xref: /dragonfly/sys/vm/vm_page.c (revision 67e7cb85)
1 /*
2  * Copyright (c) 2003-2019 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1991 Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 /*
67  * Resident memory management module.  The module manipulates 'VM pages'.
68  * A VM page is the core building block for memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
99 
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
102 
103 /*
104  * SET - Minimum required set associative size, must be a power of 2.  We
105  *	 want this to match or exceed the set-associativeness of the cpu.
106  *
107  * GRP - A larger set that allows bleed-over into the domains of other
108  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
109  *	 code to smooth things out a bit.
110  */
111 #define PQ_SET_ASSOC		16
112 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
113 
114 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
116 
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
123 
124 /*
125  * Array of tailq lists
126  */
127 struct vpgqueues vm_page_queues[PQ_COUNT];
128 
129 static volatile int vm_pages_waiting;
130 static struct alist vm_contig_alist;
131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 
134 static struct vm_page **vm_page_hash;
135 
136 static u_long vm_dma_reserved = 0;
137 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
138 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
139 	    "Memory reserved for DMA");
140 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
141 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
142 
143 static int vm_contig_verbose = 0;
144 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
145 
146 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
147 	     vm_pindex_t, pindex);
148 
149 static void
150 vm_page_queue_init(void)
151 {
152 	int i;
153 
154 	for (i = 0; i < PQ_L2_SIZE; i++)
155 		vm_page_queues[PQ_FREE+i].cnt_offset =
156 			offsetof(struct vmstats, v_free_count);
157 	for (i = 0; i < PQ_L2_SIZE; i++)
158 		vm_page_queues[PQ_CACHE+i].cnt_offset =
159 			offsetof(struct vmstats, v_cache_count);
160 	for (i = 0; i < PQ_L2_SIZE; i++)
161 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
162 			offsetof(struct vmstats, v_inactive_count);
163 	for (i = 0; i < PQ_L2_SIZE; i++)
164 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
165 			offsetof(struct vmstats, v_active_count);
166 	for (i = 0; i < PQ_L2_SIZE; i++)
167 		vm_page_queues[PQ_HOLD+i].cnt_offset =
168 			offsetof(struct vmstats, v_active_count);
169 	/* PQ_NONE has no queue */
170 
171 	for (i = 0; i < PQ_COUNT; i++) {
172 		TAILQ_INIT(&vm_page_queues[i].pl);
173 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 	}
175 }
176 
177 /*
178  * note: place in initialized data section?  Is this necessary?
179  */
180 vm_pindex_t first_page = 0;
181 vm_pindex_t vm_page_array_size = 0;
182 vm_page_t vm_page_array = NULL;
183 vm_paddr_t vm_low_phys_reserved;
184 
185 /*
186  * (low level boot)
187  *
188  * Sets the page size, perhaps based upon the memory size.
189  * Must be called before any use of page-size dependent functions.
190  */
191 void
192 vm_set_page_size(void)
193 {
194 	if (vmstats.v_page_size == 0)
195 		vmstats.v_page_size = PAGE_SIZE;
196 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
197 		panic("vm_set_page_size: page size not a power of two");
198 }
199 
200 /*
201  * (low level boot)
202  *
203  * Add a new page to the freelist for use by the system.  New pages
204  * are added to both the head and tail of the associated free page
205  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
206  * requests pull 'recent' adds (higher physical addresses) first.
207  *
208  * Beware that the page zeroing daemon will also be running soon after
209  * boot, moving pages from the head to the tail of the PQ_FREE queues.
210  *
211  * Must be called in a critical section.
212  */
213 static void
214 vm_add_new_page(vm_paddr_t pa)
215 {
216 	struct vpgqueues *vpq;
217 	vm_page_t m;
218 
219 	m = PHYS_TO_VM_PAGE(pa);
220 	m->phys_addr = pa;
221 	m->flags = 0;
222 	m->pat_mode = PAT_WRITE_BACK;
223 	m->pc = (pa >> PAGE_SHIFT);
224 
225 	/*
226 	 * Twist for cpu localization in addition to page coloring, so
227 	 * different cpus selecting by m->queue get different page colors.
228 	 */
229 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
230 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
231 	m->pc &= PQ_L2_MASK;
232 
233 	/*
234 	 * Reserve a certain number of contiguous low memory pages for
235 	 * contigmalloc() to use.
236 	 */
237 	if (pa < vm_low_phys_reserved) {
238 		atomic_add_long(&vmstats.v_page_count, 1);
239 		atomic_add_long(&vmstats.v_dma_pages, 1);
240 		m->queue = PQ_NONE;
241 		m->wire_count = 1;
242 		atomic_add_long(&vmstats.v_wire_count, 1);
243 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
244 		return;
245 	}
246 
247 	/*
248 	 * General page
249 	 */
250 	m->queue = m->pc + PQ_FREE;
251 	KKASSERT(m->dirty == 0);
252 
253 	atomic_add_long(&vmstats.v_page_count, 1);
254 	atomic_add_long(&vmstats.v_free_count, 1);
255 	vpq = &vm_page_queues[m->queue];
256 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
257 	++vpq->lcnt;
258 }
259 
260 /*
261  * (low level boot)
262  *
263  * Initializes the resident memory module.
264  *
265  * Preallocates memory for critical VM structures and arrays prior to
266  * kernel_map becoming available.
267  *
268  * Memory is allocated from (virtual2_start, virtual2_end) if available,
269  * otherwise memory is allocated from (virtual_start, virtual_end).
270  *
271  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
272  * large enough to hold vm_page_array & other structures for machines with
273  * large amounts of ram, so we want to use virtual2* when available.
274  */
275 void
276 vm_page_startup(void)
277 {
278 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
279 	vm_offset_t mapped;
280 	vm_pindex_t npages;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	vm_paddr_t last_pa;
286 	vm_paddr_t end;
287 	vm_paddr_t biggestone, biggestsize;
288 	vm_paddr_t total;
289 	vm_page_t m;
290 
291 	total = 0;
292 	biggestsize = 0;
293 	biggestone = 0;
294 	vaddr = round_page(vaddr);
295 
296 	/*
297 	 * Make sure ranges are page-aligned.
298 	 */
299 	for (i = 0; phys_avail[i].phys_end; ++i) {
300 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
301 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
302 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
303 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
304 	}
305 
306 	/*
307 	 * Locate largest block
308 	 */
309 	for (i = 0; phys_avail[i].phys_end; ++i) {
310 		vm_paddr_t size = phys_avail[i].phys_end -
311 				  phys_avail[i].phys_beg;
312 
313 		if (size > biggestsize) {
314 			biggestone = i;
315 			biggestsize = size;
316 		}
317 		total += size;
318 	}
319 	--i;	/* adjust to last entry for use down below */
320 
321 	end = phys_avail[biggestone].phys_end;
322 	end = trunc_page(end);
323 
324 	/*
325 	 * Initialize the queue headers for the free queue, the active queue
326 	 * and the inactive queue.
327 	 */
328 	vm_page_queue_init();
329 
330 #if !defined(_KERNEL_VIRTUAL)
331 	/*
332 	 * VKERNELs don't support minidumps and as such don't need
333 	 * vm_page_dump
334 	 *
335 	 * Allocate a bitmap to indicate that a random physical page
336 	 * needs to be included in a minidump.
337 	 *
338 	 * The amd64 port needs this to indicate which direct map pages
339 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
340 	 *
341 	 * However, x86 still needs this workspace internally within the
342 	 * minidump code.  In theory, they are not needed on x86, but are
343 	 * included should the sf_buf code decide to use them.
344 	 */
345 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
346 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
347 	end -= vm_page_dump_size;
348 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
349 					VM_PROT_READ | VM_PROT_WRITE);
350 	bzero((void *)vm_page_dump, vm_page_dump_size);
351 #endif
352 	/*
353 	 * Compute the number of pages of memory that will be available for
354 	 * use (taking into account the overhead of a page structure per
355 	 * page).
356 	 */
357 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
358 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
359 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
360 
361 #ifndef _KERNEL_VIRTUAL
362 	/*
363 	 * (only applies to real kernels)
364 	 *
365 	 * Reserve a large amount of low memory for potential 32-bit DMA
366 	 * space allocations.  Once device initialization is complete we
367 	 * release most of it, but keep (vm_dma_reserved) memory reserved
368 	 * for later use.  Typically for X / graphics.  Through trial and
369 	 * error we find that GPUs usually requires ~60-100MB or so.
370 	 *
371 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
372 	 */
373 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
374 	if (vm_low_phys_reserved > total / 4)
375 		vm_low_phys_reserved = total / 4;
376 	if (vm_dma_reserved == 0) {
377 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
378 		if (vm_dma_reserved > total / 16)
379 			vm_dma_reserved = total / 16;
380 	}
381 #endif
382 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
383 		   ALIST_RECORDS_65536);
384 
385 	/*
386 	 * Initialize the mem entry structures now, and put them in the free
387 	 * queue.
388 	 */
389 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
390 		kprintf("initializing vm_page_array ");
391 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
392 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
393 	vm_page_array = (vm_page_t)mapped;
394 
395 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
396 	/*
397 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
398 	 * we have to manually add these pages to the minidump tracking so
399 	 * that they can be dumped, including the vm_page_array.
400 	 */
401 	for (pa = new_end;
402 	     pa < phys_avail[biggestone].phys_end;
403 	     pa += PAGE_SIZE) {
404 		dump_add_page(pa);
405 	}
406 #endif
407 
408 	/*
409 	 * Clear all of the page structures, run basic initialization so
410 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
411 	 * map.
412 	 */
413 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
414 	vm_page_array_size = page_range;
415 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
416 		kprintf("size = 0x%zx\n", vm_page_array_size);
417 
418 	m = &vm_page_array[0];
419 	pa = ptoa(first_page);
420 	for (i = 0; i < page_range; ++i) {
421 		spin_init(&m->spin, "vm_page");
422 		m->phys_addr = pa;
423 		pa += PAGE_SIZE;
424 		++m;
425 	}
426 
427 	/*
428 	 * Construct the free queue(s) in ascending order (by physical
429 	 * address) so that the first 16MB of physical memory is allocated
430 	 * last rather than first.  On large-memory machines, this avoids
431 	 * the exhaustion of low physical memory before isa_dma_init has run.
432 	 */
433 	vmstats.v_page_count = 0;
434 	vmstats.v_free_count = 0;
435 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
436 		pa = phys_avail[i].phys_beg;
437 		if (i == biggestone)
438 			last_pa = new_end;
439 		else
440 			last_pa = phys_avail[i].phys_end;
441 		while (pa < last_pa && npages-- > 0) {
442 			vm_add_new_page(pa);
443 			pa += PAGE_SIZE;
444 		}
445 	}
446 	if (virtual2_start)
447 		virtual2_start = vaddr;
448 	else
449 		virtual_start = vaddr;
450 	mycpu->gd_vmstats = vmstats;
451 }
452 
453 /*
454  * (called from early boot only)
455  *
456  * Reorganize VM pages based on numa data.  May be called as many times as
457  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
458  * to allow vm_page_alloc() to choose pages based on socket affinity.
459  *
460  * NOTE: This function is only called while we are still in UP mode, so
461  *	 we only need a critical section to protect the queues (which
462  *	 saves a lot of time, there are likely a ton of pages).
463  */
464 void
465 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
466 {
467 	vm_paddr_t scan_beg;
468 	vm_paddr_t scan_end;
469 	vm_paddr_t ran_end;
470 	struct vpgqueues *vpq;
471 	vm_page_t m;
472 	vm_page_t mend;
473 	int socket_mod;
474 	int socket_value;
475 	int i;
476 
477 	/*
478 	 * Check if no physical information, or there was only one socket
479 	 * (so don't waste time doing nothing!).
480 	 */
481 	if (cpu_topology_phys_ids <= 1 ||
482 	    cpu_topology_core_ids == 0) {
483 		return;
484 	}
485 
486 	/*
487 	 * Setup for our iteration.  Note that ACPI may iterate CPU
488 	 * sockets starting at 0 or 1 or some other number.  The
489 	 * cpu_topology code mod's it against the socket count.
490 	 */
491 	ran_end = ran_beg + bytes;
492 
493 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
494 	socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
495 	mend = &vm_page_array[vm_page_array_size];
496 
497 	crit_enter();
498 
499 	/*
500 	 * Adjust cpu_topology's phys_mem parameter
501 	 */
502 	if (root_cpu_node)
503 		vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
504 
505 	/*
506 	 * Adjust vm_page->pc and requeue all affected pages.  The
507 	 * allocator will then be able to localize memory allocations
508 	 * to some degree.
509 	 */
510 	for (i = 0; phys_avail[i].phys_end; ++i) {
511 		scan_beg = phys_avail[i].phys_beg;
512 		scan_end = phys_avail[i].phys_end;
513 		if (scan_end <= ran_beg)
514 			continue;
515 		if (scan_beg >= ran_end)
516 			continue;
517 		if (scan_beg < ran_beg)
518 			scan_beg = ran_beg;
519 		if (scan_end > ran_end)
520 			scan_end = ran_end;
521 		if (atop(scan_end) > first_page + vm_page_array_size)
522 			scan_end = ptoa(first_page + vm_page_array_size);
523 
524 		m = PHYS_TO_VM_PAGE(scan_beg);
525 		while (scan_beg < scan_end) {
526 			KKASSERT(m < mend);
527 			if (m->queue != PQ_NONE) {
528 				vpq = &vm_page_queues[m->queue];
529 				TAILQ_REMOVE(&vpq->pl, m, pageq);
530 				--vpq->lcnt;
531 				/* queue doesn't change, no need to adj cnt */
532 				m->queue -= m->pc;
533 				m->pc %= socket_mod;
534 				m->pc += socket_value;
535 				m->pc &= PQ_L2_MASK;
536 				m->queue += m->pc;
537 				vpq = &vm_page_queues[m->queue];
538 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
539 				++vpq->lcnt;
540 				/* queue doesn't change, no need to adj cnt */
541 			} else {
542 				m->pc %= socket_mod;
543 				m->pc += socket_value;
544 				m->pc &= PQ_L2_MASK;
545 			}
546 			scan_beg += PAGE_SIZE;
547 			++m;
548 		}
549 	}
550 
551 	crit_exit();
552 }
553 
554 /*
555  * (called from early boot only)
556  *
557  * Don't allow the NUMA organization to leave vm_page_queues[] nodes
558  * completely empty for a logical cpu.  Doing so would force allocations
559  * on that cpu to always borrow from a nearby cpu, create unnecessary
560  * contention, and cause vm_page_alloc() to iterate more queues and run more
561  * slowly.
