xref: /dragonfly/sys/vm/vm_page.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/kernel.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/md_var.h>
96 
97 #include <vm/vm_page2.h>
98 #include <sys/mplock2.h>
99 
100 #define VMACTION_HSIZE	256
101 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
102 
103 static void vm_page_queue_init(void);
104 static void vm_page_free_wakeup(void);
105 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
106 static vm_page_t _vm_page_list_find2(int basequeue, int index);
107 
108 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
109 
110 LIST_HEAD(vm_page_action_list, vm_page_action);
111 struct vm_page_action_list	action_list[VMACTION_HSIZE];
112 static volatile int vm_pages_waiting;
113 
114 
115 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
116 	     vm_pindex_t, pindex);
117 
118 static void
119 vm_page_queue_init(void)
120 {
121 	int i;
122 
123 	for (i = 0; i < PQ_L2_SIZE; i++)
124 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
125 	for (i = 0; i < PQ_L2_SIZE; i++)
126 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
127 
128 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
129 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
130 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
131 	/* PQ_NONE has no queue */
132 
133 	for (i = 0; i < PQ_COUNT; i++)
134 		TAILQ_INIT(&vm_page_queues[i].pl);
135 
136 	for (i = 0; i < VMACTION_HSIZE; i++)
137 		LIST_INIT(&action_list[i]);
138 }
139 
140 /*
141  * note: place in initialized data section?  Is this necessary?
142  */
143 long first_page = 0;
144 int vm_page_array_size = 0;
145 int vm_page_zero_count = 0;
146 vm_page_t vm_page_array = 0;
147 
148 /*
149  * (low level boot)
150  *
151  * Sets the page size, perhaps based upon the memory size.
152  * Must be called before any use of page-size dependent functions.
153  */
154 void
155 vm_set_page_size(void)
156 {
157 	if (vmstats.v_page_size == 0)
158 		vmstats.v_page_size = PAGE_SIZE;
159 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
160 		panic("vm_set_page_size: page size not a power of two");
161 }
162 
163 /*
164  * (low level boot)
165  *
166  * Add a new page to the freelist for use by the system.  New pages
167  * are added to both the head and tail of the associated free page
168  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
169  * requests pull 'recent' adds (higher physical addresses) first.
170  *
171  * Must be called in a critical section.
172  */
173 vm_page_t
174 vm_add_new_page(vm_paddr_t pa)
175 {
176 	struct vpgqueues *vpq;
177 	vm_page_t m;
178 
179 	++vmstats.v_page_count;
180 	++vmstats.v_free_count;
181 	m = PHYS_TO_VM_PAGE(pa);
182 	m->phys_addr = pa;
183 	m->flags = 0;
184 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
185 	m->queue = m->pc + PQ_FREE;
186 	KKASSERT(m->dirty == 0);
187 
188 	vpq = &vm_page_queues[m->queue];
189 	if (vpq->flipflop)
190 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
191 	else
192 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
193 	vpq->flipflop = 1 - vpq->flipflop;
194 
195 	vm_page_queues[m->queue].lcnt++;
196 	return (m);
197 }
198 
199 /*
200  * (low level boot)
201  *
202  * Initializes the resident memory module.
203  *
204  * Preallocates memory for critical VM structures and arrays prior to
205  * kernel_map becoming available.
206  *
207  * Memory is allocated from (virtual2_start, virtual2_end) if available,
208  * otherwise memory is allocated from (virtual_start, virtual_end).
209  *
210  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
211  * large enough to hold vm_page_array & other structures for machines with
212  * large amounts of ram, so we want to use virtual2* when available.
213  */
214 void
215 vm_page_startup(void)
216 {
217 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
218 	vm_offset_t mapped;
219 	vm_size_t npages;
220 	vm_paddr_t page_range;
221 	vm_paddr_t new_end;
222 	int i;
223 	vm_paddr_t pa;
224 	int nblocks;
225 	vm_paddr_t last_pa;
226 	vm_paddr_t end;
227 	vm_paddr_t biggestone, biggestsize;
228 	vm_paddr_t total;
229 
230 	total = 0;
231 	biggestsize = 0;
232 	biggestone = 0;
233 	nblocks = 0;
234 	vaddr = round_page(vaddr);
235 
236 	for (i = 0; phys_avail[i + 1]; i += 2) {
237 		phys_avail[i] = round_page64(phys_avail[i]);
238 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
239 	}
240 
241 	for (i = 0; phys_avail[i + 1]; i += 2) {
242 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
243 
244 		if (size > biggestsize) {
245 			biggestone = i;
246 			biggestsize = size;
247 		}
248 		++nblocks;
249 		total += size;
250 	}
251 
252 	end = phys_avail[biggestone+1];
253 	end = trunc_page(end);
254 
255 	/*
256 	 * Initialize the queue headers for the free queue, the active queue
257 	 * and the inactive queue.
258 	 */
259 
260 	vm_page_queue_init();
261 
262 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
263 #if !defined(_KERNEL_VIRTUAL)
264 	/*
265 	 * Allocate a bitmap to indicate that a random physical page
266 	 * needs to be included in a minidump.
267 	 *
268 	 * The amd64 port needs this to indicate which direct map pages
269 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
270 	 *
271 	 * However, i386 still needs this workspace internally within the
272 	 * minidump code.  In theory, they are not needed on i386, but are
273 	 * included should the sf_buf code decide to use them.
274 	 */
275 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
276 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
277 	end -= vm_page_dump_size;
278 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
279 	    VM_PROT_READ | VM_PROT_WRITE);
280 	bzero((void *)vm_page_dump, vm_page_dump_size);
281 #endif
282 
283 	/*
284 	 * Compute the number of pages of memory that will be available for
285 	 * use (taking into account the overhead of a page structure per
286 	 * page).
287 	 */
288 	first_page = phys_avail[0] / PAGE_SIZE;
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
290 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
291 
292 	/*
293 	 * Initialize the mem entry structures now, and put them in the free
294 	 * queue.
295 	 */
296 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
297 	mapped = pmap_map(&vaddr, new_end, end,
298 	    VM_PROT_READ | VM_PROT_WRITE);
299 	vm_page_array = (vm_page_t)mapped;
300 
301 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
302 	/*
303 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
304 	 * we have to manually add these pages to the minidump tracking so
305 	 * that they can be dumped, including the vm_page_array.
306 	 */
307 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
308 		dump_add_page(pa);
309 #endif
310 
311 	/*
312 	 * Clear all of the page structures
313 	 */
314 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
315 	vm_page_array_size = page_range;
316 
317 	/*
318 	 * Construct the free queue(s) in ascending order (by physical
319 	 * address) so that the first 16MB of physical memory is allocated
320 	 * last rather than first.  On large-memory machines, this avoids
321 	 * the exhaustion of low physical memory before isa_dmainit has run.
322 	 */
323 	vmstats.v_page_count = 0;
324 	vmstats.v_free_count = 0;
325 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
326 		pa = phys_avail[i];
327 		if (i == biggestone)
328 			last_pa = new_end;
329 		else
330 			last_pa = phys_avail[i + 1];
331 		while (pa < last_pa && npages-- > 0) {
332 			vm_add_new_page(pa);
333 			pa += PAGE_SIZE;
334 		}
335 	}
336 	if (virtual2_start)
337 		virtual2_start = vaddr;
338 	else
339 		virtual_start = vaddr;
340 }
341 
342 /*
343  * Scan comparison function for Red-Black tree scans.  An inclusive
344  * (start,end) is expected.  Other fields are not used.
