xref: /dragonfly/sys/vm/vm_page.c (revision fae225dc)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
34  */
35 
36 /*
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 /*
63  * Resident memory management module.  The module manipulates 'VM pages'.
64  * A VM page is the core building block for memory management.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 /*
99  * SET - Minimum required set associative size, must be a power of 2.  We
100  *	 want this to match or exceed the set-associativeness of the cpu.
101  *
102  * GRP - A larger set that allows bleed-over into the domains of other
103  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
104  *	 code to smooth things out a bit.
105  */
106 #define PQ_SET_ASSOC		16
107 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
108 
109 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
110 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
111 
112 static void vm_page_queue_init(void);
113 static void vm_page_free_wakeup(void);
114 static vm_page_t vm_page_select_cache(u_short pg_color);
115 static vm_page_t _vm_page_list_find2(int basequeue, int index);
116 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
117 
118 MALLOC_DEFINE(M_ACTIONHASH, "acthash", "vmpage action hash");
119 
120 /*
121  * Array of tailq lists
122  */
123 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
124 
125 LIST_HEAD(vm_page_action_list, vm_page_action);
126 
127 /*
128  * Action hash for user umtx support.  Contention is governed by both
129  * tsleep/wakeup handling (kern/kern_synch.c) and action_hash[] below.
130  * Because action_hash[] represents active table locks, a modest fixed
131  * value well in excess of MAXCPU works here.
132  *
133  * There is also scan overhead depending on the number of threads in
134  * umtx*() calls, so we also size the hash table based on maxproc.
135  */
136 struct vm_page_action_hash {
137 	struct vm_page_action_list list;
138 	struct lock	lk;
139 } __cachealign;
140 
141 #define VMACTION_MINHSIZE	256
142 
143 struct vm_page_action_hash	*action_hash;
144 static int vmaction_hsize;
145 static int vmaction_hmask;
146 
147 static volatile int vm_pages_waiting;
148 static struct alist vm_contig_alist;
149 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
150 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
151 
152 static u_long vm_dma_reserved = 0;
153 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
154 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
155 	    "Memory reserved for DMA");
156 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
157 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
158 
159 static int vm_contig_verbose = 0;
160 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
161 
162 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
163 	     vm_pindex_t, pindex);
164 
165 static void
166 vm_page_queue_init(void)
167 {
168 	int i;
169 
170 	for (i = 0; i < PQ_L2_SIZE; i++)
171 		vm_page_queues[PQ_FREE+i].cnt_offset =
172 			offsetof(struct vmstats, v_free_count);
173 	for (i = 0; i < PQ_L2_SIZE; i++)
174 		vm_page_queues[PQ_CACHE+i].cnt_offset =
175 			offsetof(struct vmstats, v_cache_count);
176 	for (i = 0; i < PQ_L2_SIZE; i++)
177 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
178 			offsetof(struct vmstats, v_inactive_count);
179 	for (i = 0; i < PQ_L2_SIZE; i++)
180 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
181 			offsetof(struct vmstats, v_active_count);
182 	for (i = 0; i < PQ_L2_SIZE; i++)
183 		vm_page_queues[PQ_HOLD+i].cnt_offset =
184 			offsetof(struct vmstats, v_active_count);
185 	/* PQ_NONE has no queue */
186 
187 	for (i = 0; i < PQ_COUNT; i++) {
188 		TAILQ_INIT(&vm_page_queues[i].pl);
189 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
190 	}
191 }
192 
193 /*
194  * note: place in initialized data section?  Is this necessary?
195  */
196 long first_page = 0;
197 int vm_page_array_size = 0;
198 vm_page_t vm_page_array = NULL;
199 vm_paddr_t vm_low_phys_reserved;
200 
201 /*
202  * (low level boot)
203  *
204  * Sets the page size, perhaps based upon the memory size.
205  * Must be called before any use of page-size dependent functions.
206  */
207 void
208 vm_set_page_size(void)
209 {
210 	if (vmstats.v_page_size == 0)
211 		vmstats.v_page_size = PAGE_SIZE;
212 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
213 		panic("vm_set_page_size: page size not a power of two");
214 }
215 
216 /*
217  * (low level boot)
218  *
219  * Add a new page to the freelist for use by the system.  New pages
220  * are added to both the head and tail of the associated free page
221  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
222  * requests pull 'recent' adds (higher physical addresses) first.
223  *
224  * Beware that the page zeroing daemon will also be running soon after
225  * boot, moving pages from the head to the tail of the PQ_FREE queues.
226  *
227  * Must be called in a critical section.
228  */
229 static void
230 vm_add_new_page(vm_paddr_t pa)
231 {
232 	struct vpgqueues *vpq;
233 	vm_page_t m;
234 
235 	m = PHYS_TO_VM_PAGE(pa);
236 	m->phys_addr = pa;
237 	m->flags = 0;
238 	m->pat_mode = PAT_WRITE_BACK;
239 	m->pc = (pa >> PAGE_SHIFT);
240 
241 	/*
242 	 * Twist for cpu localization in addition to page coloring, so
243 	 * different cpus selecting by m->queue get different page colors.
244 	 */
245 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
246 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
247 	m->pc &= PQ_L2_MASK;
248 
249 	/*
250 	 * Reserve a certain number of contiguous low memory pages for
251 	 * contigmalloc() to use.
252 	 */
253 	if (pa < vm_low_phys_reserved) {
254 		atomic_add_int(&vmstats.v_page_count, 1);
255 		atomic_add_int(&vmstats.v_dma_pages, 1);
256 		m->queue = PQ_NONE;
257 		m->wire_count = 1;
258 		atomic_add_int(&vmstats.v_wire_count, 1);
259 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
260 		return;
261 	}
262 
263 	/*
264 	 * General page
265 	 */
266 	m->queue = m->pc + PQ_FREE;
267 	KKASSERT(m->dirty == 0);
268 
269 	atomic_add_int(&vmstats.v_page_count, 1);
270 	atomic_add_int(&vmstats.v_free_count, 1);
271 	vpq = &vm_page_queues[m->queue];
272 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
273 	++vpq->lcnt;
274 }
275 
276 /*
277  * (low level boot)
278  *
279  * Initializes the resident memory module.
280  *
281  * Preallocates memory for critical VM structures and arrays prior to
282  * kernel_map becoming available.
283  *
284  * Memory is allocated from (virtual2_start, virtual2_end) if available,
285  * otherwise memory is allocated from (virtual_start, virtual_end).
286  *
287  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
288  * large enough to hold vm_page_array & other structures for machines with
289  * large amounts of ram, so we want to use virtual2* when available.
290  */
291 void
292 vm_page_startup(void)
293 {
294 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
295 	vm_offset_t mapped;
296 	vm_size_t npages;
297 	vm_paddr_t page_range;
298 	vm_paddr_t new_end;
299 	int i;
300 	vm_paddr_t pa;
301 	vm_paddr_t last_pa;
302 	vm_paddr_t end;
303 	vm_paddr_t biggestone, biggestsize;
304 	vm_paddr_t total;
305 	vm_page_t m;
306 
307 	total = 0;
308 	biggestsize = 0;
309 	biggestone = 0;
310 	vaddr = round_page(vaddr);
311 
312 	/*
313 	 * Make sure ranges are page-aligned.
314 	 */
315 	for (i = 0; phys_avail[i].phys_end; ++i) {
316 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
317 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
318 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
319 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
320 	}
321 
322 	/*
323 	 * Locate largest block
324 	 */
325 	for (i = 0; phys_avail[i].phys_end; ++i) {
326 		vm_paddr_t size = phys_avail[i].phys_end -
327 				  phys_avail[i].phys_beg;
328 
329 		if (size > biggestsize) {
330 			biggestone = i;
331 			biggestsize = size;
332 		}
333 		total += size;
334 	}
335 	--i;	/* adjust to last entry for use down below */
336 
337 	end = phys_avail[biggestone].phys_end;
338 	end = trunc_page(end);
339 
340 	/*
341 	 * Initialize the queue headers for the free queue, the active queue
342 	 * and the inactive queue.
343 	 */
344 	vm_page_queue_init();
345 
346 #if !defined(_KERNEL_VIRTUAL)
347 	/*
348 	 * VKERNELs don't support minidumps and as such don't need
349 	 * vm_page_dump
350 	 *
351 	 * Allocate a bitmap to indicate that a random physical page
352 	 * needs to be included in a minidump.
353 	 *
354 	 * The amd64 port needs this to indicate which direct map pages
355 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
356 	 *
357 	 * However, i386 still needs this workspace internally within the
358 	 * minidump code.  In theory, they are not needed on i386, but are
359 	 * included should the sf_buf code decide to use them.
360 	 */
361 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
362 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
363 	end -= vm_page_dump_size;
364 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
365 					VM_PROT_READ | VM_PROT_WRITE);
366 	bzero((void *)vm_page_dump, vm_page_dump_size);
367 #endif
368 	/*
369 	 * Compute the number of pages of memory that will be available for
370 	 * use (taking into account the overhead of a page structure per
371 	 * page).
372 	 */
373 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
374 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
375 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
376 
377 #ifndef _KERNEL_VIRTUAL
378 	/*
379 	 * (only applies to real kernels)
380 	 *
381 	 * Reserve a large amount of low memory for potential 32-bit DMA
382 	 * space allocations.  Once device initialization is complete we
383 	 * release most of it, but keep (vm_dma_reserved) memory reserved
384 	 * for later use.  Typically for X / graphics.  Through trial and
385 	 * error we find that GPUs usually requires ~60-100MB or so.
386 	 *
387 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
388 	 */
389 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
390 	if (vm_low_phys_reserved > total / 4)
391 		vm_low_phys_reserved = total / 4;
392 	if (vm_dma_reserved == 0) {
393 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
394 		if (vm_dma_reserved > total / 16)
395 			vm_dma_reserved = total / 16;
396 	}
397 #endif
398 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
399 		   ALIST_RECORDS_65536);
400 
401 	/*
402 	 * Initialize the mem entry structures now, and put them in the free
403 	 * queue.
404 	 */
405 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
406 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
407 	vm_page_array = (vm_page_t)mapped;
408 
409 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
410 	/*
411 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
412 	 * we have to manually add these pages to the minidump tracking so
413 	 * that they can be dumped, including the vm_page_array.
414 	 */
415 	for (pa = new_end;
416 	     pa < phys_avail[biggestone].phys_end;
417 	     pa += PAGE_SIZE) {
418 		dump_add_page(pa);
419 	}
420 #endif
421 
422 	/*
423 	 * Clear all of the page structures, run basic initialization so
424 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
425 	 * map.
426 	 */
427 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
428 	vm_page_array_size = page_range;
429 
430 	m = &vm_page_array[0];
431 	pa = ptoa(first_page);
432 	for (i = 0; i < page_range; ++i) {
433 		spin_init(&m->spin, "vm_page");
434 		m->phys_addr = pa;
435 		pa += PAGE_SIZE;
436 		++m;
437 	}
438 
439 	/*
440 	 * Construct the free queue(s) in ascending order (by physical
441 	 * address) so that the first 16MB of physical memory is allocated
442 	 * last rather than first.  On large-memory machines, this avoids
443 	 * the exhaustion of low physical memory before isa_dmainit has run.
444 	 */
445 	vmstats.v_page_count = 0;
446 	vmstats.v_free_count = 0;
447 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
448 		pa = phys_avail[i].phys_beg;
449 		if (i == biggestone)
450 			last_pa = new_end;
451 		else
452 			last_pa = phys_avail[i].phys_end;
453 		while (pa < last_pa && npages-- > 0) {
454 			vm_add_new_page(pa);
455 			pa += PAGE_SIZE;
456 		}
457 	}
458 	if (virtual2_start)
459 		virtual2_start = vaddr;
460 	else
461 		virtual_start = vaddr;
462 	mycpu->gd_vmstats = vmstats;
463 }
464 
465 /*
466  * Reorganize VM pages based on numa data.  May be called as many times as
467  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
468  * to allow vm_page_alloc() to choose pages based on socket affinity.
469  *
470  * NOTE: This function is only called while we are still in UP mode, so
471  *	 we only need a critical section to protect the queues (which
472  *	 saves a lot of time, there are likely a ton of pages).
473  */
474 void
475 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
476 {
477 	vm_paddr_t scan_beg;
478 	vm_paddr_t scan_end;
479 	vm_paddr_t ran_end;
480 	struct vpgqueues *vpq;
481 	vm_page_t m;
482 	vm_page_t mend;
483 	int i;
484 	int socket_mod;
485 	int socket_value;
486 
487 	/*
488 	 * Check if no physical information, or there was only one socket
489 	 * (so don't waste time doing nothing!).
490 	 */
491 	if (cpu_topology_phys_ids <= 1 ||
492 	    cpu_topology_core_ids == 0) {
493 		return;
494 	}
495 
496 	/*
497 	 * Setup for our iteration.  Note that ACPI may iterate CPU
498 	 * sockets starting at 0 or 1 or some other number.  The
499 	 * cpu_topology code mod's it against the socket count.
