xref: /dragonfly/sys/vm/vm_page.c (revision 279dd846)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
107 
108 /*
109  * Array of tailq lists
110  */
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
112 
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list	action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
116 
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
120 
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 	    "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
127 
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
130 
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 	     vm_pindex_t, pindex);
133 
134 static void
135 vm_page_queue_init(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 	for (i = 0; i < PQ_L2_SIZE; i++)
146 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 	for (i = 0; i < PQ_L2_SIZE; i++)
148 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 	/* PQ_NONE has no queue */
150 
151 	for (i = 0; i < PQ_COUNT; i++) {
152 		TAILQ_INIT(&vm_page_queues[i].pl);
153 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
154 	}
155 
156 	for (i = 0; i < VMACTION_HSIZE; i++)
157 		LIST_INIT(&action_list[i]);
158 }
159 
160 /*
161  * note: place in initialized data section?  Is this necessary?
162  */
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
168 
169 /*
170  * (low level boot)
171  *
172  * Sets the page size, perhaps based upon the memory size.
173  * Must be called before any use of page-size dependent functions.
174  */
175 void
176 vm_set_page_size(void)
177 {
178 	if (vmstats.v_page_size == 0)
179 		vmstats.v_page_size = PAGE_SIZE;
180 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 		panic("vm_set_page_size: page size not a power of two");
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Add a new page to the freelist for use by the system.  New pages
188  * are added to both the head and tail of the associated free page
189  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190  * requests pull 'recent' adds (higher physical addresses) first.
191  *
192  * Beware that the page zeroing daemon will also be running soon after
193  * boot, moving pages from the head to the tail of the PQ_FREE queues.
194  *
195  * Must be called in a critical section.
196  */
197 static void
198 vm_add_new_page(vm_paddr_t pa)
199 {
200 	struct vpgqueues *vpq;
201 	vm_page_t m;
202 
203 	m = PHYS_TO_VM_PAGE(pa);
204 	m->phys_addr = pa;
205 	m->flags = 0;
206 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 	m->pat_mode = PAT_WRITE_BACK;
208 	/*
209 	 * Twist for cpu localization in addition to page coloring, so
210 	 * different cpus selecting by m->queue get different page colors.
211 	 */
212 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
214 	/*
215 	 * Reserve a certain number of contiguous low memory pages for
216 	 * contigmalloc() to use.
217 	 */
218 	if (pa < vm_low_phys_reserved) {
219 		atomic_add_int(&vmstats.v_page_count, 1);
220 		atomic_add_int(&vmstats.v_dma_pages, 1);
221 		m->queue = PQ_NONE;
222 		m->wire_count = 1;
223 		atomic_add_int(&vmstats.v_wire_count, 1);
224 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 		return;
226 	}
227 
228 	/*
229 	 * General page
230 	 */
231 	m->queue = m->pc + PQ_FREE;
232 	KKASSERT(m->dirty == 0);
233 
234 	atomic_add_int(&vmstats.v_page_count, 1);
235 	atomic_add_int(&vmstats.v_free_count, 1);
236 	vpq = &vm_page_queues[m->queue];
237 	if ((vpq->flipflop & 15) == 0) {
238 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 		m->flags |= PG_ZERO;
240 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 		atomic_add_int(&vm_page_zero_count, 1);
242 	} else {
243 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
244 	}
245 	++vpq->flipflop;
246 	++vpq->lcnt;
247 }
248 
249 /*
250  * (low level boot)
251  *
252  * Initializes the resident memory module.
253  *
254  * Preallocates memory for critical VM structures and arrays prior to
255  * kernel_map becoming available.
256  *
257  * Memory is allocated from (virtual2_start, virtual2_end) if available,
258  * otherwise memory is allocated from (virtual_start, virtual_end).
259  *
260  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261  * large enough to hold vm_page_array & other structures for machines with
262  * large amounts of ram, so we want to use virtual2* when available.
263  */
264 void
265 vm_page_startup(void)
266 {
267 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 	vm_offset_t mapped;
269 	vm_size_t npages;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	int nblocks;
275 	vm_paddr_t last_pa;
276 	vm_paddr_t end;
277 	vm_paddr_t biggestone, biggestsize;
278 	vm_paddr_t total;
279 
280 	total = 0;
281 	biggestsize = 0;
282 	biggestone = 0;
283 	nblocks = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page64(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
289 	}
290 
291 	for (i = 0; phys_avail[i + 1]; i += 2) {
292 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
293 
294 		if (size > biggestsize) {
295 			biggestone = i;
296 			biggestsize = size;
297 		}
298 		++nblocks;
299 		total += size;
300 	}
301 
302 	end = phys_avail[biggestone+1];
303 	end = trunc_page(end);
304 
305 	/*
306 	 * Initialize the queue headers for the free queue, the active queue
307 	 * and the inactive queue.
308 	 */
309 	vm_page_queue_init();
310 
311 #if !defined(_KERNEL_VIRTUAL)
312 	/*
313 	 * VKERNELs don't support minidumps and as such don't need
314 	 * vm_page_dump
315 	 *
316 	 * Allocate a bitmap to indicate that a random physical page
317 	 * needs to be included in a minidump.
318 	 *
319 	 * The amd64 port needs this to indicate which direct map pages
320 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
321 	 *
322 	 * However, i386 still needs this workspace internally within the
323 	 * minidump code.  In theory, they are not needed on i386, but are
324 	 * included should the sf_buf code decide to use them.
325 	 */
326 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 	end -= vm_page_dump_size;
329 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 	    VM_PROT_READ | VM_PROT_WRITE);
331 	bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
333 	/*
334 	 * Compute the number of pages of memory that will be available for
335 	 * use (taking into account the overhead of a page structure per
336 	 * page).
337 	 */
338 	first_page = phys_avail[0] / PAGE_SIZE;
339 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
341 
342 #ifndef _KERNEL_VIRTUAL
343 	/*
344 	 * (only applies to real kernels)
345 	 *
346 	 * Reserve a large amount of low memory for potential 32-bit DMA
347 	 * space allocations.  Once device initialization is complete we
348 	 * release most of it, but keep (vm_dma_reserved) memory reserved
349 	 * for later use.  Typically for X / graphics.  Through trial and
350 	 * error we find that GPUs usually requires ~60-100MB or so.
351 	 *
352 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
353 	 */
354 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 	if (vm_low_phys_reserved > total / 4)
356 		vm_low_phys_reserved = total / 4;
357 	if (vm_dma_reserved == 0) {
358 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
359 		if (vm_dma_reserved > total / 16)
360 			vm_dma_reserved = total / 16;
361 	}
362 #endif
363 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 		   ALIST_RECORDS_65536);
365 
366 	/*
367 	 * Initialize the mem entry structures now, and put them in the free
368 	 * queue.
369 	 */
370 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 	vm_page_array = (vm_page_t)mapped;
373 
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
375 	/*
376 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 	 * we have to manually add these pages to the minidump tracking so
378 	 * that they can be dumped, including the vm_page_array.
379 	 */
380 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 		dump_add_page(pa);
382 #endif
383 
384 	/*
385 	 * Clear all of the page structures
386 	 */
387 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 	vm_page_array_size = page_range;
389 
390 	/*
391 	 * Construct the free queue(s) in ascending order (by physical
392 	 * address) so that the first 16MB of physical memory is allocated
393 	 * last rather than first.  On large-memory machines, this avoids
394 	 * the exhaustion of low physical memory before isa_dmainit has run.
395 	 */
396 	vmstats.v_page_count = 0;
397 	vmstats.v_free_count = 0;
398 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 		pa = phys_avail[i];
400 		if (i == biggestone)
401 			last_pa = new_end;
402 		else
403 			last_pa = phys_avail[i + 1];
404 		while (pa < last_pa && npages-- > 0) {
405 			vm_add_new_page(pa);
406 			pa += PAGE_SIZE;
407 		}
408 	}
409 	if (virtual2_start)
410 		virtual2_start = vaddr;
411 	else
412 		virtual_start = vaddr;
413 }
414 
415 /*
416  * We tended to reserve a ton of memory for contigmalloc().  Now that most
417  * drivers have initialized we want to return most the remaining free
418  * reserve back to the VM page queues so they can be used for normal
419  * allocations.
420  *
421  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
422  */
423 static void
424 vm_page_startup_finish(void *dummy __unused)
425 {
426 	alist_blk_t blk;
427 	alist_blk_t rblk;
428 	alist_blk_t count;
429 	alist_blk_t xcount;
430 	alist_blk_t bfree;
431 	vm_page_t m;
432 
433 	spin_lock(&vm_contig_spin);
434 	for (;;) {
435 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 			break;
438 		if (count == 0)
439 			break;
440 
441 		/*
442 		 * Figure out how much of the initial reserve we have to
443 		 * free in order to reach our target.
444 		 */
445 		bfree -= vm_dma_reserved / PAGE_SIZE;
446 		if (count > bfree) {
447 			blk += count - bfree;
448 			count = bfree;
449 		}
450 
451 		/*
452 		 * Calculate the nearest power of 2 <= count.
453 		 */
454 		for (xcount = 1; xcount <= count; xcount <<= 1)
455 			;
456 		xcount >>= 1;
457 		blk += count - xcount;
458 		count = xcount;
459 
460 		/*
461 		 * Allocate the pages from the alist, then free them to
462 		 * the normal VM page queues.
463 		 *
464 		 * Pages allocated from the alist are wired.  We have to
465 		 * busy, unwire, and free them.  We must also adjust
466 		 * vm_low_phys_reserved before freeing any pages to prevent
467 		 * confusion.
468 		 */
469 		rblk = alist_alloc(&vm_contig_alist, blk, count);
470 		if (rblk != blk) {
471 			kprintf("vm_page_startup_finish: Unable to return "
472 				"dma space @0x%08x/%d -> 0x%08x\n",
473 				blk, count, rblk);
474 			break;
475 		}
476 		atomic_add_int(&vmstats.v_dma_pages, -count);
477 		spin_unlock(&vm_contig_spin);
478 
479 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 		while (count) {
482 			vm_page_busy_wait(m, FALSE, "cpgfr");
483 			vm_page_unwire(m, 0);
484 			vm_page_free(m);
485 			--count;
486 			++m;
487 		}
488 		spin_lock(&vm_contig_spin);
489 	}
490 	spin_unlock(&vm_contig_spin);
491 
492 	/*
493 	 * Print out how much DMA space drivers have already allocated and
494 	 * how much is left over.
495 	 */
496 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 		(PAGE_SIZE / 1024),
499 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
500 }
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 	vm_page_startup_finish, NULL);
503 
504 
505 /*
506  * Scan comparison function for Red-Black tree scans.  An inclusive
507  * (start,end) is expected.  Other fields are not used.
508  */
509 int
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
511 {
512 	struct rb_vm_page_scan_info *info = data;
513 
514 	if (p->pindex < info->start_pindex)
515 		return(-1);
516 	if (p->pindex > info->end_pindex)
517 		return(1);
518 	return(0);
519 }
520 
521 int
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
523 {
524 	if (p1->pindex < p2->pindex)
525 		return(-1);
526 	if (p1->pindex > p2->pindex)
527 		return(1);
528 	return(0);
529 }
530 
531 void
532 vm_page_init(vm_page_t m)
533 {
534 	/* do nothing for now.  Called from pmap_page_init() */
535 }
536 
537 /*
538  * Each page queue has its own spin lock, which is fairly optimal for
539  * allocating and freeing pages at least.
