xref: /dragonfly/sys/vm/vm_page.c (revision 6d39eb19)
1 /*
2  * Copyright (c) 2003-2019 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1991 Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 /*
67  * Resident memory management module.  The module manipulates 'VM pages'.
68  * A VM page is the core building block for memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
99 
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
102 
103 struct vm_page_hash_elm {
104 	vm_page_t	m;
105 	int		ticks;
106 	int		unused01;
107 };
108 
109 #define VM_PAGE_HASH_SET	4		/* power of 2, set-assoc */
110 #define VM_PAGE_HASH_MAX	(1024 * 1024)	/* power of 2, max size */
111 
112 /*
113  * SET - Minimum required set associative size, must be a power of 2.  We
114  *	 want this to match or exceed the set-associativeness of the cpu,
115  *	 up to a reasonable limit (we will use 16).
116  */
117 __read_mostly static int set_assoc_mask = 16 - 1;
118 
119 static void vm_page_queue_init(void);
120 static void vm_page_free_wakeup(void);
121 static vm_page_t vm_page_select_cache(u_short pg_color);
122 static vm_page_t _vm_page_list_find2(int basequeue, int index, int *lastp);
123 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
124 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
125 
126 /*
127  * Array of tailq lists
128  */
129 struct vpgqueues vm_page_queues[PQ_COUNT];
130 
131 static volatile int vm_pages_waiting;
132 static struct alist vm_contig_alist;
133 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
134 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
135 
136 __read_mostly static int vm_page_hash_vnode_only;
137 __read_mostly static int vm_page_hash_size;
138 __read_mostly static struct vm_page_hash_elm *vm_page_hash;
139 
140 static u_long vm_dma_reserved = 0;
141 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
142 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
143 	    "Memory reserved for DMA");
144 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
145 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
146 
147 SYSCTL_INT(_vm, OID_AUTO, page_hash_vnode_only, CTLFLAG_RW,
148 	    &vm_page_hash_vnode_only, 0, "Only hash vnode pages");
149 #if 0
150 static int vm_page_hash_debug;
151 SYSCTL_INT(_vm, OID_AUTO, page_hash_debug, CTLFLAG_RW,
152 	    &vm_page_hash_debug, 0, "Only hash vnode pages");
153 #endif
154 
155 static int vm_contig_verbose = 0;
156 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
157 
158 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
159 	     vm_pindex_t, pindex);
160 
161 static void
162 vm_page_queue_init(void)
163 {
164 	int i;
165 
166 	for (i = 0; i < PQ_L2_SIZE; i++)
167 		vm_page_queues[PQ_FREE+i].cnt_offset =
168 			offsetof(struct vmstats, v_free_count);
169 	for (i = 0; i < PQ_L2_SIZE; i++)
170 		vm_page_queues[PQ_CACHE+i].cnt_offset =
171 			offsetof(struct vmstats, v_cache_count);
172 	for (i = 0; i < PQ_L2_SIZE; i++)
173 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
174 			offsetof(struct vmstats, v_inactive_count);
175 	for (i = 0; i < PQ_L2_SIZE; i++)
176 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
177 			offsetof(struct vmstats, v_active_count);
178 	for (i = 0; i < PQ_L2_SIZE; i++)
179 		vm_page_queues[PQ_HOLD+i].cnt_offset =
180 			offsetof(struct vmstats, v_active_count);
181 	/* PQ_NONE has no queue */
182 
183 	for (i = 0; i < PQ_COUNT; i++) {
184 		vm_page_queues[i].lastq = -1;
185 		TAILQ_INIT(&vm_page_queues[i].pl);
186 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
187 	}
188 }
189 
190 /*
191  * note: place in initialized data section?  Is this necessary?
192  */
193 vm_pindex_t first_page = 0;
194 vm_pindex_t vm_page_array_size = 0;
195 vm_page_t vm_page_array = NULL;
196 vm_paddr_t vm_low_phys_reserved;
197 
198 /*
199  * (low level boot)
200  *
201  * Sets the page size, perhaps based upon the memory size.
202  * Must be called before any use of page-size dependent functions.
203  */
204 void
205 vm_set_page_size(void)
206 {
207 	if (vmstats.v_page_size == 0)
208 		vmstats.v_page_size = PAGE_SIZE;
209 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
210 		panic("vm_set_page_size: page size not a power of two");
211 }
212 
213 /*
214  * (low level boot)
215  *
216  * Add a new page to the freelist for use by the system.  New pages
217  * are added to both the head and tail of the associated free page
218  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
219  * requests pull 'recent' adds (higher physical addresses) first.
220  *
221  * Beware that the page zeroing daemon will also be running soon after
222  * boot, moving pages from the head to the tail of the PQ_FREE queues.
223  *
224  * Must be called in a critical section.
225  */
226 static void
227 vm_add_new_page(vm_paddr_t pa, int *badcountp)
228 {
229 	struct vpgqueues *vpq;
230 	vm_page_t m;
231 
232 	m = PHYS_TO_VM_PAGE(pa);
233 
234 	/*
235 	 * Make sure it isn't a duplicate (due to BIOS page range overlaps,
236 	 * which we consider bugs... but don't crash).  Note that m->phys_addr
237 	 * is pre-initialized, so use m->queue as a check.
238 	 */
239 	if (m->queue) {
240 		if (*badcountp < 10) {
241 			kprintf("vm_add_new_page: duplicate pa %016jx\n",
242 				(intmax_t)pa);
243 			++*badcountp;
244 		} else if (*badcountp == 10) {
245 			kprintf("vm_add_new_page: duplicate pa (many more)\n");
246 			++*badcountp;
247 		}
248 		return;
249 	}
250 
251 	m->phys_addr = pa;
252 	m->flags = 0;
253 	m->pat_mode = PAT_WRITE_BACK;
254 	m->pc = (pa >> PAGE_SHIFT);
255 
256 	/*
257 	 * Twist for cpu localization in addition to page coloring, so
258 	 * different cpus selecting by m->queue get different page colors.
259 	 */
260 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
261 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
262 	m->pc &= PQ_L2_MASK;
263 
264 	/*
265 	 * Reserve a certain number of contiguous low memory pages for
266 	 * contigmalloc() to use.
267 	 *
268 	 * Even though these pages represent real ram and can be
269 	 * reverse-mapped, we set PG_FICTITIOUS and PG_UNQUEUED
270 	 * because their use is special-cased.
271 	 *
272 	 * WARNING! Once PG_FICTITIOUS is set, vm_page_wire*()
273 	 *	    and vm_page_unwire*() calls have no effect.
274 	 */
275 	if (pa < vm_low_phys_reserved) {
276 		atomic_add_long(&vmstats.v_page_count, 1);
277 		atomic_add_long(&vmstats.v_dma_pages, 1);
278 		m->flags |= PG_FICTITIOUS | PG_UNQUEUED;
279 		m->queue = PQ_NONE;
280 		m->wire_count = 1;
281 		atomic_add_long(&vmstats.v_wire_count, 1);
282 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
283 		return;
284 	}
285 
286 	/*
287 	 * General page
288 	 */
289 	m->queue = m->pc + PQ_FREE;
290 	KKASSERT(m->dirty == 0);
291 
292 	atomic_add_long(&vmstats.v_page_count, 1);
293 	atomic_add_long(&vmstats.v_free_count, 1);
294 	vpq = &vm_page_queues[m->queue];
295 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
296 	++vpq->lcnt;
297 }
298 
299 /*
300  * (low level boot)
301  *
302  * Initializes the resident memory module.
303  *
304  * Preallocates memory for critical VM structures and arrays prior to
305  * kernel_map becoming available.
306  *
307  * Memory is allocated from (virtual2_start, virtual2_end) if available,
308  * otherwise memory is allocated from (virtual_start, virtual_end).
309  *
310  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
311  * large enough to hold vm_page_array & other structures for machines with
312  * large amounts of ram, so we want to use virtual2* when available.
313  */
314 void
315 vm_page_startup(void)
316 {
317 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
318 	vm_offset_t mapped;
319 	vm_pindex_t npages;
320 	vm_paddr_t page_range;
321 	vm_paddr_t new_end;
322 	int i;
323 	vm_paddr_t pa;
324 	vm_paddr_t last_pa;
325 	vm_paddr_t end;
326 	vm_paddr_t biggestone, biggestsize;
327 	vm_paddr_t total;
328 	vm_page_t m;
329 	int badcount;
330 
331 	total = 0;
332 	badcount = 0;
333 	biggestsize = 0;
334 	biggestone = 0;
335 	vaddr = round_page(vaddr);
336 
337 	/*
338 	 * Make sure ranges are page-aligned.
339 	 */
340 	for (i = 0; phys_avail[i].phys_end; ++i) {
341 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
342 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
343 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
344 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
345 	}
346 
347 	/*
348 	 * Locate largest block
349 	 */
350 	for (i = 0; phys_avail[i].phys_end; ++i) {
351 		vm_paddr_t size = phys_avail[i].phys_end -
352 				  phys_avail[i].phys_beg;
353 
354 		if (size > biggestsize) {
355 			biggestone = i;
356 			biggestsize = size;
357 		}
358 		total += size;
359 	}
360 	--i;	/* adjust to last entry for use down below */
361 
362 	end = phys_avail[biggestone].phys_end;
363 	end = trunc_page(end);
364 
365 	/*
366 	 * Initialize the queue headers for the free queue, the active queue
367 	 * and the inactive queue.
368 	 */
369 	vm_page_queue_init();
370 
371 #if !defined(_KERNEL_VIRTUAL)
372 	/*
373 	 * VKERNELs don't support minidumps and as such don't need
374 	 * vm_page_dump
375 	 *
376 	 * Allocate a bitmap to indicate that a random physical page
377 	 * needs to be included in a minidump.
378 	 *
379 	 * The amd64 port needs this to indicate which direct map pages
380 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
381 	 *
382 	 * However, x86 still needs this workspace internally within the
383 	 * minidump code.  In theory, they are not needed on x86, but are
384 	 * included should the sf_buf code decide to use them.
385 	 */
386 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
387 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
388 	end -= vm_page_dump_size;
389 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
390 					VM_PROT_READ | VM_PROT_WRITE);
391 	bzero((void *)vm_page_dump, vm_page_dump_size);
392 #endif
393 	/*
394 	 * Compute the number of pages of memory that will be available for
395 	 * use (taking into account the overhead of a page structure per
396 	 * page).
397 	 */
398 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
399 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
400 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
401 
402 #ifndef _KERNEL_VIRTUAL
403 	/*
404 	 * (only applies to real kernels)
405 	 *
406 	 * Reserve a large amount of low memory for potential 32-bit DMA
407 	 * space allocations.  Once device initialization is complete we
408 	 * release most of it, but keep (vm_dma_reserved) memory reserved
409 	 * for later use.  Typically for X / graphics.  Through trial and
410 	 * error we find that GPUs usually requires ~60-100MB or so.
411 	 *
412 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
413 	 */
414 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
415 	if (vm_low_phys_reserved > total / 4)
416 		vm_low_phys_reserved = total / 4;
417 	if (vm_dma_reserved == 0) {
418 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
419 		if (vm_dma_reserved > total / 16)
420 			vm_dma_reserved = total / 16;
421 	}
422 #endif
423 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
424 		   ALIST_RECORDS_65536);
425 
426 	/*
427 	 * Initialize the mem entry structures now, and put them in the free
428 	 * queue.
429 	 */
430 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
431 		kprintf("initializing vm_page_array ");
432 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
433 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
434 	vm_page_array = (vm_page_t)mapped;
435 
436 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
437 	/*
438 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
439 	 * we have to manually add these pages to the minidump tracking so
440 	 * that they can be dumped, including the vm_page_array.
441 	 */
442 	for (pa = new_end;
443 	     pa < phys_avail[biggestone].phys_end;
444 	     pa += PAGE_SIZE) {
445 		dump_add_page(pa);
446 	}
447 #endif
448 
449 	/*
450 	 * Clear all of the page structures, run basic initialization so
451 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
452 	 * map.
453 	 */
454 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
455 	vm_page_array_size = page_range;
456 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
457 		kprintf("size = 0x%zx\n", vm_page_array_size);
458 
459 	m = &vm_page_array[0];
460 	pa = ptoa(first_page);
461 	for (i = 0; i < page_range; ++i) {
462 		spin_init(&m->spin, "vm_page");
463 		m->phys_addr = pa;
464 		pa += PAGE_SIZE;
465 		++m;
466 	}
467 
468 	/*
469 	 * Construct the free queue(s) in ascending order (by physical
470 	 * address) so that the first 16MB of physical memory is allocated
471 	 * last rather than first.  On large-memory machines, this avoids
472 	 * the exhaustion of low physical memory before isa_dma_init has run.
473 	 */
474 	vmstats.v_page_count = 0;
475 	vmstats.v_free_count = 0;
476 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
477 		pa = phys_avail[i].phys_beg;
478 		if (i == biggestone)
479 			last_pa = new_end;
480 		else
481 			last_pa = phys_avail[i].phys_end;
482 		while (pa < last_pa && npages-- > 0) {
483 			vm_add_new_page(pa, &badcount);
484 			pa += PAGE_SIZE;
485 		}
486 	}
487 	if (virtual2_start)
488 		virtual2_start = vaddr;
489 	else
490 		virtual_start = vaddr;
491 	mycpu->gd_vmstats = vmstats;
492 }
493 
494 /*
495  * (called from early boot only)
496  *
497  * Reorganize VM pages based on numa data.  May be called as many times as
498  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
499  * to allow vm_page_alloc() to choose pages based on socket affinity.
500  *
501  * NOTE: This function is only called while we are still in UP mode, so
502  *	 we only need a critical section to protect the queues (which
503  *	 saves a lot of time, there are likely a ton of pages).
504  */
505 void
506 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
507 {
508 	vm_paddr_t scan_beg;
509 	vm_paddr_t scan_end;
510 	vm_paddr_t ran_end;
511 	struct vpgqueues *vpq;
512 	vm_page_t m;
513 	vm_page_t mend;
514 	int socket_mod;
515 	int socket_value;
516 	int i;
517 
518 	/*
519 	 * Check if no physical information, or there was only one socket
520 	 * (so don't waste time doing nothing!).
521 	 */
522 	if (cpu_topology_phys_ids <= 1 ||
523 	    cpu_topology_core_ids == 0) {
524 		return;
525 	}
526 
527 	/*
528 	 * Setup for our iteration.  Note that ACPI may iterate CPU
529 	 * sockets starting at 0 or 1 or some other number.  The
530 	 * cpu_topology code mod's it against the socket count.
531 	 */
532 	ran_end = ran_beg + bytes;
533 
534 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
535 	socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
536 	mend = &vm_page_array[vm_page_array_size];
537 
538 	crit_enter();
539 
540 	/*
541 	 * Adjust cpu_topology's phys_mem parameter
542 	 */
543 	if (root_cpu_node)
544 		vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
545 
546 	/*
547 	 * Adjust vm_page->pc and requeue all affected pages.  The
548 	 * allocator will then be able to localize memory allocations
549 	 * to some degree.