345  */
346 int
347 rb_vm_page_scancmp(struct vm_page *p, void *data)
348 {
349 	struct rb_vm_page_scan_info *info = data;
350 
351 	if (p->pindex < info->start_pindex)
352 		return(-1);
353 	if (p->pindex > info->end_pindex)
354 		return(1);
355 	return(0);
356 }
357 
358 int
359 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
360 {
361 	if (p1->pindex < p2->pindex)
362 		return(-1);
363 	if (p1->pindex > p2->pindex)
364 		return(1);
365 	return(0);
366 }
367 
368 /*
369  * Holding a page keeps it from being reused.  Other parts of the system
370  * can still disassociate the page from its current object and free it, or
371  * perform read or write I/O on it and/or otherwise manipulate the page,
372  * but if the page is held the VM system will leave the page and its data
373  * intact and not reuse the page for other purposes until the last hold
374  * reference is released.  (see vm_page_wire() if you want to prevent the
375  * page from being disassociated from its object too).
376  *
377  * The caller must hold vm_token.
378  *
379  * The caller must still validate the contents of the page and, if necessary,
380  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
381  * before manipulating the page.
382  */
383 void
384 vm_page_hold(vm_page_t m)
385 {
386 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
387 	++m->hold_count;
388 }
389 
390 /*
391  * The opposite of vm_page_hold().  A page can be freed while being held,
392  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
393  * in this case to actually free it once the hold count drops to 0.
394  *
395  * The caller must hold vm_token if non-blocking operation is desired,
396  * but otherwise does not need to.
397  */
398 void
399 vm_page_unhold(vm_page_t m)
400 {
401 	lwkt_gettoken(&vm_token);
402 	--m->hold_count;
403 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
404 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
405 		vm_page_busy(m);
406 		vm_page_free_toq(m);
407 	}
408 	lwkt_reltoken(&vm_token);
409 }
410 
411 /*
412  * Inserts the given vm_page into the object and object list.
413  *
414  * The pagetables are not updated but will presumably fault the page
415  * in if necessary, or if a kernel page the caller will at some point
416  * enter the page into the kernel's pmap.  We are not allowed to block
417  * here so we *can't* do this anyway.
418  *
419  * This routine may not block.
420  * This routine must be called with the vm_token held.
421  * This routine must be called with a critical section held.
422  */
423 void
424 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
425 {
426 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
427 	if (m->object != NULL)
428 		panic("vm_page_insert: already inserted");
429 
430 	/*
431 	 * Record the object/offset pair in this page
432 	 */
433 	m->object = object;
434 	m->pindex = pindex;
435 
436 	/*
437 	 * Insert it into the object.
438 	 */
439 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
440 	object->generation++;
441 
442 	/*
443 	 * show that the object has one more resident page.
444 	 */
445 	object->resident_page_count++;
446 
447 	/*
448 	 * Add the pv_list_cout of the page when its inserted in
449 	 * the object
450 	*/
451 	object->agg_pv_list_count = object->agg_pv_list_count + m->md.pv_list_count;
452 
453 	/*
454 	 * Since we are inserting a new and possibly dirty page,
455 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
456 	 */
457 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
458 		vm_object_set_writeable_dirty(object);
459 
460 	/*
461 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
462 	 */
463 	swap_pager_page_inserted(m);
464 }
465 
466 /*
467  * Removes the given vm_page_t from the global (object,index) hash table
468  * and from the object's memq.
469  *
470  * The underlying pmap entry (if any) is NOT removed here.
471  * This routine may not block.
472  *
473  * The page must be BUSY and will remain BUSY on return.
474  * No other requirements.
475  *
476  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
477  *	 it busy.
478  */
479 void
480 vm_page_remove(vm_page_t m)
481 {
482 	vm_object_t object;
483 
484 	lwkt_gettoken(&vm_token);
485 	if (m->object == NULL) {
486 		lwkt_reltoken(&vm_token);
487 		return;
488 	}
489 
490 	if ((m->flags & PG_BUSY) == 0)
491 		panic("vm_page_remove: page not busy");
492 
493 	object = m->object;
494 
495 	/*
496 	 * Remove the page from the object and update the object.
497 	 */
498 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
499 	object->resident_page_count--;
500 	object->agg_pv_list_count = object->agg_pv_list_count - m->md.pv_list_count;
501 	object->generation++;
502 	m->object = NULL;
503 
504 	lwkt_reltoken(&vm_token);
505 }
506 
507 /*
508  * Locate and return the page at (object, pindex), or NULL if the
509  * page could not be found.
510  *
511  * The caller must hold vm_token.
512  */
513 vm_page_t
514 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
515 {
516 	vm_page_t m;
517 
518 	/*
519 	 * Search the hash table for this object/offset pair
520 	 */
521 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
522 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
523 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
524 	return(m);
525 }
526 
527 /*
528  * vm_page_rename()
529  *
530  * Move the given memory entry from its current object to the specified
531  * target object/offset.
532  *
533  * The object must be locked.
534  * This routine may not block.
535  *
536  * Note: This routine will raise itself to splvm(), the caller need not.
537  *
538  * Note: Swap associated with the page must be invalidated by the move.  We
539  *       have to do this for several reasons:  (1) we aren't freeing the
540  *       page, (2) we are dirtying the page, (3) the VM system is probably
541  *       moving the page from object A to B, and will then later move
542  *       the backing store from A to B and we can't have a conflict.
543  *
544  * Note: We *always* dirty the page.  It is necessary both for the
545  *       fact that we moved it, and because we may be invalidating
546  *	 swap.  If the page is on the cache, we have to deactivate it
547  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
548  *	 on the cache.
549  */
550 void
551 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
552 {
553 	lwkt_gettoken(&vm_token);
554 	vm_page_remove(m);
555 	vm_page_insert(m, new_object, new_pindex);
556 	if (m->queue - m->pc == PQ_CACHE)
557 		vm_page_deactivate(m);
558 	vm_page_dirty(m);
559 	vm_page_wakeup(m);
560 	lwkt_reltoken(&vm_token);
561 }
562 
563 /*
564  * vm_page_unqueue() without any wakeup.  This routine is used when a page
565  * is being moved between queues or otherwise is to remain BUSYied by the
566  * caller.
567  *
568  * The caller must hold vm_token
569  * This routine may not block.
570  */
571 void
572 vm_page_unqueue_nowakeup(vm_page_t m)
573 {
574 	int queue = m->queue;
575 	struct vpgqueues *pq;
576 
577 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
578 	if (queue != PQ_NONE) {
579 		pq = &vm_page_queues[queue];
580 		m->queue = PQ_NONE;
581 		TAILQ_REMOVE(&pq->pl, m, pageq);
582 		(*pq->cnt)--;
583 		pq->lcnt--;
584 	}
585 }
586 
587 /*
588  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
589  * if necessary.
590  *
591  * The caller must hold vm_token
592  * This routine may not block.
