xref: /dragonfly/sys/vm/vm_page.c (revision b40e316c)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.28 2004/12/10 23:07:10 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 
92 #include <sys/thread2.h>
93 
94 static void vm_page_queue_init(void);
95 static void vm_page_free_wakeup(void);
96 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
97 static vm_page_t _vm_page_list_find2(int basequeue, int index);
98 
99 static int vm_page_bucket_count;	/* How big is array? */
100 static int vm_page_hash_mask;		/* Mask for hash function */
101 static struct vm_page **vm_page_buckets; /* Array of buckets */
102 static volatile int vm_page_bucket_generation;
103 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
104 
105 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
106 
107 static void
108 vm_page_queue_init(void)
109 {
110 	int i;
111 
112 	for (i = 0; i < PQ_L2_SIZE; i++)
113 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
114 	for (i = 0; i < PQ_L2_SIZE; i++)
115 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
116 
117 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
118 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
119 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
120 	/* PQ_NONE has no queue */
121 
122 	for (i = 0; i < PQ_COUNT; i++)
123 		TAILQ_INIT(&vm_page_queues[i].pl);
124 }
125 
126 /*
127  * note: place in initialized data section?  Is this necessary?
128  */
129 long first_page = 0;
130 int vm_page_array_size = 0;
131 int vm_page_zero_count = 0;
132 vm_page_t vm_page_array = 0;
133 
134 /*
135  * (low level boot)
136  *
137  * Sets the page size, perhaps based upon the memory size.
138  * Must be called before any use of page-size dependent functions.
139  */
140 void
141 vm_set_page_size(void)
142 {
143 	if (vmstats.v_page_size == 0)
144 		vmstats.v_page_size = PAGE_SIZE;
145 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
146 		panic("vm_set_page_size: page size not a power of two");
147 }
148 
149 /*
150  * (low level boot)
151  *
152  * Add a new page to the freelist for use by the system.  New pages
153  * are added to both the head and tail of the associated free page
154  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
155  * requests pull 'recent' adds (higher physical addresses) first.
156  *
157  * Must be called in a critical section.
158  */
159 vm_page_t
160 vm_add_new_page(vm_paddr_t pa)
161 {
162 	struct vpgqueues *vpq;
163 	vm_page_t m;
164 
165 	++vmstats.v_page_count;
166 	++vmstats.v_free_count;
167 	m = PHYS_TO_VM_PAGE(pa);
168 	m->phys_addr = pa;
169 	m->flags = 0;
170 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
171 	m->queue = m->pc + PQ_FREE;
172 
173 	vpq = &vm_page_queues[m->queue];
174 	if (vpq->flipflop)
175 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
176 	else
177 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
178 	vpq->flipflop = 1 - vpq->flipflop;
179 
180 	vm_page_queues[m->queue].lcnt++;
181 	return (m);
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Initializes the resident memory module.
188  *
189  * Allocates memory for the page cells, and for the object/offset-to-page
190  * hash table headers.  Each page cell is initialized and placed on the
191  * free list.
192  */
193 vm_offset_t
194 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
195 {
196 	vm_offset_t mapped;
197 	struct vm_page **bucket;
198 	vm_size_t npages;
199 	vm_paddr_t page_range;
200 	vm_paddr_t new_end;
201 	int i;
202 	vm_paddr_t pa;
203 	int nblocks;
204 	vm_paddr_t last_pa;
205 
206 	/* the biggest memory array is the second group of pages */
207 	vm_paddr_t end;
208 	vm_paddr_t biggestone, biggestsize;
209 
210 	vm_paddr_t total;
211 
212 	total = 0;
213 	biggestsize = 0;
214 	biggestone = 0;
215 	nblocks = 0;
216 	vaddr = round_page(vaddr);
217 
218 	for (i = 0; phys_avail[i + 1]; i += 2) {
219 		phys_avail[i] = round_page(phys_avail[i]);
220 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
221 	}
222 
223 	for (i = 0; phys_avail[i + 1]; i += 2) {
224 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
225 
226 		if (size > biggestsize) {
227 			biggestone = i;
228 			biggestsize = size;
229 		}
230 		++nblocks;
231 		total += size;
232 	}
233 
234 	end = phys_avail[biggestone+1];
235 
236 	/*
237 	 * Initialize the queue headers for the free queue, the active queue
238 	 * and the inactive queue.
239 	 */
240 
241 	vm_page_queue_init();
242 
243 	/*
244 	 * Allocate (and initialize) the hash table buckets.
245 	 *
246 	 * The number of buckets MUST BE a power of 2, and the actual value is
247 	 * the next power of 2 greater than the number of physical pages in
248 	 * the system.
249 	 *
250 	 * We make the hash table approximately 2x the number of pages to
251 	 * reduce the chain length.  This is about the same size using the
252 	 * singly-linked list as the 1x hash table we were using before
253 	 * using TAILQ but the chain length will be smaller.
254 	 *
255 	 * Note: This computation can be tweaked if desired.
256 	 */
257 	vm_page_buckets = (struct vm_page **)vaddr;
258 	bucket = vm_page_buckets;
259 	if (vm_page_bucket_count == 0) {
260 		vm_page_bucket_count = 1;
261 		while (vm_page_bucket_count < atop(total))
262 			vm_page_bucket_count <<= 1;
263 	}
264 	vm_page_bucket_count <<= 1;
265 	vm_page_hash_mask = vm_page_bucket_count - 1;
266 
267 	/*
268 	 * Validate these addresses.
269 	 */
270 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
271 	new_end = trunc_page(new_end);
272 	mapped = round_page(vaddr);
273 	vaddr = pmap_map(mapped, new_end, end,
274 	    VM_PROT_READ | VM_PROT_WRITE);
275 	vaddr = round_page(vaddr);
276 	bzero((caddr_t) mapped, vaddr - mapped);
277 
278 	for (i = 0; i < vm_page_bucket_count; i++) {
279 		*bucket = NULL;
280 		bucket++;
281 	}
282 
283 	/*
284 	 * Compute the number of pages of memory that will be available for
285 	 * use (taking into account the overhead of a page structure per
286 	 * page).
