xref: /dragonfly/sys/vm/vm_page.c (revision 1bf4b486)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.32 2005/07/27 07:55:15 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
96 
97 static int vm_page_bucket_count;	/* How big is array? */
98 static int vm_page_hash_mask;		/* Mask for hash function */
99 static struct vm_page **vm_page_buckets; /* Array of buckets */
100 static volatile int vm_page_bucket_generation;
101 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
102 
103 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
104 
105 static void
106 vm_page_queue_init(void)
107 {
108 	int i;
109 
110 	for (i = 0; i < PQ_L2_SIZE; i++)
111 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
112 	for (i = 0; i < PQ_L2_SIZE; i++)
113 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
114 
115 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
116 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
117 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
118 	/* PQ_NONE has no queue */
119 
120 	for (i = 0; i < PQ_COUNT; i++)
121 		TAILQ_INIT(&vm_page_queues[i].pl);
122 }
123 
124 /*
125  * note: place in initialized data section?  Is this necessary?
126  */
127 long first_page = 0;
128 int vm_page_array_size = 0;
129 int vm_page_zero_count = 0;
130 vm_page_t vm_page_array = 0;
131 
132 /*
133  * (low level boot)
134  *
135  * Sets the page size, perhaps based upon the memory size.
136  * Must be called before any use of page-size dependent functions.
137  */
138 void
139 vm_set_page_size(void)
140 {
141 	if (vmstats.v_page_size == 0)
142 		vmstats.v_page_size = PAGE_SIZE;
143 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
144 		panic("vm_set_page_size: page size not a power of two");
145 }
146 
147 /*
148  * (low level boot)
149  *
150  * Add a new page to the freelist for use by the system.  New pages
151  * are added to both the head and tail of the associated free page
152  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
153  * requests pull 'recent' adds (higher physical addresses) first.
154  *
155  * Must be called in a critical section.
156  */
157 vm_page_t
158 vm_add_new_page(vm_paddr_t pa)
159 {
160 	struct vpgqueues *vpq;
161 	vm_page_t m;
162 
163 	++vmstats.v_page_count;
164 	++vmstats.v_free_count;
165 	m = PHYS_TO_VM_PAGE(pa);
166 	m->phys_addr = pa;
167 	m->flags = 0;
168 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
169 	m->queue = m->pc + PQ_FREE;
170 	KKASSERT(m->dirty == 0);
171 
172 	vpq = &vm_page_queues[m->queue];
173 	if (vpq->flipflop)
174 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
175 	else
176 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
177 	vpq->flipflop = 1 - vpq->flipflop;
178 
179 	vm_page_queues[m->queue].lcnt++;
180 	return (m);
181 }
182 
183 /*
184  * (low level boot)
185  *
186  * Initializes the resident memory module.
187  *
188  * Allocates memory for the page cells, and for the object/offset-to-page
189  * hash table headers.  Each page cell is initialized and placed on the
190  * free list.
191  *
192  * starta/enda represents the range of physical memory addresses available
193  * for use (skipping memory already used by the kernel), subject to
194  * phys_avail[].  Note that phys_avail[] has already mapped out memory
195  * already in use by the kernel.
196  */
197 vm_offset_t
198 vm_page_startup(vm_offset_t vaddr)
199 {
200 	vm_offset_t mapped;
201 	struct vm_page **bucket;
202 	vm_size_t npages;
203 	vm_paddr_t page_range;
204 	vm_paddr_t new_end;
205 	int i;
206 	vm_paddr_t pa;
207 	int nblocks;
208 	vm_paddr_t last_pa;
209 	vm_paddr_t end;
210 	vm_paddr_t biggestone, biggestsize;
211 
212 	vm_paddr_t total;
213 
214 	total = 0;
215 	biggestsize = 0;
216 	biggestone = 0;
217 	nblocks = 0;
218 	vaddr = round_page(vaddr);
219 
220 	for (i = 0; phys_avail[i + 1]; i += 2) {
221 		phys_avail[i] = round_page(phys_avail[i]);
222 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
223 	}
224 
225 	for (i = 0; phys_avail[i + 1]; i += 2) {
226 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
227 
228 		if (size > biggestsize) {
229 			biggestone = i;
230 			biggestsize = size;
231 		}
232 		++nblocks;
233 		total += size;
234 	}
235 
236 	end = phys_avail[biggestone+1];
237 
238 	/*
239 	 * Initialize the queue headers for the free queue, the active queue
240 	 * and the inactive queue.
241 	 */
242 
243 	vm_page_queue_init();
244 
245 	/*
246 	 * Allocate (and initialize) the hash table buckets.
247 	 *
248 	 * The number of buckets MUST BE a power of 2, and the actual value is
249 	 * the next power of 2 greater than the number of physical pages in
250 	 * the system.
251 	 *
252 	 * We make the hash table approximately 2x the number of pages to
253 	 * reduce the chain length.  This is about the same size using the
254 	 * singly-linked list as the 1x hash table we were using before
255 	 * using TAILQ but the chain length will be smaller.
256 	 *
257 	 * Note: This computation can be tweaked if desired.
258 	 */
259 	vm_page_buckets = (struct vm_page **)vaddr;
260 	bucket = vm_page_buckets;
261 	if (vm_page_bucket_count == 0) {
262 		vm_page_bucket_count = 1;
263 		while (vm_page_bucket_count < atop(total))
264 			vm_page_bucket_count <<= 1;
265 	}
266 	vm_page_bucket_count <<= 1;
267 	vm_page_hash_mask = vm_page_bucket_count - 1;
268 
269 	/*
270 	 * Cut a chunk out of the largest block of physical memory,
271 	 * moving its end point down to accomodate the hash table and
272 	 * vm_page_array.
273 	 */
274 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
275 	new_end = trunc_page(new_end);
276 	mapped = round_page(vaddr);
277 	vaddr = pmap_map(mapped, new_end, end,
278 	    VM_PROT_READ | VM_PROT_WRITE);
279 	vaddr = round_page(vaddr);
280 	bzero((caddr_t) mapped, vaddr - mapped);
281 
282 	for (i = 0; i < vm_page_bucket_count; i++) {
283 		*bucket = NULL;
284 		bucket++;
285 	}
286 
287 	/*
288 	 * Compute the number of pages of memory that will be available for
289 	 * use (taking into account the overhead of a page structure per
290 	 * page).
