xref: /dragonfly/sys/vm/vm_page.c (revision 684cb317)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
107 
108 /*
109  * Array of tailq lists
110  */
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
112 
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list	action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
116 
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
120 
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 	    "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
127 
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
130 
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 	     vm_pindex_t, pindex);
133 
134 static void
135 vm_page_queue_init(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 	for (i = 0; i < PQ_L2_SIZE; i++)
146 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 	for (i = 0; i < PQ_L2_SIZE; i++)
148 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 	/* PQ_NONE has no queue */
150 
151 	for (i = 0; i < PQ_COUNT; i++) {
152 		TAILQ_INIT(&vm_page_queues[i].pl);
153 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
154 	}
155 
156 	for (i = 0; i < VMACTION_HSIZE; i++)
157 		LIST_INIT(&action_list[i]);
158 }
159 
160 /*
161  * note: place in initialized data section?  Is this necessary?
162  */
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
168 
169 /*
170  * (low level boot)
171  *
172  * Sets the page size, perhaps based upon the memory size.
173  * Must be called before any use of page-size dependent functions.
174  */
175 void
176 vm_set_page_size(void)
177 {
178 	if (vmstats.v_page_size == 0)
179 		vmstats.v_page_size = PAGE_SIZE;
180 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 		panic("vm_set_page_size: page size not a power of two");
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Add a new page to the freelist for use by the system.  New pages
188  * are added to both the head and tail of the associated free page
189  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190  * requests pull 'recent' adds (higher physical addresses) first.
191  *
192  * Beware that the page zeroing daemon will also be running soon after
193  * boot, moving pages from the head to the tail of the PQ_FREE queues.
194  *
195  * Must be called in a critical section.
196  */
197 static void
198 vm_add_new_page(vm_paddr_t pa)
199 {
200 	struct vpgqueues *vpq;
201 	vm_page_t m;
202 
203 	m = PHYS_TO_VM_PAGE(pa);
204 	m->phys_addr = pa;
205 	m->flags = 0;
206 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 	m->pat_mode = PAT_WRITE_BACK;
208 	/*
209 	 * Twist for cpu localization in addition to page coloring, so
210 	 * different cpus selecting by m->queue get different page colors.
211 	 */
212 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
214 	/*
215 	 * Reserve a certain number of contiguous low memory pages for
216 	 * contigmalloc() to use.
217 	 */
218 	if (pa < vm_low_phys_reserved) {
219 		atomic_add_int(&vmstats.v_page_count, 1);
220 		atomic_add_int(&vmstats.v_dma_pages, 1);
221 		m->queue = PQ_NONE;
222 		m->wire_count = 1;
223 		atomic_add_int(&vmstats.v_wire_count, 1);
224 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 		return;
226 	}
227 
228 	/*
229 	 * General page
230 	 */
231 	m->queue = m->pc + PQ_FREE;
232 	KKASSERT(m->dirty == 0);
233 
234 	atomic_add_int(&vmstats.v_page_count, 1);
235 	atomic_add_int(&vmstats.v_free_count, 1);
236 	vpq = &vm_page_queues[m->queue];
237 	if ((vpq->flipflop & 15) == 0) {
238 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 		m->flags |= PG_ZERO;
240 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 		atomic_add_int(&vm_page_zero_count, 1);
242 	} else {
243 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
244 	}
245 	++vpq->flipflop;
246 	++vpq->lcnt;
247 }
248 
249 /*
250  * (low level boot)
251  *
252  * Initializes the resident memory module.
253  *
254  * Preallocates memory for critical VM structures and arrays prior to
255  * kernel_map becoming available.
256  *
257  * Memory is allocated from (virtual2_start, virtual2_end) if available,
258  * otherwise memory is allocated from (virtual_start, virtual_end).
259  *
260  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261  * large enough to hold vm_page_array & other structures for machines with
262  * large amounts of ram, so we want to use virtual2* when available.
263  */
264 void
265 vm_page_startup(void)
266 {
267 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 	vm_offset_t mapped;
269 	vm_size_t npages;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	int nblocks;
275 	vm_paddr_t last_pa;
276 	vm_paddr_t end;
277 	vm_paddr_t biggestone, biggestsize;
278 	vm_paddr_t total;
279 
280 	total = 0;
281 	biggestsize = 0;
282 	biggestone = 0;
283 	nblocks = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page64(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
289 	}
290 
291 	for (i = 0; phys_avail[i + 1]; i += 2) {
292 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
293 
294 		if (size > biggestsize) {
295 			biggestone = i;
296 			biggestsize = size;
297 		}
298 		++nblocks;
299 		total += size;
300 	}
301 
302 	end = phys_avail[biggestone+1];
303 	end = trunc_page(end);
304 
305 	/*
306 	 * Initialize the queue headers for the free queue, the active queue
307 	 * and the inactive queue.
308 	 */
309 	vm_page_queue_init();
310 
311 #if !defined(_KERNEL_VIRTUAL)
312 	/*
313 	 * VKERNELs don't support minidumps and as such don't need
314 	 * vm_page_dump
315 	 *
316 	 * Allocate a bitmap to indicate that a random physical page
317 	 * needs to be included in a minidump.
318 	 *
319 	 * The amd64 port needs this to indicate which direct map pages
320 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
321 	 *
322 	 * However, i386 still needs this workspace internally within the
323 	 * minidump code.  In theory, they are not needed on i386, but are
324 	 * included should the sf_buf code decide to use them.
325 	 */
326 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 	end -= vm_page_dump_size;
329 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 	    VM_PROT_READ | VM_PROT_WRITE);
331 	bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
333 	/*
334 	 * Compute the number of pages of memory that will be available for
335 	 * use (taking into account the overhead of a page structure per
336 	 * page).
337 	 */
338 	first_page = phys_avail[0] / PAGE_SIZE;
339 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
341 
342 #ifndef _KERNEL_VIRTUAL
343 	/*
344 	 * (only applies to real kernels)
345 	 *
346 	 * Initialize the contiguous reserve map.  We initially reserve up
347 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
348 	 * is lower.
349 	 *
350 	 * Once device initialization is complete we return most of the
351 	 * reserved memory back to the normal page queues but leave some
352 	 * in reserve for things like usb attachments.
353 	 */
354 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 	if (vm_low_phys_reserved > total / 4)
356 		vm_low_phys_reserved = total / 4;
357 	if (vm_dma_reserved == 0) {
358 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
359 		if (vm_dma_reserved > total / 16)
360 			vm_dma_reserved = total / 16;
361 	}
362 #endif
363 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 		   ALIST_RECORDS_65536);
365 
366 	/*
367 	 * Initialize the mem entry structures now, and put them in the free
368 	 * queue.
369 	 */
370 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 	vm_page_array = (vm_page_t)mapped;
373 
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
375 	/*
376 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 	 * we have to manually add these pages to the minidump tracking so
378 	 * that they can be dumped, including the vm_page_array.
379 	 */
380 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 		dump_add_page(pa);
382 #endif
383 
384 	/*
385 	 * Clear all of the page structures
386 	 */
387 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 	vm_page_array_size = page_range;
389 
390 	/*
391 	 * Construct the free queue(s) in ascending order (by physical
392 	 * address) so that the first 16MB of physical memory is allocated
393 	 * last rather than first.  On large-memory machines, this avoids
394 	 * the exhaustion of low physical memory before isa_dmainit has run.
395 	 */
396 	vmstats.v_page_count = 0;
397 	vmstats.v_free_count = 0;
398 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 		pa = phys_avail[i];
400 		if (i == biggestone)
401 			last_pa = new_end;
402 		else
403 			last_pa = phys_avail[i + 1];
404 		while (pa < last_pa && npages-- > 0) {
405 			vm_add_new_page(pa);
406 			pa += PAGE_SIZE;
407 		}
408 	}
409 	if (virtual2_start)
410 		virtual2_start = vaddr;
411 	else
412 		virtual_start = vaddr;
413 }
414 
415 /*
416  * We tended to reserve a ton of memory for contigmalloc().  Now that most
417  * drivers have initialized we want to return most the remaining free
418  * reserve back to the VM page queues so they can be used for normal
419  * allocations.
420  *
421  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
422  */
423 static void
424 vm_page_startup_finish(void *dummy __unused)
425 {
426 	alist_blk_t blk;
427 	alist_blk_t rblk;
428 	alist_blk_t count;
429 	alist_blk_t xcount;
430 	alist_blk_t bfree;
431 	vm_page_t m;
432 
433 	spin_lock(&vm_contig_spin);
434 	for (;;) {
435 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 			break;
438 		if (count == 0)
439 			break;
440 
441 		/*
442 		 * Figure out how much of the initial reserve we have to
443 		 * free in order to reach our target.
444 		 */
445 		bfree -= vm_dma_reserved / PAGE_SIZE;
446 		if (count > bfree) {
447 			blk += count - bfree;
448 			count = bfree;
449 		}
450 
451 		/*
452 		 * Calculate the nearest power of 2 <= count.
453 		 */
454 		for (xcount = 1; xcount <= count; xcount <<= 1)
455 			;
456 		xcount >>= 1;
457 		blk += count - xcount;
458 		count = xcount;
459 
460 		/*
461 		 * Allocate the pages from the alist, then free them to
462 		 * the normal VM page queues.
463 		 *
464 		 * Pages allocated from the alist are wired.  We have to
465 		 * busy, unwire, and free them.  We must also adjust
466 		 * vm_low_phys_reserved before freeing any pages to prevent
467 		 * confusion.
468 		 */
469 		rblk = alist_alloc(&vm_contig_alist, blk, count);
470 		if (rblk != blk) {
471 			kprintf("vm_page_startup_finish: Unable to return "
472 				"dma space @0x%08x/%d -> 0x%08x\n",
473 				blk, count, rblk);
474 			break;
475 		}
476 		atomic_add_int(&vmstats.v_dma_pages, -count);
477 		spin_unlock(&vm_contig_spin);
478 
479 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 		while (count) {
482 			vm_page_busy_wait(m, FALSE, "cpgfr");
483 			vm_page_unwire(m, 0);
484 			vm_page_free(m);
485 			--count;
486 			++m;
487 		}
488 		spin_lock(&vm_contig_spin);
489 	}
490 	spin_unlock(&vm_contig_spin);
491 
492 	/*
493 	 * Print out how much DMA space drivers have already allocated and
494 	 * how much is left over.
495 	 */
496 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 		(PAGE_SIZE / 1024),
499 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
500 }
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 	vm_page_startup_finish, NULL)
503 
504 
505 /*
506  * Scan comparison function for Red-Black tree scans.  An inclusive
507  * (start,end) is expected.  Other fields are not used.
508  */
509 int
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
511 {
512 	struct rb_vm_page_scan_info *info = data;
513 
514 	if (p->pindex < info->start_pindex)
515 		return(-1);
516 	if (p->pindex > info->end_pindex)
517 		return(1);
518 	return(0);
519 }
520 
521 int
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
523 {
524 	if (p1->pindex < p2->pindex)
525 		return(-1);
526 	if (p1->pindex > p2->pindex)
527 		return(1);
528 	return(0);
529 }
530 
531 void
532 vm_page_init(vm_page_t m)
533 {
534 	/* do nothing for now.  Called from pmap_page_init() */
535 }
536 
537 /*
538  * Each page queue has its own spin lock, which is fairly optimal for
539  * allocating and freeing pages at least.
