xref: /dragonfly/sys/vm/vm_page.c (revision e8364298)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.25 2004/05/27 00:38:58 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
96 
97 static int vm_page_bucket_count;	/* How big is array? */
98 static int vm_page_hash_mask;		/* Mask for hash function */
99 static struct vm_page **vm_page_buckets; /* Array of buckets */
100 static volatile int vm_page_bucket_generation;
101 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
102 
103 static void
104 vm_page_queue_init(void)
105 {
106 	int i;
107 
108 	for (i = 0; i < PQ_L2_SIZE; i++)
109 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
110 	for (i = 0; i < PQ_L2_SIZE; i++)
111 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
112 
113 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
114 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
115 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
116 	/* PQ_NONE has no queue */
117 
118 	for (i = 0; i < PQ_COUNT; i++)
119 		TAILQ_INIT(&vm_page_queues[i].pl);
120 }
121 
122 /*
123  * note: place in initialized data section?  Is this necessary?
124  */
125 long first_page = 0;
126 int vm_page_array_size = 0;
127 int vm_page_zero_count = 0;
128 vm_page_t vm_page_array = 0;
129 
130 /*
131  * (low level boot)
132  *
133  * Sets the page size, perhaps based upon the memory size.
134  * Must be called before any use of page-size dependent functions.
135  */
136 void
137 vm_set_page_size(void)
138 {
139 	if (vmstats.v_page_size == 0)
140 		vmstats.v_page_size = PAGE_SIZE;
141 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
142 		panic("vm_set_page_size: page size not a power of two");
143 }
144 
145 /*
146  * (low level boot)
147  *
148  * Add a new page to the freelist for use by the system.  New pages
149  * are added to both the head and tail of the associated free page
150  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
151  * requests pull 'recent' adds (higher physical addresses) first.
152  *
153  * Must be called at splhigh().
154  */
155 vm_page_t
156 vm_add_new_page(vm_paddr_t pa)
157 {
158 	struct vpgqueues *vpq;
159 	vm_page_t m;
160 
161 	++vmstats.v_page_count;
162 	++vmstats.v_free_count;
163 	m = PHYS_TO_VM_PAGE(pa);
164 	m->phys_addr = pa;
165 	m->flags = 0;
166 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
167 	m->queue = m->pc + PQ_FREE;
168 
169 	vpq = &vm_page_queues[m->queue];
170 	if (vpq->flipflop)
171 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
172 	else
173 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
174 	vpq->flipflop = 1 - vpq->flipflop;
175 
176 	vm_page_queues[m->queue].lcnt++;
177 	return (m);
178 }
179 
180 /*
181  * (low level boot)
182  *
183  * Initializes the resident memory module.
184  *
185  * Allocates memory for the page cells, and for the object/offset-to-page
186  * hash table headers.  Each page cell is initialized and placed on the
187  * free list.
188  */
189 vm_offset_t
190 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
191 {
192 	vm_offset_t mapped;
193 	struct vm_page **bucket;
194 	vm_size_t npages;
195 	vm_paddr_t page_range;
196 	vm_paddr_t new_end;
197 	int i;
198 	vm_paddr_t pa;
199 	int nblocks;
200 	vm_paddr_t last_pa;
201 
202 	/* the biggest memory array is the second group of pages */
203 	vm_paddr_t end;
204 	vm_paddr_t biggestone, biggestsize;
205 
206 	vm_paddr_t total;
207 
208 	total = 0;
209 	biggestsize = 0;
210 	biggestone = 0;
211 	nblocks = 0;
212 	vaddr = round_page(vaddr);
213 
214 	for (i = 0; phys_avail[i + 1]; i += 2) {
215 		phys_avail[i] = round_page(phys_avail[i]);
216 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
217 	}
218 
219 	for (i = 0; phys_avail[i + 1]; i += 2) {
220 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
221 
222 		if (size > biggestsize) {
223 			biggestone = i;
224 			biggestsize = size;
225 		}
226 		++nblocks;
227 		total += size;
228 	}
229 
230 	end = phys_avail[biggestone+1];
231 
232 	/*
233 	 * Initialize the queue headers for the free queue, the active queue
234 	 * and the inactive queue.
235 	 */
236 
237 	vm_page_queue_init();
238 
239 	/*
240 	 * Allocate (and initialize) the hash table buckets.
241 	 *
242 	 * The number of buckets MUST BE a power of 2, and the actual value is
243 	 * the next power of 2 greater than the number of physical pages in
244 	 * the system.
245 	 *
246 	 * We make the hash table approximately 2x the number of pages to
247 	 * reduce the chain length.  This is about the same size using the
248 	 * singly-linked list as the 1x hash table we were using before
249 	 * using TAILQ but the chain length will be smaller.
250 	 *
251 	 * Note: This computation can be tweaked if desired.
252 	 */
253 	vm_page_buckets = (struct vm_page **)vaddr;
254 	bucket = vm_page_buckets;
255 	if (vm_page_bucket_count == 0) {
256 		vm_page_bucket_count = 1;
257 		while (vm_page_bucket_count < atop(total))
258 			vm_page_bucket_count <<= 1;
259 	}
260 	vm_page_bucket_count <<= 1;
261 	vm_page_hash_mask = vm_page_bucket_count - 1;
262 
263 	/*
264 	 * Validate these addresses.
265 	 */
266 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
267 	new_end = trunc_page(new_end);
268 	mapped = round_page(vaddr);
269 	vaddr = pmap_map(mapped, new_end, end,
270 	    VM_PROT_READ | VM_PROT_WRITE);
271 	vaddr = round_page(vaddr);
272 	bzero((caddr_t) mapped, vaddr - mapped);
273 
274 	for (i = 0; i < vm_page_bucket_count; i++) {
275 		*bucket = NULL;
276 		bucket++;
277 	}
278 
279 	/*
280 	 * Compute the number of pages of memory that will be available for
281 	 * use (taking into account the overhead of a page structure per
282 	 * page).
