xref: /dragonfly/sys/vm/vm_page.c (revision e05899ce)
1 /*
2  * Copyright (c) 2003-2019 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1991 Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 /*
67  * Resident memory management module.  The module manipulates 'VM pages'.
68  * A VM page is the core building block for memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
99 
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
102 
103 /*
104  * SET - Minimum required set associative size, must be a power of 2.  We
105  *	 want this to match or exceed the set-associativeness of the cpu.
106  *
107  * GRP - A larger set that allows bleed-over into the domains of other
108  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
109  *	 code to smooth things out a bit.
110  */
111 #define PQ_SET_ASSOC		16
112 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
113 
114 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
116 
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
123 
124 /*
125  * Array of tailq lists
126  */
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
128 
129 static volatile int vm_pages_waiting;
130 static struct alist vm_contig_alist;
131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
133 
134 static struct vm_page **vm_page_hash;
135 
136 static u_long vm_dma_reserved = 0;
137 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
138 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
139 	    "Memory reserved for DMA");
140 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
141 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
142 
143 static int vm_contig_verbose = 0;
144 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
145 
146 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
147 	     vm_pindex_t, pindex);
148 
149 static void
150 vm_page_queue_init(void)
151 {
152 	int i;
153 
154 	for (i = 0; i < PQ_L2_SIZE; i++)
155 		vm_page_queues[PQ_FREE+i].cnt_offset =
156 			offsetof(struct vmstats, v_free_count);
157 	for (i = 0; i < PQ_L2_SIZE; i++)
158 		vm_page_queues[PQ_CACHE+i].cnt_offset =
159 			offsetof(struct vmstats, v_cache_count);
160 	for (i = 0; i < PQ_L2_SIZE; i++)
161 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
162 			offsetof(struct vmstats, v_inactive_count);
163 	for (i = 0; i < PQ_L2_SIZE; i++)
164 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
165 			offsetof(struct vmstats, v_active_count);
166 	for (i = 0; i < PQ_L2_SIZE; i++)
167 		vm_page_queues[PQ_HOLD+i].cnt_offset =
168 			offsetof(struct vmstats, v_active_count);
169 	/* PQ_NONE has no queue */
170 
171 	for (i = 0; i < PQ_COUNT; i++) {
172 		TAILQ_INIT(&vm_page_queues[i].pl);
173 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
174 	}
175 }
176 
177 /*
178  * note: place in initialized data section?  Is this necessary?
179  */
180 vm_pindex_t first_page = 0;
181 vm_pindex_t vm_page_array_size = 0;
182 vm_page_t vm_page_array = NULL;
183 vm_paddr_t vm_low_phys_reserved;
184 
185 /*
186  * (low level boot)
187  *
188  * Sets the page size, perhaps based upon the memory size.
189  * Must be called before any use of page-size dependent functions.
190  */
191 void
192 vm_set_page_size(void)
193 {
194 	if (vmstats.v_page_size == 0)
195 		vmstats.v_page_size = PAGE_SIZE;
196 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
197 		panic("vm_set_page_size: page size not a power of two");
198 }
199 
200 /*
201  * (low level boot)
202  *
203  * Add a new page to the freelist for use by the system.  New pages
204  * are added to both the head and tail of the associated free page
205  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
206  * requests pull 'recent' adds (higher physical addresses) first.
207  *
208  * Beware that the page zeroing daemon will also be running soon after
209  * boot, moving pages from the head to the tail of the PQ_FREE queues.
210  *
211  * Must be called in a critical section.
212  */
213 static void
214 vm_add_new_page(vm_paddr_t pa)
215 {
216 	struct vpgqueues *vpq;
217 	vm_page_t m;
218 
219 	m = PHYS_TO_VM_PAGE(pa);
220 	m->phys_addr = pa;
221 	m->flags = 0;
222 	m->pat_mode = PAT_WRITE_BACK;
223 	m->pc = (pa >> PAGE_SHIFT);
224 
225 	/*
226 	 * Twist for cpu localization in addition to page coloring, so
227 	 * different cpus selecting by m->queue get different page colors.
228 	 */
229 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
230 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
231 	m->pc &= PQ_L2_MASK;
232 
233 	/*
234 	 * Reserve a certain number of contiguous low memory pages for
235 	 * contigmalloc() to use.
236 	 */
237 	if (pa < vm_low_phys_reserved) {
238 		atomic_add_long(&vmstats.v_page_count, 1);
239 		atomic_add_long(&vmstats.v_dma_pages, 1);
240 		m->queue = PQ_NONE;
241 		m->wire_count = 1;
242 		atomic_add_long(&vmstats.v_wire_count, 1);
243 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
244 		return;
245 	}
246 
247 	/*
248 	 * General page
249 	 */
250 	m->queue = m->pc + PQ_FREE;
251 	KKASSERT(m->dirty == 0);
252 
253 	atomic_add_long(&vmstats.v_page_count, 1);
254 	atomic_add_long(&vmstats.v_free_count, 1);
255 	vpq = &vm_page_queues[m->queue];
256 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
257 	++vpq->lcnt;
258 }
259 
260 /*
261  * (low level boot)
262  *
263  * Initializes the resident memory module.
264  *
265  * Preallocates memory for critical VM structures and arrays prior to
266  * kernel_map becoming available.
267  *
268  * Memory is allocated from (virtual2_start, virtual2_end) if available,
269  * otherwise memory is allocated from (virtual_start, virtual_end).
270  *
271  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
272  * large enough to hold vm_page_array & other structures for machines with
273  * large amounts of ram, so we want to use virtual2* when available.
274  */
275 void
276 vm_page_startup(void)
277 {
278 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
279 	vm_offset_t mapped;
280 	vm_pindex_t npages;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	vm_paddr_t last_pa;
286 	vm_paddr_t end;
287 	vm_paddr_t biggestone, biggestsize;
288 	vm_paddr_t total;
289 	vm_page_t m;
290 
291 	total = 0;
292 	biggestsize = 0;
293 	biggestone = 0;
294 	vaddr = round_page(vaddr);
295 
296 	/*
297 	 * Make sure ranges are page-aligned.
298 	 */
299 	for (i = 0; phys_avail[i].phys_end; ++i) {
300 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
301 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
302 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
303 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
304 	}
305 
306 	/*
307 	 * Locate largest block
308 	 */
309 	for (i = 0; phys_avail[i].phys_end; ++i) {
310 		vm_paddr_t size = phys_avail[i].phys_end -
311 				  phys_avail[i].phys_beg;
312 
313 		if (size > biggestsize) {
314 			biggestone = i;
315 			biggestsize = size;
316 		}
317 		total += size;
318 	}
319 	--i;	/* adjust to last entry for use down below */
320 
321 	end = phys_avail[biggestone].phys_end;
322 	end = trunc_page(end);
323 
324 	/*
325 	 * Initialize the queue headers for the free queue, the active queue
326 	 * and the inactive queue.
327 	 */
328 	vm_page_queue_init();
329 
330 #if !defined(_KERNEL_VIRTUAL)
331 	/*
332 	 * VKERNELs don't support minidumps and as such don't need
333 	 * vm_page_dump
334 	 *
335 	 * Allocate a bitmap to indicate that a random physical page
336 	 * needs to be included in a minidump.
337 	 *
338 	 * The amd64 port needs this to indicate which direct map pages
339 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
340 	 *
341 	 * However, x86 still needs this workspace internally within the
342 	 * minidump code.  In theory, they are not needed on x86, but are
343 	 * included should the sf_buf code decide to use them.
344 	 */
345 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
346 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
347 	end -= vm_page_dump_size;
348 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
349 					VM_PROT_READ | VM_PROT_WRITE);
350 	bzero((void *)vm_page_dump, vm_page_dump_size);
351 #endif
352 	/*
353 	 * Compute the number of pages of memory that will be available for
354 	 * use (taking into account the overhead of a page structure per
355 	 * page).
356 	 */
357 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
358 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
359 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
360 
361 #ifndef _KERNEL_VIRTUAL
362 	/*
363 	 * (only applies to real kernels)
364 	 *
365 	 * Reserve a large amount of low memory for potential 32-bit DMA
366 	 * space allocations.  Once device initialization is complete we
367 	 * release most of it, but keep (vm_dma_reserved) memory reserved
368 	 * for later use.  Typically for X / graphics.  Through trial and
369 	 * error we find that GPUs usually requires ~60-100MB or so.
370 	 *
371 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
372 	 */
373 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
374 	if (vm_low_phys_reserved > total / 4)
375 		vm_low_phys_reserved = total / 4;
376 	if (vm_dma_reserved == 0) {
377 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
378 		if (vm_dma_reserved > total / 16)
379 			vm_dma_reserved = total / 16;
380 	}
381 #endif
382 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
383 		   ALIST_RECORDS_65536);
384 
385 	/*
386 	 * Initialize the mem entry structures now, and put them in the free
387 	 * queue.
388 	 */
389 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
390 		kprintf("initializing vm_page_array ");
391 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
392 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
393 	vm_page_array = (vm_page_t)mapped;
394 
395 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
396 	/*
397 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
398 	 * we have to manually add these pages to the minidump tracking so
399 	 * that they can be dumped, including the vm_page_array.
400 	 */
401 	for (pa = new_end;
402 	     pa < phys_avail[biggestone].phys_end;
403 	     pa += PAGE_SIZE) {
404 		dump_add_page(pa);
405 	}
406 #endif
407 
408 	/*
409 	 * Clear all of the page structures, run basic initialization so
410 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
411 	 * map.
412 	 */
413 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
414 	vm_page_array_size = page_range;
415 	if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
416 		kprintf("size = 0x%zx\n", vm_page_array_size);
417 
418 	m = &vm_page_array[0];
419 	pa = ptoa(first_page);
420 	for (i = 0; i < page_range; ++i) {
421 		spin_init(&m->spin, "vm_page");
422 		m->phys_addr = pa;
423 		pa += PAGE_SIZE;
424 		++m;
425 	}
426 
427 	/*
428 	 * Construct the free queue(s) in ascending order (by physical
429 	 * address) so that the first 16MB of physical memory is allocated
430 	 * last rather than first.  On large-memory machines, this avoids
431 	 * the exhaustion of low physical memory before isa_dma_init has run.
432 	 */
433 	vmstats.v_page_count = 0;
434 	vmstats.v_free_count = 0;
435 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
436 		pa = phys_avail[i].phys_beg;
437 		if (i == biggestone)
438 			last_pa = new_end;
439 		else
440 			last_pa = phys_avail[i].phys_end;
441 		while (pa < last_pa && npages-- > 0) {
442 			vm_add_new_page(pa);
443 			pa += PAGE_SIZE;
444 		}
445 	}
446 	if (virtual2_start)
447 		virtual2_start = vaddr;
448 	else
449 		virtual_start = vaddr;
450 	mycpu->gd_vmstats = vmstats;
451 }
452 
453 /*
454  * (called from early boot only)
455  *
456  * Reorganize VM pages based on numa data.  May be called as many times as
457  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
458  * to allow vm_page_alloc() to choose pages based on socket affinity.
459  *
460  * NOTE: This function is only called while we are still in UP mode, so
461  *	 we only need a critical section to protect the queues (which
462  *	 saves a lot of time, there are likely a ton of pages).
463  */
464 void
465 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
466 {
467 	vm_paddr_t scan_beg;
468 	vm_paddr_t scan_end;
469 	vm_paddr_t ran_end;
470 	struct vpgqueues *vpq;
471 	vm_page_t m;
472 	vm_page_t mend;
473 	int socket_mod;
474 	int socket_value;
475 	int i;
476 
477 	/*
478 	 * Check if no physical information, or there was only one socket
479 	 * (so don't waste time doing nothing!).
480 	 */
481 	if (cpu_topology_phys_ids <= 1 ||
482 	    cpu_topology_core_ids == 0) {
483 		return;
484 	}
485 
486 	/*
487 	 * Setup for our iteration.  Note that ACPI may iterate CPU
488 	 * sockets starting at 0 or 1 or some other number.  The
489 	 * cpu_topology code mod's it against the socket count.
490 	 */
491 	ran_end = ran_beg + bytes;
492 
493 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
494 	socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
495 	mend = &vm_page_array[vm_page_array_size];
496 
497 	crit_enter();
498 
499 	/*
500 	 * Adjust cpu_topology's phys_mem parameter
501 	 */
502 	if (root_cpu_node)
503 		vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
504 
505 	/*
506 	 * Adjust vm_page->pc and requeue all affected pages.  The
507 	 * allocator will then be able to localize memory allocations
508 	 * to some degree.
509 	 */
510 	for (i = 0; phys_avail[i].phys_end; ++i) {
511 		scan_beg = phys_avail[i].phys_beg;
512 		scan_end = phys_avail[i].phys_end;
513 		if (scan_end <= ran_beg)
514 			continue;
515 		if (scan_beg >= ran_end)
516 			continue;
517 		if (scan_beg < ran_beg)
518 			scan_beg = ran_beg;
519 		if (scan_end > ran_end)
520 			scan_end = ran_end;
521 		if (atop(scan_end) > first_page + vm_page_array_size)
522 			scan_end = ptoa(first_page + vm_page_array_size);
523 
524 		m = PHYS_TO_VM_PAGE(scan_beg);
525 		while (scan_beg < scan_end) {
526 			KKASSERT(m < mend);
527 			if (m->queue != PQ_NONE) {
528 				vpq = &vm_page_queues[m->queue];
529 				TAILQ_REMOVE(&vpq->pl, m, pageq);
530 				--vpq->lcnt;
531 				/* queue doesn't change, no need to adj cnt */
532 				m->queue -= m->pc;
533 				m->pc %= socket_mod;
534 				m->pc += socket_value;
535 				m->pc &= PQ_L2_MASK;
536 				m->queue += m->pc;
537 				vpq = &vm_page_queues[m->queue];
538 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
539 				++vpq->lcnt;
540 				/* queue doesn't change, no need to adj cnt */
541 			} else {
542 				m->pc %= socket_mod;
543 				m->pc += socket_value;
544 				m->pc &= PQ_L2_MASK;
545 			}
546 			scan_beg += PAGE_SIZE;
547 			++m;
548 		}
549 	}
550 
551 	crit_exit();
552 }
553 
554 /*
555  * (called from early boot only)
556  *
557  * Don't allow the NUMA organization to leave vm_page_queues[] nodes
558  * completely empty for a logical cpu.  Doing so would force allocations
559  * on that cpu to always borrow from a nearby cpu, create unnecessary
560  * contention, and cause vm_page_alloc() to iterate more queues and run more
561  * slowly.
