xref: /dragonfly/sys/vm/vm_page.c (revision dcd37f7d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <sys/lock.h>
84 #include <vm/vm_kern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 
94 #include <machine/md_var.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/mplock2.h>
98 
99 static void vm_page_queue_init(void);
100 static void vm_page_free_wakeup(void);
101 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
102 static vm_page_t _vm_page_list_find2(int basequeue, int index);
103 
104 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
105 
106 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
107 
108 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
109 	     vm_pindex_t, pindex);
110 
111 static void
112 vm_page_queue_init(void)
113 {
114 	int i;
115 
116 	for (i = 0; i < PQ_L2_SIZE; i++)
117 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
118 	for (i = 0; i < PQ_L2_SIZE; i++)
119 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
120 
121 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
122 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
123 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
124 	/* PQ_NONE has no queue */
125 
126 	for (i = 0; i < PQ_COUNT; i++)
127 		TAILQ_INIT(&vm_page_queues[i].pl);
128 }
129 
130 /*
131  * note: place in initialized data section?  Is this necessary?
132  */
133 long first_page = 0;
134 int vm_page_array_size = 0;
135 int vm_page_zero_count = 0;
136 vm_page_t vm_page_array = 0;
137 
138 /*
139  * (low level boot)
140  *
141  * Sets the page size, perhaps based upon the memory size.
142  * Must be called before any use of page-size dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (vmstats.v_page_size == 0)
148 		vmstats.v_page_size = PAGE_SIZE;
149 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  * (low level boot)
155  *
156  * Add a new page to the freelist for use by the system.  New pages
157  * are added to both the head and tail of the associated free page
158  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
159  * requests pull 'recent' adds (higher physical addresses) first.
160  *
161  * Must be called in a critical section.
162  */
163 vm_page_t
164 vm_add_new_page(vm_paddr_t pa)
165 {
166 	struct vpgqueues *vpq;
167 	vm_page_t m;
168 
169 	++vmstats.v_page_count;
170 	++vmstats.v_free_count;
171 	m = PHYS_TO_VM_PAGE(pa);
172 	m->phys_addr = pa;
173 	m->flags = 0;
174 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
175 	m->queue = m->pc + PQ_FREE;
176 	KKASSERT(m->dirty == 0);
177 
178 	vpq = &vm_page_queues[m->queue];
179 	if (vpq->flipflop)
180 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
181 	else
182 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
183 	vpq->flipflop = 1 - vpq->flipflop;
184 
185 	vm_page_queues[m->queue].lcnt++;
186 	return (m);
187 }
188 
189 /*
190  * (low level boot)
191  *
192  * Initializes the resident memory module.
193  *
194  * Allocates memory for the page cells, and for the object/offset-to-page
195  * hash table headers.  Each page cell is initialized and placed on the
196  * free list.
197  *
198  * starta/enda represents the range of physical memory addresses available
199  * for use (skipping memory already used by the kernel), subject to
200  * phys_avail[].  Note that phys_avail[] has already mapped out memory
201  * already in use by the kernel.
202  */
203 vm_offset_t
204 vm_page_startup(vm_offset_t vaddr)
205 {
206 	vm_offset_t mapped;
207 	vm_size_t npages;
208 	vm_paddr_t page_range;
209 	vm_paddr_t new_end;
210 	int i;
211 	vm_paddr_t pa;
212 	int nblocks;
213 	vm_paddr_t last_pa;
214 	vm_paddr_t end;
215 	vm_paddr_t biggestone, biggestsize;
216 	vm_paddr_t total;
217 
218 	total = 0;
219 	biggestsize = 0;
220 	biggestone = 0;
221 	nblocks = 0;
222 	vaddr = round_page(vaddr);
223 
224 	for (i = 0; phys_avail[i + 1]; i += 2) {
225 		phys_avail[i] = round_page64(phys_avail[i]);
226 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
227 	}
228 
229 	for (i = 0; phys_avail[i + 1]; i += 2) {
230 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
231 
232 		if (size > biggestsize) {
233 			biggestone = i;
234 			biggestsize = size;
235 		}
236 		++nblocks;
237 		total += size;
238 	}
239 
240 	end = phys_avail[biggestone+1];
241 	end = trunc_page(end);
242 
243 	/*
244 	 * Initialize the queue headers for the free queue, the active queue
245 	 * and the inactive queue.
246 	 */
247 
248 	vm_page_queue_init();
249 
250 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
251 #if !defined(_KERNEL_VIRTUAL)
252 	/*
253 	 * Allocate a bitmap to indicate that a random physical page
254 	 * needs to be included in a minidump.
255 	 *
256 	 * The amd64 port needs this to indicate which direct map pages
257 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
258 	 *
259 	 * However, i386 still needs this workspace internally within the
260 	 * minidump code.  In theory, they are not needed on i386, but are
261 	 * included should the sf_buf code decide to use them.
262 	 */
263 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
264 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
265 	end -= vm_page_dump_size;
266 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
267 	    VM_PROT_READ | VM_PROT_WRITE);
268 	bzero((void *)vm_page_dump, vm_page_dump_size);
269 #endif
270 
271 	/*
272 	 * Compute the number of pages of memory that will be available for
273 	 * use (taking into account the overhead of a page structure per
274 	 * page).
275 	 */
276 	first_page = phys_avail[0] / PAGE_SIZE;
277 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
278 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
279 
280 	/*
281 	 * Initialize the mem entry structures now, and put them in the free
282 	 * queue.
283 	 */
284 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
285 	mapped = pmap_map(&vaddr, new_end, end,
286 	    VM_PROT_READ | VM_PROT_WRITE);
287 	vm_page_array = (vm_page_t)mapped;
288 
289 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
290 	/*
291 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
292 	 * we have to manually add these pages to the minidump tracking so
293 	 * that they can be dumped, including the vm_page_array.
294 	 */
295 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
296 		dump_add_page(pa);
297 #endif
298 
299 	/*
300 	 * Clear all of the page structures
301 	 */
302 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
303 	vm_page_array_size = page_range;
304 
305 	/*
306 	 * Construct the free queue(s) in ascending order (by physical
307 	 * address) so that the first 16MB of physical memory is allocated
308 	 * last rather than first.  On large-memory machines, this avoids
309 	 * the exhaustion of low physical memory before isa_dmainit has run.
310 	 */
311 	vmstats.v_page_count = 0;
312 	vmstats.v_free_count = 0;
313 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
314 		pa = phys_avail[i];
315 		if (i == biggestone)
316 			last_pa = new_end;
317 		else
318 			last_pa = phys_avail[i + 1];
319 		while (pa < last_pa && npages-- > 0) {
320 			vm_add_new_page(pa);
321 			pa += PAGE_SIZE;
322 		}
323 	}
324 	return (vaddr);
325 }
326 
327 /*
328  * Scan comparison function for Red-Black tree scans.  An inclusive
329  * (start,end) is expected.  Other fields are not used.