287 	 */
288 	first_page = phys_avail[0] / PAGE_SIZE;
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
290 	npages = (total - (page_range * sizeof(struct vm_page)) -
291 	    (end - new_end)) / PAGE_SIZE;
292 
293 	end = new_end;
294 
295 	/*
296 	 * Initialize the mem entry structures now, and put them in the free
297 	 * queue.
298 	 */
299 	vm_page_array = (vm_page_t) vaddr;
300 	mapped = vaddr;
301 
302 	/*
303 	 * Validate these addresses.
304 	 */
305 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
306 	mapped = pmap_map(mapped, new_end, end,
307 	    VM_PROT_READ | VM_PROT_WRITE);
308 
309 	/*
310 	 * Clear all of the page structures
311 	 */
312 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
313 	vm_page_array_size = page_range;
314 
315 	/*
316 	 * Construct the free queue(s) in ascending order (by physical
317 	 * address) so that the first 16MB of physical memory is allocated
318 	 * last rather than first.  On large-memory machines, this avoids
319 	 * the exhaustion of low physical memory before isa_dmainit has run.
320 	 */
321 	vmstats.v_page_count = 0;
322 	vmstats.v_free_count = 0;
323 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
324 		pa = phys_avail[i];
325 		if (i == biggestone)
326 			last_pa = new_end;
327 		else
328 			last_pa = phys_avail[i + 1];
329 		while (pa < last_pa && npages-- > 0) {
330 			vm_add_new_page(pa);
331 			pa += PAGE_SIZE;
332 		}
333 	}
334 	return (mapped);
335 }
336 
337 /*
338  * Distributes the object/offset key pair among hash buckets.
339  *
340  * NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
341  * This routine may not block.
342  *
343  * We try to randomize the hash based on the object to spread the pages
344  * out in the hash table without it costing us too much.
345  */
346 static __inline int
347 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
348 {
349 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
350 
351 	return(i & vm_page_hash_mask);
352 }
353 
354 /*
355  * The opposite of vm_page_hold().  A page can be freed while being held,
356  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
357  * in this case to actually free it once the hold count drops to 0.
358  *
359  * This routine must be called at splvm().
360  */
361 void
362 vm_page_unhold(vm_page_t mem)
363 {
364 	--mem->hold_count;
365 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
366 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
367 		vm_page_busy(mem);
368 		vm_page_free_toq(mem);
369 	}
370 }
371 
372 /*
373  * Inserts the given mem entry into the object and object list.
374  *
375  * The pagetables are not updated but will presumably fault the page
376  * in if necessary, or if a kernel page the caller will at some point
377  * enter the page into the kernel's pmap.  We are not allowed to block
378  * here so we *can't* do this anyway.
379  *
380  * This routine may not block.
381  * This routine must be called with a critical section held.
382  */
383 void
384 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
385 {
386 	struct vm_page **bucket;
387 
388 	ASSERT_IN_CRIT_SECTION();
389 	if (m->object != NULL)
390 		panic("vm_page_insert: already inserted");
391 
392 	/*
393 	 * Record the object/offset pair in this page
394 	 */
395 	m->object = object;
396 	m->pindex = pindex;
397 
398 	/*
399 	 * Insert it into the object_object/offset hash table
400 	 */
401 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
402 	m->hnext = *bucket;
403 	*bucket = m;
404 	vm_page_bucket_generation++;
405 
406 	/*
407 	 * Now link into the object's list of backed pages.
408 	 */
409 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
410 	object->generation++;
411 
412 	/*
413 	 * show that the object has one more resident page.
414 	 */
415 	object->resident_page_count++;
416 
417 	/*
418 	 * Since we are inserting a new and possibly dirty page,
419 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
420 	 */
421 	if (m->flags & PG_WRITEABLE)
422 		vm_object_set_writeable_dirty(object);
423 }
424 
425 /*
426  * Removes the given vm_page_t from the global (object,index) hash table
427  * and from the object's memq.
428  *
429  * The underlying pmap entry (if any) is NOT removed here.
430  * This routine may not block.
431  *
432  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
433  * held on call to this routine.
434  *
435  * note: FreeBSD side effect was to unbusy the page on return.  We leave
436  * it busy.
437  */
438 void
439 vm_page_remove(vm_page_t m)
440 {
441 	vm_object_t object;
442 	struct vm_page **bucket;
443 
444 	crit_enter();
445 	if (m->object == NULL) {
446 		crit_exit();
447 		return;
448 	}
449 
450 	if ((m->flags & PG_BUSY) == 0)
451 		panic("vm_page_remove: page not busy");
452 
453 	object = m->object;
454 
455 	/*
456 	 * Remove from the object_object/offset hash table.  The object
457 	 * must be on the hash queue, we will panic if it isn't
458 	 *
459 	 * Note: we must NULL-out m->hnext to prevent loops in detached
460 	 * buffers with vm_page_lookup().
461 	 */
462 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
463 	while (*bucket != m) {
464 		if (*bucket == NULL)
465 		    panic("vm_page_remove(): page not found in hash");
466 		bucket = &(*bucket)->hnext;
467 	}
468 	*bucket = m->hnext;
469 	m->hnext = NULL;
470 	vm_page_bucket_generation++;
471 
472 	/*
473 	 * Now remove from the object's list of backed pages.
474 	 */
475 	TAILQ_REMOVE(&object->memq, m, listq);
476 
477 	/*
478 	 * And show that the object has one fewer resident page.
479 	 */
480 	object->resident_page_count--;
481 	object->generation++;
482 
483 	m->object = NULL;
484 	crit_exit();
485 }
486 
487 /*
488  * Locate and return the page at (object, pindex), or NULL if the
489  * page could not be found.
490  *
491  * This routine will operate properly without spl protection, but
492  * the returned page could be in flux if it is busy.  Because an
493  * interrupt can race a caller's busy check (unbusying and freeing the
494  * page we return before the caller is able to check the busy bit),
495  * the caller should generally call this routine with a critical
496  * section held.