291 	 */
292 	first_page = phys_avail[0] / PAGE_SIZE;
293 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294 	npages = (total - (page_range * sizeof(struct vm_page)) -
295 	    (end - new_end)) / PAGE_SIZE;
296 
297 	end = new_end;
298 
299 	/*
300 	 * Initialize the mem entry structures now, and put them in the free
301 	 * queue.
302 	 */
303 	vm_page_array = (vm_page_t) vaddr;
304 	mapped = vaddr;
305 
306 	/*
307 	 * Validate these addresses.
308 	 */
309 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
310 	mapped = pmap_map(mapped, new_end, end,
311 	    VM_PROT_READ | VM_PROT_WRITE);
312 
313 	/*
314 	 * Clear all of the page structures
315 	 */
316 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
317 	vm_page_array_size = page_range;
318 
319 	/*
320 	 * Construct the free queue(s) in ascending order (by physical
321 	 * address) so that the first 16MB of physical memory is allocated
322 	 * last rather than first.  On large-memory machines, this avoids
323 	 * the exhaustion of low physical memory before isa_dmainit has run.
324 	 */
325 	vmstats.v_page_count = 0;
326 	vmstats.v_free_count = 0;
327 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
328 		pa = phys_avail[i];
329 		if (i == biggestone)
330 			last_pa = new_end;
331 		else
332 			last_pa = phys_avail[i + 1];
333 		while (pa < last_pa && npages-- > 0) {
334 			vm_add_new_page(pa);
335 			pa += PAGE_SIZE;
336 		}
337 	}
338 	return (mapped);
339 }
340 
341 /*
342  * Distributes the object/offset key pair among hash buckets.
343  *
344  * NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
345  * This routine may not block.
346  *
347  * We try to randomize the hash based on the object to spread the pages
348  * out in the hash table without it costing us too much.
349  */
350 static __inline int
351 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
352 {
353 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
354 
355 	return(i & vm_page_hash_mask);
356 }
357 
358 /*
359  * The opposite of vm_page_hold().  A page can be freed while being held,
360  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
361  * in this case to actually free it once the hold count drops to 0.
362  *
363  * This routine must be called at splvm().
364  */
365 void
366 vm_page_unhold(vm_page_t mem)
367 {
368 	--mem->hold_count;
369 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
370 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
371 		vm_page_busy(mem);
372 		vm_page_free_toq(mem);
373 	}
374 }
375 
376 /*
377  * Inserts the given mem entry into the object and object list.
378  *
379  * The pagetables are not updated but will presumably fault the page
380  * in if necessary, or if a kernel page the caller will at some point
381  * enter the page into the kernel's pmap.  We are not allowed to block
382  * here so we *can't* do this anyway.
383  *
384  * This routine may not block.
385  * This routine must be called with a critical section held.
386  */
387 void
388 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
389 {
390 	struct vm_page **bucket;
391 
392 	ASSERT_IN_CRIT_SECTION();
393 	if (m->object != NULL)
394 		panic("vm_page_insert: already inserted");
395 
396 	/*
397 	 * Record the object/offset pair in this page
398 	 */
399 	m->object = object;
400 	m->pindex = pindex;
401 
402 	/*
403 	 * Insert it into the object_object/offset hash table
404 	 */
405 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
406 	m->hnext = *bucket;
407 	*bucket = m;
408 	vm_page_bucket_generation++;
409 
410 	/*
411 	 * Now link into the object's list of backed pages.
412 	 */
413 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
414 	object->generation++;
415 
416 	/*
417 	 * show that the object has one more resident page.
418 	 */
419 	object->resident_page_count++;
420 
421 	/*
422 	 * Since we are inserting a new and possibly dirty page,
423 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
424 	 */
425 	if (m->flags & PG_WRITEABLE)
426 		vm_object_set_writeable_dirty(object);
427 }
428 
429 /*
430  * Removes the given vm_page_t from the global (object,index) hash table
431  * and from the object's memq.
432  *
433  * The underlying pmap entry (if any) is NOT removed here.
434  * This routine may not block.
435  *
436  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
437  * held on call to this routine.
438  *
439  * note: FreeBSD side effect was to unbusy the page on return.  We leave
440  * it busy.
441  */
442 void
443 vm_page_remove(vm_page_t m)
444 {
445 	vm_object_t object;
446 	struct vm_page **bucket;
447 
448 	crit_enter();
449 	if (m->object == NULL) {
450 		crit_exit();
451 		return;
452 	}
453 
454 	if ((m->flags & PG_BUSY) == 0)
455 		panic("vm_page_remove: page not busy");
456 
457 	object = m->object;
458 
459 	/*
460 	 * Remove from the object_object/offset hash table.  The object
461 	 * must be on the hash queue, we will panic if it isn't
462 	 *
463 	 * Note: we must NULL-out m->hnext to prevent loops in detached
464 	 * buffers with vm_page_lookup().
465 	 */
466 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
467 	while (*bucket != m) {
468 		if (*bucket == NULL)
469 		    panic("vm_page_remove(): page not found in hash");
470 		bucket = &(*bucket)->hnext;
471 	}
472 	*bucket = m->hnext;
473 	m->hnext = NULL;
474 	vm_page_bucket_generation++;
475 
476 	/*
477 	 * Now remove from the object's list of backed pages.
478 	 */
479 	TAILQ_REMOVE(&object->memq, m, listq);
480 
481 	/*
482 	 * And show that the object has one fewer resident page.
483 	 */
484 	object->resident_page_count--;
485 	object->generation++;
486 
487 	m->object = NULL;
488 	crit_exit();
489 }
490 
491 /*
492  * Locate and return the page at (object, pindex), or NULL if the
493  * page could not be found.