330  */
331 int
332 rb_vm_page_scancmp(struct vm_page *p, void *data)
333 {
334 	struct rb_vm_page_scan_info *info = data;
335 
336 	if (p->pindex < info->start_pindex)
337 		return(-1);
338 	if (p->pindex > info->end_pindex)
339 		return(1);
340 	return(0);
341 }
342 
343 int
344 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
345 {
346 	if (p1->pindex < p2->pindex)
347 		return(-1);
348 	if (p1->pindex > p2->pindex)
349 		return(1);
350 	return(0);
351 }
352 
353 /*
354  * Holding a page keeps it from being reused.  Other parts of the system
355  * can still disassociate the page from its current object and free it, or
356  * perform read or write I/O on it and/or otherwise manipulate the page,
357  * but if the page is held the VM system will leave the page and its data
358  * intact and not reuse the page for other purposes until the last hold
359  * reference is released.  (see vm_page_wire() if you want to prevent the
360  * page from being disassociated from its object too).
361  *
362  * The caller must hold vm_token.
363  *
364  * The caller must still validate the contents of the page and, if necessary,
365  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
366  * before manipulating the page.
367  */
368 void
369 vm_page_hold(vm_page_t m)
370 {
371 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
372 	++m->hold_count;
373 }
374 
375 /*
376  * The opposite of vm_page_hold().  A page can be freed while being held,
377  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
378  * in this case to actually free it once the hold count drops to 0.
379  *
380  * The caller must hold vm_token if non-blocking operation is desired,
381  * but otherwise does not need to.
382  */
383 void
384 vm_page_unhold(vm_page_t m)
385 {
386 	lwkt_gettoken(&vm_token);
387 	--m->hold_count;
388 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
389 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
390 		vm_page_busy(m);
391 		vm_page_free_toq(m);
392 	}
393 	lwkt_reltoken(&vm_token);
394 }
395 
396 /*
397  * Inserts the given vm_page into the object and object list.
398  *
399  * The pagetables are not updated but will presumably fault the page
400  * in if necessary, or if a kernel page the caller will at some point
401  * enter the page into the kernel's pmap.  We are not allowed to block
402  * here so we *can't* do this anyway.
403  *
404  * This routine may not block.
405  * This routine must be called with the vm_token held.
406  * This routine must be called with a critical section held.
407  */
408 void
409 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
410 {
411 	ASSERT_IN_CRIT_SECTION();
412 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
413 	if (m->object != NULL)
414 		panic("vm_page_insert: already inserted");
415 
416 	/*
417 	 * Record the object/offset pair in this page
418 	 */
419 	m->object = object;
420 	m->pindex = pindex;
421 
422 	/*
423 	 * Insert it into the object.
424 	 */
425 	ASSERT_MP_LOCK_HELD(curthread);
426 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
427 	object->generation++;
428 
429 	/*
430 	 * show that the object has one more resident page.
431 	 */
432 	object->resident_page_count++;
433 
434 	/*
435 	 * Since we are inserting a new and possibly dirty page,
436 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
437 	 */
438 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
439 		vm_object_set_writeable_dirty(object);
440 
441 	/*
442 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
443 	 */
444 	swap_pager_page_inserted(m);
445 }
446 
447 /*
448  * Removes the given vm_page_t from the global (object,index) hash table
449  * and from the object's memq.
450  *
451  * The underlying pmap entry (if any) is NOT removed here.
452  * This routine may not block.
453  *
454  * The page must be BUSY and will remain BUSY on return.
455  * No other requirements.
456  *
457  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
458  *	 it busy.
459  */
460 void
461 vm_page_remove(vm_page_t m)
462 {
463 	vm_object_t object;
464 
465 	crit_enter();
466 	lwkt_gettoken(&vm_token);
467 	if (m->object == NULL) {
468 		lwkt_reltoken(&vm_token);
469 		crit_exit();
470 		return;
471 	}
472 
473 	if ((m->flags & PG_BUSY) == 0)
474 		panic("vm_page_remove: page not busy");
475 
476 	object = m->object;
477 
478 	/*
479 	 * Remove the page from the object and update the object.
480 	 */
481 	ASSERT_MP_LOCK_HELD(curthread);
482 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
483 	object->resident_page_count--;
484 	object->generation++;
485 	m->object = NULL;
486 
487 	lwkt_reltoken(&vm_token);
488 	crit_exit();
489 }
490 
491 /*
492  * Locate and return the page at (object, pindex), or NULL if the
493  * page could not be found.
494  *
495  * The caller must hold vm_token if non-blocking operation is desired.
496  */
497 vm_page_t
498 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
499 {
500 	vm_page_t m;
501 
502 	/*
503 	 * Search the hash table for this object/offset pair
504 	 */
505 	ASSERT_MP_LOCK_HELD(curthread);
506 	crit_enter();
507 	lwkt_gettoken(&vm_token);
508 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
509 	lwkt_reltoken(&vm_token);
510 	crit_exit();
511 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
512 	return(m);
513 }
514 
515 /*
516  * vm_page_rename()
517  *
518  * Move the given memory entry from its current object to the specified
519  * target object/offset.
520  *
521  * The object must be locked.
522  * This routine may not block.
523  *
524  * Note: This routine will raise itself to splvm(), the caller need not.
525  *
526  * Note: Swap associated with the page must be invalidated by the move.  We
527  *       have to do this for several reasons:  (1) we aren't freeing the
528  *       page, (2) we are dirtying the page, (3) the VM system is probably
529  *       moving the page from object A to B, and will then later move
530  *       the backing store from A to B and we can't have a conflict.
531  *
532  * Note: We *always* dirty the page.  It is necessary both for the
533  *       fact that we moved it, and because we may be invalidating
534  *	 swap.  If the page is on the cache, we have to deactivate it
535  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
536  *	 on the cache.
537  */
538 void
539 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
540 {
541 	crit_enter();
542 	lwkt_gettoken(&vm_token);
543 	vm_page_remove(m);
544 	vm_page_insert(m, new_object, new_pindex);
545 	if (m->queue - m->pc == PQ_CACHE)
546 		vm_page_deactivate(m);
547 	vm_page_dirty(m);
548 	vm_page_wakeup(m);
549 	lwkt_reltoken(&vm_token);
550 	crit_exit();
551 }
552 
553 /*
554  * vm_page_unqueue() without any wakeup.  This routine is used when a page
555  * is being moved between queues or otherwise is to remain BUSYied by the
556  * caller.
557  *
558  * The caller must hold vm_token
559  * This routine may not block.
560  */
561 void
562 vm_page_unqueue_nowakeup(vm_page_t m)
563 {
564 	int queue = m->queue;
565 	struct vpgqueues *pq;
566 
567 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
568 	if (queue != PQ_NONE) {
569 		pq = &vm_page_queues[queue];
570 		m->queue = PQ_NONE;
571 		TAILQ_REMOVE(&pq->pl, m, pageq);
572 		(*pq->cnt)--;
573 		pq->lcnt--;
574 	}
575 }
576 
577 /*
578  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
579  * if necessary.