283 	 */
284 	first_page = phys_avail[0] / PAGE_SIZE;
285 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
286 	npages = (total - (page_range * sizeof(struct vm_page)) -
287 	    (end - new_end)) / PAGE_SIZE;
288 
289 	end = new_end;
290 
291 	/*
292 	 * Initialize the mem entry structures now, and put them in the free
293 	 * queue.
294 	 */
295 	vm_page_array = (vm_page_t) vaddr;
296 	mapped = vaddr;
297 
298 	/*
299 	 * Validate these addresses.
300 	 */
301 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
302 	mapped = pmap_map(mapped, new_end, end,
303 	    VM_PROT_READ | VM_PROT_WRITE);
304 
305 	/*
306 	 * Clear all of the page structures
307 	 */
308 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
309 	vm_page_array_size = page_range;
310 
311 	/*
312 	 * Construct the free queue(s) in ascending order (by physical
313 	 * address) so that the first 16MB of physical memory is allocated
314 	 * last rather than first.  On large-memory machines, this avoids
315 	 * the exhaustion of low physical memory before isa_dmainit has run.
316 	 */
317 	vmstats.v_page_count = 0;
318 	vmstats.v_free_count = 0;
319 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
320 		pa = phys_avail[i];
321 		if (i == biggestone)
322 			last_pa = new_end;
323 		else
324 			last_pa = phys_avail[i + 1];
325 		while (pa < last_pa && npages-- > 0) {
326 			vm_add_new_page(pa);
327 			pa += PAGE_SIZE;
328 		}
329 	}
330 	return (mapped);
331 }
332 
333 /*
334  * Distributes the object/offset key pair among hash buckets.
335  *
336  * NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
337  * This routine may not block.
338  *
339  * We try to randomize the hash based on the object to spread the pages
340  * out in the hash table without it costing us too much.
341  */
342 static __inline int
343 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
344 {
345 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
346 
347 	return(i & vm_page_hash_mask);
348 }
349 
350 /*
351  * The opposite of vm_page_hold().  A page can be freed while being held,
352  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
353  * in this case to actually free it once the hold count drops to 0.
354  *
355  * This routine must be called at splvm().
356  */
357 void
358 vm_page_unhold(vm_page_t mem)
359 {
360 	--mem->hold_count;
361 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
362 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
363 		vm_page_free_toq(mem);
364 }
365 
366 /*
367  * Inserts the given mem entry into the object and object list.
368  *
369  * The pagetables are not updated but will presumably fault the page
370  * in if necessary, or if a kernel page the caller will at some point
371  * enter the page into the kernel's pmap.  We are not allowed to block
372  * here so we *can't* do this anyway.
373  *
374  * This routine may not block.
375  * This routine must be called at splvm().
376  */
377 void
378 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
379 {
380 	struct vm_page **bucket;
381 
382 	if (m->object != NULL)
383 		panic("vm_page_insert: already inserted");
384 
385 	/*
386 	 * Record the object/offset pair in this page
387 	 */
388 	m->object = object;
389 	m->pindex = pindex;
390 
391 	/*
392 	 * Insert it into the object_object/offset hash table
393 	 */
394 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
395 	m->hnext = *bucket;
396 	*bucket = m;
397 	vm_page_bucket_generation++;
398 
399 	/*
400 	 * Now link into the object's list of backed pages.
401 	 */
402 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
403 	object->generation++;
404 
405 	/*
406 	 * show that the object has one more resident page.
407 	 */
408 	object->resident_page_count++;
409 
410 	/*
411 	 * Since we are inserting a new and possibly dirty page,
412 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
413 	 */
414 	if (m->flags & PG_WRITEABLE)
415 		vm_object_set_writeable_dirty(object);
416 }
417 
418 /*
419  * Removes the given mem entry from the object/offset-page table and
420  * the object page list, but do not invalidate/terminate the backing store.
421  *
422  * This routine must be called at splvm().
423  * The underlying pmap entry (if any) is NOT removed here.
424  * This routine may not block.
425  * The page must be BUSY.
426  */
427 void
428 vm_page_remove(vm_page_t m)
429 {
430 	vm_object_t object;
431 
432 	if (m->object == NULL)
433 		return;
434 
435 	if ((m->flags & PG_BUSY) == 0)
436 		panic("vm_page_remove: page not busy");
437 
438 	/*
439 	 * Basically destroy the page.
440 	 */
441 	vm_page_wakeup(m);
442 
443 	object = m->object;
444 
445 	/*
446 	 * Remove from the object_object/offset hash table.  The object
447 	 * must be on the hash queue, we will panic if it isn't
448 	 *
449 	 * Note: we must NULL-out m->hnext to prevent loops in detached
450 	 * buffers with vm_page_lookup().
451 	 */
452 	{
453 		struct vm_page **bucket;
454 
455 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
456 		while (*bucket != m) {
457 			if (*bucket == NULL)
458 			    panic("vm_page_remove(): page not found in hash");
459 			bucket = &(*bucket)->hnext;
460 		}
461 		*bucket = m->hnext;
462 		m->hnext = NULL;
463 		vm_page_bucket_generation++;
464 	}
465 
466 	/*
467 	 * Now remove from the object's list of backed pages.
468 	 */
469 	TAILQ_REMOVE(&object->memq, m, listq);
470 
471 	/*
472 	 * And show that the object has one fewer resident page.
473 	 */
474 	object->resident_page_count--;
475 	object->generation++;
476 
477 	m->object = NULL;
478 }
479 
480 /*
481  * Locate and return the page at (object, pindex), or NULL if the
482  * page could not be found.
483  *
484  * This routine will operate properly without spl protection, but
485  * the returned page could be in flux if it is busy.  Because an
486  * interrupt can race a caller's busy check (unbusying and freeing the
487  * page we return before the caller is able to check the busy bit),
488  * the caller should generally call this routine at splvm().