540  *
541  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542  * queue spinlock via this function.  Also note that m->queue cannot change
543  * unless both the page and queue are locked.
544  */
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
548 {
549 	u_short queue;
550 
551 	queue = m->queue;
552 	if (queue != PQ_NONE) {
553 		spin_lock(&vm_page_queues[queue].spin);
554 		KKASSERT(queue == m->queue);
555 	}
556 }
557 
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
561 {
562 	u_short queue;
563 
564 	queue = m->queue;
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_unlock(&vm_page_queues[queue].spin);
568 }
569 
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
573 {
574 	cpu_ccfence();
575 	if (queue != PQ_NONE)
576 		spin_lock(&vm_page_queues[queue].spin);
577 }
578 
579 
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
583 {
584 	cpu_ccfence();
585 	if (queue != PQ_NONE)
586 		spin_unlock(&vm_page_queues[queue].spin);
587 }
588 
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
591 {
592 	_vm_page_queue_spin_lock(m);
593 }
594 
595 void
596 vm_page_queues_spin_lock(u_short queue)
597 {
598 	_vm_page_queues_spin_lock(queue);
599 }
600 
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
603 {
604 	_vm_page_queue_spin_unlock(m);
605 }
606 
607 void
608 vm_page_queues_spin_unlock(u_short queue)
609 {
610 	_vm_page_queues_spin_unlock(queue);
611 }
612 
613 /*
614  * This locks the specified vm_page and its queue in the proper order
615  * (page first, then queue).  The queue may change so the caller must
616  * recheck on return.
617  */
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
621 {
622 	vm_page_spin_lock(m);
623 	_vm_page_queue_spin_lock(m);
624 }
625 
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
629 {
630 	_vm_page_queues_spin_unlock(m->queue);
631 	vm_page_spin_unlock(m);
632 }
633 
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
636 {
637 	_vm_page_and_queue_spin_unlock(m);
638 }
639 
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
642 {
643 	_vm_page_and_queue_spin_lock(m);
644 }
645 
646 /*
647  * Helper function removes vm_page from its current queue.
648  * Returns the base queue the page used to be on.
649  *
650  * The vm_page and the queue must be spinlocked.
651  * This function will unlock the queue but leave the page spinlocked.
652  */
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
655 {
656 	struct vpgqueues *pq;
657 	u_short queue;
658 
659 	queue = m->queue;
660 	if (queue != PQ_NONE) {
661 		pq = &vm_page_queues[queue];
662 		TAILQ_REMOVE(&pq->pl, m, pageq);
663 		atomic_add_int(pq->cnt, -1);
664 		pq->lcnt--;
665 		m->queue = PQ_NONE;
666 		vm_page_queues_spin_unlock(queue);
667 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 			atomic_subtract_int(&vm_page_zero_count, 1);
669 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 			return (queue - m->pc);
671 	}
672 	return queue;
673 }
674 
675 /*
676  * Helper function places the vm_page on the specified queue.
677  *
678  * The vm_page must be spinlocked.
679  * This function will return with both the page and the queue locked.
680  */
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
683 {
684 	struct vpgqueues *pq;
685 
686 	KKASSERT(m->queue == PQ_NONE);
687 
688 	if (queue != PQ_NONE) {
689 		vm_page_queues_spin_lock(queue);
690 		pq = &vm_page_queues[queue];
691 		++pq->lcnt;
692 		atomic_add_int(pq->cnt, 1);
693 		m->queue = queue;
694 
695 		/*
696 		 * Put zero'd pages on the end ( where we look for zero'd pages
697 		 * first ) and non-zerod pages at the head.
698 		 */
699 		if (queue - m->pc == PQ_FREE) {
700 			if (m->flags & PG_ZERO) {
701 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 				atomic_add_int(&vm_page_zero_count, 1);
703 			} else {
704 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
705 			}
706 		} else if (athead) {
707 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 		} else {
709 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
710 		}
711 		/* leave the queue spinlocked */
712 	}
713 }
714 
715 /*
716  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
718  * did not.  Only one sleep call will be made before returning.
719  *
720  * This function does NOT busy the page and on return the page is not
721  * guaranteed to be available.
722  */
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
725 {
726 	u_int32_t flags;
727 
728 	for (;;) {
729 		flags = m->flags;
730 		cpu_ccfence();
731 
732 		if ((flags & PG_BUSY) == 0 &&
733 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 			break;
735 		}
736 		tsleep_interlock(m, 0);
737 		if (atomic_cmpset_int(&m->flags, flags,
738 				      flags | PG_WANTED | PG_REFERENCED)) {
739 			tsleep(m, PINTERLOCKED, msg, 0);
740 			break;
741 		}
742 	}
743 }
744 
745 /*
746  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
747  * also wait for m->busy to become 0 before setting PG_BUSY.
748  */
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 				     int also_m_busy, const char *msg
752 				     VM_PAGE_DEBUG_ARGS)
753 {
754 	u_int32_t flags;
755 
756 	for (;;) {
757 		flags = m->flags;
758 		cpu_ccfence();
759 		if (flags & PG_BUSY) {
760 			tsleep_interlock(m, 0);
761 			if (atomic_cmpset_int(&m->flags, flags,
762 					  flags | PG_WANTED | PG_REFERENCED)) {
763 				tsleep(m, PINTERLOCKED, msg, 0);
764 			}
765 		} else if (also_m_busy && (flags & PG_SBUSY)) {
766 			tsleep_interlock(m, 0);
767 			if (atomic_cmpset_int(&m->flags, flags,
768 					  flags | PG_WANTED | PG_REFERENCED)) {
769 				tsleep(m, PINTERLOCKED, msg, 0);
770 			}
771 		} else {
772 			if (atomic_cmpset_int(&m->flags, flags,
773 					      flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 				m->busy_func = func;
776 				m->busy_line = lineno;
777 #endif
778 				break;
779 			}
780 		}
781 	}
782 }
783 
784 /*
785  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
786  * is also 0.
787  *
788  * Returns non-zero on failure.
789  */
790 int
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 				    VM_PAGE_DEBUG_ARGS)
793 {
794 	u_int32_t flags;
795 
796 	for (;;) {
797 		flags = m->flags;
798 		cpu_ccfence();
799 		if (flags & PG_BUSY)
800 			return TRUE;
801 		if (also_m_busy && (flags & PG_SBUSY))
802 			return TRUE;
803 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 				m->busy_func = func;
806 				m->busy_line = lineno;
807 #endif
808 			return FALSE;
809 		}
810 	}
811 }
812 
813 /*
814  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815  * that a wakeup() should be performed.
816  *
817  * The vm_page must be spinlocked and will remain spinlocked on return.
818  * The related queue must NOT be spinlocked (which could deadlock us).
819  *
820  * (inline version)
821  */
822 static __inline
823 int
824 _vm_page_wakeup(vm_page_t m)
825 {
826 	u_int32_t flags;
827 
828 	for (;;) {
829 		flags = m->flags;
830 		cpu_ccfence();
831 		if (atomic_cmpset_int(&m->flags, flags,
832 				      flags & ~(PG_BUSY | PG_WANTED))) {
833 			break;
834 		}
835 	}
836 	return(flags & PG_WANTED);
837 }
838 
839 /*
840  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
841  * is typically the last call you make on a page before moving onto
842  * other things.
843  */
844 void
845 vm_page_wakeup(vm_page_t m)
846 {
847         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 	vm_page_spin_lock(m);
849 	if (_vm_page_wakeup(m)) {
850 		vm_page_spin_unlock(m);
851 		wakeup(m);
852 	} else {
853 		vm_page_spin_unlock(m);
854 	}
855 }
856 
857 /*
858  * Holding a page keeps it from being reused.  Other parts of the system
859  * can still disassociate the page from its current object and free it, or
860  * perform read or write I/O on it and/or otherwise manipulate the page,
861  * but if the page is held the VM system will leave the page and its data
862  * intact and not reuse the page for other purposes until the last hold
863  * reference is released.  (see vm_page_wire() if you want to prevent the
864  * page from being disassociated from its object too).
865  *
866  * The caller must still validate the contents of the page and, if necessary,
867  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868  * before manipulating the page.
869  *
870  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
871  */
872 void
873 vm_page_hold(vm_page_t m)
874 {
875 	vm_page_spin_lock(m);
876 	atomic_add_int(&m->hold_count, 1);
877 	if (m->queue - m->pc == PQ_FREE) {
878 		_vm_page_queue_spin_lock(m);
879 		_vm_page_rem_queue_spinlocked(m);
880 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 		_vm_page_queue_spin_unlock(m);
882 	}
883 	vm_page_spin_unlock(m);
884 }
885 
886 /*
887  * The opposite of vm_page_hold().  If the page is on the HOLD queue
888  * it was freed while held and must be moved back to the FREE queue.
889  */
890 void
891 vm_page_unhold(vm_page_t m)
892 {
893 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
894 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
895 		 m, m->hold_count, m->queue - m->pc));
896 	vm_page_spin_lock(m);
897 	atomic_add_int(&m->hold_count, -1);
898 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
899 		_vm_page_queue_spin_lock(m);
900 		_vm_page_rem_queue_spinlocked(m);
901 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
902 		_vm_page_queue_spin_unlock(m);
903 	}
904 	vm_page_spin_unlock(m);
905 }
906 
907 /*
908  *	vm_page_getfake:
909  *
910  *	Create a fictitious page with the specified physical address and
911  *	memory attribute.  The memory attribute is the only the machine-
912  *	dependent aspect of a fictitious page that must be initialized.
913  */
914 
915 void
916 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
917 {
918 
919 	if ((m->flags & PG_FICTITIOUS) != 0) {
920 		/*
921 		 * The page's memattr might have changed since the
922 		 * previous initialization.  Update the pmap to the
923 		 * new memattr.
924 		 */
925 		goto memattr;
926 	}
927 	m->phys_addr = paddr;
928 	m->queue = PQ_NONE;
929 	/* Fictitious pages don't use "segind". */
930 	/* Fictitious pages don't use "order" or "pool". */
931 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
932 	m->wire_count = 1;
933 	pmap_page_init(m);
934 memattr:
935 	pmap_page_set_memattr(m, memattr);
936 }
937 
938 /*
939  * Inserts the given vm_page into the object and object list.
940  *
941  * The pagetables are not updated but will presumably fault the page
942  * in if necessary, or if a kernel page the caller will at some point
943  * enter the page into the kernel's pmap.  We are not allowed to block
944  * here so we *can't* do this anyway.
945  *
946  * This routine may not block.
947  * This routine must be called with the vm_object held.
948  * This routine must be called with a critical section held.
949  *
950  * This routine returns TRUE if the page was inserted into the object
951  * successfully, and FALSE if the page already exists in the object.
952  */
953 int
954 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
955 {
956 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
957 	if (m->object != NULL)
958 		panic("vm_page_insert: already inserted");
959 
960 	object->generation++;
961 
962 	/*
963 	 * Record the object/offset pair in this page and add the
964 	 * pv_list_count of the page to the object.
965 	 *
966 	 * The vm_page spin lock is required for interactions with the pmap.