497  *
498  * Callers may call this routine without spl protection if they know
499  * 'for sure' that the page will not be ripped out from under them
500  * by an interrupt.
501  */
502 vm_page_t
503 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
504 {
505 	vm_page_t m;
506 	struct vm_page **bucket;
507 	int generation;
508 
509 	/*
510 	 * Search the hash table for this object/offset pair
511 	 */
512 retry:
513 	generation = vm_page_bucket_generation;
514 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
515 	for (m = *bucket; m != NULL; m = m->hnext) {
516 		if ((m->object == object) && (m->pindex == pindex)) {
517 			if (vm_page_bucket_generation != generation)
518 				goto retry;
519 			return (m);
520 		}
521 	}
522 	if (vm_page_bucket_generation != generation)
523 		goto retry;
524 	return (NULL);
525 }
526 
527 /*
528  * vm_page_rename()
529  *
530  * Move the given memory entry from its current object to the specified
531  * target object/offset.
532  *
533  * The object must be locked.
534  * This routine may not block.
535  *
536  * Note: This routine will raise itself to splvm(), the caller need not.
537  *
538  * Note: Swap associated with the page must be invalidated by the move.  We
539  *       have to do this for several reasons:  (1) we aren't freeing the
540  *       page, (2) we are dirtying the page, (3) the VM system is probably
541  *       moving the page from object A to B, and will then later move
542  *       the backing store from A to B and we can't have a conflict.
543  *
544  * Note: We *always* dirty the page.  It is necessary both for the
545  *       fact that we moved it, and because we may be invalidating
546  *	 swap.  If the page is on the cache, we have to deactivate it
547  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
548  *	 on the cache.
549  */
550 void
551 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
552 {
553 	crit_enter();
554 	vm_page_remove(m);
555 	vm_page_insert(m, new_object, new_pindex);
556 	if (m->queue - m->pc == PQ_CACHE)
557 		vm_page_deactivate(m);
558 	vm_page_dirty(m);
559 	vm_page_wakeup(m);
560 	crit_exit();
561 }
562 
563 /*
564  * vm_page_unqueue() without any wakeup.  This routine is used when a page
565  * is being moved between queues or otherwise is to remain BUSYied by the
566  * caller.
567  *
568  * This routine must be called at splhigh().
569  * This routine may not block.
570  */
571 void
572 vm_page_unqueue_nowakeup(vm_page_t m)
573 {
574 	int queue = m->queue;
575 	struct vpgqueues *pq;
576 
577 	if (queue != PQ_NONE) {
578 		pq = &vm_page_queues[queue];
579 		m->queue = PQ_NONE;
580 		TAILQ_REMOVE(&pq->pl, m, pageq);
581 		(*pq->cnt)--;
582 		pq->lcnt--;
583 	}
584 }
585 
586 /*
587  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
588  * if necessary.
589  *
590  * This routine must be called at splhigh().
591  * This routine may not block.
592  */
593 void
594 vm_page_unqueue(vm_page_t m)
595 {
596 	int queue = m->queue;
597 	struct vpgqueues *pq;
598 
599 	if (queue != PQ_NONE) {
600 		m->queue = PQ_NONE;
601 		pq = &vm_page_queues[queue];
602 		TAILQ_REMOVE(&pq->pl, m, pageq);
603 		(*pq->cnt)--;
604 		pq->lcnt--;
605 		if ((queue - m->pc) == PQ_CACHE) {
606 			if (vm_paging_needed())
607 				pagedaemon_wakeup();
608 		}
609 	}
610 }
611 
612 /*
613  * vm_page_list_find()
614  *
615  * Find a page on the specified queue with color optimization.
616  *
617  * The page coloring optimization attempts to locate a page that does
618  * not overload other nearby pages in the object in the cpu's L1 or L2
619  * caches.  We need this optimization because cpu caches tend to be
620  * physical caches, while object spaces tend to be virtual.
621  *
622  * This routine must be called at splvm().
623  * This routine may not block.
624  *
625  * Note that this routine is carefully inlined.  A non-inlined version
626  * is available for outside callers but the only critical path is
627  * from within this source file.
628  */
629 static __inline
630 vm_page_t
631 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
632 {
633 	vm_page_t m;
634 
635 	if (prefer_zero)
636 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
637 	else
638 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
639 	if (m == NULL)
640 		m = _vm_page_list_find2(basequeue, index);
641 	return(m);
642 }
643 
644 static vm_page_t
645 _vm_page_list_find2(int basequeue, int index)
646 {
647 	int i;
648 	vm_page_t m = NULL;
649 	struct vpgqueues *pq;
650 
651 	pq = &vm_page_queues[basequeue];
652 
653 	/*
654 	 * Note that for the first loop, index+i and index-i wind up at the
655 	 * same place.  Even though this is not totally optimal, we've already
656 	 * blown it by missing the cache case so we do not care.
657 	 */
658 
659 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
660 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
661 			break;
662 
663 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
664 			break;
665 	}
666 	return(m);
667 }
668 
669 vm_page_t
670 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
671 {
672 	return(_vm_page_list_find(basequeue, index, prefer_zero));
673 }
674 
675 /*
676  * Find a page on the cache queue with color optimization.  As pages
677  * might be found, but not applicable, they are deactivated.  This
678  * keeps us from using potentially busy cached pages.
679  *
680  * This routine must be called with a critical section held.
681  * This routine may not block.
682  */
683 vm_page_t
684 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
685 {
686 	vm_page_t m;
687 
688 	while (TRUE) {
689 		m = _vm_page_list_find(
690 		    PQ_CACHE,
691 		    (pindex + object->pg_color) & PQ_L2_MASK,
692 		    FALSE
693 		);
694 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
695 			       m->hold_count || m->wire_count)) {
696 			vm_page_deactivate(m);
697 			continue;
698 		}
699 		return m;
700 	}
701 	/* not reached */
702 }
703 
704 /*
705  * Find a free or zero page, with specified preference.  We attempt to
706  * inline the nominal case and fall back to _vm_page_select_free()
707  * otherwise.