562  *
563  * This situation can occur when memory sticks are not entirely populated,
564  * populated at different densities, or in naturally assymetric systems
565  * such as the 2990WX.  There could very well be many vm_page_queues[]
566  * entries with *NO* pages assigned to them.
567  *
568  * Fixing this up ensures that each logical CPU has roughly the same
569  * sized memory pool, and more importantly ensures that logical CPUs
570  * do not wind up with an empty memory pool.
571  *
572  * At them moment we just iterate the other queues and borrow pages,
573  * moving them into the queues for cpus with severe deficits even though
574  * the memory might not be local to those cpus.  I am not doing this in
575  * a 'smart' way, its effectively UMA style (sorta, since its page-by-page
576  * whereas real UMA typically exchanges address bits 8-10 with high address
577  * bits).  But it works extremely well and gives us fairly good deterministic
578  * results on the cpu cores associated with these secondary nodes.
579  */
580 void
581 vm_numa_organize_finalize(void)
582 {
583 	struct vpgqueues *vpq;
584 	vm_page_t m;
585 	long lcnt_lo;
586 	long lcnt_hi;
587 	int iter;
588 	int i;
589 	int scale_lim;
590 
591 	crit_enter();
592 
593 	/*
594 	 * Machines might not use an exact power of 2 for phys_ids,
595 	 * core_ids, ht_ids, etc.  This can slightly reduce the actual
596 	 * range of indices in vm_page_queues[] that are nominally used.
597 	 */
598 	if (cpu_topology_ht_ids) {
599 		scale_lim = PQ_L2_SIZE / cpu_topology_phys_ids;
600 		scale_lim = scale_lim / cpu_topology_core_ids;
601 		scale_lim = scale_lim / cpu_topology_ht_ids;
602 		scale_lim = scale_lim * cpu_topology_ht_ids;
603 		scale_lim = scale_lim * cpu_topology_core_ids;
604 		scale_lim = scale_lim * cpu_topology_phys_ids;
605 	} else {
606 		scale_lim = PQ_L2_SIZE;
607 	}
608 
609 	/*
610 	 * Calculate an average, set hysteresis for balancing from
611 	 * 10% below the average to the average.
612 	 */
613 	lcnt_hi = 0;
614 	for (i = 0; i < scale_lim; ++i) {
615 		lcnt_hi += vm_page_queues[i].lcnt;
616 	}
617 	lcnt_hi /= scale_lim;
618 	lcnt_lo = lcnt_hi - lcnt_hi / 10;
619 
620 	kprintf("vm_page: avg %ld pages per queue, %d queues\n",
621 		lcnt_hi, scale_lim);
622 
623 	iter = 0;
624 	for (i = 0; i < scale_lim; ++i) {
625 		vpq = &vm_page_queues[PQ_FREE + i];
626 		while (vpq->lcnt < lcnt_lo) {
627 			struct vpgqueues *vptmp;
628 
629 			iter = (iter + 1) & PQ_L2_MASK;
630 			vptmp = &vm_page_queues[PQ_FREE + iter];
631 			if (vptmp->lcnt < lcnt_hi)
632 				continue;
633 			m = TAILQ_FIRST(&vptmp->pl);
634 			KKASSERT(m->queue == PQ_FREE + iter);
635 			TAILQ_REMOVE(&vptmp->pl, m, pageq);
636 			--vptmp->lcnt;
637 			/* queue doesn't change, no need to adj cnt */
638 			m->queue -= m->pc;
639 			m->pc = i;
640 			m->queue += m->pc;
641 			TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
642 			++vpq->lcnt;
643 		}
644 	}
645 	crit_exit();
646 }
647 
648 static
649 void
650 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
651 {
652 	int cpuid;
653 	int i;
654 
655 	switch(cpup->type) {
656 	case PACKAGE_LEVEL:
657 		cpup->phys_mem += bytes;
658 		break;
659 	case CHIP_LEVEL:
660 		/*
661 		 * All members should have the same chipid, so we only need
662 		 * to pull out one member.
663 		 */
664 		if (CPUMASK_TESTNZERO(cpup->members)) {
665 			cpuid = BSFCPUMASK(cpup->members);
666 			if (physid ==
667 			    get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
668 				cpup->phys_mem += bytes;
669 			}
670 		}
671 		break;
672 	case CORE_LEVEL:
673 	case THREAD_LEVEL:
674 		/*
675 		 * Just inherit from the parent node
676 		 */
677 		cpup->phys_mem = cpup->parent_node->phys_mem;
678 		break;
679 	}
680 	for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
681 		vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
682 }
683 
684 /*
685  * We tended to reserve a ton of memory for contigmalloc().  Now that most
686  * drivers have initialized we want to return most the remaining free
687  * reserve back to the VM page queues so they can be used for normal
688  * allocations.
689  *
690  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
691  */
692 static void
693 vm_page_startup_finish(void *dummy __unused)
694 {
695 	alist_blk_t blk;
696 	alist_blk_t rblk;
697 	alist_blk_t count;
698 	alist_blk_t xcount;
699 	alist_blk_t bfree;
700 	vm_page_t m;
701 	vm_page_t *mp;
702 
703 	spin_lock(&vm_contig_spin);
704 	for (;;) {
705 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
706 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
707 			break;
708 		if (count == 0)
709 			break;
710 
711 		/*
712 		 * Figure out how much of the initial reserve we have to
713 		 * free in order to reach our target.
714 		 */
715 		bfree -= vm_dma_reserved / PAGE_SIZE;
716 		if (count > bfree) {
717 			blk += count - bfree;
718 			count = bfree;
719 		}
720 
721 		/*
722 		 * Calculate the nearest power of 2 <= count.
723 		 */
724 		for (xcount = 1; xcount <= count; xcount <<= 1)
725 			;
726 		xcount >>= 1;
727 		blk += count - xcount;
728 		count = xcount;
729 
730 		/*
731 		 * Allocate the pages from the alist, then free them to
732 		 * the normal VM page queues.
733 		 *
734 		 * Pages allocated from the alist are wired.  We have to
735 		 * busy, unwire, and free them.  We must also adjust
736 		 * vm_low_phys_reserved before freeing any pages to prevent
737 		 * confusion.
738 		 */
739 		rblk = alist_alloc(&vm_contig_alist, blk, count);
740 		if (rblk != blk) {
741 			kprintf("vm_page_startup_finish: Unable to return "
742 				"dma space @0x%08x/%d -> 0x%08x\n",
743 				blk, count, rblk);
744 			break;
745 		}
746 		atomic_add_long(&vmstats.v_dma_pages, -(long)count);
747 		spin_unlock(&vm_contig_spin);
748 
749 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
750 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
751 		while (count) {
752 			vm_page_busy_wait(m, FALSE, "cpgfr");
753 			vm_page_unwire(m, 0);
754 			vm_page_free(m);
755 			--count;
756 			++m;
757 		}
758 		spin_lock(&vm_contig_spin);
759 	}
760 	spin_unlock(&vm_contig_spin);
761 
762 	/*
763 	 * Print out how much DMA space drivers have already allocated and
764 	 * how much is left over.
765 	 */
766 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
767 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
768 		(PAGE_SIZE / 1024),
769 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
770 
771 	/*
772 	 * hash table for vm_page_lookup_quick()
773 	 */
774 	mp = (void *)kmem_alloc3(&kernel_map,
775 				 vm_page_array_size * sizeof(vm_page_t),
776 				 VM_SUBSYS_VMPGHASH, KM_CPU(0));
777 	bzero(mp, vm_page_array_size * sizeof(vm_page_t));
778 	cpu_sfence();
779 	vm_page_hash = mp;
780 }
781 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
782 	vm_page_startup_finish, NULL);
783 
784 
785 /*
786  * Scan comparison function for Red-Black tree scans.  An inclusive
787  * (start,end) is expected.  Other fields are not used.
788  */
789 int
790 rb_vm_page_scancmp(struct vm_page *p, void *data)
791 {
792 	struct rb_vm_page_scan_info *info = data;
793 
794 	if (p->pindex < info->start_pindex)
795 		return(-1);
796 	if (p->pindex > info->end_pindex)
797 		return(1);
798 	return(0);
799 }
800 
801 int
802 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
803 {
804 	if (p1->pindex < p2->pindex)
805 		return(-1);
806 	if (p1->pindex > p2->pindex)
807 		return(1);
808 	return(0);
809 }
810 
811 void
812 vm_page_init(vm_page_t m)
813 {
814 	/* do nothing for now.  Called from pmap_page_init() */
815 }
816 
817 /*
818  * Each page queue has its own spin lock, which is fairly optimal for
819  * allocating and freeing pages at least.
820  *
821  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
822  * queue spinlock via this function.  Also note that m->queue cannot change
823  * unless both the page and queue are locked.
824  */
825 static __inline
826 void
827 _vm_page_queue_spin_lock(vm_page_t m)
828 {
829 	u_short queue;
830 
831 	queue = m->queue;
832 	if (queue != PQ_NONE) {
833 		spin_lock(&vm_page_queues[queue].spin);
834 		KKASSERT(queue == m->queue);
835 	}
836 }
837 
838 static __inline
839 void
840 _vm_page_queue_spin_unlock(vm_page_t m)
841 {
842 	u_short queue;
843 
844 	queue = m->queue;
845 	cpu_ccfence();
846 	if (queue != PQ_NONE)
847 		spin_unlock(&vm_page_queues[queue].spin);
848 }
849 
850 static __inline
851 void
852 _vm_page_queues_spin_lock(u_short queue)
853 {
854 	cpu_ccfence();
855 	if (queue != PQ_NONE)
856 		spin_lock(&vm_page_queues[queue].spin);
857 }
858 
859 
860 static __inline
861 void
862 _vm_page_queues_spin_unlock(u_short queue)
863 {
864 	cpu_ccfence();
865 	if (queue != PQ_NONE)
866 		spin_unlock(&vm_page_queues[queue].spin);
867 }
868 
869 void
870 vm_page_queue_spin_lock(vm_page_t m)
871 {
872 	_vm_page_queue_spin_lock(m);
873 }
874 
875 void
876 vm_page_queues_spin_lock(u_short queue)
877 {
878 	_vm_page_queues_spin_lock(queue);
879 }
880 
881 void
882 vm_page_queue_spin_unlock(vm_page_t m)
883 {
884 	_vm_page_queue_spin_unlock(m);
885 }
886 
887 void
888 vm_page_queues_spin_unlock(u_short queue)
889 {
890 	_vm_page_queues_spin_unlock(queue);
891 }
892 
893 /*
894  * This locks the specified vm_page and its queue in the proper order
895  * (page first, then queue).  The queue may change so the caller must
896  * recheck on return.
897  */
898 static __inline
899 void
900 _vm_page_and_queue_spin_lock(vm_page_t m)
901 {
902 	vm_page_spin_lock(m);
903 	_vm_page_queue_spin_lock(m);
904 }
905 
906 static __inline
907 void
908 _vm_page_and_queue_spin_unlock(vm_page_t m)
909 {
910 	_vm_page_queues_spin_unlock(m->queue);
911 	vm_page_spin_unlock(m);
912 }
913 
914 void
915 vm_page_and_queue_spin_unlock(vm_page_t m)
916 {
917 	_vm_page_and_queue_spin_unlock(m);
918 }
919 
920 void
921 vm_page_and_queue_spin_lock(vm_page_t m)
922 {
923 	_vm_page_and_queue_spin_lock(m);
924 }
925 
926 /*
927  * Helper function removes vm_page from its current queue.
928  * Returns the base queue the page used to be on.
929  *
930  * The vm_page and the queue must be spinlocked.
931  * This function will unlock the queue but leave the page spinlocked.
932  */
933 static __inline u_short
934 _vm_page_rem_queue_spinlocked(vm_page_t m)
935 {
936 	struct vpgqueues *pq;
937 	u_short queue;
938 	u_short oqueue;
939 	long *cnt;
940 
941 	queue = m->queue;
942 	if (queue != PQ_NONE) {
943 		pq = &vm_page_queues[queue];
944 		TAILQ_REMOVE(&pq->pl, m, pageq);
945 
946 		/*
947 		 * Adjust our pcpu stats.  In order for the nominal low-memory
948 		 * algorithms to work properly we don't let any pcpu stat get
949 		 * too negative before we force it to be rolled-up into the
950 		 * global stats.  Otherwise our pageout and vm_wait tests
951 		 * will fail badly.
952 		 *
953 		 * The idea here is to reduce unnecessary SMP cache
954 		 * mastership changes in the global vmstats, which can be
955 		 * particularly bad in multi-socket systems.
956 		 */
957 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
958 		atomic_add_long(cnt, -1);
959 		if (*cnt < -VMMETER_SLOP_COUNT) {
960 			u_long copy = atomic_swap_long(cnt, 0);
961 			cnt = (long *)((char *)&vmstats + pq->cnt_offset);
962 			atomic_add_long(cnt, copy);
963 			cnt = (long *)((char *)&mycpu->gd_vmstats +
964 				      pq->cnt_offset);
965 			atomic_add_long(cnt, copy);
966 		}
967 		pq->lcnt--;
968 		m->queue = PQ_NONE;
969 		oqueue = queue;
970 		queue -= m->pc;
971 		vm_page_queues_spin_unlock(oqueue);	/* intended */
972 	}
973 	return queue;
974 }
975 
976 /*
977  * Helper function places the vm_page on the specified queue.  Generally
978  * speaking only PQ_FREE pages are placed at the head, to allow them to
979  * be allocated sooner rather than later on the assumption that they
980  * are cache-hot.
981  *
982  * The vm_page must be spinlocked.
983  * This function will return with both the page and the queue locked.
984  */
985 static __inline void
986 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
987 {
988 	struct vpgqueues *pq;
989 	u_long *cnt;
990 
991 	KKASSERT(m->queue == PQ_NONE);
992 
993 	if (queue != PQ_NONE) {
994 		vm_page_queues_spin_lock(queue);
995 		pq = &vm_page_queues[queue];
996 		++pq->lcnt;
997 
998 		/*
999 		 * Adjust our pcpu stats.  If a system entity really needs
1000 		 * to incorporate the count it will call vmstats_rollup()
1001 		 * to roll it all up into the global vmstats strufture.