540  *
541  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542  * queue spinlock via this function.  Also note that m->queue cannot change
543  * unless both the page and queue are locked.
544  */
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
548 {
549 	u_short queue;
550 
551 	queue = m->queue;
552 	if (queue != PQ_NONE) {
553 		spin_lock(&vm_page_queues[queue].spin);
554 		KKASSERT(queue == m->queue);
555 	}
556 }
557 
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
561 {
562 	u_short queue;
563 
564 	queue = m->queue;
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_unlock(&vm_page_queues[queue].spin);
568 }
569 
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
573 {
574 	cpu_ccfence();
575 	if (queue != PQ_NONE)
576 		spin_lock(&vm_page_queues[queue].spin);
577 }
578 
579 
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
583 {
584 	cpu_ccfence();
585 	if (queue != PQ_NONE)
586 		spin_unlock(&vm_page_queues[queue].spin);
587 }
588 
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
591 {
592 	_vm_page_queue_spin_lock(m);
593 }
594 
595 void
596 vm_page_queues_spin_lock(u_short queue)
597 {
598 	_vm_page_queues_spin_lock(queue);
599 }
600 
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
603 {
604 	_vm_page_queue_spin_unlock(m);
605 }
606 
607 void
608 vm_page_queues_spin_unlock(u_short queue)
609 {
610 	_vm_page_queues_spin_unlock(queue);
611 }
612 
613 /*
614  * This locks the specified vm_page and its queue in the proper order
615  * (page first, then queue).  The queue may change so the caller must
616  * recheck on return.
617  */
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
621 {
622 	vm_page_spin_lock(m);
623 	_vm_page_queue_spin_lock(m);
624 }
625 
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
629 {
630 	_vm_page_queues_spin_unlock(m->queue);
631 	vm_page_spin_unlock(m);
632 }
633 
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
636 {
637 	_vm_page_and_queue_spin_unlock(m);
638 }
639 
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
642 {
643 	_vm_page_and_queue_spin_lock(m);
644 }
645 
646 /*
647  * Helper function removes vm_page from its current queue.
648  * Returns the base queue the page used to be on.
649  *
650  * The vm_page and the queue must be spinlocked.
651  * This function will unlock the queue but leave the page spinlocked.
652  */
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
655 {
656 	struct vpgqueues *pq;
657 	u_short queue;
658 
659 	queue = m->queue;
660 	if (queue != PQ_NONE) {
661 		pq = &vm_page_queues[queue];
662 		TAILQ_REMOVE(&pq->pl, m, pageq);
663 		atomic_add_int(pq->cnt, -1);
664 		pq->lcnt--;
665 		m->queue = PQ_NONE;
666 		vm_page_queues_spin_unlock(queue);
667 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 			atomic_subtract_int(&vm_page_zero_count, 1);
669 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 			return (queue - m->pc);
671 	}
672 	return queue;
673 }
674 
675 /*
676  * Helper function places the vm_page on the specified queue.
677  *
678  * The vm_page must be spinlocked.
679  * This function will return with both the page and the queue locked.
680  */
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
683 {
684 	struct vpgqueues *pq;
685 
686 	KKASSERT(m->queue == PQ_NONE);
687 
688 	if (queue != PQ_NONE) {
689 		vm_page_queues_spin_lock(queue);
690 		pq = &vm_page_queues[queue];
691 		++pq->lcnt;
692 		atomic_add_int(pq->cnt, 1);
693 		m->queue = queue;
694 
695 		/*
696 		 * Put zero'd pages on the end ( where we look for zero'd pages
697 		 * first ) and non-zerod pages at the head.
698 		 */
699 		if (queue - m->pc == PQ_FREE) {
700 			if (m->flags & PG_ZERO) {
701 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 				atomic_add_int(&vm_page_zero_count, 1);
703 			} else {
704 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
705 			}
706 		} else if (athead) {
707 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 		} else {
709 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
710 		}
711 		/* leave the queue spinlocked */
712 	}
713 }
714 
715 /*
716  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
718  * did not.  Only one sleep call will be made before returning.
719  *
720  * This function does NOT busy the page and on return the page is not
721  * guaranteed to be available.
722  */
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
725 {
726 	u_int32_t flags;
727 
728 	for (;;) {
729 		flags = m->flags;
730 		cpu_ccfence();
731 
732 		if ((flags & PG_BUSY) == 0 &&
733 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 			break;
735 		}
736 		tsleep_interlock(m, 0);
737 		if (atomic_cmpset_int(&m->flags, flags,
738 				      flags | PG_WANTED | PG_REFERENCED)) {
739 			tsleep(m, PINTERLOCKED, msg, 0);
740 			break;
741 		}
742 	}
743 }
744 
745 /*
746  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
747  * also wait for m->busy to become 0 before setting PG_BUSY.
748  */
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 				     int also_m_busy, const char *msg
752 				     VM_PAGE_DEBUG_ARGS)
753 {
754 	u_int32_t flags;
755 
756 	for (;;) {
757 		flags = m->flags;
758 		cpu_ccfence();
759 		if (flags & PG_BUSY) {
760 			tsleep_interlock(m, 0);
761 			if (atomic_cmpset_int(&m->flags, flags,
762 					  flags | PG_WANTED | PG_REFERENCED)) {
763 				tsleep(m, PINTERLOCKED, msg, 0);
764 			}
765 		} else if (also_m_busy && (flags & PG_SBUSY)) {
766 			tsleep_interlock(m, 0);
767 			if (atomic_cmpset_int(&m->flags, flags,
768 					  flags | PG_WANTED | PG_REFERENCED)) {
769 				tsleep(m, PINTERLOCKED, msg, 0);
770 			}
771 		} else {
772 			if (atomic_cmpset_int(&m->flags, flags,
773 					      flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 				m->busy_func = func;
776 				m->busy_line = lineno;
777 #endif
778 				break;
779 			}
780 		}
781 	}
782 }
783 
784 /*
785  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
786  * is also 0.
787  *
788  * Returns non-zero on failure.
789  */
790 int
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 				    VM_PAGE_DEBUG_ARGS)
793 {
794 	u_int32_t flags;
795 
796 	for (;;) {
797 		flags = m->flags;
798 		cpu_ccfence();
799 		if (flags & PG_BUSY)
800 			return TRUE;
801 		if (also_m_busy && (flags & PG_SBUSY))
802 			return TRUE;
803 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 				m->busy_func = func;
806 				m->busy_line = lineno;
807 #endif
808 			return FALSE;
809 		}
810 	}
811 }
812 
813 /*
814  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815  * that a wakeup() should be performed.
816  *
817  * The vm_page must be spinlocked and will remain spinlocked on return.
818  * The related queue must NOT be spinlocked (which could deadlock us).
819  *
820  * (inline version)
821  */
822 static __inline
823 int
824 _vm_page_wakeup(vm_page_t m)
825 {
826 	u_int32_t flags;
827 
828 	for (;;) {
829 		flags = m->flags;
830 		cpu_ccfence();
831 		if (atomic_cmpset_int(&m->flags, flags,
832 				      flags & ~(PG_BUSY | PG_WANTED))) {
833 			break;
834 		}
835 	}
836 	return(flags & PG_WANTED);
837 }
838 
839 /*
840  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
841  * is typically the last call you make on a page before moving onto
842  * other things.
843  */
844 void
845 vm_page_wakeup(vm_page_t m)
846 {
847         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 	vm_page_spin_lock(m);
849 	if (_vm_page_wakeup(m)) {
850 		vm_page_spin_unlock(m);
851 		wakeup(m);
852 	} else {
853 		vm_page_spin_unlock(m);
854 	}
855 }
856 
857 /*
858  * Holding a page keeps it from being reused.  Other parts of the system
859  * can still disassociate the page from its current object and free it, or
860  * perform read or write I/O on it and/or otherwise manipulate the page,
861  * but if the page is held the VM system will leave the page and its data
862  * intact and not reuse the page for other purposes until the last hold
863  * reference is released.  (see vm_page_wire() if you want to prevent the
864  * page from being disassociated from its object too).
865  *
866  * The caller must still validate the contents of the page and, if necessary,
867  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868  * before manipulating the page.
869  *
870  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
871  */
872 void
873 vm_page_hold(vm_page_t m)
874 {
875 	vm_page_spin_lock(m);
876 	atomic_add_int(&m->hold_count, 1);
877 	if (m->queue - m->pc == PQ_FREE) {
878 		_vm_page_queue_spin_lock(m);
879 		_vm_page_rem_queue_spinlocked(m);
880 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 		_vm_page_queue_spin_unlock(m);
882 	}
883 	vm_page_spin_unlock(m);
884 }
885 
886 /*
887  * The opposite of vm_page_hold().  If the page is on the HOLD queue
888  * it was freed while held and must be moved back to the FREE queue.
889  */
890 void
891 vm_page_unhold(vm_page_t m)
892 {
893 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
894 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
895 		 m, m->hold_count, m->queue - m->pc));
896 	vm_page_spin_lock(m);
897 	atomic_add_int(&m->hold_count, -1);
898 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
899 		_vm_page_queue_spin_lock(m);
900 		_vm_page_rem_queue_spinlocked(m);
901 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
902 		_vm_page_queue_spin_unlock(m);
903 	}
904 	vm_page_spin_unlock(m);
905 }
906 
907 /*
908  *	vm_page_getfake:
909  *
910  *	Create a fictitious page with the specified physical address and
911  *	memory attribute.  The memory attribute is the only the machine-
912  *	dependent aspect of a fictitious page that must be initialized.
913  */
914 
915 void
916 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
917 {
918 
919 	if ((m->flags & PG_FICTITIOUS) != 0) {
920 		/*
921 		 * The page's memattr might have changed since the
922 		 * previous initialization.  Update the pmap to the
923 		 * new memattr.
924 		 */
925 		goto memattr;
926 	}
927 	m->phys_addr = paddr;
928 	m->queue = PQ_NONE;
929 	/* Fictitious pages don't use "segind". */
930 	/* Fictitious pages don't use "order" or "pool". */
931 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
932 	m->wire_count = 1;
933 	pmap_page_init(m);
934 memattr:
935 	pmap_page_set_memattr(m, memattr);
936 }
937 
938 /*
939  * Inserts the given vm_page into the object and object list.
940  *
941  * The pagetables are not updated but will presumably fault the page
942  * in if necessary, or if a kernel page the caller will at some point
943  * enter the page into the kernel's pmap.  We are not allowed to block
944  * here so we *can't* do this anyway.
945  *
946  * This routine may not block.
947  * This routine must be called with the vm_object held.
948  * This routine must be called with a critical section held.
949  *
950  * This routine returns TRUE if the page was inserted into the object
951  * successfully, and FALSE if the page already exists in the object.
952  */
953 int
954 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
955 {
956 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
957 	if (m->object != NULL)
958 		panic("vm_page_insert: already inserted");
959 
960 	object->generation++;
961 
962 	/*
963 	 * Record the object/offset pair in this page and add the
964 	 * pv_list_count of the page to the object.