550 	 */
551 	for (i = 0; phys_avail[i].phys_end; ++i) {
552 		scan_beg = phys_avail[i].phys_beg;
553 		scan_end = phys_avail[i].phys_end;
554 		if (scan_end <= ran_beg)
555 			continue;
556 		if (scan_beg >= ran_end)
557 			continue;
558 		if (scan_beg < ran_beg)
559 			scan_beg = ran_beg;
560 		if (scan_end > ran_end)
561 			scan_end = ran_end;
562 		if (atop(scan_end) > first_page + vm_page_array_size)
563 			scan_end = ptoa(first_page + vm_page_array_size);
564 
565 		m = PHYS_TO_VM_PAGE(scan_beg);
566 		while (scan_beg < scan_end) {
567 			KKASSERT(m < mend);
568 			if (m->queue != PQ_NONE) {
569 				vpq = &vm_page_queues[m->queue];
570 				TAILQ_REMOVE(&vpq->pl, m, pageq);
571 				--vpq->lcnt;
572 				/* queue doesn't change, no need to adj cnt */
573 				m->queue -= m->pc;
574 				m->pc %= socket_mod;
575 				m->pc += socket_value;
576 				m->pc &= PQ_L2_MASK;
577 				m->queue += m->pc;
578 				vpq = &vm_page_queues[m->queue];
579 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
580 				++vpq->lcnt;
581 				/* queue doesn't change, no need to adj cnt */
582 			} else {
583 				m->pc %= socket_mod;
584 				m->pc += socket_value;
585 				m->pc &= PQ_L2_MASK;
586 			}
587 			scan_beg += PAGE_SIZE;
588 			++m;
589 		}
590 	}
591 
592 	crit_exit();
593 }
594 
595 /*
596  * (called from early boot only)
597  *
598  * Don't allow the NUMA organization to leave vm_page_queues[] nodes
599  * completely empty for a logical cpu.  Doing so would force allocations
600  * on that cpu to always borrow from a nearby cpu, create unnecessary
601  * contention, and cause vm_page_alloc() to iterate more queues and run more
602  * slowly.
603  *
604  * This situation can occur when memory sticks are not entirely populated,
605  * populated at different densities, or in naturally assymetric systems
606  * such as the 2990WX.  There could very well be many vm_page_queues[]
607  * entries with *NO* pages assigned to them.
608  *
609  * Fixing this up ensures that each logical CPU has roughly the same
610  * sized memory pool, and more importantly ensures that logical CPUs
611  * do not wind up with an empty memory pool.
612  *
613  * At them moment we just iterate the other queues and borrow pages,
614  * moving them into the queues for cpus with severe deficits even though
615  * the memory might not be local to those cpus.  I am not doing this in
616  * a 'smart' way, its effectively UMA style (sorta, since its page-by-page
617  * whereas real UMA typically exchanges address bits 8-10 with high address
618  * bits).  But it works extremely well and gives us fairly good deterministic
619  * results on the cpu cores associated with these secondary nodes.
620  */
621 void
622 vm_numa_organize_finalize(void)
623 {
624 	struct vpgqueues *vpq;
625 	vm_page_t m;
626 	long lcnt_lo;
627 	long lcnt_hi;
628 	int iter;
629 	int i;
630 	int scale_lim;
631 
632 	crit_enter();
633 
634 	/*
635 	 * Machines might not use an exact power of 2 for phys_ids,
636 	 * core_ids, ht_ids, etc.  This can slightly reduce the actual
637 	 * range of indices in vm_page_queues[] that are nominally used.
638 	 */
639 	if (cpu_topology_ht_ids) {
640 		scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids;
641 		scale_lim = scale_lim / cpu_topology_core_ids;
642 		scale_lim = scale_lim / cpu_topology_ht_ids;
643 		scale_lim = scale_lim * cpu_topology_ht_ids;
644 		scale_lim = scale_lim * cpu_topology_core_ids;
645 		scale_lim = scale_lim * cpu_topology_phys_ids;
646 	} else {
647 		scale_lim = PQ_L2_SIZE;
648 	}
649 
650 	/*
651 	 * Calculate an average, set hysteresis for balancing from
652 	 * 10% below the average to the average.
653 	 */
654 	lcnt_hi = 0;
655 	for (i = 0; i < scale_lim; ++i) {
656 		lcnt_hi += vm_page_queues[i].lcnt;
657 	}
658 	lcnt_hi /= scale_lim;
659 	lcnt_lo = lcnt_hi - lcnt_hi / 10;
660 
661 	kprintf("vm_page: avg %ld pages per queue, %d queues\n",
662 		lcnt_hi, scale_lim);
663 
664 	iter = 0;
665 	for (i = 0; i < scale_lim; ++i) {
666 		vpq = &vm_page_queues[PQ_FREE + i];
667 		while (vpq->lcnt < lcnt_lo) {
668 			struct vpgqueues *vptmp;
669 
670 			iter = (iter + 1) & PQ_L2_MASK;
671 			vptmp = &vm_page_queues[PQ_FREE + iter];
672 			if (vptmp->lcnt < lcnt_hi)
673 				continue;
674 			m = TAILQ_FIRST(&vptmp->pl);
675 			KKASSERT(m->queue == PQ_FREE + iter);
676 			TAILQ_REMOVE(&vptmp->pl, m, pageq);
677 			--vptmp->lcnt;
678 			/* queue doesn't change, no need to adj cnt */
679 			m->queue -= m->pc;
680 			m->pc = i;
681 			m->queue += m->pc;
682 			TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
683 			++vpq->lcnt;
684 		}
685 	}
686 	crit_exit();
687 }
688 
689 static
690 void
691 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
692 {
693 	int cpuid;
694 	int i;
695 
696 	switch(cpup->type) {
697 	case PACKAGE_LEVEL:
698 		cpup->phys_mem += bytes;
699 		break;
700 	case CHIP_LEVEL:
701 		/*
702 		 * All members should have the same chipid, so we only need
703 		 * to pull out one member.
704 		 */
705 		if (CPUMASK_TESTNZERO(cpup->members)) {
706 			cpuid = BSFCPUMASK(cpup->members);
707 			if (physid ==
708 			    get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
709 				cpup->phys_mem += bytes;
710 			}
711 		}
712 		break;
713 	case CORE_LEVEL:
714 	case THREAD_LEVEL:
715 		/*
716 		 * Just inherit from the parent node
717 		 */
718 		cpup->phys_mem = cpup->parent_node->phys_mem;
719 		break;
720 	}
721 	for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
722 		vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
723 }
724 
725 /*
726  * We tended to reserve a ton of memory for contigmalloc().  Now that most
727  * drivers have initialized we want to return most the remaining free
728  * reserve back to the VM page queues so they can be used for normal
729  * allocations.
730  *
731  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
732  */
733 static void
734 vm_page_startup_finish(void *dummy __unused)
735 {
736 	alist_blk_t blk;
737 	alist_blk_t rblk;
738 	alist_blk_t count;
739 	alist_blk_t xcount;
740 	alist_blk_t bfree;
741 	vm_page_t m;
742 	struct vm_page_hash_elm *mp;
743 	int mask;
744 
745 	/*
746 	 * Set the set_assoc_mask based on the fitted number of CPUs.
747 	 * This is a mask, so we subject 1.
748 	 *
749 	 * w/PQ_L2_SIZE = 1024, Don't let the associativity drop below 8.
750 	 * So if we have 256 CPUs, two hyper-threads will wind up sharing.
751 	 *
752 	 * The maximum is PQ_L2_SIZE.  However, we limit the starting
753 	 * maximum to 16 (mask = 15) in order to improve the cache locality
754 	 * of related kernel data structures.
755 	 */
756 	mask = PQ_L2_SIZE / ncpus_fit - 1;
757 	if (mask < 7)		/* minimum is 8-way w/256 CPU threads */
758 		mask = 7;
759 	if (mask < 15)
760 		mask = 15;
761 	cpu_ccfence();
762 	set_assoc_mask = mask;
763 
764 	/*
765 	 * Return part of the initial reserve back to the system
766 	 */
767 	spin_lock(&vm_contig_spin);
768 	for (;;) {
769 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
770 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
771 			break;
772 		if (count == 0)
773 			break;
774 
775 		/*
776 		 * Figure out how much of the initial reserve we have to
777 		 * free in order to reach our target.
778 		 */
779 		bfree -= vm_dma_reserved / PAGE_SIZE;
780 		if (count > bfree) {
781 			blk += count - bfree;
782 			count = bfree;
783 		}
784 
785 		/*
786 		 * Calculate the nearest power of 2 <= count.
787 		 */
788 		for (xcount = 1; xcount <= count; xcount <<= 1)
789 			;
790 		xcount >>= 1;
791 		blk += count - xcount;
792 		count = xcount;
793 
794 		/*
795 		 * Allocate the pages from the alist, then free them to
796 		 * the normal VM page queues.
797 		 *
798 		 * Pages allocated from the alist are wired.  We have to
799 		 * busy, unwire, and free them.  We must also adjust
800 		 * vm_low_phys_reserved before freeing any pages to prevent
801 		 * confusion.
802 		 */
803 		rblk = alist_alloc(&vm_contig_alist, blk, count);
804 		if (rblk != blk) {
805 			kprintf("vm_page_startup_finish: Unable to return "
806 				"dma space @0x%08x/%d -> 0x%08x\n",
807 				blk, count, rblk);
808 			break;
809 		}
810 		atomic_add_long(&vmstats.v_dma_pages, -(long)count);
811 		spin_unlock(&vm_contig_spin);
812 
813 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
814 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
815 		while (count) {
816 			vm_page_flag_clear(m, PG_FICTITIOUS | PG_UNQUEUED);
817 			vm_page_busy_wait(m, FALSE, "cpgfr");
818 			vm_page_unwire(m, 0);
819 			vm_page_free(m);
820 			--count;
821 			++m;
822 		}
823 		spin_lock(&vm_contig_spin);
824 	}
825 	spin_unlock(&vm_contig_spin);
826 
827 	/*
828 	 * Print out how much DMA space drivers have already allocated and
829 	 * how much is left over.
830 	 */
831 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
832 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
833 		(PAGE_SIZE / 1024),
834 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
835 
836 	/*
837 	 * Power of 2
838 	 */
839 	vm_page_hash_size = 4096;
840 	while (vm_page_hash_size < (vm_page_array_size / 16))
841 		vm_page_hash_size <<= 1;
842 	if (vm_page_hash_size > VM_PAGE_HASH_MAX)
843 		vm_page_hash_size = VM_PAGE_HASH_MAX;
844 
845 	/*
846 	 * hash table for vm_page_lookup_quick()
847 	 */
848 	mp = (void *)kmem_alloc3(&kernel_map,
849 				 vm_page_hash_size * sizeof(*vm_page_hash),
850 				 VM_SUBSYS_VMPGHASH, KM_CPU(0));
851 	bzero(mp, vm_page_hash_size * sizeof(*mp));
852 	cpu_sfence();
853 	vm_page_hash = mp;
854 }
855 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
856 	vm_page_startup_finish, NULL);
857 
858 
859 /*
860  * Scan comparison function for Red-Black tree scans.  An inclusive
861  * (start,end) is expected.  Other fields are not used.
862  */
863 int
864 rb_vm_page_scancmp(struct vm_page *p, void *data)
865 {
866 	struct rb_vm_page_scan_info *info = data;
867 
868 	if (p->pindex < info->start_pindex)
869 		return(-1);
870 	if (p->pindex > info->end_pindex)
871 		return(1);
872 	return(0);
873 }
874 
875 int
876 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
877 {
878 	if (p1->pindex < p2->pindex)
879 		return(-1);
880 	if (p1->pindex > p2->pindex)
881 		return(1);
882 	return(0);
883 }
884 
885 void
886 vm_page_init(vm_page_t m)
887 {
888 	/* do nothing for now.  Called from pmap_page_init() */
889 }
890 
891 /*
892  * Each page queue has its own spin lock, which is fairly optimal for
893  * allocating and freeing pages at least.
894  *
895  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
896  * queue spinlock via this function.  Also note that m->queue cannot change
897  * unless both the page and queue are locked.
898  */
899 static __inline
900 void
901 _vm_page_queue_spin_lock(vm_page_t m)
902 {
903 	u_short queue;
904 
905 	queue = m->queue;
906 	if (queue != PQ_NONE) {
907 		spin_lock(&vm_page_queues[queue].spin);
908 		KKASSERT(queue == m->queue);
909 	}
910 }
911 
912 static __inline
913 void
914 _vm_page_queue_spin_unlock(vm_page_t m)
915 {
916 	u_short queue;
917 
918 	queue = m->queue;
919 	cpu_ccfence();
920 	if (queue != PQ_NONE)
921 		spin_unlock(&vm_page_queues[queue].spin);
922 }
923 
924 static __inline
925 void
926 _vm_page_queues_spin_lock(u_short queue)
927 {
928 	cpu_ccfence();
929 	if (queue != PQ_NONE)
930 		spin_lock(&vm_page_queues[queue].spin);
931 }
932 
933 
934 static __inline
935 void
936 _vm_page_queues_spin_unlock(u_short queue)
937 {
938 	cpu_ccfence();
939 	if (queue != PQ_NONE)
940 		spin_unlock(&vm_page_queues[queue].spin);
941 }
942 
943 void
944 vm_page_queue_spin_lock(vm_page_t m)
945 {
946 	_vm_page_queue_spin_lock(m);
947 }
948 
949 void
950 vm_page_queues_spin_lock(u_short queue)
951 {
952 	_vm_page_queues_spin_lock(queue);
953 }
954 
955 void
956 vm_page_queue_spin_unlock(vm_page_t m)
957 {
958 	_vm_page_queue_spin_unlock(m);
959 }
960 
961 void
962 vm_page_queues_spin_unlock(u_short queue)
963 {
964 	_vm_page_queues_spin_unlock(queue);
965 }
966 
967 /*
968  * This locks the specified vm_page and its queue in the proper order
969  * (page first, then queue).  The queue may change so the caller must
970  * recheck on return.
971  */
972 static __inline
973 void
974 _vm_page_and_queue_spin_lock(vm_page_t m)
975 {
976 	vm_page_spin_lock(m);
977 	_vm_page_queue_spin_lock(m);
978 }
979 
980 static __inline
981 void
982 _vm_page_and_queue_spin_unlock(vm_page_t m)
983 {
984 	_vm_page_queues_spin_unlock(m->queue);
985 	vm_page_spin_unlock(m);
986 }
987 
988 void
989 vm_page_and_queue_spin_unlock(vm_page_t m)
990 {
991 	_vm_page_and_queue_spin_unlock(m);
992 }
993 
994 void
995 vm_page_and_queue_spin_lock(vm_page_t m)
996 {
997 	_vm_page_and_queue_spin_lock(m);
998 }
999 
1000 /*
1001  * Helper function removes vm_page from its current queue.
1002  * Returns the base queue the page used to be on.
1003  *
1004  * The vm_page and the queue must be spinlocked.
1005  * This function will unlock the queue but leave the page spinlocked.
1006  */
1007 static __inline u_short
1008 _vm_page_rem_queue_spinlocked(vm_page_t m)
1009 {
1010 	struct vpgqueues *pq;
1011 	u_short queue;
1012 	u_short oqueue;
1013 	long *cnt_adj;
1014 	long *cnt_gd;
1015 
1016 	queue = m->queue;
1017 	if (queue != PQ_NONE) {
1018 		pq = &vm_page_queues[queue];
1019 		TAILQ_REMOVE(&pq->pl, m, pageq);
1020 
1021 		/*
1022 		 * Primarily adjust our pcpu stats for rollup, which is
1023 		 * (mycpu->gd_vmstats_adj + offset).  This is normally
1024 		 * synchronized on every hardclock().
1025 		 *
1026 		 * However, in order for the nominal low-memory algorithms
1027 		 * to work properly if the unsynchronized adjustment gets
1028 		 * too negative and might trigger the pageout daemon, we
1029 		 * immediately synchronize with the global structure.
1030 		 *
1031 		 * The idea here is to reduce unnecessary SMP cache mastership
1032 		 * changes in the global vmstats, which can be particularly
1033 		 * bad in multi-socket systems.