593  */
594 void
595 vm_page_unqueue(vm_page_t m)
596 {
597 	int queue = m->queue;
598 	struct vpgqueues *pq;
599 
600 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
601 	if (queue != PQ_NONE) {
602 		m->queue = PQ_NONE;
603 		pq = &vm_page_queues[queue];
604 		TAILQ_REMOVE(&pq->pl, m, pageq);
605 		(*pq->cnt)--;
606 		pq->lcnt--;
607 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
608 			pagedaemon_wakeup();
609 	}
610 }
611 
612 /*
613  * vm_page_list_find()
614  *
615  * Find a page on the specified queue with color optimization.
616  *
617  * The page coloring optimization attempts to locate a page that does
618  * not overload other nearby pages in the object in the cpu's L1 or L2
619  * caches.  We need this optimization because cpu caches tend to be
620  * physical caches, while object spaces tend to be virtual.
621  *
622  * Must be called with vm_token held.
623  * This routine may not block.
624  *
625  * Note that this routine is carefully inlined.  A non-inlined version
626  * is available for outside callers but the only critical path is
627  * from within this source file.
628  */
629 static __inline
630 vm_page_t
631 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
632 {
633 	vm_page_t m;
634 
635 	if (prefer_zero)
636 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
637 	else
638 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
639 	if (m == NULL)
640 		m = _vm_page_list_find2(basequeue, index);
641 	return(m);
642 }
643 
644 static vm_page_t
645 _vm_page_list_find2(int basequeue, int index)
646 {
647 	int i;
648 	vm_page_t m = NULL;
649 	struct vpgqueues *pq;
650 
651 	pq = &vm_page_queues[basequeue];
652 
653 	/*
654 	 * Note that for the first loop, index+i and index-i wind up at the
655 	 * same place.  Even though this is not totally optimal, we've already
656 	 * blown it by missing the cache case so we do not care.
657 	 */
658 
659 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
660 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
661 			break;
662 
663 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
664 			break;
665 	}
666 	return(m);
667 }
668 
669 /*
670  * Must be called with vm_token held if the caller desired non-blocking
671  * operation and a stable result.
672  */
673 vm_page_t
674 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
675 {
676 	return(_vm_page_list_find(basequeue, index, prefer_zero));
677 }
678 
679 /*
680  * Find a page on the cache queue with color optimization.  As pages
681  * might be found, but not applicable, they are deactivated.  This
682  * keeps us from using potentially busy cached pages.
683  *
684  * This routine may not block.
685  * Must be called with vm_token held.
686  */
687 vm_page_t
688 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
689 {
690 	vm_page_t m;
691 
692 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
693 	while (TRUE) {
694 		m = _vm_page_list_find(
695 		    PQ_CACHE,
696 		    (pindex + object->pg_color) & PQ_L2_MASK,
697 		    FALSE
698 		);
699 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
700 			       m->hold_count || m->wire_count)) {
701 			vm_page_deactivate(m);
702 			continue;
703 		}
704 		return m;
705 	}
706 	/* not reached */
707 }
708 
709 /*
710  * Find a free or zero page, with specified preference.  We attempt to
711  * inline the nominal case and fall back to _vm_page_select_free()
712  * otherwise.
713  *
714  * This routine must be called with a critical section held.
715  * This routine may not block.
716  */
717 static __inline vm_page_t
718 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
719 {
720 	vm_page_t m;
721 
722 	m = _vm_page_list_find(
723 		PQ_FREE,
724 		(pindex + object->pg_color) & PQ_L2_MASK,
725 		prefer_zero
726 	);
727 	return(m);
728 }
729 
730 /*
731  * vm_page_alloc()
732  *
733  * Allocate and return a memory cell associated with this VM object/offset
734  * pair.
735  *
736  *	page_req classes:
737  *
738  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
739  *	VM_ALLOC_QUICK		like normal but cannot use cache
740  *	VM_ALLOC_SYSTEM		greater free drain
741  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
742  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
743  *
744  * The object must be locked.
745  * This routine may not block.
746  * The returned page will be marked PG_BUSY
747  *
748  * Additional special handling is required when called from an interrupt
749  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
750  * in this case.
751  */
752 vm_page_t
753 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
754 {
755 	vm_page_t m = NULL;
756 
757 	lwkt_gettoken(&vm_token);
758 
759 	KKASSERT(object != NULL);
760 	KASSERT(!vm_page_lookup(object, pindex),
761 		("vm_page_alloc: page already allocated"));
762 	KKASSERT(page_req &
763 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
764 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
765 
766 	/*
767 	 * Certain system threads (pageout daemon, buf_daemon's) are
768 	 * allowed to eat deeper into the free page list.
769 	 */
770 	if (curthread->td_flags & TDF_SYSTHREAD)
771 		page_req |= VM_ALLOC_SYSTEM;
772 
773 loop:
774 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
775 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
776 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
777 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
778 	) {
779 		/*
780 		 * The free queue has sufficient free pages to take one out.
781 		 */
782 		if (page_req & VM_ALLOC_ZERO)
783 			m = vm_page_select_free(object, pindex, TRUE);
784 		else
785 			m = vm_page_select_free(object, pindex, FALSE);
786 	} else if (page_req & VM_ALLOC_NORMAL) {
787 		/*
788 		 * Allocatable from the cache (non-interrupt only).  On
789 		 * success, we must free the page and try again, thus
790 		 * ensuring that vmstats.v_*_free_min counters are replenished.
791 		 */
792 #ifdef INVARIANTS
793 		if (curthread->td_preempted) {
794 			kprintf("vm_page_alloc(): warning, attempt to allocate"
795 				" cache page from preempting interrupt\n");
796 			m = NULL;
797 		} else {
798 			m = vm_page_select_cache(object, pindex);
799 		}
800 #else
801 		m = vm_page_select_cache(object, pindex);
802 #endif
803 		/*
804 		 * On success move the page into the free queue and loop.
805 		 */
806 		if (m != NULL) {
807 			KASSERT(m->dirty == 0,
808 			    ("Found dirty cache page %p", m));
809 			vm_page_busy(m);
810 			vm_page_protect(m, VM_PROT_NONE);
811 			vm_page_free(m);
812 			goto loop;
813 		}
814 
815 		/*
816 		 * On failure return NULL
817 		 */
818 		lwkt_reltoken(&vm_token);
819 #if defined(DIAGNOSTIC)
820 		if (vmstats.v_cache_count > 0)
821 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
822 #endif
823 		vm_pageout_deficit++;
824 		pagedaemon_wakeup();
825 		return (NULL);
826 	} else {
827 		/*
828 		 * No pages available, wakeup the pageout daemon and give up.
829 		 */
830 		lwkt_reltoken(&vm_token);
831 		vm_pageout_deficit++;
832 		pagedaemon_wakeup();
833 		return (NULL);
834 	}
835 
836 	/*
837 	 * Good page found.  The page has not yet been busied.  We are in
838 	 * a critical section.
