initialized.
912  */
913 
914 void
915 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
916 {
917 
918 	if ((m->flags & PG_FICTITIOUS) != 0) {
919 		/*
920 		 * The page's memattr might have changed since the
921 		 * previous initialization.  Update the pmap to the
922 		 * new memattr.
923 		 */
924 		goto memattr;
925 	}
926 	m->phys_addr = paddr;
927 	m->queue = PQ_NONE;
928 	/* Fictitious pages don't use "segind". */
929 	/* Fictitious pages don't use "order" or "pool". */
930 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
931 	m->wire_count = 1;
932 	pmap_page_init(m);
933 memattr:
934 	pmap_page_set_memattr(m, memattr);
935 }
936 
937 /*
938  * Inserts the given vm_page into the object and object list.
939  *
940  * The pagetables are not updated but will presumably fault the page
941  * in if necessary, or if a kernel page the caller will at some point
942  * enter the page into the kernel's pmap.  We are not allowed to block
943  * here so we *can't* do this anyway.
944  *
945  * This routine may not block.
946  * This routine must be called with the vm_object held.
947  * This routine must be called with a critical section held.
948  *
949  * This routine returns TRUE if the page was inserted into the object
950  * successfully, and FALSE if the page already exists in the object.
951  */
952 int
953 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
954 {
955 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
956 	if (m->object != NULL)
957 		panic("vm_page_insert: already inserted");
958 
959 	object->generation++;
960 
961 	/*
962 	 * Record the object/offset pair in this page and add the
963 	 * pv_list_count of the page to the object.
964 	 *
965 	 * The vm_page spin lock is required for interactions with the pmap.
966 	 */
967 	vm_page_spin_lock(m);
968 	m->object = object;
969 	m->pindex = pindex;
970 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
971 		m->object = NULL;
972 		m->pindex = 0;
973 		vm_page_spin_unlock(m);
974 		return FALSE;
975 	}
976 	++object->resident_page_count;
977 	++mycpu->gd_vmtotal.t_rm;
978 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
979 	vm_page_spin_unlock(m);
980 
981 	/*
982 	 * Since we are inserting a new and possibly dirty page,
983 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
984 	 */
985 	if ((m->valid & m->dirty) ||
986 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
987 		vm_object_set_writeable_dirty(object);
988 
989 	/*
990 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
991 	 */
992 	swap_pager_page_inserted(m);
993 	return TRUE;
994 }
995 
996 /*
997  * Removes the given vm_page_t from the (object,index) table
998  *
999  * The underlying pmap entry (if any) is NOT removed here.
1000  * This routine may not block.
1001  *
1002  * The page must be BUSY and will remain BUSY on return.
1003  * No other requirements.
1004  *
1005  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1006  *	 it busy.
1007  */
1008 void
1009 vm_page_remove(vm_page_t m)
1010 {
1011 	vm_object_t object;
1012 
1013 	if (m->object == NULL) {
1014 		return;
1015 	}
1016 
1017 	if ((m->flags & PG_BUSY) == 0)
1018 		panic("vm_page_remove: page not busy");
1019 
1020 	object = m->object;
1021 
1022 	vm_object_hold(object);
1023 
1024 	/*
1025 	 * Remove the page from the object and update the object.
1026 	 *
1027 	 * The vm_page spin lock is required for interactions with the pmap.
1028 	 */
1029 	vm_page_spin_lock(m);
1030 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1031 	--object->resident_page_count;
1032 	--mycpu->gd_vmtotal.t_rm;
1033 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1034 	m->object = NULL;
1035 	vm_page_spin_unlock(m);
1036 
1037 	object->generation++;
1038 
1039 	vm_object_drop(object);
1040 }
1041 
1042 /*
1043  * Locate and return the page at (object, pindex), or NULL if the
1044  * page could not be found.
1045  *
1046  * The caller must hold the vm_object token.
1047  */
1048 vm_page_t
1049 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1050 {
1051 	vm_page_t m;
1052 
1053 	/*
1054 	 * Search the hash table for this object/offset pair
1055 	 */
1056 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1057 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1058 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1059 	return(m);
1060 }
1061 
1062 vm_page_t
1063 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1064 					    vm_pindex_t pindex,
1065 					    int also_m_busy, const char *msg
1066 					    VM_PAGE_DEBUG_ARGS)
1067 {
1068 	u_int32_t flags;
1069 	vm_page_t m;
1070 
1071 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1072 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1073 	while (m) {
1074 		KKASSERT(m->object == object && m->pindex == pindex);
1075 		flags = m->flags;
1076 		cpu_ccfence();
1077 		if (flags & PG_BUSY) {
1078 			tsleep_interlock(m, 0);
1079 			if (atomic_cmpset_int(&m->flags, flags,
1080 					  flags | PG_WANTED | PG_REFERENCED)) {
1081 				tsleep(m, PINTERLOCKED, msg, 0);
1082 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1083 							      pindex);
1084 			}
1085 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1086 			tsleep_interlock(m, 0);
1087 			if (atomic_cmpset_int(&m->flags, flags,
1088 					  flags | PG_WANTED | PG_REFERENCED)) {
1089 				tsleep(m, PINTERLOCKED, msg, 0);
1090 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1091 							      pindex);
1092 			}
1093 		} else if (atomic_cmpset_int(&m->flags, flags,
1094 					     flags | PG_BUSY)) {
1095 #ifdef VM_PAGE_DEBUG
1096 			m->busy_func = func;
1097 			m->busy_line = lineno;
1098 #endif
1099 			break;
1100 		}
1101 	}
1102 	return m;
1103 }
1104 
1105 /*
1106  * Attempt to lookup and busy a page.
1107  *
1108  * Returns NULL if the page could not be found
1109  *
1110  * Returns a vm_page and error == TRUE if the page exists but could not
1111  * be busied.
1112  *
1113  * Returns a vm_page and error == FALSE on success.
1114  */
1115 vm_page_t
1116 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1117 					   vm_pindex_t pindex,
1118 					   int also_m_busy, int *errorp
1119 					   VM_PAGE_DEBUG_ARGS)
1120 {
1121 	u_int32_t flags;
1122 	vm_page_t m;
1123 
1124 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1125 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1126 	*errorp = FALSE;
1127 	while (m) {
1128 		KKASSERT(m->object == object && m->pindex == pindex);
1129 		flags = m->flags;
1130 		cpu_ccfence();
1131 		if (flags & PG_BUSY) {
1132 			*errorp = TRUE;
1133 			break;
1134 		}
1135 		if (also_m_busy && (flags & PG_SBUSY)) {
1136 			*errorp = TRUE;
1137 			break;
1138 		}
1139 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1140 #ifdef VM_PAGE_DEBUG
1141 			m->busy_func = func;
1142 			m->busy_line = lineno;
1143 #endif
1144 			break;
1145 		}
1146 	}
1147 	return m;
1148 }
1149 
1150 /*
1151  * Caller must hold the related vm_object
1152  */
1153 vm_page_t
1154 vm_page_next(vm_page_t m)
1155 {
1156 	vm_page_t next;
1157 
1158 	next = vm_page_rb_tree_RB_NEXT(m);
1159 	if (next && next->pindex != m->pindex + 1)
1160 		next = NULL;
1161 	return (next);
1162 }
1163 
1164 /*
1165  * vm_page_rename()
1166  *
1167  * Move the given vm_page from its current object to the specified
1168  * target object/offset.  The page must be busy and will remain so
1169  * on return.
1170  *
1171  * new_object must be held.
1172  * This routine might block. XXX ?
1173  *
1174  * NOTE: Swap associated with the page must be invalidated by the move.  We
1175  *       have to do this for several reasons:  (1) we aren't freeing the
1176  *       page, (2) we are dirtying the page, (3) the VM system is probably
1177  *       moving the page from object A to B, and will then later move
1178  *       the backing store from A to B and we can't have a conflict.
1179  *
1180  * NOTE: We *always* dirty the page.  It is necessary both for the
1181  *       fact that we moved it, and because we may be invalidating
1182  *	 swap.  If the page is on the cache, we have to deactivate it
1183  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1184  *	 on the cache.
1185  */
1186 void
1187 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1188 {
1189 	KKASSERT(m->flags & PG_BUSY);
1190 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1191 	if (m->object) {
1192 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1193 		vm_page_remove(m);
1194 	}
1195 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1196 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1197 		      new_object, new_pindex);
1198 	}
1199 	if (m->queue - m->pc == PQ_CACHE)
1200 		vm_page_deactivate(m);
1201 	vm_page_dirty(m);
1202 }
1203 
1204 /*
1205  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1206  * is being moved between queues or otherwise is to remain BUSYied by the
1207  * caller.