965 	 *
966 	 * The vm_page spin lock is required for interactions with the pmap.
967 	 */
968 	vm_page_spin_lock(m);
969 	m->object = object;
970 	m->pindex = pindex;
971 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
972 		m->object = NULL;
973 		m->pindex = 0;
974 		vm_page_spin_unlock(m);
975 		return FALSE;
976 	}
977 	++object->resident_page_count;
978 	++mycpu->gd_vmtotal.t_rm;
979 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
980 	vm_page_spin_unlock(m);
981 
982 	/*
983 	 * Since we are inserting a new and possibly dirty page,
984 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
985 	 */
986 	if ((m->valid & m->dirty) ||
987 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
988 		vm_object_set_writeable_dirty(object);
989 
990 	/*
991 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
992 	 */
993 	swap_pager_page_inserted(m);
994 	return TRUE;
995 }
996 
997 /*
998  * Removes the given vm_page_t from the (object,index) table
999  *
1000  * The underlying pmap entry (if any) is NOT removed here.
1001  * This routine may not block.
1002  *
1003  * The page must be BUSY and will remain BUSY on return.
1004  * No other requirements.
1005  *
1006  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1007  *	 it busy.
1008  */
1009 void
1010 vm_page_remove(vm_page_t m)
1011 {
1012 	vm_object_t object;
1013 
1014 	if (m->object == NULL) {
1015 		return;
1016 	}
1017 
1018 	if ((m->flags & PG_BUSY) == 0)
1019 		panic("vm_page_remove: page not busy");
1020 
1021 	object = m->object;
1022 
1023 	vm_object_hold(object);
1024 
1025 	/*
1026 	 * Remove the page from the object and update the object.
1027 	 *
1028 	 * The vm_page spin lock is required for interactions with the pmap.
1029 	 */
1030 	vm_page_spin_lock(m);
1031 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1032 	--object->resident_page_count;
1033 	--mycpu->gd_vmtotal.t_rm;
1034 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1035 	m->object = NULL;
1036 	vm_page_spin_unlock(m);
1037 
1038 	object->generation++;
1039 
1040 	vm_object_drop(object);
1041 }
1042 
1043 /*
1044  * Locate and return the page at (object, pindex), or NULL if the
1045  * page could not be found.
1046  *
1047  * The caller must hold the vm_object token.
1048  */
1049 vm_page_t
1050 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1051 {
1052 	vm_page_t m;
1053 
1054 	/*
1055 	 * Search the hash table for this object/offset pair
1056 	 */
1057 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1058 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1059 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1060 	return(m);
1061 }
1062 
1063 vm_page_t
1064 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1065 					    vm_pindex_t pindex,
1066 					    int also_m_busy, const char *msg
1067 					    VM_PAGE_DEBUG_ARGS)
1068 {
1069 	u_int32_t flags;
1070 	vm_page_t m;
1071 
1072 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1073 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1074 	while (m) {
1075 		KKASSERT(m->object == object && m->pindex == pindex);
1076 		flags = m->flags;
1077 		cpu_ccfence();
1078 		if (flags & PG_BUSY) {
1079 			tsleep_interlock(m, 0);
1080 			if (atomic_cmpset_int(&m->flags, flags,
1081 					  flags | PG_WANTED | PG_REFERENCED)) {
1082 				tsleep(m, PINTERLOCKED, msg, 0);
1083 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1084 							      pindex);
1085 			}
1086 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1087 			tsleep_interlock(m, 0);
1088 			if (atomic_cmpset_int(&m->flags, flags,
1089 					  flags | PG_WANTED | PG_REFERENCED)) {
1090 				tsleep(m, PINTERLOCKED, msg, 0);
1091 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1092 							      pindex);
1093 			}
1094 		} else if (atomic_cmpset_int(&m->flags, flags,
1095 					     flags | PG_BUSY)) {
1096 #ifdef VM_PAGE_DEBUG
1097 			m->busy_func = func;
1098 			m->busy_line = lineno;
1099 #endif
1100 			break;
1101 		}
1102 	}
1103 	return m;
1104 }
1105 
1106 /*
1107  * Attempt to lookup and busy a page.
1108  *
1109  * Returns NULL if the page could not be found
1110  *
1111  * Returns a vm_page and error == TRUE if the page exists but could not
1112  * be busied.
1113  *
1114  * Returns a vm_page and error == FALSE on success.
1115  */
1116 vm_page_t
1117 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1118 					   vm_pindex_t pindex,
1119 					   int also_m_busy, int *errorp
1120 					   VM_PAGE_DEBUG_ARGS)
1121 {
1122 	u_int32_t flags;
1123 	vm_page_t m;
1124 
1125 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1126 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1127 	*errorp = FALSE;
1128 	while (m) {
1129 		KKASSERT(m->object == object && m->pindex == pindex);
1130 		flags = m->flags;
1131 		cpu_ccfence();
1132 		if (flags & PG_BUSY) {
1133 			*errorp = TRUE;
1134 			break;
1135 		}
1136 		if (also_m_busy && (flags & PG_SBUSY)) {
1137 			*errorp = TRUE;
1138 			break;
1139 		}
1140 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1141 #ifdef VM_PAGE_DEBUG
1142 			m->busy_func = func;
1143 			m->busy_line = lineno;
1144 #endif
1145 			break;
1146 		}
1147 	}
1148 	return m;
1149 }
1150 
1151 /*
1152  * Caller must hold the related vm_object
1153  */
1154 vm_page_t
1155 vm_page_next(vm_page_t m)
1156 {
1157 	vm_page_t next;
1158 
1159 	next = vm_page_rb_tree_RB_NEXT(m);
1160 	if (next && next->pindex != m->pindex + 1)
1161 		next = NULL;
1162 	return (next);
1163 }
1164 
1165 /*
1166  * vm_page_rename()
1167  *
1168  * Move the given vm_page from its current object to the specified
1169  * target object/offset.  The page must be busy and will remain so
1170  * on return.
1171  *
1172  * new_object must be held.
1173  * This routine might block. XXX ?
1174  *
1175  * NOTE: Swap associated with the page must be invalidated by the move.  We
1176  *       have to do this for several reasons:  (1) we aren't freeing the
1177  *       page, (2) we are dirtying the page, (3) the VM system is probably
1178  *       moving the page from object A to B, and will then later move
1179  *       the backing store from A to B and we can't have a conflict.
1180  *
1181  * NOTE: We *always* dirty the page.  It is necessary both for the
1182  *       fact that we moved it, and because we may be invalidating
1183  *	 swap.  If the page is on the cache, we have to deactivate it
1184  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1185  *	 on the cache.
1186  */
1187 void
1188 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1189 {
1190 	KKASSERT(m->flags & PG_BUSY);
1191 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1192 	if (m->object) {
1193 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1194 		vm_page_remove(m);
1195 	}
1196 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1197 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1198 		      new_object, new_pindex);
1199 	}
1200 	if (m->queue - m->pc == PQ_CACHE)
1201 		vm_page_deactivate(m);
1202 	vm_page_dirty(m);
1203 }
1204 
1205 /*
1206  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1207  * is to remain BUSYied by the caller.
1208  *
1209  * This routine may not block.
1210  */
1211 void
1212 vm_page_unqueue_nowakeup(vm_page_t m)
1213 {
1214 	vm_page_and_queue_spin_lock(m);
1215 	(void)_vm_page_rem_queue_spinlocked(m);
1216 	vm_page_spin_unlock(m);
1217 }
1218 
1219 /*
1220  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1221  * if necessary.
1222  *
1223  * This routine may not block.
1224  */
1225 void
1226 vm_page_unqueue(vm_page_t m)
1227 {
1228 	u_short queue;
1229 
1230 	vm_page_and_queue_spin_lock(m);
1231 	queue = _vm_page_rem_queue_spinlocked(m);
1232 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1233 		vm_page_spin_unlock(m);
1234 		pagedaemon_wakeup();
1235 	} else {
1236 		vm_page_spin_unlock(m);
1237 	}
1238 }
1239 
1240 /*
1241  * vm_page_list_find()
1242  *
1243  * Find a page on the specified queue with color optimization.
1244  *
1245  * The page coloring optimization attempts to locate a page that does
1246  * not overload other nearby pages in the object in the cpu's L1 or L2
1247  * caches.  We need this optimization because cpu caches tend to be
1248  * physical caches, while object spaces tend to be virtual.
1249  *
1250  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1251  * and the algorithm is adjusted to localize allocations on a per-core basis.
1252  * This is done by 'twisting' the colors.
1253  *
1254  * The page is returned spinlocked and removed from its queue (it will
1255  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1256  * is responsible for dealing with the busy-page case (usually by
1257  * deactivating the page and looping).
1258  *
1259  * NOTE:  This routine is carefully inlined.  A non-inlined version
1260  *	  is available for outside callers but the only critical path is
1261  *	  from within this source file.
1262  *
1263  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1264  *	  represent stable storage, allowing us to order our locks vm_page
1265  *	  first, then queue.
1266  */
1267 static __inline
1268 vm_page_t
1269 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1270 {
1271 	vm_page_t m;
1272 
1273 	for (;;) {
1274 		if (prefer_zero)
1275 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1276 		else
1277 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1278 		if (m == NULL) {
1279 			m = _vm_page_list_find2(basequeue, index);
1280 			return(m);
1281 		}
1282 		vm_page_and_queue_spin_lock(m);
1283 		if (m->queue == basequeue + index) {
1284 			_vm_page_rem_queue_spinlocked(m);
1285 			/* vm_page_t spin held, no queue spin */
1286 			break;
1287 		}
1288 		vm_page_and_queue_spin_unlock(m);
1289 	}
1290 	return(m);
1291 }
1292 
1293 static vm_page_t
1294 _vm_page_list_find2(int basequeue, int index)
1295 {
1296 	int i;
1297 	vm_page_t m = NULL;
1298 	struct vpgqueues *pq;
1299 
1300 	pq = &vm_page_queues[basequeue];
1301 
1302 	/*
1303 	 * Note that for the first loop, index+i and index-i wind up at the
1304 	 * same place.  Even though this is not totally optimal, we've already
1305 	 * blown it by missing the cache case so we do not care.
1306 	 */
1307 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1308 		for (;;) {
1309 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1310 			if (m) {
1311 				_vm_page_and_queue_spin_lock(m);
1312 				if (m->queue ==
1313 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1314 					_vm_page_rem_queue_spinlocked(m);
1315 					return(m);
1316 				}
1317 				_vm_page_and_queue_spin_unlock(m);
1318 				continue;
1319 			}
1320 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1321 			if (m) {
1322 				_vm_page_and_queue_spin_lock(m);
1323 				if (m->queue ==
1324 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1325 					_vm_page_rem_queue_spinlocked(m);
1326 					return(m);
1327 				}
1328 				_vm_page_and_queue_spin_unlock(m);
1329 				continue;
1330 			}
1331 			break;	/* next i */
1332 		}
1333 	}
1334 	return(m);
1335 }
1336 
1337 /*
1338  * Returns a vm_page candidate for allocation.  The page is not busied so
1339  * it can move around.  The caller must busy the page (and typically
1340  * deactivate it if it cannot be busied!)