580  *
581  * The caller must hold vm_token
582  * This routine may not block.
583  */
584 void
585 vm_page_unqueue(vm_page_t m)
586 {
587 	int queue = m->queue;
588 	struct vpgqueues *pq;
589 
590 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
591 	if (queue != PQ_NONE) {
592 		m->queue = PQ_NONE;
593 		pq = &vm_page_queues[queue];
594 		TAILQ_REMOVE(&pq->pl, m, pageq);
595 		(*pq->cnt)--;
596 		pq->lcnt--;
597 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
598 			pagedaemon_wakeup();
599 	}
600 }
601 
602 /*
603  * vm_page_list_find()
604  *
605  * Find a page on the specified queue with color optimization.
606  *
607  * The page coloring optimization attempts to locate a page that does
608  * not overload other nearby pages in the object in the cpu's L1 or L2
609  * caches.  We need this optimization because cpu caches tend to be
610  * physical caches, while object spaces tend to be virtual.
611  *
612  * Must be called with vm_token held.
613  * This routine may not block.
614  *
615  * Note that this routine is carefully inlined.  A non-inlined version
616  * is available for outside callers but the only critical path is
617  * from within this source file.
618  */
619 static __inline
620 vm_page_t
621 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
622 {
623 	vm_page_t m;
624 
625 	if (prefer_zero)
626 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
627 	else
628 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
629 	if (m == NULL)
630 		m = _vm_page_list_find2(basequeue, index);
631 	return(m);
632 }
633 
634 static vm_page_t
635 _vm_page_list_find2(int basequeue, int index)
636 {
637 	int i;
638 	vm_page_t m = NULL;
639 	struct vpgqueues *pq;
640 
641 	pq = &vm_page_queues[basequeue];
642 
643 	/*
644 	 * Note that for the first loop, index+i and index-i wind up at the
645 	 * same place.  Even though this is not totally optimal, we've already
646 	 * blown it by missing the cache case so we do not care.
647 	 */
648 
649 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
650 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
651 			break;
652 
653 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
654 			break;
655 	}
656 	return(m);
657 }
658 
659 /*
660  * Must be called with vm_token held if the caller desired non-blocking
661  * operation and a stable result.
662  */
663 vm_page_t
664 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
665 {
666 	return(_vm_page_list_find(basequeue, index, prefer_zero));
667 }
668 
669 /*
670  * Find a page on the cache queue with color optimization.  As pages
671  * might be found, but not applicable, they are deactivated.  This
672  * keeps us from using potentially busy cached pages.
673  *
674  * This routine may not block.
675  * Must be called with vm_token held.
676  */
677 vm_page_t
678 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
679 {
680 	vm_page_t m;
681 
682 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
683 	while (TRUE) {
684 		m = _vm_page_list_find(
685 		    PQ_CACHE,
686 		    (pindex + object->pg_color) & PQ_L2_MASK,
687 		    FALSE
688 		);
689 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
690 			       m->hold_count || m->wire_count)) {
691 			vm_page_deactivate(m);
692 			continue;
693 		}
694 		return m;
695 	}
696 	/* not reached */
697 }
698 
699 /*
700  * Find a free or zero page, with specified preference.  We attempt to
701  * inline the nominal case and fall back to _vm_page_select_free()
702  * otherwise.
703  *
704  * This routine must be called with a critical section held.
705  * This routine may not block.
706  */
707 static __inline vm_page_t
708 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
709 {
710 	vm_page_t m;
711 
712 	m = _vm_page_list_find(
713 		PQ_FREE,
714 		(pindex + object->pg_color) & PQ_L2_MASK,
715 		prefer_zero
716 	);
717 	return(m);
718 }
719 
720 /*
721  * vm_page_alloc()
722  *
723  * Allocate and return a memory cell associated with this VM object/offset
724  * pair.
725  *
726  *	page_req classes:
727  *
728  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
729  *	VM_ALLOC_QUICK		like normal but cannot use cache
730  *	VM_ALLOC_SYSTEM		greater free drain
731  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
732  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
733  *
734  * The object must be locked.
735  * This routine may not block.
736  * The returned page will be marked PG_BUSY
737  *
738  * Additional special handling is required when called from an interrupt
739  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
740  * in this case.
741  */
742 vm_page_t
743 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
744 {
745 	vm_page_t m = NULL;
746 
747 	crit_enter();
748 	lwkt_gettoken(&vm_token);
749 
750 	KKASSERT(object != NULL);
751 	KASSERT(!vm_page_lookup(object, pindex),
752 		("vm_page_alloc: page already allocated"));
753 	KKASSERT(page_req &
754 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
755 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
756 
757 	/*
758 	 * Certain system threads (pageout daemon, buf_daemon's) are
759 	 * allowed to eat deeper into the free page list.
760 	 */
761 	if (curthread->td_flags & TDF_SYSTHREAD)
762 		page_req |= VM_ALLOC_SYSTEM;
763 
764 loop:
765 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
766 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
767 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
768 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
769 	) {
770 		/*
771 		 * The free queue has sufficient free pages to take one out.
772 		 */
773 		if (page_req & VM_ALLOC_ZERO)
774 			m = vm_page_select_free(object, pindex, TRUE);
775 		else
776 			m = vm_page_select_free(object, pindex, FALSE);
777 	} else if (page_req & VM_ALLOC_NORMAL) {
778 		/*
779 		 * Allocatable from the cache (non-interrupt only).  On
780 		 * success, we must free the page and try again, thus
781 		 * ensuring that vmstats.v_*_free_min counters are replenished.
782 		 */
783 #ifdef INVARIANTS
784 		if (curthread->td_preempted) {
785 			kprintf("vm_page_alloc(): warning, attempt to allocate"
786 				" cache page from preempting interrupt\n");
787 			m = NULL;
788 		} else {
789 			m = vm_page_select_cache(object, pindex);
790 		}
791 #else
792 		m = vm_page_select_cache(object, pindex);
793 #endif
794 		/*
795 		 * On success move the page into the free queue and loop.
796 		 */
797 		if (m != NULL) {
798 			KASSERT(m->dirty == 0,
799 			    ("Found dirty cache page %p", m));
800 			vm_page_busy(m);
801 			vm_page_protect(m, VM_PROT_NONE);
802 			vm_page_free(m);
803 			goto loop;
804 		}
805 
806 		/*
807 		 * On failure return NULL
808 		 */
809 		lwkt_reltoken(&vm_token);
810 		crit_exit();
811 #if defined(DIAGNOSTIC)
812 		if (vmstats.v_cache_count > 0)
813 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
814 #endif
815 		vm_pageout_deficit++;
816 		pagedaemon_wakeup();
817 		return (NULL);
818 	} else {
819 		/*
820 		 * No pages available, wakeup the pageout daemon and give up.
