xref: /dragonfly/sys/vm/vm_page.c (revision 2983445f)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/kernel.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/md_var.h>
96 
97 #include <vm/vm_page2.h>
98 #include <sys/mplock2.h>
99 
100 #define VMACTION_HSIZE	256
101 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
102 
103 static void vm_page_queue_init(void);
104 static void vm_page_free_wakeup(void);
105 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
106 static vm_page_t _vm_page_list_find2(int basequeue, int index);
107 
108 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
109 
110 LIST_HEAD(vm_page_action_list, vm_page_action);
111 struct vm_page_action_list	action_list[VMACTION_HSIZE];
112 static volatile int vm_pages_waiting;
113 
114 
115 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
116 	     vm_pindex_t, pindex);
117 
118 static void
119 vm_page_queue_init(void)
120 {
121 	int i;
122 
123 	for (i = 0; i < PQ_L2_SIZE; i++)
124 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
125 	for (i = 0; i < PQ_L2_SIZE; i++)
126 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
127 
128 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
129 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
130 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
131 	/* PQ_NONE has no queue */
132 
133 	for (i = 0; i < PQ_COUNT; i++)
134 		TAILQ_INIT(&vm_page_queues[i].pl);
135 
136 	for (i = 0; i < VMACTION_HSIZE; i++)
137 		LIST_INIT(&action_list[i]);
138 }
139 
140 /*
141  * note: place in initialized data section?  Is this necessary?
142  */
143 long first_page = 0;
144 int vm_page_array_size = 0;
145 int vm_page_zero_count = 0;
146 vm_page_t vm_page_array = 0;
147 
148 /*
149  * (low level boot)
150  *
151  * Sets the page size, perhaps based upon the memory size.
152  * Must be called before any use of page-size dependent functions.
153  */
154 void
155 vm_set_page_size(void)
156 {
157 	if (vmstats.v_page_size == 0)
158 		vmstats.v_page_size = PAGE_SIZE;
159 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
160 		panic("vm_set_page_size: page size not a power of two");
161 }
162 
163 /*
164  * (low level boot)
165  *
166  * Add a new page to the freelist for use by the system.  New pages
167  * are added to both the head and tail of the associated free page
168  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
169  * requests pull 'recent' adds (higher physical addresses) first.
170  *
171  * Must be called in a critical section.
172  */
173 vm_page_t
174 vm_add_new_page(vm_paddr_t pa)
175 {
176 	struct vpgqueues *vpq;
177 	vm_page_t m;
178 
179 	++vmstats.v_page_count;
180 	++vmstats.v_free_count;
181 	m = PHYS_TO_VM_PAGE(pa);
182 	m->phys_addr = pa;
183 	m->flags = 0;
184 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
185 	m->queue = m->pc + PQ_FREE;
186 	KKASSERT(m->dirty == 0);
187 
188 	vpq = &vm_page_queues[m->queue];
189 	if (vpq->flipflop)
190 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
191 	else
192 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
193 	vpq->flipflop = 1 - vpq->flipflop;
194 
195 	vm_page_queues[m->queue].lcnt++;
196 	return (m);
197 }
198 
199 /*
200  * (low level boot)
201  *
202  * Initializes the resident memory module.
203  *
204  * Preallocates memory for critical VM structures and arrays prior to
205  * kernel_map becoming available.
206  *
207  * Memory is allocated from (virtual2_start, virtual2_end) if available,
208  * otherwise memory is allocated from (virtual_start, virtual_end).
209  *
210  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
211  * large enough to hold vm_page_array & other structures for machines with
212  * large amounts of ram, so we want to use virtual2* when available.
213  */
214 void
215 vm_page_startup(void)
216 {
217 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
218 	vm_offset_t mapped;
219 	vm_size_t npages;
220 	vm_paddr_t page_range;
221 	vm_paddr_t new_end;
222 	int i;
223 	vm_paddr_t pa;
224 	int nblocks;
225 	vm_paddr_t last_pa;
226 	vm_paddr_t end;
227 	vm_paddr_t biggestone, biggestsize;
228 	vm_paddr_t total;
229 
230 	total = 0;
231 	biggestsize = 0;
232 	biggestone = 0;
233 	nblocks = 0;
234 	vaddr = round_page(vaddr);
235 
236 	for (i = 0; phys_avail[i + 1]; i += 2) {
237 		phys_avail[i] = round_page64(phys_avail[i]);
238 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
239 	}
240 
241 	for (i = 0; phys_avail[i + 1]; i += 2) {
242 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
243 
244 		if (size > biggestsize) {
245 			biggestone = i;
246 			biggestsize = size;
247 		}
248 		++nblocks;
249 		total += size;
250 	}
251 
252 	end = phys_avail[biggestone+1];
253 	end = trunc_page(end);
254 
255 	/*
256 	 * Initialize the queue headers for the free queue, the active queue
257 	 * and the inactive queue.
258 	 */
259 
260 	vm_page_queue_init();
261 
262 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
263 #if !defined(_KERNEL_VIRTUAL)
264 	/*
265 	 * Allocate a bitmap to indicate that a random physical page
266 	 * needs to be included in a minidump.
267 	 *
268 	 * The amd64 port needs this to indicate which direct map pages
269 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
270 	 *
271 	 * However, i386 still needs this workspace internally within the
272 	 * minidump code.  In theory, they are not needed on i386, but are
273 	 * included should the sf_buf code decide to use them.
274 	 */
275 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
276 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
277 	end -= vm_page_dump_size;
278 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
279 	    VM_PROT_READ | VM_PROT_WRITE);
280 	bzero((void *)vm_page_dump, vm_page_dump_size);
281 #endif
282 
283 	/*
284 	 * Compute the number of pages of memory that will be available for
285 	 * use (taking into account the overhead of a page structure per
286 	 * page).
287 	 */
288 	first_page = phys_avail[0] / PAGE_SIZE;
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
290 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
291 
292 	/*
293 	 * Initialize the mem entry structures now, and put them in the free
294 	 * queue.
295 	 */
296 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
297 	mapped = pmap_map(&vaddr, new_end, end,
298 	    VM_PROT_READ | VM_PROT_WRITE);
299 	vm_page_array = (vm_page_t)mapped;
300 
301 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
302 	/*
303 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
304 	 * we have to manually add these pages to the minidump tracking so
305 	 * that they can be dumped, including the vm_page_array.
306 	 */
307 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
308 		dump_add_page(pa);
309 #endif
310 
311 	/*
312 	 * Clear all of the page structures
313 	 */
314 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
315 	vm_page_array_size = page_range;
316 
317 	/*
318 	 * Construct the free queue(s) in ascending order (by physical
319 	 * address) so that the first 16MB of physical memory is allocated
320 	 * last rather than first.  On large-memory machines, this avoids
321 	 * the exhaustion of low physical memory before isa_dmainit has run.
322 	 */
323 	vmstats.v_page_count = 0;
324 	vmstats.v_free_count = 0;
325 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
326 		pa = phys_avail[i];
327 		if (i == biggestone)
328 			last_pa = new_end;
329 		else
330 			last_pa = phys_avail[i + 1];
331 		while (pa < last_pa && npages-- > 0) {
332 			vm_add_new_page(pa);
333 			pa += PAGE_SIZE;
334 		}
335 	}
336 	if (virtual2_start)
337 		virtual2_start = vaddr;
338 	else
339 		virtual_start = vaddr;
340 }
341 
342 /*
343  * Scan comparison function for Red-Black tree scans.  An inclusive
344  * (start,end) is expected.  Other fields are not used.
