xref: /dragonfly/sys/vm/vm_page.c (revision 3948dfa0)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
34  */
35 
36 /*
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 /*
63  * Resident memory management module.  The module manipulates 'VM pages'.
64  * A VM page is the core building block for memory management.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 /*
99  * SET - Minimum required set associative size, must be a power of 2.  We
100  *	 want this to match or exceed the set-associativeness of the cpu.
101  *
102  * GRP - A larger set that allows bleed-over into the domains of other
103  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
104  *	 code to smooth things out a bit.
105  */
106 #define PQ_SET_ASSOC		16
107 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
108 
109 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
110 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
111 
112 static void vm_page_queue_init(void);
113 static void vm_page_free_wakeup(void);
114 static vm_page_t vm_page_select_cache(u_short pg_color);
115 static vm_page_t _vm_page_list_find2(int basequeue, int index);
116 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
117 
118 /*
119  * Array of tailq lists
120  */
121 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
122 
123 static volatile int vm_pages_waiting;
124 static struct alist vm_contig_alist;
125 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
126 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
127 
128 static u_long vm_dma_reserved = 0;
129 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
130 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
131 	    "Memory reserved for DMA");
132 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
133 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
134 
135 static int vm_contig_verbose = 0;
136 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
137 
138 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
139 	     vm_pindex_t, pindex);
140 
141 static void
142 vm_page_queue_init(void)
143 {
144 	int i;
145 
146 	for (i = 0; i < PQ_L2_SIZE; i++)
147 		vm_page_queues[PQ_FREE+i].cnt_offset =
148 			offsetof(struct vmstats, v_free_count);
149 	for (i = 0; i < PQ_L2_SIZE; i++)
150 		vm_page_queues[PQ_CACHE+i].cnt_offset =
151 			offsetof(struct vmstats, v_cache_count);
152 	for (i = 0; i < PQ_L2_SIZE; i++)
153 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
154 			offsetof(struct vmstats, v_inactive_count);
155 	for (i = 0; i < PQ_L2_SIZE; i++)
156 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
157 			offsetof(struct vmstats, v_active_count);
158 	for (i = 0; i < PQ_L2_SIZE; i++)
159 		vm_page_queues[PQ_HOLD+i].cnt_offset =
160 			offsetof(struct vmstats, v_active_count);
161 	/* PQ_NONE has no queue */
162 
163 	for (i = 0; i < PQ_COUNT; i++) {
164 		TAILQ_INIT(&vm_page_queues[i].pl);
165 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
166 	}
167 }
168 
169 /*
170  * note: place in initialized data section?  Is this necessary?
171  */
172 long first_page = 0;
173 int vm_page_array_size = 0;
174 vm_page_t vm_page_array = NULL;
175 vm_paddr_t vm_low_phys_reserved;
176 
177 /*
178  * (low level boot)
179  *
180  * Sets the page size, perhaps based upon the memory size.
181  * Must be called before any use of page-size dependent functions.
182  */
183 void
184 vm_set_page_size(void)
185 {
186 	if (vmstats.v_page_size == 0)
187 		vmstats.v_page_size = PAGE_SIZE;
188 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
189 		panic("vm_set_page_size: page size not a power of two");
190 }
191 
192 /*
193  * (low level boot)
194  *
195  * Add a new page to the freelist for use by the system.  New pages
196  * are added to both the head and tail of the associated free page
197  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
198  * requests pull 'recent' adds (higher physical addresses) first.
199  *
200  * Beware that the page zeroing daemon will also be running soon after
201  * boot, moving pages from the head to the tail of the PQ_FREE queues.
202  *
203  * Must be called in a critical section.
204  */
205 static void
206 vm_add_new_page(vm_paddr_t pa)
207 {
208 	struct vpgqueues *vpq;
209 	vm_page_t m;
210 
211 	m = PHYS_TO_VM_PAGE(pa);
212 	m->phys_addr = pa;
213 	m->flags = 0;
214 	m->pat_mode = PAT_WRITE_BACK;
215 	m->pc = (pa >> PAGE_SHIFT);
216 
217 	/*
218 	 * Twist for cpu localization in addition to page coloring, so
219 	 * different cpus selecting by m->queue get different page colors.
220 	 */
221 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
222 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
223 	m->pc &= PQ_L2_MASK;
224 
225 	/*
226 	 * Reserve a certain number of contiguous low memory pages for
227 	 * contigmalloc() to use.
228 	 */
229 	if (pa < vm_low_phys_reserved) {
230 		atomic_add_int(&vmstats.v_page_count, 1);
231 		atomic_add_int(&vmstats.v_dma_pages, 1);
232 		m->queue = PQ_NONE;
233 		m->wire_count = 1;
234 		atomic_add_int(&vmstats.v_wire_count, 1);
235 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
236 		return;
237 	}
238 
239 	/*
240 	 * General page
241 	 */
242 	m->queue = m->pc + PQ_FREE;
243 	KKASSERT(m->dirty == 0);
244 
245 	atomic_add_int(&vmstats.v_page_count, 1);
246 	atomic_add_int(&vmstats.v_free_count, 1);
247 	vpq = &vm_page_queues[m->queue];
248 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
249 	++vpq->lcnt;
250 }
251 
252 /*
253  * (low level boot)
254  *
255  * Initializes the resident memory module.
256  *
257  * Preallocates memory for critical VM structures and arrays prior to
258  * kernel_map becoming available.
259  *
260  * Memory is allocated from (virtual2_start, virtual2_end) if available,
261  * otherwise memory is allocated from (virtual_start, virtual_end).
262  *
263  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
264  * large enough to hold vm_page_array & other structures for machines with
265  * large amounts of ram, so we want to use virtual2* when available.
266  */
267 void
268 vm_page_startup(void)
269 {
270 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
271 	vm_offset_t mapped;
272 	vm_size_t npages;
273 	vm_paddr_t page_range;
274 	vm_paddr_t new_end;
275 	int i;
276 	vm_paddr_t pa;
277 	vm_paddr_t last_pa;
278 	vm_paddr_t end;
279 	vm_paddr_t biggestone, biggestsize;
280 	vm_paddr_t total;
281 	vm_page_t m;
282 
283 	total = 0;
284 	biggestsize = 0;
285 	biggestone = 0;
286 	vaddr = round_page(vaddr);
287 
288 	/*
289 	 * Make sure ranges are page-aligned.
290 	 */
291 	for (i = 0; phys_avail[i].phys_end; ++i) {
292 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
293 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
294 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
295 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
296 	}
297 
298 	/*
299 	 * Locate largest block
300 	 */
301 	for (i = 0; phys_avail[i].phys_end; ++i) {
302 		vm_paddr_t size = phys_avail[i].phys_end -
303 				  phys_avail[i].phys_beg;
304 
305 		if (size > biggestsize) {
306 			biggestone = i;
307 			biggestsize = size;
308 		}
309 		total += size;
310 	}
311 	--i;	/* adjust to last entry for use down below */
312 
313 	end = phys_avail[biggestone].phys_end;
314 	end = trunc_page(end);
315 
316 	/*
317 	 * Initialize the queue headers for the free queue, the active queue
318 	 * and the inactive queue.
319 	 */
320 	vm_page_queue_init();
321 
322 #if !defined(_KERNEL_VIRTUAL)
323 	/*
324 	 * VKERNELs don't support minidumps and as such don't need
325 	 * vm_page_dump
326 	 *
327 	 * Allocate a bitmap to indicate that a random physical page
328 	 * needs to be included in a minidump.
329 	 *
330 	 * The amd64 port needs this to indicate which direct map pages
331 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
332 	 *
333 	 * However, i386 still needs this workspace internally within the
334 	 * minidump code.  In theory, they are not needed on i386, but are
335 	 * included should the sf_buf code decide to use them.
336 	 */
337 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
338 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
339 	end -= vm_page_dump_size;
340 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
341 					VM_PROT_READ | VM_PROT_WRITE);
342 	bzero((void *)vm_page_dump, vm_page_dump_size);
343 #endif
344 	/*
345 	 * Compute the number of pages of memory that will be available for
346 	 * use (taking into account the overhead of a page structure per
347 	 * page).
348 	 */
349 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
350 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
351 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
352 
353 #ifndef _KERNEL_VIRTUAL
354 	/*
355 	 * (only applies to real kernels)
356 	 *
357 	 * Reserve a large amount of low memory for potential 32-bit DMA
358 	 * space allocations.  Once device initialization is complete we
359 	 * release most of it, but keep (vm_dma_reserved) memory reserved
360 	 * for later use.  Typically for X / graphics.  Through trial and
361 	 * error we find that GPUs usually requires ~60-100MB or so.
362 	 *
363 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
364 	 */
365 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
366 	if (vm_low_phys_reserved > total / 4)
367 		vm_low_phys_reserved = total / 4;
368 	if (vm_dma_reserved == 0) {
369 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
370 		if (vm_dma_reserved > total / 16)
371 			vm_dma_reserved = total / 16;
372 	}
373 #endif
374 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
375 		   ALIST_RECORDS_65536);
376 
377 	/*
378 	 * Initialize the mem entry structures now, and put them in the free
379 	 * queue.
380 	 */
381 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
382 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
383 	vm_page_array = (vm_page_t)mapped;
384 
385 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
386 	/*
387 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
388 	 * we have to manually add these pages to the minidump tracking so
389 	 * that they can be dumped, including the vm_page_array.
390 	 */
391 	for (pa = new_end;
392 	     pa < phys_avail[biggestone].phys_end;
393 	     pa += PAGE_SIZE) {
394 		dump_add_page(pa);
395 	}
396 #endif
397 
398 	/*
399 	 * Clear all of the page structures, run basic initialization so
400 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
401 	 * map.
402 	 */
403 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
404 	vm_page_array_size = page_range;
405 
406 	m = &vm_page_array[0];
407 	pa = ptoa(first_page);
408 	for (i = 0; i < page_range; ++i) {
409 		spin_init(&m->spin, "vm_page");
410 		m->phys_addr = pa;
411 		pa += PAGE_SIZE;
412 		++m;
413 	}
414 
415 	/*
416 	 * Construct the free queue(s) in ascending order (by physical
417 	 * address) so that the first 16MB of physical memory is allocated
418 	 * last rather than first.  On large-memory machines, this avoids
419 	 * the exhaustion of low physical memory before isa_dmainit has run.
420 	 */
421 	vmstats.v_page_count = 0;
422 	vmstats.v_free_count = 0;
423 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
424 		pa = phys_avail[i].phys_beg;
425 		if (i == biggestone)
426 			last_pa = new_end;
427 		else
428 			last_pa = phys_avail[i].phys_end;
429 		while (pa < last_pa && npages-- > 0) {
430 			vm_add_new_page(pa);
431 			pa += PAGE_SIZE;
432 		}
433 	}
434 	if (virtual2_start)
435 		virtual2_start = vaddr;
436 	else
437 		virtual_start = vaddr;
438 	mycpu->gd_vmstats = vmstats;
439 }
440 
441 /*
442  * Reorganize VM pages based on numa data.  May be called as many times as
443  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
444  * to allow vm_page_alloc() to choose pages based on socket affinity.
445  *
446  * NOTE: This function is only called while we are still in UP mode, so
447  *	 we only need a critical section to protect the queues (which
448  *	 saves a lot of time, there are likely a ton of pages).
449  */
450 void
451 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
452 {
453 	vm_paddr_t scan_beg;
454 	vm_paddr_t scan_end;
455 	vm_paddr_t ran_end;
456 	struct vpgqueues *vpq;
457 	vm_page_t m;
458 	vm_page_t mend;
459 	int i;
460 	int socket_mod;
461 	int socket_value;
462 
463 	/*
464 	 * Check if no physical information, or there was only one socket
465 	 * (so don't waste time doing nothing!).
466 	 */
467 	if (cpu_topology_phys_ids <= 1 ||
468 	    cpu_topology_core_ids == 0) {
469 		return;
470 	}
471 
472 	/*
473 	 * Setup for our iteration.  Note that ACPI may iterate CPU
474 	 * sockets starting at 0 or 1 or some other number.  The
475 	 * cpu_topology code mod's it against the socket count.
476 	 */
477 	ran_end = ran_beg + bytes;
478 	physid %= cpu_topology_phys_ids;
479 
480 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
481 	socket_value = physid * socket_mod;
482 	mend = &vm_page_array[vm_page_array_size];
483 
484 	crit_enter();
485 
486 	/*
487 	 * Adjust vm_page->pc and requeue all affected pages.  The
488 	 * allocator will then be able to localize memory allocations
489 	 * to some degree.