1002 		 */
1003 		cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
1004 		atomic_add_long(cnt, 1);
1005 
1006 		/*
1007 		 * PQ_FREE is always handled LIFO style to try to provide
1008 		 * cache-hot pages to programs.
1009 		 */
1010 		m->queue = queue;
1011 		if (queue - m->pc == PQ_FREE) {
1012 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1013 		} else if (athead) {
1014 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1015 		} else {
1016 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1017 		}
1018 		/* leave the queue spinlocked */
1019 	}
1020 }
1021 
1022 /*
1023  * Wait until page is no longer BUSY.  If also_m_busy is TRUE we wait
1024  * until the page is no longer BUSY or SBUSY (busy_count field is 0).
1025  *
1026  * Returns TRUE if it had to sleep, FALSE if we did not.  Only one sleep
1027  * call will be made before returning.
1028  *
1029  * This function does NOT busy the page and on return the page is not
1030  * guaranteed to be available.
1031  */
1032 void
1033 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
1034 {
1035 	u_int32_t busy_count;
1036 
1037 	for (;;) {
1038 		busy_count = m->busy_count;
1039 		cpu_ccfence();
1040 
1041 		if ((busy_count & PBUSY_LOCKED) == 0 &&
1042 		    (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
1043 			break;
1044 		}
1045 		tsleep_interlock(m, 0);
1046 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1047 				      busy_count | PBUSY_WANTED)) {
1048 			atomic_set_int(&m->flags, PG_REFERENCED);
1049 			tsleep(m, PINTERLOCKED, msg, 0);
1050 			break;
1051 		}
1052 	}
1053 }
1054 
1055 /*
1056  * This calculates and returns a page color given an optional VM object and
1057  * either a pindex or an iterator.  We attempt to return a cpu-localized
1058  * pg_color that is still roughly 16-way set-associative.  The CPU topology
1059  * is used if it was probed.
1060  *
1061  * The caller may use the returned value to index into e.g. PQ_FREE when
1062  * allocating a page in order to nominally obtain pages that are hopefully
1063  * already localized to the requesting cpu.  This function is not able to
1064  * provide any sort of guarantee of this, but does its best to improve
1065  * hardware cache management performance.
1066  *
1067  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
1068  */
1069 u_short
1070 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
1071 {
1072 	u_short pg_color;
1073 	int object_pg_color;
1074 
1075 	/*
1076 	 * WARNING! cpu_topology_core_ids might not be a power of two.
1077 	 *	    We also shouldn't make assumptions about
1078 	 *	    cpu_topology_phys_ids either.
1079 	 *
1080 	 * WARNING! ncpus might not be known at this time (during early
1081 	 *	    boot), and might be set to 1.
1082 	 *
1083 	 * General format: [phys_id][core_id][cpuid][set-associativity]
1084 	 * (but uses modulo, so not necessarily precise bit masks)
1085 	 */
1086 	object_pg_color = object ? object->pg_color : 0;
1087 
1088 	if (cpu_topology_ht_ids) {
1089 		int phys_id;
1090 		int core_id;
1091 		int ht_id;
1092 		int physcale;
1093 		int grpscale;
1094 		int cpuscale;
1095 
1096 		/*
1097 		 * Translate cpuid to socket, core, and hyperthread id.
1098 		 */
1099 		phys_id = get_cpu_phys_id(cpuid);
1100 		core_id = get_cpu_core_id(cpuid);
1101 		ht_id = get_cpu_ht_id(cpuid);
1102 
1103 		/*
1104 		 * Calculate pg_color for our array index.
1105 		 *
1106 		 * physcale - socket multiplier.
1107 		 * grpscale - core multiplier (cores per socket)
1108 		 * cpu*	    - cpus per core
1109 		 *
1110 		 * WARNING! In early boot, ncpus has not yet been
1111 		 *	    initialized and may be set to (1).
1112 		 *
1113 		 * WARNING! physcale must match the organization that
1114 		 *	    vm_numa_organize() creates to ensure that
1115 		 *	    we properly localize allocations to the
1116 		 *	    requested cpuid.
1117 		 */
1118 		physcale = PQ_L2_SIZE / cpu_topology_phys_ids;
1119 		grpscale = physcale / cpu_topology_core_ids;
1120 		cpuscale = grpscale / cpu_topology_ht_ids;
1121 
1122 		pg_color = phys_id * physcale;
1123 		pg_color += core_id * grpscale;
1124 		pg_color += ht_id * cpuscale;
1125 		pg_color += (pindex + object_pg_color) % cpuscale;
1126 
1127 #if 0
1128 		if (grpsize >= 8) {
1129 			pg_color += (pindex + object_pg_color) % grpsize;
1130 		} else {
1131 			if (grpsize <= 2) {
1132 				grpsize = 8;
1133 			} else {
1134 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
1135 				grpsize += grpsize;
1136 				if (grpsize < 8)
1137 					grpsize += grpsize;
1138 			}
1139 			pg_color += (pindex + object_pg_color) % grpsize;
1140 		}
1141 #endif
1142 	} else {
1143 		/*
1144 		 * Unknown topology, distribute things evenly.
1145 		 *
1146 		 * WARNING! In early boot, ncpus has not yet been
1147 		 *	    initialized and may be set to (1).
1148 		 */
1149 		int cpuscale;
1150 
1151 		cpuscale = PQ_L2_SIZE / ncpus;
1152 
1153 		pg_color = cpuid * cpuscale;
1154 		pg_color += (pindex + object_pg_color) % cpuscale;
1155 	}
1156 	return (pg_color & PQ_L2_MASK);
1157 }
1158 
1159 /*
1160  * Wait until BUSY can be set, then set it.  If also_m_busy is TRUE we
1161  * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1162  */
1163 void
1164 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1165 				     int also_m_busy, const char *msg
1166 				     VM_PAGE_DEBUG_ARGS)
1167 {
1168 	u_int32_t busy_count;
1169 
1170 	for (;;) {
1171 		busy_count = m->busy_count;
1172 		cpu_ccfence();
1173 		if (busy_count & PBUSY_LOCKED) {
1174 			tsleep_interlock(m, 0);
1175 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1176 					  busy_count | PBUSY_WANTED)) {
1177 				atomic_set_int(&m->flags, PG_REFERENCED);
1178 				tsleep(m, PINTERLOCKED, msg, 0);
1179 			}
1180 		} else if (also_m_busy && busy_count) {
1181 			tsleep_interlock(m, 0);
1182 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1183 					  busy_count | PBUSY_WANTED)) {
1184 				atomic_set_int(&m->flags, PG_REFERENCED);
1185 				tsleep(m, PINTERLOCKED, msg, 0);
1186 			}
1187 		} else {
1188 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1189 					      busy_count | PBUSY_LOCKED)) {
1190 #ifdef VM_PAGE_DEBUG
1191 				m->busy_func = func;
1192 				m->busy_line = lineno;
1193 #endif
1194 				break;
1195 			}
1196 		}
1197 	}
1198 }
1199 
1200 /*
1201  * Attempt to set BUSY.  If also_m_busy is TRUE we only succeed if
1202  * m->busy_count is also 0.
1203  *
1204  * Returns non-zero on failure.
1205  */
1206 int
1207 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1208 				    VM_PAGE_DEBUG_ARGS)
1209 {
1210 	u_int32_t busy_count;
1211 
1212 	for (;;) {
1213 		busy_count = m->busy_count;
1214 		cpu_ccfence();
1215 		if (busy_count & PBUSY_LOCKED)
1216 			return TRUE;
1217 		if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1218 			return TRUE;
1219 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1220 				      busy_count | PBUSY_LOCKED)) {
1221 #ifdef VM_PAGE_DEBUG
1222 				m->busy_func = func;
1223 				m->busy_line = lineno;
1224 #endif
1225 			return FALSE;
1226 		}
1227 	}
1228 }
1229 
1230 /*
1231  * Clear the BUSY flag and return non-zero to indicate to the caller
1232  * that a wakeup() should be performed.
1233  *
1234  * (inline version)
1235  */
1236 static __inline
1237 int
1238 _vm_page_wakeup(vm_page_t m)
1239 {
1240 	u_int32_t busy_count;
1241 
1242 	busy_count = m->busy_count;
1243 	cpu_ccfence();
1244 	for (;;) {
1245 		if (atomic_fcmpset_int(&m->busy_count, &busy_count,
1246 				      busy_count &
1247 				      ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1248 			return((int)(busy_count & PBUSY_WANTED));
1249 		}
1250 	}
1251 	/* not reached */
1252 }
1253 
1254 /*
1255  * Clear the BUSY flag and wakeup anyone waiting for the page.  This
1256  * is typically the last call you make on a page before moving onto
1257  * other things.
1258  */
1259 void
1260 vm_page_wakeup(vm_page_t m)
1261 {
1262         KASSERT(m->busy_count & PBUSY_LOCKED,
1263 		("vm_page_wakeup: page not busy!!!"));
1264 	if (_vm_page_wakeup(m))
1265 		wakeup(m);
1266 }
1267 
1268 /*
1269  * Hold a page, preventing reuse.  This is typically only called on pages
1270  * in a known state (either held busy, special, or interlocked in some
1271  * manner).  Holding a page does not ensure that it remains valid, it only
1272  * prevents reuse.  The page must not already be on the FREE queue or in
1273  * any danger of being moved to the FREE queue concurrent with this call.
1274  *
1275  * Other parts of the system can still disassociate the page from its object
1276  * and attempt to free it, or perform read or write I/O on it and/or otherwise
1277  * manipulate the page, but if the page is held the VM system will leave the
1278  * page and its data intact and not cycle it through the FREE queue until
1279  * the last hold has been released.
1280  *
1281  * (see vm_page_wire() if you want to prevent the page from being
1282  *  disassociated from its object too).
1283  */
1284 void
1285 vm_page_hold(vm_page_t m)
1286 {
1287 	atomic_add_int(&m->hold_count, 1);
1288 	KKASSERT(m->queue - m->pc != PQ_FREE);
1289 #if 0
1290 	vm_page_spin_lock(m);
1291 	atomic_add_int(&m->hold_count, 1);
1292 	if (m->queue - m->pc == PQ_FREE) {
1293 		_vm_page_queue_spin_lock(m);
1294 		_vm_page_rem_queue_spinlocked(m);
1295 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1296 		_vm_page_queue_spin_unlock(m);
1297 	}
1298 	vm_page_spin_unlock(m);
1299 #endif
1300 }
1301 
1302 /*
1303  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1304  * it was freed while held and must be moved back to the FREE queue.
1305  *
1306  * To avoid racing against vm_page_free*() we must re-test conditions
1307  * after obtaining the spin-lock.  The initial test can also race a
1308  * vm_page_free*() that is in the middle of moving a page to PQ_HOLD,
1309  * leaving the page on PQ_HOLD with hold_count == 0.  Rather than
1310  * throw a spin-lock in the critical path, we rely on the pageout
1311  * daemon to clean-up these loose ends.
1312  *
1313  * More critically, the 'easy movement' between queues without busying
1314  * a vm_page is only allowed for PQ_FREE<->PQ_HOLD.
1315  */
1316 void
1317 vm_page_unhold(vm_page_t m)
1318 {
1319 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1320 		("vm_page_unhold: pg %p illegal hold_count (%d) or "
1321 		 "on FREE queue (%d)",
1322 		 m, m->hold_count, m->queue - m->pc));
1323 
1324 	if (atomic_fetchadd_int(&m->hold_count, -1) == 1 &&
1325 	    m->queue - m->pc == PQ_HOLD) {
1326 		vm_page_spin_lock(m);
1327 		if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1328 			_vm_page_queue_spin_lock(m);
1329 			_vm_page_rem_queue_spinlocked(m);
1330 			_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1331 			_vm_page_queue_spin_unlock(m);
1332 		}
1333 		vm_page_spin_unlock(m);
1334 	}
1335 }
1336 
1337 /*
1338  * Create a fictitious page with the specified physical address and
1339  * memory attribute.  The memory attribute is the only the machine-
1340  * dependent aspect of a fictitious page that must be initialized.
1341  */
1342 void
1343 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1344 {
1345 
1346 	if ((m->flags & PG_FICTITIOUS) != 0) {
1347 		/*
1348 		 * The page's memattr might have changed since the
1349 		 * previous initialization.  Update the pmap to the
1350 		 * new memattr.
1351 		 */
1352 		goto memattr;
1353 	}
1354 	m->phys_addr = paddr;
1355 	m->queue = PQ_NONE;
1356 	/* Fictitious pages don't use "segind". */
1357 	/* Fictitious pages don't use "order" or "pool". */
1358 	m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1359 	m->busy_count = PBUSY_LOCKED;
1360 	m->wire_count = 1;
1361 	spin_init(&m->spin, "fake_page");
1362 	pmap_page_init(m);
1363 memattr:
1364 	pmap_page_set_memattr(m, memattr);
1365 }
1366 
1367 /*
1368  * Inserts the given vm_page into the object and object list.
1369  *
1370  * The pagetables are not updated but will presumably fault the page
1371  * in if necessary, or if a kernel page the caller will at some point
1372  * enter the page into the kernel's pmap.  We are not allowed to block
1373  * here so we *can't* do this anyway.
1374  *
1375  * This routine may not block.
1376  * This routine must be called with the vm_object held.
1377  * This routine must be called with a critical section held.
1378  *
1379  * This routine returns TRUE if the page was inserted into the object
1380  * successfully, and FALSE if the page already exists in the object.
1381  */
1382 int
1383 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1384 {
1385 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1386 	if (m->object != NULL)
1387 		panic("vm_page_insert: already inserted");
1388 
1389 	atomic_add_int(&object->generation, 1);
1390 
1391 	/*
1392 	 * Record the object/offset pair in this page and add the
1393 	 * pv_list_count of the page to the object.
1394 	 *
1395 	 * The vm_page spin lock is required for interactions with the pmap.