821 		 */
822 		lwkt_reltoken(&vm_token);
823 		crit_exit();
824 		vm_pageout_deficit++;
825 		pagedaemon_wakeup();
826 		return (NULL);
827 	}
828 
829 	/*
830 	 * Good page found.  The page has not yet been busied.  We are in
831 	 * a critical section.
832 	 */
833 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
834 	KASSERT(m->dirty == 0,
835 		("vm_page_alloc: free/cache page %p was dirty", m));
836 
837 	/*
838 	 * Remove from free queue
839 	 */
840 	vm_page_unqueue_nowakeup(m);
841 
842 	/*
843 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
844 	 * the page PG_BUSY
845 	 */
846 	if (m->flags & PG_ZERO) {
847 		vm_page_zero_count--;
848 		m->flags = PG_ZERO | PG_BUSY;
849 	} else {
850 		m->flags = PG_BUSY;
851 	}
852 	m->wire_count = 0;
853 	m->hold_count = 0;
854 	m->act_count = 0;
855 	m->busy = 0;
856 	m->valid = 0;
857 
858 	/*
859 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
860 	 * inserting a page here does not insert it into the pmap (which
861 	 * could cause us to block allocating memory).  We cannot block
862 	 * anywhere.
863 	 */
864 	vm_page_insert(m, object, pindex);
865 
866 	/*
867 	 * Don't wakeup too often - wakeup the pageout daemon when
868 	 * we would be nearly out of memory.
869 	 */
870 	pagedaemon_wakeup();
871 
872 	lwkt_reltoken(&vm_token);
873 	crit_exit();
874 
875 	/*
876 	 * A PG_BUSY page is returned.
877 	 */
878 	return (m);
879 }
880 
881 /*
882  * Wait for sufficient free memory for nominal heavy memory use kernel
883  * operations.
884  */
885 void
886 vm_wait_nominal(void)
887 {
888 	while (vm_page_count_min(0))
889 		vm_wait(0);
890 }
891 
892 /*
893  * Test if vm_wait_nominal() would block.
894  */
895 int
896 vm_test_nominal(void)
897 {
898 	if (vm_page_count_min(0))
899 		return(1);
900 	return(0);
901 }
902 
903 /*
904  * Block until free pages are available for allocation, called in various
905  * places before memory allocations.
906  */
907 void
908 vm_wait(int timo)
909 {
910 	crit_enter();
911 	lwkt_gettoken(&vm_token);
912 	if (curthread == pagethread) {
913 		vm_pageout_pages_needed = 1;
914 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
915 	} else {
916 		if (vm_pages_needed == 0) {
917 			vm_pages_needed = 1;
918 			wakeup(&vm_pages_needed);
919 		}
920 		tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
921 	}
922 	lwkt_reltoken(&vm_token);
923 	crit_exit();
924 }
925 
926 /*
927  * Block until free pages are available for allocation
928  *
929  * Called only in vm_fault so that processes page faulting can be
930  * easily tracked.
931  */
932 void
933 vm_waitpfault(void)
934 {
935 	crit_enter();
936 	lwkt_gettoken(&vm_token);
937 	if (vm_pages_needed == 0) {
938 		vm_pages_needed = 1;
939 		wakeup(&vm_pages_needed);
940 	}
941 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
942 	lwkt_reltoken(&vm_token);
943 	crit_exit();
944 }
945 
946 /*
947  * Put the specified page on the active list (if appropriate).  Ensure
948  * that act_count is at least ACT_INIT but do not otherwise mess with it.
949  *
950  * The page queues must be locked.
951  * This routine may not block.
952  */
953 void
954 vm_page_activate(vm_page_t m)
955 {
956 	crit_enter();
957 	lwkt_gettoken(&vm_token);
958 	if (m->queue != PQ_ACTIVE) {
959 		if ((m->queue - m->pc) == PQ_CACHE)
960 			mycpu->gd_cnt.v_reactivated++;
961 
962 		vm_page_unqueue(m);
963 
964 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
965 			m->queue = PQ_ACTIVE;
966 			vm_page_queues[PQ_ACTIVE].lcnt++;
967 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
968 					    m, pageq);
969 			if (m->act_count < ACT_INIT)
970 				m->act_count = ACT_INIT;
971 			vmstats.v_active_count++;
972 		}
973 	} else {
974 		if (m->act_count < ACT_INIT)
975 			m->act_count = ACT_INIT;
976 	}
977 	lwkt_reltoken(&vm_token);
978 	crit_exit();
979 }
980 
981 /*
982  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
983  * routine is called when a page has been added to the cache or free
984  * queues.
985  *
986  * This routine may not block.
987  * This routine must be called at splvm()
988  */
989 static __inline void
990 vm_page_free_wakeup(void)
991 {
992 	/*
993 	 * if pageout daemon needs pages, then tell it that there are
994 	 * some free.
995 	 */
996 	if (vm_pageout_pages_needed &&
997 	    vmstats.v_cache_count + vmstats.v_free_count >=
998 	    vmstats.v_pageout_free_min
999 	) {
1000 		wakeup(&vm_pageout_pages_needed);
1001 		vm_pageout_pages_needed = 0;
1002 	}
1003 
1004 	/*
1005 	 * wakeup processes that are waiting on memory if we hit a
1006 	 * high water mark. And wakeup scheduler process if we have
1007 	 * lots of memory. this process will swapin processes.
1008 	 */
1009 	if (vm_pages_needed && !vm_page_count_min(0)) {
1010 		vm_pages_needed = 0;
1011 		wakeup(&vmstats.v_free_count);
1012 	}
1013 }
1014 
1015 /*
1016  *	vm_page_free_toq:
1017  *
1018  *	Returns the given page to the PQ_FREE list, disassociating it with
1019  *	any VM object.
1020  *
1021  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1022  *	return (the page will have been freed).  No particular spl is required
1023  *	on entry.
1024  *
1025  *	This routine may not block.
1026  */
1027 void
1028 vm_page_free_toq(vm_page_t m)
1029 {
1030 	struct vpgqueues *pq;
1031 
1032 	crit_enter();
1033 	lwkt_gettoken(&vm_token);
1034 	mycpu->gd_cnt.v_tfree++;
1035 
1036 	KKASSERT((m->flags & PG_MAPPED) == 0);
1037 
1038 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1039 		kprintf(
1040 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1041 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1042 		    m->hold_count);
1043 		if ((m->queue - m->pc) == PQ_FREE)
1044 			panic("vm_page_free: freeing free page");
1045 		else
1046 			panic("vm_page_free: freeing busy page");
1047 	}
1048 
1049 	/*
1050 	 * unqueue, then remove page.  Note that we cannot destroy
1051 	 * the page here because we do not want to call the pager's
1052 	 * callback routine until after we've put the page on the
1053 	 * appropriate free queue.