1208  *
1209  * This routine may not block.
1210  */
1211 void
1212 vm_page_unqueue_nowakeup(vm_page_t m)
1213 {
1214 	vm_page_and_queue_spin_lock(m);
1215 	(void)_vm_page_rem_queue_spinlocked(m);
1216 	vm_page_spin_unlock(m);
1217 }
1218 
1219 /*
1220  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1221  * if necessary.
1222  *
1223  * This routine may not block.
1224  */
1225 void
1226 vm_page_unqueue(vm_page_t m)
1227 {
1228 	u_short queue;
1229 
1230 	vm_page_and_queue_spin_lock(m);
1231 	queue = _vm_page_rem_queue_spinlocked(m);
1232 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1233 		vm_page_spin_unlock(m);
1234 		pagedaemon_wakeup();
1235 	} else {
1236 		vm_page_spin_unlock(m);
1237 	}
1238 }
1239 
1240 /*
1241  * vm_page_list_find()
1242  *
1243  * Find a page on the specified queue with color optimization.
1244  *
1245  * The page coloring optimization attempts to locate a page that does
1246  * not overload other nearby pages in the object in the cpu's L1 or L2
1247  * caches.  We need this optimization because cpu caches tend to be
1248  * physical caches, while object spaces tend to be virtual.
1249  *
1250  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1251  * and the algorithm is adjusted to localize allocations on a per-core basis.
1252  * This is done by 'twisting' the colors.
1253  *
1254  * The page is returned spinlocked and removed from its queue (it will
1255  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1256  * is responsible for dealing with the busy-page case (usually by
1257  * deactivating the page and looping).
1258  *
1259  * NOTE:  This routine is carefully inlined.  A non-inlined version
1260  *	  is available for outside callers but the only critical path is
1261  *	  from within this source file.
1262  *
1263  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1264  *	  represent stable storage, allowing us to order our locks vm_page
1265  *	  first, then queue.
1266  */
1267 static __inline
1268 vm_page_t
1269 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1270 {
1271 	vm_page_t m;
1272 
1273 	for (;;) {
1274 		if (prefer_zero)
1275 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1276 		else
1277 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1278 		if (m == NULL) {
1279 			m = _vm_page_list_find2(basequeue, index);
1280 			return(m);
1281 		}
1282 		vm_page_and_queue_spin_lock(m);
1283 		if (m->queue == basequeue + index) {
1284 			_vm_page_rem_queue_spinlocked(m);
1285 			/* vm_page_t spin held, no queue spin */
1286 			break;
1287 		}
1288 		vm_page_and_queue_spin_unlock(m);
1289 	}
1290 	return(m);
1291 }
1292 
1293 static vm_page_t
1294 _vm_page_list_find2(int basequeue, int index)
1295 {
1296 	int i;
1297 	vm_page_t m = NULL;
1298 	struct vpgqueues *pq;
1299 
1300 	pq = &vm_page_queues[basequeue];
1301 
1302 	/*
1303 	 * Note that for the first loop, index+i and index-i wind up at the
1304 	 * same place.  Even though this is not totally optimal, we've already
1305 	 * blown it by missing the cache case so we do not care.
1306 	 */
1307 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1308 		for (;;) {
1309 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1310 			if (m) {
1311 				_vm_page_and_queue_spin_lock(m);
1312 				if (m->queue ==
1313 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1314 					_vm_page_rem_queue_spinlocked(m);
1315 					return(m);
1316 				}
1317 				_vm_page_and_queue_spin_unlock(m);
1318 				continue;
1319 			}
1320 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1321 			if (m) {
1322 				_vm_page_and_queue_spin_lock(m);
1323 				if (m->queue ==
1324 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1325 					_vm_page_rem_queue_spinlocked(m);
1326 					return(m);
1327 				}
1328 				_vm_page_and_queue_spin_unlock(m);
1329 				continue;
1330 			}
1331 			break;	/* next i */
1332 		}
1333 	}
1334 	return(m);
1335 }
1336 
1337 /*
1338  * Returns a vm_page candidate for allocation.  The page is not busied so
1339  * it can move around.  The caller must busy the page (and typically
1340  * deactivate it if it cannot be busied!)
1341  *
1342  * Returns a spinlocked vm_page that has been removed from its queue.
1343  */
1344 vm_page_t
1345 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1346 {
1347 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1348 }
1349 
1350 /*
1351  * Find a page on the cache queue with color optimization, remove it
1352  * from the queue, and busy it.  The returned page will not be spinlocked.
1353  *
1354  * A candidate failure will be deactivated.  Candidates can fail due to
1355  * being busied by someone else, in which case they will be deactivated.
1356  *
1357  * This routine may not block.
1358  *
1359  */
1360 static vm_page_t
1361 vm_page_select_cache(u_short pg_color)
1362 {
1363 	vm_page_t m;
1364 
1365 	for (;;) {
1366 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1367 		if (m == NULL)
1368 			break;
1369 		/*
1370 		 * (m) has been removed from its queue and spinlocked
1371 		 */
1372 		if (vm_page_busy_try(m, TRUE)) {
1373 			_vm_page_deactivate_locked(m, 0);
1374 			vm_page_spin_unlock(m);
1375 		} else {
1376 			/*
1377 			 * We successfully busied the page
1378 			 */
1379 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1380 			    m->hold_count == 0 &&
1381 			    m->wire_count == 0 &&
1382 			    (m->dirty & m->valid) == 0) {
1383 				vm_page_spin_unlock(m);
1384 				pagedaemon_wakeup();
1385 				return(m);
1386 			}
1387 
1388 			/*
1389 			 * The page cannot be recycled, deactivate it.
1390 			 */
1391 			_vm_page_deactivate_locked(m, 0);
1392 			if (_vm_page_wakeup(m)) {
1393 				vm_page_spin_unlock(m);
1394 				wakeup(m);
1395 			} else {
1396 				vm_page_spin_unlock(m);
1397 			}
1398 		}
1399 	}
1400 	return (m);
1401 }
1402 
1403 /*
1404  * Find a free or zero page, with specified preference.  We attempt to
1405  * inline the nominal case and fall back to _vm_page_select_free()
1406  * otherwise.  A busied page is removed from the queue and returned.
1407  *
1408  * This routine may not block.
1409  */
1410 static __inline vm_page_t
1411 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1412 {
1413 	vm_page_t m;
1414 
1415 	for (;;) {
1416 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1417 				       prefer_zero);
1418 		if (m == NULL)
1419 			break;
1420 		if (vm_page_busy_try(m, TRUE)) {
1421 			/*
1422 			 * Various mechanisms such as a pmap_collect can
1423 			 * result in a busy page on the free queue.  We
1424 			 * have to move the page out of the way so we can
1425 			 * retry the allocation.  If the other thread is not
1426 			 * allocating the page then m->valid will remain 0 and
1427 			 * the pageout daemon will free the page later on.
1428 			 *
1429 			 * Since we could not busy the page, however, we
1430 			 * cannot make assumptions as to whether the page
1431 			 * will be allocated by the other thread or not,
1432 			 * so all we can do is deactivate it to move it out
1433 			 * of the way.  In particular, if the other thread
1434 			 * wires the page it may wind up on the inactive
1435 			 * queue and the pageout daemon will have to deal
1436 			 * with that case too.
1437 			 */
1438 			_vm_page_deactivate_locked(m, 0);
1439 			vm_page_spin_unlock(m);
1440 		} else {
1441 			/*
1442 			 * Theoretically if we are able to busy the page
1443 			 * atomic with the queue removal (using the vm_page
1444 			 * lock) nobody else should be able to mess with the
1445 			 * page before us.
1446 			 */
1447 			KKASSERT((m->flags & (PG_UNMANAGED |
1448 					      PG_NEED_COMMIT)) == 0);
1449 			KKASSERT(m->hold_count == 0);
1450 			KKASSERT(m->wire_count == 0);
1451 			vm_page_spin_unlock(m);
1452 			pagedaemon_wakeup();
1453 
1454 			/* return busied and removed page */
1455 			return(m);
1456 		}
1457 	}
1458 	return(m);
1459 }
1460 
1461 /*
1462  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1463  * The idea is to populate this cache prior to acquiring any locks so
1464  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1465  * holding potentialy contending locks.
1466  *
1467  * Note that we allocate the page uninserted into anything and use a pindex
1468  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1469  * allocations should wind up being uncontended.  However, we still want
1470  * to rove across PQ_L2_SIZE.