500 	 */
501 	ran_end = ran_beg + bytes;
502 	physid %= cpu_topology_phys_ids;
503 
504 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
505 	socket_value = physid * socket_mod;
506 	mend = &vm_page_array[vm_page_array_size];
507 
508 	crit_enter();
509 
510 	/*
511 	 * Adjust vm_page->pc and requeue all affected pages.  The
512 	 * allocator will then be able to localize memory allocations
513 	 * to some degree.
514 	 */
515 	for (i = 0; phys_avail[i].phys_end; ++i) {
516 		scan_beg = phys_avail[i].phys_beg;
517 		scan_end = phys_avail[i].phys_end;
518 		if (scan_end <= ran_beg)
519 			continue;
520 		if (scan_beg >= ran_end)
521 			continue;
522 		if (scan_beg < ran_beg)
523 			scan_beg = ran_beg;
524 		if (scan_end > ran_end)
525 			scan_end = ran_end;
526 		if (atop(scan_end) > first_page + vm_page_array_size)
527 			scan_end = ptoa(first_page + vm_page_array_size);
528 
529 		m = PHYS_TO_VM_PAGE(scan_beg);
530 		while (scan_beg < scan_end) {
531 			KKASSERT(m < mend);
532 			if (m->queue != PQ_NONE) {
533 				vpq = &vm_page_queues[m->queue];
534 				TAILQ_REMOVE(&vpq->pl, m, pageq);
535 				--vpq->lcnt;
536 				/* queue doesn't change, no need to adj cnt */
537 				m->queue -= m->pc;
538 				m->pc %= socket_mod;
539 				m->pc += socket_value;
540 				m->pc &= PQ_L2_MASK;
541 				m->queue += m->pc;
542 				vpq = &vm_page_queues[m->queue];
543 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
544 				++vpq->lcnt;
545 				/* queue doesn't change, no need to adj cnt */
546 			} else {
547 				m->pc %= socket_mod;
548 				m->pc += socket_value;
549 				m->pc &= PQ_L2_MASK;
550 			}
551 			scan_beg += PAGE_SIZE;
552 			++m;
553 		}
554 	}
555 	crit_exit();
556 }
557 
558 /*
559  * We tended to reserve a ton of memory for contigmalloc().  Now that most
560  * drivers have initialized we want to return most the remaining free
561  * reserve back to the VM page queues so they can be used for normal
562  * allocations.
563  *
564  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
565  *
566  * Also setup the action_hash[] table here (which is only used by userland)
567  */
568 static void
569 vm_page_startup_finish(void *dummy __unused)
570 {
571 	alist_blk_t blk;
572 	alist_blk_t rblk;
573 	alist_blk_t count;
574 	alist_blk_t xcount;
575 	alist_blk_t bfree;
576 	vm_page_t m;
577 	int i;
578 
579 	spin_lock(&vm_contig_spin);
580 	for (;;) {
581 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
582 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
583 			break;
584 		if (count == 0)
585 			break;
586 
587 		/*
588 		 * Figure out how much of the initial reserve we have to
589 		 * free in order to reach our target.
590 		 */
591 		bfree -= vm_dma_reserved / PAGE_SIZE;
592 		if (count > bfree) {
593 			blk += count - bfree;
594 			count = bfree;
595 		}
596 
597 		/*
598 		 * Calculate the nearest power of 2 <= count.
599 		 */
600 		for (xcount = 1; xcount <= count; xcount <<= 1)
601 			;
602 		xcount >>= 1;
603 		blk += count - xcount;
604 		count = xcount;
605 
606 		/*
607 		 * Allocate the pages from the alist, then free them to
608 		 * the normal VM page queues.
609 		 *
610 		 * Pages allocated from the alist are wired.  We have to
611 		 * busy, unwire, and free them.  We must also adjust
612 		 * vm_low_phys_reserved before freeing any pages to prevent
613 		 * confusion.
614 		 */
615 		rblk = alist_alloc(&vm_contig_alist, blk, count);
616 		if (rblk != blk) {
617 			kprintf("vm_page_startup_finish: Unable to return "
618 				"dma space @0x%08x/%d -> 0x%08x\n",
619 				blk, count, rblk);
620 			break;
621 		}
622 		atomic_add_int(&vmstats.v_dma_pages, -count);
623 		spin_unlock(&vm_contig_spin);
624 
625 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
626 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
627 		while (count) {
628 			vm_page_busy_wait(m, FALSE, "cpgfr");
629 			vm_page_unwire(m, 0);
630 			vm_page_free(m);
631 			--count;
632 			++m;
633 		}
634 		spin_lock(&vm_contig_spin);
635 	}
636 	spin_unlock(&vm_contig_spin);
637 
638 	/*
639 	 * Print out how much DMA space drivers have already allocated and
640 	 * how much is left over.
641 	 */
642 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
643 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
644 		(PAGE_SIZE / 1024),
645 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
646 
647 	/*
648 	 * Scale the action_hash[] array.  Primary contention occurs due
649 	 * to cpu locks, scaled to ncpus, and scan overhead may be incurred
650 	 * depending on the number of threads, which we scale to maxproc.
651 	 *
652 	 * NOTE: Action lock might recurse due to callback, so allow
653 	 *	 recursion.
654 	 */
655 	vmaction_hsize = VMACTION_MINHSIZE;
656 	if (vmaction_hsize < ncpus * 2)
657 		vmaction_hsize = ncpus * 2;
658 	if (vmaction_hsize < maxproc / 16)
659 		vmaction_hsize = maxproc / 16;
660 	vmaction_hmask = 1;
661 	while (vmaction_hmask < vmaction_hsize)
662 		vmaction_hmask = (vmaction_hmask << 1) | 1;
663 	vmaction_hsize = vmaction_hmask + 1;
664 
665 	action_hash = kmalloc(sizeof(action_hash[0]) * vmaction_hsize,
666 			      M_ACTIONHASH,
667 			      M_WAITOK | M_ZERO);
668 
669 	for (i = 0; i < vmaction_hsize; i++) {
670 		LIST_INIT(&action_hash[i].list);
671 		lockinit(&action_hash[i].lk, "actlk", 0, LK_CANRECURSE);
672 	}
673 }
674 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
675 	vm_page_startup_finish, NULL);
676 
677 
678 /*
679  * Scan comparison function for Red-Black tree scans.  An inclusive
680  * (start,end) is expected.  Other fields are not used.
681  */
682 int
683 rb_vm_page_scancmp(struct vm_page *p, void *data)
684 {
685 	struct rb_vm_page_scan_info *info = data;
686 
687 	if (p->pindex < info->start_pindex)
688 		return(-1);
689 	if (p->pindex > info->end_pindex)
690 		return(1);
691 	return(0);
692 }
693 
694 int
695 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
696 {
697 	if (p1->pindex < p2->pindex)
698 		return(-1);
699 	if (p1->pindex > p2->pindex)
700 		return(1);
701 	return(0);
702 }
703 
704 void
705 vm_page_init(vm_page_t m)
706 {
707 	/* do nothing for now.  Called from pmap_page_init() */
708 }
709 
710 /*
711  * Each page queue has its own spin lock, which is fairly optimal for
712  * allocating and freeing pages at least.
713  *
714  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
715  * queue spinlock via this function.  Also note that m->queue cannot change
716  * unless both the page and queue are locked.
717  */
718 static __inline
719 void
720 _vm_page_queue_spin_lock(vm_page_t m)
721 {
722 	u_short queue;
723 
724 	queue = m->queue;
725 	if (queue != PQ_NONE) {
726 		spin_lock(&vm_page_queues[queue].spin);
727 		KKASSERT(queue == m->queue);
728 	}
729 }
730 
731 static __inline
732 void
733 _vm_page_queue_spin_unlock(vm_page_t m)
734 {
735 	u_short queue;
736 
737 	queue = m->queue;
738 	cpu_ccfence();
739 	if (queue != PQ_NONE)
740 		spin_unlock(&vm_page_queues[queue].spin);
741 }
742 
743 static __inline
744 void
745 _vm_page_queues_spin_lock(u_short queue)
746 {
747 	cpu_ccfence();
748 	if (queue != PQ_NONE)
749 		spin_lock(&vm_page_queues[queue].spin);
750 }
751 
752 
753 static __inline
754 void
755 _vm_page_queues_spin_unlock(u_short queue)
756 {
757 	cpu_ccfence();
758 	if (queue != PQ_NONE)
759 		spin_unlock(&vm_page_queues[queue].spin);
760 }
761 
762 void
763 vm_page_queue_spin_lock(vm_page_t m)
764 {
765 	_vm_page_queue_spin_lock(m);
766 }
767 
768 void
769 vm_page_queues_spin_lock(u_short queue)
770 {
771 	_vm_page_queues_spin_lock(queue);
772 }
773 
774 void
775 vm_page_queue_spin_unlock(vm_page_t m)
776 {
777 	_vm_page_queue_spin_unlock(m);
778 }
779 
780 void
781 vm_page_queues_spin_unlock(u_short queue)
782 {
783 	_vm_page_queues_spin_unlock(queue);
784 }
785 
786 /*
787  * This locks the specified vm_page and its queue in the proper order
788  * (page first, then queue).  The queue may change so the caller must
789  * recheck on return.
790  */
791 static __inline
792 void
793 _vm_page_and_queue_spin_lock(vm_page_t m)
794 {
795 	vm_page_spin_lock(m);
796 	_vm_page_queue_spin_lock(m);
797 }
798 
799 static __inline
800 void
801 _vm_page_and_queue_spin_unlock(vm_page_t m)
802 {
803 	_vm_page_queues_spin_unlock(m->queue);
804 	vm_page_spin_unlock(m);
805 }
806 
807 void
808 vm_page_and_queue_spin_unlock(vm_page_t m)
809 {
810 	_vm_page_and_queue_spin_unlock(m);
811 }
812 
813 void
814 vm_page_and_queue_spin_lock(vm_page_t m)
815 {
816 	_vm_page_and_queue_spin_lock(m);
817 }
818 
819 /*
820  * Helper function removes vm_page from its current queue.
821  * Returns the base queue the page used to be on.
822  *
823  * The vm_page and the queue must be spinlocked.
824  * This function will unlock the queue but leave the page spinlocked.
825  */
826 static __inline u_short
827 _vm_page_rem_queue_spinlocked(vm_page_t m)
828 {
829 	struct vpgqueues *pq;
830 	u_short queue;
831 	u_short oqueue;
832 	int *cnt;
833 
834 	queue = m->queue;
835 	if (queue != PQ_NONE) {
836 		pq = &vm_page_queues[queue];
837 		TAILQ_REMOVE(&pq->pl, m, pageq);
838 
839 		/*
840 		 * Adjust our pcpu stats.  In order for the nominal low-memory
841 		 * algorithms to work properly we don't let any pcpu stat get
842 		 * too negative before we force it to be rolled-up into the
843 		 * global stats.  Otherwise our pageout and vm_wait tests
844 		 * will fail badly.
845 		 *
846 		 * The idea here is to reduce unnecessary SMP cache
847 		 * mastership changes in the global vmstats, which can be
848 		 * particularly bad in multi-socket systems.
849 		 */
850 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
851 		atomic_add_int(cnt, -1);
852 		if (*cnt < -VMMETER_SLOP_COUNT) {
853 			u_int copy = atomic_swap_int(cnt, 0);
854 			cnt = (int *)((char *)&vmstats + pq->cnt_offset);
855 			atomic_add_int(cnt, copy);
856 			cnt = (int *)((char *)&mycpu->gd_vmstats +
857 				      pq->cnt_offset);
858 			atomic_add_int(cnt, copy);
859 		}
860 		pq->lcnt--;
861 		m->queue = PQ_NONE;
862 		oqueue = queue;
863 		queue -= m->pc;
864 		vm_page_queues_spin_unlock(oqueue);	/* intended */
865 	}
866 	return queue;
867 }
868 
869 /*
870  * Helper function places the vm_page on the specified queue.  Generally
871  * speaking only PQ_FREE pages are placed at the head, to allow them to
872  * be allocated sooner rather than later on the assumption that they
873  * are cache-hot.
874  *
875  * The vm_page must be spinlocked.
876  * This function will return with both the page and the queue locked.
877  */
878 static __inline void
879 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
880 {
881 	struct vpgqueues *pq;
882 	u_int *cnt;
883 
884 	KKASSERT(m->queue == PQ_NONE);
885 
886 	if (queue != PQ_NONE) {
887 		vm_page_queues_spin_lock(queue);
888 		pq = &vm_page_queues[queue];
889 		++pq->lcnt;
890 
891 		/*
892 		 * Adjust our pcpu stats.  If a system entity really needs
893 		 * to incorporate the count it will call vmstats_rollup()
894 		 * to roll it all up into the global vmstats strufture.
895 		 */
896 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
897 		atomic_add_int(cnt, 1);
898 
899 		/*
900 		 * PQ_FREE is always handled LIFO style to try to provide
901 		 * cache-hot pages to programs.
902 		 */
903 		m->queue = queue;
904 		if (queue - m->pc == PQ_FREE) {
905 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
906 		} else if (athead) {
907 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
908 		} else {
909 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
910 		}
911 		/* leave the queue spinlocked */
912 	}
913 }
914 
915 /*
916  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
917  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
918  * did not.  Only one sleep call will be made before returning.