345  */
346 int
347 rb_vm_page_scancmp(struct vm_page *p, void *data)
348 {
349 	struct rb_vm_page_scan_info *info = data;
350 
351 	if (p->pindex < info->start_pindex)
352 		return(-1);
353 	if (p->pindex > info->end_pindex)
354 		return(1);
355 	return(0);
356 }
357 
358 int
359 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
360 {
361 	if (p1->pindex < p2->pindex)
362 		return(-1);
363 	if (p1->pindex > p2->pindex)
364 		return(1);
365 	return(0);
366 }
367 
368 /*
369  * Holding a page keeps it from being reused.  Other parts of the system
370  * can still disassociate the page from its current object and free it, or
371  * perform read or write I/O on it and/or otherwise manipulate the page,
372  * but if the page is held the VM system will leave the page and its data
373  * intact and not reuse the page for other purposes until the last hold
374  * reference is released.  (see vm_page_wire() if you want to prevent the
375  * page from being disassociated from its object too).
376  *
377  * The caller must hold vm_token.
378  *
379  * The caller must still validate the contents of the page and, if necessary,
380  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
381  * before manipulating the page.
382  */
383 void
384 vm_page_hold(vm_page_t m)
385 {
386 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
387 	++m->hold_count;
388 }
389 
390 /*
391  * The opposite of vm_page_hold().  A page can be freed while being held,
392  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
393  * in this case to actually free it once the hold count drops to 0.
394  *
395  * The caller must hold vm_token if non-blocking operation is desired,
396  * but otherwise does not need to.
397  */
398 void
399 vm_page_unhold(vm_page_t m)
400 {
401 	lwkt_gettoken(&vm_token);
402 	--m->hold_count;
403 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
404 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
405 		vm_page_busy(m);
406 		vm_page_free_toq(m);
407 	}
408 	lwkt_reltoken(&vm_token);
409 }
410 
411 /*
412  * Inserts the given vm_page into the object and object list.
413  *
414  * The pagetables are not updated but will presumably fault the page
415  * in if necessary, or if a kernel page the caller will at some point
416  * enter the page into the kernel's pmap.  We are not allowed to block
417  * here so we *can't* do this anyway.
418  *
419  * This routine may not block.
420  * This routine must be called with the vm_token held.
421  * This routine must be called with a critical section held.
422  */
423 void
424 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
425 {
426 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
427 	if (m->object != NULL)
428 		panic("vm_page_insert: already inserted");
429 
430 	/*
431 	 * Record the object/offset pair in this page
432 	 */
433 	m->object = object;
434 	m->pindex = pindex;
435 
436 	/*
437 	 * Insert it into the object.
438 	 */
439 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
440 	object->generation++;
441 
442 	/*
443 	 * show that the object has one more resident page.
444 	 */
445 	object->resident_page_count++;
446 
447 	/*
448 	 * Add the pv_list_cout of the page when its inserted in
449 	 * the object
450 	*/
451 	object->agg_pv_list_count = object->agg_pv_list_count + m->md.pv_list_count;
452 
453 	/*
454 	 * Since we are inserting a new and possibly dirty page,
455 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
456 	 */
457 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
458 		vm_object_set_writeable_dirty(object);
459 
460 	/*
461 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
462 	 */
463 	swap_pager_page_inserted(m);
464 }
465 
466 /*
467  * Removes the given vm_page_t from the global (object,index) hash table
468  * and from the object's memq.
469  *
470  * The underlying pmap entry (if any) is NOT removed here.
471  * This routine may not block.
472  *
473  * The page must be BUSY and will remain BUSY on return.
474  * No other requirements.
475  *
476  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
477  *	 it busy.
478  */
479 void
480 vm_page_remove(vm_page_t m)
481 {
482 	vm_object_t object;
483 
484 	lwkt_gettoken(&vm_token);
485 	if (m->object == NULL) {
486 		lwkt_reltoken(&vm_token);
487 		return;
488 	}
489 
490 	if ((m->flags & PG_BUSY) == 0)
491 		panic("vm_page_remove: page not busy");
492 
493 	object = m->object;
494 
495 	/*
496 	 * Remove the page from the object and update the object.
497 	 */
498 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
499 	object->resident_page_count--;
500 	object->agg_pv_list_count = object->agg_pv_list_count - m->md.pv_list_count;
501 	object->generation++;
502 	m->object = NULL;
503 
504 	lwkt_reltoken(&vm_token);
505 }
506 
507 /*
508  * Locate and return the page at (object, pindex), or NULL if the
509  * page could not be found.
510  *
511  * The caller must hold vm_token.
512  */
513 vm_page_t
514 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
515 {
516 	vm_page_t m;
517 
518 	/*
519 	 * Search the hash table for this object/offset pair
520 	 */
521 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
522 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
523 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
524 	return(m);
525 }
526 
527 /*
528  * vm_page_rename()
529  *
530  * Move the given memory entry from its current object to the specified
531  * target object/offset.
532  *
533  * The object must be locked.
534  * This routine may not block.
535  *
536  * Note: This routine will raise itself to splvm(), the caller need not.
537  *
538  * Note: Swap associated with the page must be invalidated by the move.  We
539  *       have to do this for several reasons:  (1) we aren't freeing the
540  *       page, (2) we are dirtying the page, (3) the VM system is probably
541  *       moving the page from object A to B, and will then later move
542  *       the backing store from A to B and we can't have a conflict.
543  *
544  * Note: We *always* dirty the page.  It is necessary both for the
545  *       fact that we moved it, and because we may be invalidating
546  *	 swap.  If the page is on the cache, we have to deactivate it
547  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
548  *	 on the cache.
549  */
550 void
551 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
552 {
553 	lwkt_gettoken(&vm_token);
554 	vm_page_remove(m);
555 	vm_page_insert(m, new_object, new_pindex);
556 	if (m->queue - m->pc == PQ_CACHE)
557 		vm_page_deactivate(m);
558 	vm_page_dirty(m);
559 	vm_page_wakeup(m);
560 	lwkt_reltoken(&vm_token);
561 }
562 
563 /*
564  * vm_page_unqueue() without any wakeup.  This routine is used when a page
565  * is being moved between queues or otherwise is to remain BUSYied by the
566  * caller.
567  *
568  * The caller must hold vm_token
569  * This routine may not block.
570  */
571 void
572 vm_page_unqueue_nowakeup(vm_page_t m)
573 {
574 	int queue = m->queue;
575 	struct vpgqueues *pq;
576 
577 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
578 	if (queue != PQ_NONE) {
579 		pq = &vm_page_queues[queue];
580 		m->queue = PQ_NONE;
581 		TAILQ_REMOVE(&pq->pl, m, pageq);
582 		(*pq->cnt)--;
583 		pq->lcnt--;
584 	}
585 }
586 
587 /*
588  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
589  * if necessary.
590  *
591  * The caller must hold vm_token
592  * This routine may not block.