1034 		 *
1035 		 * WARNING! In systems with low amounts of memory the
1036 		 *	    vm_paging_needed(-1024 * ncpus) test could
1037 		 *	    wind up testing a value above the paging target,
1038 		 *	    meaning it would almost always return TRUE.  In
1039 		 *	    that situation we synchronize every time the
1040 		 *	    cumulative adjustment falls below -1024.
1041 		 */
1042 		cnt_adj = (long *)((char *)&mycpu->gd_vmstats_adj +
1043 				   pq->cnt_offset);
1044 		cnt_gd = (long *)((char *)&mycpu->gd_vmstats +
1045 				   pq->cnt_offset);
1046 		atomic_add_long(cnt_adj, -1);
1047 		atomic_add_long(cnt_gd, -1);
1048 
1049 		if (*cnt_adj < -1024 && vm_paging_needed(-1024 * ncpus)) {
1050 			u_long copy = atomic_swap_long(cnt_adj, 0);
1051 			cnt_adj = (long *)((char *)&vmstats + pq->cnt_offset);
1052 			atomic_add_long(cnt_adj, copy);
1053 		}
1054 		pq->lcnt--;
1055 		m->queue = PQ_NONE;
1056 		oqueue = queue;
1057 		queue -= m->pc;
1058 		vm_page_queues_spin_unlock(oqueue);	/* intended */
1059 	}
1060 	return queue;
1061 }
1062 
1063 /*
1064  * Helper function places the vm_page on the specified queue.  Generally
1065  * speaking only PQ_FREE pages are placed at the head, to allow them to
1066  * be allocated sooner rather than later on the assumption that they
1067  * are cache-hot.
1068  *
1069  * The vm_page must be spinlocked.
1070  * The vm_page must NOT be FICTITIOUS (that would be a disaster)
1071  * This function will return with both the page and the queue locked.
1072  */
1073 static __inline void
1074 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
1075 {
1076 	struct vpgqueues *pq;
1077 	u_long *cnt_adj;
1078 	u_long *cnt_gd;
1079 
1080 	KKASSERT(m->queue == PQ_NONE &&
1081 		 (m->flags & (PG_FICTITIOUS | PG_UNQUEUED)) == 0);
1082 
1083 	if (queue != PQ_NONE) {
1084 		vm_page_queues_spin_lock(queue);
1085 		pq = &vm_page_queues[queue];
1086 		++pq->lcnt;
1087 
1088 		/*
1089 		 * Adjust our pcpu stats.  If a system entity really needs
1090 		 * to incorporate the count it will call vmstats_rollup()
1091 		 * to roll it all up into the global vmstats strufture.
1092 		 */
1093 		cnt_adj = (long *)((char *)&mycpu->gd_vmstats_adj +
1094 				   pq->cnt_offset);
1095 		cnt_gd = (long *)((char *)&mycpu->gd_vmstats +
1096 				   pq->cnt_offset);
1097 		atomic_add_long(cnt_adj, 1);
1098 		atomic_add_long(cnt_gd, 1);
1099 
1100 		/*
1101 		 * PQ_FREE is always handled LIFO style to try to provide
1102 		 * cache-hot pages to programs.
1103 		 */
1104 		m->queue = queue;
1105 		if (queue - m->pc == PQ_FREE) {
1106 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1107 		} else if (athead) {
1108 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1109 		} else {
1110 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1111 		}
1112 		/* leave the queue spinlocked */
1113 	}
1114 }
1115 
1116 /*
1117  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
1118  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
1119  *
1120  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
1121  * call will be made before returning.
1122  *
1123  * This function does NOT busy the page and on return the page is not
1124  * guaranteed to be available.
1125  */
1126 void
1127 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
1128 {
1129 	u_int32_t busy_count;
1130 
1131 	for (;;) {
1132 		busy_count = m->busy_count;
1133 		cpu_ccfence();
1134 
1135 		if ((busy_count & PBUSY_LOCKED) == 0 &&
1136 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
1137 			break;
1138 		}
1139 		tsleep_interlock(m, 0);
1140 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1141 				      busy_count | PBUSY_WANTED)) {
1142 			atomic_set_int(&m->flags, PG_REFERENCED);
1143 			tsleep(m, PINTERLOCKED, msg, 0);
1144 			break;
1145 		}
1146 	}
1147 }
1148 
1149 /*
1150  * This calculates and returns a page color given an optional VM object and
1151  * either a pindex or an iterator.  We attempt to return a cpu-localized
1152  * pg_color that is still roughly 16-way set-associative.  The CPU topology
1153  * is used if it was probed.
1154  *
1155  * The caller may use the returned value to index into e.g. PQ_FREE when
1156  * allocating a page in order to nominally obtain pages that are hopefully
1157  * already localized to the requesting cpu.  This function is not able to
1158  * provide any sort of guarantee of this, but does its best to improve
1159  * hardware cache management performance.
1160  *
1161  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
1162  */
1163 u_short
1164 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
1165 {
1166 	u_short pg_color;
1167 	int object_pg_color;
1168 
1169 	/*
1170 	 * WARNING! cpu_topology_core_ids might not be a power of two.
1171 	 *	    We also shouldn't make assumptions about
1172 	 *	    cpu_topology_phys_ids either.
1173 	 *
1174 	 * WARNING! ncpus might not be known at this time (during early
1175 	 *	    boot), and might be set to 1.
1176 	 *
1177 	 * General format: [phys_id][core_id][cpuid][set-associativity]
1178 	 * (but uses modulo, so not necessarily precise bit masks)
1179 	 */
1180 	object_pg_color = object ? object->pg_color : 0;
1181 
1182 	if (cpu_topology_ht_ids) {
1183 		int phys_id;
1184 		int core_id;
1185 		int ht_id;
1186 		int physcale;
1187 		int grpscale;
1188 		int cpuscale;
1189 
1190 		/*
1191 		 * Translate cpuid to socket, core, and hyperthread id.
1192 		 */
1193 		phys_id = get_cpu_phys_id(cpuid);
1194 		core_id = get_cpu_core_id(cpuid);
1195 		ht_id = get_cpu_ht_id(cpuid);
1196 
1197 		/*
1198 		 * Calculate pg_color for our array index.
1199 		 *
1200 		 * physcale - socket multiplier.
1201 		 * grpscale - core multiplier (cores per socket)
1202 		 * cpu*	    - cpus per core
1203 		 *
1204 		 * WARNING! In early boot, ncpus has not yet been
1205 		 *	    initialized and may be set to (1).
1206 		 *
1207 		 * WARNING! physcale must match the organization that
1208 		 *	    vm_numa_organize() creates to ensure that
1209 		 *	    we properly localize allocations to the
1210 		 *	    requested cpuid.
1211 		 */
1212 		physcale = PQ_L2_SIZE / cpu_topology_phys_ids;
1213 		grpscale = physcale / cpu_topology_core_ids;
1214 		cpuscale = grpscale / cpu_topology_ht_ids;
1215 
1216 		pg_color = phys_id * physcale;
1217 		pg_color += core_id * grpscale;
1218 		pg_color += ht_id * cpuscale;
1219 		pg_color += (pindex + object_pg_color) % cpuscale;
1220 
1221 #if 0
1222 		if (grpsize >= 8) {
1223 			pg_color += (pindex + object_pg_color) % grpsize;
1224 		} else {
1225 			if (grpsize <= 2) {
1226 				grpsize = 8;
1227 			} else {
1228 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
1229 				grpsize += grpsize;
1230 				if (grpsize < 8)
1231 					grpsize += grpsize;
1232 			}
1233 			pg_color += (pindex + object_pg_color) % grpsize;
1234 		}
1235 #endif
1236 	} else {
1237 		/*
1238 		 * Unknown topology, distribute things evenly.
1239 		 *
1240 		 * WARNING! In early boot, ncpus has not yet been
1241 		 *	    initialized and may be set to (1).
1242 		 */
1243 		int cpuscale;
1244 
1245 		cpuscale = PQ_L2_SIZE / ncpus;
1246 
1247 		pg_color = cpuid * cpuscale;
1248 		pg_color += (pindex + object_pg_color) % cpuscale;
1249 	}
1250 	return (pg_color & PQ_L2_MASK);
1251 }
1252 
1253 /*
1254  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
1255  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1256  */
1257 void
1258 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1259 				     int also_m_busy, const char *msg
1260 				     VM_PAGE_DEBUG_ARGS)
1261 {
1262 	u_int32_t busy_count;
1263 
1264 	for (;;) {
1265 		busy_count = m->busy_count;
1266 		cpu_ccfence();
1267 		if (busy_count & PBUSY_LOCKED) {
1268 			tsleep_interlock(m, 0);
1269 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1270 					  busy_count | PBUSY_WANTED)) {
1271 				atomic_set_int(&m->flags, PG_REFERENCED);
1272 				tsleep(m, PINTERLOCKED, msg, 0);
1273 			}
1274 		} else if (also_m_busy && busy_count) {
1275 			tsleep_interlock(m, 0);
1276 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1277 					  busy_count | PBUSY_WANTED)) {
1278 				atomic_set_int(&m->flags, PG_REFERENCED);
1279 				tsleep(m, PINTERLOCKED, msg, 0);
1280 			}
1281 		} else {
1282 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1283 					      busy_count | PBUSY_LOCKED)) {
1284 #ifdef VM_PAGE_DEBUG
1285 				m->busy_func = func;
1286 				m->busy_line = lineno;
1287 #endif
1288 				break;
1289 			}
1290 		}
1291 	}
1292 }
1293 
1294 /*
1295  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1296  * m->busy_count is also 0.
1297  *
1298  * Returns non-zero on failure.
1299  */
1300 int
1301 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1302 				    VM_PAGE_DEBUG_ARGS)
1303 {
1304 	u_int32_t busy_count;
1305 
1306 	for (;;) {
1307 		busy_count = m->busy_count;
1308 		cpu_ccfence();
1309 		if (busy_count & PBUSY_LOCKED)
1310 			return TRUE;
1311 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1312 			return TRUE;
1313 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1314 				      busy_count | PBUSY_LOCKED)) {
1315 #ifdef VM_PAGE_DEBUG
1316 				m->busy_func = func;
1317 				m->busy_line = lineno;
1318 #endif
1319 			return FALSE;
1320 		}
1321 	}
1322 }
1323 
1324 /*
1325  * Clear the BUSY flag and return non-zero to indicate to the caller
1326  * that a wakeup() should be performed.
1327  *
1328  * (inline version)
1329  */
1330 static __inline
1331 int
1332 _vm_page_wakeup(vm_page_t m)
1333 {
1334 	u_int32_t busy_count;
1335 
1336 	busy_count = m->busy_count;
1337 	cpu_ccfence();
1338 	for (;;) {
1339 		if (atomic_fcmpset_int(&m->busy_count, &busy_count,
1340 				      busy_count &
1341 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1342 			return((int)(busy_count & PBUSY_WANTED));
1343 		}
1344 	}
1345 	/* not reached */
1346 }
1347 
1348 /*
1349  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1350  * is typically the last call you make on a page before moving onto
1351  * other things.
1352  */
1353 void
1354 vm_page_wakeup(vm_page_t m)
1355 {
1356         KASSERT(m->busy_count & PBUSY_LOCKED,
1357 		("vm_page_wakeup: page not busy!!!"));
1358 	if (_vm_page_wakeup(m))
1359 		wakeup(m);
1360 }
1361 
1362 /*
1363  * Hold a page, preventing reuse.  This is typically only called on pages
1364  * in a known state (either held busy, special, or interlocked in some
1365  * manner).  Holding a page does not ensure that it remains valid, it only
1366  * prevents reuse.  The page must not already be on the FREE queue or in
1367  * any danger of being moved to the FREE queue concurrent with this call.
1368  *
1369  * Other parts of the system can still disassociate the page from its object
1370  * and attempt to free it, or perform read or write I/O on it and/or otherwise
1371  * manipulate the page, but if the page is held the VM system will leave the
1372  * page and its data intact and not cycle it through the FREE queue until
1373  * the last hold has been released.
1374  *
1375  * (see vm_page_wire() if you want to prevent the page from being
1376  *  disassociated from its object too).
1377  */
1378 void
1379 vm_page_hold(vm_page_t m)
1380 {
1381 	atomic_add_int(&m->hold_count, 1);
1382 	KKASSERT(m->queue - m->pc != PQ_FREE);
1383 }
1384 
1385 /*
1386  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1387  * it was freed while held and must be moved back to the FREE queue.
1388  *
1389  * To avoid racing against vm_page_free*() we must re-test conditions
1390  * after obtaining the spin-lock.  The initial test can also race a
1391  * vm_page_free*() that is in the middle of moving a page to PQ_HOLD,
1392  * leaving the page on PQ_HOLD with hold_count == 0.  Rather than
1393  * throw a spin-lock in the critical path, we rely on the pageout
1394  * daemon to clean-up these loose ends.
1395  *
1396  * More critically, the 'easy movement' between queues without busying
1397  * a vm_page is only allowed for PQ_FREE<->PQ_HOLD.
1398  */
1399 void
1400 vm_page_unhold(vm_page_t m)
1401 {
1402 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1403 		("vm_page_unhold: pg %p illegal hold_count (%d) or "
1404 		 "on FREE queue (%d)",
1405 		 m, m->hold_count, m->queue - m->pc));
1406 
1407 	if (atomic_fetchadd_int(&m->hold_count, -1) == 1 &&
1408 	    m->queue - m->pc == PQ_HOLD) {
1409 		vm_page_spin_lock(m);
1410 		if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1411 			_vm_page_queue_spin_lock(m);
1412 			_vm_page_rem_queue_spinlocked(m);
1413 			_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1414 			_vm_page_queue_spin_unlock(m);
1415 		}
1416 		vm_page_spin_unlock(m);
1417 	}
1418 }
1419 
1420 /*
1421  * Create a fictitious page with the specified physical address and
1422  * memory attribute.  The memory attribute is the only the machine-
1423  * dependent aspect of a fictitious page that must be initialized.
1424  */
1425 void
1426 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1427 {
1428 	/*
1429 	 * The page's memattr might have changed since the
1430 	 * previous initialization.  Update the pmap to the
1431 	 * new memattr.
1432 	 */
1433 	if ((m->flags & PG_FICTITIOUS) != 0)
1434 		goto memattr;
1435 	m->phys_addr = paddr;
1436 	m->queue = PQ_NONE;
1437 	/* Fictitious pages don't use "segind". */
1438 	/* Fictitious pages don't use "order" or "pool". */
1439 	m->flags = PG_FICTITIOUS | PG_UNQUEUED;
1440 	m->busy_count = PBUSY_LOCKED;
1441 	m->wire_count = 1;
1442 	spin_init(&m->spin, "fake_page");
1443 	pmap_page_init(m);
1444 memattr:
1445 	pmap_page_set_memattr(m, memattr);
1446 }
1447 
1448 /*
1449  * Inserts the given vm_page into the object and object list.
1450  *
1451  * The pagetables are not updated but will presumably fault the page
1452  * in if necessary, or if a kernel page the caller will at some point
1453  * enter the page into the kernel's pmap.  We are not allowed to block
1454  * here so we *can't* do this anyway.
1455  *
1456  * This routine may not block.
1457  * This routine must be called with the vm_object held.
1458  * This routine must be called with a critical section held.
1459  *
1460  * This routine returns TRUE if the page was inserted into the object
1461  * successfully, and FALSE if the page already exists in the object.