1054 	 */
1055 	vm_page_unqueue_nowakeup(m);
1056 	vm_page_remove(m);
1057 
1058 	/*
1059 	 * No further management of fictitious pages occurs beyond object
1060 	 * and queue removal.
1061 	 */
1062 	if ((m->flags & PG_FICTITIOUS) != 0) {
1063 		vm_page_wakeup(m);
1064 		lwkt_reltoken(&vm_token);
1065 		crit_exit();
1066 		return;
1067 	}
1068 
1069 	m->valid = 0;
1070 	vm_page_undirty(m);
1071 
1072 	if (m->wire_count != 0) {
1073 		if (m->wire_count > 1) {
1074 		    panic(
1075 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1076 			m->wire_count, (long)m->pindex);
1077 		}
1078 		panic("vm_page_free: freeing wired page");
1079 	}
1080 
1081 	/*
1082 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1083 	 */
1084 	if (m->flags & PG_UNMANAGED) {
1085 	    m->flags &= ~PG_UNMANAGED;
1086 	}
1087 
1088 	if (m->hold_count != 0) {
1089 		m->flags &= ~PG_ZERO;
1090 		m->queue = PQ_HOLD;
1091 	} else {
1092 		m->queue = PQ_FREE + m->pc;
1093 	}
1094 	pq = &vm_page_queues[m->queue];
1095 	pq->lcnt++;
1096 	++(*pq->cnt);
1097 
1098 	/*
1099 	 * Put zero'd pages on the end ( where we look for zero'd pages
1100 	 * first ) and non-zerod pages at the head.
1101 	 */
1102 	if (m->flags & PG_ZERO) {
1103 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1104 		++vm_page_zero_count;
1105 	} else {
1106 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1107 	}
1108 	vm_page_wakeup(m);
1109 	vm_page_free_wakeup();
1110 	lwkt_reltoken(&vm_token);
1111 	crit_exit();
1112 }
1113 
1114 /*
1115  * vm_page_free_fromq_fast()
1116  *
1117  * Remove a non-zero page from one of the free queues; the page is removed for
1118  * zeroing, so do not issue a wakeup.
1119  *
1120  * MPUNSAFE
1121  */
1122 vm_page_t
1123 vm_page_free_fromq_fast(void)
1124 {
1125 	static int qi;
1126 	vm_page_t m;
1127 	int i;
1128 
1129 	crit_enter();
1130 	lwkt_gettoken(&vm_token);
1131 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1132 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1133 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1134 		if (m && (m->flags & PG_ZERO) == 0) {
1135 			vm_page_unqueue_nowakeup(m);
1136 			vm_page_busy(m);
1137 			break;
1138 		}
1139 		m = NULL;
1140 	}
1141 	lwkt_reltoken(&vm_token);
1142 	crit_exit();
1143 	return (m);
1144 }
1145 
1146 /*
1147  * vm_page_unmanage()
1148  *
1149  * Prevent PV management from being done on the page.  The page is
1150  * removed from the paging queues as if it were wired, and as a
1151  * consequence of no longer being managed the pageout daemon will not
1152  * touch it (since there is no way to locate the pte mappings for the
1153  * page).  madvise() calls that mess with the pmap will also no longer
1154  * operate on the page.
1155  *
1156  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1157  * will clear the flag.
1158  *
1159  * This routine is used by OBJT_PHYS objects - objects using unswappable
1160  * physical memory as backing store rather then swap-backed memory and
1161  * will eventually be extended to support 4MB unmanaged physical
1162  * mappings.
1163  *
1164  * Must be called with a critical section held.
1165  * Must be called with vm_token held.
1166  */
1167 void
1168 vm_page_unmanage(vm_page_t m)
1169 {
1170 	ASSERT_IN_CRIT_SECTION();
1171 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1172 	if ((m->flags & PG_UNMANAGED) == 0) {
1173 		if (m->wire_count == 0)
1174 			vm_page_unqueue(m);
1175 	}
1176 	vm_page_flag_set(m, PG_UNMANAGED);
1177 }
1178 
1179 /*
1180  * Mark this page as wired down by yet another map, removing it from
1181  * paging queues as necessary.
1182  *
1183  * The page queues must be locked.
1184  * This routine may not block.
1185  */
1186 void
1187 vm_page_wire(vm_page_t m)
1188 {
1189 	/*
1190 	 * Only bump the wire statistics if the page is not already wired,
1191 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1192 	 * it is already off the queues).  Don't do anything with fictitious
1193 	 * pages because they are always wired.
1194 	 */
1195 	crit_enter();
1196 	lwkt_gettoken(&vm_token);
1197 	if ((m->flags & PG_FICTITIOUS) == 0) {
1198 		if (m->wire_count == 0) {
1199 			if ((m->flags & PG_UNMANAGED) == 0)
1200 				vm_page_unqueue(m);
1201 			vmstats.v_wire_count++;
1202 		}
1203 		m->wire_count++;
1204 		KASSERT(m->wire_count != 0,
1205 			("vm_page_wire: wire_count overflow m=%p", m));
1206 	}
1207 	lwkt_reltoken(&vm_token);
1208 	crit_exit();
1209 }
1210 
1211 /*
1212  * Release one wiring of this page, potentially enabling it to be paged again.
1213  *
1214  * Many pages placed on the inactive queue should actually go
1215  * into the cache, but it is difficult to figure out which.  What
1216  * we do instead, if the inactive target is well met, is to put
1217  * clean pages at the head of the inactive queue instead of the tail.
1218  * This will cause them to be moved to the cache more quickly and
1219  * if not actively re-referenced, freed more quickly.  If we just
1220  * stick these pages at the end of the inactive queue, heavy filesystem
1221  * meta-data accesses can cause an unnecessary paging load on memory bound
1222  * processes.  This optimization causes one-time-use metadata to be
1223  * reused more quickly.
1224  *
1225  * BUT, if we are in a low-memory situation we have no choice but to
1226  * put clean pages on the cache queue.
1227  *
1228  * A number of routines use vm_page_unwire() to guarantee that the page
1229  * will go into either the inactive or active queues, and will NEVER
1230  * be placed in the cache - for example, just after dirtying a page.
1231  * dirty pages in the cache are not allowed.
1232  *
1233  * The page queues must be locked.
1234  * This routine may not block.