1471  */
1472 void
1473 vm_page_pcpu_cache(void)
1474 {
1475 #if 0
1476 	globaldata_t gd = mycpu;
1477 	vm_page_t m;
1478 
1479 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1480 		crit_enter_gd(gd);
1481 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1482 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1483 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1484 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1485 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1486 				if ((m->flags & PG_ZERO) == 0) {
1487 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1488 					vm_page_flag_set(m, PG_ZERO);
1489 				}
1490 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1491 			} else {
1492 				vm_page_free(m);
1493 			}
1494 		}
1495 		crit_exit_gd(gd);
1496 	}
1497 #endif
1498 }
1499 
1500 /*
1501  * vm_page_alloc()
1502  *
1503  * Allocate and return a memory cell associated with this VM object/offset
1504  * pair.  If object is NULL an unassociated page will be allocated.
1505  *
1506  * The returned page will be busied and removed from its queues.  This
1507  * routine can block and may return NULL if a race occurs and the page
1508  * is found to already exist at the specified (object, pindex).
1509  *
1510  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1511  *	VM_ALLOC_QUICK		like normal but cannot use cache
1512  *	VM_ALLOC_SYSTEM		greater free drain
1513  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1514  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1515  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1516  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1517  *				(see vm_page_grab())
1518  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1519  *
1520  * The object must be held if not NULL
1521  * This routine may not block
1522  *
1523  * Additional special handling is required when called from an interrupt
1524  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1525  * in this case.
1526  */
1527 vm_page_t
1528 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1529 {
1530 	globaldata_t gd = mycpu;
1531 	vm_object_t obj;
1532 	vm_page_t m;
1533 	u_short pg_color;
1534 
1535 #if 0
1536 	/*
1537 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1538 	 * and pre-zerod for us.
1539 	 */
1540 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1541 		crit_enter_gd(gd);
1542 		if (gd->gd_vmpg_count) {
1543 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1544 			crit_exit_gd(gd);
1545 			goto done;
1546                 }
1547 		crit_exit_gd(gd);
1548         }
1549 #endif
1550 	m = NULL;
1551 
1552 	/*
1553 	 * Cpu twist - cpu localization algorithm
1554 	 */
1555 	if (object) {
1556 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1557 			   (object->pg_color & ~ncpus_fit_mask);
1558 	} else {
1559 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1560 	}
1561 	KKASSERT(page_req &
1562 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1563 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1564 
1565 	/*
1566 	 * Certain system threads (pageout daemon, buf_daemon's) are
1567 	 * allowed to eat deeper into the free page list.
1568 	 */
1569 	if (curthread->td_flags & TDF_SYSTHREAD)
1570 		page_req |= VM_ALLOC_SYSTEM;
1571 
1572 loop:
1573 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1574 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1575 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1576 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1577 	) {
1578 		/*
1579 		 * The free queue has sufficient free pages to take one out.
1580 		 */
1581 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1582 			m = vm_page_select_free(pg_color, TRUE);
1583 		else
1584 			m = vm_page_select_free(pg_color, FALSE);
1585 	} else if (page_req & VM_ALLOC_NORMAL) {
1586 		/*
1587 		 * Allocatable from the cache (non-interrupt only).  On
1588 		 * success, we must free the page and try again, thus
1589 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1590 		 */
1591 #ifdef INVARIANTS
1592 		if (curthread->td_preempted) {
1593 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1594 				" cache page from preempting interrupt\n");
1595 			m = NULL;
1596 		} else {
1597 			m = vm_page_select_cache(pg_color);
1598 		}
1599 #else
1600 		m = vm_page_select_cache(pg_color);
1601 #endif
1602 		/*
1603 		 * On success move the page into the free queue and loop.
1604 		 *
1605 		 * Only do this if we can safely acquire the vm_object lock,
1606 		 * because this is effectively a random page and the caller
1607 		 * might be holding the lock shared, we don't want to
1608 		 * deadlock.
1609 		 */
1610 		if (m != NULL) {
1611 			KASSERT(m->dirty == 0,
1612 				("Found dirty cache page %p", m));
1613 			if ((obj = m->object) != NULL) {
1614 				if (vm_object_hold_try(obj)) {
1615 					vm_page_protect(m, VM_PROT_NONE);
1616 					vm_page_free(m);
1617 					/* m->object NULL here */
1618 					vm_object_drop(obj);
1619 				} else {
1620 					vm_page_deactivate(m);
1621 					vm_page_wakeup(m);
1622 				}
1623 			} else {
1624 				vm_page_protect(m, VM_PROT_NONE);
1625 				vm_page_free(m);
1626 			}
1627 			goto loop;
1628 		}
1629 
1630 		/*
1631 		 * On failure return NULL
1632 		 */
1633 #if defined(DIAGNOSTIC)
1634 		if (vmstats.v_cache_count > 0)
1635 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1636 #endif
1637 		vm_pageout_deficit++;
1638 		pagedaemon_wakeup();
1639 		return (NULL);
1640 	} else {
1641 		/*
1642 		 * No pages available, wakeup the pageout daemon and give up.
1643 		 */
1644 		vm_pageout_deficit++;
1645 		pagedaemon_wakeup();
1646 		return (NULL);
1647 	}
1648 
1649 	/*
1650 	 * v_free_count can race so loop if we don't find the expected
1651 	 * page.
1652 	 */
1653 	if (m == NULL)
1654 		goto loop;
1655 
1656 	/*
1657 	 * Good page found.  The page has already been busied for us and
1658 	 * removed from its queues.
1659 	 */
1660 	KASSERT(m->dirty == 0,
1661 		("vm_page_alloc: free/cache page %p was dirty", m));
1662 	KKASSERT(m->queue == PQ_NONE);
1663 
1664 #if 0
1665 done:
1666 #endif
1667 	/*
1668 	 * Initialize the structure, inheriting some flags but clearing
1669 	 * all the rest.  The page has already been busied for us.
1670 	 */
1671 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1672 	KKASSERT(m->wire_count == 0);
1673 	KKASSERT(m->busy == 0);
1674 	m->act_count = 0;
1675 	m->valid = 0;
1676 
1677 	/*
1678 	 * Caller must be holding the object lock (asserted by
1679 	 * vm_page_insert()).
1680 	 *
1681 	 * NOTE: Inserting a page here does not insert it into any pmaps
1682 	 *	 (which could cause us to block allocating memory).
1683 	 *
1684 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1685 	 *	 can be used by the caller for any purpose.
1686 	 */
1687 	if (object) {
1688 		if (vm_page_insert(m, object, pindex) == FALSE) {
1689 			vm_page_free(m);
1690 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1691 				panic("PAGE RACE %p[%ld]/%p",
1692 				      object, (long)pindex, m);
1693 			m = NULL;
1694 		}
1695 	} else {
1696 		m->pindex = pindex;
1697 	}
1698 
1699 	/*
1700 	 * Don't wakeup too often - wakeup the pageout daemon when
1701 	 * we would be nearly out of memory.
1702 	 */
1703 	pagedaemon_wakeup();
1704 
1705 	/*
1706 	 * A PG_BUSY page is returned.
1707 	 */
1708 	return (m);
1709 }
1710 
1711 /*
1712  * Attempt to allocate contiguous physical memory with the specified
1713  * requirements.
1714  */
1715 vm_page_t
1716 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1717 		     unsigned long alignment, unsigned long boundary,
1718 		     unsigned long size, vm_memattr_t memattr)
1719 {
1720 	alist_blk_t blk;
1721 	vm_page_t m;
1722 	int i;
1723 
1724 	alignment >>= PAGE_SHIFT;
1725 	if (alignment == 0)
1726 		alignment = 1;
1727 	boundary >>= PAGE_SHIFT;
1728 	if (boundary == 0)
1729 		boundary = 1;
1730 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1731 
1732 	spin_lock(&vm_contig_spin);
1733 	blk = alist_alloc(&vm_contig_alist, 0, size);
1734 	if (blk == ALIST_BLOCK_NONE) {
1735 		spin_unlock(&vm_contig_spin);
1736 		if (bootverbose) {
1737 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1738 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1739 		}
1740 		return(NULL);
1741 	}
1742 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1743 		alist_free(&vm_contig_alist, blk, size);
1744 		spin_unlock(&vm_contig_spin);
1745 		if (bootverbose) {
1746 			kprintf("vm_page_alloc_contig: %ldk high "
1747 				"%016jx failed\n",
1748 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1749 				(intmax_t)high);
1750 		}
1751 		return(NULL);
1752 	}
1753 	spin_unlock(&vm_contig_spin);
1754 	if (vm_contig_verbose) {
1755 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1756 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1757 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1758 	}
1759 
1760 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1761 	if (memattr != VM_MEMATTR_DEFAULT)
1762 		for (i = 0;i < size;i++)
1763 			pmap_page_set_memattr(&m[i], memattr);
1764 	return m;
1765 }
1766 
1767 /*
1768  * Free contiguously allocated pages.  The pages will be wired but not busy.