919  *
920  * This function does NOT busy the page and on return the page is not
921  * guaranteed to be available.
922  */
923 void
924 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
925 {
926 	u_int32_t flags;
927 
928 	for (;;) {
929 		flags = m->flags;
930 		cpu_ccfence();
931 
932 		if ((flags & PG_BUSY) == 0 &&
933 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
934 			break;
935 		}
936 		tsleep_interlock(m, 0);
937 		if (atomic_cmpset_int(&m->flags, flags,
938 				      flags | PG_WANTED | PG_REFERENCED)) {
939 			tsleep(m, PINTERLOCKED, msg, 0);
940 			break;
941 		}
942 	}
943 }
944 
945 /*
946  * This calculates and returns a page color given an optional VM object and
947  * either a pindex or an iterator.  We attempt to return a cpu-localized
948  * pg_color that is still roughly 16-way set-associative.  The CPU topology
949  * is used if it was probed.
950  *
951  * The caller may use the returned value to index into e.g. PQ_FREE when
952  * allocating a page in order to nominally obtain pages that are hopefully
953  * already localized to the requesting cpu.  This function is not able to
954  * provide any sort of guarantee of this, but does its best to improve
955  * hardware cache management performance.
956  *
957  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
958  */
959 u_short
960 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
961 {
962 	u_short pg_color;
963 	int phys_id;
964 	int core_id;
965 	int object_pg_color;
966 
967 	phys_id = get_cpu_phys_id(cpuid);
968 	core_id = get_cpu_core_id(cpuid);
969 	object_pg_color = object ? object->pg_color : 0;
970 
971 	if (cpu_topology_phys_ids && cpu_topology_core_ids) {
972 		int grpsize;
973 
974 		/*
975 		 * Break us down by socket and cpu
976 		 */
977 		pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
978 		pg_color += core_id * PQ_L2_SIZE /
979 			    (cpu_topology_core_ids * cpu_topology_phys_ids);
980 
981 		/*
982 		 * Calculate remaining component for object/queue color
983 		 */
984 		grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
985 					cpu_topology_phys_ids);
986 		if (grpsize >= 8) {
987 			pg_color += (pindex + object_pg_color) % grpsize;
988 		} else {
989 			if (grpsize <= 2) {
990 				grpsize = 8;
991 			} else {
992 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
993 				grpsize += grpsize;
994 				if (grpsize < 8)
995 					grpsize += grpsize;
996 			}
997 			pg_color += (pindex + object_pg_color) % grpsize;
998 		}
999 	} else {
1000 		/*
1001 		 * Unknown topology, distribute things evenly.
1002 		 */
1003 		pg_color = cpuid * PQ_L2_SIZE / ncpus;
1004 		pg_color += pindex + object_pg_color;
1005 	}
1006 	return (pg_color & PQ_L2_MASK);
1007 }
1008 
1009 /*
1010  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
1011  * also wait for m->busy to become 0 before setting PG_BUSY.
1012  */
1013 void
1014 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1015 				     int also_m_busy, const char *msg
1016 				     VM_PAGE_DEBUG_ARGS)
1017 {
1018 	u_int32_t flags;
1019 
1020 	for (;;) {
1021 		flags = m->flags;
1022 		cpu_ccfence();
1023 		if (flags & PG_BUSY) {
1024 			tsleep_interlock(m, 0);
1025 			if (atomic_cmpset_int(&m->flags, flags,
1026 					  flags | PG_WANTED | PG_REFERENCED)) {
1027 				tsleep(m, PINTERLOCKED, msg, 0);
1028 			}
1029 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1030 			tsleep_interlock(m, 0);
1031 			if (atomic_cmpset_int(&m->flags, flags,
1032 					  flags | PG_WANTED | PG_REFERENCED)) {
1033 				tsleep(m, PINTERLOCKED, msg, 0);
1034 			}
1035 		} else {
1036 			if (atomic_cmpset_int(&m->flags, flags,
1037 					      flags | PG_BUSY)) {
1038 #ifdef VM_PAGE_DEBUG
1039 				m->busy_func = func;
1040 				m->busy_line = lineno;
1041 #endif
1042 				break;
1043 			}
1044 		}
1045 	}
1046 }
1047 
1048 /*
1049  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
1050  * is also 0.
1051  *
1052  * Returns non-zero on failure.
1053  */
1054 int
1055 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1056 				    VM_PAGE_DEBUG_ARGS)
1057 {
1058 	u_int32_t flags;
1059 
1060 	for (;;) {
1061 		flags = m->flags;
1062 		cpu_ccfence();
1063 		if (flags & PG_BUSY)
1064 			return TRUE;
1065 		if (also_m_busy && (flags & PG_SBUSY))
1066 			return TRUE;
1067 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1068 #ifdef VM_PAGE_DEBUG
1069 				m->busy_func = func;
1070 				m->busy_line = lineno;
1071 #endif
1072 			return FALSE;
1073 		}
1074 	}
1075 }
1076 
1077 /*
1078  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1079  * that a wakeup() should be performed.
1080  *
1081  * The vm_page must be spinlocked and will remain spinlocked on return.
1082  * The related queue must NOT be spinlocked (which could deadlock us).
1083  *
1084  * (inline version)
1085  */
1086 static __inline
1087 int
1088 _vm_page_wakeup(vm_page_t m)
1089 {
1090 	u_int32_t flags;
1091 
1092 	for (;;) {
1093 		flags = m->flags;
1094 		cpu_ccfence();
1095 		if (atomic_cmpset_int(&m->flags, flags,
1096 				      flags & ~(PG_BUSY | PG_WANTED))) {
1097 			break;
1098 		}
1099 	}
1100 	return(flags & PG_WANTED);
1101 }
1102 
1103 /*
1104  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
1105  * is typically the last call you make on a page before moving onto
1106  * other things.
1107  */
1108 void
1109 vm_page_wakeup(vm_page_t m)
1110 {
1111         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1112 	vm_page_spin_lock(m);
1113 	if (_vm_page_wakeup(m)) {
1114 		vm_page_spin_unlock(m);
1115 		wakeup(m);
1116 	} else {
1117 		vm_page_spin_unlock(m);
1118 	}
1119 }
1120 
1121 /*
1122  * Holding a page keeps it from being reused.  Other parts of the system
1123  * can still disassociate the page from its current object and free it, or
1124  * perform read or write I/O on it and/or otherwise manipulate the page,
1125  * but if the page is held the VM system will leave the page and its data
1126  * intact and not reuse the page for other purposes until the last hold
1127  * reference is released.  (see vm_page_wire() if you want to prevent the
1128  * page from being disassociated from its object too).
1129  *
1130  * The caller must still validate the contents of the page and, if necessary,
1131  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1132  * before manipulating the page.
1133  *
1134  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1135  */
1136 void
1137 vm_page_hold(vm_page_t m)
1138 {
1139 	vm_page_spin_lock(m);
1140 	atomic_add_int(&m->hold_count, 1);
1141 	if (m->queue - m->pc == PQ_FREE) {
1142 		_vm_page_queue_spin_lock(m);
1143 		_vm_page_rem_queue_spinlocked(m);
1144 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1145 		_vm_page_queue_spin_unlock(m);
1146 	}
1147 	vm_page_spin_unlock(m);
1148 }
1149 
1150 /*
1151  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1152  * it was freed while held and must be moved back to the FREE queue.
1153  */
1154 void
1155 vm_page_unhold(vm_page_t m)
1156 {
1157 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1158 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1159 		 m, m->hold_count, m->queue - m->pc));
1160 	vm_page_spin_lock(m);
1161 	atomic_add_int(&m->hold_count, -1);
1162 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1163 		_vm_page_queue_spin_lock(m);
1164 		_vm_page_rem_queue_spinlocked(m);
1165 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1166 		_vm_page_queue_spin_unlock(m);
1167 	}
1168 	vm_page_spin_unlock(m);
1169 }
1170 
1171 /*
1172  *	vm_page_getfake:
1173  *
1174  *	Create a fictitious page with the specified physical address and
1175  *	memory attribute.  The memory attribute is the only the machine-
1176  *	dependent aspect of a fictitious page that must be initialized.
1177  */
1178 
1179 void
1180 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1181 {
1182 
1183 	if ((m->flags & PG_FICTITIOUS) != 0) {
1184 		/*
1185 		 * The page's memattr might have changed since the
1186 		 * previous initialization.  Update the pmap to the
1187 		 * new memattr.
1188 		 */
1189 		goto memattr;
1190 	}
1191 	m->phys_addr = paddr;
1192 	m->queue = PQ_NONE;
1193 	/* Fictitious pages don't use "segind". */
1194 	/* Fictitious pages don't use "order" or "pool". */
1195 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1196 	m->wire_count = 1;
1197 	spin_init(&m->spin, "fake_page");
1198 	pmap_page_init(m);
1199 memattr:
1200 	pmap_page_set_memattr(m, memattr);
1201 }
1202 
1203 /*
1204  * Inserts the given vm_page into the object and object list.
1205  *
1206  * The pagetables are not updated but will presumably fault the page
1207  * in if necessary, or if a kernel page the caller will at some point
1208  * enter the page into the kernel's pmap.  We are not allowed to block
1209  * here so we *can't* do this anyway.
1210  *
1211  * This routine may not block.
1212  * This routine must be called with the vm_object held.
1213  * This routine must be called with a critical section held.
1214  *
1215  * This routine returns TRUE if the page was inserted into the object
1216  * successfully, and FALSE if the page already exists in the object.
1217  */
1218 int
1219 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1220 {
1221 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1222 	if (m->object != NULL)
1223 		panic("vm_page_insert: already inserted");
1224 
1225 	atomic_add_int(&object->generation, 1);
1226 
1227 	/*
1228 	 * Record the object/offset pair in this page and add the
1229 	 * pv_list_count of the page to the object.
1230 	 *
1231 	 * The vm_page spin lock is required for interactions with the pmap.
1232 	 */
1233 	vm_page_spin_lock(m);
1234 	m->object = object;
1235 	m->pindex = pindex;
1236 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1237 		m->object = NULL;
1238 		m->pindex = 0;
1239 		vm_page_spin_unlock(m);
1240 		return FALSE;
1241 	}
1242 	++object->resident_page_count;
1243 	++mycpu->gd_vmtotal.t_rm;
1244 	vm_page_spin_unlock(m);
1245 
1246 	/*
1247 	 * Since we are inserting a new and possibly dirty page,
1248 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1249 	 */
1250 	if ((m->valid & m->dirty) ||
1251 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1252 		vm_object_set_writeable_dirty(object);
1253 
1254 	/*
1255 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1256 	 */
1257 	swap_pager_page_inserted(m);
1258 	return TRUE;
1259 }
1260 
1261 /*
1262  * Removes the given vm_page_t from the (object,index) table
1263  *
1264  * The underlying pmap entry (if any) is NOT removed here.
1265  * This routine may not block.
1266  *
1267  * The page must be BUSY and will remain BUSY on return.
1268  * No other requirements.
1269  *
1270  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1271  *	 it busy.
1272  */
1273 void
1274 vm_page_remove(vm_page_t m)
1275 {
1276 	vm_object_t object;
1277 
1278 	if (m->object == NULL) {
1279 		return;
1280 	}
1281 
1282 	if ((m->flags & PG_BUSY) == 0)
1283 		panic("vm_page_remove: page not busy");
1284 
1285 	object = m->object;
1286 
1287 	vm_object_hold(object);
1288 
1289 	/*
1290 	 * Remove the page from the object and update the object.
1291 	 *
1292 	 * The vm_page spin lock is required for interactions with the pmap.
1293 	 */
1294 	vm_page_spin_lock(m);
1295 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1296 	--object->resident_page_count;
1297 	--mycpu->gd_vmtotal.t_rm;
1298 	m->object = NULL;
1299 	atomic_add_int(&object->generation, 1);
1300 	vm_page_spin_unlock(m);
1301 
1302 	vm_object_drop(object);
1303 }
1304 
1305 /*
1306  * Locate and return the page at (object, pindex), or NULL if the
1307  * page could not be found.
1308  *
1309  * The caller must hold the vm_object token.
1310  */
1311 vm_page_t
1312 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1313 {
1314 	vm_page_t m;
1315 
1316 	/*
1317 	 * Search the hash table for this object/offset pair
1318 	 */
1319 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1320 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1321 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1322 	return(m);
1323 }
1324 
1325 vm_page_t
1326 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1327 					    vm_pindex_t pindex,
1328 					    int also_m_busy, const char *msg
1329 					    VM_PAGE_DEBUG_ARGS)
1330 {
1331 	u_int32_t flags;
1332 	vm_page_t m;
1333 
1334 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1335 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1336 	while (m) {
1337 		KKASSERT(m->object == object && m->pindex == pindex);
1338 		flags = m->flags;
1339 		cpu_ccfence();
1340 		if (flags & PG_BUSY) {
1341 			tsleep_interlock(m, 0);
1342 			if (atomic_cmpset_int(&m->flags, flags,
1343 					  flags | PG_WANTED | PG_REFERENCED)) {
1344 				tsleep(m, PINTERLOCKED, msg, 0);
1345 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1346 							      pindex);
1347 			}
1348 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1349 			tsleep_interlock(m, 0);
1350 			if (atomic_cmpset_int(&m->flags, flags,
1351 					  flags | PG_WANTED | PG_REFERENCED)) {
1352 				tsleep(m, PINTERLOCKED, msg, 0);
1353 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1354 							      pindex);
1355 			}
1356 		} else if (atomic_cmpset_int(&m->flags, flags,
1357 					     flags | PG_BUSY)) {
1358 #ifdef VM_PAGE_DEBUG
1359 			m->busy_func = func;
1360 			m->busy_line = lineno;
1361 #endif
1362 			break;
1363 		}
1364 	}
1365 	return m;
1366 }
1367 
1368 /*
1369  * Attempt to lookup and busy a page.