1462  */
1463 int
1464 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1465 {
1466 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1467 	if (m->object != NULL)
1468 		panic("vm_page_insert: already inserted");
1469 
1470 	atomic_add_int(&object->generation, 1);
1471 
1472 	/*
1473 	 * Associate the VM page with an (object, offset).
1474 	 *
1475 	 * The vm_page spin lock is required for interactions with the pmap.
1476 	 * XXX vm_page_spin_lock() might not be needed for this any more.
1477 	 */
1478 	vm_page_spin_lock(m);
1479 	m->object = object;
1480 	m->pindex = pindex;
1481 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1482 		m->object = NULL;
1483 		m->pindex = 0;
1484 		vm_page_spin_unlock(m);
1485 		return FALSE;
1486 	}
1487 	++object->resident_page_count;
1488 	++mycpu->gd_vmtotal.t_rm;
1489 	vm_page_spin_unlock(m);
1490 
1491 	/*
1492 	 * Since we are inserting a new and possibly dirty page,
1493 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1494 	 */
1495 	if ((m->valid & m->dirty) ||
1496 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1497 		vm_object_set_writeable_dirty(object);
1498 
1499 	/*
1500 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1501 	 */
1502 	swap_pager_page_inserted(m);
1503 	return TRUE;
1504 }
1505 
1506 /*
1507  * Removes the given vm_page_t from the (object,index) table
1508  *
1509  * The page must be BUSY and will remain BUSY on return.
1510  * No other requirements.
1511  *
1512  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1513  *	 it busy.
1514  *
1515  * NOTE: Caller is responsible for any pmap disposition prior to the
1516  *	 rename (as the pmap code will not be able to find the entries
1517  *	 once the object has been disassociated).  The caller may choose
1518  *	 to leave the pmap association intact if this routine is being
1519  *	 called as part of a rename between shadowed objects.
1520  *
1521  * This routine may not block.
1522  */
1523 void
1524 vm_page_remove(vm_page_t m)
1525 {
1526 	vm_object_t object;
1527 
1528 	if (m->object == NULL) {
1529 		return;
1530 	}
1531 
1532 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1533 		panic("vm_page_remove: page not busy");
1534 
1535 	object = m->object;
1536 
1537 	vm_object_hold(object);
1538 
1539 	/*
1540 	 * Remove the page from the object and update the object.
1541 	 *
1542 	 * The vm_page spin lock is required for interactions with the pmap.
1543 	 * XXX vm_page_spin_lock() might not be needed for this any more.
1544 	 */
1545 	vm_page_spin_lock(m);
1546 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1547 	--object->resident_page_count;
1548 	--mycpu->gd_vmtotal.t_rm;
1549 	m->object = NULL;
1550 	atomic_add_int(&object->generation, 1);
1551 	vm_page_spin_unlock(m);
1552 
1553 	vm_object_drop(object);
1554 }
1555 
1556 /*
1557  * Calculate the hash position for the vm_page hash heuristic.
1558  *
1559  * Mask by ~3 to offer 4-way set-assoc
1560  */
1561 static __inline
1562 struct vm_page_hash_elm *
1563 vm_page_hash_hash(vm_object_t object, vm_pindex_t pindex)
1564 {
1565 	size_t hi;
1566 
1567 	/* mix it up */
1568 	hi = (intptr_t)object ^ object->pg_color ^ pindex;
1569 	hi += object->pg_color * pindex;
1570 	hi = hi ^ (hi >> 20);
1571 	hi &= vm_page_hash_size - 1;		/* bounds */
1572 	hi &= ~(VM_PAGE_HASH_SET - 1);		/* set-assoc */
1573 	return (&vm_page_hash[hi]);
1574 }
1575 
1576 /*
1577  * Heuristical page lookup that does not require any locks.  Returns
1578  * a soft-busied page on success, NULL on failure.
1579  *
1580  * Caller must lookup the page the slow way if NULL is returned.
1581  */
1582 vm_page_t
1583 vm_page_hash_get(vm_object_t object, vm_pindex_t pindex)
1584 {
1585 	struct vm_page_hash_elm *mp;
1586 	vm_page_t m;
1587 	int i;
1588 
1589 	if (vm_page_hash == NULL)
1590 		return NULL;
1591 	mp = vm_page_hash_hash(object, pindex);
1592 	for (i = 0; i < VM_PAGE_HASH_SET; ++i) {
1593 		m = mp[i].m;
1594 		cpu_ccfence();
1595 		if (m == NULL)
1596 			continue;
1597 		if (m->object != object || m->pindex != pindex)
1598 			continue;
1599 		if (vm_page_sbusy_try(m))
1600 			continue;
1601 		if (m->object == object && m->pindex == pindex) {
1602 			mp[i].ticks = ticks;
1603 			return m;
1604 		}
1605 		vm_page_sbusy_drop(m);
1606 	}
1607 	return NULL;
1608 }
1609 
1610 /*
1611  * Enter page onto vm_page_hash[].  This is a heuristic, SMP collisions
1612  * are allowed.
1613  */
1614 static __inline
1615 void
1616 vm_page_hash_enter(vm_page_t m)
1617 {
1618 	struct vm_page_hash_elm *mp;
1619 	struct vm_page_hash_elm *best;
1620 	int i;
1621 
1622 	/*
1623 	 * Only enter type-stable vm_pages with well-shared objects.
1624 	 */
1625 	if (vm_page_hash == NULL ||
1626 	    m < &vm_page_array[0] ||
1627 	    m >= &vm_page_array[vm_page_array_size])
1628 		return;
1629 	if (m->object == NULL)
1630 		return;
1631 #if 0
1632 	/*
1633 	 * Disabled at the moment, there are some degenerate conditions
1634 	 * with often-exec'd programs that get ignored.  In particular,
1635 	 * the kernel's elf loader does a vn_rdwr() on the first page of
1636 	 * a binary.
1637 	 */
1638 	if (m->object->ref_count <= 2 || (m->object->flags & OBJ_ONEMAPPING))
1639 		return;
1640 #endif
1641 	if (vm_page_hash_vnode_only && m->object->type != OBJT_VNODE)
1642 		return;
1643 
1644 	/*
1645 	 *
1646 	 */
1647 	mp = vm_page_hash_hash(m->object, m->pindex);
1648 	best = mp;
1649 	for (i = 0; i < VM_PAGE_HASH_SET; ++i) {
1650 		if (mp[i].m == m) {
1651 			mp[i].ticks = ticks;
1652 			return;
1653 		}
1654 
1655 		/*
1656 		 * The best choice is the oldest entry
1657 		 */
1658 		if ((ticks - best->ticks) < (ticks - mp[i].ticks) ||
1659 		    (int)(ticks - mp[i].ticks) < 0) {
1660 			best = &mp[i];
1661 		}
1662 	}
1663 	best->m = m;
1664 	best->ticks = ticks;
1665 }
1666 
1667 /*
1668  * Locate and return the page at (object, pindex), or NULL if the
1669  * page could not be found.
1670  *
1671  * The caller must hold the vm_object token.
1672  */
1673 vm_page_t
1674 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1675 {
1676 	vm_page_t m;
1677 
1678 	/*
1679 	 * Search the hash table for this object/offset pair
1680 	 */
1681 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1682 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1683 	if (m) {
1684 		KKASSERT(m->object == object && m->pindex == pindex);
1685 		vm_page_hash_enter(m);
1686 	}
1687 	return(m);
1688 }
1689 
1690 vm_page_t
1691 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1692 					    vm_pindex_t pindex,
1693 					    int also_m_busy, const char *msg
1694 					    VM_PAGE_DEBUG_ARGS)
1695 {
1696 	u_int32_t busy_count;
1697 	vm_page_t m;
1698 
1699 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1700 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1701 	while (m) {
1702 		KKASSERT(m->object == object && m->pindex == pindex);
1703 		busy_count = m->busy_count;
1704 		cpu_ccfence();
1705 		if (busy_count & PBUSY_LOCKED) {
1706 			tsleep_interlock(m, 0);
1707 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1708 					  busy_count | PBUSY_WANTED)) {
1709 				atomic_set_int(&m->flags, PG_REFERENCED);
1710 				tsleep(m, PINTERLOCKED, msg, 0);
1711 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1712 							      pindex);
1713 			}
1714 		} else if (also_m_busy && busy_count) {
1715 			tsleep_interlock(m, 0);
1716 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1717 					  busy_count | PBUSY_WANTED)) {
1718 				atomic_set_int(&m->flags, PG_REFERENCED);
1719 				tsleep(m, PINTERLOCKED, msg, 0);
1720 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1721 							      pindex);
1722 			}
1723 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1724 					     busy_count | PBUSY_LOCKED)) {
1725 #ifdef VM_PAGE_DEBUG
1726 			m->busy_func = func;
1727 			m->busy_line = lineno;
1728 #endif
1729 			vm_page_hash_enter(m);
1730 			break;
1731 		}
1732 	}
1733 	return m;
1734 }
1735 
1736 /*
1737  * Attempt to lookup and busy a page.
1738  *
1739  * Returns NULL if the page could not be found
1740  *
1741  * Returns a vm_page and error == TRUE if the page exists but could not
1742  * be busied.
1743  *
1744  * Returns a vm_page and error == FALSE on success.
1745  */
1746 vm_page_t
1747 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1748 					   vm_pindex_t pindex,
1749 					   int also_m_busy, int *errorp
1750 					   VM_PAGE_DEBUG_ARGS)
1751 {
1752 	u_int32_t busy_count;
1753 	vm_page_t m;
1754 
1755 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1756 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1757 	*errorp = FALSE;
1758 	while (m) {
1759 		KKASSERT(m->object == object && m->pindex == pindex);
1760 		busy_count = m->busy_count;
1761 		cpu_ccfence();
1762 		if (busy_count & PBUSY_LOCKED) {
1763 			*errorp = TRUE;
1764 			break;
1765 		}
1766 		if (also_m_busy && busy_count) {
1767 			*errorp = TRUE;
1768 			break;
1769 		}
1770 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1771 				      busy_count | PBUSY_LOCKED)) {
1772 #ifdef VM_PAGE_DEBUG
1773 			m->busy_func = func;
1774 			m->busy_line = lineno;
1775 #endif
1776 			vm_page_hash_enter(m);
1777 			break;
1778 		}
1779 	}
1780 	return m;
1781 }
1782 
1783 /*
1784  * Returns a page that is only soft-busied for use by the caller in
1785  * a read-only fashion.  Returns NULL if the page could not be found,
1786  * the soft busy could not be obtained, or the page data is invalid.
1787  *
1788  * XXX Doesn't handle PG_FICTITIOUS pages at the moment, but there is
1789  *     no reason why we couldn't.
1790  */
1791 vm_page_t
1792 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1793 			 int pgoff, int pgbytes)
1794 {
1795 	vm_page_t m;
1796 
1797 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1798 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1799 	if (m) {
1800 		if ((m->valid != VM_PAGE_BITS_ALL &&
1801 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1802 		    (m->flags & PG_FICTITIOUS)) {
1803 			m = NULL;
1804 		} else if (vm_page_sbusy_try(m)) {
1805 			m = NULL;
1806 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1807 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1808 			   (m->flags & PG_FICTITIOUS)) {
1809 			vm_page_sbusy_drop(m);
1810 			m = NULL;
1811 		} else {
1812 			vm_page_hash_enter(m);
1813 		}
1814 	}
1815 	return m;
1816 }
1817 
1818 /*
1819  * Caller must hold the related vm_object
1820  */
1821 vm_page_t
1822 vm_page_next(vm_page_t m)
1823 {
1824 	vm_page_t next;
1825 
1826 	next = vm_page_rb_tree_RB_NEXT(m);
1827 	if (next && next->pindex != m->pindex + 1)
1828 		next = NULL;
1829 	return (next);
1830 }
1831 
1832 /*
1833  * vm_page_rename()
1834  *
1835  * Move the given vm_page from its current object to the specified
1836  * target object/offset.  The page must be busy and will remain so
1837  * on return.
1838  *
1839  * new_object must be held.
1840  * This routine might block. XXX ?
1841  *
1842  * NOTE: Swap associated with the page must be invalidated by the move.  We
1843  *       have to do this for several reasons:  (1) we aren't freeing the
1844  *       page, (2) we are dirtying the page, (3) the VM system is probably
1845  *       moving the page from object A to B, and will then later move
1846  *       the backing store from A to B and we can't have a conflict.
1847  *
1848  * NOTE: We *always* dirty the page.  It is necessary both for the
1849  *       fact that we moved it, and because we may be invalidating
1850  *	 swap.  If the page is on the cache, we have to deactivate it
1851  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1852  *	 on the cache.
1853  *
1854  * NOTE: Caller is responsible for any pmap disposition prior to the
1855  *	 rename (as the pmap code will not be able to find the entries
1856  *	 once the object has been disassociated or changed).  Nominally
1857  *	 the caller is moving a page between shadowed objects and so the
1858  *	 pmap association is retained without having to remove the page
1859  *	 from it.
1860  */
1861 void
1862 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1863 {
1864 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1865 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1866 	if (m->object) {
1867 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1868 		vm_page_remove(m);
1869 	}
1870 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1871 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1872 		      new_object, new_pindex);
1873 	}
1874 	if (m->queue - m->pc == PQ_CACHE)
1875 		vm_page_deactivate(m);
1876 	vm_page_dirty(m);
1877 }
1878 
1879 /*
1880  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1881  * is to remain BUSYied by the caller.
1882  *
1883  * This routine may not block.
1884  */
1885 void
1886 vm_page_unqueue_nowakeup(vm_page_t m)
1887 {
1888 	vm_page_and_queue_spin_lock(m);
1889 	(void)_vm_page_rem_queue_spinlocked(m);
1890 	vm_page_spin_unlock(m);
1891 }
1892 
1893 /*
1894  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1895  * if necessary.
1896  *
1897  * This routine may not block.
1898  */
1899 void
1900 vm_page_unqueue(vm_page_t m)
1901 {
1902 	u_short queue;
1903 
1904 	vm_page_and_queue_spin_lock(m);
1905 	queue = _vm_page_rem_queue_spinlocked(m);
1906 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1907 		vm_page_spin_unlock(m);
1908 		pagedaemon_wakeup();
1909 	} else {
1910 		vm_page_spin_unlock(m);
1911 	}
1912 }
1913 
1914 /*
1915  * vm_page_list_find()
1916  *
1917  * Find a page on the specified queue with color optimization.
1918  *
1919  * The page coloring optimization attempts to locate a page that does
1920  * not overload other nearby pages in the object in the cpu's L1 or L2
1921  * caches.  We need this optimization because cpu caches tend to be
1922  * physical caches, while object spaces tend to be virtual.
1923  *
1924  * The page coloring optimization also, very importantly, tries to localize
1925  * memory to cpus and physical sockets.
1926  *
1927  * Each PQ_FREE and PQ_CACHE color queue has its own spinlock and the
1928  * algorithm is adjusted to localize allocations on a per-core basis.
1929  * This is done by 'twisting' the colors.
1930  *
1931  * The page is returned spinlocked and removed from its queue (it will
1932  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1933  * is responsible for dealing with the busy-page case (usually by
1934  * deactivating the page and looping).
1935  *
1936  * NOTE:  This routine is carefully inlined.  A non-inlined version
1937  *	  is available for outside callers but the only critical path is
1938  *	  from within this source file.
1939  *
1940  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1941  *	  represent stable storage, allowing us to order our locks vm_page
1942  *	  first, then queue.