562  *
563  * This situation can occur when memory sticks are not entirely populated,
564  * populated at different densities, or in naturally assymetric systems
565  * such as the 2990WX.  There could very well be many vm_page_queues[]
566  * entries with *NO* pages assigned to them.
567  *
568  * Fixing this up ensures that each logical CPU has roughly the same
569  * sized memory pool, and more importantly ensures that logical CPUs
570  * do not wind up with an empty memory pool.
571  *
572  * At them moment we just iterate the other queues and borrow pages,
573  * moving them into the queues for cpus with severe deficits even though
574  * the memory might not be local to those cpus.  I am not doing this in
575  * a 'smart' way, its effectively UMA style (sorta, since its page-by-page
576  * whereas real UMA typically exchanges address bits 8-10 with high address
577  * bits).  But it works extremely well and gives us fairly good deterministic
578  * results on the cpu cores associated with these secondary nodes.
579  */
580 void
581 vm_numa_organize_finalize(void)
582 {
583 	struct vpgqueues *vpq;
584 	vm_page_t m;
585 	long lcnt_lo;
586 	long lcnt_hi;
587 	int iter;
588 	int i;
589 	int scale_lim;
590 
591 	crit_enter();
592 
593 	/*
594 	 * Machines might not use an exact power of 2 for phys_ids,
595 	 * core_ids, ht_ids, etc.  This can slightly reduce the actual
596 	 * range of indices in vm_page_queues[] that are nominally used.
597 	 */
598 	if (cpu_topology_ht_ids) {
599 		scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids;
600 		scale_lim = scale_lim / cpu_topology_core_ids;
601 		scale_lim = scale_lim / cpu_topology_ht_ids;
602 		scale_lim = scale_lim * cpu_topology_ht_ids;
603 		scale_lim = scale_lim * cpu_topology_core_ids;
604 		scale_lim = scale_lim * cpu_topology_phys_ids;
605 	} else {
606 		scale_lim = PQ_L2_SIZE;
607 	}
608 
609 	/*
610 	 * Calculate an average, set hysteresis for balancing from
611 	 * 10% below the average to the average.
612 	 */
613 	lcnt_hi = 0;
614 	for (i = 0; i < scale_lim; ++i) {
615 		lcnt_hi += vm_page_queues[i].lcnt;
616 	}
617 	lcnt_hi /= scale_lim;
618 	lcnt_lo = lcnt_hi - lcnt_hi / 10;
619 
620 	kprintf("vm_page: avg %ld pages per queue, %d queues\n",
621 		lcnt_hi, scale_lim);
622 
623 	iter = 0;
624 	for (i = 0; i < scale_lim; ++i) {
625 		vpq = &vm_page_queues[PQ_FREE + i];
626 		while (vpq->lcnt < lcnt_lo) {
627 			struct vpgqueues *vptmp;
628 
629 			iter = (iter + 1) & PQ_L2_MASK;
630 			vptmp = &vm_page_queues[PQ_FREE + iter];
631 			if (vptmp->lcnt < lcnt_hi)
632 				continue;
633 			m = TAILQ_FIRST(&vptmp->pl);
634 			KKASSERT(m->queue == PQ_FREE + iter);
635 			TAILQ_REMOVE(&vptmp->pl, m, pageq);
636 			--vptmp->lcnt;
637 			/* queue doesn't change, no need to adj cnt */
638 			m->queue -= m->pc;
639 			m->pc = i;
640 			m->queue += m->pc;
641 			TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
642 			++vpq->lcnt;
643 		}
644 	}
645 	crit_exit();
646 }
647 
648 static
649 void
650 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
651 {
652 	int cpuid;
653 	int i;
654 
655 	switch(cpup->type) {
656 	case PACKAGE_LEVEL:
657 		cpup->phys_mem += bytes;
658 		break;
659 	case CHIP_LEVEL:
660 		/*
661 		 * All members should have the same chipid, so we only need
662 		 * to pull out one member.
663 		 */
664 		if (CPUMASK_TESTNZERO(cpup->members)) {
665 			cpuid = BSFCPUMASK(cpup->members);
666 			if (physid ==
667 			    get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
668 				cpup->phys_mem += bytes;
669 			}
670 		}
671 		break;
672 	case CORE_LEVEL:
673 	case THREAD_LEVEL:
674 		/*
675 		 * Just inherit from the parent node
676 		 */
677 		cpup->phys_mem = cpup->parent_node->phys_mem;
678 		break;
679 	}
680 	for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
681 		vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
682 }
683 
684 /*
685  * We tended to reserve a ton of memory for contigmalloc().  Now that most
686  * drivers have initialized we want to return most the remaining free
687  * reserve back to the VM page queues so they can be used for normal
688  * allocations.
689  *
690  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
691  */
692 static void
693 vm_page_startup_finish(void *dummy __unused)
694 {
695 	alist_blk_t blk;
696 	alist_blk_t rblk;
697 	alist_blk_t count;
698 	alist_blk_t xcount;
699 	alist_blk_t bfree;
700 	vm_page_t m;
701 	vm_page_t *mp;
702 
703 	spin_lock(&vm_contig_spin);
704 	for (;;) {
705 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
706 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
707 			break;
708 		if (count == 0)
709 			break;
710 
711 		/*
712 		 * Figure out how much of the initial reserve we have to
713 		 * free in order to reach our target.
714 		 */
715 		bfree -= vm_dma_reserved / PAGE_SIZE;
716 		if (count > bfree) {
717 			blk += count - bfree;
718 			count = bfree;
719 		}
720 
721 		/*
722 		 * Calculate the nearest power of 2 <= count.
723 		 */
724 		for (xcount = 1; xcount <= count; xcount <<= 1)
725 			;
726 		xcount >>= 1;
727 		blk += count - xcount;
728 		count = xcount;
729 
730 		/*
731 		 * Allocate the pages from the alist, then free them to
732 		 * the normal VM page queues.
733 		 *
734 		 * Pages allocated from the alist are wired.  We have to
735 		 * busy, unwire, and free them.  We must also adjust
736 		 * vm_low_phys_reserved before freeing any pages to prevent
737 		 * confusion.
738 		 */
739 		rblk = alist_alloc(&vm_contig_alist, blk, count);
740 		if (rblk != blk) {
741 			kprintf("vm_page_startup_finish: Unable to return "
742 				"dma space @0x%08x/%d -> 0x%08x\n",
743 				blk, count, rblk);
744 			break;
745 		}
746 		atomic_add_long(&vmstats.v_dma_pages, -(long)count);
747 		spin_unlock(&vm_contig_spin);
748 
749 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
750 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
751 		while (count) {
752 			vm_page_busy_wait(m, FALSE, "cpgfr");
753 			vm_page_unwire(m, 0);
754 			vm_page_free(m);
755 			--count;
756 			++m;
757 		}
758 		spin_lock(&vm_contig_spin);
759 	}
760 	spin_unlock(&vm_contig_spin);
761 
762 	/*
763 	 * Print out how much DMA space drivers have already allocated and
764 	 * how much is left over.
765 	 */
766 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
767 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
768 		(PAGE_SIZE / 1024),
769 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
770 
771 	/*
772 	 * hash table for vm_page_lookup_quick()
773 	 */
774 	mp = (void *)kmem_alloc3(&kernel_map,
775 				 vm_page_array_size * sizeof(vm_page_t),
776 				 VM_SUBSYS_VMPGHASH, KM_CPU(0));
777 	bzero(mp, vm_page_array_size * sizeof(vm_page_t));
778 	cpu_sfence();
779 	vm_page_hash = mp;
780 }
781 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
782 	vm_page_startup_finish, NULL);
783 
784 
785 /*
786  * Scan comparison function for Red-Black tree scans.  An inclusive
787  * (start,end) is expected.  Other fields are not used.
788  */
789 int
790 rb_vm_page_scancmp(struct vm_page *p, void *data)
791 {
792 	struct rb_vm_page_scan_info *info = data;
793 
794 	if (p->pindex < info->start_pindex)
795 		return(-1);
796 	if (p->pindex > info->end_pindex)
797 		return(1);
798 	return(0);
799 }
800 
801 int
802 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
803 {
804 	if (p1->pindex < p2->pindex)
805 		return(-1);
806 	if (p1->pindex > p2->pindex)
807 		return(1);
808 	return(0);
809 }
810 
811 void
812 vm_page_init(vm_page_t m)
813 {
814 	/* do nothing for now.  Called from pmap_page_init() */
815 }
816 
817 /*
818  * Each page queue has its own spin lock, which is fairly optimal for
819  * allocating and freeing pages at least.
820  *
821  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
822  * queue spinlock via this function.  Also note that m->queue cannot change
823  * unless both the page and queue are locked.
824  */
825 static __inline
826 void
827 _vm_page_queue_spin_lock(vm_page_t m)
828 {
829 	u_short queue;
830 
831 	queue = m->queue;
832 	if (queue != PQ_NONE) {
833 		spin_lock(&vm_page_queues[queue].spin);
834 		KKASSERT(queue == m->queue);
835 	}
836 }
837 
838 static __inline
839 void
840 _vm_page_queue_spin_unlock(vm_page_t m)
841 {
842 	u_short queue;
843 
844 	queue = m->queue;
845 	cpu_ccfence();
846 	if (queue != PQ_NONE)
847 		spin_unlock(&vm_page_queues[queue].spin);
848 }
849 
850 static __inline
851 void
852 _vm_page_queues_spin_lock(u_short queue)
853 {
854 	cpu_ccfence();
855 	if (queue != PQ_NONE)
856 		spin_lock(&vm_page_queues[queue].spin);
857 }
858 
859 
860 static __inline
861 void
862 _vm_page_queues_spin_unlock(u_short queue)
863 {
864 	cpu_ccfence();
865 	if (queue != PQ_NONE)
866 		spin_unlock(&vm_page_queues[queue].spin);
867 }
868 
869 void
870 vm_page_queue_spin_lock(vm_page_t m)
871 {
872 	_vm_page_queue_spin_lock(m);
873 }
874 
875 void
876 vm_page_queues_spin_lock(u_short queue)
877 {
878 	_vm_page_queues_spin_lock(queue);
879 }
880 
881 void
882 vm_page_queue_spin_unlock(vm_page_t m)
883 {
884 	_vm_page_queue_spin_unlock(m);
885 }
886 
887 void
888 vm_page_queues_spin_unlock(u_short queue)
889 {
890 	_vm_page_queues_spin_unlock(queue);
891 }
892 
893 /*
894  * This locks the specified vm_page and its queue in the proper order
895  * (page first, then queue).  The queue may change so the caller must
896  * recheck on return.
897  */
898 static __inline
899 void
900 _vm_page_and_queue_spin_lock(vm_page_t m)
901 {
902 	vm_page_spin_lock(m);
903 	_vm_page_queue_spin_lock(m);
904 }
905 
906 static __inline
907 void
908 _vm_page_and_queue_spin_unlock(vm_page_t m)
909 {
910 	_vm_page_queues_spin_unlock(m->queue);
911 	vm_page_spin_unlock(m);
912 }
913 
914 void
915 vm_page_and_queue_spin_unlock(vm_page_t m)
916 {
917 	_vm_page_and_queue_spin_unlock(m);
918 }
919 
920 void
921 vm_page_and_queue_spin_lock(vm_page_t m)
922 {
923 	_vm_page_and_queue_spin_lock(m);
924 }
925 
926 /*
927  * Helper function removes vm_page from its current queue.
928  * Returns the base queue the page used to be on.
929  *
930  * The vm_page and the queue must be spinlocked.
931  * This function will unlock the queue but leave the page spinlocked.
932  */
933 static __inline u_short
934 _vm_page_rem_queue_spinlocked(vm_page_t m)
935 {
936 	struct vpgqueues *pq;
937 	u_short queue;
938 	u_short oqueue;
939 	long *cnt;
940 
941 	queue = m->queue;
942 	if (queue != PQ_NONE) {
943 		pq = &vm_page_queues[queue];
944 		TAILQ_REMOVE(&pq->pl, m, pageq);
945 
946 		/*
947 		 * Adjust our pcpu stats.  In order for the nominal low-memory
948 		 * algorithms to work properly we don't let any pcpu stat get
949 		 * too negative before we force it to be rolled-up into the
950 		 * global stats.  Otherwise our pageout and vm_wait tests
951 		 * will fail badly.
952 		 *
953 		 * The idea here is to reduce unnecessary SMP cache
954 		 * mastership changes in the global vmstats, which can be
955 		 * particularly bad in multi-socket systems.
956 		 */
957 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
958 		atomic_add_long(cnt, -1);
959 		if (*cnt < -VMMETER_SLOP_COUNT) {
960 			u_long copy = atomic_swap_long(cnt, 0);
961 			cnt = (long *)((char *)&vmstats + pq->cnt_offset);
962 			atomic_add_long(cnt, copy);
963 			cnt = (long *)((char *)&mycpu->gd_vmstats +
964 				      pq->cnt_offset);
965 			atomic_add_long(cnt, copy);
966 		}
967 		pq->lcnt--;
968 		m->queue = PQ_NONE;
969 		oqueue = queue;
970 		queue -= m->pc;
971 		vm_page_queues_spin_unlock(oqueue);	/* intended */
972 	}
973 	return queue;
974 }
975 
976 /*
977  * Helper function places the vm_page on the specified queue.  Generally
978  * speaking only PQ_FREE pages are placed at the head, to allow them to
979  * be allocated sooner rather than later on the assumption that they
980  * are cache-hot.
981  *
982  * The vm_page must be spinlocked.
983  * The vm_page must NOT be FICTITIOUS (that would be a disaster)
984  * This function will return with both the page and the queue locked.
985  */
986 static __inline void
987 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
988 {
989 	struct vpgqueues *pq;
990 	u_long *cnt;
991 
992 	KKASSERT(m->queue == PQ_NONE && (m->flags & PG_FICTITIOUS) == 0);
993 
994 	if (queue != PQ_NONE) {
995 		vm_page_queues_spin_lock(queue);
996 		pq = &vm_page_queues[queue];
997 		++pq->lcnt;
998 
999 		/*
1000 		 * Adjust our pcpu stats.  If a system entity really needs
1001 		 * to incorporate the count it will call vmstats_rollup()
1002 		 * to roll it all up into the global vmstats strufture.