593  */
594 void
595 vm_page_unqueue(vm_page_t m)
596 {
597 	int queue = m->queue;
598 	struct vpgqueues *pq;
599 
600 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
601 	if (queue != PQ_NONE) {
602 		m->queue = PQ_NONE;
603 		pq = &vm_page_queues[queue];
604 		TAILQ_REMOVE(&pq->pl, m, pageq);
605 		(*pq->cnt)--;
606 		pq->lcnt--;
607 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
608 			pagedaemon_wakeup();
609 	}
610 }
611 
612 /*
613  * vm_page_list_find()
614  *
615  * Find a page on the specified queue with color optimization.
616  *
617  * The page coloring optimization attempts to locate a page that does
618  * not overload other nearby pages in the object in the cpu's L1 or L2
619  * caches.  We need this optimization because cpu caches tend to be
620  * physical caches, while object spaces tend to be virtual.
621  *
622  * Must be called with vm_token held.
623  * This routine may not block.
624  *
625  * Note that this routine is carefully inlined.  A non-inlined version
626  * is available for outside callers but the only critical path is
627  * from within this source file.
628  */
629 static __inline
630 vm_page_t
631 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
632 {
633 	vm_page_t m;
634 
635 	if (prefer_zero)
636 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
637 	else
638 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
639 	if (m == NULL)
640 		m = _vm_page_list_find2(basequeue, index);
641 	return(m);
642 }
643 
644 static vm_page_t
645 _vm_page_list_find2(int basequeue, int index)
646 {
647 	int i;
648 	vm_page_t m = NULL;
649 	struct vpgqueues *pq;
650 
651 	pq = &vm_page_queues[basequeue];
652 
653 	/*
654 	 * Note that for the first loop, index+i and index-i wind up at the
655 	 * same place.  Even though this is not totally optimal, we've already
656 	 * blown it by missing the cache case so we do not care.
657 	 */
658 
659 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
660 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
661 			break;
662 
663 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
664 			break;
665 	}
666 	return(m);
667 }
668 
669 /*
670  * Must be called with vm_token held if the caller desired non-blocking
671  * operation and a stable result.
672  */
673 vm_page_t
674 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
675 {
676 	return(_vm_page_list_find(basequeue, index, prefer_zero));
677 }
678 
679 /*
680  * Find a page on the cache queue with color optimization.  As pages
681  * might be found, but not applicable, they are deactivated.  This
682  * keeps us from using potentially busy cached pages.
683  *
684  * This routine may not block.
685  * Must be called with vm_token held.
686  */
687 vm_page_t
688 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
689 {
690 	vm_page_t m;
691 
692 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
693 	while (TRUE) {
694 		m = _vm_page_list_find(
695 		    PQ_CACHE,
696 		    (pindex + object->pg_color) & PQ_L2_MASK,
697 		    FALSE
698 		);
699 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
700 			       m->hold_count || m->wire_count)) {
701 			/* cache page found busy */
702 			vm_page_deactivate(m);
703 #ifdef INVARIANTS
704                         kprintf("Warning: busy page %p found in cache\n", m);
705 #endif
706 			continue;
707 		}
708 		return m;
709 	}
710 	/* not reached */
711 }
712 
713 /*
714  * Find a free or zero page, with specified preference.  We attempt to
715  * inline the nominal case and fall back to _vm_page_select_free()
716  * otherwise.
717  *
718  * This routine must be called with a critical section held.
719  * This routine may not block.
720  */
721 static __inline vm_page_t
722 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
723 {
724 	vm_page_t m;
725 
726 	m = _vm_page_list_find(
727 		PQ_FREE,
728 		(pindex + object->pg_color) & PQ_L2_MASK,
729 		prefer_zero
730 	);
731 	return(m);
732 }
733 
734 /*
735  * vm_page_alloc()
736  *
737  * Allocate and return a memory cell associated with this VM object/offset
738  * pair.
739  *
740  *	page_req classes:
741  *
742  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
743  *	VM_ALLOC_QUICK		like normal but cannot use cache
744  *	VM_ALLOC_SYSTEM		greater free drain
745  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
746  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
747  *
748  * The object must be locked.
749  * This routine may not block.
750  * The returned page will be marked PG_BUSY
751  *
752  * Additional special handling is required when called from an interrupt
753  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
754  * in this case.
755  */
756 vm_page_t
757 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
758 {
759 	vm_page_t m = NULL;
760 
761 	lwkt_gettoken(&vm_token);
762 
763 	KKASSERT(object != NULL);
764 	KASSERT(!vm_page_lookup(object, pindex),
765 		("vm_page_alloc: page already allocated"));
766 	KKASSERT(page_req &
767 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
768 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
769 
770 	/*
771 	 * Certain system threads (pageout daemon, buf_daemon's) are
772 	 * allowed to eat deeper into the free page list.
773 	 */
774 	if (curthread->td_flags & TDF_SYSTHREAD)
775 		page_req |= VM_ALLOC_SYSTEM;
776 
777 loop:
778 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
779 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
780 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
781 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
782 	) {
783 		/*
784 		 * The free queue has sufficient free pages to take one out.
785 		 */
786 		if (page_req & VM_ALLOC_ZERO)
787 			m = vm_page_select_free(object, pindex, TRUE);
788 		else
789 			m = vm_page_select_free(object, pindex, FALSE);
790 	} else if (page_req & VM_ALLOC_NORMAL) {
791 		/*
792 		 * Allocatable from the cache (non-interrupt only).  On
793 		 * success, we must free the page and try again, thus
794 		 * ensuring that vmstats.v_*_free_min counters are replenished.
795 		 */
796 #ifdef INVARIANTS
797 		if (curthread->td_preempted) {
798 			kprintf("vm_page_alloc(): warning, attempt to allocate"
799 				" cache page from preempting interrupt\n");
800 			m = NULL;
801 		} else {
802 			m = vm_page_select_cache(object, pindex);
803 		}
804 #else
805 		m = vm_page_select_cache(object, pindex);
806 #endif
807 		/*
808 		 * On success move the page into the free queue and loop.
809 		 */
810 		if (m != NULL) {
811 			KASSERT(m->dirty == 0,
812 			    ("Found dirty cache page %p", m));
813 			vm_page_busy(m);
814 			vm_page_protect(m, VM_PROT_NONE);
815 			vm_page_free(m);
816 			goto loop;
817 		}
818 
819 		/*
820 		 * On failure return NULL
821 		 */
822 		lwkt_reltoken(&vm_token);
823 #if defined(DIAGNOSTIC)
824 		if (vmstats.v_cache_count > 0)
825 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
826 #endif
827 		vm_pageout_deficit++;
828 		pagedaemon_wakeup();
829 		return (NULL);
830 	} else {
831 		/*
832 		 * No pages available, wakeup the pageout daemon and give up.
833 		 */
834 		lwkt_reltoken(&vm_token);
835 		vm_pageout_deficit++;
836 		pagedaemon_wakeup();
837 		return (NULL);
838 	}
839 
840 	/*
841 	 * Good page found.  The page has not yet been busied.  We are in
842 	 * a critical section.