967 	 */
968 	vm_page_spin_lock(m);
969 	m->object = object;
970 	m->pindex = pindex;
971 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
972 		m->object = NULL;
973 		m->pindex = 0;
974 		vm_page_spin_unlock(m);
975 		return FALSE;
976 	}
977 	++object->resident_page_count;
978 	++mycpu->gd_vmtotal.t_rm;
979 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
980 	vm_page_spin_unlock(m);
981 
982 	/*
983 	 * Since we are inserting a new and possibly dirty page,
984 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
985 	 */
986 	if ((m->valid & m->dirty) ||
987 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
988 		vm_object_set_writeable_dirty(object);
989 
990 	/*
991 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
992 	 */
993 	swap_pager_page_inserted(m);
994 	return TRUE;
995 }
996 
997 /*
998  * Removes the given vm_page_t from the (object,index) table
999  *
1000  * The underlying pmap entry (if any) is NOT removed here.
1001  * This routine may not block.
1002  *
1003  * The page must be BUSY and will remain BUSY on return.
1004  * No other requirements.
1005  *
1006  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1007  *	 it busy.
1008  */
1009 void
1010 vm_page_remove(vm_page_t m)
1011 {
1012 	vm_object_t object;
1013 
1014 	if (m->object == NULL) {
1015 		return;
1016 	}
1017 
1018 	if ((m->flags & PG_BUSY) == 0)
1019 		panic("vm_page_remove: page not busy");
1020 
1021 	object = m->object;
1022 
1023 	vm_object_hold(object);
1024 
1025 	/*
1026 	 * Remove the page from the object and update the object.
1027 	 *
1028 	 * The vm_page spin lock is required for interactions with the pmap.
1029 	 */
1030 	vm_page_spin_lock(m);
1031 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1032 	--object->resident_page_count;
1033 	--mycpu->gd_vmtotal.t_rm;
1034 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1035 	m->object = NULL;
1036 	vm_page_spin_unlock(m);
1037 
1038 	object->generation++;
1039 
1040 	vm_object_drop(object);
1041 }
1042 
1043 /*
1044  * Locate and return the page at (object, pindex), or NULL if the
1045  * page could not be found.
1046  *
1047  * The caller must hold the vm_object token.
1048  */
1049 vm_page_t
1050 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1051 {
1052 	vm_page_t m;
1053 
1054 	/*
1055 	 * Search the hash table for this object/offset pair
1056 	 */
1057 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1058 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1059 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1060 	return(m);
1061 }
1062 
1063 vm_page_t
1064 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1065 					    vm_pindex_t pindex,
1066 					    int also_m_busy, const char *msg
1067 					    VM_PAGE_DEBUG_ARGS)
1068 {
1069 	u_int32_t flags;
1070 	vm_page_t m;
1071 
1072 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1073 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1074 	while (m) {
1075 		KKASSERT(m->object == object && m->pindex == pindex);
1076 		flags = m->flags;
1077 		cpu_ccfence();
1078 		if (flags & PG_BUSY) {
1079 			tsleep_interlock(m, 0);
1080 			if (atomic_cmpset_int(&m->flags, flags,
1081 					  flags | PG_WANTED | PG_REFERENCED)) {
1082 				tsleep(m, PINTERLOCKED, msg, 0);
1083 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1084 							      pindex);
1085 			}
1086 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1087 			tsleep_interlock(m, 0);
1088 			if (atomic_cmpset_int(&m->flags, flags,
1089 					  flags | PG_WANTED | PG_REFERENCED)) {
1090 				tsleep(m, PINTERLOCKED, msg, 0);
1091 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1092 							      pindex);
1093 			}
1094 		} else if (atomic_cmpset_int(&m->flags, flags,
1095 					     flags | PG_BUSY)) {
1096 #ifdef VM_PAGE_DEBUG
1097 			m->busy_func = func;
1098 			m->busy_line = lineno;
1099 #endif
1100 			break;
1101 		}
1102 	}
1103 	return m;
1104 }
1105 
1106 /*
1107  * Attempt to lookup and busy a page.
1108  *
1109  * Returns NULL if the page could not be found
1110  *
1111  * Returns a vm_page and error == TRUE if the page exists but could not
1112  * be busied.
1113  *
1114  * Returns a vm_page and error == FALSE on success.
1115  */
1116 vm_page_t
1117 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1118 					   vm_pindex_t pindex,
1119 					   int also_m_busy, int *errorp
1120 					   VM_PAGE_DEBUG_ARGS)
1121 {
1122 	u_int32_t flags;
1123 	vm_page_t m;
1124 
1125 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1126 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1127 	*errorp = FALSE;
1128 	while (m) {
1129 		KKASSERT(m->object == object && m->pindex == pindex);
1130 		flags = m->flags;
1131 		cpu_ccfence();
1132 		if (flags & PG_BUSY) {
1133 			*errorp = TRUE;
1134 			break;
1135 		}
1136 		if (also_m_busy && (flags & PG_SBUSY)) {
1137 			*errorp = TRUE;
1138 			break;
1139 		}
1140 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1141 #ifdef VM_PAGE_DEBUG
1142 			m->busy_func = func;
1143 			m->busy_line = lineno;
1144 #endif
1145 			break;
1146 		}
1147 	}
1148 	return m;
1149 }
1150 
1151 /*
1152  * Caller must hold the related vm_object
1153  */
1154 vm_page_t
1155 vm_page_next(vm_page_t m)
1156 {
1157 	vm_page_t next;
1158 
1159 	next = vm_page_rb_tree_RB_NEXT(m);
1160 	if (next && next->pindex != m->pindex + 1)
1161 		next = NULL;
1162 	return (next);
1163 }
1164 
1165 /*
1166  * vm_page_rename()
1167  *
1168  * Move the given vm_page from its current object to the specified
1169  * target object/offset.  The page must be busy and will remain so
1170  * on return.
1171  *
1172  * new_object must be held.
1173  * This routine might block. XXX ?
1174  *
1175  * NOTE: Swap associated with the page must be invalidated by the move.  We
1176  *       have to do this for several reasons:  (1) we aren't freeing the
1177  *       page, (2) we are dirtying the page, (3) the VM system is probably
1178  *       moving the page from object A to B, and will then later move
1179  *       the backing store from A to B and we can't have a conflict.
1180  *
1181  * NOTE: We *always* dirty the page.  It is necessary both for the
1182  *       fact that we moved it, and because we may be invalidating
1183  *	 swap.  If the page is on the cache, we have to deactivate it
1184  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1185  *	 on the cache.
1186  */
1187 void
1188 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1189 {
1190 	KKASSERT(m->flags & PG_BUSY);
1191 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1192 	if (m->object) {
1193 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1194 		vm_page_remove(m);
1195 	}
1196 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1197 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1198 		      new_object, new_pindex);
1199 	}
1200 	if (m->queue - m->pc == PQ_CACHE)
1201 		vm_page_deactivate(m);
1202 	vm_page_dirty(m);
1203 }
1204 
1205 /*
1206  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1207  * is to remain BUSYied by the caller.
1208  *
1209  * This routine may not block.
1210  */
1211 void
1212 vm_page_unqueue_nowakeup(vm_page_t m)
1213 {
1214 	vm_page_and_queue_spin_lock(m);
1215 	(void)_vm_page_rem_queue_spinlocked(m);
1216 	vm_page_spin_unlock(m);
1217 }
1218 
1219 /*
1220  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1221  * if necessary.
1222  *
1223  * This routine may not block.
1224  */
1225 void
1226 vm_page_unqueue(vm_page_t m)
1227 {
1228 	u_short queue;
1229 
1230 	vm_page_and_queue_spin_lock(m);
1231 	queue = _vm_page_rem_queue_spinlocked(m);
1232 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1233 		vm_page_spin_unlock(m);
1234 		pagedaemon_wakeup();
1235 	} else {
1236 		vm_page_spin_unlock(m);
1237 	}
1238 }
1239 
1240 /*
1241  * vm_page_list_find()
1242  *
1243  * Find a page on the specified queue with color optimization.
1244  *
1245  * The page coloring optimization attempts to locate a page that does
1246  * not overload other nearby pages in the object in the cpu's L1 or L2
1247  * caches.  We need this optimization because cpu caches tend to be
1248  * physical caches, while object spaces tend to be virtual.
1249  *
1250  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1251  * and the algorithm is adjusted to localize allocations on a per-core basis.
1252  * This is done by 'twisting' the colors.
1253  *
1254  * The page is returned spinlocked and removed from its queue (it will
1255  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1256  * is responsible for dealing with the busy-page case (usually by
1257  * deactivating the page and looping).
1258  *
1259  * NOTE:  This routine is carefully inlined.  A non-inlined version
1260  *	  is available for outside callers but the only critical path is
1261  *	  from within this source file.
1262  *
1263  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1264  *	  represent stable storage, allowing us to order our locks vm_page
1265  *	  first, then queue.
1266  */
1267 static __inline
1268 vm_page_t
1269 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1270 {
1271 	vm_page_t m;
1272 
1273 	for (;;) {
1274 		if (prefer_zero)
1275 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1276 		else
1277 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1278 		if (m == NULL) {
1279 			m = _vm_page_list_find2(basequeue, index);
1280 			return(m);
1281 		}
1282 		vm_page_and_queue_spin_lock(m);
1283 		if (m->queue == basequeue + index) {
1284 			_vm_page_rem_queue_spinlocked(m);
1285 			/* vm_page_t spin held, no queue spin */
1286 			break;
1287 		}
1288 		vm_page_and_queue_spin_unlock(m);
1289 	}
1290 	return(m);
1291 }
1292 
1293 static vm_page_t
1294 _vm_page_list_find2(int basequeue, int index)
1295 {
1296 	int i;
1297 	vm_page_t m = NULL;
1298 	struct vpgqueues *pq;
1299 
1300 	pq = &vm_page_queues[basequeue];
1301 
1302 	/*
1303 	 * Note that for the first loop, index+i and index-i wind up at the
1304 	 * same place.  Even though this is not totally optimal, we've already
1305 	 * blown it by missing the cache case so we do not care.
1306 	 */
1307 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1308 		for (;;) {
1309 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1310 			if (m) {
1311 				_vm_page_and_queue_spin_lock(m);
1312 				if (m->queue ==
1313 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1314 					_vm_page_rem_queue_spinlocked(m);
1315 					return(m);
1316 				}
1317 				_vm_page_and_queue_spin_unlock(m);
1318 				continue;
1319 			}
1320 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1321 			if (m) {
1322 				_vm_page_and_queue_spin_lock(m);
1323 				if (m->queue ==
1324 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1325 					_vm_page_rem_queue_spinlocked(m);
1326 					return(m);
1327 				}
1328 				_vm_page_and_queue_spin_unlock(m);
1329 				continue;
1330 			}
1331 			break;	/* next i */
1332 		}
1333 	}
1334 	return(m);
1335 }
1336 
1337 /*
1338  * Returns a vm_page candidate for allocation.  The page is not busied so
1339  * it can move around.  The caller must busy the page (and typically
1340  * deactivate it if it cannot be busied!)
1341  *
1342  * Returns a spinlocked vm_page that has been removed from its queue.