1341  *
1342  * Returns a spinlocked vm_page that has been removed from its queue.
1343  */
1344 vm_page_t
1345 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1346 {
1347 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1348 }
1349 
1350 /*
1351  * Find a page on the cache queue with color optimization, remove it
1352  * from the queue, and busy it.  The returned page will not be spinlocked.
1353  *
1354  * A candidate failure will be deactivated.  Candidates can fail due to
1355  * being busied by someone else, in which case they will be deactivated.
1356  *
1357  * This routine may not block.
1358  *
1359  */
1360 static vm_page_t
1361 vm_page_select_cache(u_short pg_color)
1362 {
1363 	vm_page_t m;
1364 
1365 	for (;;) {
1366 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1367 		if (m == NULL)
1368 			break;
1369 		/*
1370 		 * (m) has been removed from its queue and spinlocked
1371 		 */
1372 		if (vm_page_busy_try(m, TRUE)) {
1373 			_vm_page_deactivate_locked(m, 0);
1374 			vm_page_spin_unlock(m);
1375 		} else {
1376 			/*
1377 			 * We successfully busied the page
1378 			 */
1379 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1380 			    m->hold_count == 0 &&
1381 			    m->wire_count == 0 &&
1382 			    (m->dirty & m->valid) == 0) {
1383 				vm_page_spin_unlock(m);
1384 				pagedaemon_wakeup();
1385 				return(m);
1386 			}
1387 
1388 			/*
1389 			 * The page cannot be recycled, deactivate it.
1390 			 */
1391 			_vm_page_deactivate_locked(m, 0);
1392 			if (_vm_page_wakeup(m)) {
1393 				vm_page_spin_unlock(m);
1394 				wakeup(m);
1395 			} else {
1396 				vm_page_spin_unlock(m);
1397 			}
1398 		}
1399 	}
1400 	return (m);
1401 }
1402 
1403 /*
1404  * Find a free or zero page, with specified preference.  We attempt to
1405  * inline the nominal case and fall back to _vm_page_select_free()
1406  * otherwise.  A busied page is removed from the queue and returned.
1407  *
1408  * This routine may not block.
1409  */
1410 static __inline vm_page_t
1411 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1412 {
1413 	vm_page_t m;
1414 
1415 	for (;;) {
1416 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1417 				       prefer_zero);
1418 		if (m == NULL)
1419 			break;
1420 		if (vm_page_busy_try(m, TRUE)) {
1421 			/*
1422 			 * Various mechanisms such as a pmap_collect can
1423 			 * result in a busy page on the free queue.  We
1424 			 * have to move the page out of the way so we can
1425 			 * retry the allocation.  If the other thread is not
1426 			 * allocating the page then m->valid will remain 0 and
1427 			 * the pageout daemon will free the page later on.
1428 			 *
1429 			 * Since we could not busy the page, however, we
1430 			 * cannot make assumptions as to whether the page
1431 			 * will be allocated by the other thread or not,
1432 			 * so all we can do is deactivate it to move it out
1433 			 * of the way.  In particular, if the other thread
1434 			 * wires the page it may wind up on the inactive
1435 			 * queue and the pageout daemon will have to deal
1436 			 * with that case too.
1437 			 */
1438 			_vm_page_deactivate_locked(m, 0);
1439 			vm_page_spin_unlock(m);
1440 		} else {
1441 			/*
1442 			 * Theoretically if we are able to busy the page
1443 			 * atomic with the queue removal (using the vm_page
1444 			 * lock) nobody else should be able to mess with the
1445 			 * page before us.
1446 			 */
1447 			KKASSERT((m->flags & (PG_UNMANAGED |
1448 					      PG_NEED_COMMIT)) == 0);
1449 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1450 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1451 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1452 			KKASSERT(m->wire_count == 0);
1453 			vm_page_spin_unlock(m);
1454 			pagedaemon_wakeup();
1455 
1456 			/* return busied and removed page */
1457 			return(m);
1458 		}
1459 	}
1460 	return(m);
1461 }
1462 
1463 /*
1464  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1465  * The idea is to populate this cache prior to acquiring any locks so
1466  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1467  * holding potentialy contending locks.
1468  *
1469  * Note that we allocate the page uninserted into anything and use a pindex
1470  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1471  * allocations should wind up being uncontended.  However, we still want
1472  * to rove across PQ_L2_SIZE.
1473  */
1474 void
1475 vm_page_pcpu_cache(void)
1476 {
1477 #if 0
1478 	globaldata_t gd = mycpu;
1479 	vm_page_t m;
1480 
1481 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1482 		crit_enter_gd(gd);
1483 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1484 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1485 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1486 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1487 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1488 				if ((m->flags & PG_ZERO) == 0) {
1489 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1490 					vm_page_flag_set(m, PG_ZERO);
1491 				}
1492 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1493 			} else {
1494 				vm_page_free(m);
1495 			}
1496 		}
1497 		crit_exit_gd(gd);
1498 	}
1499 #endif
1500 }
1501 
1502 /*
1503  * vm_page_alloc()
1504  *
1505  * Allocate and return a memory cell associated with this VM object/offset
1506  * pair.  If object is NULL an unassociated page will be allocated.
1507  *
1508  * The returned page will be busied and removed from its queues.  This
1509  * routine can block and may return NULL if a race occurs and the page
1510  * is found to already exist at the specified (object, pindex).
1511  *
1512  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1513  *	VM_ALLOC_QUICK		like normal but cannot use cache
1514  *	VM_ALLOC_SYSTEM		greater free drain
1515  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1516  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1517  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1518  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1519  *				(see vm_page_grab())
1520  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1521  *
1522  * The object must be held if not NULL
1523  * This routine may not block
1524  *
1525  * Additional special handling is required when called from an interrupt
1526  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1527  * in this case.
1528  */
1529 vm_page_t
1530 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1531 {
1532 	globaldata_t gd = mycpu;
1533 	vm_object_t obj;
1534 	vm_page_t m;
1535 	u_short pg_color;
1536 
1537 #if 0
1538 	/*
1539 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1540 	 * and pre-zerod for us.
1541 	 */
1542 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1543 		crit_enter_gd(gd);
1544 		if (gd->gd_vmpg_count) {
1545 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1546 			crit_exit_gd(gd);
1547 			goto done;
1548                 }
1549 		crit_exit_gd(gd);
1550         }
1551 #endif
1552 	m = NULL;
1553 
1554 	/*
1555 	 * Cpu twist - cpu localization algorithm
1556 	 */
1557 	if (object) {
1558 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1559 			   (object->pg_color & ~ncpus_fit_mask);
1560 	} else {
1561 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1562 	}
1563 	KKASSERT(page_req &
1564 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1565 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1566 
1567 	/*
1568 	 * Certain system threads (pageout daemon, buf_daemon's) are
1569 	 * allowed to eat deeper into the free page list.
1570 	 */
1571 	if (curthread->td_flags & TDF_SYSTHREAD)
1572 		page_req |= VM_ALLOC_SYSTEM;
1573 
1574 loop:
1575 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1576 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1577 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1578 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1579 	) {
1580 		/*
1581 		 * The free queue has sufficient free pages to take one out.
1582 		 */
1583 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1584 			m = vm_page_select_free(pg_color, TRUE);
1585 		else
1586 			m = vm_page_select_free(pg_color, FALSE);
1587 	} else if (page_req & VM_ALLOC_NORMAL) {
1588 		/*
1589 		 * Allocatable from the cache (non-interrupt only).  On
1590 		 * success, we must free the page and try again, thus
1591 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1592 		 */
1593 #ifdef INVARIANTS
1594 		if (curthread->td_preempted) {
1595 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1596 				" cache page from preempting interrupt\n");
1597 			m = NULL;
1598 		} else {
1599 			m = vm_page_select_cache(pg_color);
1600 		}
1601 #else
1602 		m = vm_page_select_cache(pg_color);
1603 #endif
1604 		/*
1605 		 * On success move the page into the free queue and loop.
1606 		 *
1607 		 * Only do this if we can safely acquire the vm_object lock,
1608 		 * because this is effectively a random page and the caller
1609 		 * might be holding the lock shared, we don't want to
1610 		 * deadlock.
1611 		 */
1612 		if (m != NULL) {
1613 			KASSERT(m->dirty == 0,
1614 				("Found dirty cache page %p", m));
1615 			if ((obj = m->object) != NULL) {
1616 				if (vm_object_hold_try(obj)) {
1617 					vm_page_protect(m, VM_PROT_NONE);
1618 					vm_page_free(m);
1619 					/* m->object NULL here */
1620 					vm_object_drop(obj);
1621 				} else {
1622 					vm_page_deactivate(m);
1623 					vm_page_wakeup(m);
1624 				}
1625 			} else {
1626 				vm_page_protect(m, VM_PROT_NONE);
1627 				vm_page_free(m);
1628 			}
1629 			goto loop;
1630 		}
1631 
1632 		/*
1633 		 * On failure return NULL
1634 		 */
1635 #if defined(DIAGNOSTIC)
1636 		if (vmstats.v_cache_count > 0)
1637 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1638 #endif
1639 		vm_pageout_deficit++;
1640 		pagedaemon_wakeup();
1641 		return (NULL);
1642 	} else {
1643 		/*
1644 		 * No pages available, wakeup the pageout daemon and give up.
1645 		 */
1646 		vm_pageout_deficit++;
1647 		pagedaemon_wakeup();
1648 		return (NULL);
1649 	}
1650 
1651 	/*
1652 	 * v_free_count can race so loop if we don't find the expected
1653 	 * page.
1654 	 */
1655 	if (m == NULL)
1656 		goto loop;
1657 
1658 	/*
1659 	 * Good page found.  The page has already been busied for us and
1660 	 * removed from its queues.
1661 	 */
1662 	KASSERT(m->dirty == 0,
1663 		("vm_page_alloc: free/cache page %p was dirty", m));
1664 	KKASSERT(m->queue == PQ_NONE);
1665 
1666 #if 0
1667 done:
1668 #endif
1669 	/*
1670 	 * Initialize the structure, inheriting some flags but clearing
1671 	 * all the rest.  The page has already been busied for us.
1672 	 */
1673 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1674 	KKASSERT(m->wire_count == 0);
1675 	KKASSERT(m->busy == 0);
1676 	m->act_count = 0;
1677 	m->valid = 0;
1678 
1679 	/*
1680 	 * Caller must be holding the object lock (asserted by
1681 	 * vm_page_insert()).
1682 	 *
1683 	 * NOTE: Inserting a page here does not insert it into any pmaps
1684 	 *	 (which could cause us to block allocating memory).
1685 	 *
1686 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1687 	 *	 can be used by the caller for any purpose.
1688 	 */
1689 	if (object) {
1690 		if (vm_page_insert(m, object, pindex) == FALSE) {
1691 			vm_page_free(m);
1692 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1693 				panic("PAGE RACE %p[%ld]/%p",
1694 				      object, (long)pindex, m);
1695 			m = NULL;
1696 		}
1697 	} else {
1698 		m->pindex = pindex;
1699 	}
1700 
1701 	/*
1702 	 * Don't wakeup too often - wakeup the pageout daemon when
1703 	 * we would be nearly out of memory.