708  *
709  * This routine must be called with a critical section held.
710  * This routine may not block.
711  */
712 static __inline vm_page_t
713 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
714 {
715 	vm_page_t m;
716 
717 	m = _vm_page_list_find(
718 		PQ_FREE,
719 		(pindex + object->pg_color) & PQ_L2_MASK,
720 		prefer_zero
721 	);
722 	return(m);
723 }
724 
725 /*
726  * vm_page_alloc()
727  *
728  * Allocate and return a memory cell associated with this VM object/offset
729  * pair.
730  *
731  *	page_req classes:
732  *
733  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
734  *	VM_ALLOC_SYSTEM		greater free drain
735  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
736  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
737  *
738  * The object must be locked.
739  * This routine may not block.
740  * The returned page will be marked PG_BUSY
741  *
742  * Additional special handling is required when called from an interrupt
743  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
744  * in this case.
745  */
746 vm_page_t
747 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
748 {
749 	vm_page_t m = NULL;
750 
751 	KASSERT(!vm_page_lookup(object, pindex),
752 		("vm_page_alloc: page already allocated"));
753 	KKASSERT(page_req &
754 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
755 
756 	/*
757 	 * The pager is allowed to eat deeper into the free page list.
758 	 */
759 	if (curthread == pagethread)
760 		page_req |= VM_ALLOC_SYSTEM;
761 
762 	crit_enter();
763 loop:
764 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
765 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
766 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
767 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
768 	) {
769 		/*
770 		 * The free queue has sufficient free pages to take one out.
771 		 */
772 		if (page_req & VM_ALLOC_ZERO)
773 			m = vm_page_select_free(object, pindex, TRUE);
774 		else
775 			m = vm_page_select_free(object, pindex, FALSE);
776 	} else if (page_req & VM_ALLOC_NORMAL) {
777 		/*
778 		 * Allocatable from the cache (non-interrupt only).  On
779 		 * success, we must free the page and try again, thus
780 		 * ensuring that vmstats.v_*_free_min counters are replenished.
781 		 */
782 #ifdef INVARIANTS
783 		if (curthread->td_preempted) {
784 			printf("vm_page_alloc(): warning, attempt to allocate"
785 				" cache page from preempting interrupt\n");
786 			m = NULL;
787 		} else {
788 			m = vm_page_select_cache(object, pindex);
789 		}
790 #else
791 		m = vm_page_select_cache(object, pindex);
792 #endif
793 		/*
794 		 * On success move the page into the free queue and loop.
795 		 */
796 		if (m != NULL) {
797 			KASSERT(m->dirty == 0,
798 			    ("Found dirty cache page %p", m));
799 			vm_page_busy(m);
800 			vm_page_protect(m, VM_PROT_NONE);
801 			vm_page_free(m);
802 			goto loop;
803 		}
804 
805 		/*
806 		 * On failure return NULL
807 		 */
808 		crit_exit();
809 #if defined(DIAGNOSTIC)
810 		if (vmstats.v_cache_count > 0)
811 			printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
812 #endif
813 		vm_pageout_deficit++;
814 		pagedaemon_wakeup();
815 		return (NULL);
816 	} else {
817 		/*
818 		 * No pages available, wakeup the pageout daemon and give up.
819 		 */
820 		crit_exit();
821 		vm_pageout_deficit++;
822 		pagedaemon_wakeup();
823 		return (NULL);
824 	}
825 
826 	/*
827 	 * Good page found.  The page has not yet been busied.  We are in
828 	 * a critical section.
829 	 */
830 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
831 
832 	/*
833 	 * Remove from free queue
834 	 */
835 	vm_page_unqueue_nowakeup(m);
836 
837 	/*
838 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
839 	 * the page PG_BUSY
840 	 */
841 	if (m->flags & PG_ZERO) {
842 		vm_page_zero_count--;
843 		m->flags = PG_ZERO | PG_BUSY;
844 	} else {
845 		m->flags = PG_BUSY;
846 	}
847 	m->wire_count = 0;
848 	m->hold_count = 0;
849 	m->act_count = 0;
850 	m->busy = 0;
851 	m->valid = 0;
852 	KASSERT(m->dirty == 0,
853 		("vm_page_alloc: free/cache page %p was dirty", m));
854 
855 	/*
856 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
857 	 * inserting a page here does not insert it into the pmap (which
858 	 * could cause us to block allocating memory).  We cannot block
859 	 * anywhere.
860 	 */
861 	vm_page_insert(m, object, pindex);
862 
863 	/*
864 	 * Don't wakeup too often - wakeup the pageout daemon when
865 	 * we would be nearly out of memory.
866 	 */
867 	if (vm_paging_needed())
868 		pagedaemon_wakeup();
869 
870 	crit_exit();
871 
872 	/*
873 	 * A PG_BUSY page is returned.
874 	 */
875 	return (m);
876 }
877 
878 /*
879  * Block until free pages are available for allocation, called in various
880  * places before memory allocations.
881  */
882 void
883 vm_wait(void)
884 {
885 	int s;
886 
887 	s = splvm();
888 	if (curthread == pagethread) {
889 		vm_pageout_pages_needed = 1;
890 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
891 	} else {
892 		if (!vm_pages_needed) {
893 			vm_pages_needed = 1;
894 			wakeup(&vm_pages_needed);
895 		}
896 		tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
897 	}
898 	splx(s);
899 }
900 
901 /*
902  * Block until free pages are available for allocation
903  *
904  * Called only in vm_fault so that processes page faulting can be
905  * easily tracked.
906  *
907  * Sleeps at a lower priority than vm_wait() so that vm_wait()ing
908  * processes will be able to grab memory first.  Do not change
909  * this balance without careful testing first.
910  */
911 void
912 vm_waitpfault(void)
913 {
914 	int s;
915 
916 	s = splvm();
917 	if (!vm_pages_needed) {
918 		vm_pages_needed = 1;
919 		wakeup(&vm_pages_needed);
920 	}
921 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
922 	splx(s);
923 }
924 
925 /*
926  * Put the specified page on the active list (if appropriate).  Ensure
927  * that act_count is at least ACT_INIT but do not otherwise mess with it.