1343  */
1344 vm_page_t
1345 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1346 {
1347 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1348 }
1349 
1350 /*
1351  * Find a page on the cache queue with color optimization, remove it
1352  * from the queue, and busy it.  The returned page will not be spinlocked.
1353  *
1354  * A candidate failure will be deactivated.  Candidates can fail due to
1355  * being busied by someone else, in which case they will be deactivated.
1356  *
1357  * This routine may not block.
1358  *
1359  */
1360 static vm_page_t
1361 vm_page_select_cache(u_short pg_color)
1362 {
1363 	vm_page_t m;
1364 
1365 	for (;;) {
1366 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1367 		if (m == NULL)
1368 			break;
1369 		/*
1370 		 * (m) has been removed from its queue and spinlocked
1371 		 */
1372 		if (vm_page_busy_try(m, TRUE)) {
1373 			_vm_page_deactivate_locked(m, 0);
1374 			vm_page_spin_unlock(m);
1375 		} else {
1376 			/*
1377 			 * We successfully busied the page
1378 			 */
1379 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1380 			    m->hold_count == 0 &&
1381 			    m->wire_count == 0 &&
1382 			    (m->dirty & m->valid) == 0) {
1383 				vm_page_spin_unlock(m);
1384 				pagedaemon_wakeup();
1385 				return(m);
1386 			}
1387 
1388 			/*
1389 			 * The page cannot be recycled, deactivate it.
1390 			 */
1391 			_vm_page_deactivate_locked(m, 0);
1392 			if (_vm_page_wakeup(m)) {
1393 				vm_page_spin_unlock(m);
1394 				wakeup(m);
1395 			} else {
1396 				vm_page_spin_unlock(m);
1397 			}
1398 		}
1399 	}
1400 	return (m);
1401 }
1402 
1403 /*
1404  * Find a free or zero page, with specified preference.  We attempt to
1405  * inline the nominal case and fall back to _vm_page_select_free()
1406  * otherwise.  A busied page is removed from the queue and returned.
1407  *
1408  * This routine may not block.
1409  */
1410 static __inline vm_page_t
1411 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1412 {
1413 	vm_page_t m;
1414 
1415 	for (;;) {
1416 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1417 				       prefer_zero);
1418 		if (m == NULL)
1419 			break;
1420 		if (vm_page_busy_try(m, TRUE)) {
1421 			/*
1422 			 * Various mechanisms such as a pmap_collect can
1423 			 * result in a busy page on the free queue.  We
1424 			 * have to move the page out of the way so we can
1425 			 * retry the allocation.  If the other thread is not
1426 			 * allocating the page then m->valid will remain 0 and
1427 			 * the pageout daemon will free the page later on.
1428 			 *
1429 			 * Since we could not busy the page, however, we
1430 			 * cannot make assumptions as to whether the page
1431 			 * will be allocated by the other thread or not,
1432 			 * so all we can do is deactivate it to move it out
1433 			 * of the way.  In particular, if the other thread
1434 			 * wires the page it may wind up on the inactive
1435 			 * queue and the pageout daemon will have to deal
1436 			 * with that case too.
1437 			 */
1438 			_vm_page_deactivate_locked(m, 0);
1439 			vm_page_spin_unlock(m);
1440 		} else {
1441 			/*
1442 			 * Theoretically if we are able to busy the page
1443 			 * atomic with the queue removal (using the vm_page
1444 			 * lock) nobody else should be able to mess with the
1445 			 * page before us.
1446 			 */
1447 			KKASSERT((m->flags & (PG_UNMANAGED |
1448 					      PG_NEED_COMMIT)) == 0);
1449 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1450 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1451 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1452 			KKASSERT(m->wire_count == 0);
1453 			vm_page_spin_unlock(m);
1454 			pagedaemon_wakeup();
1455 
1456 			/* return busied and removed page */
1457 			return(m);
1458 		}
1459 	}
1460 	return(m);
1461 }
1462 
1463 /*
1464  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1465  * The idea is to populate this cache prior to acquiring any locks so
1466  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1467  * holding potentialy contending locks.
1468  *
1469  * Note that we allocate the page uninserted into anything and use a pindex
1470  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1471  * allocations should wind up being uncontended.  However, we still want
1472  * to rove across PQ_L2_SIZE.
1473  */
1474 void
1475 vm_page_pcpu_cache(void)
1476 {
1477 #if 0
1478 	globaldata_t gd = mycpu;
1479 	vm_page_t m;
1480 
1481 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1482 		crit_enter_gd(gd);
1483 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1484 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1485 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1486 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1487 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1488 				if ((m->flags & PG_ZERO) == 0) {
1489 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1490 					vm_page_flag_set(m, PG_ZERO);
1491 				}
1492 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1493 			} else {
1494 				vm_page_free(m);
1495 			}
1496 		}
1497 		crit_exit_gd(gd);
1498 	}
1499 #endif
1500 }
1501 
1502 /*
1503  * vm_page_alloc()
1504  *
1505  * Allocate and return a memory cell associated with this VM object/offset
1506  * pair.  If object is NULL an unassociated page will be allocated.
1507  *
1508  * The returned page will be busied and removed from its queues.  This
1509  * routine can block and may return NULL if a race occurs and the page
1510  * is found to already exist at the specified (object, pindex).
1511  *
1512  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1513  *	VM_ALLOC_QUICK		like normal but cannot use cache
1514  *	VM_ALLOC_SYSTEM		greater free drain
1515  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1516  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1517  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1518  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1519  *				(see vm_page_grab())
1520  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1521  *
1522  * The object must be held if not NULL
1523  * This routine may not block
1524  *
1525  * Additional special handling is required when called from an interrupt
1526  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1527  * in this case.
1528  */
1529 vm_page_t
1530 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1531 {
1532 	globaldata_t gd = mycpu;
1533 	vm_object_t obj;
1534 	vm_page_t m;
1535 	u_short pg_color;
1536 
1537 #if 0
1538 	/*
1539 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1540 	 * and pre-zerod for us.
1541 	 */
1542 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1543 		crit_enter_gd(gd);
1544 		if (gd->gd_vmpg_count) {
1545 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1546 			crit_exit_gd(gd);
1547 			goto done;
1548                 }
1549 		crit_exit_gd(gd);
1550         }
1551 #endif
1552 	m = NULL;
1553 
1554 	/*
1555 	 * Cpu twist - cpu localization algorithm
1556 	 */
1557 	if (object) {
1558 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1559 			   (object->pg_color & ~ncpus_fit_mask);
1560 	} else {
1561 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1562 	}
1563 	KKASSERT(page_req &
1564 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1565 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1566 
1567 	/*
1568 	 * Certain system threads (pageout daemon, buf_daemon's) are
1569 	 * allowed to eat deeper into the free page list.
1570 	 */
1571 	if (curthread->td_flags & TDF_SYSTHREAD)
1572 		page_req |= VM_ALLOC_SYSTEM;
1573 
1574 	/*
1575 	 * Impose various limitations.  Note that the v_free_reserved test
1576 	 * must match the opposite of vm_page_count_target() to avoid
1577 	 * livelocks, be careful.
1578 	 */
1579 loop:
1580 	if (vmstats.v_free_count >= vmstats.v_free_reserved ||
1581 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1582 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1583 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1584 	) {
1585 		/*
1586 		 * The free queue has sufficient free pages to take one out.
1587 		 */
1588 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1589 			m = vm_page_select_free(pg_color, TRUE);
1590 		else
1591 			m = vm_page_select_free(pg_color, FALSE);
1592 	} else if (page_req & VM_ALLOC_NORMAL) {
1593 		/*
1594 		 * Allocatable from the cache (non-interrupt only).  On
1595 		 * success, we must free the page and try again, thus
1596 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1597 		 */
1598 #ifdef INVARIANTS
1599 		if (curthread->td_preempted) {
1600 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1601 				" cache page from preempting interrupt\n");
1602 			m = NULL;
1603 		} else {
1604 			m = vm_page_select_cache(pg_color);
1605 		}
1606 #else
1607 		m = vm_page_select_cache(pg_color);
1608 #endif
1609 		/*
1610 		 * On success move the page into the free queue and loop.
1611 		 *
1612 		 * Only do this if we can safely acquire the vm_object lock,
1613 		 * because this is effectively a random page and the caller
1614 		 * might be holding the lock shared, we don't want to
1615 		 * deadlock.
1616 		 */
1617 		if (m != NULL) {
1618 			KASSERT(m->dirty == 0,
1619 				("Found dirty cache page %p", m));
1620 			if ((obj = m->object) != NULL) {
1621 				if (vm_object_hold_try(obj)) {
1622 					vm_page_protect(m, VM_PROT_NONE);
1623 					vm_page_free(m);
1624 					/* m->object NULL here */
1625 					vm_object_drop(obj);
1626 				} else {
1627 					vm_page_deactivate(m);
1628 					vm_page_wakeup(m);
1629 				}
1630 			} else {
1631 				vm_page_protect(m, VM_PROT_NONE);
1632 				vm_page_free(m);
1633 			}
1634 			goto loop;
1635 		}
1636 
1637 		/*
1638 		 * On failure return NULL
1639 		 */
1640 #if defined(DIAGNOSTIC)
1641 		if (vmstats.v_cache_count > 0)
1642 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1643 #endif
1644 		vm_pageout_deficit++;
1645 		pagedaemon_wakeup();
1646 		return (NULL);
1647 	} else {
1648 		/*
1649 		 * No pages available, wakeup the pageout daemon and give up.
1650 		 */
1651 		vm_pageout_deficit++;
1652 		pagedaemon_wakeup();
1653 		return (NULL);
1654 	}
1655 
1656 	/*
1657 	 * v_free_count can race so loop if we don't find the expected
1658 	 * page.
1659 	 */
1660 	if (m == NULL)
1661 		goto loop;
1662 
1663 	/*
1664 	 * Good page found.  The page has already been busied for us and
1665 	 * removed from its queues.
1666 	 */
1667 	KASSERT(m->dirty == 0,
1668 		("vm_page_alloc: free/cache page %p was dirty", m));
1669 	KKASSERT(m->queue == PQ_NONE);
1670 
1671 #if 0
1672 done:
1673 #endif
1674 	/*
1675 	 * Initialize the structure, inheriting some flags but clearing
1676 	 * all the rest.  The page has already been busied for us.
1677 	 */
1678 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1679 	KKASSERT(m->wire_count == 0);
1680 	KKASSERT(m->busy == 0);
1681 	m->act_count = 0;
1682 	m->valid = 0;
1683 
1684 	/*
1685 	 * Caller must be holding the object lock (asserted by
1686 	 * vm_page_insert()).
1687 	 *
1688 	 * NOTE: Inserting a page here does not insert it into any pmaps
1689 	 *	 (which could cause us to block allocating memory).
1690 	 *
1691 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1692 	 *	 can be used by the caller for any purpose.
1693 	 */
1694 	if (object) {
1695 		if (vm_page_insert(m, object, pindex) == FALSE) {
1696 			vm_page_free(m);
1697 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1698 				panic("PAGE RACE %p[%ld]/%p",
1699 				      object, (long)pindex, m);
1700 			m = NULL;
1701 		}
1702 	} else {
1703 		m->pindex = pindex;
1704 	}
1705 
1706 	/*
1707 	 * Don't wakeup too often - wakeup the pageout daemon when
1708 	 * we would be nearly out of memory.