1396 	 */
1397 	vm_page_spin_lock(m);
1398 	m->object = object;
1399 	m->pindex = pindex;
1400 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1401 		m->object = NULL;
1402 		m->pindex = 0;
1403 		vm_page_spin_unlock(m);
1404 		return FALSE;
1405 	}
1406 	++object->resident_page_count;
1407 	++mycpu->gd_vmtotal.t_rm;
1408 	vm_page_spin_unlock(m);
1409 
1410 	/*
1411 	 * Since we are inserting a new and possibly dirty page,
1412 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1413 	 */
1414 	if ((m->valid & m->dirty) ||
1415 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1416 		vm_object_set_writeable_dirty(object);
1417 
1418 	/*
1419 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1420 	 */
1421 	swap_pager_page_inserted(m);
1422 	return TRUE;
1423 }
1424 
1425 /*
1426  * Removes the given vm_page_t from the (object,index) table
1427  *
1428  * The underlying pmap entry (if any) is NOT removed here.
1429  * This routine may not block.
1430  *
1431  * The page must be BUSY and will remain BUSY on return.
1432  * No other requirements.
1433  *
1434  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1435  *	 it busy.
1436  */
1437 void
1438 vm_page_remove(vm_page_t m)
1439 {
1440 	vm_object_t object;
1441 
1442 	if (m->object == NULL) {
1443 		return;
1444 	}
1445 
1446 	if ((m->busy_count & PBUSY_LOCKED) == 0)
1447 		panic("vm_page_remove: page not busy");
1448 
1449 	object = m->object;
1450 
1451 	vm_object_hold(object);
1452 
1453 	/*
1454 	 * Remove the page from the object and update the object.
1455 	 *
1456 	 * The vm_page spin lock is required for interactions with the pmap.
1457 	 */
1458 	vm_page_spin_lock(m);
1459 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1460 	--object->resident_page_count;
1461 	--mycpu->gd_vmtotal.t_rm;
1462 	m->object = NULL;
1463 	atomic_add_int(&object->generation, 1);
1464 	vm_page_spin_unlock(m);
1465 
1466 	vm_object_drop(object);
1467 }
1468 
1469 /*
1470  * Calculate the hash position for the vm_page hash heuristic.
1471  */
1472 static __inline
1473 struct vm_page **
1474 vm_page_hash_hash(vm_object_t object, vm_pindex_t pindex)
1475 {
1476 	size_t hi;
1477 
1478 	hi = (uintptr_t)object % (uintptr_t)vm_page_array_size + pindex;
1479 	hi %= vm_page_array_size;
1480 	return (&vm_page_hash[hi]);
1481 }
1482 
1483 /*
1484  * Heuristical page lookup that does not require any locks.  Returns
1485  * a soft-busied page on success, NULL on failure.
1486  *
1487  * Caller must lookup the page the slow way if NULL is returned.
1488  */
1489 vm_page_t
1490 vm_page_hash_get(vm_object_t object, vm_pindex_t pindex)
1491 {
1492 	struct vm_page **mp;
1493 	vm_page_t m;
1494 
1495 	if (vm_page_hash == NULL)
1496 		return NULL;
1497 	mp = vm_page_hash_hash(object, pindex);
1498 	m = *mp;
1499 	cpu_ccfence();
1500 	if (m == NULL)
1501 		return NULL;
1502 	if (m->object != object || m->pindex != pindex)
1503 		return NULL;
1504 	if (vm_page_sbusy_try(m))
1505 		return NULL;
1506 	if (m->object != object || m->pindex != pindex) {
1507 		vm_page_wakeup(m);
1508 		return NULL;
1509 	}
1510 	return m;
1511 }
1512 
1513 /*
1514  * Enter page onto vm_page_hash[].  This is a heuristic, SMP collisions
1515  * are allowed.
1516  */
1517 static __inline
1518 void
1519 vm_page_hash_enter(vm_page_t m)
1520 {
1521 	struct vm_page **mp;
1522 
1523 	if (vm_page_hash &&
1524 	    m > &vm_page_array[0] &&
1525 	    m < &vm_page_array[vm_page_array_size]) {
1526 		mp = vm_page_hash_hash(m->object, m->pindex);
1527 		if (*mp != m)
1528 			*mp = m;
1529 	}
1530 }
1531 
1532 /*
1533  * Locate and return the page at (object, pindex), or NULL if the
1534  * page could not be found.
1535  *
1536  * The caller must hold the vm_object token.
1537  */
1538 vm_page_t
1539 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1540 {
1541 	vm_page_t m;
1542 
1543 	/*
1544 	 * Search the hash table for this object/offset pair
1545 	 */
1546 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1547 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1548 	if (m) {
1549 		KKASSERT(m->object == object && m->pindex == pindex);
1550 		vm_page_hash_enter(m);
1551 	}
1552 	return(m);
1553 }
1554 
1555 vm_page_t
1556 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1557 					    vm_pindex_t pindex,
1558 					    int also_m_busy, const char *msg
1559 					    VM_PAGE_DEBUG_ARGS)
1560 {
1561 	u_int32_t busy_count;
1562 	vm_page_t m;
1563 
1564 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1565 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1566 	while (m) {
1567 		KKASSERT(m->object == object && m->pindex == pindex);
1568 		busy_count = m->busy_count;
1569 		cpu_ccfence();
1570 		if (busy_count & PBUSY_LOCKED) {
1571 			tsleep_interlock(m, 0);
1572 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1573 					  busy_count | PBUSY_WANTED)) {
1574 				atomic_set_int(&m->flags, PG_REFERENCED);
1575 				tsleep(m, PINTERLOCKED, msg, 0);
1576 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1577 							      pindex);
1578 			}
1579 		} else if (also_m_busy && busy_count) {
1580 			tsleep_interlock(m, 0);
1581 			if (atomic_cmpset_int(&m->busy_count, busy_count,
1582 					  busy_count | PBUSY_WANTED)) {
1583 				atomic_set_int(&m->flags, PG_REFERENCED);
1584 				tsleep(m, PINTERLOCKED, msg, 0);
1585 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1586 							      pindex);
1587 			}
1588 		} else if (atomic_cmpset_int(&m->busy_count, busy_count,
1589 					     busy_count | PBUSY_LOCKED)) {
1590 #ifdef VM_PAGE_DEBUG
1591 			m->busy_func = func;
1592 			m->busy_line = lineno;
1593 #endif
1594 			vm_page_hash_enter(m);
1595 			break;
1596 		}
1597 	}
1598 	return m;
1599 }
1600 
1601 /*
1602  * Attempt to lookup and busy a page.
1603  *
1604  * Returns NULL if the page could not be found
1605  *
1606  * Returns a vm_page and error == TRUE if the page exists but could not
1607  * be busied.
1608  *
1609  * Returns a vm_page and error == FALSE on success.
1610  */
1611 vm_page_t
1612 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1613 					   vm_pindex_t pindex,
1614 					   int also_m_busy, int *errorp
1615 					   VM_PAGE_DEBUG_ARGS)
1616 {
1617 	u_int32_t busy_count;
1618 	vm_page_t m;
1619 
1620 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1621 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1622 	*errorp = FALSE;
1623 	while (m) {
1624 		KKASSERT(m->object == object && m->pindex == pindex);
1625 		busy_count = m->busy_count;
1626 		cpu_ccfence();
1627 		if (busy_count & PBUSY_LOCKED) {
1628 			*errorp = TRUE;
1629 			break;
1630 		}
1631 		if (also_m_busy && busy_count) {
1632 			*errorp = TRUE;
1633 			break;
1634 		}
1635 		if (atomic_cmpset_int(&m->busy_count, busy_count,
1636 				      busy_count | PBUSY_LOCKED)) {
1637 #ifdef VM_PAGE_DEBUG
1638 			m->busy_func = func;
1639 			m->busy_line = lineno;
1640 #endif
1641 			vm_page_hash_enter(m);
1642 			break;
1643 		}
1644 	}
1645 	return m;
1646 }
1647 
1648 /*
1649  * Returns a page that is only soft-busied for use by the caller in
1650  * a read-only fashion.  Returns NULL if the page could not be found,
1651  * the soft busy could not be obtained, or the page data is invalid.
1652  */
1653 vm_page_t
1654 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1655 			 int pgoff, int pgbytes)
1656 {
1657 	vm_page_t m;
1658 
1659 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1660 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1661 	if (m) {
1662 		if ((m->valid != VM_PAGE_BITS_ALL &&
1663 		     !vm_page_is_valid(m, pgoff, pgbytes)) ||
1664 		    (m->flags & PG_FICTITIOUS)) {
1665 			m = NULL;
1666 		} else if (vm_page_sbusy_try(m)) {
1667 			m = NULL;
1668 		} else if ((m->valid != VM_PAGE_BITS_ALL &&
1669 			    !vm_page_is_valid(m, pgoff, pgbytes)) ||
1670 			   (m->flags & PG_FICTITIOUS)) {
1671 			vm_page_sbusy_drop(m);
1672 			m = NULL;
1673 		} else {
1674 			vm_page_hash_enter(m);
1675 		}
1676 	}
1677 	return m;
1678 }
1679 
1680 /*
1681  * Caller must hold the related vm_object
1682  */
1683 vm_page_t
1684 vm_page_next(vm_page_t m)
1685 {
1686 	vm_page_t next;
1687 
1688 	next = vm_page_rb_tree_RB_NEXT(m);
1689 	if (next && next->pindex != m->pindex + 1)
1690 		next = NULL;
1691 	return (next);
1692 }
1693 
1694 /*
1695  * vm_page_rename()
1696  *
1697  * Move the given vm_page from its current object to the specified
1698  * target object/offset.  The page must be busy and will remain so
1699  * on return.
1700  *
1701  * new_object must be held.
1702  * This routine might block. XXX ?
1703  *
1704  * NOTE: Swap associated with the page must be invalidated by the move.  We
1705  *       have to do this for several reasons:  (1) we aren't freeing the
1706  *       page, (2) we are dirtying the page, (3) the VM system is probably
1707  *       moving the page from object A to B, and will then later move
1708  *       the backing store from A to B and we can't have a conflict.
1709  *
1710  * NOTE: We *always* dirty the page.  It is necessary both for the
1711  *       fact that we moved it, and because we may be invalidating
1712  *	 swap.  If the page is on the cache, we have to deactivate it
1713  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1714  *	 on the cache.
1715  */
1716 void
1717 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1718 {
1719 	KKASSERT(m->busy_count & PBUSY_LOCKED);
1720 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1721 	if (m->object) {
1722 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1723 		vm_page_remove(m);
1724 	}
1725 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1726 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1727 		      new_object, new_pindex);
1728 	}
1729 	if (m->queue - m->pc == PQ_CACHE)
1730 		vm_page_deactivate(m);
1731 	vm_page_dirty(m);
1732 }
1733 
1734 /*
1735  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1736  * is to remain BUSYied by the caller.
1737  *
1738  * This routine may not block.
1739  */
1740 void
1741 vm_page_unqueue_nowakeup(vm_page_t m)
1742 {
1743 	vm_page_and_queue_spin_lock(m);
1744 	(void)_vm_page_rem_queue_spinlocked(m);
1745 	vm_page_spin_unlock(m);
1746 }
1747 
1748 /*
1749  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1750  * if necessary.
1751  *
1752  * This routine may not block.
1753  */
1754 void
1755 vm_page_unqueue(vm_page_t m)
1756 {
1757 	u_short queue;
1758 
1759 	vm_page_and_queue_spin_lock(m);
1760 	queue = _vm_page_rem_queue_spinlocked(m);
1761 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1762 		vm_page_spin_unlock(m);
1763 		pagedaemon_wakeup();
1764 	} else {
1765 		vm_page_spin_unlock(m);
1766 	}
1767 }
1768 
1769 /*
1770  * vm_page_list_find()
1771  *
1772  * Find a page on the specified queue with color optimization.
1773  *
1774  * The page coloring optimization attempts to locate a page that does
1775  * not overload other nearby pages in the object in the cpu's L1 or L2
1776  * caches.  We need this optimization because cpu caches tend to be
1777  * physical caches, while object spaces tend to be virtual.
1778  *
1779  * The page coloring optimization also, very importantly, tries to localize
1780  * memory to cpus and physical sockets.
1781  *
1782  * Each PQ_FREE and PQ_CACHE color queue has its own spinlock and the
1783  * algorithm is adjusted to localize allocations on a per-core basis.
1784  * This is done by 'twisting' the colors.
1785  *
1786  * The page is returned spinlocked and removed from its queue (it will
1787  * be on PQ_NONE), or NULL. The page is not BUSY'd.  The caller
1788  * is responsible for dealing with the busy-page case (usually by
1789  * deactivating the page and looping).
1790  *
1791  * NOTE:  This routine is carefully inlined.  A non-inlined version
1792  *	  is available for outside callers but the only critical path is
1793  *	  from within this source file.
1794  *
1795  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1796  *	  represent stable storage, allowing us to order our locks vm_page
1797  *	  first, then queue.
1798  */
1799 static __inline
1800 vm_page_t
1801 _vm_page_list_find(int basequeue, int index)
1802 {
1803 	struct vpgqueues *pq;
1804 	vm_page_t m;
1805 
1806 	index &= PQ_L2_MASK;
1807 	pq = &vm_page_queues[basequeue + index];
1808 
1809 	/*
1810 	 * Try this cpu's colored queue first.  Test for a page unlocked,
1811 	 * then lock the queue and locate a page.  Note that the lock order
1812 	 * is reversed, but we do not want to dwadle on the page spinlock
1813 	 * anyway as it is held significantly longer than the queue spinlock.
1814 	 */
1815 	if (TAILQ_FIRST(&pq->pl)) {
1816 		spin_lock(&pq->spin);
1817 		TAILQ_FOREACH(m, &pq->pl, pageq) {
1818 			if (spin_trylock(&m->spin) == 0)
1819 				continue;
1820 			KKASSERT(m->queue == basequeue + index);
1821 			_vm_page_rem_queue_spinlocked(m);
1822 			return(m);
1823 		}
1824 		spin_unlock(&pq->spin);
1825 	}
1826 
1827 	/*
1828 	 * If we are unable to get a page, do a more involved NUMA-aware
1829 	 * search.
1830 	 */
1831 	m = _vm_page_list_find2(basequeue, index);
1832 	return(m);
1833 }
1834 
1835 /*
1836  * If we could not find the page in the desired queue try to find it in
1837  * a nearby (NUMA-aware) queue.
1838  */
1839 static vm_page_t
1840 _vm_page_list_find2(int basequeue, int index)
1841 {
1842 	struct vpgqueues *pq;
1843 	vm_page_t m = NULL;
1844 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1845 	int pqi;
1846 	int i;
1847 
1848 	index &= PQ_L2_MASK;
1849 	pq = &vm_page_queues[basequeue];
1850 
1851 	/*
1852 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1853 	 * else fails (PQ_L2_MASK which is 255).