1235  */
1236 void
1237 vm_page_unwire(vm_page_t m, int activate)
1238 {
1239 	crit_enter();
1240 	lwkt_gettoken(&vm_token);
1241 	if (m->flags & PG_FICTITIOUS) {
1242 		/* do nothing */
1243 	} else if (m->wire_count <= 0) {
1244 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1245 	} else {
1246 		if (--m->wire_count == 0) {
1247 			--vmstats.v_wire_count;
1248 			if (m->flags & PG_UNMANAGED) {
1249 				;
1250 			} else if (activate) {
1251 				TAILQ_INSERT_TAIL(
1252 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1253 				m->queue = PQ_ACTIVE;
1254 				vm_page_queues[PQ_ACTIVE].lcnt++;
1255 				vmstats.v_active_count++;
1256 			} else {
1257 				vm_page_flag_clear(m, PG_WINATCFLS);
1258 				TAILQ_INSERT_TAIL(
1259 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1260 				m->queue = PQ_INACTIVE;
1261 				vm_page_queues[PQ_INACTIVE].lcnt++;
1262 				vmstats.v_inactive_count++;
1263 				++vm_swapcache_inactive_heuristic;
1264 			}
1265 		}
1266 	}
1267 	lwkt_reltoken(&vm_token);
1268 	crit_exit();
1269 }
1270 
1271 
1272 /*
1273  * Move the specified page to the inactive queue.  If the page has
1274  * any associated swap, the swap is deallocated.
1275  *
1276  * Normally athead is 0 resulting in LRU operation.  athead is set
1277  * to 1 if we want this page to be 'as if it were placed in the cache',
1278  * except without unmapping it from the process address space.
1279  *
1280  * This routine may not block.
1281  * The caller must hold vm_token.
1282  */
1283 static __inline void
1284 _vm_page_deactivate(vm_page_t m, int athead)
1285 {
1286 	/*
1287 	 * Ignore if already inactive.
1288 	 */
1289 	if (m->queue == PQ_INACTIVE)
1290 		return;
1291 
1292 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1293 		if ((m->queue - m->pc) == PQ_CACHE)
1294 			mycpu->gd_cnt.v_reactivated++;
1295 		vm_page_flag_clear(m, PG_WINATCFLS);
1296 		vm_page_unqueue(m);
1297 		if (athead) {
1298 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1299 					  m, pageq);
1300 		} else {
1301 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1302 					  m, pageq);
1303 			++vm_swapcache_inactive_heuristic;
1304 		}
1305 		m->queue = PQ_INACTIVE;
1306 		vm_page_queues[PQ_INACTIVE].lcnt++;
1307 		vmstats.v_inactive_count++;
1308 	}
1309 }
1310 
1311 /*
1312  * Attempt to deactivate a page.
1313  *
1314  * No requirements.
1315  */
1316 void
1317 vm_page_deactivate(vm_page_t m)
1318 {
1319 	crit_enter();
1320 	lwkt_gettoken(&vm_token);
1321 	_vm_page_deactivate(m, 0);
1322 	lwkt_reltoken(&vm_token);
1323 	crit_exit();
1324 }
1325 
1326 /*
1327  * Attempt to move a page to PQ_CACHE.
1328  * Returns 0 on failure, 1 on success
1329  *
1330  * No requirements.
1331  */
1332 int
1333 vm_page_try_to_cache(vm_page_t m)
1334 {
1335 	crit_enter();
1336 	lwkt_gettoken(&vm_token);
1337 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1338 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1339 		lwkt_reltoken(&vm_token);
1340 		crit_exit();
1341 		return(0);
1342 	}
1343 	vm_page_test_dirty(m);
1344 	if (m->dirty) {
1345 		lwkt_reltoken(&vm_token);
1346 		crit_exit();
1347 		return(0);
1348 	}
1349 	vm_page_cache(m);
1350 	lwkt_reltoken(&vm_token);
1351 	crit_exit();
1352 	return(1);
1353 }
1354 
1355 /*
1356  * Attempt to free the page.  If we cannot free it, we do nothing.
1357  * 1 is returned on success, 0 on failure.
1358  *
1359  * No requirements.
1360  */
1361 int
1362 vm_page_try_to_free(vm_page_t m)
1363 {
1364 	crit_enter();
1365 	lwkt_gettoken(&vm_token);
1366 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1367 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1368 		lwkt_reltoken(&vm_token);
1369 		crit_exit();
1370 		return(0);
1371 	}
1372 	vm_page_test_dirty(m);
1373 	if (m->dirty) {
1374 		lwkt_reltoken(&vm_token);
1375 		crit_exit();
1376 		return(0);
1377 	}
1378 	vm_page_busy(m);
1379 	vm_page_protect(m, VM_PROT_NONE);
1380 	vm_page_free(m);
1381 	lwkt_reltoken(&vm_token);
1382 	crit_exit();
1383 	return(1);
1384 }
1385 
1386 /*
1387  * vm_page_cache
1388  *
1389  * Put the specified page onto the page cache queue (if appropriate).
1390  *
1391  * The caller must hold vm_token.
1392  * This routine may not block.
1393  */
1394 void
1395 vm_page_cache(vm_page_t m)
1396 {
1397 	ASSERT_IN_CRIT_SECTION();
1398 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1399 
1400 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1401 			m->wire_count || m->hold_count) {
1402 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1403 		return;
1404 	}
1405 
1406 	/*
1407 	 * Already in the cache (and thus not mapped)
1408 	 */
1409 	if ((m->queue - m->pc) == PQ_CACHE) {
1410 		KKASSERT((m->flags & PG_MAPPED) == 0);
1411 		return;
1412 	}
1413 
1414 	/*
1415 	 * Caller is required to test m->dirty, but note that the act of
1416 	 * removing the page from its maps can cause it to become dirty
1417 	 * on an SMP system due to another cpu running in usermode.
1418 	 */
1419 	if (m->dirty) {
1420 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1421 			(long)m->pindex);
1422 	}
1423 
1424 	/*
1425 	 * Remove all pmaps and indicate that the page is not
1426 	 * writeable or mapped.  Our vm_page_protect() call may
1427 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1428 	 * everything.
1429 	 */
1430 	vm_page_busy(m);
1431 	vm_page_protect(m, VM_PROT_NONE);
1432 	vm_page_wakeup(m);
1433 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1434 			m->wire_count || m->hold_count) {
1435 		/* do nothing */
1436 	} else if (m->dirty) {
1437 		vm_page_deactivate(m);
1438 	} else {
1439 		vm_page_unqueue_nowakeup(m);
1440 		m->queue = PQ_CACHE + m->pc;
1441 		vm_page_queues[m->queue].lcnt++;
1442 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1443 		vmstats.v_cache_count++;
1444 		vm_page_free_wakeup();
1445 	}
1446 }
1447 
1448 /*
1449  * vm_page_dontneed()
1450  *
1451  * Cache, deactivate, or do nothing as appropriate.  This routine
1452  * is typically used by madvise() MADV_DONTNEED.
1453  *
1454  * Generally speaking we want to move the page into the cache so
1455  * it gets reused quickly.  However, this can result in a silly syndrome
1456  * due to the page recycling too quickly.  Small objects will not be
1457  * fully cached.  On the otherhand, if we move the page to the inactive
1458  * queue we wind up with a problem whereby very large objects
1459  * unnecessarily blow away our inactive and cache queues.