1003 		 */
1004 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
1005 		atomic_add_long(cnt, 1);
1006 
1007 		/*
1008 		 * PQ_FREE is always handled LIFO style to try to provide
1009 		 * cache-hot pages to programs.
1010 		 */
1011 		m->queue = queue;
1012 		if (queue - m->pc == PQ_FREE) {
1013 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1014 		} else if (athead) {
1015 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1016 		} else {
1017 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1018 		}
1019 		/* leave the queue spinlocked */
1020 	}
1021 }
1022 
1023 /*
1024  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
1025  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
1026  *
1027  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
1028  * call will be made before returning.
1029  *
1030  * This function does NOT busy the page and on return the page is not
1031  * guaranteed to be available.
1032  */
1033 void
1034 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
1035 {
1036 	u_int32_t busy_count;
1037 
1038 	for (;;) {
1039 		busy_count = m->busy_count;
1040 		cpu_ccfence();
1041 
1042 		if ((busy_count & PBUSY_LOCKED) == 0 &&
1043 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
1044 			break;
1045 		}
1046 		tsleep_interlock(m, 0);
1047 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1048 				      busy_count | PBUSY_WANTED)) {
1049 			atomic_set_int(&m->flags, PG_REFERENCED);
1050 			tsleep(m, PINTERLOCKED, msg, 0);
1051 			break;
1052 		}
1053 	}
1054 }
1055 
1056 /*
1057  * This calculates and returns a page color given an optional VM object and
1058  * either a pindex or an iterator.  We attempt to return a cpu-localized
1059  * pg_color that is still roughly 16-way set-associative.  The CPU topology
1060  * is used if it was probed.
1061  *
1062  * The caller may use the returned value to index into e.g. PQ_FREE when
1063  * allocating a page in order to nominally obtain pages that are hopefully
1064  * already localized to the requesting cpu.  This function is not able to
1065  * provide any sort of guarantee of this, but does its best to improve
1066  * hardware cache management performance.
1067  *
1068  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
1069  */
1070 u_short
1071 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
1072 {
1073 	u_short pg_color;
1074 	int object_pg_color;
1075 
1076 	/*
1077 	 * WARNING! cpu_topology_core_ids might not be a power of two.
1078 	 *	    We also shouldn't make assumptions about
1079 	 *	    cpu_topology_phys_ids either.
1080 	 *
1081 	 * WARNING! ncpus might not be known at this time (during early
1082 	 *	    boot), and might be set to 1.
1083 	 *
1084 	 * General format: [phys_id][core_id][cpuid][set-associativity]
1085 	 * (but uses modulo, so not necessarily precise bit masks)
1086 	 */
1087 	object_pg_color = object ? object->pg_color : 0;
1088 
1089 	if (cpu_topology_ht_ids) {
1090 		int phys_id;
1091 		int core_id;
1092 		int ht_id;
1093 		int physcale;
1094 		int grpscale;
1095 		int cpuscale;
1096 
1097 		/*
1098 		 * Translate cpuid to socket, core, and hyperthread id.
1099 		 */
1100 		phys_id = get_cpu_phys_id(cpuid);
1101 		core_id = get_cpu_core_id(cpuid);
1102 		ht_id = get_cpu_ht_id(cpuid);
1103 
1104 		/*
1105 		 * Calculate pg_color for our array index.
1106 		 *
1107 		 * physcale - socket multiplier.
1108 		 * grpscale - core multiplier (cores per socket)
1109 		 * cpu*	    - cpus per core
1110 		 *
1111 		 * WARNING! In early boot, ncpus has not yet been
1112 		 *	    initialized and may be set to (1).
1113 		 *
1114 		 * WARNING! physcale must match the organization that
1115 		 *	    vm_numa_organize() creates to ensure that
1116 		 *	    we properly localize allocations to the
1117 		 *	    requested cpuid.
1118 		 */
1119 		physcale = PQ_L2_SIZE / cpu_topology_phys_ids;
1120 		grpscale = physcale / cpu_topology_core_ids;
1121 		cpuscale = grpscale / cpu_topology_ht_ids;
1122 
1123 		pg_color = phys_id * physcale;
1124 		pg_color += core_id * grpscale;
1125 		pg_color += ht_id * cpuscale;
1126 		pg_color += (pindex + object_pg_color) % cpuscale;
1127 
1128 #if 0
1129 		if (grpsize >= 8) {
1130 			pg_color += (pindex + object_pg_color) % grpsize;
1131 		} else {
1132 			if (grpsize <= 2) {
1133 				grpsize = 8;
1134 			} else {
1135 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
1136 				grpsize += grpsize;
1137 				if (grpsize < 8)
1138 					grpsize += grpsize;
1139 			}
1140 			pg_color += (pindex + object_pg_color) % grpsize;
1141 		}
1142 #endif
1143 	} else {
1144 		/*
1145 		 * Unknown topology, distribute things evenly.
1146 		 *
1147 		 * WARNING! In early boot, ncpus has not yet been
1148 		 *	    initialized and may be set to (1).
1149 		 */
1150 		int cpuscale;
1151 
1152 		cpuscale = PQ_L2_SIZE / ncpus;
1153 
1154 		pg_color = cpuid * cpuscale;
1155 		pg_color += (pindex + object_pg_color) % cpuscale;
1156 	}
1157 	return (pg_color & PQ_L2_MASK);
1158 }
1159 
1160 /*
1161  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
1162  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1163  */
1164 void
1165 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1166 				     int also_m_busy, const char *msg
1167 				     VM_PAGE_DEBUG_ARGS)
1168 {
1169 	u_int32_t busy_count;
1170 
1171 	for (;;) {
1172 		busy_count = m->busy_count;
1173 		cpu_ccfence();
1174 		if (busy_count & PBUSY_LOCKED) {
1175 			tsleep_interlock(m, 0);
1176 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1177 					  busy_count | PBUSY_WANTED)) {
1178 				atomic_set_int(&m->flags, PG_REFERENCED);
1179 				tsleep(m, PINTERLOCKED, msg, 0);
1180 			}
1181 		} else if (also_m_busy && busy_count) {
1182 			tsleep_interlock(m, 0);
1183 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1184 					  busy_count | PBUSY_WANTED)) {
1185 				atomic_set_int(&m->flags, PG_REFERENCED);
1186 				tsleep(m, PINTERLOCKED, msg, 0);
1187 			}
1188 		} else {
1189 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1190 					      busy_count | PBUSY_LOCKED)) {
1191 #ifdef VM_PAGE_DEBUG
1192 				m->busy_func = func;
1193 				m->busy_line = lineno;
1194 #endif
1195 				break;
1196 			}
1197 		}
1198 	}
1199 }
1200 
1201 /*
1202  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1203  * m->busy_count is also 0.
1204  *
1205  * Returns non-zero on failure.
1206  */
1207 int
1208 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1209 				    VM_PAGE_DEBUG_ARGS)
1210 {
1211 	u_int32_t busy_count;
1212 
1213 	for (;;) {
1214 		busy_count = m->busy_count;
1215 		cpu_ccfence();
1216 		if (busy_count & PBUSY_LOCKED)
1217 			return TRUE;
1218 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1219 			return TRUE;
1220 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1221 				      busy_count | PBUSY_LOCKED)) {
1222 #ifdef VM_PAGE_DEBUG
1223 				m->busy_func = func;
1224 				m->busy_line = lineno;
1225 #endif
1226 			return FALSE;
1227 		}
1228 	}
1229 }
1230 
1231 /*
1232  * Clear the BUSY flag and return non-zero to indicate to the caller
1233  * that a wakeup() should be performed.
1234  *
1235  * (inline version)
1236  */
1237 static __inline
1238 int
1239 _vm_page_wakeup(vm_page_t m)
1240 {
1241 	u_int32_t busy_count;
1242 
1243 	busy_count = m->busy_count;
1244 	cpu_ccfence();
1245 	for (;;) {
1246 		if (atomic_fcmpset_int(&m->busy_count, &busy_count,
1247 				      busy_count &
1248 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1249 			return((int)(busy_count & PBUSY_WANTED));
1250 		}
1251 	}
1252 	/* not reached */
1253 }
1254 
1255 /*
1256  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1257  * is typically the last call you make on a page before moving onto
1258  * other things.
1259  */
1260 void
1261 vm_page_wakeup(vm_page_t m)
1262 {
1263         KASSERT(m->busy_count & PBUSY_LOCKED,
1264 		("vm_page_wakeup: page not busy!!!"));
1265 	if (_vm_page_wakeup(m))
1266 		wakeup(m);
1267 }
1268 
1269 /*
1270  * Hold a page, preventing reuse.  This is typically only called on pages
1271  * in a known state (either held busy, special, or interlocked in some
1272  * manner).  Holding a page does not ensure that it remains valid, it only
1273  * prevents reuse.  The page must not already be on the FREE queue or in
1274  * any danger of being moved to the FREE queue concurrent with this call.
1275  *
1276  * Other parts of the system can still disassociate the page from its object
1277  * and attempt to free it, or perform read or write I/O on it and/or otherwise
1278  * manipulate the page, but if the page is held the VM system will leave the
1279  * page and its data intact and not cycle it through the FREE queue until
1280  * the last hold has been released.
1281  *
1282  * (see vm_page_wire() if you want to prevent the page from being
1283  *  disassociated from its object too).
1284  */
1285 void
1286 vm_page_hold(vm_page_t m)
1287 {
1288 	atomic_add_int(&m->hold_count, 1);
1289 	KKASSERT(m->queue - m->pc != PQ_FREE);
1290 #if 0
1291 	vm_page_spin_lock(m);
1292 	atomic_add_int(&m->hold_count, 1);
1293 	if (m->queue - m->pc == PQ_FREE) {
1294 		_vm_page_queue_spin_lock(m);
1295 		_vm_page_rem_queue_spinlocked(m);
1296 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1297 		_vm_page_queue_spin_unlock(m);
1298 	}
1299 	vm_page_spin_unlock(m);
1300 #endif
1301 }
1302 
1303 /*
1304  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1305  * it was freed while held and must be moved back to the FREE queue.
1306  *
1307  * To avoid racing against vm_page_free*() we must re-test conditions
1308  * after obtaining the spin-lock.  The initial test can also race a
1309  * vm_page_free*() that is in the middle of moving a page to PQ_HOLD,
1310  * leaving the page on PQ_HOLD with hold_count == 0.  Rather than
1311  * throw a spin-lock in the critical path, we rely on the pageout
1312  * daemon to clean-up these loose ends.
1313  *
1314  * More critically, the 'easy movement' between queues without busying
1315  * a vm_page is only allowed for PQ_FREE<->PQ_HOLD.
1316  */
1317 void
1318 vm_page_unhold(vm_page_t m)
1319 {
1320 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1321 		("vm_page_unhold: pg %p illegal hold_count (%d) or "
1322 		 "on FREE queue (%d)",
1323 		 m, m->hold_count, m->queue - m->pc));
1324 
1325 	if (atomic_fetchadd_int(&m->hold_count, -1) == 1 &&
1326 	    m->queue - m->pc == PQ_HOLD) {
1327 		vm_page_spin_lock(m);
1328 		if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1329 			_vm_page_queue_spin_lock(m);
1330 			_vm_page_rem_queue_spinlocked(m);
1331 			_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1332 			_vm_page_queue_spin_unlock(m);
1333 		}
1334 		vm_page_spin_unlock(m);
1335 	}
1336 }
1337 
1338 /*
1339  * Create a fictitious page with the specified physical address and
1340  * memory attribute.  The memory attribute is the only the machine-
1341  * dependent aspect of a fictitious page that must be initialized.
1342  */
1343 void
1344 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1345 {
1346 
1347 	if ((m->flags & PG_FICTITIOUS) != 0) {
1348 		/*
1349 		 * The page's memattr might have changed since the
1350 		 * previous initialization.  Update the pmap to the
1351 		 * new memattr.
1352 		 */
1353 		goto memattr;
1354 	}
1355 	m->phys_addr = paddr;
1356 	m->queue = PQ_NONE;
1357 	/* Fictitious pages don't use "segind". */
1358 	/* Fictitious pages don't use "order" or "pool". */
1359 	m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1360 	m->busy_count = PBUSY_LOCKED;
1361 	m->wire_count = 1;
1362 	spin_init(&m->spin, "fake_page");
1363 	pmap_page_init(m);
1364 memattr:
1365 	pmap_page_set_memattr(m, memattr);
1366 }
1367 
1368 /*
1369  * Inserts the given vm_page into the object and object list.
1370  *
1371  * The pagetables are not updated but will presumably fault the page
1372  * in if necessary, or if a kernel page the caller will at some point
1373  * enter the page into the kernel's pmap.  We are not allowed to block
1374  * here so we *can't* do this anyway.
1375  *
1376  * This routine may not block.
1377  * This routine must be called with the vm_object held.
1378  * This routine must be called with a critical section held.
1379  *
1380  * This routine returns TRUE if the page was inserted into the object
1381  * successfully, and FALSE if the page already exists in the object.
1382  */
1383 int
1384 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1385 {
1386 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1387 	if (m->object != NULL)
1388 		panic("vm_page_insert: already inserted");
1389 
1390 	atomic_add_int(&object->generation, 1);
1391 
1392 	/*
1393 	 * Record the object/offset pair in this page and add the
1394 	 * pv_list_count of the page to the object.
1395 	 *
1396 	 * The vm_page spin lock is required for interactions with the pmap.
1397 	 */
1398 	vm_page_spin_lock(m);
1399 	m->object = object;
1400 	m->pindex = pindex;
1401 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1402 		m->object = NULL;
1403 		m->pindex = 0;
1404 		vm_page_spin_unlock(m);
1405 		return FALSE;
1406 	}
1407 	++object->resident_page_count;
1408 	++mycpu->gd_vmtotal.t_rm;
1409 	vm_page_spin_unlock(m);
1410 
1411 	/*
1412 	 * Since we are inserting a new and possibly dirty page,
1413 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1414 	 */
1415 	if ((m->valid & m->dirty) ||
1416 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1417 		vm_object_set_writeable_dirty(object);
1418 
1419 	/*
1420 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1421 	 */
1422 	swap_pager_page_inserted(m);
1423 	return TRUE;
1424 }
1425 
1426 /*
1427  * Removes the given vm_page_t from the (object,index) table
1428  *
1429  * The page must be BUSY and will remain BUSY on return.