839 	 */
840 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
841 	KASSERT(m->dirty == 0,
842 		("vm_page_alloc: free/cache page %p was dirty", m));
843 
844 	/*
845 	 * Remove from free queue
846 	 */
847 	vm_page_unqueue_nowakeup(m);
848 
849 	/*
850 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
851 	 * the page PG_BUSY
852 	 */
853 	if (m->flags & PG_ZERO) {
854 		vm_page_zero_count--;
855 		m->flags = PG_ZERO | PG_BUSY;
856 	} else {
857 		m->flags = PG_BUSY;
858 	}
859 	m->wire_count = 0;
860 	m->hold_count = 0;
861 	m->act_count = 0;
862 	m->busy = 0;
863 	m->valid = 0;
864 
865 	/*
866 	 * vm_page_insert() is safe while holding vm_token.  Note also that
867 	 * inserting a page here does not insert it into the pmap (which
868 	 * could cause us to block allocating memory).  We cannot block
869 	 * anywhere.
870 	 */
871 	vm_page_insert(m, object, pindex);
872 
873 	/*
874 	 * Don't wakeup too often - wakeup the pageout daemon when
875 	 * we would be nearly out of memory.
876 	 */
877 	pagedaemon_wakeup();
878 
879 	lwkt_reltoken(&vm_token);
880 
881 	/*
882 	 * A PG_BUSY page is returned.
883 	 */
884 	return (m);
885 }
886 
887 /*
888  * Wait for sufficient free memory for nominal heavy memory use kernel
889  * operations.
890  */
891 void
892 vm_wait_nominal(void)
893 {
894 	while (vm_page_count_min(0))
895 		vm_wait(0);
896 }
897 
898 /*
899  * Test if vm_wait_nominal() would block.
900  */
901 int
902 vm_test_nominal(void)
903 {
904 	if (vm_page_count_min(0))
905 		return(1);
906 	return(0);
907 }
908 
909 /*
910  * Block until free pages are available for allocation, called in various
911  * places before memory allocations.
912  *
913  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
914  * more generous then that.
915  */
916 void
917 vm_wait(int timo)
918 {
919 	/*
920 	 * never wait forever
921 	 */
922 	if (timo == 0)
923 		timo = hz;
924 	lwkt_gettoken(&vm_token);
925 
926 	if (curthread == pagethread) {
927 		/*
928 		 * The pageout daemon itself needs pages, this is bad.
929 		 */
930 		if (vm_page_count_min(0)) {
931 			vm_pageout_pages_needed = 1;
932 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
933 		}
934 	} else {
935 		/*
936 		 * Wakeup the pageout daemon if necessary and wait.
937 		 */
938 		if (vm_page_count_target()) {
939 			if (vm_pages_needed == 0) {
940 				vm_pages_needed = 1;
941 				wakeup(&vm_pages_needed);
942 			}
943 			++vm_pages_waiting;	/* SMP race ok */
944 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
945 		}
946 	}
947 	lwkt_reltoken(&vm_token);
948 }
949 
950 /*
951  * Block until free pages are available for allocation
952  *
953  * Called only from vm_fault so that processes page faulting can be
954  * easily tracked.
955  */
956 void
957 vm_waitpfault(void)
958 {
959 	/*
960 	 * Wakeup the pageout daemon if necessary and wait.
961 	 */
962 	if (vm_page_count_target()) {
963 		lwkt_gettoken(&vm_token);
964 		if (vm_page_count_target()) {
965 			if (vm_pages_needed == 0) {
966 				vm_pages_needed = 1;
967 				wakeup(&vm_pages_needed);
968 			}
969 			++vm_pages_waiting;	/* SMP race ok */
970 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
971 		}
972 		lwkt_reltoken(&vm_token);
973 	}
974 }
975 
976 /*
977  * Put the specified page on the active list (if appropriate).  Ensure
978  * that act_count is at least ACT_INIT but do not otherwise mess with it.
979  *
980  * The page queues must be locked.
981  * This routine may not block.
982  */
983 void
984 vm_page_activate(vm_page_t m)
985 {
986 	lwkt_gettoken(&vm_token);
987 	if (m->queue != PQ_ACTIVE) {
988 		if ((m->queue - m->pc) == PQ_CACHE)
989 			mycpu->gd_cnt.v_reactivated++;
990 
991 		vm_page_unqueue(m);
992 
993 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
994 			m->queue = PQ_ACTIVE;
995 			vm_page_queues[PQ_ACTIVE].lcnt++;
996 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
997 					    m, pageq);
998 			if (m->act_count < ACT_INIT)
999 				m->act_count = ACT_INIT;
1000 			vmstats.v_active_count++;
1001 		}
1002 	} else {
1003 		if (m->act_count < ACT_INIT)
1004 			m->act_count = ACT_INIT;
1005 	}
1006 	lwkt_reltoken(&vm_token);
1007 }
1008 
1009 /*
1010  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1011  * routine is called when a page has been added to the cache or free
1012  * queues.
1013  *
1014  * This routine may not block.
1015  * This routine must be called at splvm()
1016  */
1017 static __inline void
1018 vm_page_free_wakeup(void)
1019 {
1020 	/*
1021 	 * If the pageout daemon itself needs pages, then tell it that
1022 	 * there are some free.
1023 	 */
1024 	if (vm_pageout_pages_needed &&
1025 	    vmstats.v_cache_count + vmstats.v_free_count >=
1026 	    vmstats.v_pageout_free_min
1027 	) {
1028 		wakeup(&vm_pageout_pages_needed);
1029 		vm_pageout_pages_needed = 0;
1030 	}
1031 
1032 	/*
1033 	 * Wakeup processes that are waiting on memory.
1034 	 *
1035 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1036 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1037 	 *	 to wake processes up prior to the pageout daemon reaching
1038 	 *	 its target to provide some hysteresis.
1039 	 */
1040 	if (vm_pages_waiting) {
1041 		if (!vm_page_count_target()) {
1042 			/*
1043 			 * Plenty of pages are free, wakeup everyone.
1044 			 */
1045 			vm_pages_waiting = 0;
1046 			wakeup(&vmstats.v_free_count);
1047 			++mycpu->gd_cnt.v_ppwakeups;
1048 		} else if (!vm_page_count_min(0)) {
1049 			/*
1050 			 * Some pages are free, wakeup someone.
1051 			 */
1052 			int wcount = vm_pages_waiting;
1053 			if (wcount > 0)
1054 				--wcount;
1055 			vm_pages_waiting = wcount;
1056 			wakeup_one(&vmstats.v_free_count);
1057 			++mycpu->gd_cnt.v_ppwakeups;
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  *	vm_page_free_toq:
1064  *
1065  *	Returns the given page to the PQ_FREE list, disassociating it with
1066  *	any VM object.
1067  *
1068  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1069  *	return (the page will have been freed).  No particular spl is required
1070  *	on entry.
1071  *
1072  *	This routine may not block.
1073  */
1074 void
1075 vm_page_free_toq(vm_page_t m)
1076 {
1077 	struct vpgqueues *pq;
1078 
1079 	lwkt_gettoken(&vm_token);
1080 	mycpu->gd_cnt.v_tfree++;
1081 
1082 	KKASSERT((m->flags & PG_MAPPED) == 0);
1083 
1084 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1085 		kprintf(
1086 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1087 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1088 		    m->hold_count);
1089 		if ((m->queue - m->pc) == PQ_FREE)
1090 			panic("vm_page_free: freeing free page");
1091 		else
1092 			panic("vm_page_free: freeing busy page");
1093 	}
1094 
1095 	/*
1096 	 * unqueue, then remove page.  Note that we cannot destroy
1097 	 * the page here because we do not want to call the pager's
1098 	 * callback routine until after we've put the page on the
1099 	 * appropriate free queue.