489  *
490  * Callers may call this routine without spl protection if they know
491  * 'for sure' that the page will not be ripped out from under them
492  * by an interrupt.
493  */
494 vm_page_t
495 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
496 {
497 	vm_page_t m;
498 	struct vm_page **bucket;
499 	int generation;
500 
501 	/*
502 	 * Search the hash table for this object/offset pair
503 	 */
504 retry:
505 	generation = vm_page_bucket_generation;
506 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
507 	for (m = *bucket; m != NULL; m = m->hnext) {
508 		if ((m->object == object) && (m->pindex == pindex)) {
509 			if (vm_page_bucket_generation != generation)
510 				goto retry;
511 			return (m);
512 		}
513 	}
514 	if (vm_page_bucket_generation != generation)
515 		goto retry;
516 	return (NULL);
517 }
518 
519 /*
520  * vm_page_rename()
521  *
522  * Move the given memory entry from its current object to the specified
523  * target object/offset.
524  *
525  * The object must be locked.
526  * This routine may not block.
527  *
528  * Note: This routine will raise itself to splvm(), the caller need not.
529  *
530  * Note: Swap associated with the page must be invalidated by the move.  We
531  *       have to do this for several reasons:  (1) we aren't freeing the
532  *       page, (2) we are dirtying the page, (3) the VM system is probably
533  *       moving the page from object A to B, and will then later move
534  *       the backing store from A to B and we can't have a conflict.
535  *
536  * Note: We *always* dirty the page.  It is necessary both for the
537  *       fact that we moved it, and because we may be invalidating
538  *	 swap.  If the page is on the cache, we have to deactivate it
539  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
540  *	 on the cache.
541  */
542 void
543 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
544 {
545 	int s;
546 
547 	s = splvm();
548 	vm_page_remove(m);
549 	vm_page_insert(m, new_object, new_pindex);
550 	if (m->queue - m->pc == PQ_CACHE)
551 		vm_page_deactivate(m);
552 	vm_page_dirty(m);
553 	splx(s);
554 }
555 
556 /*
557  * vm_page_unqueue() without any wakeup.  This routine is used when a page
558  * is being moved between queues or otherwise is to remain BUSYied by the
559  * caller.
560  *
561  * This routine must be called at splhigh().
562  * This routine may not block.
563  */
564 void
565 vm_page_unqueue_nowakeup(vm_page_t m)
566 {
567 	int queue = m->queue;
568 	struct vpgqueues *pq;
569 
570 	if (queue != PQ_NONE) {
571 		pq = &vm_page_queues[queue];
572 		m->queue = PQ_NONE;
573 		TAILQ_REMOVE(&pq->pl, m, pageq);
574 		(*pq->cnt)--;
575 		pq->lcnt--;
576 	}
577 }
578 
579 /*
580  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
581  * if necessary.
582  *
583  * This routine must be called at splhigh().
584  * This routine may not block.
585  */
586 void
587 vm_page_unqueue(vm_page_t m)
588 {
589 	int queue = m->queue;
590 	struct vpgqueues *pq;
591 
592 	if (queue != PQ_NONE) {
593 		m->queue = PQ_NONE;
594 		pq = &vm_page_queues[queue];
595 		TAILQ_REMOVE(&pq->pl, m, pageq);
596 		(*pq->cnt)--;
597 		pq->lcnt--;
598 		if ((queue - m->pc) == PQ_CACHE) {
599 			if (vm_paging_needed())
600 				pagedaemon_wakeup();
601 		}
602 	}
603 }
604 
605 /*
606  * vm_page_list_find()
607  *
608  * Find a page on the specified queue with color optimization.
609  *
610  * The page coloring optimization attempts to locate a page that does
611  * not overload other nearby pages in the object in the cpu's L1 or L2
612  * caches.  We need this optimization because cpu caches tend to be
613  * physical caches, while object spaces tend to be virtual.
614  *
615  * This routine must be called at splvm().
616  * This routine may not block.
617  *
618  * Note that this routine is carefully inlined.  A non-inlined version
619  * is available for outside callers but the only critical path is
620  * from within this source file.
621  */
622 static __inline
623 vm_page_t
624 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
625 {
626 	vm_page_t m;
627 
628 	if (prefer_zero)
629 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
630 	else
631 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
632 	if (m == NULL)
633 		m = _vm_page_list_find2(basequeue, index);
634 	return(m);
635 }
636 
637 static vm_page_t
638 _vm_page_list_find2(int basequeue, int index)
639 {
640 	int i;
641 	vm_page_t m = NULL;
642 	struct vpgqueues *pq;
643 
644 	pq = &vm_page_queues[basequeue];
645 
646 	/*
647 	 * Note that for the first loop, index+i and index-i wind up at the
648 	 * same place.  Even though this is not totally optimal, we've already
649 	 * blown it by missing the cache case so we do not care.
650 	 */
651 
652 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
653 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
654 			break;
655 
656 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
657 			break;
658 	}
659 	return(m);
660 }
661 
662 vm_page_t
663 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
664 {
665 	return(_vm_page_list_find(basequeue, index, prefer_zero));
666 }
667 
668 /*
669  * Find a page on the cache queue with color optimization.  As pages
670  * might be found, but not applicable, they are deactivated.  This
671  * keeps us from using potentially busy cached pages.
672  *
673  * This routine must be called at splvm().
674  * This routine may not block.
675  */
676 vm_page_t
677 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
678 {
679 	vm_page_t m;
680 
681 	while (TRUE) {
682 		m = _vm_page_list_find(
683 		    PQ_CACHE,
684 		    (pindex + object->pg_color) & PQ_L2_MASK,
685 		    FALSE
686 		);
687 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
688 			       m->hold_count || m->wire_count)) {
689 			vm_page_deactivate(m);
690 			continue;
691 		}
692 		return m;
693 	}
694 	/* not reached */
695 }
696 
697 /*
698  * Find a free or zero page, with specified preference.  We attempt to
699  * inline the nominal case and fall back to _vm_page_select_free()
700  * otherwise.