490 	 */
491 	for (i = 0; phys_avail[i].phys_end; ++i) {
492 		scan_beg = phys_avail[i].phys_beg;
493 		scan_end = phys_avail[i].phys_end;
494 		if (scan_end <= ran_beg)
495 			continue;
496 		if (scan_beg >= ran_end)
497 			continue;
498 		if (scan_beg < ran_beg)
499 			scan_beg = ran_beg;
500 		if (scan_end > ran_end)
501 			scan_end = ran_end;
502 		if (atop(scan_end) > first_page + vm_page_array_size)
503 			scan_end = ptoa(first_page + vm_page_array_size);
504 
505 		m = PHYS_TO_VM_PAGE(scan_beg);
506 		while (scan_beg < scan_end) {
507 			KKASSERT(m < mend);
508 			if (m->queue != PQ_NONE) {
509 				vpq = &vm_page_queues[m->queue];
510 				TAILQ_REMOVE(&vpq->pl, m, pageq);
511 				--vpq->lcnt;
512 				/* queue doesn't change, no need to adj cnt */
513 				m->queue -= m->pc;
514 				m->pc %= socket_mod;
515 				m->pc += socket_value;
516 				m->pc &= PQ_L2_MASK;
517 				m->queue += m->pc;
518 				vpq = &vm_page_queues[m->queue];
519 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
520 				++vpq->lcnt;
521 				/* queue doesn't change, no need to adj cnt */
522 			} else {
523 				m->pc %= socket_mod;
524 				m->pc += socket_value;
525 				m->pc &= PQ_L2_MASK;
526 			}
527 			scan_beg += PAGE_SIZE;
528 			++m;
529 		}
530 	}
531 	crit_exit();
532 }
533 
534 /*
535  * We tended to reserve a ton of memory for contigmalloc().  Now that most
536  * drivers have initialized we want to return most the remaining free
537  * reserve back to the VM page queues so they can be used for normal
538  * allocations.
539  *
540  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
541  */
542 static void
543 vm_page_startup_finish(void *dummy __unused)
544 {
545 	alist_blk_t blk;
546 	alist_blk_t rblk;
547 	alist_blk_t count;
548 	alist_blk_t xcount;
549 	alist_blk_t bfree;
550 	vm_page_t m;
551 
552 	spin_lock(&vm_contig_spin);
553 	for (;;) {
554 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
555 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
556 			break;
557 		if (count == 0)
558 			break;
559 
560 		/*
561 		 * Figure out how much of the initial reserve we have to
562 		 * free in order to reach our target.
563 		 */
564 		bfree -= vm_dma_reserved / PAGE_SIZE;
565 		if (count > bfree) {
566 			blk += count - bfree;
567 			count = bfree;
568 		}
569 
570 		/*
571 		 * Calculate the nearest power of 2 <= count.
572 		 */
573 		for (xcount = 1; xcount <= count; xcount <<= 1)
574 			;
575 		xcount >>= 1;
576 		blk += count - xcount;
577 		count = xcount;
578 
579 		/*
580 		 * Allocate the pages from the alist, then free them to
581 		 * the normal VM page queues.
582 		 *
583 		 * Pages allocated from the alist are wired.  We have to
584 		 * busy, unwire, and free them.  We must also adjust
585 		 * vm_low_phys_reserved before freeing any pages to prevent
586 		 * confusion.
587 		 */
588 		rblk = alist_alloc(&vm_contig_alist, blk, count);
589 		if (rblk != blk) {
590 			kprintf("vm_page_startup_finish: Unable to return "
591 				"dma space @0x%08x/%d -> 0x%08x\n",
592 				blk, count, rblk);
593 			break;
594 		}
595 		atomic_add_int(&vmstats.v_dma_pages, -count);
596 		spin_unlock(&vm_contig_spin);
597 
598 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
599 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
600 		while (count) {
601 			vm_page_busy_wait(m, FALSE, "cpgfr");
602 			vm_page_unwire(m, 0);
603 			vm_page_free(m);
604 			--count;
605 			++m;
606 		}
607 		spin_lock(&vm_contig_spin);
608 	}
609 	spin_unlock(&vm_contig_spin);
610 
611 	/*
612 	 * Print out how much DMA space drivers have already allocated and
613 	 * how much is left over.
614 	 */
615 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
616 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
617 		(PAGE_SIZE / 1024),
618 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
619 }
620 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
621 	vm_page_startup_finish, NULL);
622 
623 
624 /*
625  * Scan comparison function for Red-Black tree scans.  An inclusive
626  * (start,end) is expected.  Other fields are not used.
627  */
628 int
629 rb_vm_page_scancmp(struct vm_page *p, void *data)
630 {
631 	struct rb_vm_page_scan_info *info = data;
632 
633 	if (p->pindex < info->start_pindex)
634 		return(-1);
635 	if (p->pindex > info->end_pindex)
636 		return(1);
637 	return(0);
638 }
639 
640 int
641 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
642 {
643 	if (p1->pindex < p2->pindex)
644 		return(-1);
645 	if (p1->pindex > p2->pindex)
646 		return(1);
647 	return(0);
648 }
649 
650 void
651 vm_page_init(vm_page_t m)
652 {
653 	/* do nothing for now.  Called from pmap_page_init() */
654 }
655 
656 /*
657  * Each page queue has its own spin lock, which is fairly optimal for
658  * allocating and freeing pages at least.
659  *
660  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
661  * queue spinlock via this function.  Also note that m->queue cannot change
662  * unless both the page and queue are locked.
663  */
664 static __inline
665 void
666 _vm_page_queue_spin_lock(vm_page_t m)
667 {
668 	u_short queue;
669 
670 	queue = m->queue;
671 	if (queue != PQ_NONE) {
672 		spin_lock(&vm_page_queues[queue].spin);
673 		KKASSERT(queue == m->queue);
674 	}
675 }
676 
677 static __inline
678 void
679 _vm_page_queue_spin_unlock(vm_page_t m)
680 {
681 	u_short queue;
682 
683 	queue = m->queue;
684 	cpu_ccfence();
685 	if (queue != PQ_NONE)
686 		spin_unlock(&vm_page_queues[queue].spin);
687 }
688 
689 static __inline
690 void
691 _vm_page_queues_spin_lock(u_short queue)
692 {
693 	cpu_ccfence();
694 	if (queue != PQ_NONE)
695 		spin_lock(&vm_page_queues[queue].spin);
696 }
697 
698 
699 static __inline
700 void
701 _vm_page_queues_spin_unlock(u_short queue)
702 {
703 	cpu_ccfence();
704 	if (queue != PQ_NONE)
705 		spin_unlock(&vm_page_queues[queue].spin);
706 }
707 
708 void
709 vm_page_queue_spin_lock(vm_page_t m)
710 {
711 	_vm_page_queue_spin_lock(m);
712 }
713 
714 void
715 vm_page_queues_spin_lock(u_short queue)
716 {
717 	_vm_page_queues_spin_lock(queue);
718 }
719 
720 void
721 vm_page_queue_spin_unlock(vm_page_t m)
722 {
723 	_vm_page_queue_spin_unlock(m);
724 }
725 
726 void
727 vm_page_queues_spin_unlock(u_short queue)
728 {
729 	_vm_page_queues_spin_unlock(queue);
730 }
731 
732 /*
733  * This locks the specified vm_page and its queue in the proper order
734  * (page first, then queue).  The queue may change so the caller must
735  * recheck on return.
736  */
737 static __inline
738 void
739 _vm_page_and_queue_spin_lock(vm_page_t m)
740 {
741 	vm_page_spin_lock(m);
742 	_vm_page_queue_spin_lock(m);
743 }
744 
745 static __inline
746 void
747 _vm_page_and_queue_spin_unlock(vm_page_t m)
748 {
749 	_vm_page_queues_spin_unlock(m->queue);
750 	vm_page_spin_unlock(m);
751 }
752 
753 void
754 vm_page_and_queue_spin_unlock(vm_page_t m)
755 {
756 	_vm_page_and_queue_spin_unlock(m);
757 }
758 
759 void
760 vm_page_and_queue_spin_lock(vm_page_t m)
761 {
762 	_vm_page_and_queue_spin_lock(m);
763 }
764 
765 /*
766  * Helper function removes vm_page from its current queue.
767  * Returns the base queue the page used to be on.
768  *
769  * The vm_page and the queue must be spinlocked.
770  * This function will unlock the queue but leave the page spinlocked.
771  */
772 static __inline u_short
773 _vm_page_rem_queue_spinlocked(vm_page_t m)
774 {
775 	struct vpgqueues *pq;
776 	u_short queue;
777 	u_short oqueue;
778 	int *cnt;
779 
780 	queue = m->queue;
781 	if (queue != PQ_NONE) {
782 		pq = &vm_page_queues[queue];
783 		TAILQ_REMOVE(&pq->pl, m, pageq);
784 
785 		/*
786 		 * Adjust our pcpu stats.  In order for the nominal low-memory
787 		 * algorithms to work properly we don't let any pcpu stat get
788 		 * too negative before we force it to be rolled-up into the
789 		 * global stats.  Otherwise our pageout and vm_wait tests
790 		 * will fail badly.
791 		 *
792 		 * The idea here is to reduce unnecessary SMP cache
793 		 * mastership changes in the global vmstats, which can be
794 		 * particularly bad in multi-socket systems.
795 		 */
796 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
797 		atomic_add_int(cnt, -1);
798 		if (*cnt < -VMMETER_SLOP_COUNT) {
799 			u_int copy = atomic_swap_int(cnt, 0);
800 			cnt = (int *)((char *)&vmstats + pq->cnt_offset);
801 			atomic_add_int(cnt, copy);
802 			cnt = (int *)((char *)&mycpu->gd_vmstats +
803 				      pq->cnt_offset);
804 			atomic_add_int(cnt, copy);
805 		}
806 		pq->lcnt--;
807 		m->queue = PQ_NONE;
808 		oqueue = queue;
809 		queue -= m->pc;
810 		vm_page_queues_spin_unlock(oqueue);	/* intended */
811 	}
812 	return queue;
813 }
814 
815 /*
816  * Helper function places the vm_page on the specified queue.  Generally
817  * speaking only PQ_FREE pages are placed at the head, to allow them to
818  * be allocated sooner rather than later on the assumption that they
819  * are cache-hot.
820  *
821  * The vm_page must be spinlocked.
822  * This function will return with both the page and the queue locked.
823  */
824 static __inline void
825 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
826 {
827 	struct vpgqueues *pq;
828 	u_int *cnt;
829 
830 	KKASSERT(m->queue == PQ_NONE);
831 
832 	if (queue != PQ_NONE) {
833 		vm_page_queues_spin_lock(queue);
834 		pq = &vm_page_queues[queue];
835 		++pq->lcnt;
836 
837 		/*
838 		 * Adjust our pcpu stats.  If a system entity really needs
839 		 * to incorporate the count it will call vmstats_rollup()
840 		 * to roll it all up into the global vmstats strufture.
841 		 */
842 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
843 		atomic_add_int(cnt, 1);
844 
845 		/*
846 		 * PQ_FREE is always handled LIFO style to try to provide
847 		 * cache-hot pages to programs.
848 		 */
849 		m->queue = queue;
850 		if (queue - m->pc == PQ_FREE) {
851 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
852 		} else if (athead) {
853 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
854 		} else {
855 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
856 		}
857 		/* leave the queue spinlocked */
858 	}
859 }
860 
861 /*
862  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
863  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
864  *
865  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
866  * call will be made before returning.
867  *
868  * This function does NOT busy the page and on return the page is not
869  * guaranteed to be available.
870  */
871 void
872 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
873 {
874 	u_int32_t busy_count;
875 
876 	for (;;) {
877 		busy_count = m->busy_count;
878 		cpu_ccfence();
879 
880 		if ((busy_count & PBUSY_LOCKED) == 0 &&
881 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
882 			break;
883 		}
884 		tsleep_interlock(m, 0);
885 		if (atomic_cmpset_int(&m->busy_count, busy_count,
886 				      busy_count | PBUSY_WANTED)) {
887 			atomic_set_int(&m->flags, PG_REFERENCED);
888 			tsleep(m, PINTERLOCKED, msg, 0);
889 			break;
890 		}
891 	}
892 }
893 
894 /*
895  * This calculates and returns a page color given an optional VM object and
896  * either a pindex or an iterator.  We attempt to return a cpu-localized
897  * pg_color that is still roughly 16-way set-associative.  The CPU topology
898  * is used if it was probed.