1370  *
1371  * Returns NULL if the page could not be found
1372  *
1373  * Returns a vm_page and error == TRUE if the page exists but could not
1374  * be busied.
1375  *
1376  * Returns a vm_page and error == FALSE on success.
1377  */
1378 vm_page_t
1379 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1380 					   vm_pindex_t pindex,
1381 					   int also_m_busy, int *errorp
1382 					   VM_PAGE_DEBUG_ARGS)
1383 {
1384 	u_int32_t flags;
1385 	vm_page_t m;
1386 
1387 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1388 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1389 	*errorp = FALSE;
1390 	while (m) {
1391 		KKASSERT(m->object == object && m->pindex == pindex);
1392 		flags = m->flags;
1393 		cpu_ccfence();
1394 		if (flags & PG_BUSY) {
1395 			*errorp = TRUE;
1396 			break;
1397 		}
1398 		if (also_m_busy && (flags & PG_SBUSY)) {
1399 			*errorp = TRUE;
1400 			break;
1401 		}
1402 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1403 #ifdef VM_PAGE_DEBUG
1404 			m->busy_func = func;
1405 			m->busy_line = lineno;
1406 #endif
1407 			break;
1408 		}
1409 	}
1410 	return m;
1411 }
1412 
1413 /*
1414  * Attempt to repurpose the passed-in page.  If the passed-in page cannot
1415  * be repurposed it will be released, *must_reenter will be set to 1, and
1416  * this function will fall-through to vm_page_lookup_busy_try().
1417  *
1418  * The passed-in page must be wired and not busy.  The returned page will
1419  * be busied and not wired.
1420  *
1421  * A different page may be returned.  The returned page will be busied and
1422  * not wired.
1423  *
1424  * NULL can be returned.  If so, the required page could not be busied.
1425  * The passed-in page will be unwired.
1426  */
1427 vm_page_t
1428 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1429 		  int also_m_busy, int *errorp, vm_page_t m,
1430 		  int *must_reenter, int *iswired)
1431 {
1432 	if (m) {
1433 		/*
1434 		 * Do not mess with pages in a complex state, such as pages
1435 		 * which are mapped, as repurposing such pages can be more
1436 		 * expensive than simply allocatin a new one.
1437 		 *
1438 		 * NOTE: Soft-busying can deadlock against putpages or I/O
1439 		 *	 so we only allow hard-busying here.
1440 		 */
1441 		KKASSERT(also_m_busy == FALSE);
1442 		vm_page_busy_wait(m, also_m_busy, "biodep");
1443 
1444 		if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1445 				 PG_FICTITIOUS | PG_SBUSY)) ||
1446 		    m->busy || m->wire_count != 1 || m->hold_count) {
1447 			vm_page_unwire(m, 0);
1448 			vm_page_wakeup(m);
1449 			/* fall through to normal lookup */
1450 		} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1451 			vm_page_unwire(m, 0);
1452 			vm_page_deactivate(m);
1453 			vm_page_wakeup(m);
1454 			/* fall through to normal lookup */
1455 		} else {
1456 			/*
1457 			 * We can safely repurpose the page.  It should
1458 			 * already be unqueued.
1459 			 */
1460 			KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1461 			vm_page_remove(m);
1462 			m->valid = 0;
1463 			m->act_count = 0;
1464 			if (vm_page_insert(m, object, pindex)) {
1465 				*errorp = 0;
1466 				*iswired = 1;
1467 
1468 				return m;
1469 			}
1470 			vm_page_unwire(m, 0);
1471 			vm_page_free(m);
1472 			/* fall through to normal lookup */
1473 		}
1474 	}
1475 
1476 	/*
1477 	 * Cannot repurpose page, attempt to locate the desired page.  May
1478 	 * return NULL.
1479 	 */
1480 	*must_reenter = 1;
1481 	*iswired = 0;
1482 	m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1483 
1484 	return m;
1485 }
1486 
1487 /*
1488  * Caller must hold the related vm_object
1489  */
1490 vm_page_t
1491 vm_page_next(vm_page_t m)
1492 {
1493 	vm_page_t next;
1494 
1495 	next = vm_page_rb_tree_RB_NEXT(m);
1496 	if (next && next->pindex != m->pindex + 1)
1497 		next = NULL;
1498 	return (next);
1499 }
1500 
1501 /*
1502  * vm_page_rename()
1503  *
1504  * Move the given vm_page from its current object to the specified
1505  * target object/offset.  The page must be busy and will remain so
1506  * on return.
1507  *
1508  * new_object must be held.
1509  * This routine might block. XXX ?
1510  *
1511  * NOTE: Swap associated with the page must be invalidated by the move.  We
1512  *       have to do this for several reasons:  (1) we aren't freeing the
1513  *       page, (2) we are dirtying the page, (3) the VM system is probably
1514  *       moving the page from object A to B, and will then later move
1515  *       the backing store from A to B and we can't have a conflict.
1516  *
1517  * NOTE: We *always* dirty the page.  It is necessary both for the
1518  *       fact that we moved it, and because we may be invalidating
1519  *	 swap.  If the page is on the cache, we have to deactivate it
1520  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1521  *	 on the cache.
1522  */
1523 void
1524 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1525 {
1526 	KKASSERT(m->flags & PG_BUSY);
1527 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1528 	if (m->object) {
1529 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1530 		vm_page_remove(m);
1531 	}
1532 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1533 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1534 		      new_object, new_pindex);
1535 	}
1536 	if (m->queue - m->pc == PQ_CACHE)
1537 		vm_page_deactivate(m);
1538 	vm_page_dirty(m);
1539 }
1540 
1541 /*
1542  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1543  * is to remain BUSYied by the caller.
1544  *
1545  * This routine may not block.
1546  */
1547 void
1548 vm_page_unqueue_nowakeup(vm_page_t m)
1549 {
1550 	vm_page_and_queue_spin_lock(m);
1551 	(void)_vm_page_rem_queue_spinlocked(m);
1552 	vm_page_spin_unlock(m);
1553 }
1554 
1555 /*
1556  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1557  * if necessary.
1558  *
1559  * This routine may not block.
1560  */
1561 void
1562 vm_page_unqueue(vm_page_t m)
1563 {
1564 	u_short queue;
1565 
1566 	vm_page_and_queue_spin_lock(m);
1567 	queue = _vm_page_rem_queue_spinlocked(m);
1568 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1569 		vm_page_spin_unlock(m);
1570 		pagedaemon_wakeup();
1571 	} else {
1572 		vm_page_spin_unlock(m);
1573 	}
1574 }
1575 
1576 /*
1577  * vm_page_list_find()
1578  *
1579  * Find a page on the specified queue with color optimization.
1580  *
1581  * The page coloring optimization attempts to locate a page that does
1582  * not overload other nearby pages in the object in the cpu's L1 or L2
1583  * caches.  We need this optimization because cpu caches tend to be
1584  * physical caches, while object spaces tend to be virtual.
1585  *
1586  * The page coloring optimization also, very importantly, tries to localize
1587  * memory to cpus and physical sockets.
1588  *
1589  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1590  * and the algorithm is adjusted to localize allocations on a per-core basis.
1591  * This is done by 'twisting' the colors.
1592  *
1593  * The page is returned spinlocked and removed from its queue (it will
1594  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1595  * is responsible for dealing with the busy-page case (usually by
1596  * deactivating the page and looping).
1597  *
1598  * NOTE:  This routine is carefully inlined.  A non-inlined version
1599  *	  is available for outside callers but the only critical path is
1600  *	  from within this source file.
1601  *
1602  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1603  *	  represent stable storage, allowing us to order our locks vm_page
1604  *	  first, then queue.
1605  */
1606 static __inline
1607 vm_page_t
1608 _vm_page_list_find(int basequeue, int index)
1609 {
1610 	vm_page_t m;
1611 
1612 	for (;;) {
1613 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1614 		if (m == NULL) {
1615 			m = _vm_page_list_find2(basequeue, index);
1616 			return(m);
1617 		}
1618 		vm_page_and_queue_spin_lock(m);
1619 		if (m->queue == basequeue + index) {
1620 			_vm_page_rem_queue_spinlocked(m);
1621 			/* vm_page_t spin held, no queue spin */
1622 			break;
1623 		}
1624 		vm_page_and_queue_spin_unlock(m);
1625 	}
1626 	return(m);
1627 }
1628 
1629 /*
1630  * If we could not find the page in the desired queue try to find it in
1631  * a nearby queue.
1632  */
1633 static vm_page_t
1634 _vm_page_list_find2(int basequeue, int index)
1635 {
1636 	struct vpgqueues *pq;
1637 	vm_page_t m = NULL;
1638 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1639 	int pqi;
1640 	int i;
1641 
1642 	index &= PQ_L2_MASK;
1643 	pq = &vm_page_queues[basequeue];
1644 
1645 	/*
1646 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1647 	 * else fails (PQ_L2_MASK which is 255).
1648 	 */
1649 	do {
1650 		pqmask = (pqmask << 1) | 1;
1651 		for (i = 0; i <= pqmask; ++i) {
1652 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1653 			m = TAILQ_FIRST(&pq[pqi].pl);
1654 			if (m) {
1655 				_vm_page_and_queue_spin_lock(m);
1656 				if (m->queue == basequeue + pqi) {
1657 					_vm_page_rem_queue_spinlocked(m);
1658 					return(m);
1659 				}
1660 				_vm_page_and_queue_spin_unlock(m);
1661 				--i;
1662 				continue;
1663 			}
1664 		}
1665 	} while (pqmask != PQ_L2_MASK);
1666 
1667 	return(m);
1668 }
1669 
1670 /*
1671  * Returns a vm_page candidate for allocation.  The page is not busied so
1672  * it can move around.  The caller must busy the page (and typically
1673  * deactivate it if it cannot be busied!)
1674  *
1675  * Returns a spinlocked vm_page that has been removed from its queue.
1676  */
1677 vm_page_t
1678 vm_page_list_find(int basequeue, int index)
1679 {
1680 	return(_vm_page_list_find(basequeue, index));
1681 }
1682 
1683 /*
1684  * Find a page on the cache queue with color optimization, remove it
1685  * from the queue, and busy it.  The returned page will not be spinlocked.
1686  *
1687  * A candidate failure will be deactivated.  Candidates can fail due to
1688  * being busied by someone else, in which case they will be deactivated.
1689  *
1690  * This routine may not block.
1691  *
1692  */
1693 static vm_page_t
1694 vm_page_select_cache(u_short pg_color)
1695 {
1696 	vm_page_t m;
1697 
1698 	for (;;) {
1699 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1700 		if (m == NULL)
1701 			break;
1702 		/*
1703 		 * (m) has been removed from its queue and spinlocked
1704 		 */
1705 		if (vm_page_busy_try(m, TRUE)) {
1706 			_vm_page_deactivate_locked(m, 0);
1707 			vm_page_spin_unlock(m);
1708 		} else {
1709 			/*
1710 			 * We successfully busied the page
1711 			 */
1712 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1713 			    m->hold_count == 0 &&
1714 			    m->wire_count == 0 &&
1715 			    (m->dirty & m->valid) == 0) {
1716 				vm_page_spin_unlock(m);
1717 				pagedaemon_wakeup();
1718 				return(m);
1719 			}
1720 
1721 			/*
1722 			 * The page cannot be recycled, deactivate it.
1723 			 */
1724 			_vm_page_deactivate_locked(m, 0);
1725 			if (_vm_page_wakeup(m)) {
1726 				vm_page_spin_unlock(m);
1727 				wakeup(m);
1728 			} else {
1729 				vm_page_spin_unlock(m);
1730 			}
1731 		}
1732 	}
1733 	return (m);
1734 }
1735 
1736 /*
1737  * Find a free page.  We attempt to inline the nominal case and fall back
1738  * to _vm_page_select_free() otherwise.  A busied page is removed from
1739  * the queue and returned.
1740  *
1741  * This routine may not block.
1742  */
1743 static __inline vm_page_t
1744 vm_page_select_free(u_short pg_color)
1745 {
1746 	vm_page_t m;
1747 
1748 	for (;;) {
1749 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1750 		if (m == NULL)
1751 			break;
1752 		if (vm_page_busy_try(m, TRUE)) {
1753 			/*
1754 			 * Various mechanisms such as a pmap_collect can
1755 			 * result in a busy page on the free queue.  We
1756 			 * have to move the page out of the way so we can
1757 			 * retry the allocation.  If the other thread is not
1758 			 * allocating the page then m->valid will remain 0 and
1759 			 * the pageout daemon will free the page later on.