1430  * No other requirements.
1431  *
1432  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1433  *	 it busy.
1434  *
1435  * NOTE: Caller is responsible for any pmap disposition prior to the
1436  *	 rename (as the pmap code will not be able to find the entries
1437  *	 once the object has been disassociated).  The caller may choose
1438  *	 to leave the pmap association intact if this routine is being
1439  *	 called as part of a rename between shadowed objects.
1440  *
1441  * This routine may not block.
1442  */
1443 void
1444 vm_page_remove(vm_page_t m)
1445 {
1446 	vm_object_t object;
1447 
1448 	if (m->object == NULL) {
1449 		return;
1450 	}
1451 
1452 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1453 		panic("vm_page_remove: page not busy");
1454 
1455 	object = m->object;
1456 
1457 	vm_object_hold(object);
1458 
1459 	/*
1460 	 * Remove the page from the object and update the object.
1461 	 *
1462 	 * The vm_page spin lock is required for interactions with the pmap.
1463 	 */
1464 	vm_page_spin_lock(m);
1465 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1466 	--object->resident_page_count;
1467 	--mycpu->gd_vmtotal.t_rm;
1468 	m->object = NULL;
1469 	atomic_add_int(&object->generation, 1);
1470 	vm_page_spin_unlock(m);
1471 
1472 	vm_object_drop(object);
1473 }
1474 
1475 /*
1476  * Calculate the hash position for the vm_page hash heuristic.
1477  */
1478 static __inline
1479 struct vm_page **
1480 vm_page_hash_hash(vm_object_t object, vm_pindex_t pindex)
1481 {
1482 	size_t hi;
1483 
1484 	hi = (uintptr_t)object % (uintptr_t)vm_page_array_size + pindex;
1485 	hi %= vm_page_array_size;
1486 	return (&vm_page_hash[hi]);
1487 }
1488 
1489 /*
1490  * Heuristical page lookup that does not require any locks.  Returns
1491  * a soft-busied page on success, NULL on failure.
1492  *
1493  * Caller must lookup the page the slow way if NULL is returned.
1494  */
1495 vm_page_t
1496 vm_page_hash_get(vm_object_t object, vm_pindex_t pindex)
1497 {
1498 	struct vm_page **mp;
1499 	vm_page_t m;
1500 
1501 	if (vm_page_hash == NULL)
1502 		return NULL;
1503 	mp = vm_page_hash_hash(object, pindex);
1504 	m = *mp;
1505 	cpu_ccfence();
1506 	if (m == NULL)
1507 		return NULL;
1508 	if (m->object != object || m->pindex != pindex)
1509 		return NULL;
1510 	if (vm_page_sbusy_try(m))
1511 		return NULL;
1512 	if (m->object != object || m->pindex != pindex) {
1513 		vm_page_wakeup(m);
1514 		return NULL;
1515 	}
1516 	return m;
1517 }
1518 
1519 /*
1520  * Enter page onto vm_page_hash[].  This is a heuristic, SMP collisions
1521  * are allowed.
1522  */
1523 static __inline
1524 void
1525 vm_page_hash_enter(vm_page_t m)
1526 {
1527 	struct vm_page **mp;
1528 
1529 	if (vm_page_hash &&
1530 	    m > &vm_page_array[0] &&
1531 	    m < &vm_page_array[vm_page_array_size]) {
1532 		mp = vm_page_hash_hash(m->object, m->pindex);
1533 		if (*mp != m)
1534 			*mp = m;
1535 	}
1536 }
1537 
1538 /*
1539  * Locate and return the page at (object, pindex), or NULL if the
1540  * page could not be found.
1541  *
1542  * The caller must hold the vm_object token.
1543  */
1544 vm_page_t
1545 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1546 {
1547 	vm_page_t m;
1548 
1549 	/*
1550 	 * Search the hash table for this object/offset pair
1551 	 */
1552 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1553 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1554 	if (m) {
1555 		KKASSERT(m->object == object && m->pindex == pindex);
1556 		vm_page_hash_enter(m);
1557 	}
1558 	return(m);
1559 }
1560 
1561 vm_page_t
1562 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1563 					    vm_pindex_t pindex,
1564 					    int also_m_busy, const char *msg
1565 					    VM_PAGE_DEBUG_ARGS)
1566 {
1567 	u_int32_t busy_count;
1568 	vm_page_t m;
1569 
1570 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1571 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1572 	while (m) {
1573 		KKASSERT(m->object == object && m->pindex == pindex);
1574 		busy_count = m->busy_count;
1575 		cpu_ccfence();
1576 		if (busy_count & PBUSY_LOCKED) {
1577 			tsleep_interlock(m, 0);
1578 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1579 					  busy_count | PBUSY_WANTED)) {
1580 				atomic_set_int(&m->flags, PG_REFERENCED);
1581 				tsleep(m, PINTERLOCKED, msg, 0);
1582 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1583 							      pindex);
1584 			}
1585 		} else if (also_m_busy && busy_count) {
1586 			tsleep_interlock(m, 0);
1587 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1588 					  busy_count | PBUSY_WANTED)) {
1589 				atomic_set_int(&m->flags, PG_REFERENCED);
1590 				tsleep(m, PINTERLOCKED, msg, 0);
1591 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1592 							      pindex);
1593 			}
1594 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1595 					     busy_count | PBUSY_LOCKED)) {
1596 #ifdef VM_PAGE_DEBUG
1597 			m->busy_func = func;
1598 			m->busy_line = lineno;
1599 #endif
1600 			vm_page_hash_enter(m);
1601 			break;
1602 		}
1603 	}
1604 	return m;
1605 }
1606 
1607 /*
1608  * Attempt to lookup and busy a page.
1609  *
1610  * Returns NULL if the page could not be found
1611  *
1612  * Returns a vm_page and error == TRUE if the page exists but could not
1613  * be busied.
1614  *
1615  * Returns a vm_page and error == FALSE on success.
1616  */
1617 vm_page_t
1618 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1619 					   vm_pindex_t pindex,
1620 					   int also_m_busy, int *errorp
1621 					   VM_PAGE_DEBUG_ARGS)
1622 {
1623 	u_int32_t busy_count;
1624 	vm_page_t m;
1625 
1626 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1627 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1628 	*errorp = FALSE;
1629 	while (m) {
1630 		KKASSERT(m->object == object && m->pindex == pindex);
1631 		busy_count = m->busy_count;
1632 		cpu_ccfence();
1633 		if (busy_count & PBUSY_LOCKED) {
1634 			*errorp = TRUE;
1635 			break;
1636 		}
1637 		if (also_m_busy && busy_count) {
1638 			*errorp = TRUE;
1639 			break;
1640 		}
1641 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1642 				      busy_count | PBUSY_LOCKED)) {
1643 #ifdef VM_PAGE_DEBUG
1644 			m->busy_func = func;
1645 			m->busy_line = lineno;
1646 #endif
1647 			vm_page_hash_enter(m);
1648 			break;
1649 		}
1650 	}
1651 	return m;
1652 }
1653 
1654 /*
1655  * Returns a page that is only soft-busied for use by the caller in
1656  * a read-only fashion.  Returns NULL if the page could not be found,
1657  * the soft busy could not be obtained, or the page data is invalid.
1658  */
1659 vm_page_t
1660 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1661 			 int pgoff, int pgbytes)
1662 {
1663 	vm_page_t m;
1664 
1665 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1666 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1667 	if (m) {
1668 		if ((m->valid != VM_PAGE_BITS_ALL &&
1669 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1670 		    (m->flags & PG_FICTITIOUS)) {
1671 			m = NULL;
1672 		} else if (vm_page_sbusy_try(m)) {
1673 			m = NULL;
1674 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1675 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1676 			   (m->flags & PG_FICTITIOUS)) {
1677 			vm_page_sbusy_drop(m);
1678 			m = NULL;
1679 		} else {
1680 			vm_page_hash_enter(m);
1681 		}
1682 	}
1683 	return m;
1684 }
1685 
1686 /*
1687  * Caller must hold the related vm_object
1688  */
1689 vm_page_t
1690 vm_page_next(vm_page_t m)
1691 {
1692 	vm_page_t next;
1693 
1694 	next = vm_page_rb_tree_RB_NEXT(m);
1695 	if (next && next->pindex != m->pindex + 1)
1696 		next = NULL;
1697 	return (next);
1698 }
1699 
1700 /*
1701  * vm_page_rename()
1702  *
1703  * Move the given vm_page from its current object to the specified
1704  * target object/offset.  The page must be busy and will remain so
1705  * on return.
1706  *
1707  * new_object must be held.
1708  * This routine might block. XXX ?
1709  *
1710  * NOTE: Swap associated with the page must be invalidated by the move.  We
1711  *       have to do this for several reasons:  (1) we aren't freeing the
1712  *       page, (2) we are dirtying the page, (3) the VM system is probably
1713  *       moving the page from object A to B, and will then later move
1714  *       the backing store from A to B and we can't have a conflict.
1715  *
1716  * NOTE: We *always* dirty the page.  It is necessary both for the
1717  *       fact that we moved it, and because we may be invalidating
1718  *	 swap.  If the page is on the cache, we have to deactivate it
1719  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1720  *	 on the cache.
1721  *
1722  * NOTE: Caller is responsible for any pmap disposition prior to the
1723  *	 rename (as the pmap code will not be able to find the entries
1724  *	 once the object has been disassociated or changed).  Nominally
1725  *	 the caller is moving a page between shadowed objects and so the
1726  *	 pmap association is retained without having to remove the page
1727  *	 from it.
1728  */
1729 void
1730 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1731 {
1732 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1733 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1734 	if (m->object) {
1735 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1736 		vm_page_remove(m);
1737 	}
1738 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1739 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1740 		      new_object, new_pindex);
1741 	}
1742 	if (m->queue - m->pc == PQ_CACHE)
1743 		vm_page_deactivate(m);
1744 	vm_page_dirty(m);
1745 }
1746 
1747 /*
1748  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1749  * is to remain BUSYied by the caller.
1750  *
1751  * This routine may not block.
1752  */
1753 void
1754 vm_page_unqueue_nowakeup(vm_page_t m)
1755 {
1756 	vm_page_and_queue_spin_lock(m);
1757 	(void)_vm_page_rem_queue_spinlocked(m);
1758 	vm_page_spin_unlock(m);
1759 }
1760 
1761 /*
1762  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1763  * if necessary.
1764  *
1765  * This routine may not block.
1766  */
1767 void
1768 vm_page_unqueue(vm_page_t m)
1769 {
1770 	u_short queue;
1771 
1772 	vm_page_and_queue_spin_lock(m);
1773 	queue = _vm_page_rem_queue_spinlocked(m);
1774 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1775 		vm_page_spin_unlock(m);
1776 		pagedaemon_wakeup();
1777 	} else {
1778 		vm_page_spin_unlock(m);
1779 	}
1780 }
1781 
1782 /*
1783  * vm_page_list_find()
1784  *
1785  * Find a page on the specified queue with color optimization.
1786  *
1787  * The page coloring optimization attempts to locate a page that does
1788  * not overload other nearby pages in the object in the cpu's L1 or L2
1789  * caches.  We need this optimization because cpu caches tend to be
1790  * physical caches, while object spaces tend to be virtual.
1791  *
1792  * The page coloring optimization also, very importantly, tries to localize
1793  * memory to cpus and physical sockets.
1794  *
1795  * Each PQ_FREE and PQ_CACHE color queue has its own spinlock and the
1796  * algorithm is adjusted to localize allocations on a per-core basis.
1797  * This is done by 'twisting' the colors.
1798  *
1799  * The page is returned spinlocked and removed from its queue (it will
1800  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1801  * is responsible for dealing with the busy-page case (usually by
1802  * deactivating the page and looping).
1803  *
1804  * NOTE:  This routine is carefully inlined.  A non-inlined version
1805  *	  is available for outside callers but the only critical path is
1806  *	  from within this source file.
1807  *
1808  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1809  *	  represent stable storage, allowing us to order our locks vm_page
1810  *	  first, then queue.
1811  */
1812 static __inline
1813 vm_page_t
1814 _vm_page_list_find(int basequeue, int index)
1815 {
1816 	struct vpgqueues *pq;
1817 	vm_page_t m;
1818 
1819 	index &= PQ_L2_MASK;
1820 	pq = &vm_page_queues[basequeue + index];
1821 
1822 	/*
1823 	 * Try this cpu's colored queue first.  Test for a page unlocked,
1824 	 * then lock the queue and locate a page.  Note that the lock order
1825 	 * is reversed, but we do not want to dwadle on the page spinlock
1826 	 * anyway as it is held significantly longer than the queue spinlock.
1827 	 */
1828 	if (TAILQ_FIRST(&pq->pl)) {
1829 		spin_lock(&pq->spin);
1830 		TAILQ_FOREACH(m, &pq->pl, pageq) {
1831 			if (spin_trylock(&m->spin) == 0)
1832 				continue;
1833 			KKASSERT(m->queue == basequeue + index);
1834 			_vm_page_rem_queue_spinlocked(m);
1835 			return(m);
1836 		}
1837 		spin_unlock(&pq->spin);
1838 	}
1839 
1840 	/*
1841 	 * If we are unable to get a page, do a more involved NUMA-aware
1842 	 * search.
1843 	 */
1844 	m = _vm_page_list_find2(basequeue, index);
1845 	return(m);
1846 }
1847 
1848 /*
1849  * If we could not find the page in the desired queue try to find it in
1850  * a nearby (NUMA-aware) queue.
1851  */
1852 static vm_page_t
1853 _vm_page_list_find2(int basequeue, int index)
1854 {
1855 	struct vpgqueues *pq;
1856 	vm_page_t m = NULL;
1857 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1858 	int pqi;
1859 	int i;
1860 
1861 	index &= PQ_L2_MASK;
1862 	pq = &vm_page_queues[basequeue];
1863 
1864 	/*
1865 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1866 	 * else fails (PQ_L2_MASK which is 255).