1100 	 */
1101 	vm_page_unqueue_nowakeup(m);
1102 	vm_page_remove(m);
1103 
1104 	/*
1105 	 * No further management of fictitious pages occurs beyond object
1106 	 * and queue removal.
1107 	 */
1108 	if ((m->flags & PG_FICTITIOUS) != 0) {
1109 		vm_page_wakeup(m);
1110 		lwkt_reltoken(&vm_token);
1111 		return;
1112 	}
1113 
1114 	m->valid = 0;
1115 	vm_page_undirty(m);
1116 
1117 	if (m->wire_count != 0) {
1118 		if (m->wire_count > 1) {
1119 		    panic(
1120 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1121 			m->wire_count, (long)m->pindex);
1122 		}
1123 		panic("vm_page_free: freeing wired page");
1124 	}
1125 
1126 	/*
1127 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1128 	 */
1129 	if (m->flags & PG_UNMANAGED) {
1130 	    m->flags &= ~PG_UNMANAGED;
1131 	}
1132 
1133 	if (m->hold_count != 0) {
1134 		m->flags &= ~PG_ZERO;
1135 		m->queue = PQ_HOLD;
1136 	} else {
1137 		m->queue = PQ_FREE + m->pc;
1138 	}
1139 	pq = &vm_page_queues[m->queue];
1140 	pq->lcnt++;
1141 	++(*pq->cnt);
1142 
1143 	/*
1144 	 * Put zero'd pages on the end ( where we look for zero'd pages
1145 	 * first ) and non-zerod pages at the head.
1146 	 */
1147 	if (m->flags & PG_ZERO) {
1148 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1149 		++vm_page_zero_count;
1150 	} else {
1151 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1152 	}
1153 	vm_page_wakeup(m);
1154 	vm_page_free_wakeup();
1155 	lwkt_reltoken(&vm_token);
1156 }
1157 
1158 /*
1159  * vm_page_free_fromq_fast()
1160  *
1161  * Remove a non-zero page from one of the free queues; the page is removed for
1162  * zeroing, so do not issue a wakeup.
1163  *
1164  * MPUNSAFE
1165  */
1166 vm_page_t
1167 vm_page_free_fromq_fast(void)
1168 {
1169 	static int qi;
1170 	vm_page_t m;
1171 	int i;
1172 
1173 	lwkt_gettoken(&vm_token);
1174 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1175 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1176 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1177 		if (m && (m->flags & PG_ZERO) == 0) {
1178 			KKASSERT(m->busy == 0 && (m->flags & PG_BUSY) == 0);
1179 			vm_page_unqueue_nowakeup(m);
1180 			vm_page_busy(m);
1181 			break;
1182 		}
1183 		m = NULL;
1184 	}
1185 	lwkt_reltoken(&vm_token);
1186 	return (m);
1187 }
1188 
1189 /*
1190  * vm_page_unmanage()
1191  *
1192  * Prevent PV management from being done on the page.  The page is
1193  * removed from the paging queues as if it were wired, and as a
1194  * consequence of no longer being managed the pageout daemon will not
1195  * touch it (since there is no way to locate the pte mappings for the
1196  * page).  madvise() calls that mess with the pmap will also no longer
1197  * operate on the page.
1198  *
1199  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1200  * will clear the flag.
1201  *
1202  * This routine is used by OBJT_PHYS objects - objects using unswappable
1203  * physical memory as backing store rather then swap-backed memory and
1204  * will eventually be extended to support 4MB unmanaged physical
1205  * mappings.
1206  *
1207  * Must be called with a critical section held.
1208  * Must be called with vm_token held.
1209  */
1210 void
1211 vm_page_unmanage(vm_page_t m)
1212 {
1213 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1214 	if ((m->flags & PG_UNMANAGED) == 0) {
1215 		if (m->wire_count == 0)
1216 			vm_page_unqueue(m);
1217 	}
1218 	vm_page_flag_set(m, PG_UNMANAGED);
1219 }
1220 
1221 /*
1222  * Mark this page as wired down by yet another map, removing it from
1223  * paging queues as necessary.
1224  *
1225  * The page queues must be locked.
1226  * This routine may not block.
1227  */
1228 void
1229 vm_page_wire(vm_page_t m)
1230 {
1231 	/*
1232 	 * Only bump the wire statistics if the page is not already wired,
1233 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1234 	 * it is already off the queues).  Don't do anything with fictitious
1235 	 * pages because they are always wired.
1236 	 */
1237 	lwkt_gettoken(&vm_token);
1238 	if ((m->flags & PG_FICTITIOUS) == 0) {
1239 		if (m->wire_count == 0) {
1240 			if ((m->flags & PG_UNMANAGED) == 0)
1241 				vm_page_unqueue(m);
1242 			vmstats.v_wire_count++;
1243 		}
1244 		m->wire_count++;
1245 		KASSERT(m->wire_count != 0,
1246 			("vm_page_wire: wire_count overflow m=%p", m));
1247 	}
1248 	lwkt_reltoken(&vm_token);
1249 }
1250 
1251 /*
1252  * Release one wiring of this page, potentially enabling it to be paged again.
1253  *
1254  * Many pages placed on the inactive queue should actually go
1255  * into the cache, but it is difficult to figure out which.  What
1256  * we do instead, if the inactive target is well met, is to put
1257  * clean pages at the head of the inactive queue instead of the tail.
1258  * This will cause them to be moved to the cache more quickly and
1259  * if not actively re-referenced, freed more quickly.  If we just
1260  * stick these pages at the end of the inactive queue, heavy filesystem
1261  * meta-data accesses can cause an unnecessary paging load on memory bound
1262  * processes.  This optimization causes one-time-use metadata to be
1263  * reused more quickly.
1264  *
1265  * BUT, if we are in a low-memory situation we have no choice but to
1266  * put clean pages on the cache queue.
1267  *
1268  * A number of routines use vm_page_unwire() to guarantee that the page
1269  * will go into either the inactive or active queues, and will NEVER
1270  * be placed in the cache - for example, just after dirtying a page.
1271  * dirty pages in the cache are not allowed.
1272  *
1273  * The page queues must be locked.
1274  * This routine may not block.
1275  */
1276 void
1277 vm_page_unwire(vm_page_t m, int activate)
1278 {
1279 	lwkt_gettoken(&vm_token);
1280 	if (m->flags & PG_FICTITIOUS) {
1281 		/* do nothing */
1282 	} else if (m->wire_count <= 0) {
1283 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1284 	} else {
1285 		if (--m->wire_count == 0) {
1286 			--vmstats.v_wire_count;
1287 			if (m->flags & PG_UNMANAGED) {
1288 				;
1289 			} else if (activate) {
1290 				TAILQ_INSERT_TAIL(
1291 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1292 				m->queue = PQ_ACTIVE;
1293 				vm_page_queues[PQ_ACTIVE].lcnt++;
1294 				vmstats.v_active_count++;
1295 			} else {
1296 				vm_page_flag_clear(m, PG_WINATCFLS);
1297 				TAILQ_INSERT_TAIL(
1298 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1299 				m->queue = PQ_INACTIVE;
1300 				vm_page_queues[PQ_INACTIVE].lcnt++;
1301 				vmstats.v_inactive_count++;
1302 				++vm_swapcache_inactive_heuristic;
1303 			}
1304 		}
1305 	}
1306 	lwkt_reltoken(&vm_token);
1307 }
1308 
1309 
1310 /*
1311  * Move the specified page to the inactive queue.  If the page has
1312  * any associated swap, the swap is deallocated.