899  *
900  * The caller may use the returned value to index into e.g. PQ_FREE when
901  * allocating a page in order to nominally obtain pages that are hopefully
902  * already localized to the requesting cpu.  This function is not able to
903  * provide any sort of guarantee of this, but does its best to improve
904  * hardware cache management performance.
905  *
906  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
907  */
908 u_short
909 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
910 {
911 	u_short pg_color;
912 	int phys_id;
913 	int core_id;
914 	int object_pg_color;
915 
916 	phys_id = get_cpu_phys_id(cpuid);
917 	core_id = get_cpu_core_id(cpuid);
918 	object_pg_color = object ? object->pg_color : 0;
919 
920 	if (cpu_topology_phys_ids && cpu_topology_core_ids) {
921 		int grpsize;
922 
923 		/*
924 		 * Break us down by socket and cpu
925 		 */
926 		pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
927 		pg_color += core_id * PQ_L2_SIZE /
928 			    (cpu_topology_core_ids * cpu_topology_phys_ids);
929 
930 		/*
931 		 * Calculate remaining component for object/queue color
932 		 */
933 		grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
934 					cpu_topology_phys_ids);
935 		if (grpsize >= 8) {
936 			pg_color += (pindex + object_pg_color) % grpsize;
937 		} else {
938 			if (grpsize <= 2) {
939 				grpsize = 8;
940 			} else {
941 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
942 				grpsize += grpsize;
943 				if (grpsize < 8)
944 					grpsize += grpsize;
945 			}
946 			pg_color += (pindex + object_pg_color) % grpsize;
947 		}
948 	} else {
949 		/*
950 		 * Unknown topology, distribute things evenly.
951 		 */
952 		pg_color = cpuid * PQ_L2_SIZE / ncpus;
953 		pg_color += pindex + object_pg_color;
954 	}
955 	return (pg_color & PQ_L2_MASK);
956 }
957 
958 /*
959  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
960  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
961  */
962 void
963 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
964 				     int also_m_busy, const char *msg
965 				     VM_PAGE_DEBUG_ARGS)
966 {
967 	u_int32_t busy_count;
968 
969 	for (;;) {
970 		busy_count = m->busy_count;
971 		cpu_ccfence();
972 		if (busy_count & PBUSY_LOCKED) {
973 			tsleep_interlock(m, 0);
974 			if (atomic_cmpset_int(&m->busy_count, busy_count,
975 					  busy_count | PBUSY_WANTED)) {
976 				atomic_set_int(&m->flags, PG_REFERENCED);
977 				tsleep(m, PINTERLOCKED, msg, 0);
978 			}
979 		} else if (also_m_busy && busy_count) {
980 			tsleep_interlock(m, 0);
981 			if (atomic_cmpset_int(&m->busy_count, busy_count,
982 					  busy_count | PBUSY_WANTED)) {
983 				atomic_set_int(&m->flags, PG_REFERENCED);
984 				tsleep(m, PINTERLOCKED, msg, 0);
985 			}
986 		} else {
987 			if (atomic_cmpset_int(&m->busy_count, busy_count,
988 					      busy_count | PBUSY_LOCKED)) {
989 #ifdef VM_PAGE_DEBUG
990 				m->busy_func = func;
991 				m->busy_line = lineno;
992 #endif
993 				break;
994 			}
995 		}
996 	}
997 }
998 
999 /*
1000  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1001  * m->busy_count is also 0.
1002  *
1003  * Returns non-zero on failure.
1004  */
1005 int
1006 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1007 				    VM_PAGE_DEBUG_ARGS)
1008 {
1009 	u_int32_t busy_count;
1010 
1011 	for (;;) {
1012 		busy_count = m->busy_count;
1013 		cpu_ccfence();
1014 		if (busy_count & PBUSY_LOCKED)
1015 			return TRUE;
1016 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1017 			return TRUE;
1018 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1019 				      busy_count | PBUSY_LOCKED)) {
1020 #ifdef VM_PAGE_DEBUG
1021 				m->busy_func = func;
1022 				m->busy_line = lineno;
1023 #endif
1024 			return FALSE;
1025 		}
1026 	}
1027 }
1028 
1029 /*
1030  * Clear the BUSY flag and return non-zero to indicate to the caller
1031  * that a wakeup() should be performed.
1032  *
1033  * The vm_page must be spinlocked and will remain spinlocked on return.
1034  * The related queue must NOT be spinlocked (which could deadlock us).
1035  *
1036  * (inline version)
1037  */
1038 static __inline
1039 int
1040 _vm_page_wakeup(vm_page_t m)
1041 {
1042 	u_int32_t busy_count;
1043 
1044 	for (;;) {
1045 		busy_count = m->busy_count;
1046 		cpu_ccfence();
1047 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1048 				      busy_count &
1049 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1050 			break;
1051 		}
1052 	}
1053 	return((int)(busy_count & PBUSY_WANTED));
1054 }
1055 
1056 /*
1057  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1058  * is typically the last call you make on a page before moving onto
1059  * other things.
1060  */
1061 void
1062 vm_page_wakeup(vm_page_t m)
1063 {
1064         KASSERT(m->busy_count & PBUSY_LOCKED,
1065 		("vm_page_wakeup: page not busy!!!"));
1066 	vm_page_spin_lock(m);
1067 	if (_vm_page_wakeup(m)) {
1068 		vm_page_spin_unlock(m);
1069 		wakeup(m);
1070 	} else {
1071 		vm_page_spin_unlock(m);
1072 	}
1073 }
1074 
1075 /*
1076  * Holding a page keeps it from being reused.  Other parts of the system
1077  * can still disassociate the page from its current object and free it, or
1078  * perform read or write I/O on it and/or otherwise manipulate the page,
1079  * but if the page is held the VM system will leave the page and its data
1080  * intact and not reuse the page for other purposes until the last hold
1081  * reference is released.  (see vm_page_wire() if you want to prevent the
1082  * page from being disassociated from its object too).
1083  *
1084  * The caller must still validate the contents of the page and, if necessary,
1085  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1086  * before manipulating the page.
1087  *
1088  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1089  */
1090 void
1091 vm_page_hold(vm_page_t m)
1092 {
1093 	vm_page_spin_lock(m);
1094 	atomic_add_int(&m->hold_count, 1);
1095 	if (m->queue - m->pc == PQ_FREE) {
1096 		_vm_page_queue_spin_lock(m);
1097 		_vm_page_rem_queue_spinlocked(m);
1098 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1099 		_vm_page_queue_spin_unlock(m);
1100 	}
1101 	vm_page_spin_unlock(m);
1102 }
1103 
1104 /*
1105  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1106  * it was freed while held and must be moved back to the FREE queue.
1107  */
1108 void
1109 vm_page_unhold(vm_page_t m)
1110 {
1111 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1112 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1113 		 m, m->hold_count, m->queue - m->pc));
1114 	vm_page_spin_lock(m);
1115 	atomic_add_int(&m->hold_count, -1);
1116 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1117 		_vm_page_queue_spin_lock(m);
1118 		_vm_page_rem_queue_spinlocked(m);
1119 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1120 		_vm_page_queue_spin_unlock(m);
1121 	}
1122 	vm_page_spin_unlock(m);
1123 }
1124 
1125 /*
1126  *	vm_page_getfake:
1127  *
1128  *	Create a fictitious page with the specified physical address and
1129  *	memory attribute.  The memory attribute is the only the machine-
1130  *	dependent aspect of a fictitious page that must be initialized.
1131  */
1132 
1133 void
1134 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1135 {
1136 
1137 	if ((m->flags & PG_FICTITIOUS) != 0) {
1138 		/*
1139 		 * The page's memattr might have changed since the
1140 		 * previous initialization.  Update the pmap to the
1141 		 * new memattr.
1142 		 */
1143 		goto memattr;
1144 	}
1145 	m->phys_addr = paddr;
1146 	m->queue = PQ_NONE;
1147 	/* Fictitious pages don't use "segind". */
1148 	/* Fictitious pages don't use "order" or "pool". */
1149 	m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1150 	m->busy_count = PBUSY_LOCKED;
1151 	m->wire_count = 1;
1152 	spin_init(&m->spin, "fake_page");
1153 	pmap_page_init(m);
1154 memattr:
1155 	pmap_page_set_memattr(m, memattr);
1156 }
1157 
1158 /*
1159  * Inserts the given vm_page into the object and object list.
1160  *
1161  * The pagetables are not updated but will presumably fault the page
1162  * in if necessary, or if a kernel page the caller will at some point
1163  * enter the page into the kernel's pmap.  We are not allowed to block
1164  * here so we *can't* do this anyway.
1165  *
1166  * This routine may not block.
1167  * This routine must be called with the vm_object held.
1168  * This routine must be called with a critical section held.
1169  *
1170  * This routine returns TRUE if the page was inserted into the object
1171  * successfully, and FALSE if the page already exists in the object.
1172  */
1173 int
1174 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1175 {
1176 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1177 	if (m->object != NULL)
1178 		panic("vm_page_insert: already inserted");
1179 
1180 	atomic_add_int(&object->generation, 1);
1181 
1182 	/*
1183 	 * Record the object/offset pair in this page and add the
1184 	 * pv_list_count of the page to the object.
1185 	 *
1186 	 * The vm_page spin lock is required for interactions with the pmap.
1187 	 */
1188 	vm_page_spin_lock(m);
1189 	m->object = object;
1190 	m->pindex = pindex;
1191 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1192 		m->object = NULL;
1193 		m->pindex = 0;
1194 		vm_page_spin_unlock(m);
1195 		return FALSE;
1196 	}
1197 	++object->resident_page_count;
1198 	++mycpu->gd_vmtotal.t_rm;
1199 	vm_page_spin_unlock(m);
1200 
1201 	/*
1202 	 * Since we are inserting a new and possibly dirty page,
1203 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1204 	 */
1205 	if ((m->valid & m->dirty) ||
1206 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1207 		vm_object_set_writeable_dirty(object);
1208 
1209 	/*
1210 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1211 	 */
1212 	swap_pager_page_inserted(m);
1213 	return TRUE;
1214 }
1215 
1216 /*
1217  * Removes the given vm_page_t from the (object,index) table
1218  *
1219  * The underlying pmap entry (if any) is NOT removed here.
1220  * This routine may not block.
1221  *
1222  * The page must be BUSY and will remain BUSY on return.
1223  * No other requirements.
1224  *
1225  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1226  *	 it busy.
1227  */
1228 void
1229 vm_page_remove(vm_page_t m)
1230 {
1231 	vm_object_t object;
1232 
1233 	if (m->object == NULL) {
1234 		return;
1235 	}
1236 
1237 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1238 		panic("vm_page_remove: page not busy");
1239 
1240 	object = m->object;
1241 
1242 	vm_object_hold(object);
1243 
1244 	/*
1245 	 * Remove the page from the object and update the object.
1246 	 *
1247 	 * The vm_page spin lock is required for interactions with the pmap.
1248 	 */
1249 	vm_page_spin_lock(m);
1250 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1251 	--object->resident_page_count;
1252 	--mycpu->gd_vmtotal.t_rm;
1253 	m->object = NULL;
1254 	atomic_add_int(&object->generation, 1);
1255 	vm_page_spin_unlock(m);
1256 
1257 	vm_object_drop(object);
1258 }
1259 
1260 /*
1261  * Locate and return the page at (object, pindex), or NULL if the
1262  * page could not be found.
1263  *
1264  * The caller must hold the vm_object token.