494  *
495  * This routine will operate properly without spl protection, but
496  * the returned page could be in flux if it is busy.  Because an
497  * interrupt can race a caller's busy check (unbusying and freeing the
498  * page we return before the caller is able to check the busy bit),
499  * the caller should generally call this routine with a critical
500  * section held.
501  *
502  * Callers may call this routine without spl protection if they know
503  * 'for sure' that the page will not be ripped out from under them
504  * by an interrupt.
505  */
506 vm_page_t
507 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
508 {
509 	vm_page_t m;
510 	struct vm_page **bucket;
511 	int generation;
512 
513 	/*
514 	 * Search the hash table for this object/offset pair
515 	 */
516 retry:
517 	generation = vm_page_bucket_generation;
518 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
519 	for (m = *bucket; m != NULL; m = m->hnext) {
520 		if ((m->object == object) && (m->pindex == pindex)) {
521 			if (vm_page_bucket_generation != generation)
522 				goto retry;
523 			return (m);
524 		}
525 	}
526 	if (vm_page_bucket_generation != generation)
527 		goto retry;
528 	return (NULL);
529 }
530 
531 /*
532  * vm_page_rename()
533  *
534  * Move the given memory entry from its current object to the specified
535  * target object/offset.
536  *
537  * The object must be locked.
538  * This routine may not block.
539  *
540  * Note: This routine will raise itself to splvm(), the caller need not.
541  *
542  * Note: Swap associated with the page must be invalidated by the move.  We
543  *       have to do this for several reasons:  (1) we aren't freeing the
544  *       page, (2) we are dirtying the page, (3) the VM system is probably
545  *       moving the page from object A to B, and will then later move
546  *       the backing store from A to B and we can't have a conflict.
547  *
548  * Note: We *always* dirty the page.  It is necessary both for the
549  *       fact that we moved it, and because we may be invalidating
550  *	 swap.  If the page is on the cache, we have to deactivate it
551  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
552  *	 on the cache.
553  */
554 void
555 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
556 {
557 	crit_enter();
558 	vm_page_remove(m);
559 	vm_page_insert(m, new_object, new_pindex);
560 	if (m->queue - m->pc == PQ_CACHE)
561 		vm_page_deactivate(m);
562 	vm_page_dirty(m);
563 	vm_page_wakeup(m);
564 	crit_exit();
565 }
566 
567 /*
568  * vm_page_unqueue() without any wakeup.  This routine is used when a page
569  * is being moved between queues or otherwise is to remain BUSYied by the
570  * caller.
571  *
572  * This routine must be called at splhigh().
573  * This routine may not block.
574  */
575 void
576 vm_page_unqueue_nowakeup(vm_page_t m)
577 {
578 	int queue = m->queue;
579 	struct vpgqueues *pq;
580 
581 	if (queue != PQ_NONE) {
582 		pq = &vm_page_queues[queue];
583 		m->queue = PQ_NONE;
584 		TAILQ_REMOVE(&pq->pl, m, pageq);
585 		(*pq->cnt)--;
586 		pq->lcnt--;
587 	}
588 }
589 
590 /*
591  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
592  * if necessary.
593  *
594  * This routine must be called at splhigh().
595  * This routine may not block.
596  */
597 void
598 vm_page_unqueue(vm_page_t m)
599 {
600 	int queue = m->queue;
601 	struct vpgqueues *pq;
602 
603 	if (queue != PQ_NONE) {
604 		m->queue = PQ_NONE;
605 		pq = &vm_page_queues[queue];
606 		TAILQ_REMOVE(&pq->pl, m, pageq);
607 		(*pq->cnt)--;
608 		pq->lcnt--;
609 		if ((queue - m->pc) == PQ_CACHE) {
610 			if (vm_paging_needed())
611 				pagedaemon_wakeup();
612 		}
613 	}
614 }
615 
616 /*
617  * vm_page_list_find()
618  *
619  * Find a page on the specified queue with color optimization.
620  *
621  * The page coloring optimization attempts to locate a page that does
622  * not overload other nearby pages in the object in the cpu's L1 or L2
623  * caches.  We need this optimization because cpu caches tend to be
624  * physical caches, while object spaces tend to be virtual.
625  *
626  * This routine must be called at splvm().
627  * This routine may not block.
628  *
629  * Note that this routine is carefully inlined.  A non-inlined version
630  * is available for outside callers but the only critical path is
631  * from within this source file.
632  */
633 static __inline
634 vm_page_t
635 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
636 {
637 	vm_page_t m;
638 
639 	if (prefer_zero)
640 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
641 	else
642 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
643 	if (m == NULL)
644 		m = _vm_page_list_find2(basequeue, index);
645 	return(m);
646 }
647 
648 static vm_page_t
649 _vm_page_list_find2(int basequeue, int index)
650 {
651 	int i;
652 	vm_page_t m = NULL;
653 	struct vpgqueues *pq;
654 
655 	pq = &vm_page_queues[basequeue];
656 
657 	/*
658 	 * Note that for the first loop, index+i and index-i wind up at the
659 	 * same place.  Even though this is not totally optimal, we've already
660 	 * blown it by missing the cache case so we do not care.
661 	 */
662 
663 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
664 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
665 			break;
666 
667 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
668 			break;
669 	}
670 	return(m);
671 }
672 
673 vm_page_t
674 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
675 {
676 	return(_vm_page_list_find(basequeue, index, prefer_zero));
677 }
678 
679 /*
680  * Find a page on the cache queue with color optimization.  As pages
681  * might be found, but not applicable, they are deactivated.  This
682  * keeps us from using potentially busy cached pages.
683  *
684  * This routine must be called with a critical section held.
685  * This routine may not block.
686  */
687 vm_page_t
688 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
689 {
690 	vm_page_t m;
691 
692 	while (TRUE) {
693 		m = _vm_page_list_find(
694 		    PQ_CACHE,
695 		    (pindex + object->pg_color) & PQ_L2_MASK,
696 		    FALSE
697 		);
698 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
699 			       m->hold_count || m->wire_count)) {
700 			vm_page_deactivate(m);
701 			continue;
702 		}
703 		return m;
704 	}
705 	/* not reached */
706 }
707 
708 /*
709  * Find a free or zero page, with specified preference.  We attempt to
710  * inline the nominal case and fall back to _vm_page_select_free()
711  * otherwise.