843 	 */
844 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
845 	KASSERT(m->dirty == 0,
846 		("vm_page_alloc: free/cache page %p was dirty", m));
847 
848 	/*
849 	 * Remove from free queue
850 	 */
851 	vm_page_unqueue_nowakeup(m);
852 
853 	/*
854 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
855 	 * the page PG_BUSY
856 	 */
857 	if (m->flags & PG_ZERO) {
858 		vm_page_zero_count--;
859 		m->flags = PG_ZERO | PG_BUSY;
860 	} else {
861 		m->flags = PG_BUSY;
862 	}
863 	m->wire_count = 0;
864 	m->hold_count = 0;
865 	m->act_count = 0;
866 	m->busy = 0;
867 	m->valid = 0;
868 
869 	/*
870 	 * vm_page_insert() is safe while holding vm_token.  Note also that
871 	 * inserting a page here does not insert it into the pmap (which
872 	 * could cause us to block allocating memory).  We cannot block
873 	 * anywhere.
874 	 */
875 	vm_page_insert(m, object, pindex);
876 
877 	/*
878 	 * Don't wakeup too often - wakeup the pageout daemon when
879 	 * we would be nearly out of memory.
880 	 */
881 	pagedaemon_wakeup();
882 
883 	lwkt_reltoken(&vm_token);
884 
885 	/*
886 	 * A PG_BUSY page is returned.
887 	 */
888 	return (m);
889 }
890 
891 /*
892  * Wait for sufficient free memory for nominal heavy memory use kernel
893  * operations.
894  */
895 void
896 vm_wait_nominal(void)
897 {
898 	while (vm_page_count_min(0))
899 		vm_wait(0);
900 }
901 
902 /*
903  * Test if vm_wait_nominal() would block.
904  */
905 int
906 vm_test_nominal(void)
907 {
908 	if (vm_page_count_min(0))
909 		return(1);
910 	return(0);
911 }
912 
913 /*
914  * Block until free pages are available for allocation, called in various
915  * places before memory allocations.
916  *
917  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
918  * more generous then that.
919  */
920 void
921 vm_wait(int timo)
922 {
923 	/*
924 	 * never wait forever
925 	 */
926 	if (timo == 0)
927 		timo = hz;
928 	lwkt_gettoken(&vm_token);
929 
930 	if (curthread == pagethread) {
931 		/*
932 		 * The pageout daemon itself needs pages, this is bad.
933 		 */
934 		if (vm_page_count_min(0)) {
935 			vm_pageout_pages_needed = 1;
936 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
937 		}
938 	} else {
939 		/*
940 		 * Wakeup the pageout daemon if necessary and wait.
941 		 */
942 		if (vm_page_count_target()) {
943 			if (vm_pages_needed == 0) {
944 				vm_pages_needed = 1;
945 				wakeup(&vm_pages_needed);
946 			}
947 			++vm_pages_waiting;	/* SMP race ok */
948 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
949 		}
950 	}
951 	lwkt_reltoken(&vm_token);
952 }
953 
954 /*
955  * Block until free pages are available for allocation
956  *
957  * Called only from vm_fault so that processes page faulting can be
958  * easily tracked.
959  */
960 void
961 vm_waitpfault(void)
962 {
963 	/*
964 	 * Wakeup the pageout daemon if necessary and wait.
965 	 */
966 	if (vm_page_count_target()) {
967 		lwkt_gettoken(&vm_token);
968 		if (vm_page_count_target()) {
969 			if (vm_pages_needed == 0) {
970 				vm_pages_needed = 1;
971 				wakeup(&vm_pages_needed);
972 			}
973 			++vm_pages_waiting;	/* SMP race ok */
974 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
975 		}
976 		lwkt_reltoken(&vm_token);
977 	}
978 }
979 
980 /*
981  * Put the specified page on the active list (if appropriate).  Ensure
982  * that act_count is at least ACT_INIT but do not otherwise mess with it.
983  *
984  * The page queues must be locked.
985  * This routine may not block.
986  */
987 void
988 vm_page_activate(vm_page_t m)
989 {
990 	lwkt_gettoken(&vm_token);
991 	if (m->queue != PQ_ACTIVE) {
992 		if ((m->queue - m->pc) == PQ_CACHE)
993 			mycpu->gd_cnt.v_reactivated++;
994 
995 		vm_page_unqueue(m);
996 
997 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
998 			m->queue = PQ_ACTIVE;
999 			vm_page_queues[PQ_ACTIVE].lcnt++;
1000 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
1001 					    m, pageq);
1002 			if (m->act_count < ACT_INIT)
1003 				m->act_count = ACT_INIT;
1004 			vmstats.v_active_count++;
1005 		}
1006 	} else {
1007 		if (m->act_count < ACT_INIT)
1008 			m->act_count = ACT_INIT;
1009 	}
1010 	lwkt_reltoken(&vm_token);
1011 }
1012 
1013 /*
1014  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1015  * routine is called when a page has been added to the cache or free
1016  * queues.
1017  *
1018  * This routine may not block.
1019  * This routine must be called at splvm()
1020  */
1021 static __inline void
1022 vm_page_free_wakeup(void)
1023 {
1024 	/*
1025 	 * If the pageout daemon itself needs pages, then tell it that
1026 	 * there are some free.
1027 	 */
1028 	if (vm_pageout_pages_needed &&
1029 	    vmstats.v_cache_count + vmstats.v_free_count >=
1030 	    vmstats.v_pageout_free_min
1031 	) {
1032 		wakeup(&vm_pageout_pages_needed);
1033 		vm_pageout_pages_needed = 0;
1034 	}
1035 
1036 	/*
1037 	 * Wakeup processes that are waiting on memory.
1038 	 *
1039 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1040 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1041 	 *	 to wake processes up prior to the pageout daemon reaching
1042 	 *	 its target to provide some hysteresis.
1043 	 */
1044 	if (vm_pages_waiting) {
1045 		if (!vm_page_count_target()) {
1046 			/*
1047 			 * Plenty of pages are free, wakeup everyone.
1048 			 */
1049 			vm_pages_waiting = 0;
1050 			wakeup(&vmstats.v_free_count);
1051 			++mycpu->gd_cnt.v_ppwakeups;
1052 		} else if (!vm_page_count_min(0)) {
1053 			/*
1054 			 * Some pages are free, wakeup someone.
1055 			 */
1056 			int wcount = vm_pages_waiting;
1057 			if (wcount > 0)
1058 				--wcount;
1059 			vm_pages_waiting = wcount;
1060 			wakeup_one(&vmstats.v_free_count);
1061 			++mycpu->gd_cnt.v_ppwakeups;
1062 		}
1063 	}
1064 }
1065 
1066 /*
1067  *	vm_page_free_toq:
1068  *
1069  *	Returns the given page to the PQ_FREE list, disassociating it with
1070  *	any VM object.
1071  *
1072  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1073  *	return (the page will have been freed).  No particular spl is required
1074  *	on entry.
1075  *
1076  *	This routine may not block.
1077  */
1078 void
1079 vm_page_free_toq(vm_page_t m)
1080 {
1081 	struct vpgqueues *pq;
1082 
1083 	lwkt_gettoken(&vm_token);
1084 	mycpu->gd_cnt.v_tfree++;
1085 
1086 	KKASSERT((m->flags & PG_MAPPED) == 0);
1087 
1088 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1089 		kprintf(
1090 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1091 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1092 		    m->hold_count);
1093 		if ((m->queue - m->pc) == PQ_FREE)
1094 			panic("vm_page_free: freeing free page");
1095 		else
1096 			panic("vm_page_free: freeing busy page");
1097 	}
1098 
1099 	/*
1100 	 * unqueue, then remove page.  Note that we cannot destroy
1101 	 * the page here because we do not want to call the pager's
1102 	 * callback routine until after we've put the page on the
1103 	 * appropriate free queue.