928  *
929  * The page queues must be locked.
930  * This routine may not block.
931  */
932 void
933 vm_page_activate(vm_page_t m)
934 {
935 	crit_enter();
936 	if (m->queue != PQ_ACTIVE) {
937 		if ((m->queue - m->pc) == PQ_CACHE)
938 			mycpu->gd_cnt.v_reactivated++;
939 
940 		vm_page_unqueue(m);
941 
942 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
943 			m->queue = PQ_ACTIVE;
944 			vm_page_queues[PQ_ACTIVE].lcnt++;
945 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
946 					    m, pageq);
947 			if (m->act_count < ACT_INIT)
948 				m->act_count = ACT_INIT;
949 			vmstats.v_active_count++;
950 		}
951 	} else {
952 		if (m->act_count < ACT_INIT)
953 			m->act_count = ACT_INIT;
954 	}
955 	crit_exit();
956 }
957 
958 /*
959  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
960  * routine is called when a page has been added to the cache or free
961  * queues.
962  *
963  * This routine may not block.
964  * This routine must be called at splvm()
965  */
966 static __inline void
967 vm_page_free_wakeup(void)
968 {
969 	/*
970 	 * if pageout daemon needs pages, then tell it that there are
971 	 * some free.
972 	 */
973 	if (vm_pageout_pages_needed &&
974 	    vmstats.v_cache_count + vmstats.v_free_count >=
975 	    vmstats.v_pageout_free_min
976 	) {
977 		wakeup(&vm_pageout_pages_needed);
978 		vm_pageout_pages_needed = 0;
979 	}
980 
981 	/*
982 	 * wakeup processes that are waiting on memory if we hit a
983 	 * high water mark. And wakeup scheduler process if we have
984 	 * lots of memory. this process will swapin processes.
985 	 */
986 	if (vm_pages_needed && !vm_page_count_min()) {
987 		vm_pages_needed = 0;
988 		wakeup(&vmstats.v_free_count);
989 	}
990 }
991 
992 /*
993  *	vm_page_free_toq:
994  *
995  *	Returns the given page to the PQ_FREE list, disassociating it with
996  *	any VM object.
997  *
998  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
999  *	return (the page will have been freed).  No particular spl is required
1000  *	on entry.
1001  *
1002  *	This routine may not block.
1003  */
1004 void
1005 vm_page_free_toq(vm_page_t m)
1006 {
1007 	struct vpgqueues *pq;
1008 
1009 	crit_enter();
1010 	mycpu->gd_cnt.v_tfree++;
1011 
1012 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1013 		printf(
1014 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1015 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1016 		    m->hold_count);
1017 		if ((m->queue - m->pc) == PQ_FREE)
1018 			panic("vm_page_free: freeing free page");
1019 		else
1020 			panic("vm_page_free: freeing busy page");
1021 	}
1022 
1023 	/*
1024 	 * unqueue, then remove page.  Note that we cannot destroy
1025 	 * the page here because we do not want to call the pager's
1026 	 * callback routine until after we've put the page on the
1027 	 * appropriate free queue.
1028 	 */
1029 	vm_page_unqueue_nowakeup(m);
1030 	vm_page_remove(m);
1031 
1032 	/*
1033 	 * No further management of fictitious pages occurs beyond object
1034 	 * and queue removal.
1035 	 */
1036 	if ((m->flags & PG_FICTITIOUS) != 0) {
1037 		vm_page_wakeup(m);
1038 		crit_exit();
1039 		return;
1040 	}
1041 
1042 	m->valid = 0;
1043 	vm_page_undirty(m);
1044 
1045 	if (m->wire_count != 0) {
1046 		if (m->wire_count > 1) {
1047 		    panic(
1048 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1049 			m->wire_count, (long)m->pindex);
1050 		}
1051 		panic("vm_page_free: freeing wired page");
1052 	}
1053 
1054 	/*
1055 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1056 	 */
1057 	if (m->flags & PG_UNMANAGED) {
1058 	    m->flags &= ~PG_UNMANAGED;
1059 	} else {
1060 #ifdef __alpha__
1061 	    pmap_page_is_free(m);
1062 #endif
1063 	}
1064 
1065 	if (m->hold_count != 0) {
1066 		m->flags &= ~PG_ZERO;
1067 		m->queue = PQ_HOLD;
1068 	} else {
1069 		m->queue = PQ_FREE + m->pc;
1070 	}
1071 	pq = &vm_page_queues[m->queue];
1072 	pq->lcnt++;
1073 	++(*pq->cnt);
1074 
1075 	/*
1076 	 * Put zero'd pages on the end ( where we look for zero'd pages
1077 	 * first ) and non-zerod pages at the head.
1078 	 */
1079 	if (m->flags & PG_ZERO) {
1080 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1081 		++vm_page_zero_count;
1082 	} else {
1083 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1084 	}
1085 	vm_page_wakeup(m);
1086 	vm_page_free_wakeup();
1087 	crit_exit();
1088 }
1089 
1090 /*
1091  * vm_page_unmanage()
1092  *
1093  * Prevent PV management from being done on the page.  The page is
1094  * removed from the paging queues as if it were wired, and as a
1095  * consequence of no longer being managed the pageout daemon will not
1096  * touch it (since there is no way to locate the pte mappings for the
1097  * page).  madvise() calls that mess with the pmap will also no longer
1098  * operate on the page.
1099  *
1100  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1101  * will clear the flag.
1102  *
1103  * This routine is used by OBJT_PHYS objects - objects using unswappable
1104  * physical memory as backing store rather then swap-backed memory and
1105  * will eventually be extended to support 4MB unmanaged physical
1106  * mappings.
1107  *
1108  * Must be called with a critical section held.