1265  */
1266 vm_page_t
1267 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1268 {
1269 	vm_page_t m;
1270 
1271 	/*
1272 	 * Search the hash table for this object/offset pair
1273 	 */
1274 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1275 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1276 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1277 	return(m);
1278 }
1279 
1280 vm_page_t
1281 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1282 					    vm_pindex_t pindex,
1283 					    int also_m_busy, const char *msg
1284 					    VM_PAGE_DEBUG_ARGS)
1285 {
1286 	u_int32_t busy_count;
1287 	vm_page_t m;
1288 
1289 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1290 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1291 	while (m) {
1292 		KKASSERT(m->object == object && m->pindex == pindex);
1293 		busy_count = m->busy_count;
1294 		cpu_ccfence();
1295 		if (busy_count & PBUSY_LOCKED) {
1296 			tsleep_interlock(m, 0);
1297 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1298 					  busy_count | PBUSY_WANTED)) {
1299 				atomic_set_int(&m->flags, PG_REFERENCED);
1300 				tsleep(m, PINTERLOCKED, msg, 0);
1301 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1302 							      pindex);
1303 			}
1304 		} else if (also_m_busy && busy_count) {
1305 			tsleep_interlock(m, 0);
1306 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1307 					  busy_count | PBUSY_WANTED)) {
1308 				atomic_set_int(&m->flags, PG_REFERENCED);
1309 				tsleep(m, PINTERLOCKED, msg, 0);
1310 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1311 							      pindex);
1312 			}
1313 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1314 					     busy_count | PBUSY_LOCKED)) {
1315 #ifdef VM_PAGE_DEBUG
1316 			m->busy_func = func;
1317 			m->busy_line = lineno;
1318 #endif
1319 			break;
1320 		}
1321 	}
1322 	return m;
1323 }
1324 
1325 /*
1326  * Attempt to lookup and busy a page.
1327  *
1328  * Returns NULL if the page could not be found
1329  *
1330  * Returns a vm_page and error == TRUE if the page exists but could not
1331  * be busied.
1332  *
1333  * Returns a vm_page and error == FALSE on success.
1334  */
1335 vm_page_t
1336 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1337 					   vm_pindex_t pindex,
1338 					   int also_m_busy, int *errorp
1339 					   VM_PAGE_DEBUG_ARGS)
1340 {
1341 	u_int32_t busy_count;
1342 	vm_page_t m;
1343 
1344 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1345 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1346 	*errorp = FALSE;
1347 	while (m) {
1348 		KKASSERT(m->object == object && m->pindex == pindex);
1349 		busy_count = m->busy_count;
1350 		cpu_ccfence();
1351 		if (busy_count & PBUSY_LOCKED) {
1352 			*errorp = TRUE;
1353 			break;
1354 		}
1355 		if (also_m_busy && busy_count) {
1356 			*errorp = TRUE;
1357 			break;
1358 		}
1359 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1360 				      busy_count | PBUSY_LOCKED)) {
1361 #ifdef VM_PAGE_DEBUG
1362 			m->busy_func = func;
1363 			m->busy_line = lineno;
1364 #endif
1365 			break;
1366 		}
1367 	}
1368 	return m;
1369 }
1370 
1371 /*
1372  * Returns a page that is only soft-busied for use by the caller in
1373  * a read-only fashion.  Returns NULL if the page could not be found,
1374  * the soft busy could not be obtained, or the page data is invalid.
1375  */
1376 vm_page_t
1377 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1378 			 int pgoff, int pgbytes)
1379 {
1380 	vm_page_t m;
1381 
1382 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1383 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1384 	if (m) {
1385 		if ((m->valid != VM_PAGE_BITS_ALL &&
1386 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1387 		    (m->flags & PG_FICTITIOUS)) {
1388 			m = NULL;
1389 		} else if (vm_page_sbusy_try(m)) {
1390 			m = NULL;
1391 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1392 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1393 			   (m->flags & PG_FICTITIOUS)) {
1394 			vm_page_sbusy_drop(m);
1395 			m = NULL;
1396 		}
1397 	}
1398 	return m;
1399 }
1400 
1401 /*
1402  * Caller must hold the related vm_object
1403  */
1404 vm_page_t
1405 vm_page_next(vm_page_t m)
1406 {
1407 	vm_page_t next;
1408 
1409 	next = vm_page_rb_tree_RB_NEXT(m);
1410 	if (next && next->pindex != m->pindex + 1)
1411 		next = NULL;
1412 	return (next);
1413 }
1414 
1415 /*
1416  * vm_page_rename()
1417  *
1418  * Move the given vm_page from its current object to the specified
1419  * target object/offset.  The page must be busy and will remain so
1420  * on return.
1421  *
1422  * new_object must be held.
1423  * This routine might block. XXX ?
1424  *
1425  * NOTE: Swap associated with the page must be invalidated by the move.  We
1426  *       have to do this for several reasons:  (1) we aren't freeing the
1427  *       page, (2) we are dirtying the page, (3) the VM system is probably
1428  *       moving the page from object A to B, and will then later move
1429  *       the backing store from A to B and we can't have a conflict.
1430  *
1431  * NOTE: We *always* dirty the page.  It is necessary both for the
1432  *       fact that we moved it, and because we may be invalidating
1433  *	 swap.  If the page is on the cache, we have to deactivate it
1434  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1435  *	 on the cache.
1436  */
1437 void
1438 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1439 {
1440 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1441 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1442 	if (m->object) {
1443 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1444 		vm_page_remove(m);
1445 	}
1446 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1447 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1448 		      new_object, new_pindex);
1449 	}
1450 	if (m->queue - m->pc == PQ_CACHE)
1451 		vm_page_deactivate(m);
1452 	vm_page_dirty(m);
1453 }
1454 
1455 /*
1456  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1457  * is to remain BUSYied by the caller.
1458  *
1459  * This routine may not block.
1460  */
1461 void
1462 vm_page_unqueue_nowakeup(vm_page_t m)
1463 {
1464 	vm_page_and_queue_spin_lock(m);
1465 	(void)_vm_page_rem_queue_spinlocked(m);
1466 	vm_page_spin_unlock(m);
1467 }
1468 
1469 /*
1470  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1471  * if necessary.
1472  *
1473  * This routine may not block.
1474  */
1475 void
1476 vm_page_unqueue(vm_page_t m)
1477 {
1478 	u_short queue;
1479 
1480 	vm_page_and_queue_spin_lock(m);
1481 	queue = _vm_page_rem_queue_spinlocked(m);
1482 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1483 		vm_page_spin_unlock(m);
1484 		pagedaemon_wakeup();
1485 	} else {
1486 		vm_page_spin_unlock(m);
1487 	}
1488 }
1489 
1490 /*
1491  * vm_page_list_find()
1492  *
1493  * Find a page on the specified queue with color optimization.
1494  *
1495  * The page coloring optimization attempts to locate a page that does
1496  * not overload other nearby pages in the object in the cpu's L1 or L2
1497  * caches.  We need this optimization because cpu caches tend to be
1498  * physical caches, while object spaces tend to be virtual.
1499  *
1500  * The page coloring optimization also, very importantly, tries to localize
1501  * memory to cpus and physical sockets.
1502  *
1503  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1504  * and the algorithm is adjusted to localize allocations on a per-core basis.
1505  * This is done by 'twisting' the colors.
1506  *
1507  * The page is returned spinlocked and removed from its queue (it will
1508  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1509  * is responsible for dealing with the busy-page case (usually by
1510  * deactivating the page and looping).
1511  *
1512  * NOTE:  This routine is carefully inlined.  A non-inlined version
1513  *	  is available for outside callers but the only critical path is
1514  *	  from within this source file.
1515  *
1516  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1517  *	  represent stable storage, allowing us to order our locks vm_page
1518  *	  first, then queue.
1519  */
1520 static __inline
1521 vm_page_t
1522 _vm_page_list_find(int basequeue, int index)
1523 {
1524 	vm_page_t m;
1525 
1526 	for (;;) {
1527 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1528 		if (m == NULL) {
1529 			m = _vm_page_list_find2(basequeue, index);
1530 			return(m);
1531 		}
1532 		vm_page_and_queue_spin_lock(m);
1533 		if (m->queue == basequeue + index) {
1534 			_vm_page_rem_queue_spinlocked(m);
1535 			/* vm_page_t spin held, no queue spin */
1536 			break;
1537 		}
1538 		vm_page_and_queue_spin_unlock(m);
1539 	}
1540 	return(m);
1541 }
1542 
1543 /*
1544  * If we could not find the page in the desired queue try to find it in
1545  * a nearby queue.
1546  */
1547 static vm_page_t
1548 _vm_page_list_find2(int basequeue, int index)
1549 {
1550 	struct vpgqueues *pq;
1551 	vm_page_t m = NULL;
1552 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1553 	int pqi;
1554 	int i;
1555 
1556 	index &= PQ_L2_MASK;
1557 	pq = &vm_page_queues[basequeue];
1558 
1559 	/*
1560 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1561 	 * else fails (PQ_L2_MASK which is 255).
1562 	 */
1563 	do {
1564 		pqmask = (pqmask << 1) | 1;
1565 		for (i = 0; i <= pqmask; ++i) {
1566 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1567 			m = TAILQ_FIRST(&pq[pqi].pl);
1568 			if (m) {
1569 				_vm_page_and_queue_spin_lock(m);
1570 				if (m->queue == basequeue + pqi) {
1571 					_vm_page_rem_queue_spinlocked(m);
1572 					return(m);
1573 				}
1574 				_vm_page_and_queue_spin_unlock(m);
1575 				--i;
1576 				continue;
1577 			}
1578 		}
1579 	} while (pqmask != PQ_L2_MASK);
1580 
1581 	return(m);
1582 }
1583 
1584 /*
1585  * Returns a vm_page candidate for allocation.  The page is not busied so
1586  * it can move around.  The caller must busy the page (and typically
1587  * deactivate it if it cannot be busied!)
1588  *
1589  * Returns a spinlocked vm_page that has been removed from its queue.
1590  */
1591 vm_page_t
1592 vm_page_list_find(int basequeue, int index)
1593 {
1594 	return(_vm_page_list_find(basequeue, index));
1595 }
1596 
1597 /*
1598  * Find a page on the cache queue with color optimization, remove it
1599  * from the queue, and busy it.  The returned page will not be spinlocked.
1600  *
1601  * A candidate failure will be deactivated.  Candidates can fail due to
1602  * being busied by someone else, in which case they will be deactivated.
1603  *
1604  * This routine may not block.
1605  *
1606  */
1607 static vm_page_t
1608 vm_page_select_cache(u_short pg_color)
1609 {
1610 	vm_page_t m;
1611 
1612 	for (;;) {
1613 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1614 		if (m == NULL)
1615 			break;
1616 		/*
1617 		 * (m) has been removed from its queue and spinlocked
1618 		 */
1619 		if (vm_page_busy_try(m, TRUE)) {
1620 			_vm_page_deactivate_locked(m, 0);
1621 			vm_page_spin_unlock(m);
1622 		} else {
1623 			/*
1624 			 * We successfully busied the page
1625 			 */
1626 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1627 			    m->hold_count == 0 &&
1628 			    m->wire_count == 0 &&
1629 			    (m->dirty & m->valid) == 0) {
1630 				vm_page_spin_unlock(m);
1631 				pagedaemon_wakeup();
1632 				return(m);
1633 			}
1634 
1635 			/*
1636 			 * The page cannot be recycled, deactivate it.
1637 			 */
1638 			_vm_page_deactivate_locked(m, 0);
1639 			if (_vm_page_wakeup(m)) {
1640 				vm_page_spin_unlock(m);
1641 				wakeup(m);
1642 			} else {
1643 				vm_page_spin_unlock(m);
1644 			}
1645 		}
1646 	}
1647 	return (m);
1648 }
1649 
1650 /*
1651  * Find a free page.  We attempt to inline the nominal case and fall back
1652  * to _vm_page_select_free() otherwise.  A busied page is removed from
1653  * the queue and returned.
1654  *
1655  * This routine may not block.
1656  */
1657 static __inline vm_page_t
1658 vm_page_select_free(u_short pg_color)
1659 {
1660 	vm_page_t m;
1661 
1662 	for (;;) {
1663 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1664 		if (m == NULL)
1665 			break;
1666 		if (vm_page_busy_try(m, TRUE)) {
1667 			/*
1668 			 * Various mechanisms such as a pmap_collect can
1669 			 * result in a busy page on the free queue.  We
1670 			 * have to move the page out of the way so we can
1671 			 * retry the allocation.  If the other thread is not
1672 			 * allocating the page then m->valid will remain 0 and
1673 			 * the pageout daemon will free the page later on.
1674 			 *
1675 			 * Since we could not busy the page, however, we
1676 			 * cannot make assumptions as to whether the page
1677 			 * will be allocated by the other thread or not,
1678 			 * so all we can do is deactivate it to move it out
1679 			 * of the way.  In particular, if the other thread
1680 			 * wires the page it may wind up on the inactive
1681 			 * queue and the pageout daemon will have to deal
1682 			 * with that case too.