712  *
713  * This routine must be called with a critical section held.
714  * This routine may not block.
715  */
716 static __inline vm_page_t
717 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
718 {
719 	vm_page_t m;
720 
721 	m = _vm_page_list_find(
722 		PQ_FREE,
723 		(pindex + object->pg_color) & PQ_L2_MASK,
724 		prefer_zero
725 	);
726 	return(m);
727 }
728 
729 /*
730  * vm_page_alloc()
731  *
732  * Allocate and return a memory cell associated with this VM object/offset
733  * pair.
734  *
735  *	page_req classes:
736  *
737  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
738  *	VM_ALLOC_SYSTEM		greater free drain
739  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
740  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
741  *
742  * The object must be locked.
743  * This routine may not block.
744  * The returned page will be marked PG_BUSY
745  *
746  * Additional special handling is required when called from an interrupt
747  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
748  * in this case.
749  */
750 vm_page_t
751 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
752 {
753 	vm_page_t m = NULL;
754 
755 	KASSERT(!vm_page_lookup(object, pindex),
756 		("vm_page_alloc: page already allocated"));
757 	KKASSERT(page_req &
758 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
759 
760 	/*
761 	 * The pager is allowed to eat deeper into the free page list.
762 	 */
763 	if (curthread == pagethread)
764 		page_req |= VM_ALLOC_SYSTEM;
765 
766 	crit_enter();
767 loop:
768 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
769 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
770 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
771 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
772 	) {
773 		/*
774 		 * The free queue has sufficient free pages to take one out.
775 		 */
776 		if (page_req & VM_ALLOC_ZERO)
777 			m = vm_page_select_free(object, pindex, TRUE);
778 		else
779 			m = vm_page_select_free(object, pindex, FALSE);
780 	} else if (page_req & VM_ALLOC_NORMAL) {
781 		/*
782 		 * Allocatable from the cache (non-interrupt only).  On
783 		 * success, we must free the page and try again, thus
784 		 * ensuring that vmstats.v_*_free_min counters are replenished.
785 		 */
786 #ifdef INVARIANTS
787 		if (curthread->td_preempted) {
788 			printf("vm_page_alloc(): warning, attempt to allocate"
789 				" cache page from preempting interrupt\n");
790 			m = NULL;
791 		} else {
792 			m = vm_page_select_cache(object, pindex);
793 		}
794 #else
795 		m = vm_page_select_cache(object, pindex);
796 #endif
797 		/*
798 		 * On success move the page into the free queue and loop.
799 		 */
800 		if (m != NULL) {
801 			KASSERT(m->dirty == 0,
802 			    ("Found dirty cache page %p", m));
803 			vm_page_busy(m);
804 			vm_page_protect(m, VM_PROT_NONE);
805 			vm_page_free(m);
806 			goto loop;
807 		}
808 
809 		/*
810 		 * On failure return NULL
811 		 */
812 		crit_exit();
813 #if defined(DIAGNOSTIC)
814 		if (vmstats.v_cache_count > 0)
815 			printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
816 #endif
817 		vm_pageout_deficit++;
818 		pagedaemon_wakeup();
819 		return (NULL);
820 	} else {
821 		/*
822 		 * No pages available, wakeup the pageout daemon and give up.
823 		 */
824 		crit_exit();
825 		vm_pageout_deficit++;
826 		pagedaemon_wakeup();
827 		return (NULL);
828 	}
829 
830 	/*
831 	 * Good page found.  The page has not yet been busied.  We are in
832 	 * a critical section.
833 	 */
834 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
835 	KASSERT(m->dirty == 0,
836 		("vm_page_alloc: free/cache page %p was dirty", m));
837 
838 	/*
839 	 * Remove from free queue
840 	 */
841 	vm_page_unqueue_nowakeup(m);
842 
843 	/*
844 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
845 	 * the page PG_BUSY
846 	 */
847 	if (m->flags & PG_ZERO) {
848 		vm_page_zero_count--;
849 		m->flags = PG_ZERO | PG_BUSY;
850 	} else {
851 		m->flags = PG_BUSY;
852 	}
853 	m->wire_count = 0;
854 	m->hold_count = 0;
855 	m->act_count = 0;
856 	m->busy = 0;
857 	m->valid = 0;
858 
859 	/*
860 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
861 	 * inserting a page here does not insert it into the pmap (which
862 	 * could cause us to block allocating memory).  We cannot block
863 	 * anywhere.
864 	 */
865 	vm_page_insert(m, object, pindex);
866 
867 	/*
868 	 * Don't wakeup too often - wakeup the pageout daemon when
869 	 * we would be nearly out of memory.
870 	 */
871 	if (vm_paging_needed())
872 		pagedaemon_wakeup();
873 
874 	crit_exit();
875 
876 	/*
877 	 * A PG_BUSY page is returned.
878 	 */
879 	return (m);
880 }
881 
882 /*
883  * Block until free pages are available for allocation, called in various
884  * places before memory allocations.
885  */
886 void
887 vm_wait(void)
888 {
889 	crit_enter();
890 	if (curthread == pagethread) {
891 		vm_pageout_pages_needed = 1;
892 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
893 	} else {
894 		if (!vm_pages_needed) {
895 			vm_pages_needed = 1;
896 			wakeup(&vm_pages_needed);
897 		}
898 		tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
899 	}
900 	crit_exit();
901 }
902 
903 /*
904  * Block until free pages are available for allocation
905  *
906  * Called only in vm_fault so that processes page faulting can be
907  * easily tracked.
908  *
909  * Sleeps at a lower priority than vm_wait() so that vm_wait()ing
910  * processes will be able to grab memory first.  Do not change
911  * this balance without careful testing first.