1109  */
1110 void
1111 vm_page_unmanage(vm_page_t m)
1112 {
1113 	ASSERT_IN_CRIT_SECTION();
1114 	if ((m->flags & PG_UNMANAGED) == 0) {
1115 		if (m->wire_count == 0)
1116 			vm_page_unqueue(m);
1117 	}
1118 	vm_page_flag_set(m, PG_UNMANAGED);
1119 }
1120 
1121 /*
1122  * Mark this page as wired down by yet another map, removing it from
1123  * paging queues as necessary.
1124  *
1125  * The page queues must be locked.
1126  * This routine may not block.
1127  */
1128 void
1129 vm_page_wire(vm_page_t m)
1130 {
1131 	/*
1132 	 * Only bump the wire statistics if the page is not already wired,
1133 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1134 	 * it is already off the queues).  Don't do anything with fictitious
1135 	 * pages because they are always wired.
1136 	 */
1137 	crit_enter();
1138 	if ((m->flags & PG_FICTITIOUS) == 0) {
1139 		if (m->wire_count == 0) {
1140 			if ((m->flags & PG_UNMANAGED) == 0)
1141 				vm_page_unqueue(m);
1142 			vmstats.v_wire_count++;
1143 		}
1144 		m->wire_count++;
1145 		KASSERT(m->wire_count != 0,
1146 		    ("vm_page_wire: wire_count overflow m=%p", m));
1147 	}
1148 	vm_page_flag_set(m, PG_MAPPED);
1149 	crit_exit();
1150 }
1151 
1152 /*
1153  * Release one wiring of this page, potentially enabling it to be paged again.
1154  *
1155  * Many pages placed on the inactive queue should actually go
1156  * into the cache, but it is difficult to figure out which.  What
1157  * we do instead, if the inactive target is well met, is to put
1158  * clean pages at the head of the inactive queue instead of the tail.
1159  * This will cause them to be moved to the cache more quickly and
1160  * if not actively re-referenced, freed more quickly.  If we just
1161  * stick these pages at the end of the inactive queue, heavy filesystem
1162  * meta-data accesses can cause an unnecessary paging load on memory bound
1163  * processes.  This optimization causes one-time-use metadata to be
1164  * reused more quickly.
1165  *
1166  * BUT, if we are in a low-memory situation we have no choice but to
1167  * put clean pages on the cache queue.
1168  *
1169  * A number of routines use vm_page_unwire() to guarantee that the page
1170  * will go into either the inactive or active queues, and will NEVER
1171  * be placed in the cache - for example, just after dirtying a page.
1172  * dirty pages in the cache are not allowed.
1173  *
1174  * The page queues must be locked.
1175  * This routine may not block.
1176  */
1177 void
1178 vm_page_unwire(vm_page_t m, int activate)
1179 {
1180 	crit_enter();
1181 	if (m->flags & PG_FICTITIOUS) {
1182 		/* do nothing */
1183 	} else if (m->wire_count <= 0) {
1184 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1185 	} else {
1186 		if (--m->wire_count == 0) {
1187 			--vmstats.v_wire_count;
1188 			if (m->flags & PG_UNMANAGED) {
1189 				;
1190 			} else if (activate) {
1191 				TAILQ_INSERT_TAIL(
1192 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1193 				m->queue = PQ_ACTIVE;
1194 				vm_page_queues[PQ_ACTIVE].lcnt++;
1195 				vmstats.v_active_count++;
1196 			} else {
1197 				vm_page_flag_clear(m, PG_WINATCFLS);
1198 				TAILQ_INSERT_TAIL(
1199 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1200 				m->queue = PQ_INACTIVE;
1201 				vm_page_queues[PQ_INACTIVE].lcnt++;
1202 				vmstats.v_inactive_count++;
1203 			}
1204 		}
1205 	}
1206 	crit_exit();
1207 }
1208 
1209 
1210 /*
1211  * Move the specified page to the inactive queue.  If the page has
1212  * any associated swap, the swap is deallocated.
1213  *
1214  * Normally athead is 0 resulting in LRU operation.  athead is set
1215  * to 1 if we want this page to be 'as if it were placed in the cache',
1216  * except without unmapping it from the process address space.
1217  *
1218  * This routine may not block.
1219  */
1220 static __inline void
1221 _vm_page_deactivate(vm_page_t m, int athead)
1222 {
1223 	/*
1224 	 * Ignore if already inactive.
1225 	 */
1226 	if (m->queue == PQ_INACTIVE)
1227 		return;
1228 
1229 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1230 		if ((m->queue - m->pc) == PQ_CACHE)
1231 			mycpu->gd_cnt.v_reactivated++;
1232 		vm_page_flag_clear(m, PG_WINATCFLS);
1233 		vm_page_unqueue(m);
1234 		if (athead)
1235 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1236 		else
1237 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1238 		m->queue = PQ_INACTIVE;
1239 		vm_page_queues[PQ_INACTIVE].lcnt++;
1240 		vmstats.v_inactive_count++;
1241 	}
1242 }
1243 
1244 void
1245 vm_page_deactivate(vm_page_t m)
1246 {
1247     crit_enter();
1248     _vm_page_deactivate(m, 0);
1249     crit_exit();
1250 }
1251 
1252 /*
1253  * vm_page_try_to_cache:
1254  *
1255  * Returns 0 on failure, 1 on success
1256  */
1257 int
1258 vm_page_try_to_cache(vm_page_t m)
1259 {
1260 	crit_enter();
1261 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1262 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1263 		return(0);
1264 	}
1265 	vm_page_test_dirty(m);
1266 	if (m->dirty) {
1267 		crit_exit();
1268 		return(0);
1269 	}
1270 	vm_page_cache(m);
1271 	crit_exit();
1272 	return(1);
1273 }
1274 
1275 /*
1276  * Attempt to free the page.  If we cannot free it, we do nothing.
1277  * 1 is returned on success, 0 on failure.
1278  */
1279 int
1280 vm_page_try_to_free(vm_page_t m)
1281 {
1282 	crit_enter();
1283 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1284 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1285 		crit_exit();
1286 		return(0);
1287 	}
1288 	vm_page_test_dirty(m);
1289 	if (m->dirty) {
1290 		crit_exit();
1291 		return(0);
1292 	}
1293 	vm_page_busy(m);
1294 	vm_page_protect(m, VM_PROT_NONE);
1295 	vm_page_free(m);
1296 	crit_exit();
1297 	return(1);
1298 }
1299 
1300 /*
1301  * vm_page_cache
1302  *
1303  * Put the specified page onto the page cache queue (if appropriate).