701  *
702  * This routine must be called at splvm().
703  * This routine may not block.
704  */
705 static __inline vm_page_t
706 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
707 {
708 	vm_page_t m;
709 
710 	m = _vm_page_list_find(
711 		PQ_FREE,
712 		(pindex + object->pg_color) & PQ_L2_MASK,
713 		prefer_zero
714 	);
715 	return(m);
716 }
717 
718 /*
719  * vm_page_alloc()
720  *
721  * Allocate and return a memory cell associated with this VM object/offset
722  * pair.
723  *
724  *	page_req classes:
725  *
726  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
727  *	VM_ALLOC_SYSTEM		greater free drain
728  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
729  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
730  *
731  * The object must be locked.
732  * This routine may not block.
733  *
734  * Additional special handling is required when called from an interrupt
735  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
736  * in this case.
737  */
738 vm_page_t
739 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
740 {
741 	vm_page_t m = NULL;
742 	int s;
743 
744 	KASSERT(!vm_page_lookup(object, pindex),
745 		("vm_page_alloc: page already allocated"));
746 	KKASSERT(page_req &
747 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
748 
749 	/*
750 	 * The pager is allowed to eat deeper into the free page list.
751 	 */
752 	if (curthread == pagethread)
753 		page_req |= VM_ALLOC_SYSTEM;
754 
755 	s = splvm();
756 loop:
757 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
758 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
759 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
760 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
761 	) {
762 		/*
763 		 * The free queue has sufficient free pages to take one out.
764 		 */
765 		if (page_req & VM_ALLOC_ZERO)
766 			m = vm_page_select_free(object, pindex, TRUE);
767 		else
768 			m = vm_page_select_free(object, pindex, FALSE);
769 	} else if (page_req & VM_ALLOC_NORMAL) {
770 		/*
771 		 * Allocatable from the cache (non-interrupt only).  On
772 		 * success, we must free the page and try again, thus
773 		 * ensuring that vmstats.v_*_free_min counters are replenished.
774 		 */
775 #ifdef INVARIANTS
776 		if (curthread->td_preempted) {
777 			printf("vm_page_alloc(): warning, attempt to allocate"
778 				" cache page from preempting interrupt\n");
779 			m = NULL;
780 		} else {
781 			m = vm_page_select_cache(object, pindex);
782 		}
783 #else
784 		m = vm_page_select_cache(object, pindex);
785 #endif
786 		/*
787 		 * On succuess move the page into the free queue and loop.
788 		 */
789 		if (m != NULL) {
790 			KASSERT(m->dirty == 0,
791 			    ("Found dirty cache page %p", m));
792 			vm_page_busy(m);
793 			vm_page_protect(m, VM_PROT_NONE);
794 			vm_page_free(m);
795 			goto loop;
796 		}
797 
798 		/*
799 		 * On failure return NULL
800 		 */
801 		splx(s);
802 #if defined(DIAGNOSTIC)
803 		if (vmstats.v_cache_count > 0)
804 			printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
805 #endif
806 		vm_pageout_deficit++;
807 		pagedaemon_wakeup();
808 		return (NULL);
809 	} else {
810 		/*
811 		 * No pages available, wakeup the pageout daemon and give up.
812 		 */
813 		splx(s);
814 		vm_pageout_deficit++;
815 		pagedaemon_wakeup();
816 		return (NULL);
817 	}
818 
819 	/*
820 	 * Good page found.
821 	 */
822 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
823 
824 	/*
825 	 * Remove from free queue
826 	 */
827 	vm_page_unqueue_nowakeup(m);
828 
829 	/*
830 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
831 	 */
832 	if (m->flags & PG_ZERO) {
833 		vm_page_zero_count--;
834 		m->flags = PG_ZERO | PG_BUSY;
835 	} else {
836 		m->flags = PG_BUSY;
837 	}
838 	m->wire_count = 0;
839 	m->hold_count = 0;
840 	m->act_count = 0;
841 	m->busy = 0;
842 	m->valid = 0;
843 	KASSERT(m->dirty == 0,
844 		("vm_page_alloc: free/cache page %p was dirty", m));
845 
846 	/*
847 	 * vm_page_insert() is safe prior to the splx().  Note also that
848 	 * inserting a page here does not insert it into the pmap (which
849 	 * could cause us to block allocating memory).  We cannot block
850 	 * anywhere.
851 	 */
852 	vm_page_insert(m, object, pindex);
853 
854 	/*
855 	 * Don't wakeup too often - wakeup the pageout daemon when
856 	 * we would be nearly out of memory.
857 	 */
858 	if (vm_paging_needed())
859 		pagedaemon_wakeup();
860 
861 	splx(s);
862 	return (m);
863 }
864 
865 /*
866  * Block until free pages are available for allocation, called in various
867  * places before memory allocations.
868  */
869 void
870 vm_wait(void)
871 {
872 	int s;
873 
874 	s = splvm();
875 	if (curthread == pagethread) {
876 		vm_pageout_pages_needed = 1;
877 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
878 	} else {
879 		if (!vm_pages_needed) {
880 			vm_pages_needed = 1;
881 			wakeup(&vm_pages_needed);
882 		}
883 		tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
884 	}
885 	splx(s);
886 }
887 
888 /*
889  * Block until free pages are available for allocation
890  *
891  * Called only in vm_fault so that processes page faulting can be
892  * easily tracked.
893  *
894  * Sleeps at a lower priority than vm_wait() so that vm_wait()ing
895  * processes will be able to grab memory first.  Do not change
896  * this balance without careful testing first.
897  */
898 void
899 vm_waitpfault(void)
900 {
901 	int s;
902 
903 	s = splvm();
904 	if (!vm_pages_needed) {
905 		vm_pages_needed = 1;
906 		wakeup(&vm_pages_needed);
907 	}
908 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
909 	splx(s);
910 }
911 
912 /*
913  * Put the specified page on the active list (if appropriate).  Ensure
914  * that act_count is at least ACT_INIT but do not otherwise mess with it.