1943  */
1944 static __inline
1945 vm_page_t
1946 _vm_page_list_find(int basequeue, int index)
1947 {
1948 	struct vpgqueues *pq;
1949 	vm_page_t m;
1950 
1951 	index &= PQ_L2_MASK;
1952 	pq = &vm_page_queues[basequeue + index];
1953 
1954 	/*
1955 	 * Try this cpu's colored queue first.  Test for a page unlocked,
1956 	 * then lock the queue and locate a page.  Note that the lock order
1957 	 * is reversed, but we do not want to dwadle on the page spinlock
1958 	 * anyway as it is held significantly longer than the queue spinlock.
1959 	 */
1960 	if (TAILQ_FIRST(&pq->pl)) {
1961 		spin_lock(&pq->spin);
1962 		TAILQ_FOREACH(m, &pq->pl, pageq) {
1963 			if (spin_trylock(&m->spin) == 0)
1964 				continue;
1965 			KKASSERT(m->queue == basequeue + index);
1966 			_vm_page_rem_queue_spinlocked(m);
1967 			pq->lastq = -1;
1968 			return(m);
1969 		}
1970 		spin_unlock(&pq->spin);
1971 	}
1972 
1973 	/*
1974 	 * If we are unable to get a page, do a more involved NUMA-aware
1975 	 * search.  However, to avoid re-searching empty queues over and
1976 	 * over again skip to pq->last if appropriate.
1977 	 */
1978 	if (pq->lastq >= 0)
1979 		index = pq->lastq;
1980 
1981 	m = _vm_page_list_find2(basequeue, index, &pq->lastq);
1982 
1983 	return(m);
1984 }
1985 
1986 /*
1987  * If we could not find the page in the desired queue try to find it in
1988  * a nearby (NUMA-aware) queue.
1989  */
1990 static vm_page_t
1991 _vm_page_list_find2(int basequeue, int index, int *lastp)
1992 {
1993 	struct vpgqueues *pq;
1994 	vm_page_t m = NULL;
1995 	int pqmask = set_assoc_mask >> 1;
1996 	int pqi;
1997 	int range;
1998 	int skip_start;
1999 	int skip_next;
2000 	int count;
2001 
2002 	index &= PQ_L2_MASK;
2003 	pq = &vm_page_queues[basequeue];
2004 	count = 0;
2005 	skip_start = -1;
2006 	skip_next = -1;
2007 
2008 	/*
2009 	 * Run local sets of 16, 32, 64, 128, up to the entire queue if all
2010 	 * else fails (PQ_L2_MASK).
2011 	 *
2012 	 * pqmask is a mask, 15, 31, 63, etc.
2013 	 *
2014 	 * Test each queue unlocked first, then lock the queue and locate
2015 	 * a page.  Note that the lock order is reversed, but we do not want
2016 	 * to dwadle on the page spinlock anyway as it is held significantly
2017 	 * longer than the queue spinlock.
2018 	 */
2019 	do {
2020 		pqmask = (pqmask << 1) | 1;
2021 
2022 		pqi = index;
2023 		range = pqmask + 1;
2024 
2025 		while (range > 0) {
2026 			if (pqi >= skip_start && pqi < skip_next) {
2027 				range -= skip_next - pqi;
2028 				pqi = (pqi & ~pqmask) | (skip_next & pqmask);
2029 			}
2030 			if (range > 0 && TAILQ_FIRST(&pq[pqi].pl)) {
2031 				spin_lock(&pq[pqi].spin);
2032 				TAILQ_FOREACH(m, &pq[pqi].pl, pageq) {
2033 					if (spin_trylock(&m->spin) == 0)
2034 						continue;
2035 					KKASSERT(m->queue == basequeue + pqi);
2036 					_vm_page_rem_queue_spinlocked(m);
2037 
2038 					/*
2039 					 * If we had to wander too far, set
2040 					 * *lastp to skip past empty queues.
2041 					 */
2042 					if (count >= 8)
2043 						*lastp = pqi & PQ_L2_MASK;
2044 					return(m);
2045 				}
2046 				spin_unlock(&pq[pqi].spin);
2047 			}
2048 			--range;
2049 			++count;
2050 			pqi = (pqi & ~pqmask) | ((pqi + 1) & pqmask);
2051 		}
2052 		skip_start = pqi & ~pqmask;
2053 		skip_next = (pqi | pqmask) + 1;
2054 	} while (pqmask != PQ_L2_MASK);
2055 
2056 	return(m);
2057 }
2058 
2059 /*
2060  * Returns a vm_page candidate for allocation.  The page is not busied so
2061  * it can move around.  The caller must busy the page (and typically
2062  * deactivate it if it cannot be busied!)
2063  *
2064  * Returns a spinlocked vm_page that has been removed from its queue.
2065  */
2066 vm_page_t
2067 vm_page_list_find(int basequeue, int index)
2068 {
2069 	return(_vm_page_list_find(basequeue, index));
2070 }
2071 
2072 /*
2073  * Find a page on the cache queue with color optimization, remove it
2074  * from the queue, and busy it.  The returned page will not be spinlocked.
2075  *
2076  * A candidate failure will be deactivated.  Candidates can fail due to
2077  * being busied by someone else, in which case they will be deactivated.
2078  *
2079  * This routine may not block.
2080  *
2081  */
2082 static vm_page_t
2083 vm_page_select_cache(u_short pg_color)
2084 {
2085 	vm_page_t m;
2086 
2087 	for (;;) {
2088 		m = _vm_page_list_find(PQ_CACHE, pg_color);
2089 		if (m == NULL)
2090 			break;
2091 		/*
2092 		 * (m) has been removed from its queue and spinlocked
2093 		 */
2094 		if (vm_page_busy_try(m, TRUE)) {
2095 			_vm_page_deactivate_locked(m, 0);
2096 			vm_page_spin_unlock(m);
2097 		} else {
2098 			/*
2099 			 * We successfully busied the page
2100 			 */
2101 			if ((m->flags & PG_NEED_COMMIT) == 0 &&
2102 			    m->hold_count == 0 &&
2103 			    m->wire_count == 0 &&
2104 			    (m->dirty & m->valid) == 0) {
2105 				vm_page_spin_unlock(m);
2106 				KKASSERT((m->flags & PG_UNQUEUED) == 0);
2107 				pagedaemon_wakeup();
2108 				return(m);
2109 			}
2110 
2111 			/*
2112 			 * The page cannot be recycled, deactivate it.
2113 			 */
2114 			_vm_page_deactivate_locked(m, 0);
2115 			if (_vm_page_wakeup(m)) {
2116 				vm_page_spin_unlock(m);
2117 				wakeup(m);
2118 			} else {
2119 				vm_page_spin_unlock(m);
2120 			}
2121 		}
2122 	}
2123 	return (m);
2124 }
2125 
2126 /*
2127  * Find a free page.  We attempt to inline the nominal case and fall back
2128  * to _vm_page_select_free() otherwise.  A busied page is removed from
2129  * the queue and returned.
2130  *
2131  * This routine may not block.
2132  */
2133 static __inline vm_page_t
2134 vm_page_select_free(u_short pg_color)
2135 {
2136 	vm_page_t m;
2137 
2138 	for (;;) {
2139 		m = _vm_page_list_find(PQ_FREE, pg_color);
2140 		if (m == NULL)
2141 			break;
2142 		if (vm_page_busy_try(m, TRUE)) {
2143 			/*
2144 			 * Various mechanisms such as a pmap_collect can
2145 			 * result in a busy page on the free queue.  We
2146 			 * have to move the page out of the way so we can
2147 			 * retry the allocation.  If the other thread is not
2148 			 * allocating the page then m->valid will remain 0 and
2149 			 * the pageout daemon will free the page later on.
2150 			 *
2151 			 * Since we could not busy the page, however, we
2152 			 * cannot make assumptions as to whether the page
2153 			 * will be allocated by the other thread or not,
2154 			 * so all we can do is deactivate it to move it out
2155 			 * of the way.  In particular, if the other thread
2156 			 * wires the page it may wind up on the inactive
2157 			 * queue and the pageout daemon will have to deal
2158 			 * with that case too.
2159 			 */
2160 			_vm_page_deactivate_locked(m, 0);
2161 			vm_page_spin_unlock(m);
2162 		} else {
2163 			/*
2164 			 * Theoretically if we are able to busy the page
2165 			 * atomic with the queue removal (using the vm_page
2166 			 * lock) nobody else should have been able to mess
2167 			 * with the page before us.
2168 			 *
2169 			 * Assert the page state.  Note that even though
2170 			 * wiring doesn't adjust queues, a page on the free
2171 			 * queue should never be wired at this point.
2172 			 */
2173 			KKASSERT((m->flags & (PG_UNQUEUED |
2174 					      PG_NEED_COMMIT)) == 0);
2175 			KASSERT(m->hold_count == 0,
2176 				("m->hold_count is not zero "
2177 				 "pg %p q=%d flags=%08x hold=%d wire=%d",
2178 				 m, m->queue, m->flags,
2179 				 m->hold_count, m->wire_count));
2180 			KKASSERT(m->wire_count == 0);
2181 			vm_page_spin_unlock(m);
2182 			pagedaemon_wakeup();
2183 
2184 			/* return busied and removed page */
2185 			return(m);
2186 		}
2187 	}
2188 	return(m);
2189 }
2190 
2191 /*
2192  * vm_page_alloc()
2193  *
2194  * Allocate and return a memory cell associated with this VM object/offset
2195  * pair.  If object is NULL an unassociated page will be allocated.
2196  *
2197  * The returned page will be busied and removed from its queues.  This
2198  * routine can block and may return NULL if a race occurs and the page
2199  * is found to already exist at the specified (object, pindex).
2200  *
2201  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
2202  *	VM_ALLOC_QUICK		like normal but cannot use cache
2203  *	VM_ALLOC_SYSTEM		greater free drain
2204  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
2205  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
2206  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
2207  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
2208  *				(see vm_page_grab())
2209  *	VM_ALLOC_USE_GD		ok to use per-gd cache
2210  *
2211  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
2212  *
2213  * The object must be held if not NULL
2214  * This routine may not block
2215  *
2216  * Additional special handling is required when called from an interrupt
2217  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
2218  * in this case.
2219  */
2220 vm_page_t
2221 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
2222 {
2223 	globaldata_t gd;
2224 	vm_object_t obj;
2225 	vm_page_t m;
2226 	u_short pg_color;
2227 	int cpuid_local;
2228 
2229 #if 0
2230 	/*
2231 	 * Special per-cpu free VM page cache.  The pages are pre-busied
2232 	 * and pre-zerod for us.
2233 	 */
2234 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
2235 		crit_enter_gd(gd);
2236 		if (gd->gd_vmpg_count) {
2237 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
2238 			crit_exit_gd(gd);
2239 			goto done;
2240                 }
2241 		crit_exit_gd(gd);
2242         }
2243 #endif
2244 	m = NULL;
2245 
2246 	/*
2247 	 * CPU LOCALIZATION
2248 	 *
2249 	 * CPU localization algorithm.  Break the page queues up by physical
2250 	 * id and core id (note that two cpu threads will have the same core
2251 	 * id, and core_id != gd_cpuid).
2252 	 *
2253 	 * This is nowhere near perfect, for example the last pindex in a
2254 	 * subgroup will overflow into the next cpu or package.  But this
2255 	 * should get us good page reuse locality in heavy mixed loads.
2256 	 *
2257 	 * (may be executed before the APs are started, so other GDs might
2258 	 *  not exist!)
2259 	 */
2260 	if (page_req & VM_ALLOC_CPU_SPEC)
2261 		cpuid_local = VM_ALLOC_GETCPU(page_req);
2262 	else
2263 		cpuid_local = mycpu->gd_cpuid;
2264 
2265 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
2266 
2267 	KKASSERT(page_req &
2268 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
2269 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2270 
2271 	/*
2272 	 * Certain system threads (pageout daemon, buf_daemon's) are
2273 	 * allowed to eat deeper into the free page list.
2274 	 */
2275 	if (curthread->td_flags & TDF_SYSTHREAD)
2276 		page_req |= VM_ALLOC_SYSTEM;
2277 
2278 	/*
2279 	 * Impose various limitations.  Note that the v_free_reserved test
2280 	 * must match the opposite of vm_page_count_target() to avoid
2281 	 * livelocks, be careful.
2282 	 */
2283 loop:
2284 	gd = mycpu;
2285 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
2286 	    ((page_req & VM_ALLOC_INTERRUPT) &&
2287 	     gd->gd_vmstats.v_free_count > 0) ||
2288 	    ((page_req & VM_ALLOC_SYSTEM) &&
2289 	     gd->gd_vmstats.v_cache_count == 0 &&
2290 		gd->gd_vmstats.v_free_count >
2291 		gd->gd_vmstats.v_interrupt_free_min)
2292 	) {
2293 		/*
2294 		 * The free queue has sufficient free pages to take one out.
2295 		 */
2296 		m = vm_page_select_free(pg_color);
2297 	} else if (page_req & VM_ALLOC_NORMAL) {
2298 		/*
2299 		 * Allocatable from the cache (non-interrupt only).  On
2300 		 * success, we must free the page and try again, thus
2301 		 * ensuring that vmstats.v_*_free_min counters are replenished.
2302 		 */
2303 #ifdef INVARIANTS
2304 		if (curthread->td_preempted) {
2305 			kprintf("vm_page_alloc(): warning, attempt to allocate"
2306 				" cache page from preempting interrupt\n");
2307 			m = NULL;
2308 		} else {
2309 			m = vm_page_select_cache(pg_color);
2310 		}
2311 #else
2312 		m = vm_page_select_cache(pg_color);
2313 #endif
2314 		/*
2315 		 * On success move the page into the free queue and loop.
2316 		 *
2317 		 * Only do this if we can safely acquire the vm_object lock,
2318 		 * because this is effectively a random page and the caller
2319 		 * might be holding the lock shared, we don't want to
2320 		 * deadlock.
2321 		 */
2322 		if (m != NULL) {
2323 			KASSERT(m->dirty == 0,
2324 				("Found dirty cache page %p", m));
2325 			if ((obj = m->object) != NULL) {
2326 				if (vm_object_hold_try(obj)) {
2327 					vm_page_protect(m, VM_PROT_NONE);
2328 					vm_page_free(m);
2329 					/* m->object NULL here */
2330 					vm_object_drop(obj);
2331 				} else {
2332 					vm_page_deactivate(m);
2333 					vm_page_wakeup(m);
2334 				}
2335 			} else {
2336 				vm_page_protect(m, VM_PROT_NONE);
2337 				vm_page_free(m);
2338 			}
2339 			goto loop;
2340 		}
2341 
2342 		/*
2343 		 * On failure return NULL
2344 		 */
2345 		atomic_add_int(&vm_pageout_deficit, 1);
2346 		pagedaemon_wakeup();
2347 		return (NULL);
2348 	} else {
2349 		/*
2350 		 * No pages available, wakeup the pageout daemon and give up.
2351 		 */
2352 		atomic_add_int(&vm_pageout_deficit, 1);
2353 		pagedaemon_wakeup();
2354 		return (NULL);
2355 	}
2356 
2357 	/*
2358 	 * v_free_count can race so loop if we don't find the expected
2359 	 * page.
2360 	 */
2361 	if (m == NULL) {
2362 		vmstats_rollup();
2363 		goto loop;
2364 	}
2365 
2366 	/*
2367 	 * Good page found.  The page has already been busied for us and
2368 	 * removed from its queues.
2369 	 */
2370 	KASSERT(m->dirty == 0,
2371 		("vm_page_alloc: free/cache page %p was dirty", m));
2372 	KKASSERT(m->queue == PQ_NONE);
2373 
2374 #if 0
2375 done:
2376 #endif
2377 	/*
2378 	 * Initialize the structure, inheriting some flags but clearing
2379 	 * all the rest.  The page has already been busied for us.