1104 	 */
1105 	vm_page_unqueue_nowakeup(m);
1106 	vm_page_remove(m);
1107 
1108 	/*
1109 	 * No further management of fictitious pages occurs beyond object
1110 	 * and queue removal.
1111 	 */
1112 	if ((m->flags & PG_FICTITIOUS) != 0) {
1113 		vm_page_wakeup(m);
1114 		lwkt_reltoken(&vm_token);
1115 		return;
1116 	}
1117 
1118 	m->valid = 0;
1119 	vm_page_undirty(m);
1120 
1121 	if (m->wire_count != 0) {
1122 		if (m->wire_count > 1) {
1123 		    panic(
1124 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1125 			m->wire_count, (long)m->pindex);
1126 		}
1127 		panic("vm_page_free: freeing wired page");
1128 	}
1129 
1130 	/*
1131 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1132 	 */
1133 	if (m->flags & PG_UNMANAGED) {
1134 	    m->flags &= ~PG_UNMANAGED;
1135 	}
1136 
1137 	if (m->hold_count != 0) {
1138 		m->flags &= ~PG_ZERO;
1139 		m->queue = PQ_HOLD;
1140 	} else {
1141 		m->queue = PQ_FREE + m->pc;
1142 	}
1143 	pq = &vm_page_queues[m->queue];
1144 	pq->lcnt++;
1145 	++(*pq->cnt);
1146 
1147 	/*
1148 	 * Put zero'd pages on the end ( where we look for zero'd pages
1149 	 * first ) and non-zerod pages at the head.
1150 	 */
1151 	if (m->flags & PG_ZERO) {
1152 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1153 		++vm_page_zero_count;
1154 	} else {
1155 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1156 	}
1157 	vm_page_wakeup(m);
1158 	vm_page_free_wakeup();
1159 	lwkt_reltoken(&vm_token);
1160 }
1161 
1162 /*
1163  * vm_page_free_fromq_fast()
1164  *
1165  * Remove a non-zero page from one of the free queues; the page is removed for
1166  * zeroing, so do not issue a wakeup.
1167  *
1168  * MPUNSAFE
1169  */
1170 vm_page_t
1171 vm_page_free_fromq_fast(void)
1172 {
1173 	static int qi;
1174 	vm_page_t m;
1175 	int i;
1176 
1177 	lwkt_gettoken(&vm_token);
1178 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1179 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1180 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1181 		if (m && (m->flags & PG_ZERO) == 0) {
1182 			KKASSERT(m->busy == 0 && (m->flags & PG_BUSY) == 0);
1183 			vm_page_unqueue_nowakeup(m);
1184 			vm_page_busy(m);
1185 			break;
1186 		}
1187 		m = NULL;
1188 	}
1189 	lwkt_reltoken(&vm_token);
1190 	return (m);
1191 }
1192 
1193 /*
1194  * vm_page_unmanage()
1195  *
1196  * Prevent PV management from being done on the page.  The page is
1197  * removed from the paging queues as if it were wired, and as a
1198  * consequence of no longer being managed the pageout daemon will not
1199  * touch it (since there is no way to locate the pte mappings for the
1200  * page).  madvise() calls that mess with the pmap will also no longer
1201  * operate on the page.
1202  *
1203  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1204  * will clear the flag.
1205  *
1206  * This routine is used by OBJT_PHYS objects - objects using unswappable
1207  * physical memory as backing store rather then swap-backed memory and
1208  * will eventually be extended to support 4MB unmanaged physical
1209  * mappings.
1210  *
1211  * Must be called with a critical section held.
1212  * Must be called with vm_token held.
1213  */
1214 void
1215 vm_page_unmanage(vm_page_t m)
1216 {
1217 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1218 	if ((m->flags & PG_UNMANAGED) == 0) {
1219 		if (m->wire_count == 0)
1220 			vm_page_unqueue(m);
1221 	}
1222 	vm_page_flag_set(m, PG_UNMANAGED);
1223 }
1224 
1225 /*
1226  * Mark this page as wired down by yet another map, removing it from
1227  * paging queues as necessary.
1228  *
1229  * The page queues must be locked.
1230  * This routine may not block.
1231  */
1232 void
1233 vm_page_wire(vm_page_t m)
1234 {
1235 	/*
1236 	 * Only bump the wire statistics if the page is not already wired,
1237 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1238 	 * it is already off the queues).  Don't do anything with fictitious
1239 	 * pages because they are always wired.
1240 	 */
1241 	lwkt_gettoken(&vm_token);
1242 	if ((m->flags & PG_FICTITIOUS) == 0) {
1243 		if (m->wire_count == 0) {
1244 			if ((m->flags & PG_UNMANAGED) == 0)
1245 				vm_page_unqueue(m);
1246 			vmstats.v_wire_count++;
1247 		}
1248 		m->wire_count++;
1249 		KASSERT(m->wire_count != 0,
1250 			("vm_page_wire: wire_count overflow m=%p", m));
1251 	}
1252 	lwkt_reltoken(&vm_token);
1253 }
1254 
1255 /*
1256  * Release one wiring of this page, potentially enabling it to be paged again.
1257  *
1258  * Many pages placed on the inactive queue should actually go
1259  * into the cache, but it is difficult to figure out which.  What
1260  * we do instead, if the inactive target is well met, is to put
1261  * clean pages at the head of the inactive queue instead of the tail.
1262  * This will cause them to be moved to the cache more quickly and
1263  * if not actively re-referenced, freed more quickly.  If we just
1264  * stick these pages at the end of the inactive queue, heavy filesystem
1265  * meta-data accesses can cause an unnecessary paging load on memory bound
1266  * processes.  This optimization causes one-time-use metadata to be
1267  * reused more quickly.
1268  *
1269  * BUT, if we are in a low-memory situation we have no choice but to
1270  * put clean pages on the cache queue.
1271  *
1272  * A number of routines use vm_page_unwire() to guarantee that the page
1273  * will go into either the inactive or active queues, and will NEVER
1274  * be placed in the cache - for example, just after dirtying a page.
1275  * dirty pages in the cache are not allowed.
1276  *
1277  * The page queues must be locked.
1278  * This routine may not block.
1279  */
1280 void
1281 vm_page_unwire(vm_page_t m, int activate)
1282 {
1283 	lwkt_gettoken(&vm_token);
1284 	if (m->flags & PG_FICTITIOUS) {
1285 		/* do nothing */
1286 	} else if (m->wire_count <= 0) {
1287 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1288 	} else {
1289 		if (--m->wire_count == 0) {
1290 			--vmstats.v_wire_count;
1291 			if (m->flags & PG_UNMANAGED) {
1292 				;
1293 			} else if (activate) {
1294 				TAILQ_INSERT_TAIL(
1295 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1296 				m->queue = PQ_ACTIVE;
1297 				vm_page_queues[PQ_ACTIVE].lcnt++;
1298 				vmstats.v_active_count++;
1299 			} else {
1300 				vm_page_flag_clear(m, PG_WINATCFLS);
1301 				TAILQ_INSERT_TAIL(
1302 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1303 				m->queue = PQ_INACTIVE;
1304 				vm_page_queues[PQ_INACTIVE].lcnt++;
1305 				vmstats.v_inactive_count++;
1306 				++vm_swapcache_inactive_heuristic;
1307 			}
1308 		}
1309 	}
1310 	lwkt_reltoken(&vm_token);
1311 }
1312 
1313 
1314 /*
1315  * Move the specified page to the inactive queue.  If the page has
1316  * any associated swap, the swap is deallocated.