1769  * When freeing to the alist we leave them wired and not busy.
1770  */
1771 void
1772 vm_page_free_contig(vm_page_t m, unsigned long size)
1773 {
1774 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1775 	vm_pindex_t start = pa >> PAGE_SHIFT;
1776 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1777 
1778 	if (vm_contig_verbose) {
1779 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1780 			(intmax_t)pa, size / 1024);
1781 	}
1782 	if (pa < vm_low_phys_reserved) {
1783 		KKASSERT(pa + size <= vm_low_phys_reserved);
1784 		spin_lock(&vm_contig_spin);
1785 		alist_free(&vm_contig_alist, start, pages);
1786 		spin_unlock(&vm_contig_spin);
1787 	} else {
1788 		while (pages) {
1789 			vm_page_busy_wait(m, FALSE, "cpgfr");
1790 			vm_page_unwire(m, 0);
1791 			vm_page_free(m);
1792 			--pages;
1793 			++m;
1794 		}
1795 
1796 	}
1797 }
1798 
1799 
1800 /*
1801  * Wait for sufficient free memory for nominal heavy memory use kernel
1802  * operations.
1803  *
1804  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1805  *	     will trivially deadlock the system.
1806  */
1807 void
1808 vm_wait_nominal(void)
1809 {
1810 	while (vm_page_count_min(0))
1811 		vm_wait(0);
1812 }
1813 
1814 /*
1815  * Test if vm_wait_nominal() would block.
1816  */
1817 int
1818 vm_test_nominal(void)
1819 {
1820 	if (vm_page_count_min(0))
1821 		return(1);
1822 	return(0);
1823 }
1824 
1825 /*
1826  * Block until free pages are available for allocation, called in various
1827  * places before memory allocations.
1828  *
1829  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1830  * more generous then that.
1831  */
1832 void
1833 vm_wait(int timo)
1834 {
1835 	/*
1836 	 * never wait forever
1837 	 */
1838 	if (timo == 0)
1839 		timo = hz;
1840 	lwkt_gettoken(&vm_token);
1841 
1842 	if (curthread == pagethread) {
1843 		/*
1844 		 * The pageout daemon itself needs pages, this is bad.
1845 		 */
1846 		if (vm_page_count_min(0)) {
1847 			vm_pageout_pages_needed = 1;
1848 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1849 		}
1850 	} else {
1851 		/*
1852 		 * Wakeup the pageout daemon if necessary and wait.
1853 		 *
1854 		 * Do not wait indefinitely for the target to be reached,
1855 		 * as load might prevent it from being reached any time soon.
1856 		 * But wait a little to try to slow down page allocations
1857 		 * and to give more important threads (the pagedaemon)
1858 		 * allocation priority.
1859 		 */
1860 		if (vm_page_count_target()) {
1861 			if (vm_pages_needed == 0) {
1862 				vm_pages_needed = 1;
1863 				wakeup(&vm_pages_needed);
1864 			}
1865 			++vm_pages_waiting;	/* SMP race ok */
1866 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1867 		}
1868 	}
1869 	lwkt_reltoken(&vm_token);
1870 }
1871 
1872 /*
1873  * Block until free pages are available for allocation
1874  *
1875  * Called only from vm_fault so that processes page faulting can be
1876  * easily tracked.
1877  */
1878 void
1879 vm_wait_pfault(void)
1880 {
1881 	/*
1882 	 * Wakeup the pageout daemon if necessary and wait.
1883 	 *
1884 	 * Do not wait indefinitely for the target to be reached,
1885 	 * as load might prevent it from being reached any time soon.
1886 	 * But wait a little to try to slow down page allocations
1887 	 * and to give more important threads (the pagedaemon)
1888 	 * allocation priority.
1889 	 */
1890 	if (vm_page_count_min(0)) {
1891 		lwkt_gettoken(&vm_token);
1892 		while (vm_page_count_severe()) {
1893 			if (vm_page_count_target()) {
1894 				if (vm_pages_needed == 0) {
1895 					vm_pages_needed = 1;
1896 					wakeup(&vm_pages_needed);
1897 				}
1898 				++vm_pages_waiting;	/* SMP race ok */
1899 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1900 			}
1901 		}
1902 		lwkt_reltoken(&vm_token);
1903 	}
1904 }
1905 
1906 /*
1907  * Put the specified page on the active list (if appropriate).  Ensure
1908  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1909  *
1910  * The caller should be holding the page busied ? XXX
1911  * This routine may not block.
1912  */
1913 void
1914 vm_page_activate(vm_page_t m)
1915 {
1916 	u_short oqueue;
1917 
1918 	vm_page_spin_lock(m);
1919 	if (m->queue - m->pc != PQ_ACTIVE) {
1920 		_vm_page_queue_spin_lock(m);
1921 		oqueue = _vm_page_rem_queue_spinlocked(m);
1922 		/* page is left spinlocked, queue is unlocked */
1923 
1924 		if (oqueue == PQ_CACHE)
1925 			mycpu->gd_cnt.v_reactivated++;
1926 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1927 			if (m->act_count < ACT_INIT)
1928 				m->act_count = ACT_INIT;
1929 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1930 		}
1931 		_vm_page_and_queue_spin_unlock(m);
1932 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1933 			pagedaemon_wakeup();
1934 	} else {
1935 		if (m->act_count < ACT_INIT)
1936 			m->act_count = ACT_INIT;
1937 		vm_page_spin_unlock(m);
1938 	}
1939 }
1940 
1941 /*
1942  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1943  * routine is called when a page has been added to the cache or free
1944  * queues.
1945  *
1946  * This routine may not block.
1947  */
1948 static __inline void
1949 vm_page_free_wakeup(void)
1950 {
1951 	/*
1952 	 * If the pageout daemon itself needs pages, then tell it that
1953 	 * there are some free.
1954 	 */
1955 	if (vm_pageout_pages_needed &&
1956 	    vmstats.v_cache_count + vmstats.v_free_count >=
1957 	    vmstats.v_pageout_free_min
1958 	) {
1959 		vm_pageout_pages_needed = 0;
1960 		wakeup(&vm_pageout_pages_needed);
1961 	}
1962 
1963 	/*
1964 	 * Wakeup processes that are waiting on memory.
1965 	 *
1966 	 * Generally speaking we want to wakeup stuck processes as soon as
1967 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
1968 	 * where we can do this.  Wait a bit longer to reduce degenerate
1969 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
1970 	 * to make sure the min-check w/hysteresis does not exceed the
1971 	 * normal target.
1972 	 */
1973 	if (vm_pages_waiting) {
1974 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
1975 		    !vm_page_count_target()) {
1976 			vm_pages_waiting = 0;
1977 			wakeup(&vmstats.v_free_count);
1978 			++mycpu->gd_cnt.v_ppwakeups;
1979 		}
1980 #if 0
1981 		if (!vm_page_count_target()) {
1982 			/*
1983 			 * Plenty of pages are free, wakeup everyone.
1984 			 */
1985 			vm_pages_waiting = 0;
1986 			wakeup(&vmstats.v_free_count);
1987 			++mycpu->gd_cnt.v_ppwakeups;
1988 		} else if (!vm_page_count_min(0)) {
1989 			/*
1990 			 * Some pages are free, wakeup someone.
1991 			 */
1992 			int wcount = vm_pages_waiting;
1993 			if (wcount > 0)
1994 				--wcount;
1995 			vm_pages_waiting = wcount;
1996 			wakeup_one(&vmstats.v_free_count);
1997 			++mycpu->gd_cnt.v_ppwakeups;
1998 		}
1999 #endif
2000 	}
2001 }
2002 
2003 /*
2004  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2005  * it from its VM object.
2006  *
2007  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2008  * return (the page will have been freed).
2009  */
2010 void
2011 vm_page_free_toq(vm_page_t m)
2012 {
2013 	mycpu->gd_cnt.v_tfree++;
2014 	KKASSERT((m->flags & PG_MAPPED) == 0);
2015 	KKASSERT(m->flags & PG_BUSY);
2016 
2017 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2018 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2019 			"PG_BUSY(%d), hold(%d)\n",
2020 			(u_long)m->pindex, m->busy,
2021 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2022 		if ((m->queue - m->pc) == PQ_FREE)
2023 			panic("vm_page_free: freeing free page");
2024 		else
2025 			panic("vm_page_free: freeing busy page");
2026 	}
2027 
2028 	/*
2029 	 * Remove from object, spinlock the page and its queues and
2030 	 * remove from any queue.  No queue spinlock will be held
2031 	 * after this section (because the page was removed from any
2032 	 * queue).