1760 			 *
1761 			 * Since we could not busy the page, however, we
1762 			 * cannot make assumptions as to whether the page
1763 			 * will be allocated by the other thread or not,
1764 			 * so all we can do is deactivate it to move it out
1765 			 * of the way.  In particular, if the other thread
1766 			 * wires the page it may wind up on the inactive
1767 			 * queue and the pageout daemon will have to deal
1768 			 * with that case too.
1769 			 */
1770 			_vm_page_deactivate_locked(m, 0);
1771 			vm_page_spin_unlock(m);
1772 		} else {
1773 			/*
1774 			 * Theoretically if we are able to busy the page
1775 			 * atomic with the queue removal (using the vm_page
1776 			 * lock) nobody else should be able to mess with the
1777 			 * page before us.
1778 			 */
1779 			KKASSERT((m->flags & (PG_UNMANAGED |
1780 					      PG_NEED_COMMIT)) == 0);
1781 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1782 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1783 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1784 			KKASSERT(m->wire_count == 0);
1785 			vm_page_spin_unlock(m);
1786 			pagedaemon_wakeup();
1787 
1788 			/* return busied and removed page */
1789 			return(m);
1790 		}
1791 	}
1792 	return(m);
1793 }
1794 
1795 /*
1796  * vm_page_alloc()
1797  *
1798  * Allocate and return a memory cell associated with this VM object/offset
1799  * pair.  If object is NULL an unassociated page will be allocated.
1800  *
1801  * The returned page will be busied and removed from its queues.  This
1802  * routine can block and may return NULL if a race occurs and the page
1803  * is found to already exist at the specified (object, pindex).
1804  *
1805  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1806  *	VM_ALLOC_QUICK		like normal but cannot use cache
1807  *	VM_ALLOC_SYSTEM		greater free drain
1808  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1809  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1810  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1811  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1812  *				(see vm_page_grab())
1813  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1814  *
1815  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
1816  *
1817  * The object must be held if not NULL
1818  * This routine may not block
1819  *
1820  * Additional special handling is required when called from an interrupt
1821  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1822  * in this case.
1823  */
1824 vm_page_t
1825 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1826 {
1827 	globaldata_t gd;
1828 	vm_object_t obj;
1829 	vm_page_t m;
1830 	u_short pg_color;
1831 	int cpuid_local;
1832 
1833 #if 0
1834 	/*
1835 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1836 	 * and pre-zerod for us.
1837 	 */
1838 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1839 		crit_enter_gd(gd);
1840 		if (gd->gd_vmpg_count) {
1841 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1842 			crit_exit_gd(gd);
1843 			goto done;
1844                 }
1845 		crit_exit_gd(gd);
1846         }
1847 #endif
1848 	m = NULL;
1849 
1850 	/*
1851 	 * CPU LOCALIZATION
1852 	 *
1853 	 * CPU localization algorithm.  Break the page queues up by physical
1854 	 * id and core id (note that two cpu threads will have the same core
1855 	 * id, and core_id != gd_cpuid).
1856 	 *
1857 	 * This is nowhere near perfect, for example the last pindex in a
1858 	 * subgroup will overflow into the next cpu or package.  But this
1859 	 * should get us good page reuse locality in heavy mixed loads.
1860 	 *
1861 	 * (may be executed before the APs are started, so other GDs might
1862 	 *  not exist!)
1863 	 */
1864 	if (page_req & VM_ALLOC_CPU_SPEC)
1865 		cpuid_local = VM_ALLOC_GETCPU(page_req);
1866 	else
1867 		cpuid_local = mycpu->gd_cpuid;
1868 
1869 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1870 
1871 	KKASSERT(page_req &
1872 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1873 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1874 
1875 	/*
1876 	 * Certain system threads (pageout daemon, buf_daemon's) are
1877 	 * allowed to eat deeper into the free page list.
1878 	 */
1879 	if (curthread->td_flags & TDF_SYSTHREAD)
1880 		page_req |= VM_ALLOC_SYSTEM;
1881 
1882 	/*
1883 	 * Impose various limitations.  Note that the v_free_reserved test
1884 	 * must match the opposite of vm_page_count_target() to avoid
1885 	 * livelocks, be careful.
1886 	 */
1887 loop:
1888 	gd = mycpu;
1889 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1890 	    ((page_req & VM_ALLOC_INTERRUPT) &&
1891 	     gd->gd_vmstats.v_free_count > 0) ||
1892 	    ((page_req & VM_ALLOC_SYSTEM) &&
1893 	     gd->gd_vmstats.v_cache_count == 0 &&
1894 		gd->gd_vmstats.v_free_count >
1895 		gd->gd_vmstats.v_interrupt_free_min)
1896 	) {
1897 		/*
1898 		 * The free queue has sufficient free pages to take one out.
1899 		 */
1900 		m = vm_page_select_free(pg_color);
1901 	} else if (page_req & VM_ALLOC_NORMAL) {
1902 		/*
1903 		 * Allocatable from the cache (non-interrupt only).  On
1904 		 * success, we must free the page and try again, thus
1905 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1906 		 */
1907 #ifdef INVARIANTS
1908 		if (curthread->td_preempted) {
1909 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1910 				" cache page from preempting interrupt\n");
1911 			m = NULL;
1912 		} else {
1913 			m = vm_page_select_cache(pg_color);
1914 		}
1915 #else
1916 		m = vm_page_select_cache(pg_color);
1917 #endif
1918 		/*
1919 		 * On success move the page into the free queue and loop.
1920 		 *
1921 		 * Only do this if we can safely acquire the vm_object lock,
1922 		 * because this is effectively a random page and the caller
1923 		 * might be holding the lock shared, we don't want to
1924 		 * deadlock.
1925 		 */
1926 		if (m != NULL) {
1927 			KASSERT(m->dirty == 0,
1928 				("Found dirty cache page %p", m));
1929 			if ((obj = m->object) != NULL) {
1930 				if (vm_object_hold_try(obj)) {
1931 					vm_page_protect(m, VM_PROT_NONE);
1932 					vm_page_free(m);
1933 					/* m->object NULL here */
1934 					vm_object_drop(obj);
1935 				} else {
1936 					vm_page_deactivate(m);
1937 					vm_page_wakeup(m);
1938 				}
1939 			} else {
1940 				vm_page_protect(m, VM_PROT_NONE);
1941 				vm_page_free(m);
1942 			}
1943 			goto loop;
1944 		}
1945 
1946 		/*
1947 		 * On failure return NULL
1948 		 */
1949 		atomic_add_int(&vm_pageout_deficit, 1);
1950 		pagedaemon_wakeup();
1951 		return (NULL);
1952 	} else {
1953 		/*
1954 		 * No pages available, wakeup the pageout daemon and give up.
1955 		 */
1956 		atomic_add_int(&vm_pageout_deficit, 1);
1957 		pagedaemon_wakeup();
1958 		return (NULL);
1959 	}
1960 
1961 	/*
1962 	 * v_free_count can race so loop if we don't find the expected
1963 	 * page.
1964 	 */
1965 	if (m == NULL) {
1966 		vmstats_rollup();
1967 		goto loop;
1968 	}
1969 
1970 	/*
1971 	 * Good page found.  The page has already been busied for us and
1972 	 * removed from its queues.
1973 	 */
1974 	KASSERT(m->dirty == 0,
1975 		("vm_page_alloc: free/cache page %p was dirty", m));
1976 	KKASSERT(m->queue == PQ_NONE);
1977 
1978 #if 0
1979 done:
1980 #endif
1981 	/*
1982 	 * Initialize the structure, inheriting some flags but clearing
1983 	 * all the rest.  The page has already been busied for us.
1984 	 */
1985 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1986 
1987 	KKASSERT(m->wire_count == 0);
1988 	KKASSERT(m->busy == 0);
1989 	m->act_count = 0;
1990 	m->valid = 0;
1991 
1992 	/*
1993 	 * Caller must be holding the object lock (asserted by
1994 	 * vm_page_insert()).
1995 	 *
1996 	 * NOTE: Inserting a page here does not insert it into any pmaps
1997 	 *	 (which could cause us to block allocating memory).
1998 	 *
1999 	 * NOTE: If no object an unassociated page is allocated, m->pindex
2000 	 *	 can be used by the caller for any purpose.
2001 	 */
2002 	if (object) {
2003 		if (vm_page_insert(m, object, pindex) == FALSE) {
2004 			vm_page_free(m);
2005 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
2006 				panic("PAGE RACE %p[%ld]/%p",
2007 				      object, (long)pindex, m);
2008 			m = NULL;
2009 		}
2010 	} else {
2011 		m->pindex = pindex;
2012 	}
2013 
2014 	/*
2015 	 * Don't wakeup too often - wakeup the pageout daemon when
2016 	 * we would be nearly out of memory.
2017 	 */
2018 	pagedaemon_wakeup();
2019 
2020 	/*
2021 	 * A PG_BUSY page is returned.
2022 	 */
2023 	return (m);
2024 }
2025 
2026 /*
2027  * Returns number of pages available in our DMA memory reserve
2028  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
2029  */
2030 vm_size_t
2031 vm_contig_avail_pages(void)
2032 {
2033 	alist_blk_t blk;
2034 	alist_blk_t count;
2035 	alist_blk_t bfree;
2036 	spin_lock(&vm_contig_spin);
2037 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2038 	spin_unlock(&vm_contig_spin);
2039 
2040 	return bfree;
2041 }
2042 
2043 /*
2044  * Attempt to allocate contiguous physical memory with the specified
2045  * requirements.
2046  */
2047 vm_page_t
2048 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2049 		     unsigned long alignment, unsigned long boundary,
2050 		     unsigned long size, vm_memattr_t memattr)
2051 {
2052 	alist_blk_t blk;
2053 	vm_page_t m;
2054 	int i;
2055 
2056 	alignment >>= PAGE_SHIFT;
2057 	if (alignment == 0)
2058 		alignment = 1;
2059 	boundary >>= PAGE_SHIFT;
2060 	if (boundary == 0)
2061 		boundary = 1;
2062 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2063 
2064 	spin_lock(&vm_contig_spin);
2065 	blk = alist_alloc(&vm_contig_alist, 0, size);
2066 	if (blk == ALIST_BLOCK_NONE) {
2067 		spin_unlock(&vm_contig_spin);
2068 		if (bootverbose) {
2069 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
2070 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2071 		}
2072 		return(NULL);
2073 	}
2074 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2075 		alist_free(&vm_contig_alist, blk, size);
2076 		spin_unlock(&vm_contig_spin);
2077 		if (bootverbose) {
2078 			kprintf("vm_page_alloc_contig: %ldk high "
2079 				"%016jx failed\n",
2080 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
2081 				(intmax_t)high);
2082 		}
2083 		return(NULL);
2084 	}
2085 	spin_unlock(&vm_contig_spin);
2086 	if (vm_contig_verbose) {
2087 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2088 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2089 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2090 	}
2091 
2092 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2093 	if (memattr != VM_MEMATTR_DEFAULT)
2094 		for (i = 0;i < size;i++)
2095 			pmap_page_set_memattr(&m[i], memattr);
2096 	return m;
2097 }
2098 
2099 /*
2100  * Free contiguously allocated pages.  The pages will be wired but not busy.
2101  * When freeing to the alist we leave them wired and not busy.
2102  */
2103 void
2104 vm_page_free_contig(vm_page_t m, unsigned long size)
2105 {
2106 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2107 	vm_pindex_t start = pa >> PAGE_SHIFT;
2108 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2109 
2110 	if (vm_contig_verbose) {
2111 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2112 			(intmax_t)pa, size / 1024);
2113 	}
2114 	if (pa < vm_low_phys_reserved) {
2115 		KKASSERT(pa + size <= vm_low_phys_reserved);
2116 		spin_lock(&vm_contig_spin);
2117 		alist_free(&vm_contig_alist, start, pages);
2118 		spin_unlock(&vm_contig_spin);
2119 	} else {
2120 		while (pages) {
2121 			vm_page_busy_wait(m, FALSE, "cpgfr");
2122 			vm_page_unwire(m, 0);
2123 			vm_page_free(m);
2124 			--pages;
2125 			++m;
2126 		}
2127 
2128 	}
2129 }
2130 
2131 
2132 /*
2133  * Wait for sufficient free memory for nominal heavy memory use kernel
2134  * operations.
2135  *
2136  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2137  *	     will trivially deadlock the system.
2138  */
2139 void
2140 vm_wait_nominal(void)
2141 {
2142 	while (vm_page_count_min(0))
2143 		vm_wait(0);
2144 }
2145 
2146 /*
2147  * Test if vm_wait_nominal() would block.
2148  */
2149 int
2150 vm_test_nominal(void)
2151 {
2152 	if (vm_page_count_min(0))
2153 		return(1);
2154 	return(0);
2155 }
2156 
2157 /*
2158  * Block until free pages are available for allocation, called in various
2159  * places before memory allocations.