1317  *
1318  * Normally athead is 0 resulting in LRU operation.  athead is set
1319  * to 1 if we want this page to be 'as if it were placed in the cache',
1320  * except without unmapping it from the process address space.
1321  *
1322  * This routine may not block.
1323  * The caller must hold vm_token.
1324  */
1325 static __inline void
1326 _vm_page_deactivate(vm_page_t m, int athead)
1327 {
1328 	/*
1329 	 * Ignore if already inactive.
1330 	 */
1331 	if (m->queue == PQ_INACTIVE)
1332 		return;
1333 
1334 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1335 		if ((m->queue - m->pc) == PQ_CACHE)
1336 			mycpu->gd_cnt.v_reactivated++;
1337 		vm_page_flag_clear(m, PG_WINATCFLS);
1338 		vm_page_unqueue(m);
1339 		if (athead) {
1340 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1341 					  m, pageq);
1342 		} else {
1343 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1344 					  m, pageq);
1345 			++vm_swapcache_inactive_heuristic;
1346 		}
1347 		m->queue = PQ_INACTIVE;
1348 		vm_page_queues[PQ_INACTIVE].lcnt++;
1349 		vmstats.v_inactive_count++;
1350 	}
1351 }
1352 
1353 /*
1354  * Attempt to deactivate a page.
1355  *
1356  * No requirements.
1357  */
1358 void
1359 vm_page_deactivate(vm_page_t m)
1360 {
1361 	lwkt_gettoken(&vm_token);
1362 	_vm_page_deactivate(m, 0);
1363 	lwkt_reltoken(&vm_token);
1364 }
1365 
1366 /*
1367  * Attempt to move a page to PQ_CACHE.
1368  * Returns 0 on failure, 1 on success
1369  *
1370  * No requirements.
1371  */
1372 int
1373 vm_page_try_to_cache(vm_page_t m)
1374 {
1375 	lwkt_gettoken(&vm_token);
1376 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1377 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1378 		lwkt_reltoken(&vm_token);
1379 		return(0);
1380 	}
1381 	vm_page_busy(m);
1382 	vm_page_test_dirty(m);
1383 	if (m->dirty) {
1384 		lwkt_reltoken(&vm_token);
1385 		return(0);
1386 	}
1387 	vm_page_cache(m);
1388 	lwkt_reltoken(&vm_token);
1389 	return(1);
1390 }
1391 
1392 /*
1393  * Attempt to free the page.  If we cannot free it, we do nothing.
1394  * 1 is returned on success, 0 on failure.
1395  *
1396  * No requirements.
1397  */
1398 int
1399 vm_page_try_to_free(vm_page_t m)
1400 {
1401 	lwkt_gettoken(&vm_token);
1402 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1403 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1404 		lwkt_reltoken(&vm_token);
1405 		return(0);
1406 	}
1407 	vm_page_test_dirty(m);
1408 	if (m->dirty) {
1409 		lwkt_reltoken(&vm_token);
1410 		return(0);
1411 	}
1412 	vm_page_busy(m);
1413 	vm_page_protect(m, VM_PROT_NONE);
1414 	vm_page_free(m);
1415 	lwkt_reltoken(&vm_token);
1416 	return(1);
1417 }
1418 
1419 /*
1420  * vm_page_cache
1421  *
1422  * Put the specified page onto the page cache queue (if appropriate).
1423  *
1424  * The caller must hold vm_token.
1425  * This routine may not block.
1426  * The page must be busy, and this routine will release the busy and
1427  * possibly even free the page.
1428  */
1429 void
1430 vm_page_cache(vm_page_t m)
1431 {
1432 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1433 
1434 	if ((m->flags & PG_UNMANAGED) || m->busy ||
1435 	    m->wire_count || m->hold_count) {
1436 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1437 		vm_page_wakeup(m);
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * Already in the cache (and thus not mapped)
1443 	 */
1444 	if ((m->queue - m->pc) == PQ_CACHE) {
1445 		KKASSERT((m->flags & PG_MAPPED) == 0);
1446 		vm_page_wakeup(m);
1447 		return;
1448 	}
1449 
1450 	/*
1451 	 * Caller is required to test m->dirty, but note that the act of
1452 	 * removing the page from its maps can cause it to become dirty
1453 	 * on an SMP system due to another cpu running in usermode.
1454 	 */
1455 	if (m->dirty) {
1456 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1457 			(long)m->pindex);
1458 	}
1459 
1460 	/*
1461 	 * Remove all pmaps and indicate that the page is not
1462 	 * writeable or mapped.  Our vm_page_protect() call may
1463 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1464 	 * everything.
1465 	 */
1466 	vm_page_protect(m, VM_PROT_NONE);
1467 	if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1468 			m->wire_count || m->hold_count) {
1469 		vm_page_wakeup(m);
1470 	} else if (m->dirty) {
1471 		vm_page_deactivate(m);
1472 		vm_page_wakeup(m);
1473 	} else {
1474 		vm_page_unqueue_nowakeup(m);
1475 		m->queue = PQ_CACHE + m->pc;
1476 		vm_page_queues[m->queue].lcnt++;
1477 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1478 		vmstats.v_cache_count++;
1479 		vm_page_wakeup(m);
1480 		vm_page_free_wakeup();
1481 	}
1482 }
1483 
1484 /*
1485  * vm_page_dontneed()
1486  *
1487  * Cache, deactivate, or do nothing as appropriate.  This routine
1488  * is typically used by madvise() MADV_DONTNEED.
1489  *
1490  * Generally speaking we want to move the page into the cache so
1491  * it gets reused quickly.  However, this can result in a silly syndrome
1492  * due to the page recycling too quickly.  Small objects will not be
1493  * fully cached.  On the otherhand, if we move the page to the inactive
1494  * queue we wind up with a problem whereby very large objects
1495  * unnecessarily blow away our inactive and cache queues.
1496  *
1497  * The solution is to move the pages based on a fixed weighting.  We
1498  * either leave them alone, deactivate them, or move them to the cache,
1499  * where moving them to the cache has the highest weighting.
1500  * By forcing some pages into other queues we eventually force the
1501  * system to balance the queues, potentially recovering other unrelated
1502  * space from active.  The idea is to not force this to happen too
1503  * often.
1504  *
1505  * No requirements.
1506  */
1507 void
1508 vm_page_dontneed(vm_page_t m)
1509 {
1510 	static int dnweight;
1511 	int dnw;
1512 	int head;
1513 
1514 	dnw = ++dnweight;
1515 
1516 	/*
1517 	 * occassionally leave the page alone
1518 	 */
1519 	lwkt_gettoken(&vm_token);
1520 	if ((dnw & 0x01F0) == 0 ||
1521 	    m->queue == PQ_INACTIVE ||
1522 	    m->queue - m->pc == PQ_CACHE
1523 	) {
1524 		if (m->act_count >= ACT_INIT)
1525 			--m->act_count;
1526 		lwkt_reltoken(&vm_token);
1527 		return;
1528 	}
1529 
1530 	if (m->dirty == 0)
1531 		vm_page_test_dirty(m);
1532 
1533 	if (m->dirty || (dnw & 0x0070) == 0) {
1534 		/*
1535 		 * Deactivate the page 3 times out of 32.