1867 	 *
1868 	 * Test each queue unlocked first, then lock the queue and locate
1869 	 * a page.  Note that the lock order is reversed, but we do not want
1870 	 * to dwadle on the page spinlock anyway as it is held significantly
1871 	 * longer than the queue spinlock.
1872 	 */
1873 	do {
1874 		pqmask = (pqmask << 1) | 1;
1875 		for (i = 0; i <= pqmask; ++i) {
1876 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1877 			if (TAILQ_FIRST(&pq[pqi].pl)) {
1878 				spin_lock(&pq[pqi].spin);
1879 				TAILQ_FOREACH(m, &pq[pqi].pl, pageq) {
1880 					if (spin_trylock(&m->spin) == 0)
1881 						continue;
1882 					KKASSERT(m->queue == basequeue + pqi);
1883 					_vm_page_rem_queue_spinlocked(m);
1884 					return(m);
1885 				}
1886 				spin_unlock(&pq[pqi].spin);
1887 			}
1888 		}
1889 	} while (pqmask != PQ_L2_MASK);
1890 
1891 	return(m);
1892 }
1893 
1894 /*
1895  * Returns a vm_page candidate for allocation.  The page is not busied so
1896  * it can move around.  The caller must busy the page (and typically
1897  * deactivate it if it cannot be busied!)
1898  *
1899  * Returns a spinlocked vm_page that has been removed from its queue.
1900  */
1901 vm_page_t
1902 vm_page_list_find(int basequeue, int index)
1903 {
1904 	return(_vm_page_list_find(basequeue, index));
1905 }
1906 
1907 /*
1908  * Find a page on the cache queue with color optimization, remove it
1909  * from the queue, and busy it.  The returned page will not be spinlocked.
1910  *
1911  * A candidate failure will be deactivated.  Candidates can fail due to
1912  * being busied by someone else, in which case they will be deactivated.
1913  *
1914  * This routine may not block.
1915  *
1916  */
1917 static vm_page_t
1918 vm_page_select_cache(u_short pg_color)
1919 {
1920 	vm_page_t m;
1921 
1922 	for (;;) {
1923 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1924 		if (m == NULL)
1925 			break;
1926 		/*
1927 		 * (m) has been removed from its queue and spinlocked
1928 		 */
1929 		if (vm_page_busy_try(m, TRUE)) {
1930 			_vm_page_deactivate_locked(m, 0);
1931 			vm_page_spin_unlock(m);
1932 		} else {
1933 			/*
1934 			 * We successfully busied the page
1935 			 */
1936 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1937 			    m->hold_count == 0 &&
1938 			    m->wire_count == 0 &&
1939 			    (m->dirty & m->valid) == 0) {
1940 				vm_page_spin_unlock(m);
1941 				pagedaemon_wakeup();
1942 				return(m);
1943 			}
1944 
1945 			/*
1946 			 * The page cannot be recycled, deactivate it.
1947 			 */
1948 			_vm_page_deactivate_locked(m, 0);
1949 			if (_vm_page_wakeup(m)) {
1950 				vm_page_spin_unlock(m);
1951 				wakeup(m);
1952 			} else {
1953 				vm_page_spin_unlock(m);
1954 			}
1955 		}
1956 	}
1957 	return (m);
1958 }
1959 
1960 /*
1961  * Find a free page.  We attempt to inline the nominal case and fall back
1962  * to _vm_page_select_free() otherwise.  A busied page is removed from
1963  * the queue and returned.
1964  *
1965  * This routine may not block.
1966  */
1967 static __inline vm_page_t
1968 vm_page_select_free(u_short pg_color)
1969 {
1970 	vm_page_t m;
1971 
1972 	for (;;) {
1973 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1974 		if (m == NULL)
1975 			break;
1976 		if (vm_page_busy_try(m, TRUE)) {
1977 			/*
1978 			 * Various mechanisms such as a pmap_collect can
1979 			 * result in a busy page on the free queue.  We
1980 			 * have to move the page out of the way so we can
1981 			 * retry the allocation.  If the other thread is not
1982 			 * allocating the page then m->valid will remain 0 and
1983 			 * the pageout daemon will free the page later on.
1984 			 *
1985 			 * Since we could not busy the page, however, we
1986 			 * cannot make assumptions as to whether the page
1987 			 * will be allocated by the other thread or not,
1988 			 * so all we can do is deactivate it to move it out
1989 			 * of the way.  In particular, if the other thread
1990 			 * wires the page it may wind up on the inactive
1991 			 * queue and the pageout daemon will have to deal
1992 			 * with that case too.
1993 			 */
1994 			_vm_page_deactivate_locked(m, 0);
1995 			vm_page_spin_unlock(m);
1996 		} else {
1997 			/*
1998 			 * Theoretically if we are able to busy the page
1999 			 * atomic with the queue removal (using the vm_page
2000 			 * lock) nobody else should have been able to mess
2001 			 * with the page before us.
2002 			 *
2003 			 * Assert the page state.  Note that even though
2004 			 * wiring doesn't adjust queues, a page on the free
2005 			 * queue should never be wired at this point.
2006 			 */
2007 			KKASSERT((m->flags & (PG_UNMANAGED |
2008 					      PG_NEED_COMMIT)) == 0);
2009 			KASSERT(m->hold_count == 0,
2010 				("m->hold_count is not zero "
2011 				 "pg %p q=%d flags=%08x hold=%d wire=%d",
2012 				 m, m->queue, m->flags,
2013 				 m->hold_count, m->wire_count));
2014 			KKASSERT(m->wire_count == 0);
2015 			vm_page_spin_unlock(m);
2016 			pagedaemon_wakeup();
2017 
2018 			/* return busied and removed page */
2019 			return(m);
2020 		}
2021 	}
2022 	return(m);
2023 }
2024 
2025 /*
2026  * vm_page_alloc()
2027  *
2028  * Allocate and return a memory cell associated with this VM object/offset
2029  * pair.  If object is NULL an unassociated page will be allocated.
2030  *
2031  * The returned page will be busied and removed from its queues.  This
2032  * routine can block and may return NULL if a race occurs and the page
2033  * is found to already exist at the specified (object, pindex).
2034  *
2035  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
2036  *	VM_ALLOC_QUICK		like normal but cannot use cache
2037  *	VM_ALLOC_SYSTEM		greater free drain
2038  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
2039  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
2040  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
2041  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
2042  *				(see vm_page_grab())
2043  *	VM_ALLOC_USE_GD		ok to use per-gd cache
2044  *
2045  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
2046  *
2047  * The object must be held if not NULL
2048  * This routine may not block
2049  *
2050  * Additional special handling is required when called from an interrupt
2051  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
2052  * in this case.
2053  */
2054 vm_page_t
2055 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
2056 {
2057 	globaldata_t gd;
2058 	vm_object_t obj;
2059 	vm_page_t m;
2060 	u_short pg_color;
2061 	int cpuid_local;
2062 
2063 #if 0
2064 	/*
2065 	 * Special per-cpu free VM page cache.  The pages are pre-busied
2066 	 * and pre-zerod for us.
2067 	 */
2068 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
2069 		crit_enter_gd(gd);
2070 		if (gd->gd_vmpg_count) {
2071 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
2072 			crit_exit_gd(gd);
2073 			goto done;
2074                 }
2075 		crit_exit_gd(gd);
2076         }
2077 #endif
2078 	m = NULL;
2079 
2080 	/*
2081 	 * CPU LOCALIZATION
2082 	 *
2083 	 * CPU localization algorithm.  Break the page queues up by physical
2084 	 * id and core id (note that two cpu threads will have the same core
2085 	 * id, and core_id != gd_cpuid).
2086 	 *
2087 	 * This is nowhere near perfect, for example the last pindex in a
2088 	 * subgroup will overflow into the next cpu or package.  But this
2089 	 * should get us good page reuse locality in heavy mixed loads.
2090 	 *
2091 	 * (may be executed before the APs are started, so other GDs might
2092 	 *  not exist!)
2093 	 */
2094 	if (page_req & VM_ALLOC_CPU_SPEC)
2095 		cpuid_local = VM_ALLOC_GETCPU(page_req);
2096 	else
2097 		cpuid_local = mycpu->gd_cpuid;
2098 
2099 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
2100 
2101 	KKASSERT(page_req &
2102 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
2103 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2104 
2105 	/*
2106 	 * Certain system threads (pageout daemon, buf_daemon's) are
2107 	 * allowed to eat deeper into the free page list.
2108 	 */
2109 	if (curthread->td_flags & TDF_SYSTHREAD)
2110 		page_req |= VM_ALLOC_SYSTEM;
2111 
2112 	/*
2113 	 * Impose various limitations.  Note that the v_free_reserved test
2114 	 * must match the opposite of vm_page_count_target() to avoid
2115 	 * livelocks, be careful.
2116 	 */
2117 loop:
2118 	gd = mycpu;
2119 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
2120 	    ((page_req & VM_ALLOC_INTERRUPT) &&
2121 	     gd->gd_vmstats.v_free_count > 0) ||
2122 	    ((page_req & VM_ALLOC_SYSTEM) &&
2123 	     gd->gd_vmstats.v_cache_count == 0 &&
2124 		gd->gd_vmstats.v_free_count >
2125 		gd->gd_vmstats.v_interrupt_free_min)
2126 	) {
2127 		/*
2128 		 * The free queue has sufficient free pages to take one out.
2129 		 */
2130 		m = vm_page_select_free(pg_color);
2131 	} else if (page_req & VM_ALLOC_NORMAL) {
2132 		/*
2133 		 * Allocatable from the cache (non-interrupt only).  On
2134 		 * success, we must free the page and try again, thus
2135 		 * ensuring that vmstats.v_*_free_min counters are replenished.
2136 		 */
2137 #ifdef INVARIANTS
2138 		if (curthread->td_preempted) {
2139 			kprintf("vm_page_alloc(): warning, attempt to allocate"
2140 				" cache page from preempting interrupt\n");
2141 			m = NULL;
2142 		} else {
2143 			m = vm_page_select_cache(pg_color);
2144 		}
2145 #else
2146 		m = vm_page_select_cache(pg_color);
2147 #endif
2148 		/*
2149 		 * On success move the page into the free queue and loop.
2150 		 *
2151 		 * Only do this if we can safely acquire the vm_object lock,
2152 		 * because this is effectively a random page and the caller
2153 		 * might be holding the lock shared, we don't want to
2154 		 * deadlock.
2155 		 */
2156 		if (m != NULL) {
2157 			KASSERT(m->dirty == 0,
2158 				("Found dirty cache page %p", m));
2159 			if ((obj = m->object) != NULL) {
2160 				if (vm_object_hold_try(obj)) {
2161 					vm_page_protect(m, VM_PROT_NONE);
2162 					vm_page_free(m);
2163 					/* m->object NULL here */
2164 					vm_object_drop(obj);
2165 				} else {
2166 					vm_page_deactivate(m);
2167 					vm_page_wakeup(m);
2168 				}
2169 			} else {
2170 				vm_page_protect(m, VM_PROT_NONE);
2171 				vm_page_free(m);
2172 			}
2173 			goto loop;
2174 		}
2175 
2176 		/*
2177 		 * On failure return NULL
2178 		 */
2179 		atomic_add_int(&vm_pageout_deficit, 1);
2180 		pagedaemon_wakeup();
2181 		return (NULL);
2182 	} else {
2183 		/*
2184 		 * No pages available, wakeup the pageout daemon and give up.
2185 		 */
2186 		atomic_add_int(&vm_pageout_deficit, 1);
2187 		pagedaemon_wakeup();
2188 		return (NULL);
2189 	}
2190 
2191 	/*
2192 	 * v_free_count can race so loop if we don't find the expected
2193 	 * page.
2194 	 */
2195 	if (m == NULL) {
2196 		vmstats_rollup();
2197 		goto loop;
2198 	}
2199 
2200 	/*
2201 	 * Good page found.  The page has already been busied for us and
2202 	 * removed from its queues.
2203 	 */
2204 	KASSERT(m->dirty == 0,
2205 		("vm_page_alloc: free/cache page %p was dirty", m));
2206 	KKASSERT(m->queue == PQ_NONE);
2207 
2208 #if 0
2209 done:
2210 #endif
2211 	/*
2212 	 * Initialize the structure, inheriting some flags but clearing
2213 	 * all the rest.  The page has already been busied for us.
2214 	 */
2215 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
2216 
2217 	KKASSERT(m->wire_count == 0);
2218 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
2219 	m->act_count = 0;
2220 	m->valid = 0;
2221 
2222 	/*
2223 	 * Caller must be holding the object lock (asserted by
2224 	 * vm_page_insert()).
2225 	 *
2226 	 * NOTE: Inserting a page here does not insert it into any pmaps
2227 	 *	 (which could cause us to block allocating memory).
2228 	 *
2229 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2230 	 *	 can be used by the caller for any purpose.
2231 	 */
2232 	if (object) {
2233 		if (vm_page_insert(m, object, pindex) == FALSE) {
2234 			vm_page_free(m);
2235 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2236 				panic("PAGE RACE %p[%ld]/%p",
2237 				      object, (long)pindex, m);
2238 			m = NULL;
2239 		}
2240 	} else {
2241 		m->pindex = pindex;
2242 	}
2243 
2244 	/*
2245 	 * Don't wakeup too often - wakeup the pageout daemon when
2246 	 * we would be nearly out of memory.
2247 	 */
2248 	pagedaemon_wakeup();
2249 
2250 	/*
2251 	 * A BUSY page is returned.
2252 	 */
2253 	return (m);
2254 }
2255 
2256 /*
2257  * Returns number of pages available in our DMA memory reserve
2258  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2259  */
2260 vm_size_t
2261 vm_contig_avail_pages(void)
2262 {
2263 	alist_blk_t blk;
2264 	alist_blk_t count;
2265 	alist_blk_t bfree;
2266 	spin_lock(&vm_contig_spin);
2267 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2268 	spin_unlock(&vm_contig_spin);
2269 
2270 	return bfree;
2271 }
2272 
2273 /*
2274  * Attempt to allocate contiguous physical memory with the specified
2275  * requirements.