1304  *
1305  * This routine may not block.
1306  */
1307 void
1308 vm_page_cache(vm_page_t m)
1309 {
1310 	ASSERT_IN_CRIT_SECTION();
1311 
1312 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1313 			m->wire_count || m->hold_count) {
1314 		printf("vm_page_cache: attempting to cache busy/held page\n");
1315 		return;
1316 	}
1317 	if ((m->queue - m->pc) == PQ_CACHE)
1318 		return;
1319 
1320 	/*
1321 	 * Remove all pmaps and indicate that the page is not
1322 	 * writeable or mapped.
1323 	 */
1324 
1325 	vm_page_protect(m, VM_PROT_NONE);
1326 	if (m->dirty != 0) {
1327 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1328 			(long)m->pindex);
1329 	}
1330 	vm_page_unqueue_nowakeup(m);
1331 	m->queue = PQ_CACHE + m->pc;
1332 	vm_page_queues[m->queue].lcnt++;
1333 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1334 	vmstats.v_cache_count++;
1335 	vm_page_free_wakeup();
1336 }
1337 
1338 /*
1339  * vm_page_dontneed()
1340  *
1341  * Cache, deactivate, or do nothing as appropriate.  This routine
1342  * is typically used by madvise() MADV_DONTNEED.
1343  *
1344  * Generally speaking we want to move the page into the cache so
1345  * it gets reused quickly.  However, this can result in a silly syndrome
1346  * due to the page recycling too quickly.  Small objects will not be
1347  * fully cached.  On the otherhand, if we move the page to the inactive
1348  * queue we wind up with a problem whereby very large objects
1349  * unnecessarily blow away our inactive and cache queues.
1350  *
1351  * The solution is to move the pages based on a fixed weighting.  We
1352  * either leave them alone, deactivate them, or move them to the cache,
1353  * where moving them to the cache has the highest weighting.
1354  * By forcing some pages into other queues we eventually force the
1355  * system to balance the queues, potentially recovering other unrelated
1356  * space from active.  The idea is to not force this to happen too
1357  * often.
1358  */
1359 void
1360 vm_page_dontneed(vm_page_t m)
1361 {
1362 	static int dnweight;
1363 	int dnw;
1364 	int head;
1365 
1366 	dnw = ++dnweight;
1367 
1368 	/*
1369 	 * occassionally leave the page alone
1370 	 */
1371 	crit_enter();
1372 	if ((dnw & 0x01F0) == 0 ||
1373 	    m->queue == PQ_INACTIVE ||
1374 	    m->queue - m->pc == PQ_CACHE
1375 	) {
1376 		if (m->act_count >= ACT_INIT)
1377 			--m->act_count;
1378 		crit_exit();
1379 		return;
1380 	}
1381 
1382 	if (m->dirty == 0)
1383 		vm_page_test_dirty(m);
1384 
1385 	if (m->dirty || (dnw & 0x0070) == 0) {
1386 		/*
1387 		 * Deactivate the page 3 times out of 32.
1388 		 */
1389 		head = 0;
1390 	} else {
1391 		/*
1392 		 * Cache the page 28 times out of every 32.  Note that
1393 		 * the page is deactivated instead of cached, but placed
1394 		 * at the head of the queue instead of the tail.
1395 		 */
1396 		head = 1;
1397 	}
1398 	_vm_page_deactivate(m, head);
1399 	crit_exit();
1400 }
1401 
1402 /*
1403  * Grab a page, blocking if it is busy and allocating a page if necessary.
1404  * A busy page is returned or NULL.
1405  *
1406  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1407  * If VM_ALLOC_RETRY is not specified
1408  *
1409  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1410  * always returned if we had blocked.
1411  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1412  * This routine may not be called from an interrupt.
1413  * The returned page may not be entirely valid.
1414  *
1415  * This routine may be called from mainline code without spl protection and
1416  * be guarenteed a busied page associated with the object at the specified
1417  * index.
1418  */
1419 vm_page_t
1420 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1421 {
1422 	vm_page_t m;
1423 	int generation;
1424 
1425 	KKASSERT(allocflags &
1426 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1427 	crit_enter();
1428 retrylookup:
1429 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1430 		if (m->busy || (m->flags & PG_BUSY)) {
1431 			generation = object->generation;
1432 
1433 			while ((object->generation == generation) &&
1434 					(m->busy || (m->flags & PG_BUSY))) {
1435 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1436 				tsleep(m, 0, "pgrbwt", 0);
1437 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1438 					m = NULL;
1439 					goto done;
1440 				}
1441 			}
1442 			goto retrylookup;
1443 		} else {
1444 			vm_page_busy(m);
1445 			goto done;
1446 		}
1447 	}
1448 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1449 	if (m == NULL) {
1450 		vm_wait();
1451 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1452 			goto done;
1453 		goto retrylookup;
1454 	}
1455 done:
1456 	crit_exit();
1457 	return(m);
1458 }
1459 
1460 /*
1461  * Mapping function for valid bits or for dirty bits in
1462  * a page.  May not block.
1463  *
1464  * Inputs are required to range within a page.
1465  */
1466 __inline int
1467 vm_page_bits(int base, int size)
1468 {
1469 	int first_bit;
1470 	int last_bit;
1471 
1472 	KASSERT(
1473 	    base + size <= PAGE_SIZE,
1474 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1475 	);
1476 
1477 	if (size == 0)		/* handle degenerate case */
1478 		return(0);
1479 
1480 	first_bit = base >> DEV_BSHIFT;
1481 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1482 
1483 	return ((2 << last_bit) - (1 << first_bit));
1484 }
1485 
1486 /*
1487  * Sets portions of a page valid and clean.  The arguments are expected
1488  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1489  * of any partial chunks touched by the range.  The invalid portion of
1490  * such chunks will be zero'd.