1704 	 */
1705 	pagedaemon_wakeup();
1706 
1707 	/*
1708 	 * A PG_BUSY page is returned.
1709 	 */
1710 	return (m);
1711 }
1712 
1713 /*
1714  * Returns number of pages available in our DMA memory reserve
1715  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1716  */
1717 vm_size_t
1718 vm_contig_avail_pages(void)
1719 {
1720 	alist_blk_t blk;
1721 	alist_blk_t count;
1722 	alist_blk_t bfree;
1723 	spin_lock(&vm_contig_spin);
1724 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1725 	spin_unlock(&vm_contig_spin);
1726 
1727 	return bfree;
1728 }
1729 
1730 /*
1731  * Attempt to allocate contiguous physical memory with the specified
1732  * requirements.
1733  */
1734 vm_page_t
1735 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1736 		     unsigned long alignment, unsigned long boundary,
1737 		     unsigned long size, vm_memattr_t memattr)
1738 {
1739 	alist_blk_t blk;
1740 	vm_page_t m;
1741 	int i;
1742 
1743 	alignment >>= PAGE_SHIFT;
1744 	if (alignment == 0)
1745 		alignment = 1;
1746 	boundary >>= PAGE_SHIFT;
1747 	if (boundary == 0)
1748 		boundary = 1;
1749 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1750 
1751 	spin_lock(&vm_contig_spin);
1752 	blk = alist_alloc(&vm_contig_alist, 0, size);
1753 	if (blk == ALIST_BLOCK_NONE) {
1754 		spin_unlock(&vm_contig_spin);
1755 		if (bootverbose) {
1756 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1757 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1758 		}
1759 		return(NULL);
1760 	}
1761 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1762 		alist_free(&vm_contig_alist, blk, size);
1763 		spin_unlock(&vm_contig_spin);
1764 		if (bootverbose) {
1765 			kprintf("vm_page_alloc_contig: %ldk high "
1766 				"%016jx failed\n",
1767 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1768 				(intmax_t)high);
1769 		}
1770 		return(NULL);
1771 	}
1772 	spin_unlock(&vm_contig_spin);
1773 	if (vm_contig_verbose) {
1774 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1775 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1776 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1777 	}
1778 
1779 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
1780 	if (memattr != VM_MEMATTR_DEFAULT)
1781 		for (i = 0;i < size;i++)
1782 			pmap_page_set_memattr(&m[i], memattr);
1783 	return m;
1784 }
1785 
1786 /*
1787  * Free contiguously allocated pages.  The pages will be wired but not busy.
1788  * When freeing to the alist we leave them wired and not busy.
1789  */
1790 void
1791 vm_page_free_contig(vm_page_t m, unsigned long size)
1792 {
1793 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1794 	vm_pindex_t start = pa >> PAGE_SHIFT;
1795 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1796 
1797 	if (vm_contig_verbose) {
1798 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1799 			(intmax_t)pa, size / 1024);
1800 	}
1801 	if (pa < vm_low_phys_reserved) {
1802 		KKASSERT(pa + size <= vm_low_phys_reserved);
1803 		spin_lock(&vm_contig_spin);
1804 		alist_free(&vm_contig_alist, start, pages);
1805 		spin_unlock(&vm_contig_spin);
1806 	} else {
1807 		while (pages) {
1808 			vm_page_busy_wait(m, FALSE, "cpgfr");
1809 			vm_page_unwire(m, 0);
1810 			vm_page_free(m);
1811 			--pages;
1812 			++m;
1813 		}
1814 
1815 	}
1816 }
1817 
1818 
1819 /*
1820  * Wait for sufficient free memory for nominal heavy memory use kernel
1821  * operations.
1822  *
1823  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1824  *	     will trivially deadlock the system.
1825  */
1826 void
1827 vm_wait_nominal(void)
1828 {
1829 	while (vm_page_count_min(0))
1830 		vm_wait(0);
1831 }
1832 
1833 /*
1834  * Test if vm_wait_nominal() would block.
1835  */
1836 int
1837 vm_test_nominal(void)
1838 {
1839 	if (vm_page_count_min(0))
1840 		return(1);
1841 	return(0);
1842 }
1843 
1844 /*
1845  * Block until free pages are available for allocation, called in various
1846  * places before memory allocations.
1847  *
1848  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1849  * more generous then that.
1850  */
1851 void
1852 vm_wait(int timo)
1853 {
1854 	/*
1855 	 * never wait forever
1856 	 */
1857 	if (timo == 0)
1858 		timo = hz;
1859 	lwkt_gettoken(&vm_token);
1860 
1861 	if (curthread == pagethread) {
1862 		/*
1863 		 * The pageout daemon itself needs pages, this is bad.
1864 		 */
1865 		if (vm_page_count_min(0)) {
1866 			vm_pageout_pages_needed = 1;
1867 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1868 		}
1869 	} else {
1870 		/*
1871 		 * Wakeup the pageout daemon if necessary and wait.
1872 		 *
1873 		 * Do not wait indefinitely for the target to be reached,
1874 		 * as load might prevent it from being reached any time soon.
1875 		 * But wait a little to try to slow down page allocations
1876 		 * and to give more important threads (the pagedaemon)
1877 		 * allocation priority.
1878 		 */
1879 		if (vm_page_count_target()) {
1880 			if (vm_pages_needed == 0) {
1881 				vm_pages_needed = 1;
1882 				wakeup(&vm_pages_needed);
1883 			}
1884 			++vm_pages_waiting;	/* SMP race ok */
1885 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1886 		}
1887 	}
1888 	lwkt_reltoken(&vm_token);
1889 }
1890 
1891 /*
1892  * Block until free pages are available for allocation
1893  *
1894  * Called only from vm_fault so that processes page faulting can be
1895  * easily tracked.
1896  */
1897 void
1898 vm_wait_pfault(void)
1899 {
1900 	/*
1901 	 * Wakeup the pageout daemon if necessary and wait.
1902 	 *
1903 	 * Do not wait indefinitely for the target to be reached,
1904 	 * as load might prevent it from being reached any time soon.
1905 	 * But wait a little to try to slow down page allocations
1906 	 * and to give more important threads (the pagedaemon)
1907 	 * allocation priority.
1908 	 */
1909 	if (vm_page_count_min(0)) {
1910 		lwkt_gettoken(&vm_token);
1911 		while (vm_page_count_severe()) {
1912 			if (vm_page_count_target()) {
1913 				if (vm_pages_needed == 0) {
1914 					vm_pages_needed = 1;
1915 					wakeup(&vm_pages_needed);
1916 				}
1917 				++vm_pages_waiting;	/* SMP race ok */
1918 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1919 			}
1920 		}
1921 		lwkt_reltoken(&vm_token);
1922 	}
1923 }
1924 
1925 /*
1926  * Put the specified page on the active list (if appropriate).  Ensure
1927  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1928  *
1929  * The caller should be holding the page busied ? XXX
1930  * This routine may not block.
1931  */
1932 void
1933 vm_page_activate(vm_page_t m)
1934 {
1935 	u_short oqueue;
1936 
1937 	vm_page_spin_lock(m);
1938 	if (m->queue - m->pc != PQ_ACTIVE) {
1939 		_vm_page_queue_spin_lock(m);
1940 		oqueue = _vm_page_rem_queue_spinlocked(m);
1941 		/* page is left spinlocked, queue is unlocked */
1942 
1943 		if (oqueue == PQ_CACHE)
1944 			mycpu->gd_cnt.v_reactivated++;
1945 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1946 			if (m->act_count < ACT_INIT)
1947 				m->act_count = ACT_INIT;
1948 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1949 		}
1950 		_vm_page_and_queue_spin_unlock(m);
1951 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1952 			pagedaemon_wakeup();
1953 	} else {
1954 		if (m->act_count < ACT_INIT)
1955 			m->act_count = ACT_INIT;
1956 		vm_page_spin_unlock(m);
1957 	}
1958 }
1959 
1960 /*
1961  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1962  * routine is called when a page has been added to the cache or free
1963  * queues.
1964  *
1965  * This routine may not block.
1966  */
1967 static __inline void
1968 vm_page_free_wakeup(void)
1969 {
1970 	/*
1971 	 * If the pageout daemon itself needs pages, then tell it that
1972 	 * there are some free.
1973 	 */
1974 	if (vm_pageout_pages_needed &&
1975 	    vmstats.v_cache_count + vmstats.v_free_count >=
1976 	    vmstats.v_pageout_free_min
1977 	) {
1978 		vm_pageout_pages_needed = 0;
1979 		wakeup(&vm_pageout_pages_needed);
1980 	}
1981 
1982 	/*
1983 	 * Wakeup processes that are waiting on memory.
1984 	 *
1985 	 * Generally speaking we want to wakeup stuck processes as soon as
1986 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
1987 	 * where we can do this.  Wait a bit longer to reduce degenerate
1988 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
1989 	 * to make sure the min-check w/hysteresis does not exceed the
1990 	 * normal target.
1991 	 */
1992 	if (vm_pages_waiting) {
1993 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
1994 		    !vm_page_count_target()) {
1995 			vm_pages_waiting = 0;
1996 			wakeup(&vmstats.v_free_count);
1997 			++mycpu->gd_cnt.v_ppwakeups;
1998 		}
1999 #if 0
2000 		if (!vm_page_count_target()) {
2001 			/*
2002 			 * Plenty of pages are free, wakeup everyone.
2003 			 */
2004 			vm_pages_waiting = 0;
2005 			wakeup(&vmstats.v_free_count);
2006 			++mycpu->gd_cnt.v_ppwakeups;
2007 		} else if (!vm_page_count_min(0)) {
2008 			/*
2009 			 * Some pages are free, wakeup someone.
2010 			 */
2011 			int wcount = vm_pages_waiting;
2012 			if (wcount > 0)
2013 				--wcount;
2014 			vm_pages_waiting = wcount;
2015 			wakeup_one(&vmstats.v_free_count);
2016 			++mycpu->gd_cnt.v_ppwakeups;
2017 		}
2018 #endif
2019 	}
2020 }
2021 
2022 /*
2023  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2024  * it from its VM object.
2025  *
2026  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2027  * return (the page will have been freed).
2028  */
2029 void
2030 vm_page_free_toq(vm_page_t m)
2031 {
2032 	mycpu->gd_cnt.v_tfree++;
2033 	KKASSERT((m->flags & PG_MAPPED) == 0);
2034 	KKASSERT(m->flags & PG_BUSY);
2035 
2036 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2037 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2038 			"PG_BUSY(%d), hold(%d)\n",
2039 			(u_long)m->pindex, m->busy,
2040 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2041 		if ((m->queue - m->pc) == PQ_FREE)
2042 			panic("vm_page_free: freeing free page");
2043 		else
2044 			panic("vm_page_free: freeing busy page");
2045 	}
2046 
2047 	/*
2048 	 * Remove from object, spinlock the page and its queues and
2049 	 * remove from any queue.  No queue spinlock will be held
2050 	 * after this section (because the page was removed from any
2051 	 * queue).
2052 	 */
2053 	vm_page_remove(m);
2054 	vm_page_and_queue_spin_lock(m);
2055 	_vm_page_rem_queue_spinlocked(m);
2056 
2057 	/*
2058 	 * No further management of fictitious pages occurs beyond object
2059 	 * and queue removal.