2276  */
2277 vm_page_t
2278 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2279 		     unsigned long alignment, unsigned long boundary,
2280 		     unsigned long size, vm_memattr_t memattr)
2281 {
2282 	alist_blk_t blk;
2283 	vm_page_t m;
2284 	vm_pindex_t i;
2285 #if 0
2286 	static vm_pindex_t contig_rover;
2287 #endif
2288 
2289 	alignment >>= PAGE_SHIFT;
2290 	if (alignment == 0)
2291 		alignment = 1;
2292 	boundary >>= PAGE_SHIFT;
2293 	if (boundary == 0)
2294 		boundary = 1;
2295 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2296 
2297 #if 0
2298 	/*
2299 	 * Disabled temporarily until we find a solution for DRM (a flag
2300 	 * to always use the free space reserve, for performance).
2301 	 */
2302 	if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2303 	    boundary <= PAGE_SIZE && size == 1 &&
2304 	    memattr == VM_MEMATTR_DEFAULT) {
2305 		/*
2306 		 * Any page will work, use vm_page_alloc()
2307 		 * (e.g. when used from kmem_alloc_attr())
2308 		 */
2309 		m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2310 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2311 				  VM_ALLOC_INTERRUPT);
2312 		m->valid = VM_PAGE_BITS_ALL;
2313 		vm_page_wire(m);
2314 		vm_page_wakeup(m);
2315 	} else
2316 #endif
2317 	{
2318 		/*
2319 		 * Use the low-memory dma reserve
2320 		 */
2321 		spin_lock(&vm_contig_spin);
2322 		blk = alist_alloc(&vm_contig_alist, 0, size);
2323 		if (blk == ALIST_BLOCK_NONE) {
2324 			spin_unlock(&vm_contig_spin);
2325 			if (bootverbose) {
2326 				kprintf("vm_page_alloc_contig: %ldk nospace\n",
2327 					(size << PAGE_SHIFT) / 1024);
2328 				print_backtrace(5);
2329 			}
2330 			return(NULL);
2331 		}
2332 		if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2333 			alist_free(&vm_contig_alist, blk, size);
2334 			spin_unlock(&vm_contig_spin);
2335 			if (bootverbose) {
2336 				kprintf("vm_page_alloc_contig: %ldk high "
2337 					"%016jx failed\n",
2338 					(size << PAGE_SHIFT) / 1024,
2339 					(intmax_t)high);
2340 			}
2341 			return(NULL);
2342 		}
2343 		spin_unlock(&vm_contig_spin);
2344 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2345 	}
2346 	if (vm_contig_verbose) {
2347 		kprintf("vm_page_alloc_contig: %016jx/%ldk "
2348 			"(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2349 			(intmax_t)m->phys_addr,
2350 			(size << PAGE_SHIFT) / 1024,
2351 			low, high, alignment, boundary, size, memattr);
2352 	}
2353 	if (memattr != VM_MEMATTR_DEFAULT) {
2354 		for (i = 0;i < size; i++)
2355 			pmap_page_set_memattr(&m[i], memattr);
2356 	}
2357 	return m;
2358 }
2359 
2360 /*
2361  * Free contiguously allocated pages.  The pages will be wired but not busy.
2362  * When freeing to the alist we leave them wired and not busy.
2363  */
2364 void
2365 vm_page_free_contig(vm_page_t m, unsigned long size)
2366 {
2367 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2368 	vm_pindex_t start = pa >> PAGE_SHIFT;
2369 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2370 
2371 	if (vm_contig_verbose) {
2372 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2373 			(intmax_t)pa, size / 1024);
2374 	}
2375 	if (pa < vm_low_phys_reserved) {
2376 		KKASSERT(pa + size <= vm_low_phys_reserved);
2377 		spin_lock(&vm_contig_spin);
2378 		alist_free(&vm_contig_alist, start, pages);
2379 		spin_unlock(&vm_contig_spin);
2380 	} else {
2381 		while (pages) {
2382 			vm_page_busy_wait(m, FALSE, "cpgfr");
2383 			vm_page_unwire(m, 0);
2384 			vm_page_free(m);
2385 			--pages;
2386 			++m;
2387 		}
2388 
2389 	}
2390 }
2391 
2392 
2393 /*
2394  * Wait for sufficient free memory for nominal heavy memory use kernel
2395  * operations.
2396  *
2397  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2398  *	     will trivially deadlock the system.
2399  */
2400 void
2401 vm_wait_nominal(void)
2402 {
2403 	while (vm_page_count_min(0))
2404 		vm_wait(0);
2405 }
2406 
2407 /*
2408  * Test if vm_wait_nominal() would block.
2409  */
2410 int
2411 vm_test_nominal(void)
2412 {
2413 	if (vm_page_count_min(0))
2414 		return(1);
2415 	return(0);
2416 }
2417 
2418 /*
2419  * Block until free pages are available for allocation, called in various
2420  * places before memory allocations.
2421  *
2422  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2423  * more generous then that.
2424  */
2425 void
2426 vm_wait(int timo)
2427 {
2428 	/*
2429 	 * never wait forever
2430 	 */
2431 	if (timo == 0)
2432 		timo = hz;
2433 	lwkt_gettoken(&vm_token);
2434 
2435 	if (curthread == pagethread ||
2436 	    curthread == emergpager) {
2437 		/*
2438 		 * The pageout daemon itself needs pages, this is bad.
2439 		 */
2440 		if (vm_page_count_min(0)) {
2441 			vm_pageout_pages_needed = 1;
2442 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2443 		}
2444 	} else {
2445 		/*
2446 		 * Wakeup the pageout daemon if necessary and wait.
2447 		 *
2448 		 * Do not wait indefinitely for the target to be reached,
2449 		 * as load might prevent it from being reached any time soon.
2450 		 * But wait a little to try to slow down page allocations
2451 		 * and to give more important threads (the pagedaemon)
2452 		 * allocation priority.
2453 		 */
2454 		if (vm_page_count_target()) {
2455 			if (vm_pages_needed == 0) {
2456 				vm_pages_needed = 1;
2457 				wakeup(&vm_pages_needed);
2458 			}
2459 			++vm_pages_waiting;	/* SMP race ok */
2460 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2461 		}
2462 	}
2463 	lwkt_reltoken(&vm_token);
2464 }
2465 
2466 /*
2467  * Block until free pages are available for allocation
2468  *
2469  * Called only from vm_fault so that processes page faulting can be
2470  * easily tracked.
2471  */
2472 void
2473 vm_wait_pfault(void)
2474 {
2475 	/*
2476 	 * Wakeup the pageout daemon if necessary and wait.
2477 	 *
2478 	 * Do not wait indefinitely for the target to be reached,
2479 	 * as load might prevent it from being reached any time soon.
2480 	 * But wait a little to try to slow down page allocations
2481 	 * and to give more important threads (the pagedaemon)
2482 	 * allocation priority.
2483 	 */
2484 	if (vm_page_count_min(0)) {
2485 		lwkt_gettoken(&vm_token);
2486 		while (vm_page_count_severe()) {
2487 			if (vm_page_count_target()) {
2488 				thread_t td;
2489 
2490 				if (vm_pages_needed == 0) {
2491 					vm_pages_needed = 1;
2492 					wakeup(&vm_pages_needed);
2493 				}
2494 				++vm_pages_waiting;	/* SMP race ok */
2495 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2496 
2497 				/*
2498 				 * Do not stay stuck in the loop if the system is trying
2499 				 * to kill the process.
2500 				 */
2501 				td = curthread;
2502 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2503 					break;
2504 			}
2505 		}
2506 		lwkt_reltoken(&vm_token);
2507 	}
2508 }
2509 
2510 /*
2511  * Put the specified page on the active list (if appropriate).  Ensure
2512  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2513  *
2514  * The caller should be holding the page busied ? XXX
2515  * This routine may not block.
2516  */
2517 void
2518 vm_page_activate(vm_page_t m)
2519 {
2520 	u_short oqueue;
2521 
2522 	vm_page_spin_lock(m);
2523 	if (m->queue - m->pc != PQ_ACTIVE && !(m->flags & PG_FICTITIOUS)) {
2524 		_vm_page_queue_spin_lock(m);
2525 		oqueue = _vm_page_rem_queue_spinlocked(m);
2526 		/* page is left spinlocked, queue is unlocked */
2527 
2528 		if (oqueue == PQ_CACHE)
2529 			mycpu->gd_cnt.v_reactivated++;
2530 		if ((m->flags & PG_UNMANAGED) == 0) {
2531 			if (m->act_count < ACT_INIT)
2532 				m->act_count = ACT_INIT;
2533 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2534 		}
2535 		_vm_page_and_queue_spin_unlock(m);
2536 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2537 			pagedaemon_wakeup();
2538 	} else {
2539 		if (m->act_count < ACT_INIT)
2540 			m->act_count = ACT_INIT;
2541 		vm_page_spin_unlock(m);
2542 	}
2543 }
2544 
2545 /*
2546  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2547  * routine is called when a page has been added to the cache or free
2548  * queues.
2549  *
2550  * This routine may not block.
2551  */
2552 static __inline void
2553 vm_page_free_wakeup(void)
2554 {
2555 	globaldata_t gd = mycpu;
2556 
2557 	/*
2558 	 * If the pageout daemon itself needs pages, then tell it that
2559 	 * there are some free.
2560 	 */
2561 	if (vm_pageout_pages_needed &&
2562 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2563 	    gd->gd_vmstats.v_pageout_free_min
2564 	) {
2565 		vm_pageout_pages_needed = 0;
2566 		wakeup(&vm_pageout_pages_needed);
2567 	}
2568 
2569 	/*
2570 	 * Wakeup processes that are waiting on memory.
2571 	 *
2572 	 * Generally speaking we want to wakeup stuck processes as soon as
2573 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2574 	 * where we can do this.  Wait a bit longer to reduce degenerate
2575 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2576 	 * to make sure the min-check w/hysteresis does not exceed the
2577 	 * normal target.
2578 	 */
2579 	if (vm_pages_waiting) {
2580 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2581 		    !vm_page_count_target()) {
2582 			vm_pages_waiting = 0;
2583 			wakeup(&vmstats.v_free_count);
2584 			++mycpu->gd_cnt.v_ppwakeups;
2585 		}
2586 #if 0
2587 		if (!vm_page_count_target()) {
2588 			/*
2589 			 * Plenty of pages are free, wakeup everyone.
2590 			 */
2591 			vm_pages_waiting = 0;
2592 			wakeup(&vmstats.v_free_count);
2593 			++mycpu->gd_cnt.v_ppwakeups;
2594 		} else if (!vm_page_count_min(0)) {
2595 			/*
2596 			 * Some pages are free, wakeup someone.
2597 			 */
2598 			int wcount = vm_pages_waiting;
2599 			if (wcount > 0)
2600 				--wcount;
2601 			vm_pages_waiting = wcount;
2602 			wakeup_one(&vmstats.v_free_count);
2603 			++mycpu->gd_cnt.v_ppwakeups;
2604 		}
2605 #endif
2606 	}
2607 }
2608 
2609 /*
2610  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2611  * it from its VM object.
2612  *
2613  * The vm_page must be BUSY on entry.  BUSY will be released on
2614  * return (the page will have been freed).
2615  */
2616 void
2617 vm_page_free_toq(vm_page_t m)
2618 {
2619 	mycpu->gd_cnt.v_tfree++;
2620 	KKASSERT((m->flags & PG_MAPPED) == 0);
2621 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2622 
2623 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2624 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2625 			"hold(%d)\n",
2626 			(u_long)m->pindex, m->busy_count, m->hold_count);
2627 		if ((m->queue - m->pc) == PQ_FREE)
2628 			panic("vm_page_free: freeing free page");
2629 		else
2630 			panic("vm_page_free: freeing busy page");
2631 	}
2632 
2633 	/*
2634 	 * Remove from object, spinlock the page and its queues and
2635 	 * remove from any queue.  No queue spinlock will be held
2636 	 * after this section (because the page was removed from any
2637 	 * queue).
2638 	 */
2639 	vm_page_remove(m);
2640 
2641 	/*
2642 	 * No further management of fictitious pages occurs beyond object
2643 	 * and queue removal.
2644 	 */
2645 	if ((m->flags & PG_FICTITIOUS) != 0) {
2646 		KKASSERT(m->queue == PQ_NONE);
2647 		vm_page_wakeup(m);
2648 		return;
2649 	}
2650 	vm_page_and_queue_spin_lock(m);
2651 	_vm_page_rem_queue_spinlocked(m);
2652 
2653 	m->valid = 0;
2654 	vm_page_undirty(m);
2655 
2656 	if (m->wire_count != 0) {
2657 		if (m->wire_count > 1) {
2658 		    panic(
2659 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2660 			m->wire_count, (long)m->pindex);
2661 		}
2662 		panic("vm_page_free: freeing wired page");
2663 	}
2664 
2665 	/*
2666 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2667 	 * Clear the NEED_COMMIT flag
2668 	 */
2669 	if (m->flags & PG_UNMANAGED)
2670 		vm_page_flag_clear(m, PG_UNMANAGED);
2671 	if (m->flags & PG_NEED_COMMIT)
2672 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2673 
2674 	if (m->hold_count != 0) {
2675 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2676 	} else {
2677 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2678 	}
2679 
2680 	/*
2681 	 * This sequence allows us to clear BUSY while still holding
2682 	 * its spin lock, which reduces contention vs allocators.  We
2683 	 * must not leave the queue locked or _vm_page_wakeup() may
2684 	 * deadlock.
2685 	 */
2686 	_vm_page_queue_spin_unlock(m);
2687 	if (_vm_page_wakeup(m)) {
2688 		vm_page_spin_unlock(m);
2689 		wakeup(m);
2690 	} else {
2691 		vm_page_spin_unlock(m);
2692 	}
2693 	vm_page_free_wakeup();
2694 }
2695 
2696 /*
2697  * vm_page_unmanage()
2698  *
2699  * Prevent PV management from being done on the page.  The page is
2700  * also removed from the paging queues, and as a consequence of no longer
2701  * being managed the pageout daemon will not touch it (since there is no
2702  * way to locate the pte mappings for the page).  madvise() calls that
2703  * mess with the pmap will also no longer operate on the page.
2704  *
2705  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2706  * will clear the flag.
2707  *
2708  * This routine is used by OBJT_PHYS objects - objects using unswappable
2709  * physical memory as backing store rather then swap-backed memory and
2710  * will eventually be extended to support 4MB unmanaged physical
2711  * mappings.
2712  *
2713  * Caller must be holding the page busy.