1313  *
1314  * Normally athead is 0 resulting in LRU operation.  athead is set
1315  * to 1 if we want this page to be 'as if it were placed in the cache',
1316  * except without unmapping it from the process address space.
1317  *
1318  * This routine may not block.
1319  * The caller must hold vm_token.
1320  */
1321 static __inline void
1322 _vm_page_deactivate(vm_page_t m, int athead)
1323 {
1324 	/*
1325 	 * Ignore if already inactive.
1326 	 */
1327 	if (m->queue == PQ_INACTIVE)
1328 		return;
1329 
1330 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1331 		if ((m->queue - m->pc) == PQ_CACHE)
1332 			mycpu->gd_cnt.v_reactivated++;
1333 		vm_page_flag_clear(m, PG_WINATCFLS);
1334 		vm_page_unqueue(m);
1335 		if (athead) {
1336 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1337 					  m, pageq);
1338 		} else {
1339 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1340 					  m, pageq);
1341 			++vm_swapcache_inactive_heuristic;
1342 		}
1343 		m->queue = PQ_INACTIVE;
1344 		vm_page_queues[PQ_INACTIVE].lcnt++;
1345 		vmstats.v_inactive_count++;
1346 	}
1347 }
1348 
1349 /*
1350  * Attempt to deactivate a page.
1351  *
1352  * No requirements.
1353  */
1354 void
1355 vm_page_deactivate(vm_page_t m)
1356 {
1357 	lwkt_gettoken(&vm_token);
1358 	_vm_page_deactivate(m, 0);
1359 	lwkt_reltoken(&vm_token);
1360 }
1361 
1362 /*
1363  * Attempt to move a page to PQ_CACHE.
1364  * Returns 0 on failure, 1 on success
1365  *
1366  * No requirements.
1367  */
1368 int
1369 vm_page_try_to_cache(vm_page_t m)
1370 {
1371 	lwkt_gettoken(&vm_token);
1372 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1373 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1374 		lwkt_reltoken(&vm_token);
1375 		return(0);
1376 	}
1377 	vm_page_test_dirty(m);
1378 	if (m->dirty) {
1379 		lwkt_reltoken(&vm_token);
1380 		return(0);
1381 	}
1382 	vm_page_cache(m);
1383 	lwkt_reltoken(&vm_token);
1384 	return(1);
1385 }
1386 
1387 /*
1388  * Attempt to free the page.  If we cannot free it, we do nothing.
1389  * 1 is returned on success, 0 on failure.
1390  *
1391  * No requirements.
1392  */
1393 int
1394 vm_page_try_to_free(vm_page_t m)
1395 {
1396 	lwkt_gettoken(&vm_token);
1397 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1398 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1399 		lwkt_reltoken(&vm_token);
1400 		return(0);
1401 	}
1402 	vm_page_test_dirty(m);
1403 	if (m->dirty) {
1404 		lwkt_reltoken(&vm_token);
1405 		return(0);
1406 	}
1407 	vm_page_busy(m);
1408 	vm_page_protect(m, VM_PROT_NONE);
1409 	vm_page_free(m);
1410 	lwkt_reltoken(&vm_token);
1411 	return(1);
1412 }
1413 
1414 /*
1415  * vm_page_cache
1416  *
1417  * Put the specified page onto the page cache queue (if appropriate).
1418  *
1419  * The caller must hold vm_token.
1420  * This routine may not block.
1421  */
1422 void
1423 vm_page_cache(vm_page_t m)
1424 {
1425 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1426 
1427 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1428 			m->wire_count || m->hold_count) {
1429 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1430 		return;
1431 	}
1432 
1433 	/*
1434 	 * Already in the cache (and thus not mapped)
1435 	 */
1436 	if ((m->queue - m->pc) == PQ_CACHE) {
1437 		KKASSERT((m->flags & PG_MAPPED) == 0);
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * Caller is required to test m->dirty, but note that the act of
1443 	 * removing the page from its maps can cause it to become dirty
1444 	 * on an SMP system due to another cpu running in usermode.
1445 	 */
1446 	if (m->dirty) {
1447 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1448 			(long)m->pindex);
1449 	}
1450 
1451 	/*
1452 	 * Remove all pmaps and indicate that the page is not
1453 	 * writeable or mapped.  Our vm_page_protect() call may
1454 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1455 	 * everything.
1456 	 */
1457 	vm_page_busy(m);
1458 	vm_page_protect(m, VM_PROT_NONE);
1459 	vm_page_wakeup(m);
1460 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1461 			m->wire_count || m->hold_count) {
1462 		/* do nothing */
1463 	} else if (m->dirty) {
1464 		vm_page_deactivate(m);
1465 	} else {
1466 		vm_page_unqueue_nowakeup(m);
1467 		m->queue = PQ_CACHE + m->pc;
1468 		vm_page_queues[m->queue].lcnt++;
1469 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1470 		vmstats.v_cache_count++;
1471 		vm_page_free_wakeup();
1472 	}
1473 }
1474 
1475 /*
1476  * vm_page_dontneed()
1477  *
1478  * Cache, deactivate, or do nothing as appropriate.  This routine
1479  * is typically used by madvise() MADV_DONTNEED.
1480  *
1481  * Generally speaking we want to move the page into the cache so
1482  * it gets reused quickly.  However, this can result in a silly syndrome
1483  * due to the page recycling too quickly.  Small objects will not be
1484  * fully cached.  On the otherhand, if we move the page to the inactive
1485  * queue we wind up with a problem whereby very large objects
1486  * unnecessarily blow away our inactive and cache queues.
1487  *
1488  * The solution is to move the pages based on a fixed weighting.  We
1489  * either leave them alone, deactivate them, or move them to the cache,
1490  * where moving them to the cache has the highest weighting.
1491  * By forcing some pages into other queues we eventually force the
1492  * system to balance the queues, potentially recovering other unrelated
1493  * space from active.  The idea is to not force this to happen too
1494  * often.
1495  *
1496  * No requirements.
1497  */
1498 void
1499 vm_page_dontneed(vm_page_t m)
1500 {
1501 	static int dnweight;
1502 	int dnw;
1503 	int head;
1504 
1505 	dnw = ++dnweight;
1506 
1507 	/*
1508 	 * occassionally leave the page alone
1509 	 */
1510 	lwkt_gettoken(&vm_token);
1511 	if ((dnw & 0x01F0) == 0 ||
1512 	    m->queue == PQ_INACTIVE ||
1513 	    m->queue - m->pc == PQ_CACHE
1514 	) {
1515 		if (m->act_count >= ACT_INIT)
1516 			--m->act_count;
1517 		lwkt_reltoken(&vm_token);
1518 		return;
1519 	}
1520 
1521 	if (m->dirty == 0)
1522 		vm_page_test_dirty(m);
1523 
1524 	if (m->dirty || (dnw & 0x0070) == 0) {
1525 		/*
1526 		 * Deactivate the page 3 times out of 32.