1854 	 *
1855 	 * Test each queue unlocked first, then lock the queue and locate
1856 	 * a page.  Note that the lock order is reversed, but we do not want
1857 	 * to dwadle on the page spinlock anyway as it is held significantly
1858 	 * longer than the queue spinlock.
1859 	 */
1860 	do {
1861 		pqmask = (pqmask << 1) | 1;
1862 		for (i = 0; i <= pqmask; ++i) {
1863 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1864 			if (TAILQ_FIRST(&pq[pqi].pl)) {
1865 				spin_lock(&pq[pqi].spin);
1866 				TAILQ_FOREACH(m, &pq[pqi].pl, pageq) {
1867 					if (spin_trylock(&m->spin) == 0)
1868 						continue;
1869 					KKASSERT(m->queue == basequeue + pqi);
1870 					_vm_page_rem_queue_spinlocked(m);
1871 					return(m);
1872 				}
1873 				spin_unlock(&pq[pqi].spin);
1874 			}
1875 		}
1876 	} while (pqmask != PQ_L2_MASK);
1877 
1878 	return(m);
1879 }
1880 
1881 /*
1882  * Returns a vm_page candidate for allocation.  The page is not busied so
1883  * it can move around.  The caller must busy the page (and typically
1884  * deactivate it if it cannot be busied!)
1885  *
1886  * Returns a spinlocked vm_page that has been removed from its queue.
1887  */
1888 vm_page_t
1889 vm_page_list_find(int basequeue, int index)
1890 {
1891 	return(_vm_page_list_find(basequeue, index));
1892 }
1893 
1894 /*
1895  * Find a page on the cache queue with color optimization, remove it
1896  * from the queue, and busy it.  The returned page will not be spinlocked.
1897  *
1898  * A candidate failure will be deactivated.  Candidates can fail due to
1899  * being busied by someone else, in which case they will be deactivated.
1900  *
1901  * This routine may not block.
1902  *
1903  */
1904 static vm_page_t
1905 vm_page_select_cache(u_short pg_color)
1906 {
1907 	vm_page_t m;
1908 
1909 	for (;;) {
1910 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1911 		if (m == NULL)
1912 			break;
1913 		/*
1914 		 * (m) has been removed from its queue and spinlocked
1915 		 */
1916 		if (vm_page_busy_try(m, TRUE)) {
1917 			_vm_page_deactivate_locked(m, 0);
1918 			vm_page_spin_unlock(m);
1919 		} else {
1920 			/*
1921 			 * We successfully busied the page
1922 			 */
1923 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1924 			    m->hold_count == 0 &&
1925 			    m->wire_count == 0 &&
1926 			    (m->dirty & m->valid) == 0) {
1927 				vm_page_spin_unlock(m);
1928 				pagedaemon_wakeup();
1929 				return(m);
1930 			}
1931 
1932 			/*
1933 			 * The page cannot be recycled, deactivate it.
1934 			 */
1935 			_vm_page_deactivate_locked(m, 0);
1936 			if (_vm_page_wakeup(m)) {
1937 				vm_page_spin_unlock(m);
1938 				wakeup(m);
1939 			} else {
1940 				vm_page_spin_unlock(m);
1941 			}
1942 		}
1943 	}
1944 	return (m);
1945 }
1946 
1947 /*
1948  * Find a free page.  We attempt to inline the nominal case and fall back
1949  * to _vm_page_select_free() otherwise.  A busied page is removed from
1950  * the queue and returned.
1951  *
1952  * This routine may not block.
1953  */
1954 static __inline vm_page_t
1955 vm_page_select_free(u_short pg_color)
1956 {
1957 	vm_page_t m;
1958 
1959 	for (;;) {
1960 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1961 		if (m == NULL)
1962 			break;
1963 		if (vm_page_busy_try(m, TRUE)) {
1964 			/*
1965 			 * Various mechanisms such as a pmap_collect can
1966 			 * result in a busy page on the free queue.  We
1967 			 * have to move the page out of the way so we can
1968 			 * retry the allocation.  If the other thread is not
1969 			 * allocating the page then m->valid will remain 0 and
1970 			 * the pageout daemon will free the page later on.
1971 			 *
1972 			 * Since we could not busy the page, however, we
1973 			 * cannot make assumptions as to whether the page
1974 			 * will be allocated by the other thread or not,
1975 			 * so all we can do is deactivate it to move it out
1976 			 * of the way.  In particular, if the other thread
1977 			 * wires the page it may wind up on the inactive
1978 			 * queue and the pageout daemon will have to deal
1979 			 * with that case too.
1980 			 */
1981 			_vm_page_deactivate_locked(m, 0);
1982 			vm_page_spin_unlock(m);
1983 		} else {
1984 			/*
1985 			 * Theoretically if we are able to busy the page
1986 			 * atomic with the queue removal (using the vm_page
1987 			 * lock) nobody else should have been able to mess
1988 			 * with the page before us.
1989 			 *
1990 			 * Assert the page state.  Note that even though
1991 			 * wiring doesn't adjust queues, a page on the free
1992 			 * queue should never be wired at this point.
1993 			 */
1994 			KKASSERT((m->flags & (PG_UNMANAGED |
1995 					      PG_NEED_COMMIT)) == 0);
1996 			KASSERT(m->hold_count == 0,
1997 				("m->hold_count is not zero "
1998 				 "pg %p q=%d flags=%08x hold=%d wire=%d",
1999 				 m, m->queue, m->flags,
2000 				 m->hold_count, m->wire_count));
2001 			KKASSERT(m->wire_count == 0);
2002 			vm_page_spin_unlock(m);
2003 			pagedaemon_wakeup();
2004 
2005 			/* return busied and removed page */
2006 			return(m);
2007 		}
2008 	}
2009 	return(m);
2010 }
2011 
2012 /*
2013  * vm_page_alloc()
2014  *
2015  * Allocate and return a memory cell associated with this VM object/offset
2016  * pair.  If object is NULL an unassociated page will be allocated.
2017  *
2018  * The returned page will be busied and removed from its queues.  This
2019  * routine can block and may return NULL if a race occurs and the page
2020  * is found to already exist at the specified (object, pindex).
2021  *
2022  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
2023  *	VM_ALLOC_QUICK		like normal but cannot use cache
2024  *	VM_ALLOC_SYSTEM		greater free drain
2025  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
2026  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
2027  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
2028  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
2029  *				(see vm_page_grab())
2030  *	VM_ALLOC_USE_GD		ok to use per-gd cache
2031  *
2032  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
2033  *
2034  * The object must be held if not NULL
2035  * This routine may not block
2036  *
2037  * Additional special handling is required when called from an interrupt
2038  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
2039  * in this case.
2040  */
2041 vm_page_t
2042 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
2043 {
2044 	globaldata_t gd;
2045 	vm_object_t obj;
2046 	vm_page_t m;
2047 	u_short pg_color;
2048 	int cpuid_local;
2049 
2050 #if 0
2051 	/*
2052 	 * Special per-cpu free VM page cache.  The pages are pre-busied
2053 	 * and pre-zerod for us.
2054 	 */
2055 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
2056 		crit_enter_gd(gd);
2057 		if (gd->gd_vmpg_count) {
2058 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
2059 			crit_exit_gd(gd);
2060 			goto done;
2061                 }
2062 		crit_exit_gd(gd);
2063         }
2064 #endif
2065 	m = NULL;
2066 
2067 	/*
2068 	 * CPU LOCALIZATION
2069 	 *
2070 	 * CPU localization algorithm.  Break the page queues up by physical
2071 	 * id and core id (note that two cpu threads will have the same core
2072 	 * id, and core_id != gd_cpuid).
2073 	 *
2074 	 * This is nowhere near perfect, for example the last pindex in a
2075 	 * subgroup will overflow into the next cpu or package.  But this
2076 	 * should get us good page reuse locality in heavy mixed loads.
2077 	 *
2078 	 * (may be executed before the APs are started, so other GDs might
2079 	 *  not exist!)
2080 	 */
2081 	if (page_req & VM_ALLOC_CPU_SPEC)
2082 		cpuid_local = VM_ALLOC_GETCPU(page_req);
2083 	else
2084 		cpuid_local = mycpu->gd_cpuid;
2085 
2086 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
2087 
2088 	KKASSERT(page_req &
2089 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
2090 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2091 
2092 	/*
2093 	 * Certain system threads (pageout daemon, buf_daemon's) are
2094 	 * allowed to eat deeper into the free page list.
2095 	 */
2096 	if (curthread->td_flags & TDF_SYSTHREAD)
2097 		page_req |= VM_ALLOC_SYSTEM;
2098 
2099 	/*
2100 	 * Impose various limitations.  Note that the v_free_reserved test
2101 	 * must match the opposite of vm_page_count_target() to avoid
2102 	 * livelocks, be careful.
2103 	 */
2104 loop:
2105 	gd = mycpu;
2106 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
2107 	    ((page_req & VM_ALLOC_INTERRUPT) &&
2108 	     gd->gd_vmstats.v_free_count > 0) ||
2109 	    ((page_req & VM_ALLOC_SYSTEM) &&
2110 	     gd->gd_vmstats.v_cache_count == 0 &&
2111 		gd->gd_vmstats.v_free_count >
2112 		gd->gd_vmstats.v_interrupt_free_min)
2113 	) {
2114 		/*
2115 		 * The free queue has sufficient free pages to take one out.
2116 		 */
2117 		m = vm_page_select_free(pg_color);
2118 	} else if (page_req & VM_ALLOC_NORMAL) {
2119 		/*
2120 		 * Allocatable from the cache (non-interrupt only).  On
2121 		 * success, we must free the page and try again, thus
2122 		 * ensuring that vmstats.v_*_free_min counters are replenished.
2123 		 */
2124 #ifdef INVARIANTS
2125 		if (curthread->td_preempted) {
2126 			kprintf("vm_page_alloc(): warning, attempt to allocate"
2127 				" cache page from preempting interrupt\n");
2128 			m = NULL;
2129 		} else {
2130 			m = vm_page_select_cache(pg_color);
2131 		}
2132 #else
2133 		m = vm_page_select_cache(pg_color);
2134 #endif
2135 		/*
2136 		 * On success move the page into the free queue and loop.
2137 		 *
2138 		 * Only do this if we can safely acquire the vm_object lock,
2139 		 * because this is effectively a random page and the caller
2140 		 * might be holding the lock shared, we don't want to
2141 		 * deadlock.
2142 		 */
2143 		if (m != NULL) {
2144 			KASSERT(m->dirty == 0,
2145 				("Found dirty cache page %p", m));
2146 			if ((obj = m->object) != NULL) {
2147 				if (vm_object_hold_try(obj)) {
2148 					vm_page_protect(m, VM_PROT_NONE);
2149 					vm_page_free(m);
2150 					/* m->object NULL here */
2151 					vm_object_drop(obj);
2152 				} else {
2153 					vm_page_deactivate(m);
2154 					vm_page_wakeup(m);
2155 				}
2156 			} else {
2157 				vm_page_protect(m, VM_PROT_NONE);
2158 				vm_page_free(m);
2159 			}
2160 			goto loop;
2161 		}
2162 
2163 		/*
2164 		 * On failure return NULL
2165 		 */
2166 		atomic_add_int(&vm_pageout_deficit, 1);
2167 		pagedaemon_wakeup();
2168 		return (NULL);
2169 	} else {
2170 		/*
2171 		 * No pages available, wakeup the pageout daemon and give up.
2172 		 */
2173 		atomic_add_int(&vm_pageout_deficit, 1);
2174 		pagedaemon_wakeup();
2175 		return (NULL);
2176 	}
2177 
2178 	/*
2179 	 * v_free_count can race so loop if we don't find the expected
2180 	 * page.
2181 	 */
2182 	if (m == NULL) {
2183 		vmstats_rollup();
2184 		goto loop;
2185 	}
2186 
2187 	/*
2188 	 * Good page found.  The page has already been busied for us and
2189 	 * removed from its queues.
2190 	 */
2191 	KASSERT(m->dirty == 0,
2192 		("vm_page_alloc: free/cache page %p was dirty", m));
2193 	KKASSERT(m->queue == PQ_NONE);
2194 
2195 #if 0
2196 done:
2197 #endif
2198 	/*
2199 	 * Initialize the structure, inheriting some flags but clearing
2200 	 * all the rest.  The page has already been busied for us.
2201 	 */
2202 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
2203 
2204 	KKASSERT(m->wire_count == 0);
2205 	KKASSERT((m->busy_count & PBUSY_MASK) == 0);
2206 	m->act_count = 0;
2207 	m->valid = 0;
2208 
2209 	/*
2210 	 * Caller must be holding the object lock (asserted by
2211 	 * vm_page_insert()).
2212 	 *
2213 	 * NOTE: Inserting a page here does not insert it into any pmaps
2214 	 *	 (which could cause us to block allocating memory).
2215 	 *
2216 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2217 	 *	 can be used by the caller for any purpose.
2218 	 */
2219 	if (object) {
2220 		if (vm_page_insert(m, object, pindex) == FALSE) {
2221 			vm_page_free(m);
2222 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2223 				panic("PAGE RACE %p[%ld]/%p",
2224 				      object, (long)pindex, m);
2225 			m = NULL;
2226 		}
2227 	} else {
2228 		m->pindex = pindex;
2229 	}
2230 
2231 	/*
2232 	 * Don't wakeup too often - wakeup the pageout daemon when
2233 	 * we would be nearly out of memory.
2234 	 */
2235 	pagedaemon_wakeup();
2236 
2237 	/*
2238 	 * A BUSY page is returned.
2239 	 */
2240 	return (m);
2241 }
2242 
2243 /*
2244  * Returns number of pages available in our DMA memory reserve
2245  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2246  */
2247 vm_size_t
2248 vm_contig_avail_pages(void)
2249 {
2250 	alist_blk_t blk;
2251 	alist_blk_t count;
2252 	alist_blk_t bfree;
2253 	spin_lock(&vm_contig_spin);
2254 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2255 	spin_unlock(&vm_contig_spin);
2256 
2257 	return bfree;
2258 }
2259 
2260 /*
2261  * Attempt to allocate contiguous physical memory with the specified
2262  * requirements.