2160  *
2161  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2162  * more generous then that.
2163  */
2164 void
2165 vm_wait(int timo)
2166 {
2167 	/*
2168 	 * never wait forever
2169 	 */
2170 	if (timo == 0)
2171 		timo = hz;
2172 	lwkt_gettoken(&vm_token);
2173 
2174 	if (curthread == pagethread) {
2175 		/*
2176 		 * The pageout daemon itself needs pages, this is bad.
2177 		 */
2178 		if (vm_page_count_min(0)) {
2179 			vm_pageout_pages_needed = 1;
2180 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2181 		}
2182 	} else {
2183 		/*
2184 		 * Wakeup the pageout daemon if necessary and wait.
2185 		 *
2186 		 * Do not wait indefinitely for the target to be reached,
2187 		 * as load might prevent it from being reached any time soon.
2188 		 * But wait a little to try to slow down page allocations
2189 		 * and to give more important threads (the pagedaemon)
2190 		 * allocation priority.
2191 		 */
2192 		if (vm_page_count_target()) {
2193 			if (vm_pages_needed == 0) {
2194 				vm_pages_needed = 1;
2195 				wakeup(&vm_pages_needed);
2196 			}
2197 			++vm_pages_waiting;	/* SMP race ok */
2198 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2199 		}
2200 	}
2201 	lwkt_reltoken(&vm_token);
2202 }
2203 
2204 /*
2205  * Block until free pages are available for allocation
2206  *
2207  * Called only from vm_fault so that processes page faulting can be
2208  * easily tracked.
2209  */
2210 void
2211 vm_wait_pfault(void)
2212 {
2213 	/*
2214 	 * Wakeup the pageout daemon if necessary and wait.
2215 	 *
2216 	 * Do not wait indefinitely for the target to be reached,
2217 	 * as load might prevent it from being reached any time soon.
2218 	 * But wait a little to try to slow down page allocations
2219 	 * and to give more important threads (the pagedaemon)
2220 	 * allocation priority.
2221 	 */
2222 	if (vm_page_count_min(0)) {
2223 		lwkt_gettoken(&vm_token);
2224 		while (vm_page_count_severe()) {
2225 			if (vm_page_count_target()) {
2226 				thread_t td;
2227 
2228 				if (vm_pages_needed == 0) {
2229 					vm_pages_needed = 1;
2230 					wakeup(&vm_pages_needed);
2231 				}
2232 				++vm_pages_waiting;	/* SMP race ok */
2233 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2234 
2235 				/*
2236 				 * Do not stay stuck in the loop if the system is trying
2237 				 * to kill the process.
2238 				 */
2239 				td = curthread;
2240 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2241 					break;
2242 			}
2243 		}
2244 		lwkt_reltoken(&vm_token);
2245 	}
2246 }
2247 
2248 /*
2249  * Put the specified page on the active list (if appropriate).  Ensure
2250  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2251  *
2252  * The caller should be holding the page busied ? XXX
2253  * This routine may not block.
2254  */
2255 void
2256 vm_page_activate(vm_page_t m)
2257 {
2258 	u_short oqueue;
2259 
2260 	vm_page_spin_lock(m);
2261 	if (m->queue - m->pc != PQ_ACTIVE) {
2262 		_vm_page_queue_spin_lock(m);
2263 		oqueue = _vm_page_rem_queue_spinlocked(m);
2264 		/* page is left spinlocked, queue is unlocked */
2265 
2266 		if (oqueue == PQ_CACHE)
2267 			mycpu->gd_cnt.v_reactivated++;
2268 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2269 			if (m->act_count < ACT_INIT)
2270 				m->act_count = ACT_INIT;
2271 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2272 		}
2273 		_vm_page_and_queue_spin_unlock(m);
2274 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2275 			pagedaemon_wakeup();
2276 	} else {
2277 		if (m->act_count < ACT_INIT)
2278 			m->act_count = ACT_INIT;
2279 		vm_page_spin_unlock(m);
2280 	}
2281 }
2282 
2283 /*
2284  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2285  * routine is called when a page has been added to the cache or free
2286  * queues.
2287  *
2288  * This routine may not block.
2289  */
2290 static __inline void
2291 vm_page_free_wakeup(void)
2292 {
2293 	globaldata_t gd = mycpu;
2294 
2295 	/*
2296 	 * If the pageout daemon itself needs pages, then tell it that
2297 	 * there are some free.
2298 	 */
2299 	if (vm_pageout_pages_needed &&
2300 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2301 	    gd->gd_vmstats.v_pageout_free_min
2302 	) {
2303 		vm_pageout_pages_needed = 0;
2304 		wakeup(&vm_pageout_pages_needed);
2305 	}
2306 
2307 	/*
2308 	 * Wakeup processes that are waiting on memory.
2309 	 *
2310 	 * Generally speaking we want to wakeup stuck processes as soon as
2311 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2312 	 * where we can do this.  Wait a bit longer to reduce degenerate
2313 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2314 	 * to make sure the min-check w/hysteresis does not exceed the
2315 	 * normal target.
2316 	 */
2317 	if (vm_pages_waiting) {
2318 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2319 		    !vm_page_count_target()) {
2320 			vm_pages_waiting = 0;
2321 			wakeup(&vmstats.v_free_count);
2322 			++mycpu->gd_cnt.v_ppwakeups;
2323 		}
2324 #if 0
2325 		if (!vm_page_count_target()) {
2326 			/*
2327 			 * Plenty of pages are free, wakeup everyone.
2328 			 */
2329 			vm_pages_waiting = 0;
2330 			wakeup(&vmstats.v_free_count);
2331 			++mycpu->gd_cnt.v_ppwakeups;
2332 		} else if (!vm_page_count_min(0)) {
2333 			/*
2334 			 * Some pages are free, wakeup someone.
2335 			 */
2336 			int wcount = vm_pages_waiting;
2337 			if (wcount > 0)
2338 				--wcount;
2339 			vm_pages_waiting = wcount;
2340 			wakeup_one(&vmstats.v_free_count);
2341 			++mycpu->gd_cnt.v_ppwakeups;
2342 		}
2343 #endif
2344 	}
2345 }
2346 
2347 /*
2348  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2349  * it from its VM object.
2350  *
2351  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2352  * return (the page will have been freed).
2353  */
2354 void
2355 vm_page_free_toq(vm_page_t m)
2356 {
2357 	mycpu->gd_cnt.v_tfree++;
2358 	KKASSERT((m->flags & PG_MAPPED) == 0);
2359 	KKASSERT(m->flags & PG_BUSY);
2360 
2361 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2362 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2363 			"PG_BUSY(%d), hold(%d)\n",
2364 			(u_long)m->pindex, m->busy,
2365 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2366 		if ((m->queue - m->pc) == PQ_FREE)
2367 			panic("vm_page_free: freeing free page");
2368 		else
2369 			panic("vm_page_free: freeing busy page");
2370 	}
2371 
2372 	/*
2373 	 * Remove from object, spinlock the page and its queues and
2374 	 * remove from any queue.  No queue spinlock will be held
2375 	 * after this section (because the page was removed from any
2376 	 * queue).
2377 	 */
2378 	vm_page_remove(m);
2379 	vm_page_and_queue_spin_lock(m);
2380 	_vm_page_rem_queue_spinlocked(m);
2381 
2382 	/*
2383 	 * No further management of fictitious pages occurs beyond object
2384 	 * and queue removal.
2385 	 */
2386 	if ((m->flags & PG_FICTITIOUS) != 0) {
2387 		vm_page_spin_unlock(m);
2388 		vm_page_wakeup(m);
2389 		return;
2390 	}
2391 
2392 	m->valid = 0;
2393 	vm_page_undirty(m);
2394 
2395 	if (m->wire_count != 0) {
2396 		if (m->wire_count > 1) {
2397 		    panic(
2398 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2399 			m->wire_count, (long)m->pindex);
2400 		}
2401 		panic("vm_page_free: freeing wired page");
2402 	}
2403 
2404 	/*
2405 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2406 	 * Clear the NEED_COMMIT flag
2407 	 */
2408 	if (m->flags & PG_UNMANAGED)
2409 		vm_page_flag_clear(m, PG_UNMANAGED);
2410 	if (m->flags & PG_NEED_COMMIT)
2411 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2412 
2413 	if (m->hold_count != 0) {
2414 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2415 	} else {
2416 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2417 	}
2418 
2419 	/*
2420 	 * This sequence allows us to clear PG_BUSY while still holding
2421 	 * its spin lock, which reduces contention vs allocators.  We
2422 	 * must not leave the queue locked or _vm_page_wakeup() may
2423 	 * deadlock.
2424 	 */
2425 	_vm_page_queue_spin_unlock(m);
2426 	if (_vm_page_wakeup(m)) {
2427 		vm_page_spin_unlock(m);
2428 		wakeup(m);
2429 	} else {
2430 		vm_page_spin_unlock(m);
2431 	}
2432 	vm_page_free_wakeup();
2433 }
2434 
2435 /*
2436  * vm_page_unmanage()
2437  *
2438  * Prevent PV management from being done on the page.  The page is
2439  * removed from the paging queues as if it were wired, and as a
2440  * consequence of no longer being managed the pageout daemon will not
2441  * touch it (since there is no way to locate the pte mappings for the
2442  * page).  madvise() calls that mess with the pmap will also no longer
2443  * operate on the page.
2444  *
2445  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2446  * will clear the flag.
2447  *
2448  * This routine is used by OBJT_PHYS objects - objects using unswappable
2449  * physical memory as backing store rather then swap-backed memory and
2450  * will eventually be extended to support 4MB unmanaged physical
2451  * mappings.
2452  *
2453  * Caller must be holding the page busy.
2454  */
2455 void
2456 vm_page_unmanage(vm_page_t m)
2457 {
2458 	KKASSERT(m->flags & PG_BUSY);
2459 	if ((m->flags & PG_UNMANAGED) == 0) {
2460 		if (m->wire_count == 0)
2461 			vm_page_unqueue(m);
2462 	}
2463 	vm_page_flag_set(m, PG_UNMANAGED);
2464 }
2465 
2466 /*
2467  * Mark this page as wired down by yet another map, removing it from
2468  * paging queues as necessary.
2469  *
2470  * Caller must be holding the page busy.
2471  */
2472 void
2473 vm_page_wire(vm_page_t m)
2474 {
2475 	/*
2476 	 * Only bump the wire statistics if the page is not already wired,
2477 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2478 	 * it is already off the queues).  Don't do anything with fictitious
2479 	 * pages because they are always wired.
2480 	 */
2481 	KKASSERT(m->flags & PG_BUSY);
2482 	if ((m->flags & PG_FICTITIOUS) == 0) {
2483 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2484 			if ((m->flags & PG_UNMANAGED) == 0)
2485 				vm_page_unqueue(m);
2486 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2487 		}
2488 		KASSERT(m->wire_count != 0,
2489 			("vm_page_wire: wire_count overflow m=%p", m));
2490 	}
2491 }
2492 
2493 /*
2494  * Release one wiring of this page, potentially enabling it to be paged again.
2495  *
2496  * Many pages placed on the inactive queue should actually go
2497  * into the cache, but it is difficult to figure out which.  What
2498  * we do instead, if the inactive target is well met, is to put
2499  * clean pages at the head of the inactive queue instead of the tail.
2500  * This will cause them to be moved to the cache more quickly and
2501  * if not actively re-referenced, freed more quickly.  If we just
2502  * stick these pages at the end of the inactive queue, heavy filesystem
2503  * meta-data accesses can cause an unnecessary paging load on memory bound
2504  * processes.  This optimization causes one-time-use metadata to be
2505  * reused more quickly.
2506  *
2507  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2508  * the inactive queue.  This helps the pageout daemon determine memory
2509  * pressure and act on out-of-memory situations more quickly.
2510  *
2511  * BUT, if we are in a low-memory situation we have no choice but to
2512  * put clean pages on the cache queue.
2513  *
2514  * A number of routines use vm_page_unwire() to guarantee that the page
2515  * will go into either the inactive or active queues, and will NEVER
2516  * be placed in the cache - for example, just after dirtying a page.
2517  * dirty pages in the cache are not allowed.
2518  *
2519  * This routine may not block.
2520  */
2521 void
2522 vm_page_unwire(vm_page_t m, int activate)
2523 {
2524 	KKASSERT(m->flags & PG_BUSY);
2525 	if (m->flags & PG_FICTITIOUS) {
2526 		/* do nothing */
2527 	} else if (m->wire_count <= 0) {
2528 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2529 	} else {
2530 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2531 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2532 			if (m->flags & PG_UNMANAGED) {
2533 				;
2534 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2535 				vm_page_spin_lock(m);
2536 				_vm_page_add_queue_spinlocked(m,
2537 							PQ_ACTIVE + m->pc, 0);
2538 				_vm_page_and_queue_spin_unlock(m);
2539 			} else {
2540 				vm_page_spin_lock(m);
2541 				vm_page_flag_clear(m, PG_WINATCFLS);
2542 				_vm_page_add_queue_spinlocked(m,
2543 							PQ_INACTIVE + m->pc, 0);
2544 				++vm_swapcache_inactive_heuristic;
2545 				_vm_page_and_queue_spin_unlock(m);
2546 			}
2547 		}
2548 	}
2549 }
2550 
2551 /*
2552  * Move the specified page to the inactive queue.  If the page has
2553  * any associated swap, the swap is deallocated.