915  *
916  * The page queues must be locked.
917  * This routine may not block.
918  */
919 void
920 vm_page_activate(vm_page_t m)
921 {
922 	int s;
923 
924 	s = splvm();
925 	if (m->queue != PQ_ACTIVE) {
926 		if ((m->queue - m->pc) == PQ_CACHE)
927 			mycpu->gd_cnt.v_reactivated++;
928 
929 		vm_page_unqueue(m);
930 
931 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
932 			m->queue = PQ_ACTIVE;
933 			vm_page_queues[PQ_ACTIVE].lcnt++;
934 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
935 					    m, pageq);
936 			if (m->act_count < ACT_INIT)
937 				m->act_count = ACT_INIT;
938 			vmstats.v_active_count++;
939 		}
940 	} else {
941 		if (m->act_count < ACT_INIT)
942 			m->act_count = ACT_INIT;
943 	}
944 
945 	splx(s);
946 }
947 
948 /*
949  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
950  * routine is called when a page has been added to the cache or free
951  * queues.
952  *
953  * This routine may not block.
954  * This routine must be called at splvm()
955  */
956 static __inline void
957 vm_page_free_wakeup(void)
958 {
959 	/*
960 	 * if pageout daemon needs pages, then tell it that there are
961 	 * some free.
962 	 */
963 	if (vm_pageout_pages_needed &&
964 	    vmstats.v_cache_count + vmstats.v_free_count >=
965 	    vmstats.v_pageout_free_min
966 	) {
967 		wakeup(&vm_pageout_pages_needed);
968 		vm_pageout_pages_needed = 0;
969 	}
970 
971 	/*
972 	 * wakeup processes that are waiting on memory if we hit a
973 	 * high water mark. And wakeup scheduler process if we have
974 	 * lots of memory. this process will swapin processes.
975 	 */
976 	if (vm_pages_needed && !vm_page_count_min()) {
977 		vm_pages_needed = 0;
978 		wakeup(&vmstats.v_free_count);
979 	}
980 }
981 
982 /*
983  *	vm_page_free_toq:
984  *
985  *	Returns the given page to the PQ_FREE list,
986  *	disassociating it with any VM object.
987  *
988  *	Object and page must be locked prior to entry.
989  *	This routine may not block.
990  */
991 void
992 vm_page_free_toq(vm_page_t m)
993 {
994 	int s;
995 	struct vpgqueues *pq;
996 
997 	s = splvm();
998 	mycpu->gd_cnt.v_tfree++;
999 
1000 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1001 		printf(
1002 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1003 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1004 		    m->hold_count);
1005 		if ((m->queue - m->pc) == PQ_FREE)
1006 			panic("vm_page_free: freeing free page");
1007 		else
1008 			panic("vm_page_free: freeing busy page");
1009 	}
1010 
1011 	/*
1012 	 * unqueue, then remove page.  Note that we cannot destroy
1013 	 * the page here because we do not want to call the pager's
1014 	 * callback routine until after we've put the page on the
1015 	 * appropriate free queue.
1016 	 */
1017 	vm_page_unqueue_nowakeup(m);
1018 	vm_page_remove(m);
1019 
1020 	/*
1021 	 * No further management of fictitious pages occurs beyond object
1022 	 * and queue removal.
1023 	 */
1024 	if ((m->flags & PG_FICTITIOUS) != 0) {
1025 		splx(s);
1026 		return;
1027 	}
1028 
1029 	m->valid = 0;
1030 	vm_page_undirty(m);
1031 
1032 	if (m->wire_count != 0) {
1033 		if (m->wire_count > 1) {
1034 		    panic(
1035 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1036 			m->wire_count, (long)m->pindex);
1037 		}
1038 		panic("vm_page_free: freeing wired page");
1039 	}
1040 
1041 	/*
1042 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1043 	 */
1044 	if (m->flags & PG_UNMANAGED) {
1045 	    m->flags &= ~PG_UNMANAGED;
1046 	} else {
1047 #ifdef __alpha__
1048 	    pmap_page_is_free(m);
1049 #endif
1050 	}
1051 
1052 	if (m->hold_count != 0) {
1053 		m->flags &= ~PG_ZERO;
1054 		m->queue = PQ_HOLD;
1055 	} else {
1056 		m->queue = PQ_FREE + m->pc;
1057 	}
1058 	pq = &vm_page_queues[m->queue];
1059 	pq->lcnt++;
1060 	++(*pq->cnt);
1061 
1062 	/*
1063 	 * Put zero'd pages on the end ( where we look for zero'd pages
1064 	 * first ) and non-zerod pages at the head.
1065 	 */
1066 	if (m->flags & PG_ZERO) {
1067 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1068 		++vm_page_zero_count;
1069 	} else {
1070 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1071 	}
1072 
1073 	vm_page_free_wakeup();
1074 	splx(s);
1075 }
1076 
1077 /*
1078  * vm_page_unmanage()
1079  *
1080  * Prevent PV management from being done on the page.  The page is
1081  * removed from the paging queues as if it were wired, and as a
1082  * consequence of no longer being managed the pageout daemon will not
1083  * touch it (since there is no way to locate the pte mappings for the
1084  * page).  madvise() calls that mess with the pmap will also no longer
1085  * operate on the page.
1086  *
1087  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1088  * will clear the flag.
1089  *
1090  * This routine is used by OBJT_PHYS objects - objects using unswappable
1091  * physical memory as backing store rather then swap-backed memory and
1092  * will eventually be extended to support 4MB unmanaged physical
1093  * mappings.
1094  */
1095 void
1096 vm_page_unmanage(vm_page_t m)
1097 {
1098 	int s;
1099 
1100 	s = splvm();
1101 	if ((m->flags & PG_UNMANAGED) == 0) {
1102 		if (m->wire_count == 0)
1103 			vm_page_unqueue(m);
1104 	}
1105 	vm_page_flag_set(m, PG_UNMANAGED);
1106 	splx(s);
1107 }
1108 
1109 /*
1110  * Mark this page as wired down by yet another map, removing it from
1111  * paging queues as necessary.