2033 	 */
2034 	vm_page_remove(m);
2035 	vm_page_and_queue_spin_lock(m);
2036 	_vm_page_rem_queue_spinlocked(m);
2037 
2038 	/*
2039 	 * No further management of fictitious pages occurs beyond object
2040 	 * and queue removal.
2041 	 */
2042 	if ((m->flags & PG_FICTITIOUS) != 0) {
2043 		vm_page_spin_unlock(m);
2044 		vm_page_wakeup(m);
2045 		return;
2046 	}
2047 
2048 	m->valid = 0;
2049 	vm_page_undirty(m);
2050 
2051 	if (m->wire_count != 0) {
2052 		if (m->wire_count > 1) {
2053 		    panic(
2054 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2055 			m->wire_count, (long)m->pindex);
2056 		}
2057 		panic("vm_page_free: freeing wired page");
2058 	}
2059 
2060 	/*
2061 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2062 	 * Clear the NEED_COMMIT flag
2063 	 */
2064 	if (m->flags & PG_UNMANAGED)
2065 		vm_page_flag_clear(m, PG_UNMANAGED);
2066 	if (m->flags & PG_NEED_COMMIT)
2067 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2068 
2069 	if (m->hold_count != 0) {
2070 		vm_page_flag_clear(m, PG_ZERO);
2071 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2072 	} else {
2073 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2074 	}
2075 
2076 	/*
2077 	 * This sequence allows us to clear PG_BUSY while still holding
2078 	 * its spin lock, which reduces contention vs allocators.  We
2079 	 * must not leave the queue locked or _vm_page_wakeup() may
2080 	 * deadlock.
2081 	 */
2082 	_vm_page_queue_spin_unlock(m);
2083 	if (_vm_page_wakeup(m)) {
2084 		vm_page_spin_unlock(m);
2085 		wakeup(m);
2086 	} else {
2087 		vm_page_spin_unlock(m);
2088 	}
2089 	vm_page_free_wakeup();
2090 }
2091 
2092 /*
2093  * vm_page_free_fromq_fast()
2094  *
2095  * Remove a non-zero page from one of the free queues; the page is removed for
2096  * zeroing, so do not issue a wakeup.
2097  */
2098 vm_page_t
2099 vm_page_free_fromq_fast(void)
2100 {
2101 	static int qi;
2102 	vm_page_t m;
2103 	int i;
2104 
2105 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2106 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2107 		/* page is returned spinlocked and removed from its queue */
2108 		if (m) {
2109 			if (vm_page_busy_try(m, TRUE)) {
2110 				/*
2111 				 * We were unable to busy the page, deactivate
2112 				 * it and loop.
2113 				 */
2114 				_vm_page_deactivate_locked(m, 0);
2115 				vm_page_spin_unlock(m);
2116 			} else if (m->flags & PG_ZERO) {
2117 				/*
2118 				 * The page is PG_ZERO, requeue it and loop
2119 				 */
2120 				_vm_page_add_queue_spinlocked(m,
2121 							      PQ_FREE + m->pc,
2122 							      0);
2123 				vm_page_queue_spin_unlock(m);
2124 				if (_vm_page_wakeup(m)) {
2125 					vm_page_spin_unlock(m);
2126 					wakeup(m);
2127 				} else {
2128 					vm_page_spin_unlock(m);
2129 				}
2130 			} else {
2131 				/*
2132 				 * The page is not PG_ZERO'd so return it.
2133 				 */
2134 				vm_page_spin_unlock(m);
2135 				KKASSERT((m->flags & (PG_UNMANAGED |
2136 						      PG_NEED_COMMIT)) == 0);
2137 				KKASSERT(m->hold_count == 0);
2138 				KKASSERT(m->wire_count == 0);
2139 				break;
2140 			}
2141 			m = NULL;
2142 		}
2143 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2144 	}
2145 	return (m);
2146 }
2147 
2148 /*
2149  * vm_page_unmanage()
2150  *
2151  * Prevent PV management from being done on the page.  The page is
2152  * removed from the paging queues as if it were wired, and as a
2153  * consequence of no longer being managed the pageout daemon will not
2154  * touch it (since there is no way to locate the pte mappings for the
2155  * page).  madvise() calls that mess with the pmap will also no longer
2156  * operate on the page.
2157  *
2158  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2159  * will clear the flag.
2160  *
2161  * This routine is used by OBJT_PHYS objects - objects using unswappable
2162  * physical memory as backing store rather then swap-backed memory and
2163  * will eventually be extended to support 4MB unmanaged physical
2164  * mappings.
2165  *
2166  * Caller must be holding the page busy.
2167  */
2168 void
2169 vm_page_unmanage(vm_page_t m)
2170 {
2171 	KKASSERT(m->flags & PG_BUSY);
2172 	if ((m->flags & PG_UNMANAGED) == 0) {
2173 		if (m->wire_count == 0)
2174 			vm_page_unqueue(m);
2175 	}
2176 	vm_page_flag_set(m, PG_UNMANAGED);
2177 }
2178 
2179 /*
2180  * Mark this page as wired down by yet another map, removing it from
2181  * paging queues as necessary.
2182  *
2183  * Caller must be holding the page busy.
2184  */
2185 void
2186 vm_page_wire(vm_page_t m)
2187 {
2188 	/*
2189 	 * Only bump the wire statistics if the page is not already wired,
2190 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2191 	 * it is already off the queues).  Don't do anything with fictitious
2192 	 * pages because they are always wired.
2193 	 */
2194 	KKASSERT(m->flags & PG_BUSY);
2195 	if ((m->flags & PG_FICTITIOUS) == 0) {
2196 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2197 			if ((m->flags & PG_UNMANAGED) == 0)
2198 				vm_page_unqueue(m);
2199 			atomic_add_int(&vmstats.v_wire_count, 1);
2200 		}
2201 		KASSERT(m->wire_count != 0,
2202 			("vm_page_wire: wire_count overflow m=%p", m));
2203 	}
2204 }
2205 
2206 /*
2207  * Release one wiring of this page, potentially enabling it to be paged again.
2208  *
2209  * Many pages placed on the inactive queue should actually go
2210  * into the cache, but it is difficult to figure out which.  What
2211  * we do instead, if the inactive target is well met, is to put
2212  * clean pages at the head of the inactive queue instead of the tail.
2213  * This will cause them to be moved to the cache more quickly and
2214  * if not actively re-referenced, freed more quickly.  If we just
2215  * stick these pages at the end of the inactive queue, heavy filesystem
2216  * meta-data accesses can cause an unnecessary paging load on memory bound
2217  * processes.  This optimization causes one-time-use metadata to be
2218  * reused more quickly.
2219  *
2220  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2221  * the inactive queue.  This helps the pageout daemon determine memory
2222  * pressure and act on out-of-memory situations more quickly.
2223  *
2224  * BUT, if we are in a low-memory situation we have no choice but to
2225  * put clean pages on the cache queue.
2226  *
2227  * A number of routines use vm_page_unwire() to guarantee that the page
2228  * will go into either the inactive or active queues, and will NEVER
2229  * be placed in the cache - for example, just after dirtying a page.
2230  * dirty pages in the cache are not allowed.
2231  *
2232  * The page queues must be locked.
2233  * This routine may not block.
2234  */
2235 void
2236 vm_page_unwire(vm_page_t m, int activate)
2237 {
2238 	KKASSERT(m->flags & PG_BUSY);
2239 	if (m->flags & PG_FICTITIOUS) {
2240 		/* do nothing */
2241 	} else if (m->wire_count <= 0) {
2242 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2243 	} else {
2244 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2245 			atomic_add_int(&vmstats.v_wire_count, -1);
2246 			if (m->flags & PG_UNMANAGED) {
2247 				;
2248 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2249 				vm_page_spin_lock(m);
2250 				_vm_page_add_queue_spinlocked(m,
2251 							PQ_ACTIVE + m->pc, 0);
2252 				_vm_page_and_queue_spin_unlock(m);
2253 			} else {
2254 				vm_page_spin_lock(m);
2255 				vm_page_flag_clear(m, PG_WINATCFLS);
2256 				_vm_page_add_queue_spinlocked(m,
2257 							PQ_INACTIVE + m->pc, 0);
2258 				++vm_swapcache_inactive_heuristic;
2259 				_vm_page_and_queue_spin_unlock(m);
2260 			}
2261 		}
2262 	}
2263 }
2264 
2265 /*
2266  * Move the specified page to the inactive queue.  If the page has
2267  * any associated swap, the swap is deallocated.