2380 	 */
2381 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
2382 
2383 	KKASSERT(m->wire_count == 0);
2384 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
2385 	m->act_count = 0;
2386 	m->valid = 0;
2387 
2388 	/*
2389 	 * Caller must be holding the object lock (asserted by
2390 	 * vm_page_insert()).
2391 	 *
2392 	 * NOTE: Inserting a page here does not insert it into any pmaps
2393 	 *	 (which could cause us to block allocating memory).
2394 	 *
2395 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2396 	 *	 can be used by the caller for any purpose.
2397 	 */
2398 	if (object) {
2399 		if (vm_page_insert(m, object, pindex) == FALSE) {
2400 			vm_page_free(m);
2401 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2402 				panic("PAGE RACE %p[%ld]/%p",
2403 				      object, (long)pindex, m);
2404 			m = NULL;
2405 		}
2406 	} else {
2407 		m->pindex = pindex;
2408 	}
2409 
2410 	/*
2411 	 * Don't wakeup too often - wakeup the pageout daemon when
2412 	 * we would be nearly out of memory.
2413 	 */
2414 	pagedaemon_wakeup();
2415 
2416 	/*
2417 	 * A BUSY page is returned.
2418 	 */
2419 	return (m);
2420 }
2421 
2422 /*
2423  * Returns number of pages available in our DMA memory reserve
2424  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2425  */
2426 vm_size_t
2427 vm_contig_avail_pages(void)
2428 {
2429 	alist_blk_t blk;
2430 	alist_blk_t count;
2431 	alist_blk_t bfree;
2432 	spin_lock(&vm_contig_spin);
2433 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2434 	spin_unlock(&vm_contig_spin);
2435 
2436 	return bfree;
2437 }
2438 
2439 /*
2440  * Attempt to allocate contiguous physical memory with the specified
2441  * requirements.
2442  */
2443 vm_page_t
2444 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2445 		     unsigned long alignment, unsigned long boundary,
2446 		     unsigned long size, vm_memattr_t memattr)
2447 {
2448 	alist_blk_t blk;
2449 	vm_page_t m;
2450 	vm_pindex_t i;
2451 #if 0
2452 	static vm_pindex_t contig_rover;
2453 #endif
2454 
2455 	alignment >>= PAGE_SHIFT;
2456 	if (alignment == 0)
2457 		alignment = 1;
2458 	boundary >>= PAGE_SHIFT;
2459 	if (boundary == 0)
2460 		boundary = 1;
2461 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2462 
2463 #if 0
2464 	/*
2465 	 * Disabled temporarily until we find a solution for DRM (a flag
2466 	 * to always use the free space reserve, for performance).
2467 	 */
2468 	if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2469 	    boundary <= PAGE_SIZE && size == 1 &&
2470 	    memattr == VM_MEMATTR_DEFAULT) {
2471 		/*
2472 		 * Any page will work, use vm_page_alloc()
2473 		 * (e.g. when used from kmem_alloc_attr())
2474 		 */
2475 		m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2476 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2477 				  VM_ALLOC_INTERRUPT);
2478 		m->valid = VM_PAGE_BITS_ALL;
2479 		vm_page_wire(m);
2480 		vm_page_wakeup(m);
2481 	} else
2482 #endif
2483 	{
2484 		/*
2485 		 * Use the low-memory dma reserve
2486 		 */
2487 		spin_lock(&vm_contig_spin);
2488 		blk = alist_alloc(&vm_contig_alist, 0, size);
2489 		if (blk == ALIST_BLOCK_NONE) {
2490 			spin_unlock(&vm_contig_spin);
2491 			if (bootverbose) {
2492 				kprintf("vm_page_alloc_contig: %ldk nospace\n",
2493 					(size << PAGE_SHIFT) / 1024);
2494 				print_backtrace(5);
2495 			}
2496 			return(NULL);
2497 		}
2498 		if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2499 			alist_free(&vm_contig_alist, blk, size);
2500 			spin_unlock(&vm_contig_spin);
2501 			if (bootverbose) {
2502 				kprintf("vm_page_alloc_contig: %ldk high "
2503 					"%016jx failed\n",
2504 					(size << PAGE_SHIFT) / 1024,
2505 					(intmax_t)high);
2506 			}
2507 			return(NULL);
2508 		}
2509 		spin_unlock(&vm_contig_spin);
2510 
2511 		/*
2512 		 * Base vm_page_t of range
2513 		 */
2514 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2515 	}
2516 	if (vm_contig_verbose) {
2517 		kprintf("vm_page_alloc_contig: %016jx/%ldk "
2518 			"(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2519 			(intmax_t)m->phys_addr,
2520 			(size << PAGE_SHIFT) / 1024,
2521 			low, high, alignment, boundary, size, memattr);
2522 	}
2523 	if (memattr != VM_MEMATTR_DEFAULT) {
2524 		for (i = 0; i < size; ++i) {
2525 			KKASSERT(m[i].flags & PG_FICTITIOUS);
2526 			pmap_page_set_memattr(&m[i], memattr);
2527 		}
2528 	}
2529 	return m;
2530 }
2531 
2532 /*
2533  * Free contiguously allocated pages.  The pages will be wired but not busy.
2534  * When freeing to the alist we leave them wired and not busy.
2535  */
2536 void
2537 vm_page_free_contig(vm_page_t m, unsigned long size)
2538 {
2539 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2540 	vm_pindex_t start = pa >> PAGE_SHIFT;
2541 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2542 
2543 	if (vm_contig_verbose) {
2544 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2545 			(intmax_t)pa, size / 1024);
2546 	}
2547 	if (pa < vm_low_phys_reserved) {
2548 		/*
2549 		 * Just assert check the first page for convenience.
2550 		 */
2551 		KKASSERT(m->wire_count == 1);
2552 		KKASSERT(m->flags & PG_FICTITIOUS);
2553 		KKASSERT(pa + size <= vm_low_phys_reserved);
2554 		spin_lock(&vm_contig_spin);
2555 		alist_free(&vm_contig_alist, start, pages);
2556 		spin_unlock(&vm_contig_spin);
2557 	} else {
2558 		while (pages) {
2559 			/* XXX FUTURE, maybe (pair with vm_pg_contig_alloc()) */
2560 			/*vm_page_flag_clear(m, PG_FICTITIOUS | PG_UNQUEUED);*/
2561 			vm_page_busy_wait(m, FALSE, "cpgfr");
2562 			vm_page_unwire(m, 0);
2563 			vm_page_free(m);
2564 			--pages;
2565 			++m;
2566 		}
2567 
2568 	}
2569 }
2570 
2571 
2572 /*
2573  * Wait for sufficient free memory for nominal heavy memory use kernel
2574  * operations.
2575  *
2576  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2577  *	     will trivially deadlock the system.
2578  */
2579 void
2580 vm_wait_nominal(void)
2581 {
2582 	while (vm_page_count_min(0))
2583 		vm_wait(0);
2584 }
2585 
2586 /*
2587  * Test if vm_wait_nominal() would block.
2588  */
2589 int
2590 vm_test_nominal(void)
2591 {
2592 	if (vm_page_count_min(0))
2593 		return(1);
2594 	return(0);
2595 }
2596 
2597 /*
2598  * Block until free pages are available for allocation, called in various
2599  * places before memory allocations.
2600  *
2601  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2602  * more generous then that.
2603  */
2604 void
2605 vm_wait(int timo)
2606 {
2607 	/*
2608 	 * never wait forever
2609 	 */
2610 	if (timo == 0)
2611 		timo = hz;
2612 	lwkt_gettoken(&vm_token);
2613 
2614 	if (curthread == pagethread ||
2615 	    curthread == emergpager) {
2616 		/*
2617 		 * The pageout daemon itself needs pages, this is bad.
2618 		 */
2619 		if (vm_page_count_min(0)) {
2620 			vm_pageout_pages_needed = 1;
2621 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2622 		}
2623 	} else {
2624 		/*
2625 		 * Wakeup the pageout daemon if necessary and wait.
2626 		 *
2627 		 * Do not wait indefinitely for the target to be reached,
2628 		 * as load might prevent it from being reached any time soon.
2629 		 * But wait a little to try to slow down page allocations
2630 		 * and to give more important threads (the pagedaemon)
2631 		 * allocation priority.
2632 		 */
2633 		if (vm_page_count_target()) {
2634 			if (vm_pages_needed == 0) {
2635 				vm_pages_needed = 1;
2636 				wakeup(&vm_pages_needed);
2637 			}
2638 			++vm_pages_waiting;	/* SMP race ok */
2639 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2640 		}
2641 	}
2642 	lwkt_reltoken(&vm_token);
2643 }
2644 
2645 /*
2646  * Block until free pages are available for allocation
2647  *
2648  * Called only from vm_fault so that processes page faulting can be
2649  * easily tracked.
2650  */
2651 void
2652 vm_wait_pfault(void)
2653 {
2654 	/*
2655 	 * Wakeup the pageout daemon if necessary and wait.
2656 	 *
2657 	 * Do not wait indefinitely for the target to be reached,
2658 	 * as load might prevent it from being reached any time soon.
2659 	 * But wait a little to try to slow down page allocations
2660 	 * and to give more important threads (the pagedaemon)
2661 	 * allocation priority.
2662 	 */
2663 	if (vm_page_count_min(0)) {
2664 		lwkt_gettoken(&vm_token);
2665 		while (vm_page_count_severe()) {
2666 			if (vm_page_count_target()) {
2667 				thread_t td;
2668 
2669 				if (vm_pages_needed == 0) {
2670 					vm_pages_needed = 1;
2671 					wakeup(&vm_pages_needed);
2672 				}
2673 				++vm_pages_waiting;	/* SMP race ok */
2674 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2675 
2676 				/*
2677 				 * Do not stay stuck in the loop if the system is trying
2678 				 * to kill the process.
2679 				 */
2680 				td = curthread;
2681 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2682 					break;
2683 			}
2684 		}
2685 		lwkt_reltoken(&vm_token);
2686 	}
2687 }
2688 
2689 /*
2690  * Put the specified page on the active list (if appropriate).  Ensure
2691  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2692  *
2693  * The caller should be holding the page busied ? XXX
2694  * This routine may not block.
2695  *
2696  * It is ok if the page is wired (so buffer cache operations don't have
2697  * to mess with the page queues).
2698  */
2699 void
2700 vm_page_activate(vm_page_t m)
2701 {
2702 	u_short oqueue;
2703 
2704 	/*
2705 	 * If already active or inappropriate, just set act_count and
2706 	 * return.  We don't have to spin-lock the page.
2707 	 */
2708 	if (m->queue - m->pc == PQ_ACTIVE ||
2709 	    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED))) {
2710 		if (m->act_count < ACT_INIT)
2711 			m->act_count = ACT_INIT;
2712 		return;
2713 	}
2714 
2715 	vm_page_spin_lock(m);
2716 	if (m->queue - m->pc != PQ_ACTIVE &&
2717 	    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED)) == 0) {
2718 		_vm_page_queue_spin_lock(m);
2719 		oqueue = _vm_page_rem_queue_spinlocked(m);
2720 		/* page is left spinlocked, queue is unlocked */
2721 
2722 		if (oqueue == PQ_CACHE)
2723 			mycpu->gd_cnt.v_reactivated++;
2724 		if (m->act_count < ACT_INIT)
2725 			m->act_count = ACT_INIT;
2726 		_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2727 		_vm_page_and_queue_spin_unlock(m);
2728 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2729 			pagedaemon_wakeup();
2730 	} else {
2731 		if (m->act_count < ACT_INIT)
2732 			m->act_count = ACT_INIT;
2733 		vm_page_spin_unlock(m);
2734 	}
2735 }
2736 
2737 void
2738 vm_page_soft_activate(vm_page_t m)
2739 {
2740 	if (m->queue - m->pc == PQ_ACTIVE ||
2741 	    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED))) {
2742 		if (m->act_count < ACT_INIT)
2743 			m->act_count = ACT_INIT;
2744 	} else {
2745 		vm_page_activate(m);
2746 	}
2747 }
2748 
2749 /*
2750  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2751  * routine is called when a page has been added to the cache or free
2752  * queues.
2753  *
2754  * This routine may not block.
2755  */
2756 static __inline void
2757 vm_page_free_wakeup(void)
2758 {
2759 	globaldata_t gd = mycpu;
2760 
2761 	/*
2762 	 * If the pageout daemon itself needs pages, then tell it that
2763 	 * there are some free.
2764 	 */
2765 	if (vm_pageout_pages_needed &&
2766 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2767 	    gd->gd_vmstats.v_pageout_free_min
2768 	) {
2769 		vm_pageout_pages_needed = 0;
2770 		wakeup(&vm_pageout_pages_needed);
2771 	}
2772 
2773 	/*
2774 	 * Wakeup processes that are waiting on memory.
2775 	 *
2776 	 * Generally speaking we want to wakeup stuck processes as soon as
2777 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2778 	 * where we can do this.  Wait a bit longer to reduce degenerate
2779 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2780 	 * to make sure the min-check w/hysteresis does not exceed the
2781 	 * normal target.
2782 	 */
2783 	if (vm_pages_waiting) {
2784 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2785 		    !vm_page_count_target()) {
2786 			vm_pages_waiting = 0;
2787 			wakeup(&vmstats.v_free_count);
2788 			++mycpu->gd_cnt.v_ppwakeups;
2789 		}
2790 #if 0
2791 		if (!vm_page_count_target()) {
2792 			/*
2793 			 * Plenty of pages are free, wakeup everyone.
2794 			 */
2795 			vm_pages_waiting = 0;
2796 			wakeup(&vmstats.v_free_count);
2797 			++mycpu->gd_cnt.v_ppwakeups;
2798 		} else if (!vm_page_count_min(0)) {
2799 			/*
2800 			 * Some pages are free, wakeup someone.
2801 			 */
2802 			int wcount = vm_pages_waiting;
2803 			if (wcount > 0)
2804 				--wcount;
2805 			vm_pages_waiting = wcount;
2806 			wakeup_one(&vmstats.v_free_count);
2807 			++mycpu->gd_cnt.v_ppwakeups;
2808 		}
2809 #endif
2810 	}
2811 }
2812 
2813 /*
2814  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2815  * it from its VM object.
2816  *
2817  * The vm_page must be BUSY on entry.  BUSY will be released on
2818  * return (the page will have been freed).
2819  */
2820 void
2821 vm_page_free_toq(vm_page_t m)
2822 {
2823 	mycpu->gd_cnt.v_tfree++;
2824 	if (m->flags & (PG_MAPPED | PG_WRITEABLE))
2825 		pmap_mapped_sync(m);
2826 	KKASSERT((m->flags & PG_MAPPED) == 0);
2827 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2828 
2829 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2830 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2831 			"hold(%d)\n",
2832 			(u_long)m->pindex, m->busy_count, m->hold_count);
2833 		if ((m->queue - m->pc) == PQ_FREE)
2834 			panic("vm_page_free: freeing free page");
2835 		else
2836 			panic("vm_page_free: freeing busy page");
2837 	}
2838 
2839 	/*
2840 	 * Remove from object, spinlock the page and its queues and
2841 	 * remove from any queue.  No queue spinlock will be held
2842 	 * after this section (because the page was removed from any
2843 	 * queue).
2844 	 */
2845 	vm_page_remove(m);
2846 
2847 	/*
2848 	 * No further management of fictitious pages occurs beyond object
2849 	 * and queue removal.