1683 			 */
1684 			_vm_page_deactivate_locked(m, 0);
1685 			vm_page_spin_unlock(m);
1686 		} else {
1687 			/*
1688 			 * Theoretically if we are able to busy the page
1689 			 * atomic with the queue removal (using the vm_page
1690 			 * lock) nobody else should be able to mess with the
1691 			 * page before us.
1692 			 */
1693 			KKASSERT((m->flags & (PG_UNMANAGED |
1694 					      PG_NEED_COMMIT)) == 0);
1695 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1696 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1697 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1698 			KKASSERT(m->wire_count == 0);
1699 			vm_page_spin_unlock(m);
1700 			pagedaemon_wakeup();
1701 
1702 			/* return busied and removed page */
1703 			return(m);
1704 		}
1705 	}
1706 	return(m);
1707 }
1708 
1709 /*
1710  * vm_page_alloc()
1711  *
1712  * Allocate and return a memory cell associated with this VM object/offset
1713  * pair.  If object is NULL an unassociated page will be allocated.
1714  *
1715  * The returned page will be busied and removed from its queues.  This
1716  * routine can block and may return NULL if a race occurs and the page
1717  * is found to already exist at the specified (object, pindex).
1718  *
1719  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1720  *	VM_ALLOC_QUICK		like normal but cannot use cache
1721  *	VM_ALLOC_SYSTEM		greater free drain
1722  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1723  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1724  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1725  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1726  *				(see vm_page_grab())
1727  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1728  *
1729  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
1730  *
1731  * The object must be held if not NULL
1732  * This routine may not block
1733  *
1734  * Additional special handling is required when called from an interrupt
1735  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1736  * in this case.
1737  */
1738 vm_page_t
1739 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1740 {
1741 	globaldata_t gd;
1742 	vm_object_t obj;
1743 	vm_page_t m;
1744 	u_short pg_color;
1745 	int cpuid_local;
1746 
1747 #if 0
1748 	/*
1749 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1750 	 * and pre-zerod for us.
1751 	 */
1752 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1753 		crit_enter_gd(gd);
1754 		if (gd->gd_vmpg_count) {
1755 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1756 			crit_exit_gd(gd);
1757 			goto done;
1758                 }
1759 		crit_exit_gd(gd);
1760         }
1761 #endif
1762 	m = NULL;
1763 
1764 	/*
1765 	 * CPU LOCALIZATION
1766 	 *
1767 	 * CPU localization algorithm.  Break the page queues up by physical
1768 	 * id and core id (note that two cpu threads will have the same core
1769 	 * id, and core_id != gd_cpuid).
1770 	 *
1771 	 * This is nowhere near perfect, for example the last pindex in a
1772 	 * subgroup will overflow into the next cpu or package.  But this
1773 	 * should get us good page reuse locality in heavy mixed loads.
1774 	 *
1775 	 * (may be executed before the APs are started, so other GDs might
1776 	 *  not exist!)
1777 	 */
1778 	if (page_req & VM_ALLOC_CPU_SPEC)
1779 		cpuid_local = VM_ALLOC_GETCPU(page_req);
1780 	else
1781 		cpuid_local = mycpu->gd_cpuid;
1782 
1783 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1784 
1785 	KKASSERT(page_req &
1786 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1787 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1788 
1789 	/*
1790 	 * Certain system threads (pageout daemon, buf_daemon's) are
1791 	 * allowed to eat deeper into the free page list.
1792 	 */
1793 	if (curthread->td_flags & TDF_SYSTHREAD)
1794 		page_req |= VM_ALLOC_SYSTEM;
1795 
1796 	/*
1797 	 * Impose various limitations.  Note that the v_free_reserved test
1798 	 * must match the opposite of vm_page_count_target() to avoid
1799 	 * livelocks, be careful.
1800 	 */
1801 loop:
1802 	gd = mycpu;
1803 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1804 	    ((page_req & VM_ALLOC_INTERRUPT) &&
1805 	     gd->gd_vmstats.v_free_count > 0) ||
1806 	    ((page_req & VM_ALLOC_SYSTEM) &&
1807 	     gd->gd_vmstats.v_cache_count == 0 &&
1808 		gd->gd_vmstats.v_free_count >
1809 		gd->gd_vmstats.v_interrupt_free_min)
1810 	) {
1811 		/*
1812 		 * The free queue has sufficient free pages to take one out.
1813 		 */
1814 		m = vm_page_select_free(pg_color);
1815 	} else if (page_req & VM_ALLOC_NORMAL) {
1816 		/*
1817 		 * Allocatable from the cache (non-interrupt only).  On
1818 		 * success, we must free the page and try again, thus
1819 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1820 		 */
1821 #ifdef INVARIANTS
1822 		if (curthread->td_preempted) {
1823 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1824 				" cache page from preempting interrupt\n");
1825 			m = NULL;
1826 		} else {
1827 			m = vm_page_select_cache(pg_color);
1828 		}
1829 #else
1830 		m = vm_page_select_cache(pg_color);
1831 #endif
1832 		/*
1833 		 * On success move the page into the free queue and loop.
1834 		 *
1835 		 * Only do this if we can safely acquire the vm_object lock,
1836 		 * because this is effectively a random page and the caller
1837 		 * might be holding the lock shared, we don't want to
1838 		 * deadlock.
1839 		 */
1840 		if (m != NULL) {
1841 			KASSERT(m->dirty == 0,
1842 				("Found dirty cache page %p", m));
1843 			if ((obj = m->object) != NULL) {
1844 				if (vm_object_hold_try(obj)) {
1845 					vm_page_protect(m, VM_PROT_NONE);
1846 					vm_page_free(m);
1847 					/* m->object NULL here */
1848 					vm_object_drop(obj);
1849 				} else {
1850 					vm_page_deactivate(m);
1851 					vm_page_wakeup(m);
1852 				}
1853 			} else {
1854 				vm_page_protect(m, VM_PROT_NONE);
1855 				vm_page_free(m);
1856 			}
1857 			goto loop;
1858 		}
1859 
1860 		/*
1861 		 * On failure return NULL
1862 		 */
1863 		atomic_add_int(&vm_pageout_deficit, 1);
1864 		pagedaemon_wakeup();
1865 		return (NULL);
1866 	} else {
1867 		/*
1868 		 * No pages available, wakeup the pageout daemon and give up.
1869 		 */
1870 		atomic_add_int(&vm_pageout_deficit, 1);
1871 		pagedaemon_wakeup();
1872 		return (NULL);
1873 	}
1874 
1875 	/*
1876 	 * v_free_count can race so loop if we don't find the expected
1877 	 * page.
1878 	 */
1879 	if (m == NULL) {
1880 		vmstats_rollup();
1881 		goto loop;
1882 	}
1883 
1884 	/*
1885 	 * Good page found.  The page has already been busied for us and
1886 	 * removed from its queues.
1887 	 */
1888 	KASSERT(m->dirty == 0,
1889 		("vm_page_alloc: free/cache page %p was dirty", m));
1890 	KKASSERT(m->queue == PQ_NONE);
1891 
1892 #if 0
1893 done:
1894 #endif
1895 	/*
1896 	 * Initialize the structure, inheriting some flags but clearing
1897 	 * all the rest.  The page has already been busied for us.
1898 	 */
1899 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1900 
1901 	KKASSERT(m->wire_count == 0);
1902 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
1903 	m->act_count = 0;
1904 	m->valid = 0;
1905 
1906 	/*
1907 	 * Caller must be holding the object lock (asserted by
1908 	 * vm_page_insert()).
1909 	 *
1910 	 * NOTE: Inserting a page here does not insert it into any pmaps
1911 	 *	 (which could cause us to block allocating memory).
1912 	 *
1913 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1914 	 *	 can be used by the caller for any purpose.
1915 	 */
1916 	if (object) {
1917 		if (vm_page_insert(m, object, pindex) == FALSE) {
1918 			vm_page_free(m);
1919 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1920 				panic("PAGE RACE %p[%ld]/%p",
1921 				      object, (long)pindex, m);
1922 			m = NULL;
1923 		}
1924 	} else {
1925 		m->pindex = pindex;
1926 	}
1927 
1928 	/*
1929 	 * Don't wakeup too often - wakeup the pageout daemon when
1930 	 * we would be nearly out of memory.
1931 	 */
1932 	pagedaemon_wakeup();
1933 
1934 	/*
1935 	 * A BUSY page is returned.
1936 	 */
1937 	return (m);
1938 }
1939 
1940 /*
1941  * Returns number of pages available in our DMA memory reserve
1942  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1943  */
1944 vm_size_t
1945 vm_contig_avail_pages(void)
1946 {
1947 	alist_blk_t blk;
1948 	alist_blk_t count;
1949 	alist_blk_t bfree;
1950 	spin_lock(&vm_contig_spin);
1951 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1952 	spin_unlock(&vm_contig_spin);
1953 
1954 	return bfree;
1955 }
1956 
1957 /*
1958  * Attempt to allocate contiguous physical memory with the specified
1959  * requirements.
1960  */
1961 vm_page_t
1962 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1963 		     unsigned long alignment, unsigned long boundary,
1964 		     unsigned long size, vm_memattr_t memattr)
1965 {
1966 	alist_blk_t blk;
1967 	vm_page_t m;
1968 	int i;
1969 
1970 	alignment >>= PAGE_SHIFT;
1971 	if (alignment == 0)
1972 		alignment = 1;
1973 	boundary >>= PAGE_SHIFT;
1974 	if (boundary == 0)
1975 		boundary = 1;
1976 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1977 
1978 	spin_lock(&vm_contig_spin);
1979 	blk = alist_alloc(&vm_contig_alist, 0, size);
1980 	if (blk == ALIST_BLOCK_NONE) {
1981 		spin_unlock(&vm_contig_spin);
1982 		if (bootverbose) {
1983 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1984 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1985 		}
1986 		return(NULL);
1987 	}
1988 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1989 		alist_free(&vm_contig_alist, blk, size);
1990 		spin_unlock(&vm_contig_spin);
1991 		if (bootverbose) {
1992 			kprintf("vm_page_alloc_contig: %ldk high "
1993 				"%016jx failed\n",
1994 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1995 				(intmax_t)high);
1996 		}
1997 		return(NULL);
1998 	}
1999 	spin_unlock(&vm_contig_spin);
2000 	if (vm_contig_verbose) {
2001 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2002 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2003 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2004 	}
2005 
2006 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2007 	if (memattr != VM_MEMATTR_DEFAULT)
2008 		for (i = 0;i < size;i++)
2009 			pmap_page_set_memattr(&m[i], memattr);
2010 	return m;
2011 }
2012 
2013 /*
2014  * Free contiguously allocated pages.  The pages will be wired but not busy.
2015  * When freeing to the alist we leave them wired and not busy.
2016  */
2017 void
2018 vm_page_free_contig(vm_page_t m, unsigned long size)
2019 {
2020 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2021 	vm_pindex_t start = pa >> PAGE_SHIFT;
2022 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2023 
2024 	if (vm_contig_verbose) {
2025 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2026 			(intmax_t)pa, size / 1024);
2027 	}
2028 	if (pa < vm_low_phys_reserved) {
2029 		KKASSERT(pa + size <= vm_low_phys_reserved);
2030 		spin_lock(&vm_contig_spin);
2031 		alist_free(&vm_contig_alist, start, pages);
2032 		spin_unlock(&vm_contig_spin);
2033 	} else {
2034 		while (pages) {
2035 			vm_page_busy_wait(m, FALSE, "cpgfr");
2036 			vm_page_unwire(m, 0);
2037 			vm_page_free(m);
2038 			--pages;
2039 			++m;
2040 		}
2041 
2042 	}
2043 }
2044 
2045 
2046 /*
2047  * Wait for sufficient free memory for nominal heavy memory use kernel
2048  * operations.
2049  *
2050  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2051  *	     will trivially deadlock the system.
2052  */
2053 void
2054 vm_wait_nominal(void)
2055 {
2056 	while (vm_page_count_min(0))
2057 		vm_wait(0);
2058 }
2059 
2060 /*
2061  * Test if vm_wait_nominal() would block.
2062  */
2063 int
2064 vm_test_nominal(void)
2065 {
2066 	if (vm_page_count_min(0))
2067 		return(1);
2068 	return(0);
2069 }
2070 
2071 /*
2072  * Block until free pages are available for allocation, called in various
2073  * places before memory allocations.
2074  *
2075  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2076  * more generous then that.