2268  *
2269  * Normally athead is 0 resulting in LRU operation.  athead is set
2270  * to 1 if we want this page to be 'as if it were placed in the cache',
2271  * except without unmapping it from the process address space.
2272  *
2273  * vm_page's spinlock must be held on entry and will remain held on return.
2274  * This routine may not block.
2275  */
2276 static void
2277 _vm_page_deactivate_locked(vm_page_t m, int athead)
2278 {
2279 	u_short oqueue;
2280 
2281 	/*
2282 	 * Ignore if already inactive.
2283 	 */
2284 	if (m->queue - m->pc == PQ_INACTIVE)
2285 		return;
2286 	_vm_page_queue_spin_lock(m);
2287 	oqueue = _vm_page_rem_queue_spinlocked(m);
2288 
2289 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2290 		if (oqueue == PQ_CACHE)
2291 			mycpu->gd_cnt.v_reactivated++;
2292 		vm_page_flag_clear(m, PG_WINATCFLS);
2293 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2294 		if (athead == 0)
2295 			++vm_swapcache_inactive_heuristic;
2296 	}
2297 	_vm_page_queue_spin_unlock(m);
2298 	/* leaves vm_page spinlocked */
2299 }
2300 
2301 /*
2302  * Attempt to deactivate a page.
2303  *
2304  * No requirements.
2305  */
2306 void
2307 vm_page_deactivate(vm_page_t m)
2308 {
2309 	vm_page_spin_lock(m);
2310 	_vm_page_deactivate_locked(m, 0);
2311 	vm_page_spin_unlock(m);
2312 }
2313 
2314 void
2315 vm_page_deactivate_locked(vm_page_t m)
2316 {
2317 	_vm_page_deactivate_locked(m, 0);
2318 }
2319 
2320 /*
2321  * Attempt to move a page to PQ_CACHE.
2322  *
2323  * Returns 0 on failure, 1 on success
2324  *
2325  * The page should NOT be busied by the caller.  This function will validate
2326  * whether the page can be safely moved to the cache.
2327  */
2328 int
2329 vm_page_try_to_cache(vm_page_t m)
2330 {
2331 	vm_page_spin_lock(m);
2332 	if (vm_page_busy_try(m, TRUE)) {
2333 		vm_page_spin_unlock(m);
2334 		return(0);
2335 	}
2336 	if (m->dirty || m->hold_count || m->wire_count ||
2337 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2338 		if (_vm_page_wakeup(m)) {
2339 			vm_page_spin_unlock(m);
2340 			wakeup(m);
2341 		} else {
2342 			vm_page_spin_unlock(m);
2343 		}
2344 		return(0);
2345 	}
2346 	vm_page_spin_unlock(m);
2347 
2348 	/*
2349 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2350 	 * be moved to the cache.
2351 	 */
2352 	vm_page_test_dirty(m);
2353 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2354 		vm_page_wakeup(m);
2355 		return(0);
2356 	}
2357 	vm_page_cache(m);
2358 	return(1);
2359 }
2360 
2361 /*
2362  * Attempt to free the page.  If we cannot free it, we do nothing.
2363  * 1 is returned on success, 0 on failure.
2364  *
2365  * No requirements.
2366  */
2367 int
2368 vm_page_try_to_free(vm_page_t m)
2369 {
2370 	vm_page_spin_lock(m);
2371 	if (vm_page_busy_try(m, TRUE)) {
2372 		vm_page_spin_unlock(m);
2373 		return(0);
2374 	}
2375 
2376 	/*
2377 	 * The page can be in any state, including already being on the free
2378 	 * queue.  Check to see if it really can be freed.
2379 	 */
2380 	if (m->dirty ||				/* can't free if it is dirty */
2381 	    m->hold_count ||			/* or held (XXX may be wrong) */
2382 	    m->wire_count ||			/* or wired */
2383 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2384 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2385 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2386 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2387 		if (_vm_page_wakeup(m)) {
2388 			vm_page_spin_unlock(m);
2389 			wakeup(m);
2390 		} else {
2391 			vm_page_spin_unlock(m);
2392 		}
2393 		return(0);
2394 	}
2395 	vm_page_spin_unlock(m);
2396 
2397 	/*
2398 	 * We can probably free the page.
2399 	 *
2400 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2401 	 * not be freed by this function.    We have to re-test the
2402 	 * dirty bit after cleaning out the pmaps.
2403 	 */
2404 	vm_page_test_dirty(m);
2405 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2406 		vm_page_wakeup(m);
2407 		return(0);
2408 	}
2409 	vm_page_protect(m, VM_PROT_NONE);
2410 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2411 		vm_page_wakeup(m);
2412 		return(0);
2413 	}
2414 	vm_page_free(m);
2415 	return(1);
2416 }
2417 
2418 /*
2419  * vm_page_cache
2420  *
2421  * Put the specified page onto the page cache queue (if appropriate).
2422  *
2423  * The page must be busy, and this routine will release the busy and
2424  * possibly even free the page.
2425  */
2426 void
2427 vm_page_cache(vm_page_t m)
2428 {
2429 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2430 	    m->busy || m->wire_count || m->hold_count) {
2431 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2432 		vm_page_wakeup(m);
2433 		return;
2434 	}
2435 
2436 	/*
2437 	 * Already in the cache (and thus not mapped)
2438 	 */
2439 	if ((m->queue - m->pc) == PQ_CACHE) {
2440 		KKASSERT((m->flags & PG_MAPPED) == 0);
2441 		vm_page_wakeup(m);
2442 		return;
2443 	}
2444 
2445 	/*
2446 	 * Caller is required to test m->dirty, but note that the act of
2447 	 * removing the page from its maps can cause it to become dirty
2448 	 * on an SMP system due to another cpu running in usermode.
2449 	 */
2450 	if (m->dirty) {
2451 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2452 			(long)m->pindex);
2453 	}
2454 
2455 	/*
2456 	 * Remove all pmaps and indicate that the page is not
2457 	 * writeable or mapped.  Our vm_page_protect() call may
2458 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2459 	 * everything.
2460 	 */
2461 	vm_page_protect(m, VM_PROT_NONE);
2462 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2463 	    m->busy || m->wire_count || m->hold_count) {
2464 		vm_page_wakeup(m);
2465 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2466 		vm_page_deactivate(m);
2467 		vm_page_wakeup(m);
2468 	} else {
2469 		_vm_page_and_queue_spin_lock(m);
2470 		_vm_page_rem_queue_spinlocked(m);
2471 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2472 		_vm_page_queue_spin_unlock(m);
2473 		if (_vm_page_wakeup(m)) {
2474 			vm_page_spin_unlock(m);
2475 			wakeup(m);
2476 		} else {
2477 			vm_page_spin_unlock(m);
2478 		}
2479 		vm_page_free_wakeup();
2480 	}
2481 }
2482 
2483 /*
2484  * vm_page_dontneed()
2485  *
2486  * Cache, deactivate, or do nothing as appropriate.  This routine
2487  * is typically used by madvise() MADV_DONTNEED.
2488  *
2489  * Generally speaking we want to move the page into the cache so
2490  * it gets reused quickly.  However, this can result in a silly syndrome
2491  * due to the page recycling too quickly.  Small objects will not be
2492  * fully cached.  On the otherhand, if we move the page to the inactive
2493  * queue we wind up with a problem whereby very large objects
2494  * unnecessarily blow away our inactive and cache queues.
2495  *
2496  * The solution is to move the pages based on a fixed weighting.  We
2497  * either leave them alone, deactivate them, or move them to the cache,
2498  * where moving them to the cache has the highest weighting.
2499  * By forcing some pages into other queues we eventually force the
2500  * system to balance the queues, potentially recovering other unrelated
2501  * space from active.  The idea is to not force this to happen too
2502  * often.
2503  *
2504  * The page must be busied.