912  */
913 void
914 vm_waitpfault(void)
915 {
916 	crit_enter();
917 	if (!vm_pages_needed) {
918 		vm_pages_needed = 1;
919 		wakeup(&vm_pages_needed);
920 	}
921 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
922 	crit_exit();
923 }
924 
925 /*
926  * Put the specified page on the active list (if appropriate).  Ensure
927  * that act_count is at least ACT_INIT but do not otherwise mess with it.
928  *
929  * The page queues must be locked.
930  * This routine may not block.
931  */
932 void
933 vm_page_activate(vm_page_t m)
934 {
935 	crit_enter();
936 	if (m->queue != PQ_ACTIVE) {
937 		if ((m->queue - m->pc) == PQ_CACHE)
938 			mycpu->gd_cnt.v_reactivated++;
939 
940 		vm_page_unqueue(m);
941 
942 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
943 			m->queue = PQ_ACTIVE;
944 			vm_page_queues[PQ_ACTIVE].lcnt++;
945 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
946 					    m, pageq);
947 			if (m->act_count < ACT_INIT)
948 				m->act_count = ACT_INIT;
949 			vmstats.v_active_count++;
950 		}
951 	} else {
952 		if (m->act_count < ACT_INIT)
953 			m->act_count = ACT_INIT;
954 	}
955 	crit_exit();
956 }
957 
958 /*
959  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
960  * routine is called when a page has been added to the cache or free
961  * queues.
962  *
963  * This routine may not block.
964  * This routine must be called at splvm()
965  */
966 static __inline void
967 vm_page_free_wakeup(void)
968 {
969 	/*
970 	 * if pageout daemon needs pages, then tell it that there are
971 	 * some free.
972 	 */
973 	if (vm_pageout_pages_needed &&
974 	    vmstats.v_cache_count + vmstats.v_free_count >=
975 	    vmstats.v_pageout_free_min
976 	) {
977 		wakeup(&vm_pageout_pages_needed);
978 		vm_pageout_pages_needed = 0;
979 	}
980 
981 	/*
982 	 * wakeup processes that are waiting on memory if we hit a
983 	 * high water mark. And wakeup scheduler process if we have
984 	 * lots of memory. this process will swapin processes.
985 	 */
986 	if (vm_pages_needed && !vm_page_count_min()) {
987 		vm_pages_needed = 0;
988 		wakeup(&vmstats.v_free_count);
989 	}
990 }
991 
992 /*
993  *	vm_page_free_toq:
994  *
995  *	Returns the given page to the PQ_FREE list, disassociating it with
996  *	any VM object.
997  *
998  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
999  *	return (the page will have been freed).  No particular spl is required
1000  *	on entry.
1001  *
1002  *	This routine may not block.
1003  */
1004 void
1005 vm_page_free_toq(vm_page_t m)
1006 {
1007 	struct vpgqueues *pq;
1008 
1009 	crit_enter();
1010 	mycpu->gd_cnt.v_tfree++;
1011 
1012 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1013 		printf(
1014 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1015 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1016 		    m->hold_count);
1017 		if ((m->queue - m->pc) == PQ_FREE)
1018 			panic("vm_page_free: freeing free page");
1019 		else
1020 			panic("vm_page_free: freeing busy page");
1021 	}
1022 
1023 	/*
1024 	 * unqueue, then remove page.  Note that we cannot destroy
1025 	 * the page here because we do not want to call the pager's
1026 	 * callback routine until after we've put the page on the
1027 	 * appropriate free queue.
1028 	 */
1029 	vm_page_unqueue_nowakeup(m);
1030 	vm_page_remove(m);
1031 
1032 	/*
1033 	 * No further management of fictitious pages occurs beyond object
1034 	 * and queue removal.
1035 	 */
1036 	if ((m->flags & PG_FICTITIOUS) != 0) {
1037 		vm_page_wakeup(m);
1038 		crit_exit();
1039 		return;
1040 	}
1041 
1042 	m->valid = 0;
1043 	vm_page_undirty(m);
1044 
1045 	if (m->wire_count != 0) {
1046 		if (m->wire_count > 1) {
1047 		    panic(
1048 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1049 			m->wire_count, (long)m->pindex);
1050 		}
1051 		panic("vm_page_free: freeing wired page");
1052 	}
1053 
1054 	/*
1055 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1056 	 */
1057 	if (m->flags & PG_UNMANAGED) {
1058 	    m->flags &= ~PG_UNMANAGED;
1059 	}
1060 
1061 	if (m->hold_count != 0) {
1062 		m->flags &= ~PG_ZERO;
1063 		m->queue = PQ_HOLD;
1064 	} else {
1065 		m->queue = PQ_FREE + m->pc;
1066 	}
1067 	pq = &vm_page_queues[m->queue];
1068 	pq->lcnt++;
1069 	++(*pq->cnt);
1070 
1071 	/*
1072 	 * Put zero'd pages on the end ( where we look for zero'd pages
1073 	 * first ) and non-zerod pages at the head.
1074 	 */
1075 	if (m->flags & PG_ZERO) {
1076 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1077 		++vm_page_zero_count;
1078 	} else {
1079 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1080 	}
1081 	vm_page_wakeup(m);
1082 	vm_page_free_wakeup();
1083 	crit_exit();
1084 }
1085 
1086 /*
1087  * vm_page_unmanage()
1088  *
1089  * Prevent PV management from being done on the page.  The page is
1090  * removed from the paging queues as if it were wired, and as a
1091  * consequence of no longer being managed the pageout daemon will not
1092  * touch it (since there is no way to locate the pte mappings for the
1093  * page).  madvise() calls that mess with the pmap will also no longer
1094  * operate on the page.
1095  *
1096  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1097  * will clear the flag.
1098  *
1099  * This routine is used by OBJT_PHYS objects - objects using unswappable
1100  * physical memory as backing store rather then swap-backed memory and
1101  * will eventually be extended to support 4MB unmanaged physical
1102  * mappings.
1103  *
1104  * Must be called with a critical section held.