1112  *
1113  * The page queues must be locked.
1114  * This routine may not block.
1115  */
1116 void
1117 vm_page_wire(vm_page_t m)
1118 {
1119 	int s;
1120 
1121 	/*
1122 	 * Only bump the wire statistics if the page is not already wired,
1123 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1124 	 * it is already off the queues).  Don't do anything with fictitious
1125 	 * pages because they are always wired.
1126 	 */
1127 	s = splvm();
1128 	if ((m->flags & PG_FICTITIOUS) == 0) {
1129 		if (m->wire_count == 0) {
1130 			if ((m->flags & PG_UNMANAGED) == 0)
1131 				vm_page_unqueue(m);
1132 			vmstats.v_wire_count++;
1133 		}
1134 		m->wire_count++;
1135 		KASSERT(m->wire_count != 0,
1136 		    ("vm_page_wire: wire_count overflow m=%p", m));
1137 	}
1138 	splx(s);
1139 	vm_page_flag_set(m, PG_MAPPED);
1140 }
1141 
1142 /*
1143  * Release one wiring of this page, potentially enabling it to be paged again.
1144  *
1145  * Many pages placed on the inactive queue should actually go
1146  * into the cache, but it is difficult to figure out which.  What
1147  * we do instead, if the inactive target is well met, is to put
1148  * clean pages at the head of the inactive queue instead of the tail.
1149  * This will cause them to be moved to the cache more quickly and
1150  * if not actively re-referenced, freed more quickly.  If we just
1151  * stick these pages at the end of the inactive queue, heavy filesystem
1152  * meta-data accesses can cause an unnecessary paging load on memory bound
1153  * processes.  This optimization causes one-time-use metadata to be
1154  * reused more quickly.
1155  *
1156  * BUT, if we are in a low-memory situation we have no choice but to
1157  * put clean pages on the cache queue.
1158  *
1159  * A number of routines use vm_page_unwire() to guarantee that the page
1160  * will go into either the inactive or active queues, and will NEVER
1161  * be placed in the cache - for example, just after dirtying a page.
1162  * dirty pages in the cache are not allowed.
1163  *
1164  * The page queues must be locked.
1165  * This routine may not block.
1166  */
1167 void
1168 vm_page_unwire(vm_page_t m, int activate)
1169 {
1170 	int s;
1171 
1172 	s = splvm();
1173 	if (m->flags & PG_FICTITIOUS) {
1174 		/* do nothing */
1175 	} else if (m->wire_count <= 0) {
1176 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1177 	} else {
1178 		if (--m->wire_count == 0) {
1179 			--vmstats.v_wire_count;
1180 			if (m->flags & PG_UNMANAGED) {
1181 				;
1182 			} else if (activate) {
1183 				TAILQ_INSERT_TAIL(
1184 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1185 				m->queue = PQ_ACTIVE;
1186 				vm_page_queues[PQ_ACTIVE].lcnt++;
1187 				vmstats.v_active_count++;
1188 			} else {
1189 				vm_page_flag_clear(m, PG_WINATCFLS);
1190 				TAILQ_INSERT_TAIL(
1191 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1192 				m->queue = PQ_INACTIVE;
1193 				vm_page_queues[PQ_INACTIVE].lcnt++;
1194 				vmstats.v_inactive_count++;
1195 			}
1196 		}
1197 	}
1198 	splx(s);
1199 }
1200 
1201 
1202 /*
1203  * Move the specified page to the inactive queue.  If the page has
1204  * any associated swap, the swap is deallocated.
1205  *
1206  * Normally athead is 0 resulting in LRU operation.  athead is set
1207  * to 1 if we want this page to be 'as if it were placed in the cache',
1208  * except without unmapping it from the process address space.
1209  *
1210  * This routine may not block.
1211  */
1212 static __inline void
1213 _vm_page_deactivate(vm_page_t m, int athead)
1214 {
1215 	int s;
1216 
1217 	/*
1218 	 * Ignore if already inactive.
1219 	 */
1220 	if (m->queue == PQ_INACTIVE)
1221 		return;
1222 
1223 	s = splvm();
1224 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1225 		if ((m->queue - m->pc) == PQ_CACHE)
1226 			mycpu->gd_cnt.v_reactivated++;
1227 		vm_page_flag_clear(m, PG_WINATCFLS);
1228 		vm_page_unqueue(m);
1229 		if (athead)
1230 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1231 		else
1232 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1233 		m->queue = PQ_INACTIVE;
1234 		vm_page_queues[PQ_INACTIVE].lcnt++;
1235 		vmstats.v_inactive_count++;
1236 	}
1237 	splx(s);
1238 }
1239 
1240 void
1241 vm_page_deactivate(vm_page_t m)
1242 {
1243     _vm_page_deactivate(m, 0);
1244 }
1245 
1246 /*
1247  * vm_page_try_to_cache:
1248  *
1249  * Returns 0 on failure, 1 on success
1250  */
1251 int
1252 vm_page_try_to_cache(vm_page_t m)
1253 {
1254 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1255 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1256 		return(0);
1257 	}
1258 	vm_page_test_dirty(m);
1259 	if (m->dirty)
1260 		return(0);
1261 	vm_page_cache(m);
1262 	return(1);
1263 }
1264 
1265 /*
1266  * Attempt to free the page.  If we cannot free it, we do nothing.
1267  * 1 is returned on success, 0 on failure.
1268  */
1269 int
1270 vm_page_try_to_free(vm_page_t m)
1271 {
1272 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1273 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1274 		return(0);
1275 	}
1276 	vm_page_test_dirty(m);
1277 	if (m->dirty)
1278 		return(0);
1279 	vm_page_busy(m);
1280 	vm_page_protect(m, VM_PROT_NONE);
1281 	vm_page_free(m);
1282 	return(1);
1283 }
1284 
1285 /*
1286  * vm_page_cache
1287  *
1288  * Put the specified page onto the page cache queue (if appropriate).