2077  */
2078 void
2079 vm_wait(int timo)
2080 {
2081 	/*
2082 	 * never wait forever
2083 	 */
2084 	if (timo == 0)
2085 		timo = hz;
2086 	lwkt_gettoken(&vm_token);
2087 
2088 	if (curthread == pagethread ||
2089 	    curthread == emergpager) {
2090 		/*
2091 		 * The pageout daemon itself needs pages, this is bad.
2092 		 */
2093 		if (vm_page_count_min(0)) {
2094 			vm_pageout_pages_needed = 1;
2095 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2096 		}
2097 	} else {
2098 		/*
2099 		 * Wakeup the pageout daemon if necessary and wait.
2100 		 *
2101 		 * Do not wait indefinitely for the target to be reached,
2102 		 * as load might prevent it from being reached any time soon.
2103 		 * But wait a little to try to slow down page allocations
2104 		 * and to give more important threads (the pagedaemon)
2105 		 * allocation priority.
2106 		 */
2107 		if (vm_page_count_target()) {
2108 			if (vm_pages_needed == 0) {
2109 				vm_pages_needed = 1;
2110 				wakeup(&vm_pages_needed);
2111 			}
2112 			++vm_pages_waiting;	/* SMP race ok */
2113 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2114 		}
2115 	}
2116 	lwkt_reltoken(&vm_token);
2117 }
2118 
2119 /*
2120  * Block until free pages are available for allocation
2121  *
2122  * Called only from vm_fault so that processes page faulting can be
2123  * easily tracked.
2124  */
2125 void
2126 vm_wait_pfault(void)
2127 {
2128 	/*
2129 	 * Wakeup the pageout daemon if necessary and wait.
2130 	 *
2131 	 * Do not wait indefinitely for the target to be reached,
2132 	 * as load might prevent it from being reached any time soon.
2133 	 * But wait a little to try to slow down page allocations
2134 	 * and to give more important threads (the pagedaemon)
2135 	 * allocation priority.
2136 	 */
2137 	if (vm_page_count_min(0)) {
2138 		lwkt_gettoken(&vm_token);
2139 		while (vm_page_count_severe()) {
2140 			if (vm_page_count_target()) {
2141 				thread_t td;
2142 
2143 				if (vm_pages_needed == 0) {
2144 					vm_pages_needed = 1;
2145 					wakeup(&vm_pages_needed);
2146 				}
2147 				++vm_pages_waiting;	/* SMP race ok */
2148 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2149 
2150 				/*
2151 				 * Do not stay stuck in the loop if the system is trying
2152 				 * to kill the process.
2153 				 */
2154 				td = curthread;
2155 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2156 					break;
2157 			}
2158 		}
2159 		lwkt_reltoken(&vm_token);
2160 	}
2161 }
2162 
2163 /*
2164  * Put the specified page on the active list (if appropriate).  Ensure
2165  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2166  *
2167  * The caller should be holding the page busied ? XXX
2168  * This routine may not block.
2169  */
2170 void
2171 vm_page_activate(vm_page_t m)
2172 {
2173 	u_short oqueue;
2174 
2175 	vm_page_spin_lock(m);
2176 	if (m->queue - m->pc != PQ_ACTIVE) {
2177 		_vm_page_queue_spin_lock(m);
2178 		oqueue = _vm_page_rem_queue_spinlocked(m);
2179 		/* page is left spinlocked, queue is unlocked */
2180 
2181 		if (oqueue == PQ_CACHE)
2182 			mycpu->gd_cnt.v_reactivated++;
2183 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2184 			if (m->act_count < ACT_INIT)
2185 				m->act_count = ACT_INIT;
2186 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2187 		}
2188 		_vm_page_and_queue_spin_unlock(m);
2189 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2190 			pagedaemon_wakeup();
2191 	} else {
2192 		if (m->act_count < ACT_INIT)
2193 			m->act_count = ACT_INIT;
2194 		vm_page_spin_unlock(m);
2195 	}
2196 }
2197 
2198 /*
2199  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2200  * routine is called when a page has been added to the cache or free
2201  * queues.
2202  *
2203  * This routine may not block.
2204  */
2205 static __inline void
2206 vm_page_free_wakeup(void)
2207 {
2208 	globaldata_t gd = mycpu;
2209 
2210 	/*
2211 	 * If the pageout daemon itself needs pages, then tell it that
2212 	 * there are some free.
2213 	 */
2214 	if (vm_pageout_pages_needed &&
2215 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2216 	    gd->gd_vmstats.v_pageout_free_min
2217 	) {
2218 		vm_pageout_pages_needed = 0;
2219 		wakeup(&vm_pageout_pages_needed);
2220 	}
2221 
2222 	/*
2223 	 * Wakeup processes that are waiting on memory.
2224 	 *
2225 	 * Generally speaking we want to wakeup stuck processes as soon as
2226 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2227 	 * where we can do this.  Wait a bit longer to reduce degenerate
2228 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2229 	 * to make sure the min-check w/hysteresis does not exceed the
2230 	 * normal target.
2231 	 */
2232 	if (vm_pages_waiting) {
2233 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2234 		    !vm_page_count_target()) {
2235 			vm_pages_waiting = 0;
2236 			wakeup(&vmstats.v_free_count);
2237 			++mycpu->gd_cnt.v_ppwakeups;
2238 		}
2239 #if 0
2240 		if (!vm_page_count_target()) {
2241 			/*
2242 			 * Plenty of pages are free, wakeup everyone.
2243 			 */
2244 			vm_pages_waiting = 0;
2245 			wakeup(&vmstats.v_free_count);
2246 			++mycpu->gd_cnt.v_ppwakeups;
2247 		} else if (!vm_page_count_min(0)) {
2248 			/*
2249 			 * Some pages are free, wakeup someone.
2250 			 */
2251 			int wcount = vm_pages_waiting;
2252 			if (wcount > 0)
2253 				--wcount;
2254 			vm_pages_waiting = wcount;
2255 			wakeup_one(&vmstats.v_free_count);
2256 			++mycpu->gd_cnt.v_ppwakeups;
2257 		}
2258 #endif
2259 	}
2260 }
2261 
2262 /*
2263  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2264  * it from its VM object.
2265  *
2266  * The vm_page must be BUSY on entry.  BUSY will be released on
2267  * return (the page will have been freed).
2268  */
2269 void
2270 vm_page_free_toq(vm_page_t m)
2271 {
2272 	mycpu->gd_cnt.v_tfree++;
2273 	KKASSERT((m->flags & PG_MAPPED) == 0);
2274 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2275 
2276 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2277 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2278 			"hold(%d)\n",
2279 			(u_long)m->pindex, m->busy_count, m->hold_count);
2280 		if ((m->queue - m->pc) == PQ_FREE)
2281 			panic("vm_page_free: freeing free page");
2282 		else
2283 			panic("vm_page_free: freeing busy page");
2284 	}
2285 
2286 	/*
2287 	 * Remove from object, spinlock the page and its queues and
2288 	 * remove from any queue.  No queue spinlock will be held
2289 	 * after this section (because the page was removed from any
2290 	 * queue).
2291 	 */
2292 	vm_page_remove(m);
2293 	vm_page_and_queue_spin_lock(m);
2294 	_vm_page_rem_queue_spinlocked(m);
2295 
2296 	/*
2297 	 * No further management of fictitious pages occurs beyond object
2298 	 * and queue removal.
2299 	 */
2300 	if ((m->flags & PG_FICTITIOUS) != 0) {
2301 		vm_page_spin_unlock(m);
2302 		vm_page_wakeup(m);
2303 		return;
2304 	}
2305 
2306 	m->valid = 0;
2307 	vm_page_undirty(m);
2308 
2309 	if (m->wire_count != 0) {
2310 		if (m->wire_count > 1) {
2311 		    panic(
2312 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2313 			m->wire_count, (long)m->pindex);
2314 		}
2315 		panic("vm_page_free: freeing wired page");
2316 	}
2317 
2318 	/*
2319 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2320 	 * Clear the NEED_COMMIT flag
2321 	 */
2322 	if (m->flags & PG_UNMANAGED)
2323 		vm_page_flag_clear(m, PG_UNMANAGED);
2324 	if (m->flags & PG_NEED_COMMIT)
2325 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2326 
2327 	if (m->hold_count != 0) {
2328 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2329 	} else {
2330 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2331 	}
2332 
2333 	/*
2334 	 * This sequence allows us to clear BUSY while still holding
2335 	 * its spin lock, which reduces contention vs allocators.  We
2336 	 * must not leave the queue locked or _vm_page_wakeup() may
2337 	 * deadlock.
2338 	 */
2339 	_vm_page_queue_spin_unlock(m);
2340 	if (_vm_page_wakeup(m)) {
2341 		vm_page_spin_unlock(m);
2342 		wakeup(m);
2343 	} else {
2344 		vm_page_spin_unlock(m);
2345 	}
2346 	vm_page_free_wakeup();
2347 }
2348 
2349 /*
2350  * vm_page_unmanage()
2351  *
2352  * Prevent PV management from being done on the page.  The page is
2353  * removed from the paging queues as if it were wired, and as a
2354  * consequence of no longer being managed the pageout daemon will not
2355  * touch it (since there is no way to locate the pte mappings for the
2356  * page).  madvise() calls that mess with the pmap will also no longer
2357  * operate on the page.
2358  *
2359  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2360  * will clear the flag.
2361  *
2362  * This routine is used by OBJT_PHYS objects - objects using unswappable
2363  * physical memory as backing store rather then swap-backed memory and
2364  * will eventually be extended to support 4MB unmanaged physical
2365  * mappings.
2366  *
2367  * Caller must be holding the page busy.
2368  */
2369 void
2370 vm_page_unmanage(vm_page_t m)
2371 {
2372 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2373 	if ((m->flags & PG_UNMANAGED) == 0) {
2374 		if (m->wire_count == 0)
2375 			vm_page_unqueue(m);
2376 	}
2377 	vm_page_flag_set(m, PG_UNMANAGED);
2378 }
2379 
2380 /*
2381  * Mark this page as wired down by yet another map, removing it from
2382  * paging queues as necessary.
2383  *
2384  * Caller must be holding the page busy.
2385  */
2386 void
2387 vm_page_wire(vm_page_t m)
2388 {
2389 	/*
2390 	 * Only bump the wire statistics if the page is not already wired,
2391 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2392 	 * it is already off the queues).  Don't do anything with fictitious
2393 	 * pages because they are always wired.
2394 	 */
2395 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2396 	if ((m->flags & PG_FICTITIOUS) == 0) {
2397 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2398 			if ((m->flags & PG_UNMANAGED) == 0)
2399 				vm_page_unqueue(m);
2400 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2401 		}
2402 		KASSERT(m->wire_count != 0,
2403 			("vm_page_wire: wire_count overflow m=%p", m));
2404 	}
2405 }
2406 
2407 /*
2408  * Release one wiring of this page, potentially enabling it to be paged again.
2409  *
2410  * Many pages placed on the inactive queue should actually go
2411  * into the cache, but it is difficult to figure out which.  What
2412  * we do instead, if the inactive target is well met, is to put
2413  * clean pages at the head of the inactive queue instead of the tail.
2414  * This will cause them to be moved to the cache more quickly and
2415  * if not actively re-referenced, freed more quickly.  If we just
2416  * stick these pages at the end of the inactive queue, heavy filesystem
2417  * meta-data accesses can cause an unnecessary paging load on memory bound
2418  * processes.  This optimization causes one-time-use metadata to be
2419  * reused more quickly.
2420  *
2421  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2422  * the inactive queue.  This helps the pageout daemon determine memory
2423  * pressure and act on out-of-memory situations more quickly.
2424  *
2425  * BUT, if we are in a low-memory situation we have no choice but to
2426  * put clean pages on the cache queue.
2427  *
2428  * A number of routines use vm_page_unwire() to guarantee that the page
2429  * will go into either the inactive or active queues, and will NEVER
2430  * be placed in the cache - for example, just after dirtying a page.
2431  * dirty pages in the cache are not allowed.
2432  *
2433  * This routine may not block.