1105  */
1106 void
1107 vm_page_unmanage(vm_page_t m)
1108 {
1109 	ASSERT_IN_CRIT_SECTION();
1110 	if ((m->flags & PG_UNMANAGED) == 0) {
1111 		if (m->wire_count == 0)
1112 			vm_page_unqueue(m);
1113 	}
1114 	vm_page_flag_set(m, PG_UNMANAGED);
1115 }
1116 
1117 /*
1118  * Mark this page as wired down by yet another map, removing it from
1119  * paging queues as necessary.
1120  *
1121  * The page queues must be locked.
1122  * This routine may not block.
1123  */
1124 void
1125 vm_page_wire(vm_page_t m)
1126 {
1127 	/*
1128 	 * Only bump the wire statistics if the page is not already wired,
1129 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1130 	 * it is already off the queues).  Don't do anything with fictitious
1131 	 * pages because they are always wired.
1132 	 */
1133 	crit_enter();
1134 	if ((m->flags & PG_FICTITIOUS) == 0) {
1135 		if (m->wire_count == 0) {
1136 			if ((m->flags & PG_UNMANAGED) == 0)
1137 				vm_page_unqueue(m);
1138 			vmstats.v_wire_count++;
1139 		}
1140 		m->wire_count++;
1141 		KASSERT(m->wire_count != 0,
1142 		    ("vm_page_wire: wire_count overflow m=%p", m));
1143 	}
1144 	vm_page_flag_set(m, PG_MAPPED);
1145 	crit_exit();
1146 }
1147 
1148 /*
1149  * Release one wiring of this page, potentially enabling it to be paged again.
1150  *
1151  * Many pages placed on the inactive queue should actually go
1152  * into the cache, but it is difficult to figure out which.  What
1153  * we do instead, if the inactive target is well met, is to put
1154  * clean pages at the head of the inactive queue instead of the tail.
1155  * This will cause them to be moved to the cache more quickly and
1156  * if not actively re-referenced, freed more quickly.  If we just
1157  * stick these pages at the end of the inactive queue, heavy filesystem
1158  * meta-data accesses can cause an unnecessary paging load on memory bound
1159  * processes.  This optimization causes one-time-use metadata to be
1160  * reused more quickly.
1161  *
1162  * BUT, if we are in a low-memory situation we have no choice but to
1163  * put clean pages on the cache queue.
1164  *
1165  * A number of routines use vm_page_unwire() to guarantee that the page
1166  * will go into either the inactive or active queues, and will NEVER
1167  * be placed in the cache - for example, just after dirtying a page.
1168  * dirty pages in the cache are not allowed.
1169  *
1170  * The page queues must be locked.
1171  * This routine may not block.
1172  */
1173 void
1174 vm_page_unwire(vm_page_t m, int activate)
1175 {
1176 	crit_enter();
1177 	if (m->flags & PG_FICTITIOUS) {
1178 		/* do nothing */
1179 	} else if (m->wire_count <= 0) {
1180 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1181 	} else {
1182 		if (--m->wire_count == 0) {
1183 			--vmstats.v_wire_count;
1184 			if (m->flags & PG_UNMANAGED) {
1185 				;
1186 			} else if (activate) {
1187 				TAILQ_INSERT_TAIL(
1188 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1189 				m->queue = PQ_ACTIVE;
1190 				vm_page_queues[PQ_ACTIVE].lcnt++;
1191 				vmstats.v_active_count++;
1192 			} else {
1193 				vm_page_flag_clear(m, PG_WINATCFLS);
1194 				TAILQ_INSERT_TAIL(
1195 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1196 				m->queue = PQ_INACTIVE;
1197 				vm_page_queues[PQ_INACTIVE].lcnt++;
1198 				vmstats.v_inactive_count++;
1199 			}
1200 		}
1201 	}
1202 	crit_exit();
1203 }
1204 
1205 
1206 /*
1207  * Move the specified page to the inactive queue.  If the page has
1208  * any associated swap, the swap is deallocated.
1209  *
1210  * Normally athead is 0 resulting in LRU operation.  athead is set
1211  * to 1 if we want this page to be 'as if it were placed in the cache',
1212  * except without unmapping it from the process address space.
1213  *
1214  * This routine may not block.
1215  */
1216 static __inline void
1217 _vm_page_deactivate(vm_page_t m, int athead)
1218 {
1219 	/*
1220 	 * Ignore if already inactive.
1221 	 */
1222 	if (m->queue == PQ_INACTIVE)
1223 		return;
1224 
1225 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1226 		if ((m->queue - m->pc) == PQ_CACHE)
1227 			mycpu->gd_cnt.v_reactivated++;
1228 		vm_page_flag_clear(m, PG_WINATCFLS);
1229 		vm_page_unqueue(m);
1230 		if (athead)
1231 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1232 		else
1233 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1234 		m->queue = PQ_INACTIVE;
1235 		vm_page_queues[PQ_INACTIVE].lcnt++;
1236 		vmstats.v_inactive_count++;
1237 	}
1238 }
1239 
1240 void
1241 vm_page_deactivate(vm_page_t m)
1242 {
1243     crit_enter();
1244     _vm_page_deactivate(m, 0);
1245     crit_exit();
1246 }
1247 
1248 /*
1249  * vm_page_try_to_cache:
1250  *
1251  * Returns 0 on failure, 1 on success
1252  */
1253 int
1254 vm_page_try_to_cache(vm_page_t m)
1255 {
1256 	crit_enter();
1257 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1258 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1259 		crit_exit();
1260 		return(0);
1261 	}
1262 	vm_page_test_dirty(m);
1263 	if (m->dirty) {
1264 		crit_exit();
1265 		return(0);
1266 	}
1267 	vm_page_cache(m);
1268 	crit_exit();
1269 	return(1);
1270 }
1271 
1272 /*
1273  * Attempt to free the page.  If we cannot free it, we do nothing.
1274  * 1 is returned on success, 0 on failure.