2714  */
2715 void
2716 vm_page_unmanage(vm_page_t m)
2717 {
2718 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2719 	if ((m->flags & PG_UNMANAGED) == 0) {
2720 		vm_page_unqueue(m);
2721 	}
2722 	vm_page_flag_set(m, PG_UNMANAGED);
2723 }
2724 
2725 /*
2726  * Mark this page as wired down by yet another map.  We do not adjust the
2727  * queue the page is on, it will be checked for wiring as-needed.
2728  *
2729  * Caller must be holding the page busy.
2730  */
2731 void
2732 vm_page_wire(vm_page_t m)
2733 {
2734 	/*
2735 	 * Only bump the wire statistics if the page is not already wired,
2736 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2737 	 * it is already off the queues).  Don't do anything with fictitious
2738 	 * pages because they are always wired.
2739 	 */
2740 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2741 	if ((m->flags & PG_FICTITIOUS) == 0) {
2742 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2743 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2744 		}
2745 		KASSERT(m->wire_count != 0,
2746 			("vm_page_wire: wire_count overflow m=%p", m));
2747 	}
2748 }
2749 
2750 /*
2751  * Release one wiring of this page, potentially enabling it to be paged again.
2752  *
2753  * Note that wired pages are no longer unconditionally removed from the
2754  * paging queues, so the page may already be on a queue.  Move the page
2755  * to the desired queue if necessary.
2756  *
2757  * Many pages placed on the inactive queue should actually go
2758  * into the cache, but it is difficult to figure out which.  What
2759  * we do instead, if the inactive target is well met, is to put
2760  * clean pages at the head of the inactive queue instead of the tail.
2761  * This will cause them to be moved to the cache more quickly and
2762  * if not actively re-referenced, freed more quickly.  If we just
2763  * stick these pages at the end of the inactive queue, heavy filesystem
2764  * meta-data accesses can cause an unnecessary paging load on memory bound
2765  * processes.  This optimization causes one-time-use metadata to be
2766  * reused more quickly.
2767  *
2768  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2769  * the inactive queue.  This helps the pageout daemon determine memory
2770  * pressure and act on out-of-memory situations more quickly.
2771  *
2772  * BUT, if we are in a low-memory situation we have no choice but to
2773  * put clean pages on the cache queue.
2774  *
2775  * A number of routines use vm_page_unwire() to guarantee that the page
2776  * will go into either the inactive or active queues, and will NEVER
2777  * be placed in the cache - for example, just after dirtying a page.
2778  * dirty pages in the cache are not allowed.
2779  *
2780  * This routine may not block.
2781  */
2782 void
2783 vm_page_unwire(vm_page_t m, int activate)
2784 {
2785 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2786 	if (m->flags & PG_FICTITIOUS) {
2787 		/* do nothing */
2788 	} else if ((int)m->wire_count <= 0) {
2789 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2790 	} else {
2791 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2792 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2793 			if (m->flags & PG_UNMANAGED) {
2794 				;
2795 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2796 				vm_page_activate(m);
2797 #if 0
2798 				vm_page_spin_lock(m);
2799 				_vm_page_add_queue_spinlocked(m,
2800 							PQ_ACTIVE + m->pc, 0);
2801 				_vm_page_and_queue_spin_unlock(m);
2802 #endif
2803 			} else {
2804 				vm_page_deactivate(m);
2805 #if 0
2806 				vm_page_spin_lock(m);
2807 				vm_page_flag_clear(m, PG_WINATCFLS);
2808 				_vm_page_add_queue_spinlocked(m,
2809 							PQ_INACTIVE + m->pc, 0);
2810 				_vm_page_and_queue_spin_unlock(m);
2811 #endif
2812 			}
2813 		}
2814 	}
2815 }
2816 
2817 /*
2818  * Move the specified page to the inactive queue.
2819  *
2820  * Normally athead is 0 resulting in LRU operation.  athead is set
2821  * to 1 if we want this page to be 'as if it were placed in the cache',
2822  * except without unmapping it from the process address space.
2823  *
2824  * vm_page's spinlock must be held on entry and will remain held on return.
2825  * This routine may not block.  The caller does not have to hold the page
2826  * busied but should have some sort of interlock on its validity.
2827  */
2828 static void
2829 _vm_page_deactivate_locked(vm_page_t m, int athead)
2830 {
2831 	u_short oqueue;
2832 
2833 	/*
2834 	 * Ignore if already inactive.
2835 	 */
2836 	if (m->queue - m->pc == PQ_INACTIVE || (m->flags & PG_FICTITIOUS))
2837 		return;
2838 	_vm_page_queue_spin_lock(m);
2839 	oqueue = _vm_page_rem_queue_spinlocked(m);
2840 
2841 	if ((m->flags & PG_UNMANAGED) == 0) {
2842 		if (oqueue == PQ_CACHE)
2843 			mycpu->gd_cnt.v_reactivated++;
2844 		vm_page_flag_clear(m, PG_WINATCFLS);
2845 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2846 		if (athead == 0) {
2847 			atomic_add_long(
2848 				&vm_page_queues[PQ_INACTIVE + m->pc].adds, 1);
2849 		}
2850 	}
2851 	/* NOTE: PQ_NONE if condition not taken */
2852 	_vm_page_queue_spin_unlock(m);
2853 	/* leaves vm_page spinlocked */
2854 }
2855 
2856 /*
2857  * Attempt to deactivate a page.
2858  *
2859  * No requirements.
2860  */
2861 void
2862 vm_page_deactivate(vm_page_t m)
2863 {
2864 	vm_page_spin_lock(m);
2865 	_vm_page_deactivate_locked(m, 0);
2866 	vm_page_spin_unlock(m);
2867 }
2868 
2869 void
2870 vm_page_deactivate_locked(vm_page_t m)
2871 {
2872 	_vm_page_deactivate_locked(m, 0);
2873 }
2874 
2875 /*
2876  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2877  *
2878  * This function returns non-zero if it successfully moved the page to
2879  * PQ_CACHE.
2880  *
2881  * This function unconditionally unbusies the page on return.
2882  */
2883 int
2884 vm_page_try_to_cache(vm_page_t m)
2885 {
2886 	/*
2887 	 * Shortcut if we obviously cannot move the page, or if the
2888 	 * page is already on the cache queue, or it is ficitious.
2889 	 */
2890 	if (m->dirty || m->hold_count || m->wire_count ||
2891 	    m->queue - m->pc == PQ_CACHE ||
2892 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS))) {
2893 		vm_page_wakeup(m);
2894 		return(0);
2895 	}
2896 
2897 	/*
2898 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2899 	 * be moved to the cache.
2900 	 */
2901 	vm_page_test_dirty(m);
2902 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2903 		vm_page_wakeup(m);
2904 		return(0);
2905 	}
2906 	vm_page_cache(m);
2907 	return(1);
2908 }
2909 
2910 /*
2911  * Attempt to free the page.  If we cannot free it, we do nothing.
2912  * 1 is returned on success, 0 on failure.
2913  *
2914  * Caller provides an unlocked/non-busied page.
2915  * No requirements.
2916  */
2917 int
2918 vm_page_try_to_free(vm_page_t m)
2919 {
2920 	if (vm_page_busy_try(m, TRUE))
2921 		return(0);
2922 
2923 	/*
2924 	 * The page can be in any state, including already being on the free
2925 	 * queue.  Check to see if it really can be freed.
2926 	 */
2927 	if (m->dirty ||				/* can't free if it is dirty */
2928 	    m->hold_count ||			/* or held (XXX may be wrong) */
2929 	    m->wire_count ||			/* or wired */
2930 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2931 			 PG_NEED_COMMIT |	/* or needs a commit */
2932 			 PG_FICTITIOUS)) ||	/* or is fictitious */
2933 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2934 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2935 		vm_page_wakeup(m);
2936 		return(0);
2937 	}
2938 
2939 	/*
2940 	 * We can probably free the page.
2941 	 *
2942 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2943 	 * not be freed by this function.    We have to re-test the
2944 	 * dirty bit after cleaning out the pmaps.
2945 	 */
2946 	vm_page_test_dirty(m);
2947 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2948 		vm_page_wakeup(m);
2949 		return(0);
2950 	}
2951 	vm_page_protect(m, VM_PROT_NONE);
2952 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2953 		vm_page_wakeup(m);
2954 		return(0);
2955 	}
2956 	vm_page_free(m);
2957 	return(1);
2958 }
2959 
2960 /*
2961  * vm_page_cache
2962  *
2963  * Put the specified page onto the page cache queue (if appropriate).
2964  *
2965  * The page must be busy, and this routine will release the busy and
2966  * possibly even free the page.
2967  */
2968 void
2969 vm_page_cache(vm_page_t m)
2970 {
2971 	/*
2972 	 * Not suitable for the cache
2973 	 */
2974 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT | PG_FICTITIOUS)) ||
2975 	    (m->busy_count & PBUSY_MASK) ||
2976 	    m->wire_count || m->hold_count) {
2977 		vm_page_wakeup(m);
2978 		return;
2979 	}
2980 
2981 	/*
2982 	 * Already in the cache (and thus not mapped)
2983 	 */
2984 	if ((m->queue - m->pc) == PQ_CACHE) {
2985 		KKASSERT((m->flags & PG_MAPPED) == 0);
2986 		vm_page_wakeup(m);
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * Caller is required to test m->dirty, but note that the act of
2992 	 * removing the page from its maps can cause it to become dirty
2993 	 * on an SMP system due to another cpu running in usermode.
2994 	 */
2995 	if (m->dirty) {
2996 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2997 			(long)m->pindex);
2998 	}
2999 
3000 	/*
3001 	 * Remove all pmaps and indicate that the page is not
3002 	 * writeable or mapped.  Our vm_page_protect() call may
3003 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
3004 	 * everything.
3005 	 */
3006 	vm_page_protect(m, VM_PROT_NONE);
3007 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
3008 	    (m->busy_count & PBUSY_MASK) ||
3009 	    m->wire_count || m->hold_count) {
3010 		vm_page_wakeup(m);
3011 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3012 		vm_page_deactivate(m);
3013 		vm_page_wakeup(m);
3014 	} else {
3015 		_vm_page_and_queue_spin_lock(m);
3016 		_vm_page_rem_queue_spinlocked(m);
3017 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
3018 		_vm_page_and_queue_spin_unlock(m);
3019 		vm_page_wakeup(m);
3020 		vm_page_free_wakeup();
3021 	}
3022 }
3023 
3024 /*
3025  * vm_page_dontneed()
3026  *
3027  * Cache, deactivate, or do nothing as appropriate.  This routine
3028  * is typically used by madvise() MADV_DONTNEED.
3029  *
3030  * Generally speaking we want to move the page into the cache so
3031  * it gets reused quickly.  However, this can result in a silly syndrome
3032  * due to the page recycling too quickly.  Small objects will not be
3033  * fully cached.  On the otherhand, if we move the page to the inactive
3034  * queue we wind up with a problem whereby very large objects
3035  * unnecessarily blow away our inactive and cache queues.
3036  *
3037  * The solution is to move the pages based on a fixed weighting.  We
3038  * either leave them alone, deactivate them, or move them to the cache,
3039  * where moving them to the cache has the highest weighting.
3040  * By forcing some pages into other queues we eventually force the
3041  * system to balance the queues, potentially recovering other unrelated
3042  * space from active.  The idea is to not force this to happen too
3043  * often.
3044  *
3045  * The page must be busied.
3046  */
3047 void
3048 vm_page_dontneed(vm_page_t m)
3049 {
3050 	static int dnweight;
3051 	int dnw;
3052 	int head;
3053 
3054 	dnw = ++dnweight;
3055 
3056 	/*
3057 	 * occassionally leave the page alone
3058 	 */
3059 	if ((dnw & 0x01F0) == 0 ||
3060 	    m->queue - m->pc == PQ_INACTIVE ||
3061 	    m->queue - m->pc == PQ_CACHE
3062 	) {
3063 		if (m->act_count >= ACT_INIT)
3064 			--m->act_count;
3065 		return;
3066 	}
3067 
3068 	/*
3069 	 * If vm_page_dontneed() is inactivating a page, it must clear
3070 	 * the referenced flag; otherwise the pagedaemon will see references
3071 	 * on the page in the inactive queue and reactivate it. Until the
3072 	 * page can move to the cache queue, madvise's job is not done.
3073 	 */
3074 	vm_page_flag_clear(m, PG_REFERENCED);
3075 	pmap_clear_reference(m);
3076 
3077 	if (m->dirty == 0)
3078 		vm_page_test_dirty(m);
3079 
3080 	if (m->dirty || (dnw & 0x0070) == 0) {
3081 		/*
3082 		 * Deactivate the page 3 times out of 32.
3083 		 */
3084 		head = 0;
3085 	} else {
3086 		/*
3087 		 * Cache the page 28 times out of every 32.  Note that
3088 		 * the page is deactivated instead of cached, but placed
3089 		 * at the head of the queue instead of the tail.
3090 		 */
3091 		head = 1;
3092 	}
3093 	vm_page_spin_lock(m);
3094 	_vm_page_deactivate_locked(m, head);
3095 	vm_page_spin_unlock(m);
3096 }
3097 
3098 /*
3099  * These routines manipulate the 'soft busy' count for a page.  A soft busy
3100  * is almost like a hard BUSY except that it allows certain compatible
3101  * operations to occur on the page while it is busy.  For example, a page
3102  * undergoing a write can still be mapped read-only.
3103  *
3104  * We also use soft-busy to quickly pmap_enter shared read-only pages
3105  * without having to hold the page locked.
3106  *
3107  * The soft-busy count can be > 1 in situations where multiple threads
3108  * are pmap_enter()ing the same page simultaneously, or when two buffer
3109  * cache buffers overlap the same page.
3110  *
3111  * The caller must hold the page BUSY when making these two calls.
3112  */
3113 void
3114 vm_page_io_start(vm_page_t m)
3115 {
3116 	uint32_t ocount;
3117 
3118 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3119 	KKASSERT(ocount & PBUSY_LOCKED);
3120 }
3121 
3122 void
3123 vm_page_io_finish(vm_page_t m)
3124 {
3125 	uint32_t ocount;
3126 
3127 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
3128 	KKASSERT(ocount & PBUSY_MASK);
3129 #if 0
3130 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
3131 		wakeup(m);
3132 #endif
3133 }
3134 
3135 /*
3136  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
3137  *
3138  * We can't use fetchadd here because we might race a hard-busy and the
3139  * page freeing code asserts on a non-zero soft-busy count (even if only
3140  * temporary).