2263  */
2264 vm_page_t
2265 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2266 		     unsigned long alignment, unsigned long boundary,
2267 		     unsigned long size, vm_memattr_t memattr)
2268 {
2269 	alist_blk_t blk;
2270 	vm_page_t m;
2271 	vm_pindex_t i;
2272 #if 0
2273 	static vm_pindex_t contig_rover;
2274 #endif
2275 
2276 	alignment >>= PAGE_SHIFT;
2277 	if (alignment == 0)
2278 		alignment = 1;
2279 	boundary >>= PAGE_SHIFT;
2280 	if (boundary == 0)
2281 		boundary = 1;
2282 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2283 
2284 #if 0
2285 	/*
2286 	 * Disabled temporarily until we find a solution for DRM (a flag
2287 	 * to always use the free space reserve, for performance).
2288 	 */
2289 	if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2290 	    boundary <= PAGE_SIZE && size == 1 &&
2291 	    memattr == VM_MEMATTR_DEFAULT) {
2292 		/*
2293 		 * Any page will work, use vm_page_alloc()
2294 		 * (e.g. when used from kmem_alloc_attr())
2295 		 */
2296 		m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2297 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2298 				  VM_ALLOC_INTERRUPT);
2299 		m->valid = VM_PAGE_BITS_ALL;
2300 		vm_page_wire(m);
2301 		vm_page_wakeup(m);
2302 	} else
2303 #endif
2304 	{
2305 		/*
2306 		 * Use the low-memory dma reserve
2307 		 */
2308 		spin_lock(&vm_contig_spin);
2309 		blk = alist_alloc(&vm_contig_alist, 0, size);
2310 		if (blk == ALIST_BLOCK_NONE) {
2311 			spin_unlock(&vm_contig_spin);
2312 			if (bootverbose) {
2313 				kprintf("vm_page_alloc_contig: %ldk nospace\n",
2314 					(size << PAGE_SHIFT) / 1024);
2315 				print_backtrace(5);
2316 			}
2317 			return(NULL);
2318 		}
2319 		if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2320 			alist_free(&vm_contig_alist, blk, size);
2321 			spin_unlock(&vm_contig_spin);
2322 			if (bootverbose) {
2323 				kprintf("vm_page_alloc_contig: %ldk high "
2324 					"%016jx failed\n",
2325 					(size << PAGE_SHIFT) / 1024,
2326 					(intmax_t)high);
2327 			}
2328 			return(NULL);
2329 		}
2330 		spin_unlock(&vm_contig_spin);
2331 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2332 	}
2333 	if (vm_contig_verbose) {
2334 		kprintf("vm_page_alloc_contig: %016jx/%ldk "
2335 			"(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2336 			(intmax_t)m->phys_addr,
2337 			(size << PAGE_SHIFT) / 1024,
2338 			low, high, alignment, boundary, size, memattr);
2339 	}
2340 	if (memattr != VM_MEMATTR_DEFAULT) {
2341 		for (i = 0;i < size; i++)
2342 			pmap_page_set_memattr(&m[i], memattr);
2343 	}
2344 	return m;
2345 }
2346 
2347 /*
2348  * Free contiguously allocated pages.  The pages will be wired but not busy.
2349  * When freeing to the alist we leave them wired and not busy.
2350  */
2351 void
2352 vm_page_free_contig(vm_page_t m, unsigned long size)
2353 {
2354 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2355 	vm_pindex_t start = pa >> PAGE_SHIFT;
2356 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2357 
2358 	if (vm_contig_verbose) {
2359 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2360 			(intmax_t)pa, size / 1024);
2361 	}
2362 	if (pa < vm_low_phys_reserved) {
2363 		KKASSERT(pa + size <= vm_low_phys_reserved);
2364 		spin_lock(&vm_contig_spin);
2365 		alist_free(&vm_contig_alist, start, pages);
2366 		spin_unlock(&vm_contig_spin);
2367 	} else {
2368 		while (pages) {
2369 			vm_page_busy_wait(m, FALSE, "cpgfr");
2370 			vm_page_unwire(m, 0);
2371 			vm_page_free(m);
2372 			--pages;
2373 			++m;
2374 		}
2375 
2376 	}
2377 }
2378 
2379 
2380 /*
2381  * Wait for sufficient free memory for nominal heavy memory use kernel
2382  * operations.
2383  *
2384  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2385  *	     will trivially deadlock the system.
2386  */
2387 void
2388 vm_wait_nominal(void)
2389 {
2390 	while (vm_page_count_min(0))
2391 		vm_wait(0);
2392 }
2393 
2394 /*
2395  * Test if vm_wait_nominal() would block.
2396  */
2397 int
2398 vm_test_nominal(void)
2399 {
2400 	if (vm_page_count_min(0))
2401 		return(1);
2402 	return(0);
2403 }
2404 
2405 /*
2406  * Block until free pages are available for allocation, called in various
2407  * places before memory allocations.
2408  *
2409  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2410  * more generous then that.
2411  */
2412 void
2413 vm_wait(int timo)
2414 {
2415 	/*
2416 	 * never wait forever
2417 	 */
2418 	if (timo == 0)
2419 		timo = hz;
2420 	lwkt_gettoken(&vm_token);
2421 
2422 	if (curthread == pagethread ||
2423 	    curthread == emergpager) {
2424 		/*
2425 		 * The pageout daemon itself needs pages, this is bad.
2426 		 */
2427 		if (vm_page_count_min(0)) {
2428 			vm_pageout_pages_needed = 1;
2429 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2430 		}
2431 	} else {
2432 		/*
2433 		 * Wakeup the pageout daemon if necessary and wait.
2434 		 *
2435 		 * Do not wait indefinitely for the target to be reached,
2436 		 * as load might prevent it from being reached any time soon.
2437 		 * But wait a little to try to slow down page allocations
2438 		 * and to give more important threads (the pagedaemon)
2439 		 * allocation priority.
2440 		 */
2441 		if (vm_page_count_target()) {
2442 			if (vm_pages_needed == 0) {
2443 				vm_pages_needed = 1;
2444 				wakeup(&vm_pages_needed);
2445 			}
2446 			++vm_pages_waiting;	/* SMP race ok */
2447 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2448 		}
2449 	}
2450 	lwkt_reltoken(&vm_token);
2451 }
2452 
2453 /*
2454  * Block until free pages are available for allocation
2455  *
2456  * Called only from vm_fault so that processes page faulting can be
2457  * easily tracked.
2458  */
2459 void
2460 vm_wait_pfault(void)
2461 {
2462 	/*
2463 	 * Wakeup the pageout daemon if necessary and wait.
2464 	 *
2465 	 * Do not wait indefinitely for the target to be reached,
2466 	 * as load might prevent it from being reached any time soon.
2467 	 * But wait a little to try to slow down page allocations
2468 	 * and to give more important threads (the pagedaemon)
2469 	 * allocation priority.
2470 	 */
2471 	if (vm_page_count_min(0)) {
2472 		lwkt_gettoken(&vm_token);
2473 		while (vm_page_count_severe()) {
2474 			if (vm_page_count_target()) {
2475 				thread_t td;
2476 
2477 				if (vm_pages_needed == 0) {
2478 					vm_pages_needed = 1;
2479 					wakeup(&vm_pages_needed);
2480 				}
2481 				++vm_pages_waiting;	/* SMP race ok */
2482 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2483 
2484 				/*
2485 				 * Do not stay stuck in the loop if the system is trying
2486 				 * to kill the process.
2487 				 */
2488 				td = curthread;
2489 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2490 					break;
2491 			}
2492 		}
2493 		lwkt_reltoken(&vm_token);
2494 	}
2495 }
2496 
2497 /*
2498  * Put the specified page on the active list (if appropriate).  Ensure
2499  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2500  *
2501  * The caller should be holding the page busied ? XXX
2502  * This routine may not block.
2503  */
2504 void
2505 vm_page_activate(vm_page_t m)
2506 {
2507 	u_short oqueue;
2508 
2509 	vm_page_spin_lock(m);
2510 	if (m->queue - m->pc != PQ_ACTIVE) {
2511 		_vm_page_queue_spin_lock(m);
2512 		oqueue = _vm_page_rem_queue_spinlocked(m);
2513 		/* page is left spinlocked, queue is unlocked */
2514 
2515 		if (oqueue == PQ_CACHE)
2516 			mycpu->gd_cnt.v_reactivated++;
2517 		if ((m->flags & PG_UNMANAGED) == 0) {
2518 			if (m->act_count < ACT_INIT)
2519 				m->act_count = ACT_INIT;
2520 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2521 		}
2522 		_vm_page_and_queue_spin_unlock(m);
2523 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2524 			pagedaemon_wakeup();
2525 	} else {
2526 		if (m->act_count < ACT_INIT)
2527 			m->act_count = ACT_INIT;
2528 		vm_page_spin_unlock(m);
2529 	}
2530 }
2531 
2532 /*
2533  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2534  * routine is called when a page has been added to the cache or free
2535  * queues.
2536  *
2537  * This routine may not block.
2538  */
2539 static __inline void
2540 vm_page_free_wakeup(void)
2541 {
2542 	globaldata_t gd = mycpu;
2543 
2544 	/*
2545 	 * If the pageout daemon itself needs pages, then tell it that
2546 	 * there are some free.
2547 	 */
2548 	if (vm_pageout_pages_needed &&
2549 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2550 	    gd->gd_vmstats.v_pageout_free_min
2551 	) {
2552 		vm_pageout_pages_needed = 0;
2553 		wakeup(&vm_pageout_pages_needed);
2554 	}
2555 
2556 	/*
2557 	 * Wakeup processes that are waiting on memory.
2558 	 *
2559 	 * Generally speaking we want to wakeup stuck processes as soon as
2560 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2561 	 * where we can do this.  Wait a bit longer to reduce degenerate
2562 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2563 	 * to make sure the min-check w/hysteresis does not exceed the
2564 	 * normal target.
2565 	 */
2566 	if (vm_pages_waiting) {
2567 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2568 		    !vm_page_count_target()) {
2569 			vm_pages_waiting = 0;
2570 			wakeup(&vmstats.v_free_count);
2571 			++mycpu->gd_cnt.v_ppwakeups;
2572 		}
2573 #if 0
2574 		if (!vm_page_count_target()) {
2575 			/*
2576 			 * Plenty of pages are free, wakeup everyone.
2577 			 */
2578 			vm_pages_waiting = 0;
2579 			wakeup(&vmstats.v_free_count);
2580 			++mycpu->gd_cnt.v_ppwakeups;
2581 		} else if (!vm_page_count_min(0)) {
2582 			/*
2583 			 * Some pages are free, wakeup someone.
2584 			 */
2585 			int wcount = vm_pages_waiting;
2586 			if (wcount > 0)
2587 				--wcount;
2588 			vm_pages_waiting = wcount;
2589 			wakeup_one(&vmstats.v_free_count);
2590 			++mycpu->gd_cnt.v_ppwakeups;
2591 		}
2592 #endif
2593 	}
2594 }
2595 
2596 /*
2597  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2598  * it from its VM object.
2599  *
2600  * The vm_page must be BUSY on entry.  BUSY will be released on
2601  * return (the page will have been freed).
2602  */
2603 void
2604 vm_page_free_toq(vm_page_t m)
2605 {
2606 	mycpu->gd_cnt.v_tfree++;
2607 	KKASSERT((m->flags & PG_MAPPED) == 0);
2608 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2609 
2610 	if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2611 		kprintf("vm_page_free: pindex(%lu), busy %08x, "
2612 			"hold(%d)\n",
2613 			(u_long)m->pindex, m->busy_count, m->hold_count);
2614 		if ((m->queue - m->pc) == PQ_FREE)
2615 			panic("vm_page_free: freeing free page");
2616 		else
2617 			panic("vm_page_free: freeing busy page");
2618 	}
2619 
2620 	/*
2621 	 * Remove from object, spinlock the page and its queues and
2622 	 * remove from any queue.  No queue spinlock will be held
2623 	 * after this section (because the page was removed from any
2624 	 * queue).
2625 	 */
2626 	vm_page_remove(m);
2627 	vm_page_and_queue_spin_lock(m);
2628 	_vm_page_rem_queue_spinlocked(m);
2629 
2630 	/*
2631 	 * No further management of fictitious pages occurs beyond object
2632 	 * and queue removal.
2633 	 */
2634 	if ((m->flags & PG_FICTITIOUS) != 0) {
2635 		vm_page_spin_unlock(m);
2636 		vm_page_wakeup(m);
2637 		return;
2638 	}
2639 
2640 	m->valid = 0;
2641 	vm_page_undirty(m);
2642 
2643 	if (m->wire_count != 0) {
2644 		if (m->wire_count > 1) {
2645 		    panic(
2646 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2647 			m->wire_count, (long)m->pindex);
2648 		}
2649 		panic("vm_page_free: freeing wired page");
2650 	}
2651 
2652 	/*
2653 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2654 	 * Clear the NEED_COMMIT flag
2655 	 */
2656 	if (m->flags & PG_UNMANAGED)
2657 		vm_page_flag_clear(m, PG_UNMANAGED);
2658 	if (m->flags & PG_NEED_COMMIT)
2659 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2660 
2661 	if (m->hold_count != 0) {
2662 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2663 	} else {
2664 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2665 	}
2666 
2667 	/*
2668 	 * This sequence allows us to clear BUSY while still holding
2669 	 * its spin lock, which reduces contention vs allocators.  We
2670 	 * must not leave the queue locked or _vm_page_wakeup() may
2671 	 * deadlock.
2672 	 */
2673 	_vm_page_queue_spin_unlock(m);
2674 	if (_vm_page_wakeup(m)) {
2675 		vm_page_spin_unlock(m);
2676 		wakeup(m);
2677 	} else {
2678 		vm_page_spin_unlock(m);
2679 	}
2680 	vm_page_free_wakeup();
2681 }
2682 
2683 /*
2684  * vm_page_unmanage()
2685  *
2686  * Prevent PV management from being done on the page.  The page is
2687  * also removed from the paging queues, and as a consequence of no longer
2688  * being managed the pageout daemon will not touch it (since there is no
2689  * way to locate the pte mappings for the page).  madvise() calls that
2690  * mess with the pmap will also no longer operate on the page.
2691  *
2692  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2693  * will clear the flag.
2694  *
2695  * This routine is used by OBJT_PHYS objects - objects using unswappable
2696  * physical memory as backing store rather then swap-backed memory and
2697  * will eventually be extended to support 4MB unmanaged physical
2698  * mappings.