1275  */
1276 int
1277 vm_page_try_to_free(vm_page_t m)
1278 {
1279 	crit_enter();
1280 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1281 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1282 		crit_exit();
1283 		return(0);
1284 	}
1285 	vm_page_test_dirty(m);
1286 	if (m->dirty) {
1287 		crit_exit();
1288 		return(0);
1289 	}
1290 	vm_page_busy(m);
1291 	vm_page_protect(m, VM_PROT_NONE);
1292 	vm_page_free(m);
1293 	crit_exit();
1294 	return(1);
1295 }
1296 
1297 /*
1298  * vm_page_cache
1299  *
1300  * Put the specified page onto the page cache queue (if appropriate).
1301  *
1302  * This routine may not block.
1303  */
1304 void
1305 vm_page_cache(vm_page_t m)
1306 {
1307 	ASSERT_IN_CRIT_SECTION();
1308 
1309 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1310 			m->wire_count || m->hold_count) {
1311 		printf("vm_page_cache: attempting to cache busy/held page\n");
1312 		return;
1313 	}
1314 	if ((m->queue - m->pc) == PQ_CACHE)
1315 		return;
1316 
1317 	/*
1318 	 * Remove all pmaps and indicate that the page is not
1319 	 * writeable or mapped.
1320 	 */
1321 
1322 	vm_page_protect(m, VM_PROT_NONE);
1323 	if (m->dirty != 0) {
1324 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1325 			(long)m->pindex);
1326 	}
1327 	vm_page_unqueue_nowakeup(m);
1328 	m->queue = PQ_CACHE + m->pc;
1329 	vm_page_queues[m->queue].lcnt++;
1330 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1331 	vmstats.v_cache_count++;
1332 	vm_page_free_wakeup();
1333 }
1334 
1335 /*
1336  * vm_page_dontneed()
1337  *
1338  * Cache, deactivate, or do nothing as appropriate.  This routine
1339  * is typically used by madvise() MADV_DONTNEED.
1340  *
1341  * Generally speaking we want to move the page into the cache so
1342  * it gets reused quickly.  However, this can result in a silly syndrome
1343  * due to the page recycling too quickly.  Small objects will not be
1344  * fully cached.  On the otherhand, if we move the page to the inactive
1345  * queue we wind up with a problem whereby very large objects
1346  * unnecessarily blow away our inactive and cache queues.
1347  *
1348  * The solution is to move the pages based on a fixed weighting.  We
1349  * either leave them alone, deactivate them, or move them to the cache,
1350  * where moving them to the cache has the highest weighting.
1351  * By forcing some pages into other queues we eventually force the
1352  * system to balance the queues, potentially recovering other unrelated
1353  * space from active.  The idea is to not force this to happen too
1354  * often.
1355  */
1356 void
1357 vm_page_dontneed(vm_page_t m)
1358 {
1359 	static int dnweight;
1360 	int dnw;
1361 	int head;
1362 
1363 	dnw = ++dnweight;
1364 
1365 	/*
1366 	 * occassionally leave the page alone
1367 	 */
1368 	crit_enter();
1369 	if ((dnw & 0x01F0) == 0 ||
1370 	    m->queue == PQ_INACTIVE ||
1371 	    m->queue - m->pc == PQ_CACHE
1372 	) {
1373 		if (m->act_count >= ACT_INIT)
1374 			--m->act_count;
1375 		crit_exit();
1376 		return;
1377 	}
1378 
1379 	if (m->dirty == 0)
1380 		vm_page_test_dirty(m);
1381 
1382 	if (m->dirty || (dnw & 0x0070) == 0) {
1383 		/*
1384 		 * Deactivate the page 3 times out of 32.
1385 		 */
1386 		head = 0;
1387 	} else {
1388 		/*
1389 		 * Cache the page 28 times out of every 32.  Note that
1390 		 * the page is deactivated instead of cached, but placed
1391 		 * at the head of the queue instead of the tail.
1392 		 */
1393 		head = 1;
1394 	}
1395 	_vm_page_deactivate(m, head);
1396 	crit_exit();
1397 }
1398 
1399 /*
1400  * Grab a page, blocking if it is busy and allocating a page if necessary.
1401  * A busy page is returned or NULL.
1402  *
1403  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1404  * If VM_ALLOC_RETRY is not specified
1405  *
1406  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1407  * always returned if we had blocked.
1408  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1409  * This routine may not be called from an interrupt.
1410  * The returned page may not be entirely valid.
1411  *
1412  * This routine may be called from mainline code without spl protection and
1413  * be guarenteed a busied page associated with the object at the specified
1414  * index.
1415  */
1416 vm_page_t
1417 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1418 {
1419 	vm_page_t m;
1420 	int generation;
1421 
1422 	KKASSERT(allocflags &
1423 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1424 	crit_enter();
1425 retrylookup:
1426 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1427 		if (m->busy || (m->flags & PG_BUSY)) {
1428 			generation = object->generation;
1429 
1430 			while ((object->generation == generation) &&
1431 					(m->busy || (m->flags & PG_BUSY))) {
1432 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1433 				tsleep(m, 0, "pgrbwt", 0);
1434 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1435 					m = NULL;
1436 					goto done;
1437 				}
1438 			}
1439 			goto retrylookup;
1440 		} else {
1441 			vm_page_busy(m);
1442 			goto done;
1443 		}
1444 	}
1445 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1446 	if (m == NULL) {
1447 		vm_wait();
1448 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1449 			goto done;
1450 		goto retrylookup;
1451 	}
1452 done:
1453 	crit_exit();
1454 	return(m);
1455 }
1456 
1457 /*
1458  * Mapping function for valid bits or for dirty bits in
1459  * a page.  May not block.
1460  *
1461  * Inputs are required to range within a page.
1462  */
1463 __inline int
1464 vm_page_bits(int base, int size)
1465 {
1466 	int first_bit;
1467 	int last_bit;
1468 
1469 	KASSERT(
1470 	    base + size <= PAGE_SIZE,
1471 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1472 	);
1473 
1474 	if (size == 0)		/* handle degenerate case */
1475 		return(0);
1476 
1477 	first_bit = base >> DEV_BSHIFT;
1478 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1479 
1480 	return ((2 << last_bit) - (1 << first_bit));
1481 }
1482 
1483 /*
1484  * Sets portions of a page valid and clean.  The arguments are expected
1485  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1486  * of any partial chunks touched by the range.  The invalid portion of
1487  * such chunks will be zero'd.