2434  */
2435 void
2436 vm_page_unwire(vm_page_t m, int activate)
2437 {
2438 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2439 	if (m->flags & PG_FICTITIOUS) {
2440 		/* do nothing */
2441 	} else if (m->wire_count <= 0) {
2442 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2443 	} else {
2444 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2445 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2446 			if (m->flags & PG_UNMANAGED) {
2447 				;
2448 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2449 				vm_page_spin_lock(m);
2450 				_vm_page_add_queue_spinlocked(m,
2451 							PQ_ACTIVE + m->pc, 0);
2452 				_vm_page_and_queue_spin_unlock(m);
2453 			} else {
2454 				vm_page_spin_lock(m);
2455 				vm_page_flag_clear(m, PG_WINATCFLS);
2456 				_vm_page_add_queue_spinlocked(m,
2457 							PQ_INACTIVE + m->pc, 0);
2458 				++vm_swapcache_inactive_heuristic;
2459 				_vm_page_and_queue_spin_unlock(m);
2460 			}
2461 		}
2462 	}
2463 }
2464 
2465 /*
2466  * Move the specified page to the inactive queue.  If the page has
2467  * any associated swap, the swap is deallocated.
2468  *
2469  * Normally athead is 0 resulting in LRU operation.  athead is set
2470  * to 1 if we want this page to be 'as if it were placed in the cache',
2471  * except without unmapping it from the process address space.
2472  *
2473  * vm_page's spinlock must be held on entry and will remain held on return.
2474  * This routine may not block.
2475  */
2476 static void
2477 _vm_page_deactivate_locked(vm_page_t m, int athead)
2478 {
2479 	u_short oqueue;
2480 
2481 	/*
2482 	 * Ignore if already inactive.
2483 	 */
2484 	if (m->queue - m->pc == PQ_INACTIVE)
2485 		return;
2486 	_vm_page_queue_spin_lock(m);
2487 	oqueue = _vm_page_rem_queue_spinlocked(m);
2488 
2489 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2490 		if (oqueue == PQ_CACHE)
2491 			mycpu->gd_cnt.v_reactivated++;
2492 		vm_page_flag_clear(m, PG_WINATCFLS);
2493 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2494 		if (athead == 0)
2495 			++vm_swapcache_inactive_heuristic;
2496 	}
2497 	/* NOTE: PQ_NONE if condition not taken */
2498 	_vm_page_queue_spin_unlock(m);
2499 	/* leaves vm_page spinlocked */
2500 }
2501 
2502 /*
2503  * Attempt to deactivate a page.
2504  *
2505  * No requirements.
2506  */
2507 void
2508 vm_page_deactivate(vm_page_t m)
2509 {
2510 	vm_page_spin_lock(m);
2511 	_vm_page_deactivate_locked(m, 0);
2512 	vm_page_spin_unlock(m);
2513 }
2514 
2515 void
2516 vm_page_deactivate_locked(vm_page_t m)
2517 {
2518 	_vm_page_deactivate_locked(m, 0);
2519 }
2520 
2521 /*
2522  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2523  *
2524  * This function returns non-zero if it successfully moved the page to
2525  * PQ_CACHE.
2526  *
2527  * This function unconditionally unbusies the page on return.
2528  */
2529 int
2530 vm_page_try_to_cache(vm_page_t m)
2531 {
2532 	vm_page_spin_lock(m);
2533 	if (m->dirty || m->hold_count || m->wire_count ||
2534 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2535 		if (_vm_page_wakeup(m)) {
2536 			vm_page_spin_unlock(m);
2537 			wakeup(m);
2538 		} else {
2539 			vm_page_spin_unlock(m);
2540 		}
2541 		return(0);
2542 	}
2543 	vm_page_spin_unlock(m);
2544 
2545 	/*
2546 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2547 	 * be moved to the cache.
2548 	 */
2549 	vm_page_test_dirty(m);
2550 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2551 		vm_page_wakeup(m);
2552 		return(0);
2553 	}
2554 	vm_page_cache(m);
2555 	return(1);
2556 }
2557 
2558 /*
2559  * Attempt to free the page.  If we cannot free it, we do nothing.
2560  * 1 is returned on success, 0 on failure.
2561  *
2562  * No requirements.
2563  */
2564 int
2565 vm_page_try_to_free(vm_page_t m)
2566 {
2567 	vm_page_spin_lock(m);
2568 	if (vm_page_busy_try(m, TRUE)) {
2569 		vm_page_spin_unlock(m);
2570 		return(0);
2571 	}
2572 
2573 	/*
2574 	 * The page can be in any state, including already being on the free
2575 	 * queue.  Check to see if it really can be freed.
2576 	 */
2577 	if (m->dirty ||				/* can't free if it is dirty */
2578 	    m->hold_count ||			/* or held (XXX may be wrong) */
2579 	    m->wire_count ||			/* or wired */
2580 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2581 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2582 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2583 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2584 		if (_vm_page_wakeup(m)) {
2585 			vm_page_spin_unlock(m);
2586 			wakeup(m);
2587 		} else {
2588 			vm_page_spin_unlock(m);
2589 		}
2590 		return(0);
2591 	}
2592 	vm_page_spin_unlock(m);
2593 
2594 	/*
2595 	 * We can probably free the page.
2596 	 *
2597 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2598 	 * not be freed by this function.    We have to re-test the
2599 	 * dirty bit after cleaning out the pmaps.
2600 	 */
2601 	vm_page_test_dirty(m);
2602 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2603 		vm_page_wakeup(m);
2604 		return(0);
2605 	}
2606 	vm_page_protect(m, VM_PROT_NONE);
2607 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2608 		vm_page_wakeup(m);
2609 		return(0);
2610 	}
2611 	vm_page_free(m);
2612 	return(1);
2613 }
2614 
2615 /*
2616  * vm_page_cache
2617  *
2618  * Put the specified page onto the page cache queue (if appropriate).
2619  *
2620  * The page must be busy, and this routine will release the busy and
2621  * possibly even free the page.
2622  */
2623 void
2624 vm_page_cache(vm_page_t m)
2625 {
2626 	/*
2627 	 * Not suitable for the cache
2628 	 */
2629 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2630 	    (m->busy_count & PBUSY_MASK) ||
2631 	    m->wire_count || m->hold_count) {
2632 		vm_page_wakeup(m);
2633 		return;
2634 	}
2635 
2636 	/*
2637 	 * Already in the cache (and thus not mapped)
2638 	 */
2639 	if ((m->queue - m->pc) == PQ_CACHE) {
2640 		KKASSERT((m->flags & PG_MAPPED) == 0);
2641 		vm_page_wakeup(m);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Caller is required to test m->dirty, but note that the act of
2647 	 * removing the page from its maps can cause it to become dirty
2648 	 * on an SMP system due to another cpu running in usermode.
2649 	 */
2650 	if (m->dirty) {
2651 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2652 			(long)m->pindex);
2653 	}
2654 
2655 	/*
2656 	 * Remove all pmaps and indicate that the page is not
2657 	 * writeable or mapped.  Our vm_page_protect() call may
2658 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2659 	 * everything.
2660 	 */
2661 	vm_page_protect(m, VM_PROT_NONE);
2662 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2663 	    (m->busy_count & PBUSY_MASK) ||
2664 	    m->wire_count || m->hold_count) {
2665 		vm_page_wakeup(m);
2666 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2667 		vm_page_deactivate(m);
2668 		vm_page_wakeup(m);
2669 	} else {
2670 		_vm_page_and_queue_spin_lock(m);
2671 		_vm_page_rem_queue_spinlocked(m);
2672 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2673 		_vm_page_queue_spin_unlock(m);
2674 		if (_vm_page_wakeup(m)) {
2675 			vm_page_spin_unlock(m);
2676 			wakeup(m);
2677 		} else {
2678 			vm_page_spin_unlock(m);
2679 		}
2680 		vm_page_free_wakeup();
2681 	}
2682 }
2683 
2684 /*
2685  * vm_page_dontneed()
2686  *
2687  * Cache, deactivate, or do nothing as appropriate.  This routine
2688  * is typically used by madvise() MADV_DONTNEED.
2689  *
2690  * Generally speaking we want to move the page into the cache so
2691  * it gets reused quickly.  However, this can result in a silly syndrome
2692  * due to the page recycling too quickly.  Small objects will not be
2693  * fully cached.  On the otherhand, if we move the page to the inactive
2694  * queue we wind up with a problem whereby very large objects
2695  * unnecessarily blow away our inactive and cache queues.
2696  *
2697  * The solution is to move the pages based on a fixed weighting.  We
2698  * either leave them alone, deactivate them, or move them to the cache,
2699  * where moving them to the cache has the highest weighting.
2700  * By forcing some pages into other queues we eventually force the
2701  * system to balance the queues, potentially recovering other unrelated
2702  * space from active.  The idea is to not force this to happen too
2703  * often.
2704  *
2705  * The page must be busied.
2706  */
2707 void
2708 vm_page_dontneed(vm_page_t m)
2709 {
2710 	static int dnweight;
2711 	int dnw;
2712 	int head;
2713 
2714 	dnw = ++dnweight;
2715 
2716 	/*
2717 	 * occassionally leave the page alone
2718 	 */
2719 	if ((dnw & 0x01F0) == 0 ||
2720 	    m->queue - m->pc == PQ_INACTIVE ||
2721 	    m->queue - m->pc == PQ_CACHE
2722 	) {
2723 		if (m->act_count >= ACT_INIT)
2724 			--m->act_count;
2725 		return;
2726 	}
2727 
2728 	/*
2729 	 * If vm_page_dontneed() is inactivating a page, it must clear
2730 	 * the referenced flag; otherwise the pagedaemon will see references
2731 	 * on the page in the inactive queue and reactivate it. Until the
2732 	 * page can move to the cache queue, madvise's job is not done.
2733 	 */
2734 	vm_page_flag_clear(m, PG_REFERENCED);
2735 	pmap_clear_reference(m);
2736 
2737 	if (m->dirty == 0)
2738 		vm_page_test_dirty(m);
2739 
2740 	if (m->dirty || (dnw & 0x0070) == 0) {
2741 		/*
2742 		 * Deactivate the page 3 times out of 32.
2743 		 */
2744 		head = 0;
2745 	} else {
2746 		/*
2747 		 * Cache the page 28 times out of every 32.  Note that
2748 		 * the page is deactivated instead of cached, but placed
2749 		 * at the head of the queue instead of the tail.
2750 		 */
2751 		head = 1;
2752 	}
2753 	vm_page_spin_lock(m);
2754 	_vm_page_deactivate_locked(m, head);
2755 	vm_page_spin_unlock(m);
2756 }
2757 
2758 /*
2759  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2760  * is almost like a hard BUSY except that it allows certain compatible
2761  * operations to occur on the page while it is busy.  For example, a page
2762  * undergoing a write can still be mapped read-only.
2763  *
2764  * We also use soft-busy to quickly pmap_enter shared read-only pages
2765  * without having to hold the page locked.
2766  *
2767  * The soft-busy count can be > 1 in situations where multiple threads
2768  * are pmap_enter()ing the same page simultaneously, or when two buffer
2769  * cache buffers overlap the same page.
2770  *
2771  * The caller must hold the page BUSY when making these two calls.
2772  */
2773 void
2774 vm_page_io_start(vm_page_t m)
2775 {
2776 	uint32_t ocount;
2777 
2778 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
2779 	KKASSERT(ocount & PBUSY_LOCKED);
2780 }
2781 
2782 void
2783 vm_page_io_finish(vm_page_t m)
2784 {
2785 	uint32_t ocount;
2786 
2787 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
2788 	KKASSERT(ocount & PBUSY_MASK);
2789 #if 0
2790 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
2791 		wakeup(m);
2792 #endif
2793 }
2794 
2795 /*
2796  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
2797  *
2798  * Returns 0 on success, non-zero on failure.
2799  */
2800 int
2801 vm_page_sbusy_try(vm_page_t m)
2802 {
2803 	uint32_t ocount;
2804 
2805 	if (m->busy_count & PBUSY_LOCKED)
2806 		return 1;
2807 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
2808 	if (ocount & PBUSY_LOCKED) {
2809 		vm_page_sbusy_drop(m);
2810 		return 1;
2811 	}
2812 	return 0;
2813 }
2814 
2815 /*
2816  * Indicate that a clean VM page requires a filesystem commit and cannot
2817  * be reused.  Used by tmpfs.
2818  */
2819 void
2820 vm_page_need_commit(vm_page_t m)
2821 {
2822 	vm_page_flag_set(m, PG_NEED_COMMIT);
2823 	vm_object_set_writeable_dirty(m->object);
2824 }
2825 
2826 void
2827 vm_page_clear_commit(vm_page_t m)
2828 {
2829 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2830 }
2831 
2832 /*
2833  * Grab a page, blocking if it is busy and allocating a page if necessary.