2060 	 */
2061 	if ((m->flags & PG_FICTITIOUS) != 0) {
2062 		vm_page_spin_unlock(m);
2063 		vm_page_wakeup(m);
2064 		return;
2065 	}
2066 
2067 	m->valid = 0;
2068 	vm_page_undirty(m);
2069 
2070 	if (m->wire_count != 0) {
2071 		if (m->wire_count > 1) {
2072 		    panic(
2073 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2074 			m->wire_count, (long)m->pindex);
2075 		}
2076 		panic("vm_page_free: freeing wired page");
2077 	}
2078 
2079 	/*
2080 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2081 	 * Clear the NEED_COMMIT flag
2082 	 */
2083 	if (m->flags & PG_UNMANAGED)
2084 		vm_page_flag_clear(m, PG_UNMANAGED);
2085 	if (m->flags & PG_NEED_COMMIT)
2086 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2087 
2088 	if (m->hold_count != 0) {
2089 		vm_page_flag_clear(m, PG_ZERO);
2090 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2091 	} else {
2092 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2093 	}
2094 
2095 	/*
2096 	 * This sequence allows us to clear PG_BUSY while still holding
2097 	 * its spin lock, which reduces contention vs allocators.  We
2098 	 * must not leave the queue locked or _vm_page_wakeup() may
2099 	 * deadlock.
2100 	 */
2101 	_vm_page_queue_spin_unlock(m);
2102 	if (_vm_page_wakeup(m)) {
2103 		vm_page_spin_unlock(m);
2104 		wakeup(m);
2105 	} else {
2106 		vm_page_spin_unlock(m);
2107 	}
2108 	vm_page_free_wakeup();
2109 }
2110 
2111 /*
2112  * vm_page_free_fromq_fast()
2113  *
2114  * Remove a non-zero page from one of the free queues; the page is removed for
2115  * zeroing, so do not issue a wakeup.
2116  */
2117 vm_page_t
2118 vm_page_free_fromq_fast(void)
2119 {
2120 	static int qi;
2121 	vm_page_t m;
2122 	int i;
2123 
2124 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2125 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2126 		/* page is returned spinlocked and removed from its queue */
2127 		if (m) {
2128 			if (vm_page_busy_try(m, TRUE)) {
2129 				/*
2130 				 * We were unable to busy the page, deactivate
2131 				 * it and loop.
2132 				 */
2133 				_vm_page_deactivate_locked(m, 0);
2134 				vm_page_spin_unlock(m);
2135 			} else if (m->flags & PG_ZERO) {
2136 				/*
2137 				 * The page is already PG_ZERO, requeue it and loop
2138 				 */
2139 				_vm_page_add_queue_spinlocked(m,
2140 							      PQ_FREE + m->pc,
2141 							      0);
2142 				vm_page_queue_spin_unlock(m);
2143 				if (_vm_page_wakeup(m)) {
2144 					vm_page_spin_unlock(m);
2145 					wakeup(m);
2146 				} else {
2147 					vm_page_spin_unlock(m);
2148 				}
2149 			} else {
2150 				/*
2151 				 * The page is not PG_ZERO'd so return it.
2152 				 */
2153 				KKASSERT((m->flags & (PG_UNMANAGED |
2154 						      PG_NEED_COMMIT)) == 0);
2155 				KKASSERT(m->hold_count == 0);
2156 				KKASSERT(m->wire_count == 0);
2157 				vm_page_spin_unlock(m);
2158 				break;
2159 			}
2160 			m = NULL;
2161 		}
2162 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2163 	}
2164 	return (m);
2165 }
2166 
2167 /*
2168  * vm_page_unmanage()
2169  *
2170  * Prevent PV management from being done on the page.  The page is
2171  * removed from the paging queues as if it were wired, and as a
2172  * consequence of no longer being managed the pageout daemon will not
2173  * touch it (since there is no way to locate the pte mappings for the
2174  * page).  madvise() calls that mess with the pmap will also no longer
2175  * operate on the page.
2176  *
2177  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2178  * will clear the flag.
2179  *
2180  * This routine is used by OBJT_PHYS objects - objects using unswappable
2181  * physical memory as backing store rather then swap-backed memory and
2182  * will eventually be extended to support 4MB unmanaged physical
2183  * mappings.
2184  *
2185  * Caller must be holding the page busy.
2186  */
2187 void
2188 vm_page_unmanage(vm_page_t m)
2189 {
2190 	KKASSERT(m->flags & PG_BUSY);
2191 	if ((m->flags & PG_UNMANAGED) == 0) {
2192 		if (m->wire_count == 0)
2193 			vm_page_unqueue(m);
2194 	}
2195 	vm_page_flag_set(m, PG_UNMANAGED);
2196 }
2197 
2198 /*
2199  * Mark this page as wired down by yet another map, removing it from
2200  * paging queues as necessary.
2201  *
2202  * Caller must be holding the page busy.
2203  */
2204 void
2205 vm_page_wire(vm_page_t m)
2206 {
2207 	/*
2208 	 * Only bump the wire statistics if the page is not already wired,
2209 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2210 	 * it is already off the queues).  Don't do anything with fictitious
2211 	 * pages because they are always wired.
2212 	 */
2213 	KKASSERT(m->flags & PG_BUSY);
2214 	if ((m->flags & PG_FICTITIOUS) == 0) {
2215 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2216 			if ((m->flags & PG_UNMANAGED) == 0)
2217 				vm_page_unqueue(m);
2218 			atomic_add_int(&vmstats.v_wire_count, 1);
2219 		}
2220 		KASSERT(m->wire_count != 0,
2221 			("vm_page_wire: wire_count overflow m=%p", m));
2222 	}
2223 }
2224 
2225 /*
2226  * Release one wiring of this page, potentially enabling it to be paged again.
2227  *
2228  * Many pages placed on the inactive queue should actually go
2229  * into the cache, but it is difficult to figure out which.  What
2230  * we do instead, if the inactive target is well met, is to put
2231  * clean pages at the head of the inactive queue instead of the tail.
2232  * This will cause them to be moved to the cache more quickly and
2233  * if not actively re-referenced, freed more quickly.  If we just
2234  * stick these pages at the end of the inactive queue, heavy filesystem
2235  * meta-data accesses can cause an unnecessary paging load on memory bound
2236  * processes.  This optimization causes one-time-use metadata to be
2237  * reused more quickly.
2238  *
2239  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2240  * the inactive queue.  This helps the pageout daemon determine memory
2241  * pressure and act on out-of-memory situations more quickly.
2242  *
2243  * BUT, if we are in a low-memory situation we have no choice but to
2244  * put clean pages on the cache queue.
2245  *
2246  * A number of routines use vm_page_unwire() to guarantee that the page
2247  * will go into either the inactive or active queues, and will NEVER
2248  * be placed in the cache - for example, just after dirtying a page.
2249  * dirty pages in the cache are not allowed.
2250  *
2251  * This routine may not block.
2252  */
2253 void
2254 vm_page_unwire(vm_page_t m, int activate)
2255 {
2256 	KKASSERT(m->flags & PG_BUSY);
2257 	if (m->flags & PG_FICTITIOUS) {
2258 		/* do nothing */
2259 	} else if (m->wire_count <= 0) {
2260 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2261 	} else {
2262 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2263 			atomic_add_int(&vmstats.v_wire_count, -1);
2264 			if (m->flags & PG_UNMANAGED) {
2265 				;
2266 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2267 				vm_page_spin_lock(m);
2268 				_vm_page_add_queue_spinlocked(m,
2269 							PQ_ACTIVE + m->pc, 0);
2270 				_vm_page_and_queue_spin_unlock(m);
2271 			} else {
2272 				vm_page_spin_lock(m);
2273 				vm_page_flag_clear(m, PG_WINATCFLS);
2274 				_vm_page_add_queue_spinlocked(m,
2275 							PQ_INACTIVE + m->pc, 0);
2276 				++vm_swapcache_inactive_heuristic;
2277 				_vm_page_and_queue_spin_unlock(m);
2278 			}
2279 		}
2280 	}
2281 }
2282 
2283 /*
2284  * Move the specified page to the inactive queue.  If the page has
2285  * any associated swap, the swap is deallocated.
2286  *
2287  * Normally athead is 0 resulting in LRU operation.  athead is set
2288  * to 1 if we want this page to be 'as if it were placed in the cache',
2289  * except without unmapping it from the process address space.
2290  *
2291  * vm_page's spinlock must be held on entry and will remain held on return.
2292  * This routine may not block.
2293  */
2294 static void
2295 _vm_page_deactivate_locked(vm_page_t m, int athead)
2296 {
2297 	u_short oqueue;
2298 
2299 	/*
2300 	 * Ignore if already inactive.
2301 	 */
2302 	if (m->queue - m->pc == PQ_INACTIVE)
2303 		return;
2304 	_vm_page_queue_spin_lock(m);
2305 	oqueue = _vm_page_rem_queue_spinlocked(m);
2306 
2307 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2308 		if (oqueue == PQ_CACHE)
2309 			mycpu->gd_cnt.v_reactivated++;
2310 		vm_page_flag_clear(m, PG_WINATCFLS);
2311 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2312 		if (athead == 0)
2313 			++vm_swapcache_inactive_heuristic;
2314 	}
2315 	/* NOTE: PQ_NONE if condition not taken */
2316 	_vm_page_queue_spin_unlock(m);
2317 	/* leaves vm_page spinlocked */
2318 }
2319 
2320 /*
2321  * Attempt to deactivate a page.
2322  *
2323  * No requirements.
2324  */
2325 void
2326 vm_page_deactivate(vm_page_t m)
2327 {
2328 	vm_page_spin_lock(m);
2329 	_vm_page_deactivate_locked(m, 0);
2330 	vm_page_spin_unlock(m);
2331 }
2332 
2333 void
2334 vm_page_deactivate_locked(vm_page_t m)
2335 {
2336 	_vm_page_deactivate_locked(m, 0);
2337 }
2338 
2339 /*
2340  * Attempt to move a page to PQ_CACHE.
2341  *
2342  * Returns 0 on failure, 1 on success
2343  *
2344  * The page should NOT be busied by the caller.  This function will validate
2345  * whether the page can be safely moved to the cache.
2346  */
2347 int
2348 vm_page_try_to_cache(vm_page_t m)
2349 {
2350 	vm_page_spin_lock(m);
2351 	if (vm_page_busy_try(m, TRUE)) {
2352 		vm_page_spin_unlock(m);
2353 		return(0);
2354 	}
2355 	if (m->dirty || m->hold_count || m->wire_count ||
2356 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2357 		if (_vm_page_wakeup(m)) {
2358 			vm_page_spin_unlock(m);
2359 			wakeup(m);
2360 		} else {
2361 			vm_page_spin_unlock(m);
2362 		}
2363 		return(0);
2364 	}
2365 	vm_page_spin_unlock(m);
2366 
2367 	/*
2368 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2369 	 * be moved to the cache.
2370 	 */
2371 	vm_page_test_dirty(m);
2372 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2373 		vm_page_wakeup(m);
2374 		return(0);
2375 	}
2376 	vm_page_cache(m);
2377 	return(1);
2378 }
2379 
2380 /*
2381  * Attempt to free the page.  If we cannot free it, we do nothing.