2850 	 */
2851 	if ((m->flags & PG_FICTITIOUS) != 0) {
2852 		KKASSERT(m->queue == PQ_NONE);
2853 		vm_page_wakeup(m);
2854 		return;
2855 	}
2856 	vm_page_and_queue_spin_lock(m);
2857 	_vm_page_rem_queue_spinlocked(m);
2858 
2859 	m->valid = 0;
2860 	vm_page_undirty(m);
2861 
2862 	if (m->wire_count != 0) {
2863 		if (m->wire_count > 1) {
2864 		    panic(
2865 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2866 			m->wire_count, (long)m->pindex);
2867 		}
2868 		panic("vm_page_free: freeing wired page");
2869 	}
2870 
2871 	if (!MD_PAGE_FREEABLE(m))
2872 		panic("vm_page_free: page %p is still mapped!", m);
2873 
2874 	/*
2875 	 * Clear the PG_NEED_COMMIT and the PG_UNQUEUED flags.  The
2876 	 * page returns to normal operation and will be placed in
2877 	 * the PQ_HOLD or PQ_FREE queue.
2878 	 */
2879 	vm_page_flag_clear(m, PG_NEED_COMMIT | PG_UNQUEUED);
2880 
2881 	if (m->hold_count != 0) {
2882 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2883 	} else {
2884 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2885 	}
2886 
2887 	/*
2888 	 * This sequence allows us to clear BUSY while still holding
2889 	 * its spin lock, which reduces contention vs allocators.  We
2890 	 * must not leave the queue locked or _vm_page_wakeup() may
2891 	 * deadlock.
2892 	 */
2893 	_vm_page_queue_spin_unlock(m);
2894 	if (_vm_page_wakeup(m)) {
2895 		vm_page_spin_unlock(m);
2896 		wakeup(m);
2897 	} else {
2898 		vm_page_spin_unlock(m);
2899 	}
2900 	vm_page_free_wakeup();
2901 }
2902 
2903 /*
2904  * Mark this page as wired down by yet another map.  We do not adjust the
2905  * queue the page is on, it will be checked for wiring as-needed.
2906  *
2907  * This function has no effect on fictitious pages.
2908  *
2909  * Caller must be holding the page busy.
2910  */
2911 void
2912 vm_page_wire(vm_page_t m)
2913 {
2914 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2915 	if ((m->flags & PG_FICTITIOUS) == 0) {
2916 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2917 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2918 		}
2919 		KASSERT(m->wire_count != 0,
2920 			("vm_page_wire: wire_count overflow m=%p", m));
2921 	}
2922 }
2923 
2924 /*
2925  * Release one wiring of this page, potentially enabling it to be paged again.
2926  *
2927  * Note that wired pages are no longer unconditionally removed from the
2928  * paging queues, so the page may already be on a queue.  Move the page
2929  * to the desired queue if necessary.
2930  *
2931  * Many pages placed on the inactive queue should actually go
2932  * into the cache, but it is difficult to figure out which.  What
2933  * we do instead, if the inactive target is well met, is to put
2934  * clean pages at the head of the inactive queue instead of the tail.
2935  * This will cause them to be moved to the cache more quickly and
2936  * if not actively re-referenced, freed more quickly.  If we just
2937  * stick these pages at the end of the inactive queue, heavy filesystem
2938  * meta-data accesses can cause an unnecessary paging load on memory bound
2939  * processes.  This optimization causes one-time-use metadata to be
2940  * reused more quickly.
2941  *
2942  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2943  * the inactive queue.  This helps the pageout daemon determine memory
2944  * pressure and act on out-of-memory situations more quickly.
2945  *
2946  * BUT, if we are in a low-memory situation we have no choice but to
2947  * put clean pages on the cache queue.
2948  *
2949  * A number of routines use vm_page_unwire() to guarantee that the page
2950  * will go into either the inactive or active queues, and will NEVER
2951  * be placed in the cache - for example, just after dirtying a page.
2952  * dirty pages in the cache are not allowed.
2953  *
2954  * PG_FICTITIOUS or PG_UNQUEUED pages are never moved to any queue, and
2955  * the wire_count will not be adjusted in any way for a PG_FICTITIOUS
2956  * page.
2957  *
2958  * This routine may not block.
2959  */
2960 void
2961 vm_page_unwire(vm_page_t m, int activate)
2962 {
2963 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2964 	if (m->flags & PG_FICTITIOUS) {
2965 		/* do nothing */
2966 	} else if ((int)m->wire_count <= 0) {
2967 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2968 	} else {
2969 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2970 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2971 			if (m->flags & PG_UNQUEUED) {
2972 				;
2973 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2974 				vm_page_activate(m);
2975 			} else {
2976 				vm_page_deactivate(m);
2977 			}
2978 		}
2979 	}
2980 }
2981 
2982 /*
2983  * Move the specified page to the inactive queue.
2984  *
2985  * Normally athead is 0 resulting in LRU operation.  athead is set
2986  * to 1 if we want this page to be 'as if it were placed in the cache',
2987  * except without unmapping it from the process address space.
2988  *
2989  * vm_page's spinlock must be held on entry and will remain held on return.
2990  * This routine may not block.  The caller does not have to hold the page
2991  * busied but should have some sort of interlock on its validity.
2992  *
2993  * It is ok if the page is wired (so buffer cache operations don't have
2994  * to mess with the page queues).
2995  */
2996 static void
2997 _vm_page_deactivate_locked(vm_page_t m, int athead)
2998 {
2999 	u_short oqueue;
3000 
3001 	/*
3002 	 * Ignore if already inactive.
3003 	 */
3004 	if (m->queue - m->pc == PQ_INACTIVE ||
3005 	    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED))) {
3006 		return;
3007 	}
3008 
3009 	_vm_page_queue_spin_lock(m);
3010 	oqueue = _vm_page_rem_queue_spinlocked(m);
3011 
3012 	if ((m->flags & (PG_FICTITIOUS | PG_UNQUEUED)) == 0) {
3013 		if (oqueue == PQ_CACHE)
3014 			mycpu->gd_cnt.v_reactivated++;
3015 		vm_page_flag_clear(m, PG_WINATCFLS);
3016 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
3017 		if (athead == 0) {
3018 			atomic_add_long(
3019 				&vm_page_queues[PQ_INACTIVE + m->pc].adds, 1);
3020 		}
3021 	}
3022 	/* NOTE: PQ_NONE if condition not taken */
3023 	_vm_page_queue_spin_unlock(m);
3024 	/* leaves vm_page spinlocked */
3025 }
3026 
3027 /*
3028  * Attempt to deactivate a page.
3029  *
3030  * No requirements.  We can pre-filter before getting the spinlock.
3031  *
3032  * It is ok if the page is wired (so buffer cache operations don't have
3033  * to mess with the page queues).
3034  */
3035 void
3036 vm_page_deactivate(vm_page_t m)
3037 {
3038 	if (m->queue - m->pc != PQ_INACTIVE &&
3039 	    (m->flags & (PG_FICTITIOUS | PG_UNQUEUED)) == 0) {
3040 		vm_page_spin_lock(m);
3041 		_vm_page_deactivate_locked(m, 0);
3042 		vm_page_spin_unlock(m);
3043 	}
3044 }
3045 
3046 void
3047 vm_page_deactivate_locked(vm_page_t m)
3048 {
3049 	_vm_page_deactivate_locked(m, 0);
3050 }
3051 
3052 /*
3053  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
3054  *
3055  * This function returns non-zero if it successfully moved the page to
3056  * PQ_CACHE.
3057  *
3058  * This function unconditionally unbusies the page on return.
3059  */
3060 int
3061 vm_page_try_to_cache(vm_page_t m)
3062 {
3063 	/*
3064 	 * Shortcut if we obviously cannot move the page, or if the
3065 	 * page is already on the cache queue, or it is ficitious.
3066 	 *
3067 	 * Never allow a wired page into the cache.
3068 	 */
3069 	if (m->dirty || m->hold_count || m->wire_count ||
3070 	    m->queue - m->pc == PQ_CACHE ||
3071 	    (m->flags & (PG_UNQUEUED | PG_NEED_COMMIT | PG_FICTITIOUS))) {
3072 		vm_page_wakeup(m);
3073 		return(0);
3074 	}
3075 
3076 	/*
3077 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
3078 	 * be moved to the cache.
3079 	 */
3080 	vm_page_test_dirty(m);
3081 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3082 		vm_page_wakeup(m);
3083 		return(0);
3084 	}
3085 	vm_page_cache(m);
3086 	return(1);
3087 }
3088 
3089 /*
3090  * Attempt to free the page.  If we cannot free it, we do nothing.
3091  * 1 is returned on success, 0 on failure.
3092  *
3093  * The page can be in any state, including already being on the free
3094  * queue.  Check to see if it really can be freed.  Note that we disallow
3095  * this ad-hoc operation if the page is flagged PG_UNQUEUED.
3096  *
3097  * Caller provides an unlocked/non-busied page.
3098  * No requirements.
3099  */
3100 int
3101 vm_page_try_to_free(vm_page_t m)
3102 {
3103 	if (vm_page_busy_try(m, TRUE))
3104 		return(0);
3105 
3106 	if (m->dirty ||				/* can't free if it is dirty */
3107 	    m->hold_count ||			/* or held (XXX may be wrong) */
3108 	    m->wire_count ||			/* or wired */
3109 	    (m->flags & (PG_UNQUEUED |		/* or unqueued */
3110 			 PG_NEED_COMMIT |	/* or needs a commit */
3111 			 PG_FICTITIOUS)) ||	/* or is fictitious */
3112 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
3113 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
3114 		vm_page_wakeup(m);
3115 		return(0);
3116 	}
3117 
3118 	/*
3119 	 * We can probably free the page.
3120 	 *
3121 	 * Page busied by us and no longer spinlocked.  Dirty pages will
3122 	 * not be freed by this function.    We have to re-test the
3123 	 * dirty bit after cleaning out the pmaps.
3124 	 */
3125 	vm_page_test_dirty(m);
3126 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3127 		vm_page_wakeup(m);
3128 		return(0);
3129 	}
3130 	vm_page_protect(m, VM_PROT_NONE);
3131 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3132 		vm_page_wakeup(m);
3133 		return(0);
3134 	}
3135 	vm_page_free(m);
3136 	return(1);
3137 }
3138 
3139 /*
3140  * vm_page_cache
3141  *
3142  * Put the specified page onto the page cache queue (if appropriate).
3143  *
3144  * The page must be busy, and this routine will release the busy and
3145  * possibly even free the page.
3146  */
3147 void
3148 vm_page_cache(vm_page_t m)
3149 {
3150 	/*
3151 	 * Not suitable for the cache
3152 	 */
3153 	if ((m->flags & (PG_UNQUEUED | PG_NEED_COMMIT | PG_FICTITIOUS)) ||
3154 	    (m->busy_count & PBUSY_MASK) ||
3155 	    m->wire_count || m->hold_count) {
3156 		vm_page_wakeup(m);
3157 		return;
3158 	}
3159 
3160 	/*
3161 	 * Already in the cache (and thus not mapped)
3162 	 */
3163 	if ((m->queue - m->pc) == PQ_CACHE) {
3164 		if (m->flags & (PG_MAPPED | PG_WRITEABLE))
3165 			pmap_mapped_sync(m);
3166 		KKASSERT((m->flags & PG_MAPPED) == 0);
3167 		vm_page_wakeup(m);
3168 		return;
3169 	}
3170 
3171 #if 0
3172 	/*
3173 	 * REMOVED - it is possible for dirty to get set at any time as
3174 	 *	     long as the page is still mapped and writeable.
3175 	 *
3176 	 * Caller is required to test m->dirty, but note that the act of
3177 	 * removing the page from its maps can cause it to become dirty
3178 	 * on an SMP system due to another cpu running in usermode.
3179 	 */
3180 	if (m->dirty) {
3181 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
3182 			(long)m->pindex);
3183 	}
3184 #endif
3185 
3186 	/*
3187 	 * Remove all pmaps and indicate that the page is not
3188 	 * writeable or mapped.  Our vm_page_protect() call may
3189 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
3190 	 * everything.
3191 	 */
3192 	vm_page_protect(m, VM_PROT_NONE);
3193 	pmap_mapped_sync(m);
3194 	if ((m->flags & (PG_UNQUEUED | PG_MAPPED)) ||
3195 	    (m->busy_count & PBUSY_MASK) ||
3196 	    m->wire_count || m->hold_count) {
3197 		vm_page_wakeup(m);
3198 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
3199 		vm_page_deactivate(m);
3200 		vm_page_wakeup(m);
3201 	} else {
3202 		_vm_page_and_queue_spin_lock(m);
3203 		_vm_page_rem_queue_spinlocked(m);
3204 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
3205 		_vm_page_and_queue_spin_unlock(m);
3206 		vm_page_wakeup(m);
3207 		vm_page_free_wakeup();
3208 	}
3209 }
3210 
3211 /*
3212  * vm_page_dontneed()
3213  *
3214  * Cache, deactivate, or do nothing as appropriate.  This routine
3215  * is typically used by madvise() MADV_DONTNEED.
3216  *
3217  * Generally speaking we want to move the page into the cache so
3218  * it gets reused quickly.  However, this can result in a silly syndrome
3219  * due to the page recycling too quickly.  Small objects will not be
3220  * fully cached.  On the otherhand, if we move the page to the inactive
3221  * queue we wind up with a problem whereby very large objects
3222  * unnecessarily blow away our inactive and cache queues.
3223  *
3224  * The solution is to move the pages based on a fixed weighting.  We
3225  * either leave them alone, deactivate them, or move them to the cache,
3226  * where moving them to the cache has the highest weighting.
3227  * By forcing some pages into other queues we eventually force the
3228  * system to balance the queues, potentially recovering other unrelated
3229  * space from active.  The idea is to not force this to happen too
3230  * often.
3231  *
3232  * The page must be busied.
3233  */
3234 void
3235 vm_page_dontneed(vm_page_t m)
3236 {
3237 	static int dnweight;
3238 	int dnw;
3239 	int head;
3240 
3241 	dnw = ++dnweight;
3242 
3243 	/*
3244 	 * occassionally leave the page alone
3245 	 */
3246 	if ((dnw & 0x01F0) == 0 ||
3247 	    m->queue - m->pc == PQ_INACTIVE ||
3248 	    m->queue - m->pc == PQ_CACHE
3249 	) {
3250 		if (m->act_count >= ACT_INIT)
3251 			--m->act_count;
3252 		return;
3253 	}
3254 
3255 	/*
3256 	 * If vm_page_dontneed() is inactivating a page, it must clear
3257 	 * the referenced flag; otherwise the pagedaemon will see references
3258 	 * on the page in the inactive queue and reactivate it. Until the
3259 	 * page can move to the cache queue, madvise's job is not done.
3260 	 */
3261 	vm_page_flag_clear(m, PG_REFERENCED);
3262 	pmap_clear_reference(m);
3263 
3264 	if (m->dirty == 0)
3265 		vm_page_test_dirty(m);
3266 
3267 	if (m->dirty || (dnw & 0x0070) == 0) {
3268 		/*
3269 		 * Deactivate the page 3 times out of 32.
3270 		 */
3271 		head = 0;
3272 	} else {
3273 		/*
3274 		 * Cache the page 28 times out of every 32.  Note that
3275 		 * the page is deactivated instead of cached, but placed
3276 		 * at the head of the queue instead of the tail.
3277 		 */
3278 		head = 1;
3279 	}
3280 	vm_page_spin_lock(m);
3281 	_vm_page_deactivate_locked(m, head);
3282 	vm_page_spin_unlock(m);
3283 }
3284 
3285 /*
3286  * These routines manipulate the 'soft busy' count for a page.  A soft busy
3287  * is almost like a hard BUSY except that it allows certain compatible
3288  * operations to occur on the page while it is busy.  For example, a page
3289  * undergoing a write can still be mapped read-only.