1536 		 */
1537 		head = 0;
1538 	} else {
1539 		/*
1540 		 * Cache the page 28 times out of every 32.  Note that
1541 		 * the page is deactivated instead of cached, but placed
1542 		 * at the head of the queue instead of the tail.
1543 		 */
1544 		head = 1;
1545 	}
1546 	_vm_page_deactivate(m, head);
1547 	lwkt_reltoken(&vm_token);
1548 }
1549 
1550 /*
1551  * Grab a page, blocking if it is busy and allocating a page if necessary.
1552  * A busy page is returned or NULL.
1553  *
1554  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1555  * If VM_ALLOC_RETRY is not specified
1556  *
1557  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1558  * always returned if we had blocked.
1559  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1560  * This routine may not be called from an interrupt.
1561  * The returned page may not be entirely valid.
1562  *
1563  * This routine may be called from mainline code without spl protection and
1564  * be guarenteed a busied page associated with the object at the specified
1565  * index.
1566  *
1567  * No requirements.
1568  */
1569 vm_page_t
1570 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1571 {
1572 	vm_page_t m;
1573 	int generation;
1574 
1575 	KKASSERT(allocflags &
1576 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1577 	lwkt_gettoken(&vm_token);
1578 retrylookup:
1579 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1580 		if (m->busy || (m->flags & PG_BUSY)) {
1581 			generation = object->generation;
1582 
1583 			while ((object->generation == generation) &&
1584 					(m->busy || (m->flags & PG_BUSY))) {
1585 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1586 				tsleep(m, 0, "pgrbwt", 0);
1587 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1588 					m = NULL;
1589 					goto done;
1590 				}
1591 			}
1592 			goto retrylookup;
1593 		} else {
1594 			vm_page_busy(m);
1595 			goto done;
1596 		}
1597 	}
1598 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1599 	if (m == NULL) {
1600 		vm_wait(0);
1601 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1602 			goto done;
1603 		goto retrylookup;
1604 	}
1605 done:
1606 	lwkt_reltoken(&vm_token);
1607 	return(m);
1608 }
1609 
1610 /*
1611  * Mapping function for valid bits or for dirty bits in
1612  * a page.  May not block.
1613  *
1614  * Inputs are required to range within a page.
1615  *
1616  * No requirements.
1617  * Non blocking.
1618  */
1619 int
1620 vm_page_bits(int base, int size)
1621 {
1622 	int first_bit;
1623 	int last_bit;
1624 
1625 	KASSERT(
1626 	    base + size <= PAGE_SIZE,
1627 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1628 	);
1629 
1630 	if (size == 0)		/* handle degenerate case */
1631 		return(0);
1632 
1633 	first_bit = base >> DEV_BSHIFT;
1634 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1635 
1636 	return ((2 << last_bit) - (1 << first_bit));
1637 }
1638 
1639 /*
1640  * Sets portions of a page valid and clean.  The arguments are expected
1641  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1642  * of any partial chunks touched by the range.  The invalid portion of
1643  * such chunks will be zero'd.
1644  *
1645  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1646  *	 align base to DEV_BSIZE so as not to mark clean a partially
1647  *	 truncated device block.  Otherwise the dirty page status might be
1648  *	 lost.
1649  *
1650  * This routine may not block.
1651  *
1652  * (base + size) must be less then or equal to PAGE_SIZE.
1653  */
1654 static void
1655 _vm_page_zero_valid(vm_page_t m, int base, int size)
1656 {
1657 	int frag;
1658 	int endoff;
1659 
1660 	if (size == 0)	/* handle degenerate case */
1661 		return;
1662 
1663 	/*
1664 	 * If the base is not DEV_BSIZE aligned and the valid
1665 	 * bit is clear, we have to zero out a portion of the
1666 	 * first block.
1667 	 */
1668 
1669 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1670 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1671 	) {
1672 		pmap_zero_page_area(
1673 		    VM_PAGE_TO_PHYS(m),
1674 		    frag,
1675 		    base - frag
1676 		);
1677 	}
1678 
1679 	/*
1680 	 * If the ending offset is not DEV_BSIZE aligned and the
1681 	 * valid bit is clear, we have to zero out a portion of
1682 	 * the last block.
1683 	 */
1684 
1685 	endoff = base + size;
1686 
1687 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1688 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1689 	) {
1690 		pmap_zero_page_area(
1691 		    VM_PAGE_TO_PHYS(m),
1692 		    endoff,
1693 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1694 		);
1695 	}
1696 }
1697 
1698 /*
1699  * Set valid, clear dirty bits.  If validating the entire
1700  * page we can safely clear the pmap modify bit.  We also
1701  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1702  * takes a write fault on a MAP_NOSYNC memory area the flag will
1703  * be set again.
1704  *
1705  * We set valid bits inclusive of any overlap, but we can only
1706  * clear dirty bits for DEV_BSIZE chunks that are fully within
1707  * the range.
1708  *
1709  * Page must be busied?
1710  * No other requirements.
1711  */
1712 void
1713 vm_page_set_valid(vm_page_t m, int base, int size)
1714 {
1715 	_vm_page_zero_valid(m, base, size);
1716 	m->valid |= vm_page_bits(base, size);
1717 }
1718 
1719 
1720 /*
1721  * Set valid bits and clear dirty bits.
1722  *
1723  * NOTE: This function does not clear the pmap modified bit.
1724  *	 Also note that e.g. NFS may use a byte-granular base
1725  *	 and size.
1726  *
1727  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
1728  *	    this without necessarily busying the page (via bdwrite()).
1729  *	    So for now vm_token must also be held.
1730  *
1731  * No other requirements.
1732  */
1733 void
1734 vm_page_set_validclean(vm_page_t m, int base, int size)
1735 {
1736 	int pagebits;
1737 
1738 	_vm_page_zero_valid(m, base, size);
1739 	pagebits = vm_page_bits(base, size);
1740 	m->valid |= pagebits;
1741 	m->dirty &= ~pagebits;
1742 	if (base == 0 && size == PAGE_SIZE) {
1743 		/*pmap_clear_modify(m);*/
1744 		vm_page_flag_clear(m, PG_NOSYNC);
1745 	}
1746 }
1747 
1748 /*
1749  * Set valid & dirty.  Used by buwrite()
1750  *
1751  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
1752  *	    call this function in buwrite() so for now vm_token must
1753  * 	    be held.
1754  *
1755  * No other requirements.
1756  */
1757 void
1758 vm_page_set_validdirty(vm_page_t m, int base, int size)
1759 {
1760 	int pagebits;
1761 
1762 	pagebits = vm_page_bits(base, size);
1763 	m->valid |= pagebits;
1764 	m->dirty |= pagebits;
1765 	if (m->object)
1766 		vm_object_set_writeable_dirty(m->object);
1767 }
1768 
1769 /*
1770  * Clear dirty bits.
1771  *
1772  * NOTE: This function does not clear the pmap modified bit.
1773  *	 Also note that e.g. NFS may use a byte-granular base
1774  *	 and size.
1775  *
1776  * Page must be busied?