1460  *
1461  * The solution is to move the pages based on a fixed weighting.  We
1462  * either leave them alone, deactivate them, or move them to the cache,
1463  * where moving them to the cache has the highest weighting.
1464  * By forcing some pages into other queues we eventually force the
1465  * system to balance the queues, potentially recovering other unrelated
1466  * space from active.  The idea is to not force this to happen too
1467  * often.
1468  *
1469  * No requirements.
1470  */
1471 void
1472 vm_page_dontneed(vm_page_t m)
1473 {
1474 	static int dnweight;
1475 	int dnw;
1476 	int head;
1477 
1478 	dnw = ++dnweight;
1479 
1480 	/*
1481 	 * occassionally leave the page alone
1482 	 */
1483 	crit_enter();
1484 	lwkt_gettoken(&vm_token);
1485 	if ((dnw & 0x01F0) == 0 ||
1486 	    m->queue == PQ_INACTIVE ||
1487 	    m->queue - m->pc == PQ_CACHE
1488 	) {
1489 		if (m->act_count >= ACT_INIT)
1490 			--m->act_count;
1491 		lwkt_reltoken(&vm_token);
1492 		crit_exit();
1493 		return;
1494 	}
1495 
1496 	if (m->dirty == 0)
1497 		vm_page_test_dirty(m);
1498 
1499 	if (m->dirty || (dnw & 0x0070) == 0) {
1500 		/*
1501 		 * Deactivate the page 3 times out of 32.
1502 		 */
1503 		head = 0;
1504 	} else {
1505 		/*
1506 		 * Cache the page 28 times out of every 32.  Note that
1507 		 * the page is deactivated instead of cached, but placed
1508 		 * at the head of the queue instead of the tail.
1509 		 */
1510 		head = 1;
1511 	}
1512 	_vm_page_deactivate(m, head);
1513 	lwkt_reltoken(&vm_token);
1514 	crit_exit();
1515 }
1516 
1517 /*
1518  * Grab a page, blocking if it is busy and allocating a page if necessary.
1519  * A busy page is returned or NULL.
1520  *
1521  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1522  * If VM_ALLOC_RETRY is not specified
1523  *
1524  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1525  * always returned if we had blocked.
1526  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1527  * This routine may not be called from an interrupt.
1528  * The returned page may not be entirely valid.
1529  *
1530  * This routine may be called from mainline code without spl protection and
1531  * be guarenteed a busied page associated with the object at the specified
1532  * index.
1533  *
1534  * No requirements.
1535  */
1536 vm_page_t
1537 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1538 {
1539 	vm_page_t m;
1540 	int generation;
1541 
1542 	KKASSERT(allocflags &
1543 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1544 	crit_enter();
1545 	lwkt_gettoken(&vm_token);
1546 retrylookup:
1547 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1548 		if (m->busy || (m->flags & PG_BUSY)) {
1549 			generation = object->generation;
1550 
1551 			while ((object->generation == generation) &&
1552 					(m->busy || (m->flags & PG_BUSY))) {
1553 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1554 				tsleep(m, 0, "pgrbwt", 0);
1555 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1556 					m = NULL;
1557 					goto done;
1558 				}
1559 			}
1560 			goto retrylookup;
1561 		} else {
1562 			vm_page_busy(m);
1563 			goto done;
1564 		}
1565 	}
1566 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1567 	if (m == NULL) {
1568 		vm_wait(0);
1569 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1570 			goto done;
1571 		goto retrylookup;
1572 	}
1573 done:
1574 	lwkt_reltoken(&vm_token);
1575 	crit_exit();
1576 	return(m);
1577 }
1578 
1579 /*
1580  * Mapping function for valid bits or for dirty bits in
1581  * a page.  May not block.
1582  *
1583  * Inputs are required to range within a page.
1584  *
1585  * No requirements.
1586  * Non blocking.
1587  */
1588 int
1589 vm_page_bits(int base, int size)
1590 {
1591 	int first_bit;
1592 	int last_bit;
1593 
1594 	KASSERT(
1595 	    base + size <= PAGE_SIZE,
1596 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1597 	);
1598 
1599 	if (size == 0)		/* handle degenerate case */
1600 		return(0);
1601 
1602 	first_bit = base >> DEV_BSHIFT;
1603 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1604 
1605 	return ((2 << last_bit) - (1 << first_bit));
1606 }
1607 
1608 /*
1609  * Sets portions of a page valid and clean.  The arguments are expected
1610  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1611  * of any partial chunks touched by the range.  The invalid portion of
1612  * such chunks will be zero'd.
1613  *
1614  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1615  *	 align base to DEV_BSIZE so as not to mark clean a partially
1616  *	 truncated device block.  Otherwise the dirty page status might be
1617  *	 lost.
1618  *
1619  * This routine may not block.
1620  *
1621  * (base + size) must be less then or equal to PAGE_SIZE.
1622  */
1623 static void
1624 _vm_page_zero_valid(vm_page_t m, int base, int size)
1625 {
1626 	int frag;
1627 	int endoff;
1628 
1629 	if (size == 0)	/* handle degenerate case */
1630 		return;
1631 
1632 	/*
1633 	 * If the base is not DEV_BSIZE aligned and the valid
1634 	 * bit is clear, we have to zero out a portion of the
1635 	 * first block.
1636 	 */
1637 
1638 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1639 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1640 	) {
1641 		pmap_zero_page_area(
1642 		    VM_PAGE_TO_PHYS(m),
1643 		    frag,
1644 		    base - frag
1645 		);
1646 	}
1647 
1648 	/*
1649 	 * If the ending offset is not DEV_BSIZE aligned and the
1650 	 * valid bit is clear, we have to zero out a portion of
1651 	 * the last block.
1652 	 */
1653 
1654 	endoff = base + size;
1655 
1656 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1657 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1658 	) {
1659 		pmap_zero_page_area(
1660 		    VM_PAGE_TO_PHYS(m),
1661 		    endoff,
1662 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1663 		);
1664 	}
1665 }
1666 
1667 /*
1668  * Set valid, clear dirty bits.  If validating the entire
1669  * page we can safely clear the pmap modify bit.  We also
1670  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1671  * takes a write fault on a MAP_NOSYNC memory area the flag will
1672  * be set again.
1673  *
1674  * We set valid bits inclusive of any overlap, but we can only
1675  * clear dirty bits for DEV_BSIZE chunks that are fully within
1676  * the range.
1677  *
1678  * Page must be busied?
1679  * No other requirements.
1680  */
1681 void
1682 vm_page_set_valid(vm_page_t m, int base, int size)
1683 {
1684 	_vm_page_zero_valid(m, base, size);
1685 	m->valid |= vm_page_bits(base, size);
1686 }
1687 
1688 
1689 /*
1690  * Set valid bits and clear dirty bits.
1691  *
1692  * NOTE: This function does not clear the pmap modified bit.
1693  *	 Also note that e.g. NFS may use a byte-granular base
1694  *	 and size.