1709 	 */
1710 	pagedaemon_wakeup();
1711 
1712 	/*
1713 	 * A PG_BUSY page is returned.
1714 	 */
1715 	return (m);
1716 }
1717 
1718 /*
1719  * Returns number of pages available in our DMA memory reserve
1720  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1721  */
1722 vm_size_t
1723 vm_contig_avail_pages(void)
1724 {
1725 	alist_blk_t blk;
1726 	alist_blk_t count;
1727 	alist_blk_t bfree;
1728 	spin_lock(&vm_contig_spin);
1729 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1730 	spin_unlock(&vm_contig_spin);
1731 
1732 	return bfree;
1733 }
1734 
1735 /*
1736  * Attempt to allocate contiguous physical memory with the specified
1737  * requirements.
1738  */
1739 vm_page_t
1740 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1741 		     unsigned long alignment, unsigned long boundary,
1742 		     unsigned long size, vm_memattr_t memattr)
1743 {
1744 	alist_blk_t blk;
1745 	vm_page_t m;
1746 	int i;
1747 
1748 	alignment >>= PAGE_SHIFT;
1749 	if (alignment == 0)
1750 		alignment = 1;
1751 	boundary >>= PAGE_SHIFT;
1752 	if (boundary == 0)
1753 		boundary = 1;
1754 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1755 
1756 	spin_lock(&vm_contig_spin);
1757 	blk = alist_alloc(&vm_contig_alist, 0, size);
1758 	if (blk == ALIST_BLOCK_NONE) {
1759 		spin_unlock(&vm_contig_spin);
1760 		if (bootverbose) {
1761 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1762 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1763 		}
1764 		return(NULL);
1765 	}
1766 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1767 		alist_free(&vm_contig_alist, blk, size);
1768 		spin_unlock(&vm_contig_spin);
1769 		if (bootverbose) {
1770 			kprintf("vm_page_alloc_contig: %ldk high "
1771 				"%016jx failed\n",
1772 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1773 				(intmax_t)high);
1774 		}
1775 		return(NULL);
1776 	}
1777 	spin_unlock(&vm_contig_spin);
1778 	if (vm_contig_verbose) {
1779 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1780 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1781 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1782 	}
1783 
1784 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1785 	if (memattr != VM_MEMATTR_DEFAULT)
1786 		for (i = 0;i < size;i++)
1787 			pmap_page_set_memattr(&m[i], memattr);
1788 	return m;
1789 }
1790 
1791 /*
1792  * Free contiguously allocated pages.  The pages will be wired but not busy.
1793  * When freeing to the alist we leave them wired and not busy.
1794  */
1795 void
1796 vm_page_free_contig(vm_page_t m, unsigned long size)
1797 {
1798 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1799 	vm_pindex_t start = pa >> PAGE_SHIFT;
1800 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1801 
1802 	if (vm_contig_verbose) {
1803 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1804 			(intmax_t)pa, size / 1024);
1805 	}
1806 	if (pa < vm_low_phys_reserved) {
1807 		KKASSERT(pa + size <= vm_low_phys_reserved);
1808 		spin_lock(&vm_contig_spin);
1809 		alist_free(&vm_contig_alist, start, pages);
1810 		spin_unlock(&vm_contig_spin);
1811 	} else {
1812 		while (pages) {
1813 			vm_page_busy_wait(m, FALSE, "cpgfr");
1814 			vm_page_unwire(m, 0);
1815 			vm_page_free(m);
1816 			--pages;
1817 			++m;
1818 		}
1819 
1820 	}
1821 }
1822 
1823 
1824 /*
1825  * Wait for sufficient free memory for nominal heavy memory use kernel
1826  * operations.
1827  *
1828  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1829  *	     will trivially deadlock the system.
1830  */
1831 void
1832 vm_wait_nominal(void)
1833 {
1834 	while (vm_page_count_min(0))
1835 		vm_wait(0);
1836 }
1837 
1838 /*
1839  * Test if vm_wait_nominal() would block.
1840  */
1841 int
1842 vm_test_nominal(void)
1843 {
1844 	if (vm_page_count_min(0))
1845 		return(1);
1846 	return(0);
1847 }
1848 
1849 /*
1850  * Block until free pages are available for allocation, called in various
1851  * places before memory allocations.
1852  *
1853  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1854  * more generous then that.
1855  */
1856 void
1857 vm_wait(int timo)
1858 {
1859 	/*
1860 	 * never wait forever
1861 	 */
1862 	if (timo == 0)
1863 		timo = hz;
1864 	lwkt_gettoken(&vm_token);
1865 
1866 	if (curthread == pagethread) {
1867 		/*
1868 		 * The pageout daemon itself needs pages, this is bad.
1869 		 */
1870 		if (vm_page_count_min(0)) {
1871 			vm_pageout_pages_needed = 1;
1872 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1873 		}
1874 	} else {
1875 		/*
1876 		 * Wakeup the pageout daemon if necessary and wait.
1877 		 *
1878 		 * Do not wait indefinitely for the target to be reached,
1879 		 * as load might prevent it from being reached any time soon.
1880 		 * But wait a little to try to slow down page allocations
1881 		 * and to give more important threads (the pagedaemon)
1882 		 * allocation priority.
1883 		 */
1884 		if (vm_page_count_target()) {
1885 			if (vm_pages_needed == 0) {
1886 				vm_pages_needed = 1;
1887 				wakeup(&vm_pages_needed);
1888 			}
1889 			++vm_pages_waiting;	/* SMP race ok */
1890 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1891 		}
1892 	}
1893 	lwkt_reltoken(&vm_token);
1894 }
1895 
1896 /*
1897  * Block until free pages are available for allocation
1898  *
1899  * Called only from vm_fault so that processes page faulting can be
1900  * easily tracked.
1901  */
1902 void
1903 vm_wait_pfault(void)
1904 {
1905 	/*
1906 	 * Wakeup the pageout daemon if necessary and wait.
1907 	 *
1908 	 * Do not wait indefinitely for the target to be reached,
1909 	 * as load might prevent it from being reached any time soon.
1910 	 * But wait a little to try to slow down page allocations
1911 	 * and to give more important threads (the pagedaemon)
1912 	 * allocation priority.
1913 	 */
1914 	if (vm_page_count_min(0)) {
1915 		lwkt_gettoken(&vm_token);
1916 		while (vm_page_count_severe()) {
1917 			if (vm_page_count_target()) {
1918 				if (vm_pages_needed == 0) {
1919 					vm_pages_needed = 1;
1920 					wakeup(&vm_pages_needed);
1921 				}
1922 				++vm_pages_waiting;	/* SMP race ok */
1923 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1924 			}
1925 		}
1926 		lwkt_reltoken(&vm_token);
1927 	}
1928 }
1929 
1930 /*
1931  * Put the specified page on the active list (if appropriate).  Ensure
1932  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1933  *
1934  * The caller should be holding the page busied ? XXX
1935  * This routine may not block.
1936  */
1937 void
1938 vm_page_activate(vm_page_t m)
1939 {
1940 	u_short oqueue;
1941 
1942 	vm_page_spin_lock(m);
1943 	if (m->queue - m->pc != PQ_ACTIVE) {
1944 		_vm_page_queue_spin_lock(m);
1945 		oqueue = _vm_page_rem_queue_spinlocked(m);
1946 		/* page is left spinlocked, queue is unlocked */
1947 
1948 		if (oqueue == PQ_CACHE)
1949 			mycpu->gd_cnt.v_reactivated++;
1950 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1951 			if (m->act_count < ACT_INIT)
1952 				m->act_count = ACT_INIT;
1953 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1954 		}
1955 		_vm_page_and_queue_spin_unlock(m);
1956 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1957 			pagedaemon_wakeup();
1958 	} else {
1959 		if (m->act_count < ACT_INIT)
1960 			m->act_count = ACT_INIT;
1961 		vm_page_spin_unlock(m);
1962 	}
1963 }
1964 
1965 /*
1966  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1967  * routine is called when a page has been added to the cache or free
1968  * queues.
1969  *
1970  * This routine may not block.
1971  */
1972 static __inline void
1973 vm_page_free_wakeup(void)
1974 {
1975 	/*
1976 	 * If the pageout daemon itself needs pages, then tell it that
1977 	 * there are some free.
1978 	 */
1979 	if (vm_pageout_pages_needed &&
1980 	    vmstats.v_cache_count + vmstats.v_free_count >=
1981 	    vmstats.v_pageout_free_min
1982 	) {
1983 		vm_pageout_pages_needed = 0;
1984 		wakeup(&vm_pageout_pages_needed);
1985 	}
1986 
1987 	/*
1988 	 * Wakeup processes that are waiting on memory.
1989 	 *
1990 	 * Generally speaking we want to wakeup stuck processes as soon as
1991 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
1992 	 * where we can do this.  Wait a bit longer to reduce degenerate
1993 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
1994 	 * to make sure the min-check w/hysteresis does not exceed the
1995 	 * normal target.
1996 	 */
1997 	if (vm_pages_waiting) {
1998 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
1999 		    !vm_page_count_target()) {
2000 			vm_pages_waiting = 0;
2001 			wakeup(&vmstats.v_free_count);
2002 			++mycpu->gd_cnt.v_ppwakeups;
2003 		}
2004 #if 0
2005 		if (!vm_page_count_target()) {
2006 			/*
2007 			 * Plenty of pages are free, wakeup everyone.
2008 			 */
2009 			vm_pages_waiting = 0;
2010 			wakeup(&vmstats.v_free_count);
2011 			++mycpu->gd_cnt.v_ppwakeups;
2012 		} else if (!vm_page_count_min(0)) {
2013 			/*
2014 			 * Some pages are free, wakeup someone.
2015 			 */
2016 			int wcount = vm_pages_waiting;
2017 			if (wcount > 0)
2018 				--wcount;
2019 			vm_pages_waiting = wcount;
2020 			wakeup_one(&vmstats.v_free_count);
2021 			++mycpu->gd_cnt.v_ppwakeups;
2022 		}
2023 #endif
2024 	}
2025 }
2026 
2027 /*
2028  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2029  * it from its VM object.
2030  *
2031  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2032  * return (the page will have been freed).
2033  */
2034 void
2035 vm_page_free_toq(vm_page_t m)
2036 {
2037 	mycpu->gd_cnt.v_tfree++;
2038 	KKASSERT((m->flags & PG_MAPPED) == 0);
2039 	KKASSERT(m->flags & PG_BUSY);
2040 
2041 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2042 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2043 			"PG_BUSY(%d), hold(%d)\n",
2044 			(u_long)m->pindex, m->busy,
2045 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2046 		if ((m->queue - m->pc) == PQ_FREE)
2047 			panic("vm_page_free: freeing free page");
2048 		else
2049 			panic("vm_page_free: freeing busy page");
2050 	}
2051 
2052 	/*
2053 	 * Remove from object, spinlock the page and its queues and
2054 	 * remove from any queue.  No queue spinlock will be held
2055 	 * after this section (because the page was removed from any
2056 	 * queue).
2057 	 */
2058 	vm_page_remove(m);
2059 	vm_page_and_queue_spin_lock(m);
2060 	_vm_page_rem_queue_spinlocked(m);
2061 
2062 	/*
2063 	 * No further management of fictitious pages occurs beyond object
2064 	 * and queue removal.