1527 		 */
1528 		head = 0;
1529 	} else {
1530 		/*
1531 		 * Cache the page 28 times out of every 32.  Note that
1532 		 * the page is deactivated instead of cached, but placed
1533 		 * at the head of the queue instead of the tail.
1534 		 */
1535 		head = 1;
1536 	}
1537 	_vm_page_deactivate(m, head);
1538 	lwkt_reltoken(&vm_token);
1539 }
1540 
1541 /*
1542  * Grab a page, blocking if it is busy and allocating a page if necessary.
1543  * A busy page is returned or NULL.
1544  *
1545  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1546  * If VM_ALLOC_RETRY is not specified
1547  *
1548  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1549  * always returned if we had blocked.
1550  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1551  * This routine may not be called from an interrupt.
1552  * The returned page may not be entirely valid.
1553  *
1554  * This routine may be called from mainline code without spl protection and
1555  * be guarenteed a busied page associated with the object at the specified
1556  * index.
1557  *
1558  * No requirements.
1559  */
1560 vm_page_t
1561 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1562 {
1563 	vm_page_t m;
1564 	int generation;
1565 
1566 	KKASSERT(allocflags &
1567 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1568 	lwkt_gettoken(&vm_token);
1569 retrylookup:
1570 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1571 		if (m->busy || (m->flags & PG_BUSY)) {
1572 			generation = object->generation;
1573 
1574 			while ((object->generation == generation) &&
1575 					(m->busy || (m->flags & PG_BUSY))) {
1576 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1577 				tsleep(m, 0, "pgrbwt", 0);
1578 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1579 					m = NULL;
1580 					goto done;
1581 				}
1582 			}
1583 			goto retrylookup;
1584 		} else {
1585 			vm_page_busy(m);
1586 			goto done;
1587 		}
1588 	}
1589 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1590 	if (m == NULL) {
1591 		vm_wait(0);
1592 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1593 			goto done;
1594 		goto retrylookup;
1595 	}
1596 done:
1597 	lwkt_reltoken(&vm_token);
1598 	return(m);
1599 }
1600 
1601 /*
1602  * Mapping function for valid bits or for dirty bits in
1603  * a page.  May not block.
1604  *
1605  * Inputs are required to range within a page.
1606  *
1607  * No requirements.
1608  * Non blocking.
1609  */
1610 int
1611 vm_page_bits(int base, int size)
1612 {
1613 	int first_bit;
1614 	int last_bit;
1615 
1616 	KASSERT(
1617 	    base + size <= PAGE_SIZE,
1618 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1619 	);
1620 
1621 	if (size == 0)		/* handle degenerate case */
1622 		return(0);
1623 
1624 	first_bit = base >> DEV_BSHIFT;
1625 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1626 
1627 	return ((2 << last_bit) - (1 << first_bit));
1628 }
1629 
1630 /*
1631  * Sets portions of a page valid and clean.  The arguments are expected
1632  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1633  * of any partial chunks touched by the range.  The invalid portion of
1634  * such chunks will be zero'd.
1635  *
1636  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1637  *	 align base to DEV_BSIZE so as not to mark clean a partially
1638  *	 truncated device block.  Otherwise the dirty page status might be
1639  *	 lost.
1640  *
1641  * This routine may not block.
1642  *
1643  * (base + size) must be less then or equal to PAGE_SIZE.
1644  */
1645 static void
1646 _vm_page_zero_valid(vm_page_t m, int base, int size)
1647 {
1648 	int frag;
1649 	int endoff;
1650 
1651 	if (size == 0)	/* handle degenerate case */
1652 		return;
1653 
1654 	/*
1655 	 * If the base is not DEV_BSIZE aligned and the valid
1656 	 * bit is clear, we have to zero out a portion of the
1657 	 * first block.
1658 	 */
1659 
1660 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1661 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1662 	) {
1663 		pmap_zero_page_area(
1664 		    VM_PAGE_TO_PHYS(m),
1665 		    frag,
1666 		    base - frag
1667 		);
1668 	}
1669 
1670 	/*
1671 	 * If the ending offset is not DEV_BSIZE aligned and the
1672 	 * valid bit is clear, we have to zero out a portion of
1673 	 * the last block.
1674 	 */
1675 
1676 	endoff = base + size;
1677 
1678 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1679 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1680 	) {
1681 		pmap_zero_page_area(
1682 		    VM_PAGE_TO_PHYS(m),
1683 		    endoff,
1684 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1685 		);
1686 	}
1687 }
1688 
1689 /*
1690  * Set valid, clear dirty bits.  If validating the entire
1691  * page we can safely clear the pmap modify bit.  We also
1692  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1693  * takes a write fault on a MAP_NOSYNC memory area the flag will
1694  * be set again.
1695  *
1696  * We set valid bits inclusive of any overlap, but we can only
1697  * clear dirty bits for DEV_BSIZE chunks that are fully within
1698  * the range.
1699  *
1700  * Page must be busied?
1701  * No other requirements.
1702  */
1703 void
1704 vm_page_set_valid(vm_page_t m, int base, int size)
1705 {
1706 	_vm_page_zero_valid(m, base, size);
1707 	m->valid |= vm_page_bits(base, size);
1708 }
1709 
1710 
1711 /*
1712  * Set valid bits and clear dirty bits.
1713  *
1714  * NOTE: This function does not clear the pmap modified bit.
1715  *	 Also note that e.g. NFS may use a byte-granular base
1716  *	 and size.
1717  *
1718  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
1719  *	    this without necessarily busying the page (via bdwrite()).
1720  *	    So for now vm_token must also be held.
1721  *
1722  * No other requirements.
1723  */
1724 void
1725 vm_page_set_validclean(vm_page_t m, int base, int size)
1726 {
1727 	int pagebits;
1728 
1729 	_vm_page_zero_valid(m, base, size);
1730 	pagebits = vm_page_bits(base, size);
1731 	m->valid |= pagebits;
1732 	m->dirty &= ~pagebits;
1733 	if (base == 0 && size == PAGE_SIZE) {
1734 		/*pmap_clear_modify(m);*/
1735 		vm_page_flag_clear(m, PG_NOSYNC);
1736 	}
1737 }
1738 
1739 /*
1740  * Set valid & dirty.  Used by buwrite()
1741  *
1742  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
1743  *	    call this function in buwrite() so for now vm_token must
1744  * 	    be held.
1745  *
1746  * No other requirements.
1747  */
1748 void
1749 vm_page_set_validdirty(vm_page_t m, int base, int size)
1750 {
1751 	int pagebits;
1752 
1753 	pagebits = vm_page_bits(base, size);
1754 	m->valid |= pagebits;
1755 	m->dirty |= pagebits;
1756 	if (m->object)
1757 		vm_object_set_writeable_dirty(m->object);
1758 }
1759 
1760 /*
1761  * Clear dirty bits.
1762  *
1763  * NOTE: This function does not clear the pmap modified bit.
1764  *	 Also note that e.g. NFS may use a byte-granular base
1765  *	 and size.
1766  *
1767  * Page must be busied?
1768  * No other requirements.