2382  * 1 is returned on success, 0 on failure.
2383  *
2384  * No requirements.
2385  */
2386 int
2387 vm_page_try_to_free(vm_page_t m)
2388 {
2389 	vm_page_spin_lock(m);
2390 	if (vm_page_busy_try(m, TRUE)) {
2391 		vm_page_spin_unlock(m);
2392 		return(0);
2393 	}
2394 
2395 	/*
2396 	 * The page can be in any state, including already being on the free
2397 	 * queue.  Check to see if it really can be freed.
2398 	 */
2399 	if (m->dirty ||				/* can't free if it is dirty */
2400 	    m->hold_count ||			/* or held (XXX may be wrong) */
2401 	    m->wire_count ||			/* or wired */
2402 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2403 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2404 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2405 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2406 		if (_vm_page_wakeup(m)) {
2407 			vm_page_spin_unlock(m);
2408 			wakeup(m);
2409 		} else {
2410 			vm_page_spin_unlock(m);
2411 		}
2412 		return(0);
2413 	}
2414 	vm_page_spin_unlock(m);
2415 
2416 	/*
2417 	 * We can probably free the page.
2418 	 *
2419 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2420 	 * not be freed by this function.    We have to re-test the
2421 	 * dirty bit after cleaning out the pmaps.
2422 	 */
2423 	vm_page_test_dirty(m);
2424 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2425 		vm_page_wakeup(m);
2426 		return(0);
2427 	}
2428 	vm_page_protect(m, VM_PROT_NONE);
2429 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2430 		vm_page_wakeup(m);
2431 		return(0);
2432 	}
2433 	vm_page_free(m);
2434 	return(1);
2435 }
2436 
2437 /*
2438  * vm_page_cache
2439  *
2440  * Put the specified page onto the page cache queue (if appropriate).
2441  *
2442  * The page must be busy, and this routine will release the busy and
2443  * possibly even free the page.
2444  */
2445 void
2446 vm_page_cache(vm_page_t m)
2447 {
2448 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2449 	    m->busy || m->wire_count || m->hold_count) {
2450 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2451 		vm_page_wakeup(m);
2452 		return;
2453 	}
2454 
2455 	/*
2456 	 * Already in the cache (and thus not mapped)
2457 	 */
2458 	if ((m->queue - m->pc) == PQ_CACHE) {
2459 		KKASSERT((m->flags & PG_MAPPED) == 0);
2460 		vm_page_wakeup(m);
2461 		return;
2462 	}
2463 
2464 	/*
2465 	 * Caller is required to test m->dirty, but note that the act of
2466 	 * removing the page from its maps can cause it to become dirty
2467 	 * on an SMP system due to another cpu running in usermode.
2468 	 */
2469 	if (m->dirty) {
2470 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2471 			(long)m->pindex);
2472 	}
2473 
2474 	/*
2475 	 * Remove all pmaps and indicate that the page is not
2476 	 * writeable or mapped.  Our vm_page_protect() call may
2477 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2478 	 * everything.
2479 	 */
2480 	vm_page_protect(m, VM_PROT_NONE);
2481 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2482 	    m->busy || m->wire_count || m->hold_count) {
2483 		vm_page_wakeup(m);
2484 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2485 		vm_page_deactivate(m);
2486 		vm_page_wakeup(m);
2487 	} else {
2488 		_vm_page_and_queue_spin_lock(m);
2489 		_vm_page_rem_queue_spinlocked(m);
2490 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2491 		_vm_page_queue_spin_unlock(m);
2492 		if (_vm_page_wakeup(m)) {
2493 			vm_page_spin_unlock(m);
2494 			wakeup(m);
2495 		} else {
2496 			vm_page_spin_unlock(m);
2497 		}
2498 		vm_page_free_wakeup();
2499 	}
2500 }
2501 
2502 /*
2503  * vm_page_dontneed()
2504  *
2505  * Cache, deactivate, or do nothing as appropriate.  This routine
2506  * is typically used by madvise() MADV_DONTNEED.
2507  *
2508  * Generally speaking we want to move the page into the cache so
2509  * it gets reused quickly.  However, this can result in a silly syndrome
2510  * due to the page recycling too quickly.  Small objects will not be
2511  * fully cached.  On the otherhand, if we move the page to the inactive
2512  * queue we wind up with a problem whereby very large objects
2513  * unnecessarily blow away our inactive and cache queues.
2514  *
2515  * The solution is to move the pages based on a fixed weighting.  We
2516  * either leave them alone, deactivate them, or move them to the cache,
2517  * where moving them to the cache has the highest weighting.
2518  * By forcing some pages into other queues we eventually force the
2519  * system to balance the queues, potentially recovering other unrelated
2520  * space from active.  The idea is to not force this to happen too
2521  * often.
2522  *
2523  * The page must be busied.
2524  */
2525 void
2526 vm_page_dontneed(vm_page_t m)
2527 {
2528 	static int dnweight;
2529 	int dnw;
2530 	int head;
2531 
2532 	dnw = ++dnweight;
2533 
2534 	/*
2535 	 * occassionally leave the page alone
2536 	 */
2537 	if ((dnw & 0x01F0) == 0 ||
2538 	    m->queue - m->pc == PQ_INACTIVE ||
2539 	    m->queue - m->pc == PQ_CACHE
2540 	) {
2541 		if (m->act_count >= ACT_INIT)
2542 			--m->act_count;
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * If vm_page_dontneed() is inactivating a page, it must clear
2548 	 * the referenced flag; otherwise the pagedaemon will see references
2549 	 * on the page in the inactive queue and reactivate it. Until the
2550 	 * page can move to the cache queue, madvise's job is not done.
2551 	 */
2552 	vm_page_flag_clear(m, PG_REFERENCED);
2553 	pmap_clear_reference(m);
2554 
2555 	if (m->dirty == 0)
2556 		vm_page_test_dirty(m);
2557 
2558 	if (m->dirty || (dnw & 0x0070) == 0) {
2559 		/*
2560 		 * Deactivate the page 3 times out of 32.
2561 		 */
2562 		head = 0;
2563 	} else {
2564 		/*
2565 		 * Cache the page 28 times out of every 32.  Note that
2566 		 * the page is deactivated instead of cached, but placed
2567 		 * at the head of the queue instead of the tail.
2568 		 */
2569 		head = 1;
2570 	}
2571 	vm_page_spin_lock(m);
2572 	_vm_page_deactivate_locked(m, head);
2573 	vm_page_spin_unlock(m);
2574 }
2575 
2576 /*
2577  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2578  * is almost like PG_BUSY except that it allows certain compatible operations
2579  * to occur on the page while it is busy.  For example, a page undergoing a
2580  * write can still be mapped read-only.
2581  *
2582  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2583  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2584  * busy bit is cleared.
2585  */
2586 void
2587 vm_page_io_start(vm_page_t m)
2588 {
2589         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2590         atomic_add_char(&m->busy, 1);
2591 	vm_page_flag_set(m, PG_SBUSY);
2592 }
2593 
2594 void
2595 vm_page_io_finish(vm_page_t m)
2596 {
2597         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2598         atomic_subtract_char(&m->busy, 1);
2599 	if (m->busy == 0)
2600 		vm_page_flag_clear(m, PG_SBUSY);
2601 }
2602 
2603 /*
2604  * Indicate that a clean VM page requires a filesystem commit and cannot
2605  * be reused.  Used by tmpfs.
2606  */
2607 void
2608 vm_page_need_commit(vm_page_t m)
2609 {
2610 	vm_page_flag_set(m, PG_NEED_COMMIT);
2611 	vm_object_set_writeable_dirty(m->object);
2612 }
2613 
2614 void
2615 vm_page_clear_commit(vm_page_t m)
2616 {
2617 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2618 }
2619 
2620 /*
2621  * Grab a page, blocking if it is busy and allocating a page if necessary.
2622  * A busy page is returned or NULL.  The page may or may not be valid and
2623  * might not be on a queue (the caller is responsible for the disposition of
2624  * the page).
2625  *
2626  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2627  * page will be zero'd and marked valid.
2628  *
2629  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2630  * valid even if it already exists.
2631  *
2632  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2633  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2634  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2635  *
2636  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2637  * always returned if we had blocked.
2638  *
2639  * This routine may not be called from an interrupt.
2640  *
2641  * PG_ZERO is *ALWAYS* cleared by this routine.
2642  *
2643  * No other requirements.
2644  */
2645 vm_page_t
2646 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2647 {
2648 	vm_page_t m;
2649 	int error;
2650 	int shared = 1;
2651 
2652 	KKASSERT(allocflags &
2653 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2654 	vm_object_hold_shared(object);
2655 	for (;;) {
2656 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2657 		if (error) {
2658 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2659 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2660 				m = NULL;
2661 				break;
2662 			}
2663 			/* retry */
2664 		} else if (m == NULL) {
2665 			if (shared) {
2666 				vm_object_upgrade(object);
2667 				shared = 0;
2668 			}
2669 			if (allocflags & VM_ALLOC_RETRY)
2670 				allocflags |= VM_ALLOC_NULL_OK;
2671 			m = vm_page_alloc(object, pindex,
2672 					  allocflags & ~VM_ALLOC_RETRY);
2673 			if (m)
2674 				break;
2675 			vm_wait(0);
2676 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2677 				goto failed;
2678 		} else {
2679 			/* m found */
2680 			break;
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2686 	 *
2687 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2688 	 * valid even if already valid.
2689 	 */
2690 	if (m->valid == 0) {
2691 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2692 			if ((m->flags & PG_ZERO) == 0)
2693 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2694 			m->valid = VM_PAGE_BITS_ALL;
2695 		}
2696 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2697 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2698 		m->valid = VM_PAGE_BITS_ALL;
2699 	}
2700 	vm_page_flag_clear(m, PG_ZERO);
2701 failed:
2702 	vm_object_drop(object);
2703 	return(m);
2704 }
2705 
2706 /*
2707  * Mapping function for valid bits or for dirty bits in
2708  * a page.  May not block.
2709  *
2710  * Inputs are required to range within a page.
2711  *
2712  * No requirements.
2713  * Non blocking.
2714  */
2715 int
2716 vm_page_bits(int base, int size)
2717 {
2718 	int first_bit;
2719 	int last_bit;
2720 
2721 	KASSERT(
2722 	    base + size <= PAGE_SIZE,
2723 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2724 	);
2725 
2726 	if (size == 0)		/* handle degenerate case */
2727 		return(0);
2728 
2729 	first_bit = base >> DEV_BSHIFT;
2730 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2731 
2732 	return ((2 << last_bit) - (1 << first_bit));
2733 }
2734 
2735 /*
2736  * Sets portions of a page valid and clean.  The arguments are expected
2737  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2738  * of any partial chunks touched by the range.  The invalid portion of
2739  * such chunks will be zero'd.
2740  *
2741  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2742  *	 align base to DEV_BSIZE so as not to mark clean a partially
2743  *	 truncated device block.  Otherwise the dirty page status might be
2744  *	 lost.
2745  *
2746  * This routine may not block.