2554  *
2555  * Normally athead is 0 resulting in LRU operation.  athead is set
2556  * to 1 if we want this page to be 'as if it were placed in the cache',
2557  * except without unmapping it from the process address space.
2558  *
2559  * vm_page's spinlock must be held on entry and will remain held on return.
2560  * This routine may not block.
2561  */
2562 static void
2563 _vm_page_deactivate_locked(vm_page_t m, int athead)
2564 {
2565 	u_short oqueue;
2566 
2567 	/*
2568 	 * Ignore if already inactive.
2569 	 */
2570 	if (m->queue - m->pc == PQ_INACTIVE)
2571 		return;
2572 	_vm_page_queue_spin_lock(m);
2573 	oqueue = _vm_page_rem_queue_spinlocked(m);
2574 
2575 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2576 		if (oqueue == PQ_CACHE)
2577 			mycpu->gd_cnt.v_reactivated++;
2578 		vm_page_flag_clear(m, PG_WINATCFLS);
2579 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2580 		if (athead == 0)
2581 			++vm_swapcache_inactive_heuristic;
2582 	}
2583 	/* NOTE: PQ_NONE if condition not taken */
2584 	_vm_page_queue_spin_unlock(m);
2585 	/* leaves vm_page spinlocked */
2586 }
2587 
2588 /*
2589  * Attempt to deactivate a page.
2590  *
2591  * No requirements.
2592  */
2593 void
2594 vm_page_deactivate(vm_page_t m)
2595 {
2596 	vm_page_spin_lock(m);
2597 	_vm_page_deactivate_locked(m, 0);
2598 	vm_page_spin_unlock(m);
2599 }
2600 
2601 void
2602 vm_page_deactivate_locked(vm_page_t m)
2603 {
2604 	_vm_page_deactivate_locked(m, 0);
2605 }
2606 
2607 /*
2608  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2609  *
2610  * This function returns non-zero if it successfully moved the page to
2611  * PQ_CACHE.
2612  *
2613  * This function unconditionally unbusies the page on return.
2614  */
2615 int
2616 vm_page_try_to_cache(vm_page_t m)
2617 {
2618 	vm_page_spin_lock(m);
2619 	if (m->dirty || m->hold_count || m->wire_count ||
2620 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2621 		if (_vm_page_wakeup(m)) {
2622 			vm_page_spin_unlock(m);
2623 			wakeup(m);
2624 		} else {
2625 			vm_page_spin_unlock(m);
2626 		}
2627 		return(0);
2628 	}
2629 	vm_page_spin_unlock(m);
2630 
2631 	/*
2632 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2633 	 * be moved to the cache.
2634 	 */
2635 	vm_page_test_dirty(m);
2636 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2637 		vm_page_wakeup(m);
2638 		return(0);
2639 	}
2640 	vm_page_cache(m);
2641 	return(1);
2642 }
2643 
2644 /*
2645  * Attempt to free the page.  If we cannot free it, we do nothing.
2646  * 1 is returned on success, 0 on failure.
2647  *
2648  * No requirements.
2649  */
2650 int
2651 vm_page_try_to_free(vm_page_t m)
2652 {
2653 	vm_page_spin_lock(m);
2654 	if (vm_page_busy_try(m, TRUE)) {
2655 		vm_page_spin_unlock(m);
2656 		return(0);
2657 	}
2658 
2659 	/*
2660 	 * The page can be in any state, including already being on the free
2661 	 * queue.  Check to see if it really can be freed.
2662 	 */
2663 	if (m->dirty ||				/* can't free if it is dirty */
2664 	    m->hold_count ||			/* or held (XXX may be wrong) */
2665 	    m->wire_count ||			/* or wired */
2666 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2667 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2668 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2669 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2670 		if (_vm_page_wakeup(m)) {
2671 			vm_page_spin_unlock(m);
2672 			wakeup(m);
2673 		} else {
2674 			vm_page_spin_unlock(m);
2675 		}
2676 		return(0);
2677 	}
2678 	vm_page_spin_unlock(m);
2679 
2680 	/*
2681 	 * We can probably free the page.
2682 	 *
2683 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2684 	 * not be freed by this function.    We have to re-test the
2685 	 * dirty bit after cleaning out the pmaps.
2686 	 */
2687 	vm_page_test_dirty(m);
2688 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2689 		vm_page_wakeup(m);
2690 		return(0);
2691 	}
2692 	vm_page_protect(m, VM_PROT_NONE);
2693 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2694 		vm_page_wakeup(m);
2695 		return(0);
2696 	}
2697 	vm_page_free(m);
2698 	return(1);
2699 }
2700 
2701 /*
2702  * vm_page_cache
2703  *
2704  * Put the specified page onto the page cache queue (if appropriate).
2705  *
2706  * The page must be busy, and this routine will release the busy and
2707  * possibly even free the page.
2708  */
2709 void
2710 vm_page_cache(vm_page_t m)
2711 {
2712 	/*
2713 	 * Not suitable for the cache
2714 	 */
2715 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2716 	    m->busy || m->wire_count || m->hold_count) {
2717 		vm_page_wakeup(m);
2718 		return;
2719 	}
2720 
2721 	/*
2722 	 * Already in the cache (and thus not mapped)
2723 	 */
2724 	if ((m->queue - m->pc) == PQ_CACHE) {
2725 		KKASSERT((m->flags & PG_MAPPED) == 0);
2726 		vm_page_wakeup(m);
2727 		return;
2728 	}
2729 
2730 	/*
2731 	 * Caller is required to test m->dirty, but note that the act of
2732 	 * removing the page from its maps can cause it to become dirty
2733 	 * on an SMP system due to another cpu running in usermode.
2734 	 */
2735 	if (m->dirty) {
2736 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2737 			(long)m->pindex);
2738 	}
2739 
2740 	/*
2741 	 * Remove all pmaps and indicate that the page is not
2742 	 * writeable or mapped.  Our vm_page_protect() call may
2743 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2744 	 * everything.
2745 	 */
2746 	vm_page_protect(m, VM_PROT_NONE);
2747 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2748 	    m->busy || m->wire_count || m->hold_count) {
2749 		vm_page_wakeup(m);
2750 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2751 		vm_page_deactivate(m);
2752 		vm_page_wakeup(m);
2753 	} else {
2754 		_vm_page_and_queue_spin_lock(m);
2755 		_vm_page_rem_queue_spinlocked(m);
2756 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2757 		_vm_page_queue_spin_unlock(m);
2758 		if (_vm_page_wakeup(m)) {
2759 			vm_page_spin_unlock(m);
2760 			wakeup(m);
2761 		} else {
2762 			vm_page_spin_unlock(m);
2763 		}
2764 		vm_page_free_wakeup();
2765 	}
2766 }
2767 
2768 /*
2769  * vm_page_dontneed()
2770  *
2771  * Cache, deactivate, or do nothing as appropriate.  This routine
2772  * is typically used by madvise() MADV_DONTNEED.
2773  *
2774  * Generally speaking we want to move the page into the cache so
2775  * it gets reused quickly.  However, this can result in a silly syndrome
2776  * due to the page recycling too quickly.  Small objects will not be
2777  * fully cached.  On the otherhand, if we move the page to the inactive
2778  * queue we wind up with a problem whereby very large objects
2779  * unnecessarily blow away our inactive and cache queues.
2780  *
2781  * The solution is to move the pages based on a fixed weighting.  We
2782  * either leave them alone, deactivate them, or move them to the cache,
2783  * where moving them to the cache has the highest weighting.
2784  * By forcing some pages into other queues we eventually force the
2785  * system to balance the queues, potentially recovering other unrelated
2786  * space from active.  The idea is to not force this to happen too
2787  * often.
2788  *
2789  * The page must be busied.
2790  */
2791 void
2792 vm_page_dontneed(vm_page_t m)
2793 {
2794 	static int dnweight;
2795 	int dnw;
2796 	int head;
2797 
2798 	dnw = ++dnweight;
2799 
2800 	/*
2801 	 * occassionally leave the page alone
2802 	 */
2803 	if ((dnw & 0x01F0) == 0 ||
2804 	    m->queue - m->pc == PQ_INACTIVE ||
2805 	    m->queue - m->pc == PQ_CACHE
2806 	) {
2807 		if (m->act_count >= ACT_INIT)
2808 			--m->act_count;
2809 		return;
2810 	}
2811 
2812 	/*
2813 	 * If vm_page_dontneed() is inactivating a page, it must clear
2814 	 * the referenced flag; otherwise the pagedaemon will see references
2815 	 * on the page in the inactive queue and reactivate it. Until the
2816 	 * page can move to the cache queue, madvise's job is not done.
2817 	 */
2818 	vm_page_flag_clear(m, PG_REFERENCED);
2819 	pmap_clear_reference(m);
2820 
2821 	if (m->dirty == 0)
2822 		vm_page_test_dirty(m);
2823 
2824 	if (m->dirty || (dnw & 0x0070) == 0) {
2825 		/*
2826 		 * Deactivate the page 3 times out of 32.
2827 		 */
2828 		head = 0;
2829 	} else {
2830 		/*
2831 		 * Cache the page 28 times out of every 32.  Note that
2832 		 * the page is deactivated instead of cached, but placed
2833 		 * at the head of the queue instead of the tail.
2834 		 */
2835 		head = 1;
2836 	}
2837 	vm_page_spin_lock(m);
2838 	_vm_page_deactivate_locked(m, head);
2839 	vm_page_spin_unlock(m);
2840 }
2841 
2842 /*
2843  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2844  * is almost like PG_BUSY except that it allows certain compatible operations
2845  * to occur on the page while it is busy.  For example, a page undergoing a
2846  * write can still be mapped read-only.
2847  *
2848  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2849  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2850  * busy bit is cleared.
2851  *
2852  * The caller must hold the page BUSY when making these two calls.
2853  */
2854 void
2855 vm_page_io_start(vm_page_t m)
2856 {
2857         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2858         atomic_add_char(&m->busy, 1);
2859 	vm_page_flag_set(m, PG_SBUSY);
2860 }
2861 
2862 void
2863 vm_page_io_finish(vm_page_t m)
2864 {
2865         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2866         atomic_subtract_char(&m->busy, 1);
2867 	if (m->busy == 0)
2868 		vm_page_flag_clear(m, PG_SBUSY);
2869 }
2870 
2871 /*
2872  * Indicate that a clean VM page requires a filesystem commit and cannot
2873  * be reused.  Used by tmpfs.
2874  */
2875 void
2876 vm_page_need_commit(vm_page_t m)
2877 {
2878 	vm_page_flag_set(m, PG_NEED_COMMIT);
2879 	vm_object_set_writeable_dirty(m->object);
2880 }
2881 
2882 void
2883 vm_page_clear_commit(vm_page_t m)
2884 {
2885 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2886 }
2887 
2888 /*
2889  * Grab a page, blocking if it is busy and allocating a page if necessary.
2890  * A busy page is returned or NULL.  The page may or may not be valid and
2891  * might not be on a queue (the caller is responsible for the disposition of
2892  * the page).
2893  *
2894  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2895  * page will be zero'd and marked valid.
2896  *
2897  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2898  * valid even if it already exists.
2899  *
2900  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2901  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2902  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2903  *
2904  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2905  * always returned if we had blocked.
2906  *
2907  * This routine may not be called from an interrupt.
2908  *
2909  * No other requirements.
2910  */
2911 vm_page_t
2912 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2913 {
2914 	vm_page_t m;
2915 	int error;
2916 	int shared = 1;
2917 
2918 	KKASSERT(allocflags &
2919 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2920 	vm_object_hold_shared(object);
2921 	for (;;) {
2922 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2923 		if (error) {
2924 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2925 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2926 				m = NULL;
2927 				break;
2928 			}
2929 			/* retry */
2930 		} else if (m == NULL) {
2931 			if (shared) {
2932 				vm_object_upgrade(object);
2933 				shared = 0;
2934 			}
2935 			if (allocflags & VM_ALLOC_RETRY)
2936 				allocflags |= VM_ALLOC_NULL_OK;
2937 			m = vm_page_alloc(object, pindex,
2938 					  allocflags & ~VM_ALLOC_RETRY);
2939 			if (m)
2940 				break;
2941 			vm_wait(0);
2942 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2943 				goto failed;
2944 		} else {
2945 			/* m found */
2946 			break;
2947 		}
2948 	}
2949 
2950 	/*
2951 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2952 	 *
2953 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2954 	 * valid even if already valid.
2955 	 *
2956 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
2957 	 *	  removed the idle zeroing code.  These optimizations actually
2958 	 *	  slow things down on modern cpus because the zerod area is
2959 	 *	  likely uncached, placing a memory-access burden on the
2960 	 *	  accesors taking the fault.