2505  */
2506 void
2507 vm_page_dontneed(vm_page_t m)
2508 {
2509 	static int dnweight;
2510 	int dnw;
2511 	int head;
2512 
2513 	dnw = ++dnweight;
2514 
2515 	/*
2516 	 * occassionally leave the page alone
2517 	 */
2518 	if ((dnw & 0x01F0) == 0 ||
2519 	    m->queue - m->pc == PQ_INACTIVE ||
2520 	    m->queue - m->pc == PQ_CACHE
2521 	) {
2522 		if (m->act_count >= ACT_INIT)
2523 			--m->act_count;
2524 		return;
2525 	}
2526 
2527 	/*
2528 	 * If vm_page_dontneed() is inactivating a page, it must clear
2529 	 * the referenced flag; otherwise the pagedaemon will see references
2530 	 * on the page in the inactive queue and reactivate it. Until the
2531 	 * page can move to the cache queue, madvise's job is not done.
2532 	 */
2533 	vm_page_flag_clear(m, PG_REFERENCED);
2534 	pmap_clear_reference(m);
2535 
2536 	if (m->dirty == 0)
2537 		vm_page_test_dirty(m);
2538 
2539 	if (m->dirty || (dnw & 0x0070) == 0) {
2540 		/*
2541 		 * Deactivate the page 3 times out of 32.
2542 		 */
2543 		head = 0;
2544 	} else {
2545 		/*
2546 		 * Cache the page 28 times out of every 32.  Note that
2547 		 * the page is deactivated instead of cached, but placed
2548 		 * at the head of the queue instead of the tail.
2549 		 */
2550 		head = 1;
2551 	}
2552 	vm_page_spin_lock(m);
2553 	_vm_page_deactivate_locked(m, head);
2554 	vm_page_spin_unlock(m);
2555 }
2556 
2557 /*
2558  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2559  * is almost like PG_BUSY except that it allows certain compatible operations
2560  * to occur on the page while it is busy.  For example, a page undergoing a
2561  * write can still be mapped read-only.
2562  *
2563  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2564  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2565  * busy bit is cleared.
2566  */
2567 void
2568 vm_page_io_start(vm_page_t m)
2569 {
2570         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2571         atomic_add_char(&m->busy, 1);
2572 	vm_page_flag_set(m, PG_SBUSY);
2573 }
2574 
2575 void
2576 vm_page_io_finish(vm_page_t m)
2577 {
2578         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2579         atomic_subtract_char(&m->busy, 1);
2580 	if (m->busy == 0)
2581 		vm_page_flag_clear(m, PG_SBUSY);
2582 }
2583 
2584 /*
2585  * Indicate that a clean VM page requires a filesystem commit and cannot
2586  * be reused.  Used by tmpfs.
2587  */
2588 void
2589 vm_page_need_commit(vm_page_t m)
2590 {
2591 	vm_page_flag_set(m, PG_NEED_COMMIT);
2592 	vm_object_set_writeable_dirty(m->object);
2593 }
2594 
2595 void
2596 vm_page_clear_commit(vm_page_t m)
2597 {
2598 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2599 }
2600 
2601 /*
2602  * Grab a page, blocking if it is busy and allocating a page if necessary.
2603  * A busy page is returned or NULL.  The page may or may not be valid and
2604  * might not be on a queue (the caller is responsible for the disposition of
2605  * the page).
2606  *
2607  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2608  * page will be zero'd and marked valid.
2609  *
2610  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2611  * valid even if it already exists.
2612  *
2613  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2614  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2615  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2616  *
2617  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2618  * always returned if we had blocked.
2619  *
2620  * This routine may not be called from an interrupt.
2621  *
2622  * PG_ZERO is *ALWAYS* cleared by this routine.
2623  *
2624  * No other requirements.
2625  */
2626 vm_page_t
2627 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2628 {
2629 	vm_page_t m;
2630 	int error;
2631 
2632 	KKASSERT(allocflags &
2633 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2634 	vm_object_hold(object);
2635 	for (;;) {
2636 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2637 		if (error) {
2638 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2639 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2640 				m = NULL;
2641 				break;
2642 			}
2643 			/* retry */
2644 		} else if (m == NULL) {
2645 			if (allocflags & VM_ALLOC_RETRY)
2646 				allocflags |= VM_ALLOC_NULL_OK;
2647 			m = vm_page_alloc(object, pindex,
2648 					  allocflags & ~VM_ALLOC_RETRY);
2649 			if (m)
2650 				break;
2651 			vm_wait(0);
2652 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2653 				goto failed;
2654 		} else {
2655 			/* m found */
2656 			break;
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2662 	 *
2663 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2664 	 * valid even if already valid.
2665 	 */
2666 	if (m->valid == 0) {
2667 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2668 			if ((m->flags & PG_ZERO) == 0)
2669 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2670 			m->valid = VM_PAGE_BITS_ALL;
2671 		}
2672 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2673 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2674 		m->valid = VM_PAGE_BITS_ALL;
2675 	}
2676 	vm_page_flag_clear(m, PG_ZERO);
2677 failed:
2678 	vm_object_drop(object);
2679 	return(m);
2680 }
2681 
2682 /*
2683  * Mapping function for valid bits or for dirty bits in
2684  * a page.  May not block.
2685  *
2686  * Inputs are required to range within a page.
2687  *
2688  * No requirements.
2689  * Non blocking.
2690  */
2691 int
2692 vm_page_bits(int base, int size)
2693 {
2694 	int first_bit;
2695 	int last_bit;
2696 
2697 	KASSERT(
2698 	    base + size <= PAGE_SIZE,
2699 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2700 	);
2701 
2702 	if (size == 0)		/* handle degenerate case */
2703 		return(0);
2704 
2705 	first_bit = base >> DEV_BSHIFT;
2706 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2707 
2708 	return ((2 << last_bit) - (1 << first_bit));
2709 }
2710 
2711 /*
2712  * Sets portions of a page valid and clean.  The arguments are expected
2713  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2714  * of any partial chunks touched by the range.  The invalid portion of
2715  * such chunks will be zero'd.
2716  *
2717  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2718  *	 align base to DEV_BSIZE so as not to mark clean a partially
2719  *	 truncated device block.  Otherwise the dirty page status might be
2720  *	 lost.
2721  *
2722  * This routine may not block.
2723  *
2724  * (base + size) must be less then or equal to PAGE_SIZE.
2725  */
2726 static void
2727 _vm_page_zero_valid(vm_page_t m, int base, int size)
2728 {
2729 	int frag;
2730 	int endoff;
2731 
2732 	if (size == 0)	/* handle degenerate case */
2733 		return;
2734 
2735 	/*
2736 	 * If the base is not DEV_BSIZE aligned and the valid
2737 	 * bit is clear, we have to zero out a portion of the
2738 	 * first block.
2739 	 */
2740 
2741 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2742 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2743 	) {
2744 		pmap_zero_page_area(
2745 		    VM_PAGE_TO_PHYS(m),
2746 		    frag,
2747 		    base - frag
2748 		);
2749 	}
2750 
2751 	/*
2752 	 * If the ending offset is not DEV_BSIZE aligned and the
2753 	 * valid bit is clear, we have to zero out a portion of
2754 	 * the last block.
2755 	 */
2756 
2757 	endoff = base + size;
2758 
2759 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2760 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2761 	) {
2762 		pmap_zero_page_area(
2763 		    VM_PAGE_TO_PHYS(m),
2764 		    endoff,
2765 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2766 		);
2767 	}
2768 }
2769 
2770 /*
2771  * Set valid, clear dirty bits.  If validating the entire
2772  * page we can safely clear the pmap modify bit.  We also
2773  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2774  * takes a write fault on a MAP_NOSYNC memory area the flag will
2775  * be set again.
2776  *
2777  * We set valid bits inclusive of any overlap, but we can only
2778  * clear dirty bits for DEV_BSIZE chunks that are fully within
2779  * the range.
2780  *
2781  * Page must be busied?
2782  * No other requirements.
2783  */
2784 void
2785 vm_page_set_valid(vm_page_t m, int base, int size)
2786 {
2787 	_vm_page_zero_valid(m, base, size);
2788 	m->valid |= vm_page_bits(base, size);
2789 }
2790 
2791 
2792 /*
2793  * Set valid bits and clear dirty bits.
2794  *
2795  * NOTE: This function does not clear the pmap modified bit.
2796  *	 Also note that e.g. NFS may use a byte-granular base
2797  *	 and size.
2798  *
2799  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2800  *	    this without necessarily busying the page (via bdwrite()).
2801  *	    So for now vm_token must also be held.
2802  *
2803  * No other requirements.