2747  *
2748  * (base + size) must be less then or equal to PAGE_SIZE.
2749  */
2750 static void
2751 _vm_page_zero_valid(vm_page_t m, int base, int size)
2752 {
2753 	int frag;
2754 	int endoff;
2755 
2756 	if (size == 0)	/* handle degenerate case */
2757 		return;
2758 
2759 	/*
2760 	 * If the base is not DEV_BSIZE aligned and the valid
2761 	 * bit is clear, we have to zero out a portion of the
2762 	 * first block.
2763 	 */
2764 
2765 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2766 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2767 	) {
2768 		pmap_zero_page_area(
2769 		    VM_PAGE_TO_PHYS(m),
2770 		    frag,
2771 		    base - frag
2772 		);
2773 	}
2774 
2775 	/*
2776 	 * If the ending offset is not DEV_BSIZE aligned and the
2777 	 * valid bit is clear, we have to zero out a portion of
2778 	 * the last block.
2779 	 */
2780 
2781 	endoff = base + size;
2782 
2783 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2784 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2785 	) {
2786 		pmap_zero_page_area(
2787 		    VM_PAGE_TO_PHYS(m),
2788 		    endoff,
2789 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2790 		);
2791 	}
2792 }
2793 
2794 /*
2795  * Set valid, clear dirty bits.  If validating the entire
2796  * page we can safely clear the pmap modify bit.  We also
2797  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2798  * takes a write fault on a MAP_NOSYNC memory area the flag will
2799  * be set again.
2800  *
2801  * We set valid bits inclusive of any overlap, but we can only
2802  * clear dirty bits for DEV_BSIZE chunks that are fully within
2803  * the range.
2804  *
2805  * Page must be busied?
2806  * No other requirements.
2807  */
2808 void
2809 vm_page_set_valid(vm_page_t m, int base, int size)
2810 {
2811 	_vm_page_zero_valid(m, base, size);
2812 	m->valid |= vm_page_bits(base, size);
2813 }
2814 
2815 
2816 /*
2817  * Set valid bits and clear dirty bits.
2818  *
2819  * NOTE: This function does not clear the pmap modified bit.
2820  *	 Also note that e.g. NFS may use a byte-granular base
2821  *	 and size.
2822  *
2823  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2824  *	    this without necessarily busying the page (via bdwrite()).
2825  *	    So for now vm_token must also be held.
2826  *
2827  * No other requirements.
2828  */
2829 void
2830 vm_page_set_validclean(vm_page_t m, int base, int size)
2831 {
2832 	int pagebits;
2833 
2834 	_vm_page_zero_valid(m, base, size);
2835 	pagebits = vm_page_bits(base, size);
2836 	m->valid |= pagebits;
2837 	m->dirty &= ~pagebits;
2838 	if (base == 0 && size == PAGE_SIZE) {
2839 		/*pmap_clear_modify(m);*/
2840 		vm_page_flag_clear(m, PG_NOSYNC);
2841 	}
2842 }
2843 
2844 /*
2845  * Set valid & dirty.  Used by buwrite()
2846  *
2847  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2848  *	    call this function in buwrite() so for now vm_token must
2849  *	    be held.
2850  *
2851  * No other requirements.
2852  */
2853 void
2854 vm_page_set_validdirty(vm_page_t m, int base, int size)
2855 {
2856 	int pagebits;
2857 
2858 	pagebits = vm_page_bits(base, size);
2859 	m->valid |= pagebits;
2860 	m->dirty |= pagebits;
2861 	if (m->object)
2862 	       vm_object_set_writeable_dirty(m->object);
2863 }
2864 
2865 /*
2866  * Clear dirty bits.
2867  *
2868  * NOTE: This function does not clear the pmap modified bit.
2869  *	 Also note that e.g. NFS may use a byte-granular base
2870  *	 and size.
2871  *
2872  * Page must be busied?
2873  * No other requirements.
2874  */
2875 void
2876 vm_page_clear_dirty(vm_page_t m, int base, int size)
2877 {
2878 	m->dirty &= ~vm_page_bits(base, size);
2879 	if (base == 0 && size == PAGE_SIZE) {
2880 		/*pmap_clear_modify(m);*/
2881 		vm_page_flag_clear(m, PG_NOSYNC);
2882 	}
2883 }
2884 
2885 /*
2886  * Make the page all-dirty.
2887  *
2888  * Also make sure the related object and vnode reflect the fact that the
2889  * object may now contain a dirty page.
2890  *
2891  * Page must be busied?
2892  * No other requirements.
2893  */
2894 void
2895 vm_page_dirty(vm_page_t m)
2896 {
2897 #ifdef INVARIANTS
2898         int pqtype = m->queue - m->pc;
2899 #endif
2900         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2901                 ("vm_page_dirty: page in free/cache queue!"));
2902 	if (m->dirty != VM_PAGE_BITS_ALL) {
2903 		m->dirty = VM_PAGE_BITS_ALL;
2904 		if (m->object)
2905 			vm_object_set_writeable_dirty(m->object);
2906 	}
2907 }
2908 
2909 /*
2910  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2911  * valid and dirty bits for the effected areas are cleared.
2912  *
2913  * Page must be busied?
2914  * Does not block.
2915  * No other requirements.
2916  */
2917 void
2918 vm_page_set_invalid(vm_page_t m, int base, int size)
2919 {
2920 	int bits;
2921 
2922 	bits = vm_page_bits(base, size);
2923 	m->valid &= ~bits;
2924 	m->dirty &= ~bits;
2925 	m->object->generation++;
2926 }
2927 
2928 /*
2929  * The kernel assumes that the invalid portions of a page contain
2930  * garbage, but such pages can be mapped into memory by user code.
2931  * When this occurs, we must zero out the non-valid portions of the
2932  * page so user code sees what it expects.
2933  *
2934  * Pages are most often semi-valid when the end of a file is mapped
2935  * into memory and the file's size is not page aligned.
2936  *
2937  * Page must be busied?
2938  * No other requirements.
2939  */
2940 void
2941 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2942 {
2943 	int b;
2944 	int i;
2945 
2946 	/*
2947 	 * Scan the valid bits looking for invalid sections that
2948 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2949 	 * valid bit may be set ) have already been zerod by
2950 	 * vm_page_set_validclean().
2951 	 */
2952 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2953 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2954 		    (m->valid & (1 << i))
2955 		) {
2956 			if (i > b) {
2957 				pmap_zero_page_area(
2958 				    VM_PAGE_TO_PHYS(m),
2959 				    b << DEV_BSHIFT,
2960 				    (i - b) << DEV_BSHIFT
2961 				);
2962 			}
2963 			b = i + 1;
2964 		}
2965 	}
2966 
2967 	/*
2968 	 * setvalid is TRUE when we can safely set the zero'd areas
2969 	 * as being valid.  We can do this if there are no cache consistency
2970 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2971 	 */
2972 	if (setvalid)
2973 		m->valid = VM_PAGE_BITS_ALL;
2974 }
2975 
2976 /*
2977  * Is a (partial) page valid?  Note that the case where size == 0
2978  * will return FALSE in the degenerate case where the page is entirely
2979  * invalid, and TRUE otherwise.
2980  *
2981  * Does not block.
2982  * No other requirements.
2983  */
2984 int
2985 vm_page_is_valid(vm_page_t m, int base, int size)
2986 {
2987 	int bits = vm_page_bits(base, size);
2988 
2989 	if (m->valid && ((m->valid & bits) == bits))
2990 		return 1;
2991 	else
2992 		return 0;
2993 }
2994 
2995 /*
2996  * update dirty bits from pmap/mmu.  May not block.
2997  *
2998  * Caller must hold the page busy
2999  */
3000 void
3001 vm_page_test_dirty(vm_page_t m)
3002 {
3003 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3004 		vm_page_dirty(m);
3005 	}
3006 }
3007 
3008 /*
3009  * Register an action, associating it with its vm_page
3010  */
3011 void
3012 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3013 {
3014 	struct vm_page_action_list *list;
3015 	int hv;
3016 
3017 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3018 	list = &action_list[hv];
3019 
3020 	lwkt_gettoken(&vm_token);
3021 	vm_page_flag_set(action->m, PG_ACTIONLIST);
3022 	action->event = event;
3023 	LIST_INSERT_HEAD(list, action, entry);
3024 	lwkt_reltoken(&vm_token);
3025 }
3026 
3027 /*
3028  * Unregister an action, disassociating it from its related vm_page
3029  */
3030 void
3031 vm_page_unregister_action(vm_page_action_t action)
3032 {
3033 	struct vm_page_action_list *list;
3034 	int hv;
3035 
3036 	lwkt_gettoken(&vm_token);
3037 	if (action->event != VMEVENT_NONE) {
3038 		action->event = VMEVENT_NONE;
3039 		LIST_REMOVE(action, entry);
3040 
3041 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3042 		list = &action_list[hv];
3043 		if (LIST_EMPTY(list))
3044 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3045 	}
3046 	lwkt_reltoken(&vm_token);
3047 }
3048 
3049 /*
3050  * Issue an event on a VM page.  Corresponding action structures are
3051  * removed from the page's list and called.
3052  *
3053  * If the vm_page has no more pending action events we clear its
3054  * PG_ACTIONLIST flag.
3055  */
3056 void
3057 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3058 {
3059 	struct vm_page_action_list *list;
3060 	struct vm_page_action *scan;
3061 	struct vm_page_action *next;
3062 	int hv;
3063 	int all;
3064 
3065 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3066 	list = &action_list[hv];
3067 	all = 1;
3068 
3069 	lwkt_gettoken(&vm_token);
3070 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3071 		if (scan->m == m) {
3072 			if (scan->event == event) {
3073 				scan->event = VMEVENT_NONE;
3074 				LIST_REMOVE(scan, entry);
3075 				scan->func(m, scan);
3076 				/* XXX */
3077 			} else {
3078 				all = 0;
3079 			}
3080 		}
3081 	}
3082 	if (all)
3083 		vm_page_flag_clear(m, PG_ACTIONLIST);
3084 	lwkt_reltoken(&vm_token);
3085 }
3086 
3087 #include "opt_ddb.h"
3088 #ifdef DDB
3089 #include <sys/kernel.h>
3090 
3091 #include <ddb/ddb.h>
3092 
3093 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3094 {
3095 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3096 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3097 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3098 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3099 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3100 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3101 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3102 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3103 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3104 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3105 }
3106 
3107 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3108 {
3109 	int i;
3110 	db_printf("PQ_FREE:");
3111 	for(i=0;i<PQ_L2_SIZE;i++) {
3112 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3113 	}
3114 	db_printf("\n");
3115 
3116 	db_printf("PQ_CACHE:");
3117 	for(i=0;i<PQ_L2_SIZE;i++) {
3118 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3119 	}
3120 	db_printf("\n");
3121 
3122 	db_printf("PQ_ACTIVE:");
3123 	for(i=0;i<PQ_L2_SIZE;i++) {
3124 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3125 	}
3126 	db_printf("\n");
3127 
3128 	db_printf("PQ_INACTIVE:");
3129 	for(i=0;i<PQ_L2_SIZE;i++) {
3130 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3131 	}
3132 	db_printf("\n");
3133 }
3134 #endif /* DDB */
3135