3141  *
3142  * Returns 0 on success, non-zero on failure.
3143  */
3144 int
3145 vm_page_sbusy_try(vm_page_t m)
3146 {
3147 	uint32_t ocount;
3148 
3149 	for (;;) {
3150 		ocount = m->busy_count;
3151 		cpu_ccfence();
3152 		if (ocount & PBUSY_LOCKED)
3153 			return 1;
3154 		if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
3155 			break;
3156 	}
3157 	return 0;
3158 #if 0
3159 	if (m->busy_count & PBUSY_LOCKED)
3160 		return 1;
3161 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3162 	if (ocount & PBUSY_LOCKED) {
3163 		vm_page_sbusy_drop(m);
3164 		return 1;
3165 	}
3166 	return 0;
3167 #endif
3168 }
3169 
3170 /*
3171  * Indicate that a clean VM page requires a filesystem commit and cannot
3172  * be reused.  Used by tmpfs.
3173  */
3174 void
3175 vm_page_need_commit(vm_page_t m)
3176 {
3177 	vm_page_flag_set(m, PG_NEED_COMMIT);
3178 	vm_object_set_writeable_dirty(m->object);
3179 }
3180 
3181 void
3182 vm_page_clear_commit(vm_page_t m)
3183 {
3184 	vm_page_flag_clear(m, PG_NEED_COMMIT);
3185 }
3186 
3187 /*
3188  * Grab a page, blocking if it is busy and allocating a page if necessary.
3189  * A busy page is returned or NULL.  The page may or may not be valid and
3190  * might not be on a queue (the caller is responsible for the disposition of
3191  * the page).
3192  *
3193  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
3194  * page will be zero'd and marked valid.
3195  *
3196  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
3197  * valid even if it already exists.
3198  *
3199  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
3200  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
3201  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
3202  *
3203  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
3204  * always returned if we had blocked.
3205  *
3206  * This routine may not be called from an interrupt.
3207  *
3208  * No other requirements.
3209  */
3210 vm_page_t
3211 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3212 {
3213 	vm_page_t m;
3214 	int error;
3215 	int shared = 1;
3216 
3217 	KKASSERT(allocflags &
3218 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
3219 	vm_object_hold_shared(object);
3220 	for (;;) {
3221 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3222 		if (error) {
3223 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
3224 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
3225 				m = NULL;
3226 				break;
3227 			}
3228 			/* retry */
3229 		} else if (m == NULL) {
3230 			if (shared) {
3231 				vm_object_upgrade(object);
3232 				shared = 0;
3233 			}
3234 			if (allocflags & VM_ALLOC_RETRY)
3235 				allocflags |= VM_ALLOC_NULL_OK;
3236 			m = vm_page_alloc(object, pindex,
3237 					  allocflags & ~VM_ALLOC_RETRY);
3238 			if (m)
3239 				break;
3240 			vm_wait(0);
3241 			if ((allocflags & VM_ALLOC_RETRY) == 0)
3242 				goto failed;
3243 		} else {
3244 			/* m found */
3245 			break;
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
3251 	 *
3252 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
3253 	 * valid even if already valid.
3254 	 *
3255 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
3256 	 *	  removed the idle zeroing code.  These optimizations actually
3257 	 *	  slow things down on modern cpus because the zerod area is
3258 	 *	  likely uncached, placing a memory-access burden on the
3259 	 *	  accesors taking the fault.
3260 	 *
3261 	 *	  By always zeroing the page in-line with the fault, no
3262 	 *	  dynamic ram reads are needed and the caches are hot, ready
3263 	 *	  for userland to access the memory.
3264 	 */
3265 	if (m->valid == 0) {
3266 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3267 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
3268 			m->valid = VM_PAGE_BITS_ALL;
3269 		}
3270 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3271 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
3272 		m->valid = VM_PAGE_BITS_ALL;
3273 	}
3274 failed:
3275 	vm_object_drop(object);
3276 	return(m);
3277 }
3278 
3279 /*
3280  * Mapping function for valid bits or for dirty bits in
3281  * a page.  May not block.
3282  *
3283  * Inputs are required to range within a page.
3284  *
3285  * No requirements.
3286  * Non blocking.
3287  */
3288 int
3289 vm_page_bits(int base, int size)
3290 {
3291 	int first_bit;
3292 	int last_bit;
3293 
3294 	KASSERT(
3295 	    base + size <= PAGE_SIZE,
3296 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3297 	);
3298 
3299 	if (size == 0)		/* handle degenerate case */
3300 		return(0);
3301 
3302 	first_bit = base >> DEV_BSHIFT;
3303 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3304 
3305 	return ((2 << last_bit) - (1 << first_bit));
3306 }
3307 
3308 /*
3309  * Sets portions of a page valid and clean.  The arguments are expected
3310  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3311  * of any partial chunks touched by the range.  The invalid portion of
3312  * such chunks will be zero'd.
3313  *
3314  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3315  *	 align base to DEV_BSIZE so as not to mark clean a partially
3316  *	 truncated device block.  Otherwise the dirty page status might be
3317  *	 lost.
3318  *
3319  * This routine may not block.
3320  *
3321  * (base + size) must be less then or equal to PAGE_SIZE.
3322  */
3323 static void
3324 _vm_page_zero_valid(vm_page_t m, int base, int size)
3325 {
3326 	int frag;
3327 	int endoff;
3328 
3329 	if (size == 0)	/* handle degenerate case */
3330 		return;
3331 
3332 	/*
3333 	 * If the base is not DEV_BSIZE aligned and the valid
3334 	 * bit is clear, we have to zero out a portion of the
3335 	 * first block.
3336 	 */
3337 
3338 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3339 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3340 	) {
3341 		pmap_zero_page_area(
3342 		    VM_PAGE_TO_PHYS(m),
3343 		    frag,
3344 		    base - frag
3345 		);
3346 	}
3347 
3348 	/*
3349 	 * If the ending offset is not DEV_BSIZE aligned and the
3350 	 * valid bit is clear, we have to zero out a portion of
3351 	 * the last block.
3352 	 */
3353 
3354 	endoff = base + size;
3355 
3356 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3357 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3358 	) {
3359 		pmap_zero_page_area(
3360 		    VM_PAGE_TO_PHYS(m),
3361 		    endoff,
3362 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3363 		);
3364 	}
3365 }
3366 
3367 /*
3368  * Set valid, clear dirty bits.  If validating the entire
3369  * page we can safely clear the pmap modify bit.  We also
3370  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3371  * takes a write fault on a MAP_NOSYNC memory area the flag will
3372  * be set again.
3373  *
3374  * We set valid bits inclusive of any overlap, but we can only
3375  * clear dirty bits for DEV_BSIZE chunks that are fully within
3376  * the range.
3377  *
3378  * Page must be busied?
3379  * No other requirements.
3380  */
3381 void
3382 vm_page_set_valid(vm_page_t m, int base, int size)
3383 {
3384 	_vm_page_zero_valid(m, base, size);
3385 	m->valid |= vm_page_bits(base, size);
3386 }
3387 
3388 
3389 /*
3390  * Set valid bits and clear dirty bits.
3391  *
3392  * Page must be busied by caller.
3393  *
3394  * NOTE: This function does not clear the pmap modified bit.
3395  *	 Also note that e.g. NFS may use a byte-granular base
3396  *	 and size.
3397  *
3398  * No other requirements.
3399  */
3400 void
3401 vm_page_set_validclean(vm_page_t m, int base, int size)
3402 {
3403 	int pagebits;
3404 
3405 	_vm_page_zero_valid(m, base, size);
3406 	pagebits = vm_page_bits(base, size);
3407 	m->valid |= pagebits;
3408 	m->dirty &= ~pagebits;
3409 	if (base == 0 && size == PAGE_SIZE) {
3410 		/*pmap_clear_modify(m);*/
3411 		vm_page_flag_clear(m, PG_NOSYNC);
3412 	}
3413 }
3414 
3415 /*
3416  * Set valid & dirty.  Used by buwrite()
3417  *
3418  * Page must be busied by caller.
3419  */
3420 void
3421 vm_page_set_validdirty(vm_page_t m, int base, int size)
3422 {
3423 	int pagebits;
3424 
3425 	pagebits = vm_page_bits(base, size);
3426 	m->valid |= pagebits;
3427 	m->dirty |= pagebits;
3428 	if (m->object)
3429 	       vm_object_set_writeable_dirty(m->object);
3430 }
3431 
3432 /*
3433  * Clear dirty bits.
3434  *
3435  * NOTE: This function does not clear the pmap modified bit.
3436  *	 Also note that e.g. NFS may use a byte-granular base
3437  *	 and size.
3438  *
3439  * Page must be busied?
3440  * No other requirements.
3441  */
3442 void
3443 vm_page_clear_dirty(vm_page_t m, int base, int size)
3444 {
3445 	m->dirty &= ~vm_page_bits(base, size);
3446 	if (base == 0 && size == PAGE_SIZE) {
3447 		/*pmap_clear_modify(m);*/
3448 		vm_page_flag_clear(m, PG_NOSYNC);
3449 	}
3450 }
3451 
3452 /*
3453  * Make the page all-dirty.
3454  *
3455  * Also make sure the related object and vnode reflect the fact that the
3456  * object may now contain a dirty page.
3457  *
3458  * Page must be busied?
3459  * No other requirements.
3460  */
3461 void
3462 vm_page_dirty(vm_page_t m)
3463 {
3464 #ifdef INVARIANTS
3465         int pqtype = m->queue - m->pc;
3466 #endif
3467         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3468                 ("vm_page_dirty: page in free/cache queue!"));
3469 	if (m->dirty != VM_PAGE_BITS_ALL) {
3470 		m->dirty = VM_PAGE_BITS_ALL;
3471 		if (m->object)
3472 			vm_object_set_writeable_dirty(m->object);
3473 	}
3474 }
3475 
3476 /*
3477  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3478  * valid and dirty bits for the effected areas are cleared.
3479  *
3480  * Page must be busied?
3481  * Does not block.
3482  * No other requirements.
3483  */
3484 void
3485 vm_page_set_invalid(vm_page_t m, int base, int size)
3486 {
3487 	int bits;
3488 
3489 	bits = vm_page_bits(base, size);
3490 	m->valid &= ~bits;
3491 	m->dirty &= ~bits;
3492 	atomic_add_int(&m->object->generation, 1);
3493 }
3494 
3495 /*
3496  * The kernel assumes that the invalid portions of a page contain
3497  * garbage, but such pages can be mapped into memory by user code.
3498  * When this occurs, we must zero out the non-valid portions of the
3499  * page so user code sees what it expects.
3500  *
3501  * Pages are most often semi-valid when the end of a file is mapped
3502  * into memory and the file's size is not page aligned.
3503  *
3504  * Page must be busied?
3505  * No other requirements.
3506  */
3507 void
3508 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3509 {
3510 	int b;
3511 	int i;
3512 
3513 	/*
3514 	 * Scan the valid bits looking for invalid sections that
3515 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3516 	 * valid bit may be set ) have already been zerod by
3517 	 * vm_page_set_validclean().
3518 	 */
3519 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3520 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3521 		    (m->valid & (1 << i))
3522 		) {
3523 			if (i > b) {
3524 				pmap_zero_page_area(
3525 				    VM_PAGE_TO_PHYS(m),
3526 				    b << DEV_BSHIFT,
3527 				    (i - b) << DEV_BSHIFT
3528 				);
3529 			}
3530 			b = i + 1;
3531 		}
3532 	}
3533 
3534 	/*
3535 	 * setvalid is TRUE when we can safely set the zero'd areas
3536 	 * as being valid.  We can do this if there are no cache consistency
3537 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3538 	 */
3539 	if (setvalid)
3540 		m->valid = VM_PAGE_BITS_ALL;
3541 }
3542 
3543 /*
3544  * Is a (partial) page valid?  Note that the case where size == 0
3545  * will return FALSE in the degenerate case where the page is entirely
3546  * invalid, and TRUE otherwise.
3547  *
3548  * Does not block.
3549  * No other requirements.
3550  */
3551 int
3552 vm_page_is_valid(vm_page_t m, int base, int size)
3553 {
3554 	int bits = vm_page_bits(base, size);
3555 
3556 	if (m->valid && ((m->valid & bits) == bits))
3557 		return 1;
3558 	else
3559 		return 0;
3560 }
3561 
3562 /*
3563  * update dirty bits from pmap/mmu.  May not block.
3564  *
3565  * Caller must hold the page busy
3566  */
3567 void
3568 vm_page_test_dirty(vm_page_t m)
3569 {
3570 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3571 		vm_page_dirty(m);
3572 	}
3573 }
3574 
3575 #include "opt_ddb.h"
3576 #ifdef DDB
3577 #include <ddb/ddb.h>
3578 
3579 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3580 {
3581 	db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3582 	db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3583 	db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3584 	db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3585 	db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3586 	db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3587 	db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3588 	db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3589 	db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3590 	db_printf("vmstats.v_inactive_target: %ld\n",
3591 		  vmstats.v_inactive_target);
3592 }
3593 
3594 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3595 {
3596 	int i;
3597 	db_printf("PQ_FREE:");
3598 	for (i = 0; i < PQ_L2_SIZE; i++) {
3599 		db_printf(" %ld", vm_page_queues[PQ_FREE + i].lcnt);
3600 	}
3601 	db_printf("\n");
3602 
3603 	db_printf("PQ_CACHE:");
3604 	for(i = 0; i < PQ_L2_SIZE; i++) {
3605 		db_printf(" %ld", vm_page_queues[PQ_CACHE + i].lcnt);
3606 	}
3607 	db_printf("\n");
3608 
3609 	db_printf("PQ_ACTIVE:");
3610 	for(i = 0; i < PQ_L2_SIZE; i++) {
3611 		db_printf(" %ld", vm_page_queues[PQ_ACTIVE + i].lcnt);
3612 	}
3613 	db_printf("\n");
3614 
3615 	db_printf("PQ_INACTIVE:");
3616 	for(i = 0; i < PQ_L2_SIZE; i++) {
3617 		db_printf(" %ld", vm_page_queues[PQ_INACTIVE + i].lcnt);
3618 	}
3619 	db_printf("\n");
3620 }
3621 #endif /* DDB */
3622