1695  *
1696  * Page must be busied?
1697  * No other requirements.
1698  */
1699 void
1700 vm_page_set_validclean(vm_page_t m, int base, int size)
1701 {
1702 	int pagebits;
1703 
1704 	_vm_page_zero_valid(m, base, size);
1705 	pagebits = vm_page_bits(base, size);
1706 	m->valid |= pagebits;
1707 	m->dirty &= ~pagebits;
1708 	if (base == 0 && size == PAGE_SIZE) {
1709 		/*pmap_clear_modify(m);*/
1710 		vm_page_flag_clear(m, PG_NOSYNC);
1711 	}
1712 }
1713 
1714 /*
1715  * Set valid & dirty.  Used by buwrite()
1716  *
1717  * Page must be busied?
1718  * No other requirements.
1719  */
1720 void
1721 vm_page_set_validdirty(vm_page_t m, int base, int size)
1722 {
1723 	int pagebits;
1724 
1725 	pagebits = vm_page_bits(base, size);
1726 	m->valid |= pagebits;
1727 	m->dirty |= pagebits;
1728 	if (m->object)
1729 		vm_object_set_writeable_dirty(m->object);
1730 }
1731 
1732 /*
1733  * Clear dirty bits.
1734  *
1735  * NOTE: This function does not clear the pmap modified bit.
1736  *	 Also note that e.g. NFS may use a byte-granular base
1737  *	 and size.
1738  *
1739  * Page must be busied?
1740  * No other requirements.
1741  */
1742 void
1743 vm_page_clear_dirty(vm_page_t m, int base, int size)
1744 {
1745 	m->dirty &= ~vm_page_bits(base, size);
1746 	if (base == 0 && size == PAGE_SIZE) {
1747 		/*pmap_clear_modify(m);*/
1748 		vm_page_flag_clear(m, PG_NOSYNC);
1749 	}
1750 }
1751 
1752 /*
1753  * Make the page all-dirty.
1754  *
1755  * Also make sure the related object and vnode reflect the fact that the
1756  * object may now contain a dirty page.
1757  *
1758  * Page must be busied?
1759  * No other requirements.
1760  */
1761 void
1762 vm_page_dirty(vm_page_t m)
1763 {
1764 #ifdef INVARIANTS
1765         int pqtype = m->queue - m->pc;
1766 #endif
1767         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1768                 ("vm_page_dirty: page in free/cache queue!"));
1769 	if (m->dirty != VM_PAGE_BITS_ALL) {
1770 		m->dirty = VM_PAGE_BITS_ALL;
1771 		if (m->object)
1772 			vm_object_set_writeable_dirty(m->object);
1773 	}
1774 }
1775 
1776 /*
1777  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1778  * valid and dirty bits for the effected areas are cleared.
1779  *
1780  * Page must be busied?
1781  * Does not block.
1782  * No other requirements.
1783  */
1784 void
1785 vm_page_set_invalid(vm_page_t m, int base, int size)
1786 {
1787 	int bits;
1788 
1789 	bits = vm_page_bits(base, size);
1790 	m->valid &= ~bits;
1791 	m->dirty &= ~bits;
1792 	m->object->generation++;
1793 }
1794 
1795 /*
1796  * The kernel assumes that the invalid portions of a page contain
1797  * garbage, but such pages can be mapped into memory by user code.
1798  * When this occurs, we must zero out the non-valid portions of the
1799  * page so user code sees what it expects.
1800  *
1801  * Pages are most often semi-valid when the end of a file is mapped
1802  * into memory and the file's size is not page aligned.
1803  *
1804  * Page must be busied?
1805  * No other requirements.
1806  */
1807 void
1808 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1809 {
1810 	int b;
1811 	int i;
1812 
1813 	/*
1814 	 * Scan the valid bits looking for invalid sections that
1815 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1816 	 * valid bit may be set ) have already been zerod by
1817 	 * vm_page_set_validclean().
1818 	 */
1819 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1820 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1821 		    (m->valid & (1 << i))
1822 		) {
1823 			if (i > b) {
1824 				pmap_zero_page_area(
1825 				    VM_PAGE_TO_PHYS(m),
1826 				    b << DEV_BSHIFT,
1827 				    (i - b) << DEV_BSHIFT
1828 				);
1829 			}
1830 			b = i + 1;
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * setvalid is TRUE when we can safely set the zero'd areas
1836 	 * as being valid.  We can do this if there are no cache consistency
1837 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1838 	 */
1839 	if (setvalid)
1840 		m->valid = VM_PAGE_BITS_ALL;
1841 }
1842 
1843 /*
1844  * Is a (partial) page valid?  Note that the case where size == 0
1845  * will return FALSE in the degenerate case where the page is entirely
1846  * invalid, and TRUE otherwise.
1847  *
1848  * Does not block.
1849  * No other requirements.
1850  */
1851 int
1852 vm_page_is_valid(vm_page_t m, int base, int size)
1853 {
1854 	int bits = vm_page_bits(base, size);
1855 
1856 	if (m->valid && ((m->valid & bits) == bits))
1857 		return 1;
1858 	else
1859 		return 0;
1860 }
1861 
1862 /*
1863  * update dirty bits from pmap/mmu.  May not block.
1864  *
1865  * Caller must hold vm_token if non-blocking operation desired.
1866  * No other requirements.
1867  */
1868 void
1869 vm_page_test_dirty(vm_page_t m)
1870 {
1871 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1872 		vm_page_dirty(m);
1873 	}
1874 }
1875 
1876 /*
1877  * Issue an event on a VM page.  Corresponding action structures are
1878  * removed from the page's list and called.
1879  */
1880 void
1881 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1882 {
1883 	struct vm_page_action *scan, *next;
1884 
1885 	LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1886 		if (scan->event == event) {
1887 			scan->event = VMEVENT_NONE;
1888 			LIST_REMOVE(scan, entry);
1889 			scan->func(m, scan);
1890 		}
1891 	}
1892 }
1893 
1894 
1895 #include "opt_ddb.h"
1896 #ifdef DDB
1897 #include <sys/kernel.h>
1898 
1899 #include <ddb/ddb.h>
1900 
1901 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1902 {
1903 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1904 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1905 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1906 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1907 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1908 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1909 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1910 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1911 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1912 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1913 }
1914 
1915 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1916 {
1917 	int i;
1918 	db_printf("PQ_FREE:");
1919 	for(i=0;i<PQ_L2_SIZE;i++) {
1920 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1921 	}
1922 	db_printf("\n");
1923 
1924 	db_printf("PQ_CACHE:");
1925 	for(i=0;i<PQ_L2_SIZE;i++) {
1926 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1927 	}
1928 	db_printf("\n");
1929 
1930 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1931 		vm_page_queues[PQ_ACTIVE].lcnt,
1932 		vm_page_queues[PQ_INACTIVE].lcnt);
1933 }
1934 #endif /* DDB */
1935