3290  *
3291  * We also use soft-busy to quickly pmap_enter shared read-only pages
3292  * without having to hold the page locked.
3293  *
3294  * The soft-busy count can be > 1 in situations where multiple threads
3295  * are pmap_enter()ing the same page simultaneously, or when two buffer
3296  * cache buffers overlap the same page.
3297  *
3298  * The caller must hold the page BUSY when making these two calls.
3299  */
3300 void
3301 vm_page_io_start(vm_page_t m)
3302 {
3303 	uint32_t ocount;
3304 
3305 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3306 	KKASSERT(ocount & PBUSY_LOCKED);
3307 }
3308 
3309 void
3310 vm_page_io_finish(vm_page_t m)
3311 {
3312 	uint32_t ocount;
3313 
3314 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
3315 	KKASSERT(ocount & PBUSY_MASK);
3316 #if 0
3317 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
3318 		wakeup(m);
3319 #endif
3320 }
3321 
3322 /*
3323  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
3324  *
3325  * We can't use fetchadd here because we might race a hard-busy and the
3326  * page freeing code asserts on a non-zero soft-busy count (even if only
3327  * temporary).
3328  *
3329  * Returns 0 on success, non-zero on failure.
3330  */
3331 int
3332 vm_page_sbusy_try(vm_page_t m)
3333 {
3334 	uint32_t ocount;
3335 
3336 	for (;;) {
3337 		ocount = m->busy_count;
3338 		cpu_ccfence();
3339 		if (ocount & PBUSY_LOCKED)
3340 			return 1;
3341 		if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
3342 			break;
3343 	}
3344 	return 0;
3345 #if 0
3346 	if (m->busy_count & PBUSY_LOCKED)
3347 		return 1;
3348 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3349 	if (ocount & PBUSY_LOCKED) {
3350 		vm_page_sbusy_drop(m);
3351 		return 1;
3352 	}
3353 	return 0;
3354 #endif
3355 }
3356 
3357 /*
3358  * Indicate that a clean VM page requires a filesystem commit and cannot
3359  * be reused.  Used by tmpfs.
3360  */
3361 void
3362 vm_page_need_commit(vm_page_t m)
3363 {
3364 	vm_page_flag_set(m, PG_NEED_COMMIT);
3365 	vm_object_set_writeable_dirty(m->object);
3366 }
3367 
3368 void
3369 vm_page_clear_commit(vm_page_t m)
3370 {
3371 	vm_page_flag_clear(m, PG_NEED_COMMIT);
3372 }
3373 
3374 /*
3375  * Grab a page, blocking if it is busy and allocating a page if necessary.
3376  * A busy page is returned or NULL.  The page may or may not be valid and
3377  * might not be on a queue (the caller is responsible for the disposition of
3378  * the page).
3379  *
3380  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
3381  * page will be zero'd and marked valid.
3382  *
3383  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
3384  * valid even if it already exists.
3385  *
3386  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
3387  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
3388  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
3389  *
3390  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
3391  * always returned if we had blocked.
3392  *
3393  * This routine may not be called from an interrupt.
3394  *
3395  * No other requirements.
3396  */
3397 vm_page_t
3398 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3399 {
3400 	vm_page_t m;
3401 	int error;
3402 	int shared = 1;
3403 
3404 	KKASSERT(allocflags &
3405 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
3406 	vm_object_hold_shared(object);
3407 	for (;;) {
3408 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3409 		if (error) {
3410 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
3411 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
3412 				m = NULL;
3413 				break;
3414 			}
3415 			/* retry */
3416 		} else if (m == NULL) {
3417 			if (shared) {
3418 				vm_object_upgrade(object);
3419 				shared = 0;
3420 			}
3421 			if (allocflags & VM_ALLOC_RETRY)
3422 				allocflags |= VM_ALLOC_NULL_OK;
3423 			m = vm_page_alloc(object, pindex,
3424 					  allocflags & ~VM_ALLOC_RETRY);
3425 			if (m)
3426 				break;
3427 			vm_wait(0);
3428 			if ((allocflags & VM_ALLOC_RETRY) == 0)
3429 				goto failed;
3430 		} else {
3431 			/* m found */
3432 			break;
3433 		}
3434 	}
3435 
3436 	/*
3437 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
3438 	 *
3439 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
3440 	 * valid even if already valid.
3441 	 *
3442 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
3443 	 *	  removed the idle zeroing code.  These optimizations actually
3444 	 *	  slow things down on modern cpus because the zerod area is
3445 	 *	  likely uncached, placing a memory-access burden on the
3446 	 *	  accesors taking the fault.
3447 	 *
3448 	 *	  By always zeroing the page in-line with the fault, no
3449 	 *	  dynamic ram reads are needed and the caches are hot, ready
3450 	 *	  for userland to access the memory.
3451 	 */
3452 	if (m->valid == 0) {
3453 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3454 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
3455 			m->valid = VM_PAGE_BITS_ALL;
3456 		}
3457 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3458 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
3459 		m->valid = VM_PAGE_BITS_ALL;
3460 	}
3461 failed:
3462 	vm_object_drop(object);
3463 	return(m);
3464 }
3465 
3466 /*
3467  * Mapping function for valid bits or for dirty bits in
3468  * a page.  May not block.
3469  *
3470  * Inputs are required to range within a page.
3471  *
3472  * No requirements.
3473  * Non blocking.
3474  */
3475 int
3476 vm_page_bits(int base, int size)
3477 {
3478 	int first_bit;
3479 	int last_bit;
3480 
3481 	KASSERT(
3482 	    base + size <= PAGE_SIZE,
3483 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3484 	);
3485 
3486 	if (size == 0)		/* handle degenerate case */
3487 		return(0);
3488 
3489 	first_bit = base >> DEV_BSHIFT;
3490 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3491 
3492 	return ((2 << last_bit) - (1 << first_bit));
3493 }
3494 
3495 /*
3496  * Sets portions of a page valid and clean.  The arguments are expected
3497  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3498  * of any partial chunks touched by the range.  The invalid portion of
3499  * such chunks will be zero'd.
3500  *
3501  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3502  *	 align base to DEV_BSIZE so as not to mark clean a partially
3503  *	 truncated device block.  Otherwise the dirty page status might be
3504  *	 lost.
3505  *
3506  * This routine may not block.
3507  *
3508  * (base + size) must be less then or equal to PAGE_SIZE.
3509  */
3510 static void
3511 _vm_page_zero_valid(vm_page_t m, int base, int size)
3512 {
3513 	int frag;
3514 	int endoff;
3515 
3516 	if (size == 0)	/* handle degenerate case */
3517 		return;
3518 
3519 	/*
3520 	 * If the base is not DEV_BSIZE aligned and the valid
3521 	 * bit is clear, we have to zero out a portion of the
3522 	 * first block.
3523 	 */
3524 
3525 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3526 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3527 	) {
3528 		pmap_zero_page_area(
3529 		    VM_PAGE_TO_PHYS(m),
3530 		    frag,
3531 		    base - frag
3532 		);
3533 	}
3534 
3535 	/*
3536 	 * If the ending offset is not DEV_BSIZE aligned and the
3537 	 * valid bit is clear, we have to zero out a portion of
3538 	 * the last block.
3539 	 */
3540 
3541 	endoff = base + size;
3542 
3543 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3544 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3545 	) {
3546 		pmap_zero_page_area(
3547 		    VM_PAGE_TO_PHYS(m),
3548 		    endoff,
3549 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3550 		);
3551 	}
3552 }
3553 
3554 /*
3555  * Set valid, clear dirty bits.  If validating the entire
3556  * page we can safely clear the pmap modify bit.  We also
3557  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3558  * takes a write fault on a MAP_NOSYNC memory area the flag will
3559  * be set again.
3560  *
3561  * We set valid bits inclusive of any overlap, but we can only
3562  * clear dirty bits for DEV_BSIZE chunks that are fully within
3563  * the range.
3564  *
3565  * Page must be busied?
3566  * No other requirements.
3567  */
3568 void
3569 vm_page_set_valid(vm_page_t m, int base, int size)
3570 {
3571 	_vm_page_zero_valid(m, base, size);
3572 	m->valid |= vm_page_bits(base, size);
3573 }
3574 
3575 
3576 /*
3577  * Set valid bits and clear dirty bits.
3578  *
3579  * Page must be busied by caller.
3580  *
3581  * NOTE: This function does not clear the pmap modified bit.
3582  *	 Also note that e.g. NFS may use a byte-granular base
3583  *	 and size.
3584  *
3585  * No other requirements.
3586  */
3587 void
3588 vm_page_set_validclean(vm_page_t m, int base, int size)
3589 {
3590 	int pagebits;
3591 
3592 	_vm_page_zero_valid(m, base, size);
3593 	pagebits = vm_page_bits(base, size);
3594 	m->valid |= pagebits;
3595 	m->dirty &= ~pagebits;
3596 	if (base == 0 && size == PAGE_SIZE) {
3597 		/*pmap_clear_modify(m);*/
3598 		vm_page_flag_clear(m, PG_NOSYNC);
3599 	}
3600 }
3601 
3602 /*
3603  * Set valid & dirty.  Used by buwrite()
3604  *
3605  * Page must be busied by caller.
3606  */
3607 void
3608 vm_page_set_validdirty(vm_page_t m, int base, int size)
3609 {
3610 	int pagebits;
3611 
3612 	pagebits = vm_page_bits(base, size);
3613 	m->valid |= pagebits;
3614 	m->dirty |= pagebits;
3615 	if (m->object)
3616 	       vm_object_set_writeable_dirty(m->object);
3617 }
3618 
3619 /*
3620  * Clear dirty bits.
3621  *
3622  * NOTE: This function does not clear the pmap modified bit.
3623  *	 Also note that e.g. NFS may use a byte-granular base
3624  *	 and size.
3625  *
3626  * Page must be busied?
3627  * No other requirements.
3628  */
3629 void
3630 vm_page_clear_dirty(vm_page_t m, int base, int size)
3631 {
3632 	m->dirty &= ~vm_page_bits(base, size);
3633 	if (base == 0 && size == PAGE_SIZE) {
3634 		/*pmap_clear_modify(m);*/
3635 		vm_page_flag_clear(m, PG_NOSYNC);
3636 	}
3637 }
3638 
3639 /*
3640  * Make the page all-dirty.
3641  *
3642  * Also make sure the related object and vnode reflect the fact that the
3643  * object may now contain a dirty page.
3644  *
3645  * Page must be busied?
3646  * No other requirements.
3647  */
3648 void
3649 vm_page_dirty(vm_page_t m)
3650 {
3651 #ifdef INVARIANTS
3652         int pqtype = m->queue - m->pc;
3653 #endif
3654         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3655                 ("vm_page_dirty: page in free/cache queue!"));
3656 	if (m->dirty != VM_PAGE_BITS_ALL) {
3657 		m->dirty = VM_PAGE_BITS_ALL;
3658 		if (m->object)
3659 			vm_object_set_writeable_dirty(m->object);
3660 	}
3661 }
3662 
3663 /*
3664  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3665  * valid and dirty bits for the effected areas are cleared.
3666  *
3667  * Page must be busied?
3668  * Does not block.
3669  * No other requirements.
3670  */
3671 void
3672 vm_page_set_invalid(vm_page_t m, int base, int size)
3673 {
3674 	int bits;
3675 
3676 	bits = vm_page_bits(base, size);
3677 	m->valid &= ~bits;
3678 	m->dirty &= ~bits;
3679 	atomic_add_int(&m->object->generation, 1);
3680 }
3681 
3682 /*
3683  * The kernel assumes that the invalid portions of a page contain
3684  * garbage, but such pages can be mapped into memory by user code.
3685  * When this occurs, we must zero out the non-valid portions of the
3686  * page so user code sees what it expects.
3687  *
3688  * Pages are most often semi-valid when the end of a file is mapped
3689  * into memory and the file's size is not page aligned.
3690  *
3691  * Page must be busied?
3692  * No other requirements.
3693  */
3694 void
3695 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3696 {
3697 	int b;
3698 	int i;
3699 
3700 	/*
3701 	 * Scan the valid bits looking for invalid sections that
3702 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3703 	 * valid bit may be set ) have already been zerod by
3704 	 * vm_page_set_validclean().
3705 	 */
3706 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3707 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3708 		    (m->valid & (1 << i))
3709 		) {
3710 			if (i > b) {
3711 				pmap_zero_page_area(
3712 				    VM_PAGE_TO_PHYS(m),
3713 				    b << DEV_BSHIFT,
3714 				    (i - b) << DEV_BSHIFT
3715 				);
3716 			}
3717 			b = i + 1;
3718 		}
3719 	}
3720 
3721 	/*
3722 	 * setvalid is TRUE when we can safely set the zero'd areas
3723 	 * as being valid.  We can do this if there are no cache consistency
3724 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3725 	 */
3726 	if (setvalid)
3727 		m->valid = VM_PAGE_BITS_ALL;
3728 }
3729 
3730 /*
3731  * Is a (partial) page valid?  Note that the case where size == 0
3732  * will return FALSE in the degenerate case where the page is entirely
3733  * invalid, and TRUE otherwise.
3734  *
3735  * Does not block.
3736  * No other requirements.
3737  */
3738 int
3739 vm_page_is_valid(vm_page_t m, int base, int size)
3740 {
3741 	int bits = vm_page_bits(base, size);
3742 
3743 	if (m->valid && ((m->valid & bits) == bits))
3744 		return 1;
3745 	else
3746 		return 0;
3747 }
3748 
3749 /*
3750  * Update dirty bits from pmap/mmu.  May not block.
3751  *
3752  * Caller must hold the page busy
3753  *
3754  * WARNING! Unless the page has been unmapped, this function only
3755  *	    provides a likely dirty status.
3756  */
3757 void
3758 vm_page_test_dirty(vm_page_t m)
3759 {
3760 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) {
3761 		vm_page_dirty(m);
3762 	}
3763 }
3764 
3765 #include "opt_ddb.h"
3766 #ifdef DDB
3767 #include <ddb/ddb.h>
3768 
3769 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3770 {
3771 	db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3772 	db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3773 	db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3774 	db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3775 	db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3776 	db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3777 	db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3778 	db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3779 	db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3780 	db_printf("vmstats.v_inactive_target: %ld\n",
3781 		  vmstats.v_inactive_target);
3782 }
3783 
3784 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3785 {
3786 	int i;
3787 	db_printf("PQ_FREE:");
3788 	for (i = 0; i < PQ_L2_SIZE; i++) {
3789 		db_printf(" %ld", vm_page_queues[PQ_FREE + i].lcnt);
3790 	}
3791 	db_printf("\n");
3792 
3793 	db_printf("PQ_CACHE:");
3794 	for(i = 0; i < PQ_L2_SIZE; i++) {
3795 		db_printf(" %ld", vm_page_queues[PQ_CACHE + i].lcnt);
3796 	}
3797 	db_printf("\n");
3798 
3799 	db_printf("PQ_ACTIVE:");
3800 	for(i = 0; i < PQ_L2_SIZE; i++) {
3801 		db_printf(" %ld", vm_page_queues[PQ_ACTIVE + i].lcnt);
3802 	}
3803 	db_printf("\n");
3804 
3805 	db_printf("PQ_INACTIVE:");
3806 	for(i = 0; i < PQ_L2_SIZE; i++) {
3807 		db_printf(" %ld", vm_page_queues[PQ_INACTIVE + i].lcnt);
3808 	}
3809 	db_printf("\n");
3810 }
3811 #endif /* DDB */
3812