2699  *
2700  * Caller must be holding the page busy.
2701  */
2702 void
2703 vm_page_unmanage(vm_page_t m)
2704 {
2705 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2706 	if ((m->flags & PG_UNMANAGED) == 0) {
2707 		vm_page_unqueue(m);
2708 	}
2709 	vm_page_flag_set(m, PG_UNMANAGED);
2710 }
2711 
2712 /*
2713  * Mark this page as wired down by yet another map.  We do not adjust the
2714  * queue the page is on, it will be checked for wiring as-needed.
2715  *
2716  * Caller must be holding the page busy.
2717  */
2718 void
2719 vm_page_wire(vm_page_t m)
2720 {
2721 	/*
2722 	 * Only bump the wire statistics if the page is not already wired,
2723 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2724 	 * it is already off the queues).  Don't do anything with fictitious
2725 	 * pages because they are always wired.
2726 	 */
2727 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2728 	if ((m->flags & PG_FICTITIOUS) == 0) {
2729 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2730 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2731 		}
2732 		KASSERT(m->wire_count != 0,
2733 			("vm_page_wire: wire_count overflow m=%p", m));
2734 	}
2735 }
2736 
2737 /*
2738  * Release one wiring of this page, potentially enabling it to be paged again.
2739  *
2740  * Note that wired pages are no longer unconditionally removed from the
2741  * paging queues, so the page may already be on a queue.  Move the page
2742  * to the desired queue if necessary.
2743  *
2744  * Many pages placed on the inactive queue should actually go
2745  * into the cache, but it is difficult to figure out which.  What
2746  * we do instead, if the inactive target is well met, is to put
2747  * clean pages at the head of the inactive queue instead of the tail.
2748  * This will cause them to be moved to the cache more quickly and
2749  * if not actively re-referenced, freed more quickly.  If we just
2750  * stick these pages at the end of the inactive queue, heavy filesystem
2751  * meta-data accesses can cause an unnecessary paging load on memory bound
2752  * processes.  This optimization causes one-time-use metadata to be
2753  * reused more quickly.
2754  *
2755  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2756  * the inactive queue.  This helps the pageout daemon determine memory
2757  * pressure and act on out-of-memory situations more quickly.
2758  *
2759  * BUT, if we are in a low-memory situation we have no choice but to
2760  * put clean pages on the cache queue.
2761  *
2762  * A number of routines use vm_page_unwire() to guarantee that the page
2763  * will go into either the inactive or active queues, and will NEVER
2764  * be placed in the cache - for example, just after dirtying a page.
2765  * dirty pages in the cache are not allowed.
2766  *
2767  * This routine may not block.
2768  */
2769 void
2770 vm_page_unwire(vm_page_t m, int activate)
2771 {
2772 	KKASSERT(m->busy_count & PBUSY_LOCKED);
2773 	if (m->flags & PG_FICTITIOUS) {
2774 		/* do nothing */
2775 	} else if ((int)m->wire_count <= 0) {
2776 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2777 	} else {
2778 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2779 			atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2780 			if (m->flags & PG_UNMANAGED) {
2781 				;
2782 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2783 				vm_page_activate(m);
2784 #if 0
2785 				vm_page_spin_lock(m);
2786 				_vm_page_add_queue_spinlocked(m,
2787 							PQ_ACTIVE + m->pc, 0);
2788 				_vm_page_and_queue_spin_unlock(m);
2789 #endif
2790 			} else {
2791 				vm_page_deactivate(m);
2792 #if 0
2793 				vm_page_spin_lock(m);
2794 				vm_page_flag_clear(m, PG_WINATCFLS);
2795 				_vm_page_add_queue_spinlocked(m,
2796 							PQ_INACTIVE + m->pc, 0);
2797 				_vm_page_and_queue_spin_unlock(m);
2798 #endif
2799 				++vm_swapcache_inactive_heuristic;
2800 			}
2801 		}
2802 	}
2803 }
2804 
2805 /*
2806  * Move the specified page to the inactive queue.
2807  *
2808  * Normally athead is 0 resulting in LRU operation.  athead is set
2809  * to 1 if we want this page to be 'as if it were placed in the cache',
2810  * except without unmapping it from the process address space.
2811  *
2812  * vm_page's spinlock must be held on entry and will remain held on return.
2813  * This routine may not block.  The caller does not have to hold the page
2814  * busied but should have some sort of interlock on its validity.
2815  */
2816 static void
2817 _vm_page_deactivate_locked(vm_page_t m, int athead)
2818 {
2819 	u_short oqueue;
2820 
2821 	/*
2822 	 * Ignore if already inactive.
2823 	 */
2824 	if (m->queue - m->pc == PQ_INACTIVE)
2825 		return;
2826 	_vm_page_queue_spin_lock(m);
2827 	oqueue = _vm_page_rem_queue_spinlocked(m);
2828 
2829 	if ((m->flags & PG_UNMANAGED) == 0) {
2830 		if (oqueue == PQ_CACHE)
2831 			mycpu->gd_cnt.v_reactivated++;
2832 		vm_page_flag_clear(m, PG_WINATCFLS);
2833 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2834 		if (athead == 0)
2835 			++vm_swapcache_inactive_heuristic;
2836 	}
2837 	/* NOTE: PQ_NONE if condition not taken */
2838 	_vm_page_queue_spin_unlock(m);
2839 	/* leaves vm_page spinlocked */
2840 }
2841 
2842 /*
2843  * Attempt to deactivate a page.
2844  *
2845  * No requirements.
2846  */
2847 void
2848 vm_page_deactivate(vm_page_t m)
2849 {
2850 	vm_page_spin_lock(m);
2851 	_vm_page_deactivate_locked(m, 0);
2852 	vm_page_spin_unlock(m);
2853 }
2854 
2855 void
2856 vm_page_deactivate_locked(vm_page_t m)
2857 {
2858 	_vm_page_deactivate_locked(m, 0);
2859 }
2860 
2861 /*
2862  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2863  *
2864  * This function returns non-zero if it successfully moved the page to
2865  * PQ_CACHE.
2866  *
2867  * This function unconditionally unbusies the page on return.
2868  */
2869 int
2870 vm_page_try_to_cache(vm_page_t m)
2871 {
2872 	/*
2873 	 * Shortcut if we obviously cannot move the page, or if the
2874 	 * page is already on the cache queue.
2875 	 */
2876 	if (m->dirty || m->hold_count || m->wire_count ||
2877 	    m->queue - m->pc == PQ_CACHE ||
2878 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2879 		vm_page_wakeup(m);
2880 		return(0);
2881 	}
2882 
2883 	/*
2884 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2885 	 * be moved to the cache.
2886 	 */
2887 	vm_page_test_dirty(m);
2888 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2889 		vm_page_wakeup(m);
2890 		return(0);
2891 	}
2892 	vm_page_cache(m);
2893 	return(1);
2894 }
2895 
2896 /*
2897  * Attempt to free the page.  If we cannot free it, we do nothing.
2898  * 1 is returned on success, 0 on failure.
2899  *
2900  * Caller provides an unlocked/non-busied page.
2901  * No requirements.
2902  */
2903 int
2904 vm_page_try_to_free(vm_page_t m)
2905 {
2906 	if (vm_page_busy_try(m, TRUE))
2907 		return(0);
2908 
2909 	/*
2910 	 * The page can be in any state, including already being on the free
2911 	 * queue.  Check to see if it really can be freed.
2912 	 */
2913 	if (m->dirty ||				/* can't free if it is dirty */
2914 	    m->hold_count ||			/* or held (XXX may be wrong) */
2915 	    m->wire_count ||			/* or wired */
2916 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2917 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2918 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2919 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2920 		vm_page_wakeup(m);
2921 		return(0);
2922 	}
2923 
2924 	/*
2925 	 * We can probably free the page.
2926 	 *
2927 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2928 	 * not be freed by this function.    We have to re-test the
2929 	 * dirty bit after cleaning out the pmaps.
2930 	 */
2931 	vm_page_test_dirty(m);
2932 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2933 		vm_page_wakeup(m);
2934 		return(0);
2935 	}
2936 	vm_page_protect(m, VM_PROT_NONE);
2937 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2938 		vm_page_wakeup(m);
2939 		return(0);
2940 	}
2941 	vm_page_free(m);
2942 	return(1);
2943 }
2944 
2945 /*
2946  * vm_page_cache
2947  *
2948  * Put the specified page onto the page cache queue (if appropriate).
2949  *
2950  * The page must be busy, and this routine will release the busy and
2951  * possibly even free the page.
2952  */
2953 void
2954 vm_page_cache(vm_page_t m)
2955 {
2956 	/*
2957 	 * Not suitable for the cache
2958 	 */
2959 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2960 	    (m->busy_count & PBUSY_MASK) ||
2961 	    m->wire_count || m->hold_count) {
2962 		vm_page_wakeup(m);
2963 		return;
2964 	}
2965 
2966 	/*
2967 	 * Already in the cache (and thus not mapped)
2968 	 */
2969 	if ((m->queue - m->pc) == PQ_CACHE) {
2970 		KKASSERT((m->flags & PG_MAPPED) == 0);
2971 		vm_page_wakeup(m);
2972 		return;
2973 	}
2974 
2975 	/*
2976 	 * Caller is required to test m->dirty, but note that the act of
2977 	 * removing the page from its maps can cause it to become dirty
2978 	 * on an SMP system due to another cpu running in usermode.
2979 	 */
2980 	if (m->dirty) {
2981 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2982 			(long)m->pindex);
2983 	}
2984 
2985 	/*
2986 	 * Remove all pmaps and indicate that the page is not
2987 	 * writeable or mapped.  Our vm_page_protect() call may
2988 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2989 	 * everything.
2990 	 */
2991 	vm_page_protect(m, VM_PROT_NONE);
2992 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2993 	    (m->busy_count & PBUSY_MASK) ||
2994 	    m->wire_count || m->hold_count) {
2995 		vm_page_wakeup(m);
2996 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2997 		vm_page_deactivate(m);
2998 		vm_page_wakeup(m);
2999 	} else {
3000 		_vm_page_and_queue_spin_lock(m);
3001 		_vm_page_rem_queue_spinlocked(m);
3002 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
3003 		_vm_page_and_queue_spin_unlock(m);
3004 		vm_page_wakeup(m);
3005 		vm_page_free_wakeup();
3006 	}
3007 }
3008 
3009 /*
3010  * vm_page_dontneed()
3011  *
3012  * Cache, deactivate, or do nothing as appropriate.  This routine
3013  * is typically used by madvise() MADV_DONTNEED.
3014  *
3015  * Generally speaking we want to move the page into the cache so
3016  * it gets reused quickly.  However, this can result in a silly syndrome
3017  * due to the page recycling too quickly.  Small objects will not be
3018  * fully cached.  On the otherhand, if we move the page to the inactive
3019  * queue we wind up with a problem whereby very large objects
3020  * unnecessarily blow away our inactive and cache queues.
3021  *
3022  * The solution is to move the pages based on a fixed weighting.  We
3023  * either leave them alone, deactivate them, or move them to the cache,
3024  * where moving them to the cache has the highest weighting.
3025  * By forcing some pages into other queues we eventually force the
3026  * system to balance the queues, potentially recovering other unrelated
3027  * space from active.  The idea is to not force this to happen too
3028  * often.
3029  *
3030  * The page must be busied.
3031  */
3032 void
3033 vm_page_dontneed(vm_page_t m)
3034 {
3035 	static int dnweight;
3036 	int dnw;
3037 	int head;
3038 
3039 	dnw = ++dnweight;
3040 
3041 	/*
3042 	 * occassionally leave the page alone
3043 	 */
3044 	if ((dnw & 0x01F0) == 0 ||
3045 	    m->queue - m->pc == PQ_INACTIVE ||
3046 	    m->queue - m->pc == PQ_CACHE
3047 	) {
3048 		if (m->act_count >= ACT_INIT)
3049 			--m->act_count;
3050 		return;
3051 	}
3052 
3053 	/*
3054 	 * If vm_page_dontneed() is inactivating a page, it must clear
3055 	 * the referenced flag; otherwise the pagedaemon will see references
3056 	 * on the page in the inactive queue and reactivate it. Until the
3057 	 * page can move to the cache queue, madvise's job is not done.
3058 	 */
3059 	vm_page_flag_clear(m, PG_REFERENCED);
3060 	pmap_clear_reference(m);
3061 
3062 	if (m->dirty == 0)
3063 		vm_page_test_dirty(m);
3064 
3065 	if (m->dirty || (dnw & 0x0070) == 0) {
3066 		/*
3067 		 * Deactivate the page 3 times out of 32.
3068 		 */
3069 		head = 0;
3070 	} else {
3071 		/*
3072 		 * Cache the page 28 times out of every 32.  Note that
3073 		 * the page is deactivated instead of cached, but placed
3074 		 * at the head of the queue instead of the tail.
3075 		 */
3076 		head = 1;
3077 	}
3078 	vm_page_spin_lock(m);
3079 	_vm_page_deactivate_locked(m, head);
3080 	vm_page_spin_unlock(m);
3081 }
3082 
3083 /*
3084  * These routines manipulate the 'soft busy' count for a page.  A soft busy
3085  * is almost like a hard BUSY except that it allows certain compatible
3086  * operations to occur on the page while it is busy.  For example, a page
3087  * undergoing a write can still be mapped read-only.
3088  *
3089  * We also use soft-busy to quickly pmap_enter shared read-only pages
3090  * without having to hold the page locked.
3091  *
3092  * The soft-busy count can be > 1 in situations where multiple threads
3093  * are pmap_enter()ing the same page simultaneously, or when two buffer
3094  * cache buffers overlap the same page.
3095  *
3096  * The caller must hold the page BUSY when making these two calls.
3097  */
3098 void
3099 vm_page_io_start(vm_page_t m)
3100 {
3101 	uint32_t ocount;
3102 
3103 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3104 	KKASSERT(ocount & PBUSY_LOCKED);
3105 }
3106 
3107 void
3108 vm_page_io_finish(vm_page_t m)
3109 {
3110 	uint32_t ocount;
3111 
3112 	ocount = atomic_fetchadd_int(&m->busy_count, -1);
3113 	KKASSERT(ocount & PBUSY_MASK);
3114 #if 0
3115 	if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
3116 		wakeup(m);
3117 #endif
3118 }
3119 
3120 /*
3121  * Attempt to soft-busy a page.  The page must not be PBUSY_LOCKED.