2065 	 */
2066 	if ((m->flags & PG_FICTITIOUS) != 0) {
2067 		vm_page_spin_unlock(m);
2068 		vm_page_wakeup(m);
2069 		return;
2070 	}
2071 
2072 	m->valid = 0;
2073 	vm_page_undirty(m);
2074 
2075 	if (m->wire_count != 0) {
2076 		if (m->wire_count > 1) {
2077 		    panic(
2078 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2079 			m->wire_count, (long)m->pindex);
2080 		}
2081 		panic("vm_page_free: freeing wired page");
2082 	}
2083 
2084 	/*
2085 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2086 	 * Clear the NEED_COMMIT flag
2087 	 */
2088 	if (m->flags & PG_UNMANAGED)
2089 		vm_page_flag_clear(m, PG_UNMANAGED);
2090 	if (m->flags & PG_NEED_COMMIT)
2091 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2092 
2093 	if (m->hold_count != 0) {
2094 		vm_page_flag_clear(m, PG_ZERO);
2095 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2096 	} else {
2097 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2098 	}
2099 
2100 	/*
2101 	 * This sequence allows us to clear PG_BUSY while still holding
2102 	 * its spin lock, which reduces contention vs allocators.  We
2103 	 * must not leave the queue locked or _vm_page_wakeup() may
2104 	 * deadlock.
2105 	 */
2106 	_vm_page_queue_spin_unlock(m);
2107 	if (_vm_page_wakeup(m)) {
2108 		vm_page_spin_unlock(m);
2109 		wakeup(m);
2110 	} else {
2111 		vm_page_spin_unlock(m);
2112 	}
2113 	vm_page_free_wakeup();
2114 }
2115 
2116 /*
2117  * vm_page_free_fromq_fast()
2118  *
2119  * Remove a non-zero page from one of the free queues; the page is removed for
2120  * zeroing, so do not issue a wakeup.
2121  */
2122 vm_page_t
2123 vm_page_free_fromq_fast(void)
2124 {
2125 	static int qi;
2126 	vm_page_t m;
2127 	int i;
2128 
2129 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2130 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2131 		/* page is returned spinlocked and removed from its queue */
2132 		if (m) {
2133 			if (vm_page_busy_try(m, TRUE)) {
2134 				/*
2135 				 * We were unable to busy the page, deactivate
2136 				 * it and loop.
2137 				 */
2138 				_vm_page_deactivate_locked(m, 0);
2139 				vm_page_spin_unlock(m);
2140 			} else if (m->flags & PG_ZERO) {
2141 				/*
2142 				 * The page is already PG_ZERO, requeue it and loop
2143 				 */
2144 				_vm_page_add_queue_spinlocked(m,
2145 							      PQ_FREE + m->pc,
2146 							      0);
2147 				vm_page_queue_spin_unlock(m);
2148 				if (_vm_page_wakeup(m)) {
2149 					vm_page_spin_unlock(m);
2150 					wakeup(m);
2151 				} else {
2152 					vm_page_spin_unlock(m);
2153 				}
2154 			} else {
2155 				/*
2156 				 * The page is not PG_ZERO'd so return it.
2157 				 */
2158 				KKASSERT((m->flags & (PG_UNMANAGED |
2159 						      PG_NEED_COMMIT)) == 0);
2160 				KKASSERT(m->hold_count == 0);
2161 				KKASSERT(m->wire_count == 0);
2162 				vm_page_spin_unlock(m);
2163 				break;
2164 			}
2165 			m = NULL;
2166 		}
2167 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2168 	}
2169 	return (m);
2170 }
2171 
2172 /*
2173  * vm_page_unmanage()
2174  *
2175  * Prevent PV management from being done on the page.  The page is
2176  * removed from the paging queues as if it were wired, and as a
2177  * consequence of no longer being managed the pageout daemon will not
2178  * touch it (since there is no way to locate the pte mappings for the
2179  * page).  madvise() calls that mess with the pmap will also no longer
2180  * operate on the page.
2181  *
2182  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2183  * will clear the flag.
2184  *
2185  * This routine is used by OBJT_PHYS objects - objects using unswappable
2186  * physical memory as backing store rather then swap-backed memory and
2187  * will eventually be extended to support 4MB unmanaged physical
2188  * mappings.
2189  *
2190  * Caller must be holding the page busy.
2191  */
2192 void
2193 vm_page_unmanage(vm_page_t m)
2194 {
2195 	KKASSERT(m->flags & PG_BUSY);
2196 	if ((m->flags & PG_UNMANAGED) == 0) {
2197 		if (m->wire_count == 0)
2198 			vm_page_unqueue(m);
2199 	}
2200 	vm_page_flag_set(m, PG_UNMANAGED);
2201 }
2202 
2203 /*
2204  * Mark this page as wired down by yet another map, removing it from
2205  * paging queues as necessary.
2206  *
2207  * Caller must be holding the page busy.
2208  */
2209 void
2210 vm_page_wire(vm_page_t m)
2211 {
2212 	/*
2213 	 * Only bump the wire statistics if the page is not already wired,
2214 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2215 	 * it is already off the queues).  Don't do anything with fictitious
2216 	 * pages because they are always wired.
2217 	 */
2218 	KKASSERT(m->flags & PG_BUSY);
2219 	if ((m->flags & PG_FICTITIOUS) == 0) {
2220 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2221 			if ((m->flags & PG_UNMANAGED) == 0)
2222 				vm_page_unqueue(m);
2223 			atomic_add_int(&vmstats.v_wire_count, 1);
2224 		}
2225 		KASSERT(m->wire_count != 0,
2226 			("vm_page_wire: wire_count overflow m=%p", m));
2227 	}
2228 }
2229 
2230 /*
2231  * Release one wiring of this page, potentially enabling it to be paged again.
2232  *
2233  * Many pages placed on the inactive queue should actually go
2234  * into the cache, but it is difficult to figure out which.  What
2235  * we do instead, if the inactive target is well met, is to put
2236  * clean pages at the head of the inactive queue instead of the tail.
2237  * This will cause them to be moved to the cache more quickly and
2238  * if not actively re-referenced, freed more quickly.  If we just
2239  * stick these pages at the end of the inactive queue, heavy filesystem
2240  * meta-data accesses can cause an unnecessary paging load on memory bound
2241  * processes.  This optimization causes one-time-use metadata to be
2242  * reused more quickly.
2243  *
2244  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2245  * the inactive queue.  This helps the pageout daemon determine memory
2246  * pressure and act on out-of-memory situations more quickly.
2247  *
2248  * BUT, if we are in a low-memory situation we have no choice but to
2249  * put clean pages on the cache queue.
2250  *
2251  * A number of routines use vm_page_unwire() to guarantee that the page
2252  * will go into either the inactive or active queues, and will NEVER
2253  * be placed in the cache - for example, just after dirtying a page.
2254  * dirty pages in the cache are not allowed.
2255  *
2256  * This routine may not block.
2257  */
2258 void
2259 vm_page_unwire(vm_page_t m, int activate)
2260 {
2261 	KKASSERT(m->flags & PG_BUSY);
2262 	if (m->flags & PG_FICTITIOUS) {
2263 		/* do nothing */
2264 	} else if (m->wire_count <= 0) {
2265 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2266 	} else {
2267 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2268 			atomic_add_int(&vmstats.v_wire_count, -1);
2269 			if (m->flags & PG_UNMANAGED) {
2270 				;
2271 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2272 				vm_page_spin_lock(m);
2273 				_vm_page_add_queue_spinlocked(m,
2274 							PQ_ACTIVE + m->pc, 0);
2275 				_vm_page_and_queue_spin_unlock(m);
2276 			} else {
2277 				vm_page_spin_lock(m);
2278 				vm_page_flag_clear(m, PG_WINATCFLS);
2279 				_vm_page_add_queue_spinlocked(m,
2280 							PQ_INACTIVE + m->pc, 0);
2281 				++vm_swapcache_inactive_heuristic;
2282 				_vm_page_and_queue_spin_unlock(m);
2283 			}
2284 		}
2285 	}
2286 }
2287 
2288 /*
2289  * Move the specified page to the inactive queue.  If the page has
2290  * any associated swap, the swap is deallocated.
2291  *
2292  * Normally athead is 0 resulting in LRU operation.  athead is set
2293  * to 1 if we want this page to be 'as if it were placed in the cache',
2294  * except without unmapping it from the process address space.
2295  *
2296  * vm_page's spinlock must be held on entry and will remain held on return.
2297  * This routine may not block.
2298  */
2299 static void
2300 _vm_page_deactivate_locked(vm_page_t m, int athead)
2301 {
2302 	u_short oqueue;
2303 
2304 	/*
2305 	 * Ignore if already inactive.
2306 	 */
2307 	if (m->queue - m->pc == PQ_INACTIVE)
2308 		return;
2309 	_vm_page_queue_spin_lock(m);
2310 	oqueue = _vm_page_rem_queue_spinlocked(m);
2311 
2312 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2313 		if (oqueue == PQ_CACHE)
2314 			mycpu->gd_cnt.v_reactivated++;
2315 		vm_page_flag_clear(m, PG_WINATCFLS);
2316 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2317 		if (athead == 0)
2318 			++vm_swapcache_inactive_heuristic;
2319 	}
2320 	/* NOTE: PQ_NONE if condition not taken */
2321 	_vm_page_queue_spin_unlock(m);
2322 	/* leaves vm_page spinlocked */
2323 }
2324 
2325 /*
2326  * Attempt to deactivate a page.
2327  *
2328  * No requirements.
2329  */
2330 void
2331 vm_page_deactivate(vm_page_t m)
2332 {
2333 	vm_page_spin_lock(m);
2334 	_vm_page_deactivate_locked(m, 0);
2335 	vm_page_spin_unlock(m);
2336 }
2337 
2338 void
2339 vm_page_deactivate_locked(vm_page_t m)
2340 {
2341 	_vm_page_deactivate_locked(m, 0);
2342 }
2343 
2344 /*
2345  * Attempt to move a page to PQ_CACHE.
2346  *
2347  * Returns 0 on failure, 1 on success
2348  *
2349  * The page should NOT be busied by the caller.  This function will validate
2350  * whether the page can be safely moved to the cache.
2351  */
2352 int
2353 vm_page_try_to_cache(vm_page_t m)
2354 {
2355 	vm_page_spin_lock(m);
2356 	if (vm_page_busy_try(m, TRUE)) {
2357 		vm_page_spin_unlock(m);
2358 		return(0);
2359 	}
2360 	if (m->dirty || m->hold_count || m->wire_count ||
2361 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2362 		if (_vm_page_wakeup(m)) {
2363 			vm_page_spin_unlock(m);
2364 			wakeup(m);
2365 		} else {
2366 			vm_page_spin_unlock(m);
2367 		}
2368 		return(0);
2369 	}
2370 	vm_page_spin_unlock(m);
2371 
2372 	/*
2373 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2374 	 * be moved to the cache.
2375 	 */
2376 	vm_page_test_dirty(m);
2377 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2378 		vm_page_wakeup(m);
2379 		return(0);
2380 	}
2381 	vm_page_cache(m);
2382 	return(1);
2383 }
2384 
2385 /*
2386  * Attempt to free the page.  If we cannot free it, we do nothing.