1488  *
1489  * This routine may not block.
1490  *
1491  * (base + size) must be less then or equal to PAGE_SIZE.
1492  */
1493 void
1494 vm_page_set_validclean(vm_page_t m, int base, int size)
1495 {
1496 	int pagebits;
1497 	int frag;
1498 	int endoff;
1499 
1500 	if (size == 0)	/* handle degenerate case */
1501 		return;
1502 
1503 	/*
1504 	 * If the base is not DEV_BSIZE aligned and the valid
1505 	 * bit is clear, we have to zero out a portion of the
1506 	 * first block.
1507 	 */
1508 
1509 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1510 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1511 	) {
1512 		pmap_zero_page_area(
1513 		    VM_PAGE_TO_PHYS(m),
1514 		    frag,
1515 		    base - frag
1516 		);
1517 	}
1518 
1519 	/*
1520 	 * If the ending offset is not DEV_BSIZE aligned and the
1521 	 * valid bit is clear, we have to zero out a portion of
1522 	 * the last block.
1523 	 */
1524 
1525 	endoff = base + size;
1526 
1527 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1528 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1529 	) {
1530 		pmap_zero_page_area(
1531 		    VM_PAGE_TO_PHYS(m),
1532 		    endoff,
1533 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1534 		);
1535 	}
1536 
1537 	/*
1538 	 * Set valid, clear dirty bits.  If validating the entire
1539 	 * page we can safely clear the pmap modify bit.  We also
1540 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1541 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1542 	 * be set again.
1543 	 *
1544 	 * We set valid bits inclusive of any overlap, but we can only
1545 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1546 	 * the range.
1547 	 */
1548 
1549 	pagebits = vm_page_bits(base, size);
1550 	m->valid |= pagebits;
1551 #if 0	/* NOT YET */
1552 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1553 		frag = DEV_BSIZE - frag;
1554 		base += frag;
1555 		size -= frag;
1556 		if (size < 0)
1557 		    size = 0;
1558 	}
1559 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1560 #endif
1561 	m->dirty &= ~pagebits;
1562 	if (base == 0 && size == PAGE_SIZE) {
1563 		pmap_clear_modify(m);
1564 		vm_page_flag_clear(m, PG_NOSYNC);
1565 	}
1566 }
1567 
1568 void
1569 vm_page_clear_dirty(vm_page_t m, int base, int size)
1570 {
1571 	m->dirty &= ~vm_page_bits(base, size);
1572 }
1573 
1574 /*
1575  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1576  * valid and dirty bits for the effected areas are cleared.
1577  *
1578  * May not block.
1579  */
1580 void
1581 vm_page_set_invalid(vm_page_t m, int base, int size)
1582 {
1583 	int bits;
1584 
1585 	bits = vm_page_bits(base, size);
1586 	m->valid &= ~bits;
1587 	m->dirty &= ~bits;
1588 	m->object->generation++;
1589 }
1590 
1591 /*
1592  * The kernel assumes that the invalid portions of a page contain
1593  * garbage, but such pages can be mapped into memory by user code.
1594  * When this occurs, we must zero out the non-valid portions of the
1595  * page so user code sees what it expects.
1596  *
1597  * Pages are most often semi-valid when the end of a file is mapped
1598  * into memory and the file's size is not page aligned.
1599  */
1600 void
1601 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1602 {
1603 	int b;
1604 	int i;
1605 
1606 	/*
1607 	 * Scan the valid bits looking for invalid sections that
1608 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1609 	 * valid bit may be set ) have already been zerod by
1610 	 * vm_page_set_validclean().
1611 	 */
1612 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1613 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1614 		    (m->valid & (1 << i))
1615 		) {
1616 			if (i > b) {
1617 				pmap_zero_page_area(
1618 				    VM_PAGE_TO_PHYS(m),
1619 				    b << DEV_BSHIFT,
1620 				    (i - b) << DEV_BSHIFT
1621 				);
1622 			}
1623 			b = i + 1;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * setvalid is TRUE when we can safely set the zero'd areas
1629 	 * as being valid.  We can do this if there are no cache consistency
1630 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1631 	 */
1632 	if (setvalid)
1633 		m->valid = VM_PAGE_BITS_ALL;
1634 }
1635 
1636 /*
1637  * Is a (partial) page valid?  Note that the case where size == 0
1638  * will return FALSE in the degenerate case where the page is entirely
1639  * invalid, and TRUE otherwise.
1640  *
1641  * May not block.
1642  */
1643 int
1644 vm_page_is_valid(vm_page_t m, int base, int size)
1645 {
1646 	int bits = vm_page_bits(base, size);
1647 
1648 	if (m->valid && ((m->valid & bits) == bits))
1649 		return 1;
1650 	else
1651 		return 0;
1652 }
1653 
1654 /*
1655  * update dirty bits from pmap/mmu.  May not block.
1656  */
1657 void
1658 vm_page_test_dirty(vm_page_t m)
1659 {
1660 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1661 		vm_page_dirty(m);
1662 	}
1663 }
1664 
1665 #include "opt_ddb.h"
1666 #ifdef DDB
1667 #include <sys/kernel.h>
1668 
1669 #include <ddb/ddb.h>
1670 
1671 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1672 {
1673 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1674 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1675 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1676 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1677 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1678 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1679 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1680 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1681 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1682 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1683 }
1684 
1685 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1686 {
1687 	int i;
1688 	db_printf("PQ_FREE:");
1689 	for(i=0;i<PQ_L2_SIZE;i++) {
1690 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1691 	}
1692 	db_printf("\n");
1693 
1694 	db_printf("PQ_CACHE:");
1695 	for(i=0;i<PQ_L2_SIZE;i++) {
1696 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1697 	}
1698 	db_printf("\n");
1699 
1700 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1701 		vm_page_queues[PQ_ACTIVE].lcnt,
1702 		vm_page_queues[PQ_INACTIVE].lcnt);
1703 }
1704 #endif /* DDB */
1705