3122  *
3123  * We can't use fetchadd here because we might race a hard-busy and the
3124  * page freeing code asserts on a non-zero soft-busy count (even if only
3125  * temporary).
3126  *
3127  * Returns 0 on success, non-zero on failure.
3128  */
3129 int
3130 vm_page_sbusy_try(vm_page_t m)
3131 {
3132 	uint32_t ocount;
3133 
3134 	for (;;) {
3135 		ocount = m->busy_count;
3136 		cpu_ccfence();
3137 		if (ocount & PBUSY_LOCKED)
3138 			return 1;
3139 		if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
3140 			break;
3141 	}
3142 	return 0;
3143 #if 0
3144 	if (m->busy_count & PBUSY_LOCKED)
3145 		return 1;
3146 	ocount = atomic_fetchadd_int(&m->busy_count, 1);
3147 	if (ocount & PBUSY_LOCKED) {
3148 		vm_page_sbusy_drop(m);
3149 		return 1;
3150 	}
3151 	return 0;
3152 #endif
3153 }
3154 
3155 /*
3156  * Indicate that a clean VM page requires a filesystem commit and cannot
3157  * be reused.  Used by tmpfs.
3158  */
3159 void
3160 vm_page_need_commit(vm_page_t m)
3161 {
3162 	vm_page_flag_set(m, PG_NEED_COMMIT);
3163 	vm_object_set_writeable_dirty(m->object);
3164 }
3165 
3166 void
3167 vm_page_clear_commit(vm_page_t m)
3168 {
3169 	vm_page_flag_clear(m, PG_NEED_COMMIT);
3170 }
3171 
3172 /*
3173  * Grab a page, blocking if it is busy and allocating a page if necessary.
3174  * A busy page is returned or NULL.  The page may or may not be valid and
3175  * might not be on a queue (the caller is responsible for the disposition of
3176  * the page).
3177  *
3178  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
3179  * page will be zero'd and marked valid.
3180  *
3181  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
3182  * valid even if it already exists.
3183  *
3184  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
3185  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
3186  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
3187  *
3188  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
3189  * always returned if we had blocked.
3190  *
3191  * This routine may not be called from an interrupt.
3192  *
3193  * No other requirements.
3194  */
3195 vm_page_t
3196 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3197 {
3198 	vm_page_t m;
3199 	int error;
3200 	int shared = 1;
3201 
3202 	KKASSERT(allocflags &
3203 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
3204 	vm_object_hold_shared(object);
3205 	for (;;) {
3206 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3207 		if (error) {
3208 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
3209 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
3210 				m = NULL;
3211 				break;
3212 			}
3213 			/* retry */
3214 		} else if (m == NULL) {
3215 			if (shared) {
3216 				vm_object_upgrade(object);
3217 				shared = 0;
3218 			}
3219 			if (allocflags & VM_ALLOC_RETRY)
3220 				allocflags |= VM_ALLOC_NULL_OK;
3221 			m = vm_page_alloc(object, pindex,
3222 					  allocflags & ~VM_ALLOC_RETRY);
3223 			if (m)
3224 				break;
3225 			vm_wait(0);
3226 			if ((allocflags & VM_ALLOC_RETRY) == 0)
3227 				goto failed;
3228 		} else {
3229 			/* m found */
3230 			break;
3231 		}
3232 	}
3233 
3234 	/*
3235 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
3236 	 *
3237 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
3238 	 * valid even if already valid.
3239 	 *
3240 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
3241 	 *	  removed the idle zeroing code.  These optimizations actually
3242 	 *	  slow things down on modern cpus because the zerod area is
3243 	 *	  likely uncached, placing a memory-access burden on the
3244 	 *	  accesors taking the fault.
3245 	 *
3246 	 *	  By always zeroing the page in-line with the fault, no
3247 	 *	  dynamic ram reads are needed and the caches are hot, ready
3248 	 *	  for userland to access the memory.
3249 	 */
3250 	if (m->valid == 0) {
3251 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3252 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
3253 			m->valid = VM_PAGE_BITS_ALL;
3254 		}
3255 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3256 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
3257 		m->valid = VM_PAGE_BITS_ALL;
3258 	}
3259 failed:
3260 	vm_object_drop(object);
3261 	return(m);
3262 }
3263 
3264 /*
3265  * Mapping function for valid bits or for dirty bits in
3266  * a page.  May not block.
3267  *
3268  * Inputs are required to range within a page.
3269  *
3270  * No requirements.
3271  * Non blocking.
3272  */
3273 int
3274 vm_page_bits(int base, int size)
3275 {
3276 	int first_bit;
3277 	int last_bit;
3278 
3279 	KASSERT(
3280 	    base + size <= PAGE_SIZE,
3281 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3282 	);
3283 
3284 	if (size == 0)		/* handle degenerate case */
3285 		return(0);
3286 
3287 	first_bit = base >> DEV_BSHIFT;
3288 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3289 
3290 	return ((2 << last_bit) - (1 << first_bit));
3291 }
3292 
3293 /*
3294  * Sets portions of a page valid and clean.  The arguments are expected
3295  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3296  * of any partial chunks touched by the range.  The invalid portion of
3297  * such chunks will be zero'd.
3298  *
3299  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3300  *	 align base to DEV_BSIZE so as not to mark clean a partially
3301  *	 truncated device block.  Otherwise the dirty page status might be
3302  *	 lost.
3303  *
3304  * This routine may not block.
3305  *
3306  * (base + size) must be less then or equal to PAGE_SIZE.
3307  */
3308 static void
3309 _vm_page_zero_valid(vm_page_t m, int base, int size)
3310 {
3311 	int frag;
3312 	int endoff;
3313 
3314 	if (size == 0)	/* handle degenerate case */
3315 		return;
3316 
3317 	/*
3318 	 * If the base is not DEV_BSIZE aligned and the valid
3319 	 * bit is clear, we have to zero out a portion of the
3320 	 * first block.
3321 	 */
3322 
3323 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3324 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3325 	) {
3326 		pmap_zero_page_area(
3327 		    VM_PAGE_TO_PHYS(m),
3328 		    frag,
3329 		    base - frag
3330 		);
3331 	}
3332 
3333 	/*
3334 	 * If the ending offset is not DEV_BSIZE aligned and the
3335 	 * valid bit is clear, we have to zero out a portion of
3336 	 * the last block.
3337 	 */
3338 
3339 	endoff = base + size;
3340 
3341 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3342 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3343 	) {
3344 		pmap_zero_page_area(
3345 		    VM_PAGE_TO_PHYS(m),
3346 		    endoff,
3347 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3348 		);
3349 	}
3350 }
3351 
3352 /*
3353  * Set valid, clear dirty bits.  If validating the entire
3354  * page we can safely clear the pmap modify bit.  We also
3355  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3356  * takes a write fault on a MAP_NOSYNC memory area the flag will
3357  * be set again.
3358  *
3359  * We set valid bits inclusive of any overlap, but we can only
3360  * clear dirty bits for DEV_BSIZE chunks that are fully within
3361  * the range.
3362  *
3363  * Page must be busied?
3364  * No other requirements.
3365  */
3366 void
3367 vm_page_set_valid(vm_page_t m, int base, int size)
3368 {
3369 	_vm_page_zero_valid(m, base, size);
3370 	m->valid |= vm_page_bits(base, size);
3371 }
3372 
3373 
3374 /*
3375  * Set valid bits and clear dirty bits.
3376  *
3377  * Page must be busied by caller.
3378  *
3379  * NOTE: This function does not clear the pmap modified bit.
3380  *	 Also note that e.g. NFS may use a byte-granular base
3381  *	 and size.
3382  *
3383  * No other requirements.
3384  */
3385 void
3386 vm_page_set_validclean(vm_page_t m, int base, int size)
3387 {
3388 	int pagebits;
3389 
3390 	_vm_page_zero_valid(m, base, size);
3391 	pagebits = vm_page_bits(base, size);
3392 	m->valid |= pagebits;
3393 	m->dirty &= ~pagebits;
3394 	if (base == 0 && size == PAGE_SIZE) {
3395 		/*pmap_clear_modify(m);*/
3396 		vm_page_flag_clear(m, PG_NOSYNC);
3397 	}
3398 }
3399 
3400 /*
3401  * Set valid & dirty.  Used by buwrite()
3402  *
3403  * Page must be busied by caller.
3404  */
3405 void
3406 vm_page_set_validdirty(vm_page_t m, int base, int size)
3407 {
3408 	int pagebits;
3409 
3410 	pagebits = vm_page_bits(base, size);
3411 	m->valid |= pagebits;
3412 	m->dirty |= pagebits;
3413 	if (m->object)
3414 	       vm_object_set_writeable_dirty(m->object);
3415 }
3416 
3417 /*
3418  * Clear dirty bits.
3419  *
3420  * NOTE: This function does not clear the pmap modified bit.
3421  *	 Also note that e.g. NFS may use a byte-granular base
3422  *	 and size.
3423  *
3424  * Page must be busied?
3425  * No other requirements.
3426  */
3427 void
3428 vm_page_clear_dirty(vm_page_t m, int base, int size)
3429 {
3430 	m->dirty &= ~vm_page_bits(base, size);
3431 	if (base == 0 && size == PAGE_SIZE) {
3432 		/*pmap_clear_modify(m);*/
3433 		vm_page_flag_clear(m, PG_NOSYNC);
3434 	}
3435 }
3436 
3437 /*
3438  * Make the page all-dirty.
3439  *
3440  * Also make sure the related object and vnode reflect the fact that the
3441  * object may now contain a dirty page.
3442  *
3443  * Page must be busied?
3444  * No other requirements.
3445  */
3446 void
3447 vm_page_dirty(vm_page_t m)
3448 {
3449 #ifdef INVARIANTS
3450         int pqtype = m->queue - m->pc;
3451 #endif
3452         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3453                 ("vm_page_dirty: page in free/cache queue!"));
3454 	if (m->dirty != VM_PAGE_BITS_ALL) {
3455 		m->dirty = VM_PAGE_BITS_ALL;
3456 		if (m->object)
3457 			vm_object_set_writeable_dirty(m->object);
3458 	}
3459 }
3460 
3461 /*
3462  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3463  * valid and dirty bits for the effected areas are cleared.
3464  *
3465  * Page must be busied?
3466  * Does not block.
3467  * No other requirements.
3468  */
3469 void
3470 vm_page_set_invalid(vm_page_t m, int base, int size)
3471 {
3472 	int bits;
3473 
3474 	bits = vm_page_bits(base, size);
3475 	m->valid &= ~bits;
3476 	m->dirty &= ~bits;
3477 	atomic_add_int(&m->object->generation, 1);
3478 }
3479 
3480 /*
3481  * The kernel assumes that the invalid portions of a page contain
3482  * garbage, but such pages can be mapped into memory by user code.
3483  * When this occurs, we must zero out the non-valid portions of the
3484  * page so user code sees what it expects.
3485  *
3486  * Pages are most often semi-valid when the end of a file is mapped
3487  * into memory and the file's size is not page aligned.
3488  *
3489  * Page must be busied?
3490  * No other requirements.
3491  */
3492 void
3493 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3494 {
3495 	int b;
3496 	int i;
3497 
3498 	/*
3499 	 * Scan the valid bits looking for invalid sections that
3500 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3501 	 * valid bit may be set ) have already been zerod by
3502 	 * vm_page_set_validclean().
3503 	 */
3504 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3505 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3506 		    (m->valid & (1 << i))
3507 		) {
3508 			if (i > b) {
3509 				pmap_zero_page_area(
3510 				    VM_PAGE_TO_PHYS(m),
3511 				    b << DEV_BSHIFT,
3512 				    (i - b) << DEV_BSHIFT
3513 				);
3514 			}
3515 			b = i + 1;
3516 		}
3517 	}
3518 
3519 	/*
3520 	 * setvalid is TRUE when we can safely set the zero'd areas
3521 	 * as being valid.  We can do this if there are no cache consistency
3522 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3523 	 */
3524 	if (setvalid)
3525 		m->valid = VM_PAGE_BITS_ALL;
3526 }
3527 
3528 /*
3529  * Is a (partial) page valid?  Note that the case where size == 0
3530  * will return FALSE in the degenerate case where the page is entirely
3531  * invalid, and TRUE otherwise.
3532  *
3533  * Does not block.
3534  * No other requirements.
3535  */
3536 int
3537 vm_page_is_valid(vm_page_t m, int base, int size)
3538 {
3539 	int bits = vm_page_bits(base, size);
3540 
3541 	if (m->valid && ((m->valid & bits) == bits))
3542 		return 1;
3543 	else
3544 		return 0;
3545 }
3546 
3547 /*
3548  * update dirty bits from pmap/mmu.  May not block.
3549  *
3550  * Caller must hold the page busy
3551  */
3552 void
3553 vm_page_test_dirty(vm_page_t m)
3554 {
3555 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3556 		vm_page_dirty(m);
3557 	}
3558 }
3559 
3560 #include "opt_ddb.h"
3561 #ifdef DDB
3562 #include <ddb/ddb.h>
3563 
3564 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3565 {
3566 	db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3567 	db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3568 	db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3569 	db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3570 	db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3571 	db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3572 	db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3573 	db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3574 	db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3575 	db_printf("vmstats.v_inactive_target: %ld\n",
3576 		  vmstats.v_inactive_target);
3577 }
3578 
3579 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3580 {
3581 	int i;
3582 	db_printf("PQ_FREE:");
3583 	for (i = 0; i < PQ_L2_SIZE; i++) {
3584 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3585 	}
3586 	db_printf("\n");
3587 
3588 	db_printf("PQ_CACHE:");
3589 	for(i = 0; i < PQ_L2_SIZE; i++) {
3590 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3591 	}
3592 	db_printf("\n");
3593 
3594 	db_printf("PQ_ACTIVE:");
3595 	for(i = 0; i < PQ_L2_SIZE; i++) {
3596 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3597 	}
3598 	db_printf("\n");
3599 
3600 	db_printf("PQ_INACTIVE:");
3601 	for(i = 0; i < PQ_L2_SIZE; i++) {
3602 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3603 	}
3604 	db_printf("\n");
3605 }
3606 #endif /* DDB */
3607