2834  * A busy page is returned or NULL.  The page may or may not be valid and
2835  * might not be on a queue (the caller is responsible for the disposition of
2836  * the page).
2837  *
2838  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2839  * page will be zero'd and marked valid.
2840  *
2841  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2842  * valid even if it already exists.
2843  *
2844  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2845  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2846  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2847  *
2848  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2849  * always returned if we had blocked.
2850  *
2851  * This routine may not be called from an interrupt.
2852  *
2853  * No other requirements.
2854  */
2855 vm_page_t
2856 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2857 {
2858 	vm_page_t m;
2859 	int error;
2860 	int shared = 1;
2861 
2862 	KKASSERT(allocflags &
2863 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2864 	vm_object_hold_shared(object);
2865 	for (;;) {
2866 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2867 		if (error) {
2868 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2869 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2870 				m = NULL;
2871 				break;
2872 			}
2873 			/* retry */
2874 		} else if (m == NULL) {
2875 			if (shared) {
2876 				vm_object_upgrade(object);
2877 				shared = 0;
2878 			}
2879 			if (allocflags & VM_ALLOC_RETRY)
2880 				allocflags |= VM_ALLOC_NULL_OK;
2881 			m = vm_page_alloc(object, pindex,
2882 					  allocflags & ~VM_ALLOC_RETRY);
2883 			if (m)
2884 				break;
2885 			vm_wait(0);
2886 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2887 				goto failed;
2888 		} else {
2889 			/* m found */
2890 			break;
2891 		}
2892 	}
2893 
2894 	/*
2895 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2896 	 *
2897 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2898 	 * valid even if already valid.
2899 	 *
2900 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
2901 	 *	  removed the idle zeroing code.  These optimizations actually
2902 	 *	  slow things down on modern cpus because the zerod area is
2903 	 *	  likely uncached, placing a memory-access burden on the
2904 	 *	  accesors taking the fault.
2905 	 *
2906 	 *	  By always zeroing the page in-line with the fault, no
2907 	 *	  dynamic ram reads are needed and the caches are hot, ready
2908 	 *	  for userland to access the memory.
2909 	 */
2910 	if (m->valid == 0) {
2911 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2912 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
2913 			m->valid = VM_PAGE_BITS_ALL;
2914 		}
2915 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2916 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2917 		m->valid = VM_PAGE_BITS_ALL;
2918 	}
2919 failed:
2920 	vm_object_drop(object);
2921 	return(m);
2922 }
2923 
2924 /*
2925  * Mapping function for valid bits or for dirty bits in
2926  * a page.  May not block.
2927  *
2928  * Inputs are required to range within a page.
2929  *
2930  * No requirements.
2931  * Non blocking.
2932  */
2933 int
2934 vm_page_bits(int base, int size)
2935 {
2936 	int first_bit;
2937 	int last_bit;
2938 
2939 	KASSERT(
2940 	    base + size <= PAGE_SIZE,
2941 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2942 	);
2943 
2944 	if (size == 0)		/* handle degenerate case */
2945 		return(0);
2946 
2947 	first_bit = base >> DEV_BSHIFT;
2948 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2949 
2950 	return ((2 << last_bit) - (1 << first_bit));
2951 }
2952 
2953 /*
2954  * Sets portions of a page valid and clean.  The arguments are expected
2955  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2956  * of any partial chunks touched by the range.  The invalid portion of
2957  * such chunks will be zero'd.
2958  *
2959  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2960  *	 align base to DEV_BSIZE so as not to mark clean a partially
2961  *	 truncated device block.  Otherwise the dirty page status might be
2962  *	 lost.
2963  *
2964  * This routine may not block.
2965  *
2966  * (base + size) must be less then or equal to PAGE_SIZE.
2967  */
2968 static void
2969 _vm_page_zero_valid(vm_page_t m, int base, int size)
2970 {
2971 	int frag;
2972 	int endoff;
2973 
2974 	if (size == 0)	/* handle degenerate case */
2975 		return;
2976 
2977 	/*
2978 	 * If the base is not DEV_BSIZE aligned and the valid
2979 	 * bit is clear, we have to zero out a portion of the
2980 	 * first block.
2981 	 */
2982 
2983 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2984 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2985 	) {
2986 		pmap_zero_page_area(
2987 		    VM_PAGE_TO_PHYS(m),
2988 		    frag,
2989 		    base - frag
2990 		);
2991 	}
2992 
2993 	/*
2994 	 * If the ending offset is not DEV_BSIZE aligned and the
2995 	 * valid bit is clear, we have to zero out a portion of
2996 	 * the last block.
2997 	 */
2998 
2999 	endoff = base + size;
3000 
3001 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3002 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3003 	) {
3004 		pmap_zero_page_area(
3005 		    VM_PAGE_TO_PHYS(m),
3006 		    endoff,
3007 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3008 		);
3009 	}
3010 }
3011 
3012 /*
3013  * Set valid, clear dirty bits.  If validating the entire
3014  * page we can safely clear the pmap modify bit.  We also
3015  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3016  * takes a write fault on a MAP_NOSYNC memory area the flag will
3017  * be set again.
3018  *
3019  * We set valid bits inclusive of any overlap, but we can only
3020  * clear dirty bits for DEV_BSIZE chunks that are fully within
3021  * the range.
3022  *
3023  * Page must be busied?
3024  * No other requirements.
3025  */
3026 void
3027 vm_page_set_valid(vm_page_t m, int base, int size)
3028 {
3029 	_vm_page_zero_valid(m, base, size);
3030 	m->valid |= vm_page_bits(base, size);
3031 }
3032 
3033 
3034 /*
3035  * Set valid bits and clear dirty bits.
3036  *
3037  * Page must be busied by caller.
3038  *
3039  * NOTE: This function does not clear the pmap modified bit.
3040  *	 Also note that e.g. NFS may use a byte-granular base
3041  *	 and size.
3042  *
3043  * No other requirements.
3044  */
3045 void
3046 vm_page_set_validclean(vm_page_t m, int base, int size)
3047 {
3048 	int pagebits;
3049 
3050 	_vm_page_zero_valid(m, base, size);
3051 	pagebits = vm_page_bits(base, size);
3052 	m->valid |= pagebits;
3053 	m->dirty &= ~pagebits;
3054 	if (base == 0 && size == PAGE_SIZE) {
3055 		/*pmap_clear_modify(m);*/
3056 		vm_page_flag_clear(m, PG_NOSYNC);
3057 	}
3058 }
3059 
3060 /*
3061  * Set valid & dirty.  Used by buwrite()
3062  *
3063  * Page must be busied by caller.
3064  */
3065 void
3066 vm_page_set_validdirty(vm_page_t m, int base, int size)
3067 {
3068 	int pagebits;
3069 
3070 	pagebits = vm_page_bits(base, size);
3071 	m->valid |= pagebits;
3072 	m->dirty |= pagebits;
3073 	if (m->object)
3074 	       vm_object_set_writeable_dirty(m->object);
3075 }
3076 
3077 /*
3078  * Clear dirty bits.
3079  *
3080  * NOTE: This function does not clear the pmap modified bit.
3081  *	 Also note that e.g. NFS may use a byte-granular base
3082  *	 and size.
3083  *
3084  * Page must be busied?
3085  * No other requirements.
3086  */
3087 void
3088 vm_page_clear_dirty(vm_page_t m, int base, int size)
3089 {
3090 	m->dirty &= ~vm_page_bits(base, size);
3091 	if (base == 0 && size == PAGE_SIZE) {
3092 		/*pmap_clear_modify(m);*/
3093 		vm_page_flag_clear(m, PG_NOSYNC);
3094 	}
3095 }
3096 
3097 /*
3098  * Make the page all-dirty.
3099  *
3100  * Also make sure the related object and vnode reflect the fact that the
3101  * object may now contain a dirty page.
3102  *
3103  * Page must be busied?
3104  * No other requirements.
3105  */
3106 void
3107 vm_page_dirty(vm_page_t m)
3108 {
3109 #ifdef INVARIANTS
3110         int pqtype = m->queue - m->pc;
3111 #endif
3112         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3113                 ("vm_page_dirty: page in free/cache queue!"));
3114 	if (m->dirty != VM_PAGE_BITS_ALL) {
3115 		m->dirty = VM_PAGE_BITS_ALL;
3116 		if (m->object)
3117 			vm_object_set_writeable_dirty(m->object);
3118 	}
3119 }
3120 
3121 /*
3122  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3123  * valid and dirty bits for the effected areas are cleared.
3124  *
3125  * Page must be busied?
3126  * Does not block.
3127  * No other requirements.
3128  */
3129 void
3130 vm_page_set_invalid(vm_page_t m, int base, int size)
3131 {
3132 	int bits;
3133 
3134 	bits = vm_page_bits(base, size);
3135 	m->valid &= ~bits;
3136 	m->dirty &= ~bits;
3137 	atomic_add_int(&m->object->generation, 1);
3138 }
3139 
3140 /*
3141  * The kernel assumes that the invalid portions of a page contain
3142  * garbage, but such pages can be mapped into memory by user code.
3143  * When this occurs, we must zero out the non-valid portions of the
3144  * page so user code sees what it expects.
3145  *
3146  * Pages are most often semi-valid when the end of a file is mapped
3147  * into memory and the file's size is not page aligned.
3148  *
3149  * Page must be busied?
3150  * No other requirements.
3151  */
3152 void
3153 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3154 {
3155 	int b;
3156 	int i;
3157 
3158 	/*
3159 	 * Scan the valid bits looking for invalid sections that
3160 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3161 	 * valid bit may be set ) have already been zerod by
3162 	 * vm_page_set_validclean().
3163 	 */
3164 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3165 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3166 		    (m->valid & (1 << i))
3167 		) {
3168 			if (i > b) {
3169 				pmap_zero_page_area(
3170 				    VM_PAGE_TO_PHYS(m),
3171 				    b << DEV_BSHIFT,
3172 				    (i - b) << DEV_BSHIFT
3173 				);
3174 			}
3175 			b = i + 1;
3176 		}
3177 	}
3178 
3179 	/*
3180 	 * setvalid is TRUE when we can safely set the zero'd areas
3181 	 * as being valid.  We can do this if there are no cache consistency
3182 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3183 	 */
3184 	if (setvalid)
3185 		m->valid = VM_PAGE_BITS_ALL;
3186 }
3187 
3188 /*
3189  * Is a (partial) page valid?  Note that the case where size == 0
3190  * will return FALSE in the degenerate case where the page is entirely
3191  * invalid, and TRUE otherwise.
3192  *
3193  * Does not block.
3194  * No other requirements.
3195  */
3196 int
3197 vm_page_is_valid(vm_page_t m, int base, int size)
3198 {
3199 	int bits = vm_page_bits(base, size);
3200 
3201 	if (m->valid && ((m->valid & bits) == bits))
3202 		return 1;
3203 	else
3204 		return 0;
3205 }
3206 
3207 /*
3208  * update dirty bits from pmap/mmu.  May not block.
3209  *
3210  * Caller must hold the page busy
3211  */
3212 void
3213 vm_page_test_dirty(vm_page_t m)
3214 {
3215 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3216 		vm_page_dirty(m);
3217 	}
3218 }
3219 
3220 #include "opt_ddb.h"
3221 #ifdef DDB
3222 #include <ddb/ddb.h>
3223 
3224 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3225 {
3226 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3227 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3228 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3229 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3230 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3231 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3232 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3233 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3234 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3235 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3236 }
3237 
3238 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3239 {
3240 	int i;
3241 	db_printf("PQ_FREE:");
3242 	for (i = 0; i < PQ_L2_SIZE; i++) {
3243 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3244 	}
3245 	db_printf("\n");
3246 
3247 	db_printf("PQ_CACHE:");
3248 	for(i = 0; i < PQ_L2_SIZE; i++) {
3249 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3250 	}
3251 	db_printf("\n");
3252 
3253 	db_printf("PQ_ACTIVE:");
3254 	for(i = 0; i < PQ_L2_SIZE; i++) {
3255 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3256 	}
3257 	db_printf("\n");
3258 
3259 	db_printf("PQ_INACTIVE:");
3260 	for(i = 0; i < PQ_L2_SIZE; i++) {
3261 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3262 	}
3263 	db_printf("\n");
3264 }
3265 #endif /* DDB */
3266