2387  * 1 is returned on success, 0 on failure.
2388  *
2389  * No requirements.
2390  */
2391 int
2392 vm_page_try_to_free(vm_page_t m)
2393 {
2394 	vm_page_spin_lock(m);
2395 	if (vm_page_busy_try(m, TRUE)) {
2396 		vm_page_spin_unlock(m);
2397 		return(0);
2398 	}
2399 
2400 	/*
2401 	 * The page can be in any state, including already being on the free
2402 	 * queue.  Check to see if it really can be freed.
2403 	 */
2404 	if (m->dirty ||				/* can't free if it is dirty */
2405 	    m->hold_count ||			/* or held (XXX may be wrong) */
2406 	    m->wire_count ||			/* or wired */
2407 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2408 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2409 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2410 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2411 		if (_vm_page_wakeup(m)) {
2412 			vm_page_spin_unlock(m);
2413 			wakeup(m);
2414 		} else {
2415 			vm_page_spin_unlock(m);
2416 		}
2417 		return(0);
2418 	}
2419 	vm_page_spin_unlock(m);
2420 
2421 	/*
2422 	 * We can probably free the page.
2423 	 *
2424 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2425 	 * not be freed by this function.    We have to re-test the
2426 	 * dirty bit after cleaning out the pmaps.
2427 	 */
2428 	vm_page_test_dirty(m);
2429 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2430 		vm_page_wakeup(m);
2431 		return(0);
2432 	}
2433 	vm_page_protect(m, VM_PROT_NONE);
2434 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2435 		vm_page_wakeup(m);
2436 		return(0);
2437 	}
2438 	vm_page_free(m);
2439 	return(1);
2440 }
2441 
2442 /*
2443  * vm_page_cache
2444  *
2445  * Put the specified page onto the page cache queue (if appropriate).
2446  *
2447  * The page must be busy, and this routine will release the busy and
2448  * possibly even free the page.
2449  */
2450 void
2451 vm_page_cache(vm_page_t m)
2452 {
2453 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2454 	    m->busy || m->wire_count || m->hold_count) {
2455 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2456 		vm_page_wakeup(m);
2457 		return;
2458 	}
2459 
2460 	/*
2461 	 * Already in the cache (and thus not mapped)
2462 	 */
2463 	if ((m->queue - m->pc) == PQ_CACHE) {
2464 		KKASSERT((m->flags & PG_MAPPED) == 0);
2465 		vm_page_wakeup(m);
2466 		return;
2467 	}
2468 
2469 	/*
2470 	 * Caller is required to test m->dirty, but note that the act of
2471 	 * removing the page from its maps can cause it to become dirty
2472 	 * on an SMP system due to another cpu running in usermode.
2473 	 */
2474 	if (m->dirty) {
2475 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2476 			(long)m->pindex);
2477 	}
2478 
2479 	/*
2480 	 * Remove all pmaps and indicate that the page is not
2481 	 * writeable or mapped.  Our vm_page_protect() call may
2482 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2483 	 * everything.
2484 	 */
2485 	vm_page_protect(m, VM_PROT_NONE);
2486 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2487 	    m->busy || m->wire_count || m->hold_count) {
2488 		vm_page_wakeup(m);
2489 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2490 		vm_page_deactivate(m);
2491 		vm_page_wakeup(m);
2492 	} else {
2493 		_vm_page_and_queue_spin_lock(m);
2494 		_vm_page_rem_queue_spinlocked(m);
2495 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2496 		_vm_page_queue_spin_unlock(m);
2497 		if (_vm_page_wakeup(m)) {
2498 			vm_page_spin_unlock(m);
2499 			wakeup(m);
2500 		} else {
2501 			vm_page_spin_unlock(m);
2502 		}
2503 		vm_page_free_wakeup();
2504 	}
2505 }
2506 
2507 /*
2508  * vm_page_dontneed()
2509  *
2510  * Cache, deactivate, or do nothing as appropriate.  This routine
2511  * is typically used by madvise() MADV_DONTNEED.
2512  *
2513  * Generally speaking we want to move the page into the cache so
2514  * it gets reused quickly.  However, this can result in a silly syndrome
2515  * due to the page recycling too quickly.  Small objects will not be
2516  * fully cached.  On the otherhand, if we move the page to the inactive
2517  * queue we wind up with a problem whereby very large objects
2518  * unnecessarily blow away our inactive and cache queues.
2519  *
2520  * The solution is to move the pages based on a fixed weighting.  We
2521  * either leave them alone, deactivate them, or move them to the cache,
2522  * where moving them to the cache has the highest weighting.
2523  * By forcing some pages into other queues we eventually force the
2524  * system to balance the queues, potentially recovering other unrelated
2525  * space from active.  The idea is to not force this to happen too
2526  * often.
2527  *
2528  * The page must be busied.
2529  */
2530 void
2531 vm_page_dontneed(vm_page_t m)
2532 {
2533 	static int dnweight;
2534 	int dnw;
2535 	int head;
2536 
2537 	dnw = ++dnweight;
2538 
2539 	/*
2540 	 * occassionally leave the page alone
2541 	 */
2542 	if ((dnw & 0x01F0) == 0 ||
2543 	    m->queue - m->pc == PQ_INACTIVE ||
2544 	    m->queue - m->pc == PQ_CACHE
2545 	) {
2546 		if (m->act_count >= ACT_INIT)
2547 			--m->act_count;
2548 		return;
2549 	}
2550 
2551 	/*
2552 	 * If vm_page_dontneed() is inactivating a page, it must clear
2553 	 * the referenced flag; otherwise the pagedaemon will see references
2554 	 * on the page in the inactive queue and reactivate it. Until the
2555 	 * page can move to the cache queue, madvise's job is not done.
2556 	 */
2557 	vm_page_flag_clear(m, PG_REFERENCED);
2558 	pmap_clear_reference(m);
2559 
2560 	if (m->dirty == 0)
2561 		vm_page_test_dirty(m);
2562 
2563 	if (m->dirty || (dnw & 0x0070) == 0) {
2564 		/*
2565 		 * Deactivate the page 3 times out of 32.
2566 		 */
2567 		head = 0;
2568 	} else {
2569 		/*
2570 		 * Cache the page 28 times out of every 32.  Note that
2571 		 * the page is deactivated instead of cached, but placed
2572 		 * at the head of the queue instead of the tail.
2573 		 */
2574 		head = 1;
2575 	}
2576 	vm_page_spin_lock(m);
2577 	_vm_page_deactivate_locked(m, head);
2578 	vm_page_spin_unlock(m);
2579 }
2580 
2581 /*
2582  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2583  * is almost like PG_BUSY except that it allows certain compatible operations
2584  * to occur on the page while it is busy.  For example, a page undergoing a
2585  * write can still be mapped read-only.
2586  *
2587  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2588  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2589  * busy bit is cleared.
2590  */
2591 void
2592 vm_page_io_start(vm_page_t m)
2593 {
2594         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2595         atomic_add_char(&m->busy, 1);
2596 	vm_page_flag_set(m, PG_SBUSY);
2597 }
2598 
2599 void
2600 vm_page_io_finish(vm_page_t m)
2601 {
2602         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2603         atomic_subtract_char(&m->busy, 1);
2604 	if (m->busy == 0)
2605 		vm_page_flag_clear(m, PG_SBUSY);
2606 }
2607 
2608 /*
2609  * Indicate that a clean VM page requires a filesystem commit and cannot
2610  * be reused.  Used by tmpfs.
2611  */
2612 void
2613 vm_page_need_commit(vm_page_t m)
2614 {
2615 	vm_page_flag_set(m, PG_NEED_COMMIT);
2616 	vm_object_set_writeable_dirty(m->object);
2617 }
2618 
2619 void
2620 vm_page_clear_commit(vm_page_t m)
2621 {
2622 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2623 }
2624 
2625 /*
2626  * Grab a page, blocking if it is busy and allocating a page if necessary.
2627  * A busy page is returned or NULL.  The page may or may not be valid and
2628  * might not be on a queue (the caller is responsible for the disposition of
2629  * the page).
2630  *
2631  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2632  * page will be zero'd and marked valid.
2633  *
2634  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2635  * valid even if it already exists.
2636  *
2637  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2638  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2639  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2640  *
2641  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2642  * always returned if we had blocked.
2643  *
2644  * This routine may not be called from an interrupt.
2645  *
2646  * PG_ZERO is *ALWAYS* cleared by this routine.
2647  *
2648  * No other requirements.
2649  */
2650 vm_page_t
2651 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2652 {
2653 	vm_page_t m;
2654 	int error;
2655 	int shared = 1;
2656 
2657 	KKASSERT(allocflags &
2658 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2659 	vm_object_hold_shared(object);
2660 	for (;;) {
2661 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2662 		if (error) {
2663 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2664 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2665 				m = NULL;
2666 				break;
2667 			}
2668 			/* retry */
2669 		} else if (m == NULL) {
2670 			if (shared) {
2671 				vm_object_upgrade(object);
2672 				shared = 0;
2673 			}
2674 			if (allocflags & VM_ALLOC_RETRY)
2675 				allocflags |= VM_ALLOC_NULL_OK;
2676 			m = vm_page_alloc(object, pindex,
2677 					  allocflags & ~VM_ALLOC_RETRY);
2678 			if (m)
2679 				break;
2680 			vm_wait(0);
2681 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2682 				goto failed;
2683 		} else {
2684 			/* m found */
2685 			break;
2686 		}
2687 	}
2688 
2689 	/*
2690 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2691 	 *
2692 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2693 	 * valid even if already valid.
2694 	 */
2695 	if (m->valid == 0) {
2696 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2697 			if ((m->flags & PG_ZERO) == 0)
2698 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2699 			m->valid = VM_PAGE_BITS_ALL;
2700 		}
2701 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2702 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2703 		m->valid = VM_PAGE_BITS_ALL;
2704 	}
2705 	vm_page_flag_clear(m, PG_ZERO);
2706 failed:
2707 	vm_object_drop(object);
2708 	return(m);
2709 }
2710 
2711 /*
2712  * Mapping function for valid bits or for dirty bits in
2713  * a page.  May not block.
2714  *
2715  * Inputs are required to range within a page.
2716  *
2717  * No requirements.
2718  * Non blocking.
2719  */
2720 int
2721 vm_page_bits(int base, int size)
2722 {
2723 	int first_bit;
2724 	int last_bit;
2725 
2726 	KASSERT(
2727 	    base + size <= PAGE_SIZE,
2728 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2729 	);
2730 
2731 	if (size == 0)		/* handle degenerate case */
2732 		return(0);
2733 
2734 	first_bit = base >> DEV_BSHIFT;
2735 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2736 
2737 	return ((2 << last_bit) - (1 << first_bit));
2738 }
2739 
2740 /*
2741  * Sets portions of a page valid and clean.  The arguments are expected
2742  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2743  * of any partial chunks touched by the range.  The invalid portion of
2744  * such chunks will be zero'd.
2745  *
2746  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2747  *	 align base to DEV_BSIZE so as not to mark clean a partially
2748  *	 truncated device block.  Otherwise the dirty page status might be
2749  *	 lost.