2961 	 *
2962 	 *	  By always zeroing the page in-line with the fault, no
2963 	 *	  dynamic ram reads are needed and the caches are hot, ready
2964 	 *	  for userland to access the memory.
2965 	 */
2966 	if (m->valid == 0) {
2967 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2968 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
2969 			m->valid = VM_PAGE_BITS_ALL;
2970 		}
2971 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2972 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2973 		m->valid = VM_PAGE_BITS_ALL;
2974 	}
2975 failed:
2976 	vm_object_drop(object);
2977 	return(m);
2978 }
2979 
2980 /*
2981  * Mapping function for valid bits or for dirty bits in
2982  * a page.  May not block.
2983  *
2984  * Inputs are required to range within a page.
2985  *
2986  * No requirements.
2987  * Non blocking.
2988  */
2989 int
2990 vm_page_bits(int base, int size)
2991 {
2992 	int first_bit;
2993 	int last_bit;
2994 
2995 	KASSERT(
2996 	    base + size <= PAGE_SIZE,
2997 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2998 	);
2999 
3000 	if (size == 0)		/* handle degenerate case */
3001 		return(0);
3002 
3003 	first_bit = base >> DEV_BSHIFT;
3004 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3005 
3006 	return ((2 << last_bit) - (1 << first_bit));
3007 }
3008 
3009 /*
3010  * Sets portions of a page valid and clean.  The arguments are expected
3011  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3012  * of any partial chunks touched by the range.  The invalid portion of
3013  * such chunks will be zero'd.
3014  *
3015  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3016  *	 align base to DEV_BSIZE so as not to mark clean a partially
3017  *	 truncated device block.  Otherwise the dirty page status might be
3018  *	 lost.
3019  *
3020  * This routine may not block.
3021  *
3022  * (base + size) must be less then or equal to PAGE_SIZE.
3023  */
3024 static void
3025 _vm_page_zero_valid(vm_page_t m, int base, int size)
3026 {
3027 	int frag;
3028 	int endoff;
3029 
3030 	if (size == 0)	/* handle degenerate case */
3031 		return;
3032 
3033 	/*
3034 	 * If the base is not DEV_BSIZE aligned and the valid
3035 	 * bit is clear, we have to zero out a portion of the
3036 	 * first block.
3037 	 */
3038 
3039 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3040 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3041 	) {
3042 		pmap_zero_page_area(
3043 		    VM_PAGE_TO_PHYS(m),
3044 		    frag,
3045 		    base - frag
3046 		);
3047 	}
3048 
3049 	/*
3050 	 * If the ending offset is not DEV_BSIZE aligned and the
3051 	 * valid bit is clear, we have to zero out a portion of
3052 	 * the last block.
3053 	 */
3054 
3055 	endoff = base + size;
3056 
3057 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3058 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3059 	) {
3060 		pmap_zero_page_area(
3061 		    VM_PAGE_TO_PHYS(m),
3062 		    endoff,
3063 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3064 		);
3065 	}
3066 }
3067 
3068 /*
3069  * Set valid, clear dirty bits.  If validating the entire
3070  * page we can safely clear the pmap modify bit.  We also
3071  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3072  * takes a write fault on a MAP_NOSYNC memory area the flag will
3073  * be set again.
3074  *
3075  * We set valid bits inclusive of any overlap, but we can only
3076  * clear dirty bits for DEV_BSIZE chunks that are fully within
3077  * the range.
3078  *
3079  * Page must be busied?
3080  * No other requirements.
3081  */
3082 void
3083 vm_page_set_valid(vm_page_t m, int base, int size)
3084 {
3085 	_vm_page_zero_valid(m, base, size);
3086 	m->valid |= vm_page_bits(base, size);
3087 }
3088 
3089 
3090 /*
3091  * Set valid bits and clear dirty bits.
3092  *
3093  * Page must be busied by caller.
3094  *
3095  * NOTE: This function does not clear the pmap modified bit.
3096  *	 Also note that e.g. NFS may use a byte-granular base
3097  *	 and size.
3098  *
3099  * No other requirements.
3100  */
3101 void
3102 vm_page_set_validclean(vm_page_t m, int base, int size)
3103 {
3104 	int pagebits;
3105 
3106 	_vm_page_zero_valid(m, base, size);
3107 	pagebits = vm_page_bits(base, size);
3108 	m->valid |= pagebits;
3109 	m->dirty &= ~pagebits;
3110 	if (base == 0 && size == PAGE_SIZE) {
3111 		/*pmap_clear_modify(m);*/
3112 		vm_page_flag_clear(m, PG_NOSYNC);
3113 	}
3114 }
3115 
3116 /*
3117  * Set valid & dirty.  Used by buwrite()
3118  *
3119  * Page must be busied by caller.
3120  */
3121 void
3122 vm_page_set_validdirty(vm_page_t m, int base, int size)
3123 {
3124 	int pagebits;
3125 
3126 	pagebits = vm_page_bits(base, size);
3127 	m->valid |= pagebits;
3128 	m->dirty |= pagebits;
3129 	if (m->object)
3130 	       vm_object_set_writeable_dirty(m->object);
3131 }
3132 
3133 /*
3134  * Clear dirty bits.
3135  *
3136  * NOTE: This function does not clear the pmap modified bit.
3137  *	 Also note that e.g. NFS may use a byte-granular base
3138  *	 and size.
3139  *
3140  * Page must be busied?
3141  * No other requirements.
3142  */
3143 void
3144 vm_page_clear_dirty(vm_page_t m, int base, int size)
3145 {
3146 	m->dirty &= ~vm_page_bits(base, size);
3147 	if (base == 0 && size == PAGE_SIZE) {
3148 		/*pmap_clear_modify(m);*/
3149 		vm_page_flag_clear(m, PG_NOSYNC);
3150 	}
3151 }
3152 
3153 /*
3154  * Make the page all-dirty.
3155  *
3156  * Also make sure the related object and vnode reflect the fact that the
3157  * object may now contain a dirty page.
3158  *
3159  * Page must be busied?
3160  * No other requirements.
3161  */
3162 void
3163 vm_page_dirty(vm_page_t m)
3164 {
3165 #ifdef INVARIANTS
3166         int pqtype = m->queue - m->pc;
3167 #endif
3168         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3169                 ("vm_page_dirty: page in free/cache queue!"));
3170 	if (m->dirty != VM_PAGE_BITS_ALL) {
3171 		m->dirty = VM_PAGE_BITS_ALL;
3172 		if (m->object)
3173 			vm_object_set_writeable_dirty(m->object);
3174 	}
3175 }
3176 
3177 /*
3178  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3179  * valid and dirty bits for the effected areas are cleared.
3180  *
3181  * Page must be busied?
3182  * Does not block.
3183  * No other requirements.
3184  */
3185 void
3186 vm_page_set_invalid(vm_page_t m, int base, int size)
3187 {
3188 	int bits;
3189 
3190 	bits = vm_page_bits(base, size);
3191 	m->valid &= ~bits;
3192 	m->dirty &= ~bits;
3193 	atomic_add_int(&m->object->generation, 1);
3194 }
3195 
3196 /*
3197  * The kernel assumes that the invalid portions of a page contain
3198  * garbage, but such pages can be mapped into memory by user code.
3199  * When this occurs, we must zero out the non-valid portions of the
3200  * page so user code sees what it expects.
3201  *
3202  * Pages are most often semi-valid when the end of a file is mapped
3203  * into memory and the file's size is not page aligned.
3204  *
3205  * Page must be busied?
3206  * No other requirements.
3207  */
3208 void
3209 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3210 {
3211 	int b;
3212 	int i;
3213 
3214 	/*
3215 	 * Scan the valid bits looking for invalid sections that
3216 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3217 	 * valid bit may be set ) have already been zerod by
3218 	 * vm_page_set_validclean().
3219 	 */
3220 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3221 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3222 		    (m->valid & (1 << i))
3223 		) {
3224 			if (i > b) {
3225 				pmap_zero_page_area(
3226 				    VM_PAGE_TO_PHYS(m),
3227 				    b << DEV_BSHIFT,
3228 				    (i - b) << DEV_BSHIFT
3229 				);
3230 			}
3231 			b = i + 1;
3232 		}
3233 	}
3234 
3235 	/*
3236 	 * setvalid is TRUE when we can safely set the zero'd areas
3237 	 * as being valid.  We can do this if there are no cache consistency
3238 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3239 	 */
3240 	if (setvalid)
3241 		m->valid = VM_PAGE_BITS_ALL;
3242 }
3243 
3244 /*
3245  * Is a (partial) page valid?  Note that the case where size == 0
3246  * will return FALSE in the degenerate case where the page is entirely
3247  * invalid, and TRUE otherwise.
3248  *
3249  * Does not block.
3250  * No other requirements.
3251  */
3252 int
3253 vm_page_is_valid(vm_page_t m, int base, int size)
3254 {
3255 	int bits = vm_page_bits(base, size);
3256 
3257 	if (m->valid && ((m->valid & bits) == bits))
3258 		return 1;
3259 	else
3260 		return 0;
3261 }
3262 
3263 /*
3264  * update dirty bits from pmap/mmu.  May not block.
3265  *
3266  * Caller must hold the page busy
3267  */
3268 void
3269 vm_page_test_dirty(vm_page_t m)
3270 {
3271 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3272 		vm_page_dirty(m);
3273 	}
3274 }
3275 
3276 /*
3277  * Register an action, associating it with its vm_page
3278  */
3279 void
3280 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3281 {
3282 	struct vm_page_action_hash *hash;
3283 	int hv;
3284 
3285 	hv = (int)((intptr_t)action->m >> 8) & vmaction_hmask;
3286 	hash = &action_hash[hv];
3287 
3288 	lockmgr(&hash->lk, LK_EXCLUSIVE);
3289 	vm_page_flag_set(action->m, PG_ACTIONLIST);
3290 	action->event = event;
3291 	LIST_INSERT_HEAD(&hash->list, action, entry);
3292 	lockmgr(&hash->lk, LK_RELEASE);
3293 }
3294 
3295 /*
3296  * Unregister an action, disassociating it from its related vm_page
3297  */
3298 void
3299 vm_page_unregister_action(vm_page_action_t action)
3300 {
3301 	struct vm_page_action_hash *hash;
3302 	int hv;
3303 
3304 	hv = (int)((intptr_t)action->m >> 8) & vmaction_hmask;
3305 	hash = &action_hash[hv];
3306 	lockmgr(&hash->lk, LK_EXCLUSIVE);
3307 	if (action->event != VMEVENT_NONE) {
3308 		action->event = VMEVENT_NONE;
3309 		LIST_REMOVE(action, entry);
3310 
3311 		if (LIST_EMPTY(&hash->list))
3312 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3313 	}
3314 	lockmgr(&hash->lk, LK_RELEASE);
3315 }
3316 
3317 /*
3318  * Issue an event on a VM page.  Corresponding action structures are
3319  * removed from the page's list and called.
3320  *
3321  * If the vm_page has no more pending action events we clear its
3322  * PG_ACTIONLIST flag.
3323  */
3324 void
3325 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3326 {
3327 	struct vm_page_action_hash *hash;
3328 	struct vm_page_action *scan;
3329 	struct vm_page_action *next;
3330 	int hv;
3331 	int all;
3332 
3333 	hv = (int)((intptr_t)m >> 8) & vmaction_hmask;
3334 	hash = &action_hash[hv];
3335 	all = 1;
3336 
3337 	lockmgr(&hash->lk, LK_EXCLUSIVE);
3338 	LIST_FOREACH_MUTABLE(scan, &hash->list, entry, next) {
3339 		if (scan->m == m) {
3340 			if (scan->event == event) {
3341 				scan->event = VMEVENT_NONE;
3342 				LIST_REMOVE(scan, entry);
3343 				scan->func(m, scan);
3344 				/* XXX */
3345 			} else {
3346 				all = 0;
3347 			}
3348 		}
3349 	}
3350 	if (all)
3351 		vm_page_flag_clear(m, PG_ACTIONLIST);
3352 	lockmgr(&hash->lk, LK_RELEASE);
3353 }
3354 
3355 #include "opt_ddb.h"
3356 #ifdef DDB
3357 #include <ddb/ddb.h>
3358 
3359 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3360 {
3361 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3362 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3363 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3364 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3365 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3366 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3367 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3368 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3369 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3370 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3371 }
3372 
3373 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3374 {
3375 	int i;
3376 	db_printf("PQ_FREE:");
3377 	for (i = 0; i < PQ_L2_SIZE; i++) {
3378 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3379 	}
3380 	db_printf("\n");
3381 
3382 	db_printf("PQ_CACHE:");
3383 	for(i = 0; i < PQ_L2_SIZE; i++) {
3384 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3385 	}
3386 	db_printf("\n");
3387 
3388 	db_printf("PQ_ACTIVE:");
3389 	for(i = 0; i < PQ_L2_SIZE; i++) {
3390 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3391 	}
3392 	db_printf("\n");
3393 
3394 	db_printf("PQ_INACTIVE:");
3395 	for(i = 0; i < PQ_L2_SIZE; i++) {
3396 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3397 	}
3398 	db_printf("\n");
3399 }
3400 #endif /* DDB */
3401