2804  */
2805 void
2806 vm_page_set_validclean(vm_page_t m, int base, int size)
2807 {
2808 	int pagebits;
2809 
2810 	_vm_page_zero_valid(m, base, size);
2811 	pagebits = vm_page_bits(base, size);
2812 	m->valid |= pagebits;
2813 	m->dirty &= ~pagebits;
2814 	if (base == 0 && size == PAGE_SIZE) {
2815 		/*pmap_clear_modify(m);*/
2816 		vm_page_flag_clear(m, PG_NOSYNC);
2817 	}
2818 }
2819 
2820 /*
2821  * Set valid & dirty.  Used by buwrite()
2822  *
2823  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2824  *	    call this function in buwrite() so for now vm_token must
2825  *	    be held.
2826  *
2827  * No other requirements.
2828  */
2829 void
2830 vm_page_set_validdirty(vm_page_t m, int base, int size)
2831 {
2832 	int pagebits;
2833 
2834 	pagebits = vm_page_bits(base, size);
2835 	m->valid |= pagebits;
2836 	m->dirty |= pagebits;
2837 	if (m->object)
2838 	       vm_object_set_writeable_dirty(m->object);
2839 }
2840 
2841 /*
2842  * Clear dirty bits.
2843  *
2844  * NOTE: This function does not clear the pmap modified bit.
2845  *	 Also note that e.g. NFS may use a byte-granular base
2846  *	 and size.
2847  *
2848  * Page must be busied?
2849  * No other requirements.
2850  */
2851 void
2852 vm_page_clear_dirty(vm_page_t m, int base, int size)
2853 {
2854 	m->dirty &= ~vm_page_bits(base, size);
2855 	if (base == 0 && size == PAGE_SIZE) {
2856 		/*pmap_clear_modify(m);*/
2857 		vm_page_flag_clear(m, PG_NOSYNC);
2858 	}
2859 }
2860 
2861 /*
2862  * Make the page all-dirty.
2863  *
2864  * Also make sure the related object and vnode reflect the fact that the
2865  * object may now contain a dirty page.
2866  *
2867  * Page must be busied?
2868  * No other requirements.
2869  */
2870 void
2871 vm_page_dirty(vm_page_t m)
2872 {
2873 #ifdef INVARIANTS
2874         int pqtype = m->queue - m->pc;
2875 #endif
2876         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2877                 ("vm_page_dirty: page in free/cache queue!"));
2878 	if (m->dirty != VM_PAGE_BITS_ALL) {
2879 		m->dirty = VM_PAGE_BITS_ALL;
2880 		if (m->object)
2881 			vm_object_set_writeable_dirty(m->object);
2882 	}
2883 }
2884 
2885 /*
2886  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2887  * valid and dirty bits for the effected areas are cleared.
2888  *
2889  * Page must be busied?
2890  * Does not block.
2891  * No other requirements.
2892  */
2893 void
2894 vm_page_set_invalid(vm_page_t m, int base, int size)
2895 {
2896 	int bits;
2897 
2898 	bits = vm_page_bits(base, size);
2899 	m->valid &= ~bits;
2900 	m->dirty &= ~bits;
2901 	m->object->generation++;
2902 }
2903 
2904 /*
2905  * The kernel assumes that the invalid portions of a page contain
2906  * garbage, but such pages can be mapped into memory by user code.
2907  * When this occurs, we must zero out the non-valid portions of the
2908  * page so user code sees what it expects.
2909  *
2910  * Pages are most often semi-valid when the end of a file is mapped
2911  * into memory and the file's size is not page aligned.
2912  *
2913  * Page must be busied?
2914  * No other requirements.
2915  */
2916 void
2917 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2918 {
2919 	int b;
2920 	int i;
2921 
2922 	/*
2923 	 * Scan the valid bits looking for invalid sections that
2924 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2925 	 * valid bit may be set ) have already been zerod by
2926 	 * vm_page_set_validclean().
2927 	 */
2928 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2929 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2930 		    (m->valid & (1 << i))
2931 		) {
2932 			if (i > b) {
2933 				pmap_zero_page_area(
2934 				    VM_PAGE_TO_PHYS(m),
2935 				    b << DEV_BSHIFT,
2936 				    (i - b) << DEV_BSHIFT
2937 				);
2938 			}
2939 			b = i + 1;
2940 		}
2941 	}
2942 
2943 	/*
2944 	 * setvalid is TRUE when we can safely set the zero'd areas
2945 	 * as being valid.  We can do this if there are no cache consistency
2946 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2947 	 */
2948 	if (setvalid)
2949 		m->valid = VM_PAGE_BITS_ALL;
2950 }
2951 
2952 /*
2953  * Is a (partial) page valid?  Note that the case where size == 0
2954  * will return FALSE in the degenerate case where the page is entirely
2955  * invalid, and TRUE otherwise.
2956  *
2957  * Does not block.
2958  * No other requirements.
2959  */
2960 int
2961 vm_page_is_valid(vm_page_t m, int base, int size)
2962 {
2963 	int bits = vm_page_bits(base, size);
2964 
2965 	if (m->valid && ((m->valid & bits) == bits))
2966 		return 1;
2967 	else
2968 		return 0;
2969 }
2970 
2971 /*
2972  * update dirty bits from pmap/mmu.  May not block.
2973  *
2974  * Caller must hold the page busy
2975  */
2976 void
2977 vm_page_test_dirty(vm_page_t m)
2978 {
2979 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2980 		vm_page_dirty(m);
2981 	}
2982 }
2983 
2984 /*
2985  * Register an action, associating it with its vm_page
2986  */
2987 void
2988 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2989 {
2990 	struct vm_page_action_list *list;
2991 	int hv;
2992 
2993 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2994 	list = &action_list[hv];
2995 
2996 	lwkt_gettoken(&vm_token);
2997 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2998 	action->event = event;
2999 	LIST_INSERT_HEAD(list, action, entry);
3000 	lwkt_reltoken(&vm_token);
3001 }
3002 
3003 /*
3004  * Unregister an action, disassociating it from its related vm_page
3005  */
3006 void
3007 vm_page_unregister_action(vm_page_action_t action)
3008 {
3009 	struct vm_page_action_list *list;
3010 	int hv;
3011 
3012 	lwkt_gettoken(&vm_token);
3013 	if (action->event != VMEVENT_NONE) {
3014 		action->event = VMEVENT_NONE;
3015 		LIST_REMOVE(action, entry);
3016 
3017 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3018 		list = &action_list[hv];
3019 		if (LIST_EMPTY(list))
3020 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3021 	}
3022 	lwkt_reltoken(&vm_token);
3023 }
3024 
3025 /*
3026  * Issue an event on a VM page.  Corresponding action structures are
3027  * removed from the page's list and called.
3028  *
3029  * If the vm_page has no more pending action events we clear its
3030  * PG_ACTIONLIST flag.
3031  */
3032 void
3033 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3034 {
3035 	struct vm_page_action_list *list;
3036 	struct vm_page_action *scan;
3037 	struct vm_page_action *next;
3038 	int hv;
3039 	int all;
3040 
3041 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3042 	list = &action_list[hv];
3043 	all = 1;
3044 
3045 	lwkt_gettoken(&vm_token);
3046 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3047 		if (scan->m == m) {
3048 			if (scan->event == event) {
3049 				scan->event = VMEVENT_NONE;
3050 				LIST_REMOVE(scan, entry);
3051 				scan->func(m, scan);
3052 				/* XXX */
3053 			} else {
3054 				all = 0;
3055 			}
3056 		}
3057 	}
3058 	if (all)
3059 		vm_page_flag_clear(m, PG_ACTIONLIST);
3060 	lwkt_reltoken(&vm_token);
3061 }
3062 
3063 #include "opt_ddb.h"
3064 #ifdef DDB
3065 #include <sys/kernel.h>
3066 
3067 #include <ddb/ddb.h>
3068 
3069 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3070 {
3071 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3072 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3073 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3074 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3075 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3076 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3077 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3078 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3079 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3080 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3081 }
3082 
3083 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3084 {
3085 	int i;
3086 	db_printf("PQ_FREE:");
3087 	for(i=0;i<PQ_L2_SIZE;i++) {
3088 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3089 	}
3090 	db_printf("\n");
3091 
3092 	db_printf("PQ_CACHE:");
3093 	for(i=0;i<PQ_L2_SIZE;i++) {
3094 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3095 	}
3096 	db_printf("\n");
3097 
3098 	db_printf("PQ_ACTIVE:");
3099 	for(i=0;i<PQ_L2_SIZE;i++) {
3100 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3101 	}
3102 	db_printf("\n");
3103 
3104 	db_printf("PQ_INACTIVE:");
3105 	for(i=0;i<PQ_L2_SIZE;i++) {
3106 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3107 	}
3108 	db_printf("\n");
3109 }
3110 #endif /* DDB */
3111