1491  *
1492  * This routine may not block.
1493  *
1494  * (base + size) must be less then or equal to PAGE_SIZE.
1495  */
1496 void
1497 vm_page_set_validclean(vm_page_t m, int base, int size)
1498 {
1499 	int pagebits;
1500 	int frag;
1501 	int endoff;
1502 
1503 	if (size == 0)	/* handle degenerate case */
1504 		return;
1505 
1506 	/*
1507 	 * If the base is not DEV_BSIZE aligned and the valid
1508 	 * bit is clear, we have to zero out a portion of the
1509 	 * first block.
1510 	 */
1511 
1512 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1513 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1514 	) {
1515 		pmap_zero_page_area(
1516 		    VM_PAGE_TO_PHYS(m),
1517 		    frag,
1518 		    base - frag
1519 		);
1520 	}
1521 
1522 	/*
1523 	 * If the ending offset is not DEV_BSIZE aligned and the
1524 	 * valid bit is clear, we have to zero out a portion of
1525 	 * the last block.
1526 	 */
1527 
1528 	endoff = base + size;
1529 
1530 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1531 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1532 	) {
1533 		pmap_zero_page_area(
1534 		    VM_PAGE_TO_PHYS(m),
1535 		    endoff,
1536 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1537 		);
1538 	}
1539 
1540 	/*
1541 	 * Set valid, clear dirty bits.  If validating the entire
1542 	 * page we can safely clear the pmap modify bit.  We also
1543 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1544 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1545 	 * be set again.
1546 	 *
1547 	 * We set valid bits inclusive of any overlap, but we can only
1548 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1549 	 * the range.
1550 	 */
1551 
1552 	pagebits = vm_page_bits(base, size);
1553 	m->valid |= pagebits;
1554 #if 0	/* NOT YET */
1555 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1556 		frag = DEV_BSIZE - frag;
1557 		base += frag;
1558 		size -= frag;
1559 		if (size < 0)
1560 		    size = 0;
1561 	}
1562 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1563 #endif
1564 	m->dirty &= ~pagebits;
1565 	if (base == 0 && size == PAGE_SIZE) {
1566 		pmap_clear_modify(m);
1567 		vm_page_flag_clear(m, PG_NOSYNC);
1568 	}
1569 }
1570 
1571 void
1572 vm_page_clear_dirty(vm_page_t m, int base, int size)
1573 {
1574 	m->dirty &= ~vm_page_bits(base, size);
1575 }
1576 
1577 /*
1578  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1579  * valid and dirty bits for the effected areas are cleared.
1580  *
1581  * May not block.
1582  */
1583 void
1584 vm_page_set_invalid(vm_page_t m, int base, int size)
1585 {
1586 	int bits;
1587 
1588 	bits = vm_page_bits(base, size);
1589 	m->valid &= ~bits;
1590 	m->dirty &= ~bits;
1591 	m->object->generation++;
1592 }
1593 
1594 /*
1595  * The kernel assumes that the invalid portions of a page contain
1596  * garbage, but such pages can be mapped into memory by user code.
1597  * When this occurs, we must zero out the non-valid portions of the
1598  * page so user code sees what it expects.
1599  *
1600  * Pages are most often semi-valid when the end of a file is mapped
1601  * into memory and the file's size is not page aligned.
1602  */
1603 void
1604 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1605 {
1606 	int b;
1607 	int i;
1608 
1609 	/*
1610 	 * Scan the valid bits looking for invalid sections that
1611 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1612 	 * valid bit may be set ) have already been zerod by
1613 	 * vm_page_set_validclean().
1614 	 */
1615 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1616 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1617 		    (m->valid & (1 << i))
1618 		) {
1619 			if (i > b) {
1620 				pmap_zero_page_area(
1621 				    VM_PAGE_TO_PHYS(m),
1622 				    b << DEV_BSHIFT,
1623 				    (i - b) << DEV_BSHIFT
1624 				);
1625 			}
1626 			b = i + 1;
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * setvalid is TRUE when we can safely set the zero'd areas
1632 	 * as being valid.  We can do this if there are no cache consistency
1633 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1634 	 */
1635 	if (setvalid)
1636 		m->valid = VM_PAGE_BITS_ALL;
1637 }
1638 
1639 /*
1640  * Is a (partial) page valid?  Note that the case where size == 0
1641  * will return FALSE in the degenerate case where the page is entirely
1642  * invalid, and TRUE otherwise.
1643  *
1644  * May not block.
1645  */
1646 int
1647 vm_page_is_valid(vm_page_t m, int base, int size)
1648 {
1649 	int bits = vm_page_bits(base, size);
1650 
1651 	if (m->valid && ((m->valid & bits) == bits))
1652 		return 1;
1653 	else
1654 		return 0;
1655 }
1656 
1657 /*
1658  * update dirty bits from pmap/mmu.  May not block.
1659  */
1660 void
1661 vm_page_test_dirty(vm_page_t m)
1662 {
1663 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1664 		vm_page_dirty(m);
1665 	}
1666 }
1667 
1668 #include "opt_ddb.h"
1669 #ifdef DDB
1670 #include <sys/kernel.h>
1671 
1672 #include <ddb/ddb.h>
1673 
1674 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1675 {
1676 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1677 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1678 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1679 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1680 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1681 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1682 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1683 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1684 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1685 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1686 }
1687 
1688 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1689 {
1690 	int i;
1691 	db_printf("PQ_FREE:");
1692 	for(i=0;i<PQ_L2_SIZE;i++) {
1693 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1694 	}
1695 	db_printf("\n");
1696 
1697 	db_printf("PQ_CACHE:");
1698 	for(i=0;i<PQ_L2_SIZE;i++) {
1699 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1700 	}
1701 	db_printf("\n");
1702 
1703 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1704 		vm_page_queues[PQ_ACTIVE].lcnt,
1705 		vm_page_queues[PQ_INACTIVE].lcnt);
1706 }
1707 #endif /* DDB */
1708