1289  *
1290  * This routine may not block.
1291  */
1292 void
1293 vm_page_cache(vm_page_t m)
1294 {
1295 	int s;
1296 
1297 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1298 			m->wire_count || m->hold_count) {
1299 		printf("vm_page_cache: attempting to cache busy/held page\n");
1300 		return;
1301 	}
1302 	if ((m->queue - m->pc) == PQ_CACHE)
1303 		return;
1304 
1305 	/*
1306 	 * Remove all pmaps and indicate that the page is not
1307 	 * writeable or mapped.
1308 	 */
1309 
1310 	vm_page_protect(m, VM_PROT_NONE);
1311 	if (m->dirty != 0) {
1312 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1313 			(long)m->pindex);
1314 	}
1315 	s = splvm();
1316 	vm_page_unqueue_nowakeup(m);
1317 	m->queue = PQ_CACHE + m->pc;
1318 	vm_page_queues[m->queue].lcnt++;
1319 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1320 	vmstats.v_cache_count++;
1321 	vm_page_free_wakeup();
1322 	splx(s);
1323 }
1324 
1325 /*
1326  * vm_page_dontneed()
1327  *
1328  * Cache, deactivate, or do nothing as appropriate.  This routine
1329  * is typically used by madvise() MADV_DONTNEED.
1330  *
1331  * Generally speaking we want to move the page into the cache so
1332  * it gets reused quickly.  However, this can result in a silly syndrome
1333  * due to the page recycling too quickly.  Small objects will not be
1334  * fully cached.  On the otherhand, if we move the page to the inactive
1335  * queue we wind up with a problem whereby very large objects
1336  * unnecessarily blow away our inactive and cache queues.
1337  *
1338  * The solution is to move the pages based on a fixed weighting.  We
1339  * either leave them alone, deactivate them, or move them to the cache,
1340  * where moving them to the cache has the highest weighting.
1341  * By forcing some pages into other queues we eventually force the
1342  * system to balance the queues, potentially recovering other unrelated
1343  * space from active.  The idea is to not force this to happen too
1344  * often.
1345  */
1346 void
1347 vm_page_dontneed(vm_page_t m)
1348 {
1349 	static int dnweight;
1350 	int dnw;
1351 	int head;
1352 
1353 	dnw = ++dnweight;
1354 
1355 	/*
1356 	 * occassionally leave the page alone
1357 	 */
1358 
1359 	if ((dnw & 0x01F0) == 0 ||
1360 	    m->queue == PQ_INACTIVE ||
1361 	    m->queue - m->pc == PQ_CACHE
1362 	) {
1363 		if (m->act_count >= ACT_INIT)
1364 			--m->act_count;
1365 		return;
1366 	}
1367 
1368 	if (m->dirty == 0)
1369 		vm_page_test_dirty(m);
1370 
1371 	if (m->dirty || (dnw & 0x0070) == 0) {
1372 		/*
1373 		 * Deactivate the page 3 times out of 32.
1374 		 */
1375 		head = 0;
1376 	} else {
1377 		/*
1378 		 * Cache the page 28 times out of every 32.  Note that
1379 		 * the page is deactivated instead of cached, but placed
1380 		 * at the head of the queue instead of the tail.
1381 		 */
1382 		head = 1;
1383 	}
1384 	_vm_page_deactivate(m, head);
1385 }
1386 
1387 /*
1388  * Grab a page, blocking if it is busy and allocating a page if necessary.
1389  * A busy page is returned or NULL.
1390  *
1391  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1392  * If VM_ALLOC_RETRY is not specified
1393  *
1394  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1395  * always returned if we had blocked.
1396  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1397  * This routine may not be called from an interrupt.
1398  * The returned page may not be entirely valid.
1399  *
1400  * This routine may be called from mainline code without spl protection and
1401  * be guarenteed a busied page associated with the object at the specified
1402  * index.
1403  */
1404 vm_page_t
1405 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1406 {
1407 	vm_page_t m;
1408 	int s, generation;
1409 
1410 	KKASSERT(allocflags &
1411 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1412 	s = splvm();
1413 retrylookup:
1414 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1415 		if (m->busy || (m->flags & PG_BUSY)) {
1416 			generation = object->generation;
1417 
1418 			while ((object->generation == generation) &&
1419 					(m->busy || (m->flags & PG_BUSY))) {
1420 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1421 				tsleep(m, 0, "pgrbwt", 0);
1422 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1423 					m = NULL;
1424 					goto done;
1425 				}
1426 			}
1427 			goto retrylookup;
1428 		} else {
1429 			vm_page_busy(m);
1430 			goto done;
1431 		}
1432 	}
1433 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1434 	if (m == NULL) {
1435 		vm_wait();
1436 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1437 			goto done;
1438 		goto retrylookup;
1439 	}
1440 done:
1441 	splx(s);
1442 	return(m);
1443 }
1444 
1445 /*
1446  * Mapping function for valid bits or for dirty bits in
1447  * a page.  May not block.
1448  *
1449  * Inputs are required to range within a page.
1450  */
1451 __inline int
1452 vm_page_bits(int base, int size)
1453 {
1454 	int first_bit;
1455 	int last_bit;
1456 
1457 	KASSERT(
1458 	    base + size <= PAGE_SIZE,
1459 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1460 	);
1461 
1462 	if (size == 0)		/* handle degenerate case */
1463 		return(0);
1464 
1465 	first_bit = base >> DEV_BSHIFT;
1466 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1467 
1468 	return ((2 << last_bit) - (1 << first_bit));
1469 }
1470 
1471 /*
1472  * Sets portions of a page valid and clean.  The arguments are expected
1473  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1474  * of any partial chunks touched by the range.  The invalid portion of
1475  * such chunks will be zero'd.