1777  * No other requirements.
1778  */
1779 void
1780 vm_page_clear_dirty(vm_page_t m, int base, int size)
1781 {
1782 	m->dirty &= ~vm_page_bits(base, size);
1783 	if (base == 0 && size == PAGE_SIZE) {
1784 		/*pmap_clear_modify(m);*/
1785 		vm_page_flag_clear(m, PG_NOSYNC);
1786 	}
1787 }
1788 
1789 /*
1790  * Make the page all-dirty.
1791  *
1792  * Also make sure the related object and vnode reflect the fact that the
1793  * object may now contain a dirty page.
1794  *
1795  * Page must be busied?
1796  * No other requirements.
1797  */
1798 void
1799 vm_page_dirty(vm_page_t m)
1800 {
1801 #ifdef INVARIANTS
1802         int pqtype = m->queue - m->pc;
1803 #endif
1804         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1805                 ("vm_page_dirty: page in free/cache queue!"));
1806 	if (m->dirty != VM_PAGE_BITS_ALL) {
1807 		m->dirty = VM_PAGE_BITS_ALL;
1808 		if (m->object)
1809 			vm_object_set_writeable_dirty(m->object);
1810 	}
1811 }
1812 
1813 /*
1814  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1815  * valid and dirty bits for the effected areas are cleared.
1816  *
1817  * Page must be busied?
1818  * Does not block.
1819  * No other requirements.
1820  */
1821 void
1822 vm_page_set_invalid(vm_page_t m, int base, int size)
1823 {
1824 	int bits;
1825 
1826 	bits = vm_page_bits(base, size);
1827 	m->valid &= ~bits;
1828 	m->dirty &= ~bits;
1829 	m->object->generation++;
1830 }
1831 
1832 /*
1833  * The kernel assumes that the invalid portions of a page contain
1834  * garbage, but such pages can be mapped into memory by user code.
1835  * When this occurs, we must zero out the non-valid portions of the
1836  * page so user code sees what it expects.
1837  *
1838  * Pages are most often semi-valid when the end of a file is mapped
1839  * into memory and the file's size is not page aligned.
1840  *
1841  * Page must be busied?
1842  * No other requirements.
1843  */
1844 void
1845 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1846 {
1847 	int b;
1848 	int i;
1849 
1850 	/*
1851 	 * Scan the valid bits looking for invalid sections that
1852 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1853 	 * valid bit may be set ) have already been zerod by
1854 	 * vm_page_set_validclean().
1855 	 */
1856 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1857 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1858 		    (m->valid & (1 << i))
1859 		) {
1860 			if (i > b) {
1861 				pmap_zero_page_area(
1862 				    VM_PAGE_TO_PHYS(m),
1863 				    b << DEV_BSHIFT,
1864 				    (i - b) << DEV_BSHIFT
1865 				);
1866 			}
1867 			b = i + 1;
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * setvalid is TRUE when we can safely set the zero'd areas
1873 	 * as being valid.  We can do this if there are no cache consistency
1874 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1875 	 */
1876 	if (setvalid)
1877 		m->valid = VM_PAGE_BITS_ALL;
1878 }
1879 
1880 /*
1881  * Is a (partial) page valid?  Note that the case where size == 0
1882  * will return FALSE in the degenerate case where the page is entirely
1883  * invalid, and TRUE otherwise.
1884  *
1885  * Does not block.
1886  * No other requirements.
1887  */
1888 int
1889 vm_page_is_valid(vm_page_t m, int base, int size)
1890 {
1891 	int bits = vm_page_bits(base, size);
1892 
1893 	if (m->valid && ((m->valid & bits) == bits))
1894 		return 1;
1895 	else
1896 		return 0;
1897 }
1898 
1899 /*
1900  * update dirty bits from pmap/mmu.  May not block.
1901  *
1902  * Caller must hold vm_token if non-blocking operation desired.
1903  * No other requirements.
1904  */
1905 void
1906 vm_page_test_dirty(vm_page_t m)
1907 {
1908 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1909 		vm_page_dirty(m);
1910 	}
1911 }
1912 
1913 /*
1914  * Register an action, associating it with its vm_page
1915  */
1916 void
1917 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
1918 {
1919 	struct vm_page_action_list *list;
1920 	int hv;
1921 
1922 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1923 	list = &action_list[hv];
1924 
1925 	lwkt_gettoken(&vm_token);
1926 	vm_page_flag_set(action->m, PG_ACTIONLIST);
1927 	action->event = event;
1928 	LIST_INSERT_HEAD(list, action, entry);
1929 	lwkt_reltoken(&vm_token);
1930 }
1931 
1932 /*
1933  * Unregister an action, disassociating it from its related vm_page
1934  */
1935 void
1936 vm_page_unregister_action(vm_page_action_t action)
1937 {
1938 	struct vm_page_action_list *list;
1939 	int hv;
1940 
1941 	lwkt_gettoken(&vm_token);
1942 	if (action->event != VMEVENT_NONE) {
1943 		action->event = VMEVENT_NONE;
1944 		LIST_REMOVE(action, entry);
1945 
1946 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1947 		list = &action_list[hv];
1948 		if (LIST_EMPTY(list))
1949 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
1950 	}
1951 	lwkt_reltoken(&vm_token);
1952 }
1953 
1954 /*
1955  * Issue an event on a VM page.  Corresponding action structures are
1956  * removed from the page's list and called.
1957  *
1958  * If the vm_page has no more pending action events we clear its
1959  * PG_ACTIONLIST flag.
1960  */
1961 void
1962 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1963 {
1964 	struct vm_page_action_list *list;
1965 	struct vm_page_action *scan;
1966 	struct vm_page_action *next;
1967 	int hv;
1968 	int all;
1969 
1970 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
1971 	list = &action_list[hv];
1972 	all = 1;
1973 
1974 	lwkt_gettoken(&vm_token);
1975 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
1976 		if (scan->m == m) {
1977 			if (scan->event == event) {
1978 				scan->event = VMEVENT_NONE;
1979 				LIST_REMOVE(scan, entry);
1980 				scan->func(m, scan);
1981 				/* XXX */
1982 			} else {
1983 				all = 0;
1984 			}
1985 		}
1986 	}
1987 	if (all)
1988 		vm_page_flag_clear(m, PG_ACTIONLIST);
1989 	lwkt_reltoken(&vm_token);
1990 }
1991 
1992 
1993 #include "opt_ddb.h"
1994 #ifdef DDB
1995 #include <sys/kernel.h>
1996 
1997 #include <ddb/ddb.h>
1998 
1999 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2000 {
2001 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2002 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2003 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2004 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2005 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2006 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2007 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2008 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2009 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2010 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2011 }
2012 
2013 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2014 {
2015 	int i;
2016 	db_printf("PQ_FREE:");
2017 	for(i=0;i<PQ_L2_SIZE;i++) {
2018 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2019 	}
2020 	db_printf("\n");
2021 
2022 	db_printf("PQ_CACHE:");
2023 	for(i=0;i<PQ_L2_SIZE;i++) {
2024 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2025 	}
2026 	db_printf("\n");
2027 
2028 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2029 		vm_page_queues[PQ_ACTIVE].lcnt,
2030 		vm_page_queues[PQ_INACTIVE].lcnt);
2031 }
2032 #endif /* DDB */
2033