1769  */
1770 void
1771 vm_page_clear_dirty(vm_page_t m, int base, int size)
1772 {
1773 	m->dirty &= ~vm_page_bits(base, size);
1774 	if (base == 0 && size == PAGE_SIZE) {
1775 		/*pmap_clear_modify(m);*/
1776 		vm_page_flag_clear(m, PG_NOSYNC);
1777 	}
1778 }
1779 
1780 /*
1781  * Make the page all-dirty.
1782  *
1783  * Also make sure the related object and vnode reflect the fact that the
1784  * object may now contain a dirty page.
1785  *
1786  * Page must be busied?
1787  * No other requirements.
1788  */
1789 void
1790 vm_page_dirty(vm_page_t m)
1791 {
1792 #ifdef INVARIANTS
1793         int pqtype = m->queue - m->pc;
1794 #endif
1795         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1796                 ("vm_page_dirty: page in free/cache queue!"));
1797 	if (m->dirty != VM_PAGE_BITS_ALL) {
1798 		m->dirty = VM_PAGE_BITS_ALL;
1799 		if (m->object)
1800 			vm_object_set_writeable_dirty(m->object);
1801 	}
1802 }
1803 
1804 /*
1805  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1806  * valid and dirty bits for the effected areas are cleared.
1807  *
1808  * Page must be busied?
1809  * Does not block.
1810  * No other requirements.
1811  */
1812 void
1813 vm_page_set_invalid(vm_page_t m, int base, int size)
1814 {
1815 	int bits;
1816 
1817 	bits = vm_page_bits(base, size);
1818 	m->valid &= ~bits;
1819 	m->dirty &= ~bits;
1820 	m->object->generation++;
1821 }
1822 
1823 /*
1824  * The kernel assumes that the invalid portions of a page contain
1825  * garbage, but such pages can be mapped into memory by user code.
1826  * When this occurs, we must zero out the non-valid portions of the
1827  * page so user code sees what it expects.
1828  *
1829  * Pages are most often semi-valid when the end of a file is mapped
1830  * into memory and the file's size is not page aligned.
1831  *
1832  * Page must be busied?
1833  * No other requirements.
1834  */
1835 void
1836 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1837 {
1838 	int b;
1839 	int i;
1840 
1841 	/*
1842 	 * Scan the valid bits looking for invalid sections that
1843 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1844 	 * valid bit may be set ) have already been zerod by
1845 	 * vm_page_set_validclean().
1846 	 */
1847 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1848 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1849 		    (m->valid & (1 << i))
1850 		) {
1851 			if (i > b) {
1852 				pmap_zero_page_area(
1853 				    VM_PAGE_TO_PHYS(m),
1854 				    b << DEV_BSHIFT,
1855 				    (i - b) << DEV_BSHIFT
1856 				);
1857 			}
1858 			b = i + 1;
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * setvalid is TRUE when we can safely set the zero'd areas
1864 	 * as being valid.  We can do this if there are no cache consistency
1865 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1866 	 */
1867 	if (setvalid)
1868 		m->valid = VM_PAGE_BITS_ALL;
1869 }
1870 
1871 /*
1872  * Is a (partial) page valid?  Note that the case where size == 0
1873  * will return FALSE in the degenerate case where the page is entirely
1874  * invalid, and TRUE otherwise.
1875  *
1876  * Does not block.
1877  * No other requirements.
1878  */
1879 int
1880 vm_page_is_valid(vm_page_t m, int base, int size)
1881 {
1882 	int bits = vm_page_bits(base, size);
1883 
1884 	if (m->valid && ((m->valid & bits) == bits))
1885 		return 1;
1886 	else
1887 		return 0;
1888 }
1889 
1890 /*
1891  * update dirty bits from pmap/mmu.  May not block.
1892  *
1893  * Caller must hold vm_token if non-blocking operation desired.
1894  * No other requirements.
1895  */
1896 void
1897 vm_page_test_dirty(vm_page_t m)
1898 {
1899 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1900 		vm_page_dirty(m);
1901 	}
1902 }
1903 
1904 /*
1905  * Register an action, associating it with its vm_page
1906  */
1907 void
1908 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
1909 {
1910 	struct vm_page_action_list *list;
1911 	int hv;
1912 
1913 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1914 	list = &action_list[hv];
1915 
1916 	lwkt_gettoken(&vm_token);
1917 	vm_page_flag_set(action->m, PG_ACTIONLIST);
1918 	action->event = event;
1919 	LIST_INSERT_HEAD(list, action, entry);
1920 	lwkt_reltoken(&vm_token);
1921 }
1922 
1923 /*
1924  * Unregister an action, disassociating it from its related vm_page
1925  */
1926 void
1927 vm_page_unregister_action(vm_page_action_t action)
1928 {
1929 	struct vm_page_action_list *list;
1930 	int hv;
1931 
1932 	lwkt_gettoken(&vm_token);
1933 	if (action->event != VMEVENT_NONE) {
1934 		action->event = VMEVENT_NONE;
1935 		LIST_REMOVE(action, entry);
1936 
1937 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1938 		list = &action_list[hv];
1939 		if (LIST_EMPTY(list))
1940 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
1941 	}
1942 	lwkt_reltoken(&vm_token);
1943 }
1944 
1945 /*
1946  * Issue an event on a VM page.  Corresponding action structures are
1947  * removed from the page's list and called.
1948  *
1949  * If the vm_page has no more pending action events we clear its
1950  * PG_ACTIONLIST flag.
1951  */
1952 void
1953 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1954 {
1955 	struct vm_page_action_list *list;
1956 	struct vm_page_action *scan;
1957 	struct vm_page_action *next;
1958 	int hv;
1959 	int all;
1960 
1961 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
1962 	list = &action_list[hv];
1963 	all = 1;
1964 
1965 	lwkt_gettoken(&vm_token);
1966 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
1967 		if (scan->m == m) {
1968 			if (scan->event == event) {
1969 				scan->event = VMEVENT_NONE;
1970 				LIST_REMOVE(scan, entry);
1971 				scan->func(m, scan);
1972 				/* XXX */
1973 			} else {
1974 				all = 0;
1975 			}
1976 		}
1977 	}
1978 	if (all)
1979 		vm_page_flag_clear(m, PG_ACTIONLIST);
1980 	lwkt_reltoken(&vm_token);
1981 }
1982 
1983 
1984 #include "opt_ddb.h"
1985 #ifdef DDB
1986 #include <sys/kernel.h>
1987 
1988 #include <ddb/ddb.h>
1989 
1990 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1991 {
1992 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1993 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1994 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1995 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1996 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1997 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1998 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1999 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2000 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2001 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2002 }
2003 
2004 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2005 {
2006 	int i;
2007 	db_printf("PQ_FREE:");
2008 	for(i=0;i<PQ_L2_SIZE;i++) {
2009 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2010 	}
2011 	db_printf("\n");
2012 
2013 	db_printf("PQ_CACHE:");
2014 	for(i=0;i<PQ_L2_SIZE;i++) {
2015 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2016 	}
2017 	db_printf("\n");
2018 
2019 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2020 		vm_page_queues[PQ_ACTIVE].lcnt,
2021 		vm_page_queues[PQ_INACTIVE].lcnt);
2022 }
2023 #endif /* DDB */
2024