1476  *
1477  * This routine may not block.
1478  *
1479  * (base + size) must be less then or equal to PAGE_SIZE.
1480  */
1481 void
1482 vm_page_set_validclean(vm_page_t m, int base, int size)
1483 {
1484 	int pagebits;
1485 	int frag;
1486 	int endoff;
1487 
1488 	if (size == 0)	/* handle degenerate case */
1489 		return;
1490 
1491 	/*
1492 	 * If the base is not DEV_BSIZE aligned and the valid
1493 	 * bit is clear, we have to zero out a portion of the
1494 	 * first block.
1495 	 */
1496 
1497 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1498 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1499 	) {
1500 		pmap_zero_page_area(
1501 		    VM_PAGE_TO_PHYS(m),
1502 		    frag,
1503 		    base - frag
1504 		);
1505 	}
1506 
1507 	/*
1508 	 * If the ending offset is not DEV_BSIZE aligned and the
1509 	 * valid bit is clear, we have to zero out a portion of
1510 	 * the last block.
1511 	 */
1512 
1513 	endoff = base + size;
1514 
1515 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1516 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1517 	) {
1518 		pmap_zero_page_area(
1519 		    VM_PAGE_TO_PHYS(m),
1520 		    endoff,
1521 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1522 		);
1523 	}
1524 
1525 	/*
1526 	 * Set valid, clear dirty bits.  If validating the entire
1527 	 * page we can safely clear the pmap modify bit.  We also
1528 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1529 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1530 	 * be set again.
1531 	 *
1532 	 * We set valid bits inclusive of any overlap, but we can only
1533 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1534 	 * the range.
1535 	 */
1536 
1537 	pagebits = vm_page_bits(base, size);
1538 	m->valid |= pagebits;
1539 #if 0	/* NOT YET */
1540 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1541 		frag = DEV_BSIZE - frag;
1542 		base += frag;
1543 		size -= frag;
1544 		if (size < 0)
1545 		    size = 0;
1546 	}
1547 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1548 #endif
1549 	m->dirty &= ~pagebits;
1550 	if (base == 0 && size == PAGE_SIZE) {
1551 		pmap_clear_modify(m);
1552 		vm_page_flag_clear(m, PG_NOSYNC);
1553 	}
1554 }
1555 
1556 void
1557 vm_page_clear_dirty(vm_page_t m, int base, int size)
1558 {
1559 	m->dirty &= ~vm_page_bits(base, size);
1560 }
1561 
1562 /*
1563  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1564  * valid and dirty bits for the effected areas are cleared.
1565  *
1566  * May not block.
1567  */
1568 void
1569 vm_page_set_invalid(vm_page_t m, int base, int size)
1570 {
1571 	int bits;
1572 
1573 	bits = vm_page_bits(base, size);
1574 	m->valid &= ~bits;
1575 	m->dirty &= ~bits;
1576 	m->object->generation++;
1577 }
1578 
1579 /*
1580  * The kernel assumes that the invalid portions of a page contain
1581  * garbage, but such pages can be mapped into memory by user code.
1582  * When this occurs, we must zero out the non-valid portions of the
1583  * page so user code sees what it expects.
1584  *
1585  * Pages are most often semi-valid when the end of a file is mapped
1586  * into memory and the file's size is not page aligned.
1587  */
1588 void
1589 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1590 {
1591 	int b;
1592 	int i;
1593 
1594 	/*
1595 	 * Scan the valid bits looking for invalid sections that
1596 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1597 	 * valid bit may be set ) have already been zerod by
1598 	 * vm_page_set_validclean().
1599 	 */
1600 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1601 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1602 		    (m->valid & (1 << i))
1603 		) {
1604 			if (i > b) {
1605 				pmap_zero_page_area(
1606 				    VM_PAGE_TO_PHYS(m),
1607 				    b << DEV_BSHIFT,
1608 				    (i - b) << DEV_BSHIFT
1609 				);
1610 			}
1611 			b = i + 1;
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * setvalid is TRUE when we can safely set the zero'd areas
1617 	 * as being valid.  We can do this if there are no cache consistency
1618 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1619 	 */
1620 	if (setvalid)
1621 		m->valid = VM_PAGE_BITS_ALL;
1622 }
1623 
1624 /*
1625  * Is a (partial) page valid?  Note that the case where size == 0
1626  * will return FALSE in the degenerate case where the page is entirely
1627  * invalid, and TRUE otherwise.
1628  *
1629  * May not block.
1630  */
1631 int
1632 vm_page_is_valid(vm_page_t m, int base, int size)
1633 {
1634 	int bits = vm_page_bits(base, size);
1635 
1636 	if (m->valid && ((m->valid & bits) == bits))
1637 		return 1;
1638 	else
1639 		return 0;
1640 }
1641 
1642 /*
1643  * update dirty bits from pmap/mmu.  May not block.
1644  */
1645 void
1646 vm_page_test_dirty(vm_page_t m)
1647 {
1648 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1649 		vm_page_dirty(m);
1650 	}
1651 }
1652 
1653 #include "opt_ddb.h"
1654 #ifdef DDB
1655 #include <sys/kernel.h>
1656 
1657 #include <ddb/ddb.h>
1658 
1659 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1660 {
1661 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1662 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1663 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1664 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1665 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1666 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1667 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1668 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1669 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1670 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1671 }
1672 
1673 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1674 {
1675 	int i;
1676 	db_printf("PQ_FREE:");
1677 	for(i=0;i<PQ_L2_SIZE;i++) {
1678 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1679 	}
1680 	db_printf("\n");
1681 
1682 	db_printf("PQ_CACHE:");
1683 	for(i=0;i<PQ_L2_SIZE;i++) {
1684 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1685 	}
1686 	db_printf("\n");
1687 
1688 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1689 		vm_page_queues[PQ_ACTIVE].lcnt,
1690 		vm_page_queues[PQ_INACTIVE].lcnt);
1691 }
1692 #endif /* DDB */
1693