2750  *
2751  * This routine may not block.
2752  *
2753  * (base + size) must be less then or equal to PAGE_SIZE.
2754  */
2755 static void
2756 _vm_page_zero_valid(vm_page_t m, int base, int size)
2757 {
2758 	int frag;
2759 	int endoff;
2760 
2761 	if (size == 0)	/* handle degenerate case */
2762 		return;
2763 
2764 	/*
2765 	 * If the base is not DEV_BSIZE aligned and the valid
2766 	 * bit is clear, we have to zero out a portion of the
2767 	 * first block.
2768 	 */
2769 
2770 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2771 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2772 	) {
2773 		pmap_zero_page_area(
2774 		    VM_PAGE_TO_PHYS(m),
2775 		    frag,
2776 		    base - frag
2777 		);
2778 	}
2779 
2780 	/*
2781 	 * If the ending offset is not DEV_BSIZE aligned and the
2782 	 * valid bit is clear, we have to zero out a portion of
2783 	 * the last block.
2784 	 */
2785 
2786 	endoff = base + size;
2787 
2788 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2789 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2790 	) {
2791 		pmap_zero_page_area(
2792 		    VM_PAGE_TO_PHYS(m),
2793 		    endoff,
2794 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2795 		);
2796 	}
2797 }
2798 
2799 /*
2800  * Set valid, clear dirty bits.  If validating the entire
2801  * page we can safely clear the pmap modify bit.  We also
2802  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2803  * takes a write fault on a MAP_NOSYNC memory area the flag will
2804  * be set again.
2805  *
2806  * We set valid bits inclusive of any overlap, but we can only
2807  * clear dirty bits for DEV_BSIZE chunks that are fully within
2808  * the range.
2809  *
2810  * Page must be busied?
2811  * No other requirements.
2812  */
2813 void
2814 vm_page_set_valid(vm_page_t m, int base, int size)
2815 {
2816 	_vm_page_zero_valid(m, base, size);
2817 	m->valid |= vm_page_bits(base, size);
2818 }
2819 
2820 
2821 /*
2822  * Set valid bits and clear dirty bits.
2823  *
2824  * NOTE: This function does not clear the pmap modified bit.
2825  *	 Also note that e.g. NFS may use a byte-granular base
2826  *	 and size.
2827  *
2828  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2829  *	    this without necessarily busying the page (via bdwrite()).
2830  *	    So for now vm_token must also be held.
2831  *
2832  * No other requirements.
2833  */
2834 void
2835 vm_page_set_validclean(vm_page_t m, int base, int size)
2836 {
2837 	int pagebits;
2838 
2839 	_vm_page_zero_valid(m, base, size);
2840 	pagebits = vm_page_bits(base, size);
2841 	m->valid |= pagebits;
2842 	m->dirty &= ~pagebits;
2843 	if (base == 0 && size == PAGE_SIZE) {
2844 		/*pmap_clear_modify(m);*/
2845 		vm_page_flag_clear(m, PG_NOSYNC);
2846 	}
2847 }
2848 
2849 /*
2850  * Set valid & dirty.  Used by buwrite()
2851  *
2852  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2853  *	    call this function in buwrite() so for now vm_token must
2854  *	    be held.
2855  *
2856  * No other requirements.
2857  */
2858 void
2859 vm_page_set_validdirty(vm_page_t m, int base, int size)
2860 {
2861 	int pagebits;
2862 
2863 	pagebits = vm_page_bits(base, size);
2864 	m->valid |= pagebits;
2865 	m->dirty |= pagebits;
2866 	if (m->object)
2867 	       vm_object_set_writeable_dirty(m->object);
2868 }
2869 
2870 /*
2871  * Clear dirty bits.
2872  *
2873  * NOTE: This function does not clear the pmap modified bit.
2874  *	 Also note that e.g. NFS may use a byte-granular base
2875  *	 and size.
2876  *
2877  * Page must be busied?
2878  * No other requirements.
2879  */
2880 void
2881 vm_page_clear_dirty(vm_page_t m, int base, int size)
2882 {
2883 	m->dirty &= ~vm_page_bits(base, size);
2884 	if (base == 0 && size == PAGE_SIZE) {
2885 		/*pmap_clear_modify(m);*/
2886 		vm_page_flag_clear(m, PG_NOSYNC);
2887 	}
2888 }
2889 
2890 /*
2891  * Make the page all-dirty.
2892  *
2893  * Also make sure the related object and vnode reflect the fact that the
2894  * object may now contain a dirty page.
2895  *
2896  * Page must be busied?
2897  * No other requirements.
2898  */
2899 void
2900 vm_page_dirty(vm_page_t m)
2901 {
2902 #ifdef INVARIANTS
2903         int pqtype = m->queue - m->pc;
2904 #endif
2905         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2906                 ("vm_page_dirty: page in free/cache queue!"));
2907 	if (m->dirty != VM_PAGE_BITS_ALL) {
2908 		m->dirty = VM_PAGE_BITS_ALL;
2909 		if (m->object)
2910 			vm_object_set_writeable_dirty(m->object);
2911 	}
2912 }
2913 
2914 /*
2915  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2916  * valid and dirty bits for the effected areas are cleared.
2917  *
2918  * Page must be busied?
2919  * Does not block.
2920  * No other requirements.
2921  */
2922 void
2923 vm_page_set_invalid(vm_page_t m, int base, int size)
2924 {
2925 	int bits;
2926 
2927 	bits = vm_page_bits(base, size);
2928 	m->valid &= ~bits;
2929 	m->dirty &= ~bits;
2930 	m->object->generation++;
2931 }
2932 
2933 /*
2934  * The kernel assumes that the invalid portions of a page contain
2935  * garbage, but such pages can be mapped into memory by user code.
2936  * When this occurs, we must zero out the non-valid portions of the
2937  * page so user code sees what it expects.
2938  *
2939  * Pages are most often semi-valid when the end of a file is mapped
2940  * into memory and the file's size is not page aligned.
2941  *
2942  * Page must be busied?
2943  * No other requirements.
2944  */
2945 void
2946 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2947 {
2948 	int b;
2949 	int i;
2950 
2951 	/*
2952 	 * Scan the valid bits looking for invalid sections that
2953 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2954 	 * valid bit may be set ) have already been zerod by
2955 	 * vm_page_set_validclean().
2956 	 */
2957 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2958 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2959 		    (m->valid & (1 << i))
2960 		) {
2961 			if (i > b) {
2962 				pmap_zero_page_area(
2963 				    VM_PAGE_TO_PHYS(m),
2964 				    b << DEV_BSHIFT,
2965 				    (i - b) << DEV_BSHIFT
2966 				);
2967 			}
2968 			b = i + 1;
2969 		}
2970 	}
2971 
2972 	/*
2973 	 * setvalid is TRUE when we can safely set the zero'd areas
2974 	 * as being valid.  We can do this if there are no cache consistency
2975 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2976 	 */
2977 	if (setvalid)
2978 		m->valid = VM_PAGE_BITS_ALL;
2979 }
2980 
2981 /*
2982  * Is a (partial) page valid?  Note that the case where size == 0
2983  * will return FALSE in the degenerate case where the page is entirely
2984  * invalid, and TRUE otherwise.
2985  *
2986  * Does not block.
2987  * No other requirements.
2988  */
2989 int
2990 vm_page_is_valid(vm_page_t m, int base, int size)
2991 {
2992 	int bits = vm_page_bits(base, size);
2993 
2994 	if (m->valid && ((m->valid & bits) == bits))
2995 		return 1;
2996 	else
2997 		return 0;
2998 }
2999 
3000 /*
3001  * update dirty bits from pmap/mmu.  May not block.
3002  *
3003  * Caller must hold the page busy
3004  */
3005 void
3006 vm_page_test_dirty(vm_page_t m)
3007 {
3008 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3009 		vm_page_dirty(m);
3010 	}
3011 }
3012 
3013 /*
3014  * Register an action, associating it with its vm_page
3015  */
3016 void
3017 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3018 {
3019 	struct vm_page_action_list *list;
3020 	int hv;
3021 
3022 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3023 	list = &action_list[hv];
3024 
3025 	lwkt_gettoken(&vm_token);
3026 	vm_page_flag_set(action->m, PG_ACTIONLIST);
3027 	action->event = event;
3028 	LIST_INSERT_HEAD(list, action, entry);
3029 	lwkt_reltoken(&vm_token);
3030 }
3031 
3032 /*
3033  * Unregister an action, disassociating it from its related vm_page
3034  */
3035 void
3036 vm_page_unregister_action(vm_page_action_t action)
3037 {
3038 	struct vm_page_action_list *list;
3039 	int hv;
3040 
3041 	lwkt_gettoken(&vm_token);
3042 	if (action->event != VMEVENT_NONE) {
3043 		action->event = VMEVENT_NONE;
3044 		LIST_REMOVE(action, entry);
3045 
3046 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3047 		list = &action_list[hv];
3048 		if (LIST_EMPTY(list))
3049 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3050 	}
3051 	lwkt_reltoken(&vm_token);
3052 }
3053 
3054 /*
3055  * Issue an event on a VM page.  Corresponding action structures are
3056  * removed from the page's list and called.
3057  *
3058  * If the vm_page has no more pending action events we clear its
3059  * PG_ACTIONLIST flag.
3060  */
3061 void
3062 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3063 {
3064 	struct vm_page_action_list *list;
3065 	struct vm_page_action *scan;
3066 	struct vm_page_action *next;
3067 	int hv;
3068 	int all;
3069 
3070 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3071 	list = &action_list[hv];
3072 	all = 1;
3073 
3074 	lwkt_gettoken(&vm_token);
3075 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3076 		if (scan->m == m) {
3077 			if (scan->event == event) {
3078 				scan->event = VMEVENT_NONE;
3079 				LIST_REMOVE(scan, entry);
3080 				scan->func(m, scan);
3081 				/* XXX */
3082 			} else {
3083 				all = 0;
3084 			}
3085 		}
3086 	}
3087 	if (all)
3088 		vm_page_flag_clear(m, PG_ACTIONLIST);
3089 	lwkt_reltoken(&vm_token);
3090 }
3091 
3092 #include "opt_ddb.h"
3093 #ifdef DDB
3094 #include <sys/kernel.h>
3095 
3096 #include <ddb/ddb.h>
3097 
3098 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3099 {
3100 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3101 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3102 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3103 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3104 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3105 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3106 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3107 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3108 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3109 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3110 }
3111 
3112 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3113 {
3114 	int i;
3115 	db_printf("PQ_FREE:");
3116 	for(i=0;i<PQ_L2_SIZE;i++) {
3117 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3118 	}
3119 	db_printf("\n");
3120 
3121 	db_printf("PQ_CACHE:");
3122 	for(i=0;i<PQ_L2_SIZE;i++) {
3123 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3124 	}
3125 	db_printf("\n");
3126 
3127 	db_printf("PQ_ACTIVE:");
3128 	for(i=0;i<PQ_L2_SIZE;i++) {
3129 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3130 	}
3131 	db_printf("\n");
3132 
3133 	db_printf("PQ_INACTIVE:");
3134 	for(i=0;i<PQ_L2_SIZE;i++) {
3135 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3136 	}
3137 	db_printf("\n");
3138 }
3139 #endif /* DDB */
3140